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Abstract

Chlamydia (C.) trachomatis is one of the most common sexually transmitted 

pathogens in the world. In women, chlamydial infections can result in the 

progression from acute infection to disease sequelae such as cervicitis, pelvic 

inflammatory disease and tubal factor infertility (TFI). The scarring and fibrosis of 

fallopian tubes caused by C. trachomatis infections account for 10%-30% of all cases 

of female infertility.

Currently, C. trachomatis-related tubal infertility is diagnosed using 

laparoscopy and hysterosalpinography (HSG). The invasive nature of these 

diagnostic tests renders them unsuitable for routine use; and the high cost associated 

with these procedures restricts their availability to women in low-resource settings 

and developing nations. Serological diagnostic assays have been reported by several 

studies as a good alternative to these invasive strategies in diagnosing chlamydial 

infertility in women. However, commercial serological diagnostic assays are not 

used due to lack of sensitivity or specificity, and reported cross-reactivity of 

antibodies with other chlamydial species. Therefore, through this study, a novel 

multi-antigen peptide based ELISA was developed that can detect C. trachomatis-

related TFI in women. Using existing commercial serological assays, the prevalence 

and risk factors associated with C. trachomatis-related infertility were determined in 

a female population from a developing nation, Samoa. This study also investigated 

and identified the immune markers associated with C. trachomatis-related TFI from 

the peripheral blood mononuclear cells (PBMC) of women. 

The novel multi-antigen peptide based ELISA developed through this study,

the QUT Chlamydia infertility test exhibited high specificity in identifying women 

with tubal pathology (100%) and C. trachomatis-related infertility (94%). However, 

this limited the assay sensitivity to 16% and 27% respectively. The test was 

developed and evaluated on a development cohort (n=262), which included an 

infertile cohort (women with TFI and other forms of infertility; n=97), acute C. 

trachomatis infections cohort (n=112) and fertile cohort (n=53). The specificity and 

sensitivity was higher than existing commercial serological assays such as MEDAC 
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MOMP, MEDAC Infertile, ANILabsystems and Microimmunofluorescence assay 

(MIF) .

While numerous efforts have been undertaken to diagnose and control C. 

trachomatis-related infertility, the underlying mechanism leading to the disease 

progression is yet to be understood. Transcriptomic and cytokine assays of 

stimulated PBMCs from women with chlamydial infertility (n=31) identified that 

some women launched a proinflammatory (CXCL-10, CXCL11, HLA-A and IL-1E) 

response to C. trachomatis infection. 

In addition, the study further evaluates the prevalence and risk factors 

associated with chlamydial infertility in a high-prevalence, low-resource setting such 

as Samoa. The prevalence of C. trachomatis estimated by PCR in sexually active 

women between the ages of 18-29 (n=239) was 35.6%. The prevalence of C. 

trachomatis-related infertility was determined using commercial serological assays, 

which determined that 50% of self-reported infertile women (n=85), were positive 

for chlamydial infertility. Amongst commercial serological assays, MEDAC MOMP 

was the only test that could effectively identify women with self-reported infertility 

from those without (p<0.05). This shows that the prevalence of C. trachomatis

infections and its sequelae is very high in Samoa. Thus, routine testing and treatment 

strategies would ideally reduce the disease burden from infertility within this 

population. 
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1.1 BACKGROUND

C. trachomatis is one of the most common sexually transmitted bacteria in the 

world. The asymptomatic nature of the disease causes it to go undiagnosed and 

untreated, thus resulting in long -term sequelae such as pelvic inflammatory disease, 

ectopic pregnancy and infertility. The current techniques used to diagnose these 

sequelae in women are laparoscopy and hysterosalpinography. These techniques are 

invasive, expensive and prone to misdiagnoses [1]. Therefore, there is a need for a

diagnostic assay that is non-invasive, cost-effective and has high diagnostic 

performance in detecting women with C. trachomatis-related infertility. Serological 

assays are a useful technique in diagnosing ectopic pregnancies, pelvic inflammatory 

diseases and recurrent miscarriages [2]. However, due to its lack of specificity owing 

to its high rate of cross-reactivity between other chlamydial species, it is not used in 

IVF clinics as the first line of infertility investigation. Additionally, they are not 

adept to differentiate women with acute infections from women with C. trachomatis-

related infertility. Therefore, this study aimed to develop a novel multi-antigen 

peptide ELISA that has high specificity in identifying women with C. trachomatis-

related infertility. 

1.2 CONTEXT

Through this study, a novel peptide based ELISA, The QUT Chlamydia

infertility test was developed that showed high specificity in diagnosing women with 

C. trachomatis –related infertility. The assay was robust and reproducible, and also 

outperformed current commercial serological assays in detecting women with tubal 

pathology and chlamydial infertility. Additionally, women who tested positive for C. 

trachomatis-related infertility in this assay had equal likelihood of achieving 

successful outcome in an IVF procedure as those who were infertile due to other 

reasons. Thus, women tested positive in this assay could proceed directly for IVF 

treatment without undergoing additional tests and surgeries, therefore making it an 

ideal diagnostic tool for early infertility investigation in IVF clinics. The 

development of sequelae in some women is attributed by immune responses induced 

by host/pathogen factors that lead to pathology, ultimately resulting in infertility.

Therefore, in order to understand the underlying mechanisms that lead to pathology 

in some C. trachomatis-infected women, this study also investigated and identified 
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immune markers that are associated with C. trachomatis-related infertility in women. 

Since the rate of C. trachomatis-related infertility in women is higher in low-

resource, high prevalence settings, using commercial serological assays, this study 

determined the sero-prevalence and risk factors associated with C. trachomatis-

related infertility in women from a developing country, Samoa. High prevalence of 

chlamydial infertility was detected in this population, hence, drawing attention to 

need for immediate screening and treatment strategies to control C. trachomatis

infections and its associated sequelae in the population. 

1.3 PURPOSES

The overall purpose of the study is to develop a highly sensitive and specific 

diagnostic assay for C. trachomatis-related infertility in women. However, the study 

also explored epidemiological and immunological aspects of C. trachomatis-related 

infertility. The three specific aims of this project were:

1) To develop a novel multi-antigen peptide ELISA for the diagnosis of 

C. trachomatis-related infertility in women. 

2) To identify immune markers in mononuclear cells that is associated 

with chlamydial infertility in women.

3) To determine the sero-prevalence and risk factors associated with C. 

trachomatis-related infertility in women from Samoa.

1.4 THESIS OUTLINE

Chapter two is the literature review relevant to the project

Chapter three includes the general procedures used in this study

Chapter four aims to develop a multi-antigen peptide ELISA for the diagnosis 

of women with C. trachomatis-related infertility. The chapter pertains to 

identification of suitable peptides for the assay and its development. The diagnostic 

performance is assessed and compared with current commercial assays. 

Chapter five identifies immune markers that are associated with C. 

trachomatis-related infertility. The regulation of immune genes was assessed in 

women with chlamydial infertility compared to women with other forms of 

infertility. The study also evaluated the level of cytokines secreted. Thus, these 
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markers reveal one of the underlying mechanisms associated with C. trachomatis

pathogenesis and subsequent infertility in some women.

