
Automated Discovery of Structured Process Models:
Discover Structured vs. Discover and Structure

Adriano Augusto1,2, Raffaele Conforti1, Marlon Dumas3, Marcello La Rosa1, and
Giorgio Bruno2

1 Queensland University of Technology, Australia
{a.augusto, raffaele.conforti, m.larosa}@qut.edu.au

2 Politecnico di Torino, Italy
giorgio.bruno@polito.it

3 University of Tartu, Estonia
marlon.dumas@ut.ee

Abstract. This paper addresses the problem of discovering business process
models from event logs. Existing approaches to this problem strike various trade-
offs between accuracy and understandability of the discovered models. With re-
spect to the second criterion, empirical studies have shown that block-structured
process models are generally more understandable and less error-prone than un-
structured ones. Accordingly, several automated process discovery methods gen-
erate block-structured models by construction. These approaches however inter-
twine the concern of producing accurate models with that of ensuring their struc-
turedness, sometimes sacrificing the former to ensure the latter. In this paper we
propose an alternative approach that separates these two concerns. Instead of di-
rectly discovering a structured process model, we first apply a well-known heuris-
tic technique that discovers more accurate but sometimes unstructured (and even
unsound) process models, and then transform the resulting model into a struc-
tured one. An experimental evaluation shows that our “discover and structure”
approach outperforms traditional “discover structured” approaches with respect
to a range of accuracy and complexity measures.

1 Introduction

Automated process discovery refers to a family of methods that generate a business
process model from an event log [18]. An event log in this context is a set of traces,
each consisting of a sequence of events observed within one execution of a process.

Existing automated process discovery methods strike various tradeoffs between ac-
curacy and understandability [20]. In this setting, accuracy is commonly declined into
three dimensions: (i) fitness: to what extent the discovered model is able to “parse” the
traces in the log; (ii) precision: how much behavior is allowed by the model but not ob-
served in the log; and (iii) generalization: to what extent is the model able to parse traces
that, despite not being present in the input log, can actually be produced by the process
under observation. Understandability on the other hand is commonly measured via size
metrics (e.g. number of nodes) and structural complexity metrics. The latter quantify
either the amount of branching in a process model or its degree of structuredness (the
extent to which a model is composed of well-structured single-entry, single-exit com-
ponents), which have been empirically shown to be proxies for understandability [11].

2

Inspired by the observation that structured process models may be more understand-
able than unstructured ones [6], several automated process discovery methods generate
structured models by construction [10, 3, 12]. These approaches however intertwine the
concern of accuracy with that of structuredness, sometimes sacrificing the former to
achieve the latter. This paper obviates this tradeoff by presenting an automated process
discovery method that generates structured models, yet achieves essentially the same
fitness, precision and generalization as methods that generate unstructured models. The
method follows a two-phased approach. In the first phase, a model is discovered from
the log using a heuristic process discovery method that has been shown to consistently
produce accurate, but potentially unstructured or even unsound models. In the second
phase, the discovered model is transformed into a sound and structured model by apply-
ing two techniques: a technique to maximally block-structure an acyclic process model
and an extended version of a technique for block-structuring flowcharts.

The paper reports on an empirical evaluation based on real-life and synthetic event
logs that puts into evidence the performance of the proposed method relative to two
representative methods that discover structured models by construction.

The rest of the paper is organized as follows. Section 2 introduces existing au-
tomated process discovery methods and methods for structuring process models. Sec-
tion 3 presents the proposed method while Section 4 reports on the empirical evaluation.
Finally, Section 5 summarizes the contributions and outlines future work directions.

2 Background and Related Work

In this section we review existing automated process discovery methods and associated
quality dimensions. We also introduce methods for transforming unstructured process
models into structured ones, which we later use as building blocks for our proposal.

2.1 Automated Process Discovery Algorithms

The bulk of automated process discovery algorithms are not designed to produce struc-
tured process models. This includes for example of the α-algorithm [19], which may
produce unstructured models and sometimes even models with disconnected fragments.
The Heuristics Miner [21] partially addresses the limitations of the α-algorithm and
consistently performs well in terms of accuracy and simplicity metrics [20]. However,
its output may be unstructured and even unsound, i.e. the produced models may contain
deadlocks or gateways that do not synchronize all their incoming tokens. Fodina2 is
a variant of the Heuristics Miner that partially addresses the latter issue but does not
generally produce structured models.

It has been observed that structured process models are generally more understand-
able than unstructured ones [6]. Moreover, structured process models are sound, pro-
vided that the gateways at the entry and exit of each block match. Given these ad-
vantages, several algorithms are designed to produce structured process models, repre-
sented for example as process trees [10, 3]. A process tree is a tree where the each leaf is
labelled with an activity and each internal node is labeled with a control-flow operator:
sequence, exclusive choice, non-exclusive choice, parallelism, or iteration.

2 http://www.processmining.be/fodina

3

The Inductive miner [10] uses a divide-and-conquer approach to discover process
trees. Using the direct follows dependency between event types in the log, it first cre-
ates a directly-follows graph which is used to identify cuts. A cut represent a specific
control-flow dependency along which the log can be bisected. The identification of cuts
is repeated recursively, starting from the most representative one until no more cuts can
be identified. Once all cuts are identified and the log split into portions, a process tree is
generated on top of each portion of the log. The algorithm then applies filters to remove
“dangling” directly-follows edges so that the result is purely a process tree.