Chapter six estimates the sero-prevalence of chlamydial infertility in the female 

population in Samoa. The risk factors associated with this disease have also been 

identified. 
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Chlamydia (C.) trachomatis is one of the most common bacterial sexually 

transmitted infections in the world, with WHO’s most recent estimates indicating 

approximately 105.7 million new infections annually [3], and in the United States of 

America alone, the Centre for Disease Control estimated approximately 2.86 million 

new Chlamydia STI in 2008 [4]. The infection is widely reported to result in 

devastating reproductive consequences in a proportion of infected women, including 

pelvic inflammatory diseases (PID), ectopic pregnancy and infertility. Haggerty et al. 

[5] illustrated that 2%-5% of women with chlamydial infections develop PID within 

two weeks, and about 18% of women with PID develop infertility. C. trachomatis is 

a Gram Negative, obligate intracellular bacterial pathogen with a unique biphasic 

developmental cycle [6]. The organism has been characterized using biology and 

genomics as a highly evolved or ancient pathogen with evidence of a reduced and 

customized genome, specifically tailored for its human host and obligate intracellular 

niche [8]. In spite of the considerable worldwide burden of chlamydial disease it is 

still not well understood what host and pathogen factors are associated with

infertility. The following review focuses on a range of topics such as the morphology 

and developmental cycle of C. trachomatis; factors that are associated with its 

ascension into the upper genital tract; the host/human factors and host genetic factors 

that contribute to chlamydia-related infertility; immunological response induced in 

infertile women; and diagnostic techniques used to detect women with chlamydia-

related infertility. 

2.1 DEVELOPMENTAL CYCLE AND MORPHOLOGY OF C. 
TRACHOMATIS

C. trachomatis has a unique biphasic developmental cycle characterized by 

functionally and morphologically distinct cell types that are adapted for intracellular 

multiplication and extracellular survival [9]. The bacteria comprises regularly-

spaced dome shaped projections on its surface, followed by a peptidoglycan-free 

rigid cell wall, and an lipopolysaccharide outer cell membrane [10, 11]. Microscopic 

analysis and antibody reaction to Chlamydiae reveal that similar to organisms with 

peptidoglycan cell wall, the chlamydial cell envelope possess penicillin binding 

proteins that make the organism sensitive to peptidoglycan inhibiting drugs [11]. The 

peptidoglycan is a closed covalent polymer with glycan strands made of alternating 

N-acetylglucosamine and N-acetylmuramic acid residues of C. trachomatis that are 
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cross-linked by peptides [12]. The outer membrane proteins are cross-linked by 

disulfide bonds which are thought to maintain the structural integrity of the cell wall

in reported absence of peptidoglycan [11]. Hence, it has been described as an 

anomaly. However, recent studies by Liechti et al. [13] have shown demonstrated the 

presence of peptidoglycan by using dipeptide probes which are incorporated into 

chlamydial peptidoglycan and captured via click chemistry reaction. Based on the 

characteristics of their outer membrane proteins, C. trachomatis are categorized into 

nineteen different serovars [14, 15]. 

The developmental cycle consists of infections and non-infectious stages of 

Chlamydia with unique morphological, biological and biochemical properties. The 

extracellular, infectious and non-dividing Elementary body (EB) is designed for 

passage between host cells; while the replicating, intracellular form of the bacteria is 

referred to as the reticulate body (RB) [6, 17]. Through ligand-receptor interaction, 

the small dense EB establishes contact with the host epithelial cell, and during the 

course of the infection they remain within a parasitophorous vacuole called the 

inclusion vacuole [18, 19]. Microscopic analysis revealed that EB differentiates into 

RB, which further replicates by binary fission [19]. The elementary body (EB) is a 

small (0.3μm), round, electron dense, infectious form of the organism [20]. The 

nucleoid of elementary body are highly compacted due to condensation of nuclear 

material by histone-like proteins HctA and HctB [21]. These morphologically 

different forms dictate the unique developmental cycle of the Chlamydiae species. 

The pregenomic investigations of metabolic functions of the bacteria had established 

that only RBs are metabolically active, and EBs were inert forms of the organism. 

The failure to detect ATPase and cytochrome c oxidase activities in EB indicated that 

the infectious form of the bacteria was metabolically dormant [22]. In the RBs, the 

reduction of cross-linked cysteine rich outer membrane of MOMP (Major outer 

membrane protein) by DTT (dithiothreitol) generates a channel for passage of 

nutrients and ATP. However, the treatment of EB with DTT revealed that although

cysteine rich outer membrane of MOMP (Major outer membrane protein) complexes 

were reduced, it failed to stimulate ATP transport or incorporate methionine [23, 24].

Thus, this further demonstrates that EBs are metabolically inactive. The advent of 

genomic investigations revealed a wide range of genes with unknown functions that 

were involved in several metabolic pathways (as reviewed in [25]. Through the 
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whole proteome study, Skipp et al. [26] identified several proteins in EBs that are 

involved in metabolism and transcription. Quantitative proteomic analysis 

undertaken by Saka et al. [27] also identified proteins required for central 

metabolism and glucose catabolism in EBs. Additionally, Omsland et al. [28]

measured de novo protein synthesis of Chlamydia intracellular phosphate -1 (CIP-1) 

in axenic medium, and showed that EBs preferentially used glucose-6-phosphate as 

an energy source, while RB required ATP. This proves that EBs are metabolically 

active. The developmental cycle is completed when an unidentified signal assumed 

to be triggered by depletion of nutrients and dearth of ATP induces asynchronous 

differentiation of RBs back into EBs [6, 29]. The EB is released from the inclusion 

through host cell lysis such that it can infect neighbouring epithelial cells to 

propagate the infectious process [6]. Depending on the species, the developmental 

cycle varies from 36 and 72 hours [17]. The developmental cycle is illustrated in 

Figure 2.1.
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Figure.2.1:Diagram representing the various stages in the developmental cycle 
of Chlamydia trachomatis

The developmental cycle begins with attachment of EBs on the host cell 

facilitated by Type Three secretion system (TTSS). Once inside the host cell, it 

resides within a parasitophorous vacuole called inclusion. Within 24-30 hours post 

infection, the EBs differentiate into replicative RBs, which further replicate through 

binary fission. The RBs revert back to EBs through TTSS preloading and extruded 

from the host cell through lysis at 48-72 hours post infection. Figure copied directly 

from Hammerschlag [30]. 

2.1.1 Chlamydial entry into the host cell

C. trachomatis EB initiates infection by attachment and internalization into 

host epithelial cells through receptor-mediated endocytosis [31]. Chlamydial entry 

into host cell through adsorptive endocytosis and intracellular translocation is 

facilitated by proteins F- actin and Clathrin [32]. Glycosaminoglycans and outer 

membrane proteins act as adhesions to bridge unknown receptors for cell attachment 

[31, 33, 34]. Although there are numerous studies elucidating the role of clathrin-

mediated endocytosis, ultrastructural and biochemical analysis conducted by Boleti 

et al. [35] demonstrated that C. trachomatis also utilizes clathrin-independent and 

actin-dependent pathway. This suggests that C. trachomatis enters a host cell through 
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a process similar to phagocytosis [35]. The role of actin-dependent mechanism in 

chlamydial internalization has been evaluated by addition of actin inhibiting agent, 

cytochalasin D, which resulted in significant reduction in internalization [36, 37]. 

Thus, actin plays an important role in chlamydial internalization by inducing changes 

in the microvillar structure [36]. This further supports the receptor-mediator 

phagocytic entry of C. trachomatis into the host cell. 

In vitro inhibitor studies and in vivo CFTR deficient mutant mice showed that 

the bacteria also utilized a chloride channel located in the apical membrane of 

epithelial cells called cystic fibrosis transmembrane conductance regulator (CFTR) in 

its entry and internalization into the host cells [31]. Caveolae are glycosphingolipid 

are cholesterol-enriched invaginations in plasma membrane that are involved in 

endocytic pathways [38]. Although several studies provide evidence of C. 

trachomatis entry via caveolae –mediated endocytosis [31, 38, 39], Hybiske and 

Stephens [40] showed that targeted disruption of caveolae did not alter the 

internalization and infectivity significantly. However, caveolin plays an important 

role in the formation of inclusions by preventing chlamydial phagosome from fusing 

with lysosomes in most chlamydial species [38, 39]. In contrast, the entry of 

chlamydial species including C. trachomatis serovars A, 36B, and C, LGV serovar 

L2 and MoPn were not mediated by caveolin [39]. Tyrosine phosphorylation of host 

and bacterial proteins triggers a signalling pathway that induces actin mobilization 

for the entry of the organism [41]. The proteins that are phosphorylated are of 

chlamydial origin and are referred to as translocated actin-recruiting phosphoprotein 

(TARP) and it plays an important role in actin remodelling [42]. The TARP assists in 

translocation of tyrosine kinase substrates that stimulate actin-driven invasion by C. 

trachomatis, and subsequently subverts host cell functions [42]. Lane et al. [43]

identified Rac-dependent signalling pathway (WAVE2 and Arp2/3) in facilitating 

TARP mediated actin recruitment for chlamydial entry and invasion. Interestingly, 

female hormones also play an important role in enhancing chlamydial attachment. It 

was reported that chlamydial attachment on oestrogen-dominant primary human cell 

was increased from 65% to 90%, while progesterone-dependent human epithelial cell 

decreased chlamydial attachment from 50% to 30% in a dose-dependent fashion [44, 

45]. In vitro studies and co-culture models by Hall et al. [46] showed that exposure 
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to oestrogen activated the phosphatidylinositol-3 kinase (PI3K) pathway that aids in 

the entry of C. trachomatis into the host cell. 

2.1.2 The nascent inclusion vacuole –trafficking & modification

After entering the host cell, the Chlamydiae reside inside an inclusion which is 

a parasitophorous vacuole that is nonfusogenic with endocytic pathway and 

intercepts exocytic vesicular traffic from Golgi apparatus [47]. The inclusion has 

been characterized as nonfusogenic vacuole with lysosomal and endosomal 

membranes due to the absence of the lysosomal (acid phosphatase) and endososomal 

markers (transferrin receptor and cation-independent mannose-6-phosphate receptor) 

[48]. Within 2 hours of entry into the host cells, chlamydial inclusions fuse with a 

subset of host vesicles containing sphingomyelin in the Golgi apparatus [20]. If the 

bacteria fail to modify the inclusion within the first 2 hours of infection, it could lead 

to its death by lysosomal fusion [49].

Organelle sequestration and subversion 

The intracellular membrane trafficking by C. trachomatis is controlled by 

various host factors such as N-ethylmalemide-sensitive factor (NSF) attachment 

proteins (v-SNARE), small GTP binding proteins, ADP ribosylating factors and Rab 

GTPases [50]. Among these cellular factors, Rab GTPases play a primary role in 

SNARE recruitment, vesicle tethering and other distinct membrane trafficking 

process through specific recruitment of Rab effector molecules to C. trachomatis

[50]. Moreover, the inability to detect specific associations between endosomal Rabs, 

GFP- Rab7, GFP- Rab9 and GFP-Rab5 through immunofluorescence microscopy, 

further support the theory that during the formation of inclusion, the bacteria 

bypasses the early endocytic pathway completely [50]. Some of the Rab GTPases 

that are actively involved in the biogenesis of chlamydial inclusion are Rab1, Rab4 

and Rab11 that belong to endocytic/phagocytic pathway, and ER-Golgi related Rab 

1, 6 and 10 [51, 52]. Rab 6, 11 and 14 were reported to be recruited in the absence of 

microtubules, and their presence has been detected throughout the developmental 

cycle [50]. They also play an important role in sphingomyelin delivery to the 

inclusion [49]. In addition to Rab GTPAses, the organelle identity is also governed 

by specific phosphoinositide (PI) species that are present on the organelle [53].
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Phosphoinositides are short-lived phosphorylated derivatives of 

phosohatidylinositol that play an important role in vesicle –mediated trafficking by 

controlling subcellular localization, cellular signalling and activation of effector of PI 

binding proteins [54]. The Golgi-to-Plasma membrane trafficking is aided by PI4P, a 

product of Oculocerebral syndrome of Lowe protein 1 (OCRL1) gene that is 

localized in the Golgi complex [53]. Moorhead et al. (2010) proposed that unlike 

Legionella pneumophila, C. trachomatis does not secrete PI4P binding proteins. 

Instead, chlamydial maturation is inhibited by OCRL1 via endosomal pathway 

through PIP2 substrate removal. The protein further facilitates intracellular 

trafficking of clathrin-coated vesicles between early endosome and trans-Golgi 

network [53]. Through time course analysis of isoleucine incorporation into the 

phospholipids of C. trachomatis infected cells, Wylie et al. [55] demonstrated that 

infection by C. trachomatis is also associated with the bacterial acquisition of host-

derived lipids. The trafficking of eukaryotic phospholipids is yet another way the 

bacteria uses to evade lysosomal fusion as the vacuole would resemble a cytoplasmic 

organelle. 

Lipid trafficking

Sphingomyelin from Golgi apparatus is acquired early in the cycle and it is 

essential for chlamydial development [56]. Fluorescent microscopy analysis by 

Hackstadt et al. (1997) [57] indicated that sphingomyelin is localized to the luminal 

surface of exocytic vesicles which on fusion with chlamydial inclusion is adsorbed 

by the Chlamydiae into the inclusion. The study also reported that sphingomyelin 

prevents fusion of inclusions with lysosomes by modifying the inclusion membrane. 