The Evolutionary Tree Miner (ETM) [3] is a genetic algorithm that starts by gen-
erating a population of random process trees. At each iteration, it computes an overall
fitness value for each tree in the population and applies mutations to a subset thereof. A
mutation is a tree change operation that adds or modifies nodes. The algorithm iterates
until a stop criterion is fulfilled, and returns the tree with highest overall fitness.

Molka et al. [12] proposed another genetic automated process discovery algorithm
that produces structured process models. This latter algorithm is similar in its principles
to ETM, differing mainly in the set of change operations used to produce mutations.

2.2 Quality Dimensions in Automated Process Discovery

The quality of an automatically discovered process model is generally assessed along
four dimensions: recall (a.k.a. fitness), precision, generalization and complexity.

Fitness is the ability of a model to reproduce the behavior contained in a log. Under
trace semantics, a fitness of 1 means that the model can produce every trace in the log.
In this paper, we use the fitness measure proposed in [2], which measures the degree to
which every trace in the log can be aligned with a trace produced by the model. Preci-
sion measures the ability of a model to generate only the behavior found in the log. A
score of 1 indicates that any trace produced by the model is somehow present in the log.
In this paper we use the precision measure defined in [1], which is based on similar prin-
ciples as the above fitness measure. Recall and precision can be combined into a single
F-score, which is the harmonic mean of the two measurements

(
2 · Fitness·Precision

Fitness+Precision

)
.

Generalization measures the ability of a discovered model to produce behavior that
is not present in the log but that can be produced by the process under observation. To
measure generalization we use 10-fold cross validation [9]: We divide the log into 10
parts, discover a model from 9 parts (i.e. we hold-out 1 part), and we measure fitness of
the discovered model against the hold-out part. This is repeated for every possible hold-
out part. Generalization is the mean of the fitness values obtained for each hold-out part.
A generalization of 1 means that the discovered models produce traces in the observed
process, even if those traces are not in the log from which the model was discovered.

Finally, complexity quantifies how difficult it is to understand a model. Several com-
plexity metrics have been shown to be (inversely) related to understandability [11],
including size (number of nodes); Control-Flow Complexity (CFC) (the amount of
branching caused by gateways in the model) and structuredness (the percentage of
nodes located directly inside a well-structured single-entry single-exit fragment).

2.3 Structuring Techniques

Polyvyanyy et al. [15, 16] propose a technique to transform unstructured process mod-
els into behaviourally equivalent structured ones. The approach starts by constructing

4

the Refined Process Structure Tree (RPST) [17] of the input process model. The RPST
of a process model is a tree where the nodes are the single-entry single-exit (SESE)
fragments of the model and an edge denotes a containment relation between SESE frag-
ments. Specifically, the children of a SESE fragment in the tree are the SESE fragments
that it directly contains. Fragments at the same level of the tree are disjoint.

Each SESE fragment is represented by a set of edges. Depending on how these
edges are related, a SESE fragment can be of one of four types. A trivial fragment
consists of a single edge. A polygon is a sequence of fragments. A bond is a fragment
where all child fragments share two common gateways, one being the entry node and
the other being the exit node of the bond. In other words, a bond consists of a split
gateway with two or more sub-SESE fragments all converging into a join gateway. Any
other fragment is a rigid. A model that consists only of trivials, polygons and bonds
(i.e. no rigids) is fully structured. Thus the goal of a block-structuring technique is to
replace rigid fragments in the RPST with combinations of trivials, polygons and bonds.

In the structuring technique by Polyvyanyy et al., each rigid fragment is unfolded
and an ordering relation graph is generated. This graph is then parsed to construct a
modular decomposition tree leading to a hierarchy of components from which a maxi-
mally structured version of the original fragment is derived. The technique in [16] pro-
duces a maximally-structured version of any acyclic fragment (and thus of any model),
but it does not structure rigid fragments that contain cycles.

The problem of structuring behavioral models has also been studied in the field of
programming, specifically for flowcharts: graphs consisting of tasks (instructions), ex-
clusive split and exclusive join gateways. Oulsnam [13] identified six primitive forms
of unstructuredness in flowcharts. He observed that unstructuredness is caused by the
presence either of an injection (entry point) or an ejection (exit point) in one of the
branches connecting a split gateway to a matching join gateway. Later, Oulsnam [14]
proposed an approach to structure these six forms. The approach is based on two rules.
The first rule deals with an injection, and pushes the injection after the join gateway, du-
plicating everything that was originally between the injection and the join. On the other
hand, when the unstructuredness is caused by an ejection, the ejection is pushed after
the join gateway and an additional conditional block is added to prevent the execution
of unnecessary instructions. These two rules are recursively applied to the flowchart,
starting from the innermost unstructured form, until no more structuring is possible.

Polyvyanyy’s and Oulsnam’s technique are complementary: while Polyvyanyy’s
technique deals mainly with unstructured acyclic rigids with parallelism, Oulsnam’s
one deals with rigid fragments without parallelism (exclusive gateways only). This ob-
servation is a centrepiece of the approach presented in the following section.

3 Approach

The proposed approach to discovering structured process models takes as input an event
log and operates in two phases: i) discovery & cleaning, and ii) structuring.