Mittal and Hackstadt [58] reported that Src family tyrosine kinase Fyn plays an 

important role in sphingomyelin acquisition. Although, the sphingomyelin synthesis 

or trafficking was not altered by the siRNA mediated silencing of Fyn in the absence 

of chlamydial infection, it reduced the amount of sphingomyelin trafficked into the 

inclusion [58]. Scr family kinase phosphorylation of dynamin 2 also leads to Golgi 

fragmentation, and inhibition of Golgi fragmentation that results in the reduction of 

sphingomyelin acquisition [58]. Although, chlamydial requirement for 

sphingomeylin is low initially, the demand increases with increased bacterial 

replication and expansion of the inclusion, during which Golgi fragmentation also 

takes place [59]. This suggests that fragmentation of Golgi apparatus is a pathway for 
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lipid transport and acquisition. C. trachomatis also obtains its lipid requirement 

through lipid droplets (LD) which are translocated from the host cytoplasm to the 

inclusion membrane, as observed through fluorescence microscopy and electron 

microscopy. The translocation of LDs is facilitated by inclusion membrane protein 

IncA and chlamydial Lda3 protein that link cytoplasmic LDs to inclusion membrane 

[60]. Soupene et al. [61] established that human acyl-CoA carrier hACBD6 binds to 

LDs during development and expansion of C. trachomatis by modulating the 

acyltransferase activity of bacterial protein CT775 and formation of 

phoatidylcholine. Therefore by harnessing LD function, C. trachomatis may co-opt 

non-vesicle mediated phospholipids and cholesterol transport [62].

Inc Proteins 

The Chlamydial inclusion membrane proteins (Inc) reside within the inclusion 

membrane and interact with host proteins. These proteins share a common bilobular 

hydrophobicity motif that spans the inclusion membrane, but only a limited number 

of proteins are conserved amongst themselves [20, 63]. Inc proteins were first 

identified in C. psittaci [64] and subsequently identified in C. trachomatis [20, 65]. 

By using fusion proteins and antifusion antibodies, Li et al. [66] reported that out of 

50 Inc proteins in C. trachomatis, 22 were localized in the inclusion membrane, 

while 3 were detected in the inclusion and the location of remaining 21 were 

indeterminable. The study showed that most of the membrane localized proteins 

identified were immunogenic. 

IncA, first identified in C. psittaci, regulates the fusion of inclusions and 

interaction between the inclusion and intracellular compartment [67-70]. In addition 

to IncA, Inc G and Inc F are exposed to the cytosol and undergo phosphorylation, an 

integral step in chlamydial entry and infection [70]. Src Kinase and Fyn co-localizes 

four inc proteins including Inc B, CT101, CT222 and CT850 in inclusion membrane 

microdomains where it affects the centrosome stability of the organism by interacting 

with the microtubule network [71]. Yeast two hybrid analysis suggests a guanine 

nucleotide-dependent interaction between C. trachomatis specific Inc CT229 and 

host Rab4, which subsequently promote interactions with host secretory pathways 

through recruitment of Rab GTPases [49, 72]. Inc D recruits CERT, a host factor that 

is involved in C. trachomatis infection through nonvesicular transfer of ceramide at 

ER-Golgi membrane contact sites (MCSs) and induces metabolism or signalling 
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events favourable to replication and development of the organism [73]. Several 

putative Inc proteins possess a high probability of coiled-coil conformation which is 

consistent with the hypothesis that proteins exposed to the cytosol regulate 

interaction between the inclusion and cellular compartments of the host [73]. About 

90% of these proteins also possess Type III secretion signals which suggest that the 

proteins are secreted and translocated through the type III secretion system [74].

Type III secretion systems 

Similar to other Gram-negative pathogens, the Type III secretion system 

(T3SS) serves as a conduit in C. trachomatis that connects bacterial cytosol and host 

cell cytoplasm, whereby the pathogen secretes proteins into the host cell or into 

inclusion membrane [75, 76]. Although the expression of T3SS apparatus occurs mid 

cycle, EBs contain the fully assembled apparatus that mediate secretion of substrates 

during initial stages of host cell infection and establishment [29]. One of the earliest 

roles of T3SS in chlamydial developmental cycle includes EB invasion by 

remodelling actin cytoskeleton through translocation of effector proteins translocated 

actin-recruiting protein (TARP) and CT694 [41, 75, 77]. Using bacterial two-hybrid 

and size exclusion chromatography, Brinkworth et al. [75] elucidated the role of 

putative type III secretion chaperone Slc1 (SycE-like chaperone 1) in enhancing 

TARP translocation for actin remodelling. Other extended apparatus of T3SS 

secretion system are Chlamydia outer proteins CopN and CopB and host interactive 

proteins such as Chlamydia protein associated with death domains (CADD) [77]. 

Chlamydial protease, chlamydial protease-like activity factor (CPAF) enters into the 

host cytoplasm and facilitate inclusion expansion through a type-III independent 

secretion mechanism independent mechanism by degrading a wide array of host 

proteins [77, 78]. The protein TepP (Translocated early phosphoprotein) facilitates 

early establishment of niche for chlamydial replication within the cell by recruitment 

of additional scaffolding proteins like Crk, which in turn recruit proteins to nascent 

inclusions [79]. Although, CPAF induces Golgi fragmentation, the fragmentation and 

sphingomyelin acquisition is not dependent on cytosolic CPAF [80]. The pivotal role 

of T3SS in manipulating host cell processes and replication has been elucidated with 

the help of chemical inhibitors such as compound 1 (C1), which inhibited the T3SS 

secretion system. This resulted in the suppression of multiple sigma factors, reduced 

amount of late cycle genes (hctB, omcA and omCB) required for differentiation of 
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RB to EB, low abundance of T3SS secreted apparatus components (CopN, CopB2) 

within bacteria and inhibition of IncA [78]. 

2.1.3 Exit from the inclusion 

The EB accumulate within the inclusion until released by extrusion from the 

host cells or inclusions rupture inside host cytosol for lateral entry into uninfected 

host cells [77]. Extrusion includes a packaged release process by which chlamydial 

inclusion are released by membranous protrusion [81]. The asynchronous process of 

differentiation of RBs back to EB begins about 18 h after infection and continues 

upto 44 h in C. trachomatis L2 strain [82]. Using RT-PCR, Shaw et al. (2000) 

confirmed the role of OmcB (60kDa cysteine-rich outer membrane protein) and 

chlamydial nucleoprotein Hc1 (encoded by hctA gene) in the later stages of 

developmental cycle and are facilitate the production of EB from RB. Hc1 regulates 

the repression of transcription and condensation of nucleoid that is characteristic of 

differentiation of RB to EB [82, 83]. OmcB confers structural stability to EB as it 

forms a component of the disulphide-liked outer membrane protein complex [23]. 

Through microarray analysis, about 26 late genes were identified such hctA and hctB

that encode for chlamydial histone-like proteins which facilitate nucleoid 

condensation [84]. Recruitment of actin and actin polymerization plays an integral 

role in chlamydial extrusion. The polymerization and the coat assembly have been 

driven by products of type III secretion, and at 68 hours post- infection, the 

chlamydia prepares for extrusion by increasing the actin recruitment and enwrapping 

the entire inclusion [85]. Treatment of C. trachomatis with pharmacological 

inhibitors revealed the involvement of neuronal Wiskott-Aldrich syndrome protein, 

myosin II and Rho GTPase in extrusion mechanism. [81]. GFP analysis and mutation 

studies showed that depletion of Septins that function in organizing actin coat for 

inclusion resulted in reduced extrusion [86]. The areas marked for imminent 

extrusion were those where the inclusion was distal to nucleus or bulged out of the 

cell [85].

2.1.4 Molecular mechanisms associated with chlamydial persistence

C. trachomatis enters an alternate morphological state called ‘persistence’, 

which is a viable, but unculturable long-term state. The state of persistence in 

Chlamydiae is driven by the presence of various stress conditions including; IFN-J, 

antibiotics, and iron chelating agents [87]. Matsumoto and Manire [88] were one of 
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the first to characterize chlamydial persistence in Chlamydia psittaci. The study 

reported that the treatment with 200 units of penicillin prevented binary fission of 

RBs to EBs and resulted in large abnormal RB forms in C. psittaci. The study further 

revealed that after 36 hours post infection, masses of cytoplasmic membranes formed 

within RB and around it, resulted in the formation of immature nucleoids within the 

RBs. Skilton et al. [89] demonstrated the effect of penicillin (100units/mL) using 

high quality time lapse video analysis, and found that in addition to the 

morphological abnormalities, replication of chlamydial chromosomal and plasmid 

DNA remain unaffected. However, removal of penicillin did not induce complete 

transformation from aberrant RBs to normal RBs, and with the exception of few 

inclusions, the normal developmental cycle was re-established after 10-20 hours of 

removal. Confocal microscopy and immunocytochemistry of penicillin induced 

persistent C. trachomatis infection revealed high levels of HtrA at mid (20h PI) and 

later stages (44 hPI) of persistence [90]. This suggests that HtrA adopts a protective 

function during penicillin persistence against additional protein stress. Addition of an 

HtrA inhibitor, JO146, to C. trachomatis Hep-2 culture during recovery and 

reversion from penicillin persistence resulted in complete lethality for C. trachomatis

[91]. Thus, confirming the functional role of HtrA in chlamydial persistence. 

Persistence in C. trachomatis is also induced by inflammatory cytokine, IFN-J, 

which induces cytosolic tryptophan degrading enzyme indoleamine 2,3-dioxygenase 

(IDO) that catabolizes L-tryptophan to N-formylkynurenine [92]. However, IDO-

mediated tryptophan starvation leads to conversion of C. trachomatis into its 

persistent form [93]. Beatty et al. [93] elucidated this mechanism through HeLa cell 

models, and reported that IFN-J reduced intracellular levels of tryptophan and 

increased the activity of IDO (measured by HPLC). The study further reported that 

IDO deficient cell line and tryptophan deficient studies implicated that tryptophan 

depletion is responsible for IFN-J -mediated C. trachomatis persistence. These 

findings were further supported by Leonhardt et al. [94] who demonstrated that low 

exogenous tryptophan concentration prevented bacterial trafficking to the 

microtubule organizing centre (MTOC) and prevents lysosomal fusion. Thus, the 

organism remains in its aberrant form and exhibits low transcriptional activity, and 

despite replenishing the tryptophan levels, the rate of re-activation of Chlamydia

remain slow. Transcriptomic analysis of IFN-J -mediated C. trachomatis persistent 
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infection revealed an upregulation of genes required for tryptophan synthesis (tprR, 

trpB and trpA), phospholipid metabolism, and early cycle genes. The genes that were 

downregulated included genes that regulate RB to EB differentiation (hctA, hctB, 

ompB, and ompC). A Chlamydia- specific gene (Euo) that regulates late gene 

expression and facilitates complete silencing of these genes were also upregulated 

during persistence. Thus, during chlamydial persistence, genes pertaining to 

metabolic process were activated, whilst genes regulating late cycle genes were 

down regulated [95]. Akers et al. [96] reported that the aporepressor, TrpR regulates 

tryptophan biosynthesis genes in C. trachomatis by forming a complex with 

coreporessor tryptophan and subsequently activating the trpRBA operon. The study 

also showed that the TrpR gene also allows the bacteria to sense tryptophan 

limitation. IFN-J treatment of C. trachomatis in HeLa cells downregulates 

chlamydial protease-like activity factor (CPAF) activity and prevents cleavage of 

proaptotic BH-3 only proteins, Bad and Puma. The study further reported increased 

production of high mobility group box 1 (HMGB1) protein following prolonged 

IFN-J treatment. This suggests that although persistent C. trachomatis infections are 

apoptosis-resistant, but they contribute to chronic inflammation and disease through 

HMGB1 release [97]. 

Iron is an essential co-factor that is critical in several biochemical reactions and is 

highly regulated in most organisms [98]. Iron-chelating agents such as deferoxamine 

mesylate (DFO) deplete iron, resulting C. trachomatis persistence. The effectiveness 

of DFO in depleting iron or ferritin content from infected cells was demonstrated by 

Dill et al. [99], who reported a significant drop in ferritin level (28.2 ng/mL to 

3.2ng/ml) by DFO as compared to transfected cell line with inducible over-

expression of eukaryotic iron efflux protein ferroportin (49.3 ng/mL to 38.2 ng/mL) 

that facilitates iron starvation in C. trachomatis E. Addition of DFO also induced 

enhanced expression of cHSP60 in C. trachomatis E infected cells [100]. This 

suggests that cHSP60 facilitates persistence mediated by iron starvation in C. 

trachomatis. Thompson et al. [98] identified another iron chelator, 2-2’-bipyridyl 

(Bpdl), which is membrane permeable and exhibited a greater degree of chlamydial 

inhibition and induction of aberrant morphology compared to DFO. The study 

showed that 100 μM of Bpdl retarded chlamydial DNA replication and upregulated 

chlamydial iron responsive genes, ahpC and devB, in contrast to DFO which 
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upregulated only one gene, devB. The effectiveness of Bpdl in inducing iron 

starvation-mediated chlamydial persistence over DFO was further validated by the 

upregulation of ytgA gene, an iron-response gene that is involved in iron acquisition/ 

transport into Chlamydia.

2.2 SEQUELAE ASSOCIATED WITH C. TRACHOMATIS INFECTIONS IN 
WOMEN

Despite enhanced screening efforts and control programs, the number of 

genital C. trachomatis infections have been reported to have increased significantly 

over the last decade in Australia, United Kingdom, North America and Europe [101]. 

Furthermore, long-term C trachomatis infections pose a major problem in women’s 

health care as the disease can lead to reproductive morbidity [102]. Acute diseases 

caused by C. trachomatis include urethritis and cervicitis, while the C. trachomatis -

related infertility / chronic form of the infection include ectopic pregnancy, pelvic 

inflammatory disease and tubal infertility [102]. C. trachomatis infections are 

responsible for about 45% of reported cases of tubal factor infertility (TFI) in women 

[103]. The recurrence of chlamydial infection have been reported to be about 30-50% 

in young adolescents, and repeated exposure to the bacteria by either persistence or 

recurrent infection induces cell mediated immunological reactions and delayed 

hypersensitivity response which lead to fibrosis, scarring and tubal factor subfertility 

[7]. In the United States itself, tubal factor infertility accounts for about 10% of 

assisted reproductive technology cycles and the average cost of an in vitro cycle is 

upto $12,000 [104]. In Europe, annually about 600,000 cases of salpingitis

(inflammation of fallopian tubes) caused by C. trachomatis is reported, of which 

12,000 cases resulted in mechanical infertility [105].