3.1 Discovery & Cleaning

In this phase a process model is discovered from an input log using an existing process
discovery algorithm. Any process discovery algorithm can be used in this phase. In

5

this paper we use the Heuristics Miner because of its accuracy [20]. In addition to
discovering an initial (unstructured) model, this phase fixes model correctness issues
such as disconnected nodes (structural issues) and deadlocks (behavioral issues). This is
achieved via 3 heuristics. Before presenting them, we formally define a process model.
Definition 1 (Process model). A process model is a connected graph G = (i,o,A,G+,Gx,F),
where A is a non-empty set of activities, i is the start event, o is the end event,G+ is the set of AND-
gateways, Gx is the set of XOR-gateways, and F ⊆ ({i}∪A∪G+∪Gx)× ({o}∪A∪G+∪Gx) is
the set of arcs. A split gateway is a gateway with one incoming arc and multiple outgoing arcs,
while a join gateway is a gateway with multiple incoming arcs and one outgoing arc.

A process model starts with a unique start event, representing the process trigger
(e.g. “order received”) and concludes with a unique end event, representing the process
outcome (e.g. “order fulfilled”). The model may contain activities, which capture ac-
tions that are performed during the process (e.g. “check order”) and gateways, which
are used for branching (split) and merging (join) purposes. Gateways can be of type
XOR, to model exclusive decisions (XOR-split) and simple merges (XOR-join), and
AND, to model parallelism (AND-split) and synchronization (AND-join).

The first heuristic (cf. Fig. 1) ensures that a model contains a single start and a single
end event, and that every activity in the model is on a path from the start to the end. In
case of multiple start or end events, these events are connected via an XOR gateway.
In case of activities not on a path from start to end, the heuristic places the activity
in parallel with the rest of the process, in such a way that the activity can be skipped
and repeated any number of times. The second heuristic ensures that for every bond,
the split and the join gateways are of the same type – both AND or both XOR but not
mixed (cf. Fig. 1). In the case of an acyclic bond (a bond where all paths go from the
entry to the exit gateway), the heuristic matches the exit gateway type with that of entry
gateway type. If the bond is cyclic (there is a path from the exit to the entry gateway),
the heuristic converts all gateways into XORs. The third heuristic addresses cases of
unsoundness related to quasi-bonds. A quasi-bond is a bond with an injection via a join
gateway or an ejection via a split gateway, along a path connecting the entry and exit
gateways of the bond. The heuristic replaces the entry and exit gateways of the quasi-
bond as well as the join (split) causing the injection (ejection), with XOR gateways.

Heuristic 1 Heuristic 2 Heuristic 3

Before

1 - 1 Before - DisconnectedActivities

A

B

4 - 1 Before - XOR_AND

B

11.1 - 1 Before - XOR_XOR_Activity_AND

B

A

After

1 - 2 After - DisconnectedActivities

A

B

4 - 2 After - XOR_AND

B

11.1 - 2 After - XOR_XOR_Activity_AND

B

A

Fig. 1. Examples of application of the three cleaning heuristics.

3.2 Structuring
The second phase of our approach deals with the structuring of the discovered process
model by removing injections and ejections. Before discussing this phase, we need to

6

Algorithm 1: Structuring flow
input: RPST rpst

Queue Queue := getLeaves(rpst);1
Set Visited := ∅;2
while Queue 6=∅ do3

node := remove(Queue);4
parent := getParent(node);5
if isRigid(node) then6

if isSoundANDHomogeneous(node) OR isSoundHeterogeneous(node) then7
BPStruct(node);8

else EOStruct(node);9

Visited := Visited∪{node};10
if parent /∈ Visited then insert(Queue, parent);11

formally define the notions of activity path, injection and ejection. An activity path is a
path containing activity nodes only (no gateways), between two gateways.

Definition 2 (Activity Path). Given two gateways gentry and gexit and a sequence of activities
S = 〈a1, . . . ,an〉, there is a path from gentry to gexit, i.e. gentry S gexit iff gentry → a1 → a2 →
·· ·→ an→ gexit, where a→ b holds if there is an arc connecting a to b. Using the operator we
define the set of all paths of a process model as P , {(g1,g2,S) ∈ G×G×A∗ | g1 S g2}. The
set of incoming paths of a gateway gx is defined as bgx = {(g1,g2,S) ∈ P | gx = g2}. Similarly
the set of outgoing paths is defined as gx

b= {(g1,g2,S) ∈ P | gx = g1}.

Definition 3 (Injection). Given four different gateways g1, g2, g3, g4, they constitute an injec-
tion i = (g1,g2,g3,g4) iff ∃(S1,S2,S3) ∈ A∗×A∗×A∗ | g1 S1 g2∧g2 S2 g3∧g4 S3 g2 (see
“before” column in Table 2).

Definition 4 (Ejection). Given four different gateways g1, g2, g3, g4, they constitue an ejection
e = (g1,g2,g3,g4) iff ∃(S1,S2,S3) ∈ A∗ × A∗ × A∗ | g1 S1 g2 ∧ g2 S2 g3 ∧ g2 S3 g4 (see
“before” column in Table 2)

According to [17], a rigid is homogeneous, if for all injections and ejections in the
rigid, the gateways are of the same type, otherwise it is heterogeneous.

Before After

Pu
sh

-D
ow

n

injection

g1
A

g3
B

g4
C

g2

injection

Any

Any Any Any

injection_pushdown

g1
A

g3
B

g4
C BAny

Any Any

Pu
ll-

U
p

ejection

g1
A

g3
B

g4
C

g2

ejection

Any Any

Any

Any

ejection_pullup

g1
A

g3
B

g4
CA

Any

Any

Any

Fig. 2. Structuring of injection and ejection.

Moreover, if an injection
or ejection is part of a cycle
the rigid is cyclic, otherwise
it is acyclic. Now we have
all ingredients to describe
the structuring phase. In this
phase, the RPST of the dis-
covered process model is gen-
erated and all its rigids identi-
fied. Once all rigids have been
identified, the RPST is tra-
versed bottom-up, and each
rigid is structured along the way.

Algorithm 1 shows how the RPST is traversed and each node is structured. The
algorithm uses a bottom-up traversal strategy implemented via a queue. First, all leaves

7

Algorithm 2: Push-Down
input: Injection i = (g1,g2,g3,g4)
input: Set of all Paths P
input: Set of all Gateways G

if g2
b⊆ bg3 then1

g′2 := copy(g2);2
G := G∪{g′2};3
P := P∪{(g4,g′2,S) ∈ G×G×A∗ | ∃(g4,g2,Sx) ∈ (g4

b∩ bg2)[Sx = S]};4
P := P\ (g4

b∩ bg2);5
P := P∪{(g′2,g3,S′) ∈ G×G×A∗ | ∃(g2,g3,S) ∈ (g2

b∩ bg3)[S′ = copy(S)]};6
if (|g2

b| = 1) AND (| bg2| = 1) then G := G\{g2};7
if (

∣∣g′2 b∣∣ = 1) AND (
∣∣ bg′2∣∣ = 1) then G := G\{g′2};8

Algorithm 3: Pull-Up
input: Ejection e = (g1,g2,g3,g4)
input: Set of all Paths P
input: Set of all Gateways G

if bg2 ⊆ g1
b then1

g′2 := copy(g2);2
G := G∪{g′2};3
P := P∪{(g′2,g4,S) ∈ G×G×A∗ | ∃(g2,g4,Sx) ∈ (g2

b∩ bg4)[Sx = S]};4
P := P\ (g2

b∩ bg4);5
P := P∪{(g1,g′2,S

′) ∈ G×G×A∗ | ∃(g1,g2,S) ∈ (g1
b∩ bg2)[S′ = copy(S)]};6

if (|g2
b| = 1) AND (| bg2| = 1) then G := G\{g2};7

if (
∣∣g′2 b∣∣ = 1) AND (

∣∣ bg′2∣∣ = 1) then G := G\{g′2};8

of the RPST are inserted in the queue. At each step a node from the queue is removed,
and structured if it is a rigid. The structuring is performed using BPStruct [15] if the
rigid is sound and consists only of AND gateways (sound AND-homogeneous) or a
mixture of AND and XOR gateways (sound heretogeneous) – cf. line 8. Otherwise the
structuring is performed using an extended version of Oulsnam’s algorithm [14] (line 9)
as discussed later. Then the node is marked as visited and if the parent node has not been
visited yet, it is added to the queue (cf. line 11). This is repeated until the queue is empty.

We decided to use two different structuring techniques since BPStruct guarantees
optimal results when applied on sound AND-homogeneous or heterogeneous rigids
only, whilst it produces suboptimal results for acyclic XOR-homogeneous rigids and
it fails in case of cyclic XOR-homogeneous or unsound rigids. The structuring of these
types of rigids is achieved instead using an extended version of Oulsnam’s algorithm.
Before presenting this latter algorithm, we need to introduce two operators.

The first operator is the push-down operator (see Algorithm 2). Given an Injection
i = (g1, g2, g3, g4), Push-Down(i) can be applied if g2

b⊆ bg3 (see line 1). The operator
removes the input injection in four steps: i) it creates a copy of g2, namely g′2; ii) for
each path from g4 to g2, it changes the end node of the path from g2 to the new gateway
g′2 (lines 4 and 5); iii) for each path from g2 to g3, it duplicates the path, setting g′2 as

8

Algorithm 4: EOStruct (Extended Oulsnam)
input: Rigid r
input: Boolean pullup

do1
Set I := detectInjections(r);2
Set E := ∅;3
if pullup then Set E := detectEjections(r);4
if I 6=∅ then Injection i := cheapestInjection(I);5
if E 6=∅ then Ejection e := cheapestEjection(E);6
if (i not ⊥) OR (e not ⊥) then7

if ((e = ⊥) OR ((i not ⊥) AND (cost(i) ≤ cost(e))) then Push-Down(i);8
else Pull-Up(e);9

while I 6=∅ OR E 6=∅ ;10

the starting node of the path, instead of g2 (line 6); and iv) it removes any of g2 and g′2
if it is a trivial gateway (see Fig. 2).