2.2.1 Pelvic Inflammatory Disease

Pelvic inflammatory disease is characterized by the infection of fallopian tubes, 

uterus and adjacent pelvic structures that are not associated with surgery or 

pregnancy [106]. About 10,000 women in Australia are treated for PID each year,

and the incidence of the disease is highest in women between the ages 20 to 29 [107]. 

It encompasses a wide range of upper genital tract conditions such as endometritis, 

tuboovarian abscess, salpingitis, periappendicits, perihepatitis and pelvic peritonitis 

[108]. When the bacteria ascends from the vagina and endocervix to the 

endometrium, fallopian tubes and adjacent structures, it results in acute PID [108]. 
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PID is treated by administering antibiotics such as parenteral cephalosporin and 

doxycycline [109]. PID can result in serious C. trachomatis -related infertility such 

as chronic pelvic pain, ectopic pregnancy and infertility [109]. Each year 750,000 

women experience acute PID in the United States, of which about 10%-15% of these 

women become infertile when left untreated [110]. Davies et al. [111] reported that 

in 307 sex workers recruited from Genito- Urinary Medicine (London), the rate of 

PID in women with recent chlamydial infection was 27.4 per 100 person-years as 

compared to the 11.2 in women with previous chlamydial infection as estimated by 

direct immunofluorescence. Scholes et al. [112] showed that with the increase in 

Chlamydia diagnosis and subsequent treatment rates from 449 cases/10,000 per year 

in 1997 to 806/ 10,000 per year in 2007 resulted in a decrease in the PID rates from 

823 cases/100,000 per year in 1997 to 473/100,000 per in 2007 in USA (P<0.01). 

These findings were further supported by a mathematical modelling study, wherein 

an implementation of hypothetical screening intervention resulted in prevention of 

187 PID cases per 100,000 women in 5 years and 956 PID cases per 100,000 women 

in 10 years [113]. Thus, increasing the screening strategies and intervention for C. 

trachomatis could significantly reduce the incidence of PID in women.

2.2.2 Acute Salpingitis 

Acute salpingitis is caused by an ascending infection from the lower genital 

tract and it may result in peritubal adhesions, post- inflammatory fibrosis and tubal 

restriction [114]. It is diagnosed laproscopically and it is characterized by the 

presence of erythema and odema in the fallopian tubes [115]. The odema associated 

with salpingitis augments intraluminal agglutination which leads to clubbing of 

fallopian tubes that result in dysfunctional, partially or completely obstructed 

fallopian tubes [116]. The agglutination may develop into a filmy, thick pelvic 

adhesive disease resulting in pelvic pain [116]. Sweet et al. [117] established a 

relationship between the menstrual cycle and the onset of acute salpingitis caused by 

C. trachomatis. The study highlighted the importance of hormonal changes in 

chlamydial pathology, which explains the increased prevalence of acute salpingitis 

during the beginning of menses rather than other times in the menstrual cycle. This 

has been further supported by Rank et al. [118], in which treatment with hormones 

such estradiol on a guinea pig enhanced infection in the cervix and resulted in 

hydrosalpinx. Hydrosalpinx is characterized by occlusion of fimbriated end of the 
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fallopian tube and distension of the distal end with fluid [119]. Treharne et al. [120]

reported that C. trachomatis antibody titers were found in two-thirds of women with 

acute salpingits (n=143), while only two tested positive in women without salpingitis 

(n=19). Based on the histopathology, the study also showed that salpingitis is often 

accompanied by endometritis. 

2.2.3 C. trachomatis-related infertility in women 

Subclinical PID is clinically recognized as acute PID (caused by ascending 

spread of organisms from lower genital tract to upper genital tract) and it stimulates 

the development of PID-related C. trachomatis-related infertility [121].The disease is 

often referred to as “silent epidemic” as it is asymptomatic and hence goes 

unnoticed. Malik et al. [122] showed that the predominant cause of infertility were 

asymptomatic C. trachomatis infections. Chlamydia positive cases could be 

characterized by clinical presentations such as bleeding per vaginum (on touch) and 

vaginal discharge. Prolonged infection in either of these tracts may result in 

subfertility, or infertility. Subfertility generally describes any form of reduced 

fertility for long periods of time of unwanted non-conception [123]. Infertility is 

similar to subfertility, however subfertility is characterized by sporadic occurring 

spontaneous pregnancies [123].

Long term C. trachomatis -related infertility or chronic infection develops due 

to reinfection, persistence or treatment failure [124]. It was reported that Australian 

women show a re-infection rate of 22.3 per 100 person-years and it is more prevalent 

in women between the ages of 16-20years [124]. In developing countries such as 

Nigeria, the overall prevalence rate of asymptomatic C. trachomatis infection 

estimated by PCR in 132 infertile women attending Gynaecological clinic was 20.5% 

as opposed to 10.4% in the UK and other developed countries [125, 126]. In Brazil, 

the prevalence of IgG antibodies against C. trachomatis were significantly higher in 

subfertile group (n=55) as compared to parous women (n=55) (56.4% vs 31%; 

P<0.01)[127]. The prevalence of C. trachomatis in infertile women attending 

gynecological clinic in South West Nigeria was 20.5% (n=130)[125]. The infection 

often results in recurrent spontaneous abortion [129]. The infection is also transferred 

to the fetus as evident from the presence of IgM antibodies to C. trachomatis in the 

cord blood of infants of mothers who delivered preterm [130]. This results in 

stillbirth, which occurs in 20-30 gestational weeks.
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Ectopic pregnancy is one of the major causes of maternal mortality in the first 

trimester in developing countries [102]. Coste et al. [131] reported that C. 

trachomatis was the strongly associated (25.2%) with ectopic pregnancy in women 

(n=624) recruited from 15 maternity hospitals in France. Svensson et al. [132]

showed that out of 112 women with ectopic pregnancy, 75% showed the presence of 

IgG antibody to C. trachomatis as compared to 21% of the controls. In addition to 

the IgG antibodies, cHSP60 antibodies have also been found in abundance in the sera 

of infected females [133]. In Nigeria, a greater number of women with ectopic 

pregnancy (confirmed by laparoscopy) (n=98) were seropositive for C. trachomatis

as compared to age matched pregnant controls (n=98) (48% vs 16%; P<0.001)[134]. 

A prospective study by Sziller et al. [135] reported that the antibody responses to 

cHSP60 in women with ectopic pregnancy correlated with decreased subsequent 

spontaneous fertility and repeated ectopic pregnancy. 

Thus, the prevalence of C. trachomatis-induced sequelae could be reduced with 

routine testing and timely treatment. The mechanism of reproductive sequelae of C. 

trachomatis infections in certain women is yet to be understood.

2.3 PROPOSED MODELS FOR THE DEVELOPMENT OF INFERTILITY 
FOLLOWING C. TRACHOMATIS INFECTION IN WOMEN

This review outlines four models that are most commonly referred to within the 

field to explain the process that underlies the development of infertility following 

Chlamydia infection. The models are not exclusive of each other and there is 

evidence for and against each model. Figure 2.2 summarises the factors associated 

with chlamydial infertility.