The second operator is the pull-up operator (see Algorithm 3). Given an Ejection
e = (g1, g2, g3, g4), Pull-Up(e) can be applied if bg2 ⊆ g1

b (see line 1). The operator
removes the input ejection in four steps: i) it creates a copy of g2, namely g′2; ii) for each
path from g2 to g4, it changes the starting node of the path from g2 to the new gateway
g′2 (lines 4 and 5); iii) for each path from g1 to g2, it duplicates the path, setting g′2 as
the end node of the path, instead of g2 (line 6); and iv) it removes any of g2 and g′2 if it
is a trivial gateway (see Fig. 2).

While the push-down operator is an adaptation of Oulsnam’s technique [14], the
pull-up operator is a new operator. It can be shown that this pull-up operator preserves
trace equivalence but does not preserve weak bisimulation equivalence, because it does
not preserve the moment of choice (it may pull a choice to an earlier point). Due to this
tradeoff, we make the use of the pull-up operator optional as discussed below.

Algorithm 4 (Extended Oulsnam) shows how the two operators are used to structure
a rigid fragment. The inputs of the algorithm are an unstructured rigid and a boolean
value to indicate whether the pull-up operator is to be used. First, the algorithm detects
every injection on top of which the push-down operator can be applied (see line 2),
and if the pull-up is enabled, every ejection on top of which the pull-up can be applied
(line 4). Second, it selects the cheapest injection and the cheapest ejection (lines 5 and
6). The cheapest injection (ejection) is the injection (ejection) generating the minimum
number of duplicates after a push-down (pull-up). Third, the cheapest among these
two is then chosen (line 8) and the corresponding operator is applied. The algorithm
iterates over these three steps until no more ejections or injections can be removed,
which results in a fully structured or maximally structured rigid. Selecting the cheapest
injection or ejection at each step does not ensure that the final model will have the
minimum number of duplicates. In order to achieve the latter property, we embed the
Extended Oulsnam algorithm inside an A∗ search [8], where each state in the search tree
is a transformed version of the initial rigid fragment, and the cost function associated
with each state is defined as f(s) = g(s) + h(s) with g(s) = #duplicates and h(s) = 0.
We set function h(s) to zero since it is not possible to predict how many duplicates are
needed in order to structure a rigid.

9

rigid1

g1 g2 g3 g4

g5
A

E

C D

F G

B

Input: Step 1

rigid2

g1 g2

g4

g5

F G

G'

B

D

C

A

E

Step 1.1rigid3

g1 g4g5
A

E

C

D

F G

B

F'

G'

G'

Step 1.1.1

rigid2a

g1 g3 g4

g5A

E

C
D

F G

B

F'

Step 1.2

rigid3a

g1 g4g5 g3'
G'A

E

C

B

D

F'

F G

Step 1.2.1

Fig. 3. An example application of the A∗ search tree with our structuring method.

Figure 3 illustrates an example where a rigid is structured using Algorithm 4 within
an A∗ search. In this example, the rigid has two injections, i.e. i1 = (g1,g2,g3,g5) and
i2 = (g2,g3,g4,g5). Assuming i2 is the cheapest of the two injections (i.e. the size of
subprocess G is smaller than the size of subprocess F), if we first remove i2 and then i1
(see Step 1.1 and Step 1.1.1) we will have to duplicate sub-process G twice. This would
not happen if we first removed i1 and then i2 (see Step 1.2 and Step 1.2.1). The use of
an A∗ search helps us avoid these situations since it takes care of exploring the search
tree and selecting the sequence of removals of injections and ejections, that leads to the
minimum number of duplicated elements.

For unsound rigids, we only apply the push-down operator in order to preserve the
moment of choice of the split gateways of the quasi-bonds that will be turned into bonds
when structuring the rigid (not shown in Algorithm 4 for brevity). After the structuring
procedure has been completed, we match the type of the join gateways of the acyclic
bonds with the type of their corresponding split gateways (e.g. if the split is an AND
gateway the join will be turned into an AND gateway). In case of cyclic bonds, we turn
both split and join gateways into XOR to avoid soundness issues. If multiple bonds
share the same join gateway, this is replaced with a chain of gateways, one for each
bond, maintaining the original bonds hierarchy. Finally, since we disable the use of
the pull-up operator on unsound rigids, we cannot guarantee that these will be fully
structured, hence we cannot guarantee that they will be turned into sound fragments.

Complexity The complexity of the push-down and pull-up operators is linear on the
number of activity paths to be duplicated when structuring an injection or ejection,
i.e. O(|g2

b∩ bg3|). This is bounded by O(n2), where n is the number of nodes in the
model. The complexity of the Extended Oulsnam algorithm is linear on the number of
injections and ejections, which is O

((g
4

))
where g is the number of gateways, which

is bounded by the number of nodes n. Hence, O
((n

4

))
+O(n2) ≈ O(n4). Finally, the

complexity of A∗ is O(bq) where b is the branching factor and q is the depth of the
solution. In our case the branching factor is the number of injections and ejections, and

so is the depth of the solution. Hence the complexity of our method is O(n4n4
) ·O(n4)≈

O(nn). This does not include the complexity of the baseline discovery method.

10

4 Evaluation

We implemented our method as a standalone tool as well as a ProM plugin, namely
the Structured Miner (hereafter SM).3 The tool takes a log in MXML or XES format
(currently it supports Heuristics Miner (HM) and Fodina (FM) as baseline discovery
algorithms), and returns a maximally structured process model in BPMN format.

Using this tool, we conducted a series of experiments to evaluate the accuracy of
our discovery approach compared to that of methods that structure the model during
discovery. We selected two representative methods: Inductive Miner (IM) and Evolu-
tionary Tree Miner (ETM), and compared the results with our approach on top of HM
and FM. As the results obtained with FM were consistently similar to those obtained
with HM and due to space reasons, this section only reports the results using HM.

We measured accuracy using the fitness, precision, F-score and generalization met-
rics and model complexity via size, CFC and structuredness as defined in Section 2.2.
The experiments were done on an Intel dual-core i5-3337U 1.80Ghz with 12GB of
RAM running JVM 7 with 8GB of heap, except for the experiments using ETM, which
were done on a 6-core Xeon E5-1650 3.50Ghz with 128GB of RAM running JVM 7
with 40GB of heap, time-bounded to 30min as the ETM algorithm is computationally
very expensive and can otherwise take several hours per log.

4.1 Datasets

We generated three sets of logs using the ProM plugin “Generate Event Log
from Petri Net”. This plugin takes as input a process model in PNML format

All Models(619)

SAP R/3(545)

Structured(484)

Unstructured(61)

Sound(21)

P. Unsound(25)

T. Unsound(15)

IBM BIT(54)

Structured(9)

Unstructured(45)

Sound(42)

P. Unsound (2)

T. Unsound (1)

Synthetic(20)

Unstructured(20)

Sound(16)

T. Unsound(4)

Fig. 4. Taxonomy of models
discovered by HM from the
logs (P. = partially, T. = totally).

and generates a distinct log trace for each possible
execution sequence in the model. The first set (591
Petri nets) was obtained from the SAP R/3 collec-
tion, SAP’s reference model to customize their R/3
ERP product [4]. The log-generator plugin was only
able to parse 545 out of 591 models, running into
out-of-memory exceptions for the others. The sec-
ond set (54 Workflow nets4) was obtained from a col-
lection of sound and unstructured models extracted
from the IBM BIT collection [6]. The BIT collec-
tion is a publicly-available set of process models in
financial services, telecommunication and other do-
mains, gathered from IBMs consultancy practice [7].
The third set contains 20 artificial models, which we
created to test our method with more complex forms
of unstructuredness, not observed in the two real-
life collections. These are: i) rigids containing AND-
gateway bonds, iii) rigids containing a large number
of XOR gateways (> 5); iii) rigids containing rigids
and iv) rigids being the root node of the model. Out of
these 619 logs we only selected those for which HM

3 Available from http://apromore.org/platform/tools.
4 This collection originally counted 59 models, but we discarded five duplicates.

11

produced an unstructured model, as our approach does not add value if the resulting
model is already structured. This resulted in 126 logs, of which 61 came from SAP, 45
from IBM and 20 were synthetic. These logs range from 4,111 to 201,758 total events
(avg. 49,580) with 3 to 4,235 distinct traces (avg. 137). From the models discovered
with HM, we identified 79 sound models, 31 partially unsound models, i.e. models for
which there is at least one complete trace, and 16 totally unsound models, i.e. models
whose traces always deadlock. A taxonomy of the datasets used is shown in Fig. 4.

4.2 Results

Tables 1 and 2 report the average value and standard deviation for each quality measure
across all discovery algorithms, for the models mined from the real-life data, respec-
tively, artificial data. When HM generates sound models its output is already of high
quality along fitness, precision and generalization, with a marginal standard deviation.
In this case, our approach only improves the structuredness of the models, at the cost
of a minor increase in size and CFC, due to the duplication introduced by the struc-
turing. IM instead, despite having similarly high values of fitness and generalization,
loses in precision with an average of 0.69 with high standard deviation, meaning that
the actual precision may be much better or worse depending on the specific log used.
As expected, these models are structured by construction, but CFC still remains higher
than that of HM (and its structured variant SM) due to IM’s tendency to generate flower
models (which is also the cause for low precision). Finally, the quality of the models
discovered by ETM ranks in-between that of IM and HM both in terms of accuracy and
complexity, at the price of sensibly longer execution times.

Log Class Discovery Accuracy Complexity
(Class Size) Method Fitness Precision F-score Gen.(10-fold) Size CFC Struct.

IM 1.00±0.01 0.69±0.31 0.77±0.26 1.00±0.01 23.8±7.9 11.2±5.0 1.00±0.00
Sound ETM 0.91±0.08 0.93±0.06 0.92±0.06 0.90±0.06 26.4±8.6 8.6±4.3 1.00±0.00
(63) HM 1.00±0.00 0.99±0.05 0.99±0.03 1.00±0.01 25.0±7.7 8.7±4.2 0.50±0.16

SMHM 1.00±0.00 0.99±0.02 1.00±0.01 1.00±0.00 29.7±13.3 10.2±6.5 0.90±0.21
IM 0.98±0.03 0.73±0.27 0.80±0.22 0.98±0.03 22.1±5.9 11.6±5.0 1.00±0.00

P. Unsound ETM 0.90±0.09 0.86±0.11 0.87±0.07 0.89±0.06 21.7±7.8 7.5±5.2 1.00±0.00
(27) HM 0.69±0.21 0.85±0.10 0.75±0.16 0.66±0.21 21.9±7.3 9.0±5.1 0.53±0.21

SMHM 0.97±0.04 0.93±0.11 0.95±0.08 0.97±0.04 24.6±10.5 10.0±6.7 0.97±0.15
IM 0.99±0.03 0.82±0.21 0.88±0.14 0.99±0.03 24.1±12.0 9.6±6.7 1.00±0.00

T. Unsound ETM 0.90±0.10 0.87±0.09 0.88±0.07 0.89±0.09 25.0±4.2 9.2±0.7 1.00±0.00
(16) HM - - - - 22.3±9.4 7.8±3.6 0.72±0.19

SMHM 0.96±0.06 0.92±0.14 0.93±0.11 0.96±0.06 23.2±10.4 7.7±3.3 1.00±0.00
Table 1. Quality of models discovered from real-life data.