2.3.1 Ascension model

This model suggests that the infection ascends to the upper reproductive tract 

in only some women, and this ascension is usually typified by the presence of 

symptoms, development of PID and if unchecked consequent development of tubal 

pathology. There is considerable direct evidence that the chlamydial infection can

ascend beyond the cervix, however, the proportion of cases in which this ascension 

occurs is unknown. The following studies provide evidence to the ascension model 

of C. trachomatis pathology. In a study by Lan et al. [136] , salpingentomy tissues 

(n=48 from 37 women) were tested for C. trachomatis DNA by PCR and it was 
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reported that Chlamydia DNA was detected in the salpingectomy (removal of 

fallopian tubes [137]) specimens of one woman with ectopic pregnancy.While six of 

the 37 women tested positive for C. trachomatis DNA in endometrial and cervical

specimens. A hospital- based study in Myanmar comprising of 113 women with 

ectopic pregnancies, showed that higher C. trachomatis DNA was detected in tubal 

specimens (15%) as compared to cervical specimens (8%) from women with ectopic 

pregnancy [138]. The presence of C. trachomatis in upper genital tract and the 

affected organs were further elucidated in Barlow et al. [139], where women 

recruited from hospitals in UK with ectopic pregnancy (n=33) and tubal factor 

infertility (n=14) were tested by PCR and In situ hybridisation (ISH). The study 

reported that C. trachomatis was detected in 44% of TFI patients (ISH), of which 

five patients had C. trachomatis DNA in the fallopian tube while two patients were 

positive in the endometrium. Using PCR, C. trachomatis DNA was detected in 71% 

of the TFI patients, of which C. trachomatis DNA was present in the endometrium of 

seven patients, while five patients showed positivity in the fallopian tube and five

others in the ovary [139]. C. trachomatis organism presence was associated with 

endometritis (plasma cell influx in the endometrium) [140, 141]. A small study in the 

UK identified the presence of C. trachomatis in the upper genital tract from 4 out of 

10 women all of whom had no symptoms suggesting that is it possible to have 

asymptomatic ascension and that ascension may not occur in all women [142].

This ascension model is also supported by substantial evidence of chlamydial 

inducing a pathological immune response in human cell and tissues and is mutually 

inclusive with the Persistence and/or Cellular Paradigm models. However, there is 

only limited evidence to support that; 1. Ascension of the infection occurs in some 

but not all women or that; 2. that lower genital tract symptoms and/or signs typify 

upper reproductive infection because mucopurulent cervicitis and other 

cervical/genital symptoms/signs have been reported in both the presence and absence 

of upper reproductive tract symptoms or with laparoscopic evidence of salpingitis 

(ascending infections) [143, 144]. However, upper genital tract infection does not 

happen in the absence of cervicitis/lower genital tract symptoms of inflammation. 

This was supported by Westrom and PEACH PID studies [145, 146] whose 

diagnostic and inclusion criteria included women with mucopurulent cervicitis. 
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It seems possible or even likely that ascension may be independently 

moderated by numerous other factors that could explain the low frequency of 

pathology development, supporting that it only occurs in some women. These 

moderating factors could include host factors such as menstrual cycle stage or 

hormone status at time of infection, as chlamydial or gonococcal endometritis was 

found to be more likely to be detected in women in the proliferative phase [147]. 

Equally important moderating factors could include immune status, genotypic 

factors, other co-infections, or reproductive tract microbiome composition. However, 

there is no published evidence that associate these factors with ascension of C. 

trachomatis infection into the upper genital tract. Furthermore, pathogen factors 

could also moderate the likelihood of ascension such as infectious burden (although 

chlamydial serovar alone has not been able to be significantly associated with 

pathogenic potential or clinical manifestations [143]).

2.3.2 Persistence model

Chlamydia persistence, or the presence of viable but non-culturable chlamydial 

organisms, develops in response to adverse conditions, and can remain dormant but 

present for considerable lengths of time (as reviewed in [18]). C. trachomatis are 

tryptophan auxotrophs which they obtain from their host and the host cell 

intracellular pools of tryptophan are inhibited by IFN-γ induced tryptophan 

catabolizing enzyme (indoleamine 2,3-dioxygenase) [18]. IFN-γ mediated persistent

C. trachomatis infection results in the absence of EBs, and they are typically in the 

form of larger RBs with altered morphologies with fewer cells in each inclusion [18].

C. trachomatis persistence is mediated by virulence factors, environmental 

factors and host immune factors [148]. It was reported that following treatment for 

chlamydial infection, LCR (Ligase Chain Reaction) testing of urine showed that 

about 13.4% of women had persistent infection after a median of 4.3 months [149].

Ligase Chain Reaction detects C. trachomatis infection in urogenital speicmens and 

urine, and targets nucleotide sequences of chlamydial cryptic plasmid [102]. The 

study diagnosed women with persistent C. trachomatis infection if they were still 

positive for the infection, despite abstaining from sexual activity during the first and 

second follow-up. In contrast, women werer diagnosed with recurrent infection if 

they had resumed sexual activity or had multiple sexual partners, and tested positive 

for the infection in their first and second follow-up. Persistence can also be induced 
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by antibiotics such as ciprofloxacin and ofloxacin that restrict productive infection 

but cause the bacteria to go into a viable, metabolically inactive period during the 

course of the treatment [150]. Removal of the antibiotic allows the organism to 

resume its normal growth, reactivating the infection [150]. In vitro, the persistent 

stage can be induced by treatment with IFN-γ [151-154], penicillin and nutrient 

starvation [154, 155]. IFN-γ secreting CD4+ and CD8+ T cells induce the production 

of indoleamine 2,3-dioxygenase (IDO) which mediates tryptophan starvation by 

catabolising it to kynurenine [156-158]. This induces persistence of C. trachomatis in 

the host as it interferes with the growth of the bacteria, a tryptophan auxotroph [156]. 

[158]. The IFN-γ induced persistent C. trachomatis could be eradicated by 

azithromycin, which is also effective in treating chronic infections at MBC100 (2.5-

5µg/mL)[159]. In vitro studies have demonstrated the effect of different classes of 

antibiotics such as tetracyclin, penicillin, cephalosporin and E-lactamase based drugs 

induced persistence (characterized by abberrant RBs and immediate recovery on 

removal of antibiotics) at physiologically relevant conditions [160]. Removal of 

tryptophan prompts the bacteria to import it from the neighbouring cells and use it to 

overcome IFN-γ induced persistence [157]. Low intracellular amino acid 

concentrations give rise to abnormal organism development with reduced infectivity 

yields [155]. A similar effect was observed when the media was deprived of glucose 

[155]. Infected cells treated with IFN-γ was found to have increased levels of 

cHSP60 [161], major outer membrane protein (MOMP) (omp1)[161, 162] and LPS 

[153, 163].