Log Class Discovery Accuracy Complexity
(Class Size) Method Fitness Precision F-score Gen.(10-fold) Size CFC Struct.

IM 1.00±0.01 0.53±0.31 0.64±0.26 1.00±0.01 18.7±4.5 10.7±3.7 1.00±0.00
Sound ETM 0.89±0.07 0.96±0.05 0.92±0.04 0.89±0.05 22.1±7.7 7.3±3.2 1.00±0.00
(16) HM 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 21.6±5.2 8.2±3.1 0.32±0.17

SMHM 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 25.1±7.7 9.1±3.5 1.00±0.00
IM 1.00±0.00 0.44±0.27 0.56±0.22 1.00±0.00 23.5±10.4 11.5±1.1 1.00±0.00

P. Unsound ETM 0.83±0.12 0.88±0.09 0.84±0.07 0.78±0.15 25.5±1.5 10.0±1.0 1.00±0.00
(4) HM 0.61±0.16 0.84±0.06 0.69±0.14 0.61±0.16 27.8±9.1 8.8±1.5 0.30±0.15

SMHM 0.89±0.13 0.98±0.02 0.93±0.07 0.89±0.13 30.0±12.3 11.0±3.3 1.00±0.00
Table 2. Quality of models discovered from artificial data.

The improvement of our method on top of HM is more evident when the latter dis-
covers unsound models. Here HM’s accuracy dramatically worsen compared to IM and

12

ETM. For example, in the case of partially unsound models, on average fitness is 0.69
for HM vs. 0.98 for IM on real-life data, and 0.61 vs. 1 on artificial data, while for
totally unsound models, fitness and precision for HM cannot even be measured. Our
approach does not only notably increases structuredness (e.g. 0.53 vs. 0.97), but it also
repairs the soundness issues and recovers the accuracy lost by HM, significantly out-
performing both IM and ETM in terms of precision and F-score without compromising
fitness and generalization, which get very close to those obtained by IM, e.g. fitness in-
creases from 0.69 to 0.97, as opposed to 0.98 for IM, with an F-score of 0.95 instead of
0.80 in the case of partially unsound models discovered from real-life data. In the case
of “sound models”, ETM strikes a better tradeoff between accuracy and complexity
compared to IM, but again, at the price of long execution times.

To illustrate when our approach outperforms IM, Fig. 5 shows the BPMN model
generated by IM, HM and SM from one of the SAP R/3 logs and the corresponding
quality measures.5 In this example, the precision of the model produced by IM is low
due to the presence of a large “flower-like” structure, which causes overgeneralization.
Precision is higher with HM, though fitness and generalization suffer from the model
being unsound. By structuring and fixing the behavioral issues of this model, SM im-
proves on all metrics, scoring a perfect 1 for both F-score and generalization.

The negative effects of overgeneralization brought by IM are higher when the mod-
els used for generating the logs exhibit complex unstructured patterns, such as those
introduced in the artificial data (cf. Table 2). For example, the precision of IM is 0.53
for sound models (with a high standard deviation), as opposed to 1 with HM. In these
cases, SM consistently outperforms IM and ETM, while significantly improving over
HM in terms of structuredness (0.3 vs. 1).

Method Accuracy Discovered model

IM

fitness: 1.00
precision: 0.20
F-score: 0.33
generaliz.: 1.00

H
M

fitness: 0.60
precision: 0.88
F-score: 0.72
generaliz.: 0.60

SM

fitness: 1.00
precision: 1.00
F-score: 1.00
generaliz.: 1.00

Fig. 5. A model from the SAP R/3 logs, discovered by IM, HM and SM (injections and gateways
causing unsoundness in the HM model are highlighted).

In these experiments we disabled the pull-up operator of our method in order to
ensure weak bisimulation equivalence between the model discovered by HM and the
structured one. As a result, we could not fully structure 15 models from real-life data,
which explains a value of structuredness less than 1 for SM in Table 1. When we enable

5 The original labels are replaced with letters for the sake of compactness.

13

the pull-up operator, all the discovered models are fully structured, at the price of losing
weak bisimilarity.

Time performance. Despite having exponential complexity in the worst case scenario,
the time SM took to structure the models used in this evaluation was well within ac-
ceptable bounds, taking on average less than one second per model (avg = 894ms, min
= 2ms, max = 109s, 95% percentile = 47.65ms).

4.3 Threats to Validity
A potential threat to internal validity is the use of process model complexity metrics
as proxies for assessing the understandability of the discovered process models, as op-
posed to direct human judgement. However, the three chosen complexity metrics (size,
CFC and structuredness) have been empirically shown to be highly correlated with per-
ceived understandability and error-proneness [11, 6]. Further, while the process models
obtained with our method are affected by the individual accuracy (fitness, precision and
generalization) of the baseline algorithm used (HM or FM), Structured Miner is inde-
pendent of these algorithms, and our experiments show that the method significantly
improves on structuredness while keeping the same levels of accuracy. In addition, the
method can often fix issues related to model correctness.

The evaluation reported above is based on two real-life datasets. This poses a threat
to external validity. It should be noted though that these two datasets collect models
from a variety of domains, including finance, sales, accounting, logistics, communi-
cation and human resources, and that the resulting logs are representative of different
characteristics (number of events and number of distinct traces). Moreover, the use of
an additional dataset artificially generated allowed us to evaluate our method against a
large variety of unstructured model topologies, including some complex ones not ob-
served in the two real-life datasets.

5 Conclusion

We presented a two-phased method to extract a structured process model from an event
log wherein a process model is first extracted without any structural restriction, and
then transformed into a structured one if needed. The experimental results show that
this two-phased method leads to higher F-score than existing methods that discover a
structured process model by design. In addition, the proposed method is more modular,
insofar as different discovery and block-structuring methods can be plugged into it.

In this paper, we used the Heuristics Miner and Fodina for the first phase. In fu-
ture work, we will experiment with alternative methods for discovering (unstructured)
process models to explore alternative tradeoffs between model quality metrics. In the
second phase, we employed a structuring method that preserves weak bisimilarity (if
the pull-up operator is disabled). A direction for future work is to explore the option of
partially sacrificing weak bisimilarity (while still keeping trace equivalence) to obtain
models with higher structuredness. Another direction for future work is to use process
model clone detection techniques [5] to refactor duplicates introduced by the structuring
phase. This may allow us to strike better tradeoffs between size and structuredness.

Acknowledgments. This research is partly funded by the Australian Research Council
(grant DP150103356) and the Estonian Research Council (grant IUT20-55).

14

References

1. A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and W. M. P. van der Aalst.
Alignment based precision checking. In Proc. of BPM Workshops, volume 132 of LNBIP,
pages 137–149. Springer, 2012.

2. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Conformance checking using
cost-based fitness analysis. In Proc. of EDOC. IEEE, 2011.

3. J. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. On the role of fitness, precision,
generalization and simplicity in process discovery. In Proc. of CoopIS, volume 7565 of
LNCS, pages 305–322. Springer, 2012.

4. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Business Process
Reference Model. Upper Saddle River, 1997.

5. M. Dumas, L. Garcı́a-Bañuelos, M. La Rosa, and Reina Uba. Fast detection of exact clones
in business process model repositories. Inf. Syst., 38(4):619–633, 2013.

6. M. Dumas, M. La Rosa, J. Mendling, R. Mäesalu, H.A. Reijers, and N. Semenenko. Un-
derstanding business process models: the costs and benefits of structuredness. In Proc. of
CAiSE, volume 7328 of LNCS, pages 31–46. Springer, 2012.

7. Dirk Fahland, Cédric Favre, Jana Koehler, Niels Lohmann, Hagen Völzer, and Karsten Wolf.
Analysis on demand: Instantaneous soundness checking of industrial business process mod-
els. Data Knowl. Eng., 70(5):448–466, 2011.

8. P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Tran. Syst. Sci. Cybern., 4(2):100–107, 1968.

9. R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Proc. of IJCAI, pages 1137–1145. Morgan Kaufmann, 1995.

10. S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst. Discovering block-structured process
models from event logs - a constructive approach. In Proc. of PETRI NETS, volume 7927 of
LNCS. Springer, 2013.

11. J. Mendling. Metrics for Process Models: Empirical Foundations of Verification, Error Pre-
diction, and Guidelines for Correctness. Springer, 2008.

12. T. Molka, D. Redlich, W. Gilani, X.-J. Zeng, and M. Drobek. Evolutionary computation
based discovery of hierarchical business process models. In Proc. of BIS, volume 208 of
LNBIP, pages 191–204. Springer, 2015.

13. G. Oulsnam. Unravelling unstructured programs. Comput. J., 25(3):379–387, 1982.
14. G. Oulsnam. The algorithmic transformation of schemas to structured form. Comput. J.,

30(1):43–51, 1987.
15. A. Polyvyanyy, L. Garcı́a-Bañuelos, and M. Dumas. Structuring acyclic process models. Inf.

Syst., 37(6):518–538, 2012.
16. A. Polyvyanyy, L. Garcı́a-Bañuelos, D. Fahland, and M. Weske. Maximal structuring of

acyclic process models. Comput. J., 57(1):12–35, 2014.
17. A. Polyvyanyy, J. Vanhatalo, and H. Völzer. Simplified computation and generalization of

the refined process structure tree. In Proc. of WS-FM, pages 25–41, 2010.
18. W.M.P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement of Busi-

ness Processes. Springer, 2011.
19. W.M.P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering process

models from event logs. IEEE Trans. Knowl. Data Eng., 16(9), 2004.
20. J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A multi-dimensional quality

assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf.
Syst., 37(7), 2012.

21. A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible Heuristics Miner (FHM). In Proc. of CIDM.
IEEE, 2011.