Persistence in vivo has been proposed as a model where this on-going presence 

of the organism may drive a long-term pathological immune response resulting in the 

tissue damage to the fallopian tubes (certainly the high expression of the dominant 

antigen cHSP60 has been detected in laboratory persistence models) (reviewed, 

[164]). There are studies that have presented evidence of C. trachomatis DNA or 

antigens being present in the tubal material of women with tubal infertility or ectopic 

pregnancy or salpingitis, supporting that organism persistence in some form occurs 

in vivo [139, 166-168]. Recently, morphologies consistent with laboratory models of 

persistence were observed in endocervix samples associated with IFN-J, and 

transcriptomic analysis revealed down-regulation of genes associated with RB-EB 

differentiation and reactivation of euo and omcb genes that are differentially 
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expressed in active and IFN-J associated persistent growth [169]. Thus, further 

supporting the likely in vivo relevance of laboratory models of persistence. It is 

difficult to determine if chlamydial persistence results in pathology. Persistent 

infection may resolve at any time after pathology develops and prior to detection, 

given the difficulties in specimen collection from the upper genital tract the evidence 

is reasonably compelling that chlamydial persistence (either consistent with the lab 

models or a distinct in vivo form) could be a relevant factor in pathology. It is 

important to highlight a recent review that suggested that some forms of persistence 

may be ‘colonisation’ and in fact not associated with ‘pathogenesis’ and disease 

[170]. The evidence that chlamydial persistence is induced by a range of conditions 

in vitro (reviewed, [18, 164]), and persistence like morphology and/or chlamydial 

antigen/DNA detection in the absence of active infection has been observed in 

clinical samples, suggests that persistence may be a relevant physiological status in 

vivo particularly in the case of ascension to the upper reproductive tract tissues, and 

therefore likely a determinant of pathological outcome of infection.

2.3.3 Cellular paradigm model

The cellular paradigm model proposes that the chlamydial infected epithelium 

immediately responds to the presence of the Chlamydia or specific antigens from 

Chlamydia in a pro-inflammatory manner, typified by pro-inflammatory cytokines 

and growth factors which in turn induces a pro-inflammatory secondary immune cell 

activation and migration to form a local lymphoid follicle resulting in cell damage 

and fibrosis or scarring (comprehensively presented and reviewed elsewhere [171]). 

Kinnunen et al. [172] showed that human leukocyte antigen (HLA) class II 

molecules regulates the production of interleukin 10 (IL-10) at inflammation site, 

and it acts as a substantial suppressor of cellular immunity by enhancing Th2-type 

immune response and suppressing Th1- type immune response. The study also shows 

that cHSP60 is a marker for TFI in women, as it was associated with enhanced IL-10 

production in women with TFI. Interleukin-1 production results in destruction of 

ciliated cells and subsequent scarring of the fallopian tubes by triggering and priming 

superoxide production [173]. IL-10 is an anti-inflammatory cytokine that decreases 

tissue damage significantly by inhibiting IL-1β and IL-8 and subsequently generate a 

weakened inflammatory response that accounts for the asymptomatic nature of 

infection in women [173]. 
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This model is widely supported by the published evidence of human epithelia 

and immune cell responses to Chlamydia and a primary tissue ex vivo model. This 

model also presumes that chlamydial ascension is associated with pathology and also 

mutually allows for persistence of Chlamydia in the upper reproductive tract [171]. A 

pathological adaptive memory response proposed as the secondary component of this 

model is also supported by the existing data that repeat infections increase the 

likelihood of pathological outcomes in women [174], and by numerous 

immunological results. 

2.3.4 cHSP60 induced delayed hypersensitivity model

There has been considerable focus on a pathology model that involves delayed 

hypersensitivity and/or molecular mimicry in response to specific chlamydial 

antigens (reviewed [175]). This model has largely resulted from a body of literature 

demonstrating high titre human antibody response to cHSP60 in participants with 

tubal pathology and additionally that in several animal models tissue pathology 

developed after repeated inoculations with cHSP60 protein (reviewed [171]). In 

humans, delayed hypersensitivity (immune responses mediated by CD4+T cells) 

could be induced either at the conjunctival mucosal surface or the vaginal mucosal 

surface [176]. Both murine and human models have revealed that the correlation 

between host resistance and chlamydial infection and the role of DTH could 

contribute to mucosal scarring [176, 177]. In one study, using IL-10 KO mouse, it 

was reported that IL-10 inhibits Th-1 like immune responses via inhibition of IL-12 

and TNF-α and thereby inhibit DTH following chlamydial infection [177]. 

However, this model is subject to considerable controversy due to; 

inconsistencies between the different published findings; problems with protein 

preparations that involved a hypersensitive detergent being used in some animal 

models; and cross reactivity or poor specificity for some of the antibody tests [178-

182]. On the other hand there is no doubt that cHSP60 is a predominant chlamydial 

antigen that does frequently elicit an immune response. Furthermore, in human 

trachoma cases it is frequently possible to observe ongoing follicles present and 

disease pathology in the absence of PCR detectable Chlamydia suggesting that there 

is continuing immune activity in the absence of organism during pathology 

development [183].
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Interestingly, one group proposed that cHSP60 antibodies detected in the 

follicular fluid of female IVF patients may induce early destruction of the embryo by 

cross reacting against embryo human HSP60 and result in lower transfer success 

[184]. They observed a 74.1% cHSP60 seropositivity in women without embryo 

implantation (n=47) and 47.9% seropositivity in women with successful embryo 

implantation (n=91) (p=0.0004). However, this observation directly contradicts a 

finding in separate and much larger study (n=1279) that cumulative IVF cycle 

pregnancy rates are the same for women who are chlamydial seropositive compared 

to those who are seronegative [185]. A study in France also contradicted the possible 

role of adverse embryo implantation impact of anti-chlamydial immunity as it that 

for found for both men and women with PCR or serological evidence of Chlamydia

(n=52) the IVF pregnancy rate and semen characteristics were not different 

compared to controls that were negative for chlamydial testing (n=119) [186]. 
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Figure 2.2: Summary of host and pathogen factors that are associated with the 
development of chlamydial infertility in women

The factors that contribute to chlamydial infertility at a broader level include 

pathogen factors that depend solely on the serovar, infectious burden, sensitivity to 

antibiotics and persistence. The epidemiological factors affect a particular population 

or cohort, characterized by their age, sexual behaviour, smoking status, co-infections 

and repeat infections. Although immunological factors are shared between 

individual, depending on their immune system the sequelae may develop due to 

cellular pathology, cHSP60 antibodies, arrested immunity and IFN-J mediated 

protection. The host factors such as hormone status, genotype and microbiome vary 

between individuals. 
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2.4 HOST/HUMAN FACTORS ASSOCIATED WITH CHLAMYDIAL 
INFERTILITY IN WOMEN

There are several human/ host factors that increase the risk of C. trachomatis –

related infertility in women. The factors may be attributed to repeat infections, 

treatment failure, co-infections with other STIs, hormonal status or sexual lifestyle. 

Although these factors are not consistent among different populations, they play an 

integral role in the increasing rate of C. trachomatis –related infertility in women.

2.4.1 Repeat infection and infertility

Repeat infection represents a substantial proportion of chlamydial infections 

detected annually (re-infection review; [187]). It is likely that these repeat infections 

are made up of reinfection, treatment failure, and persistent infections [188]. 

Batteiger et al., [188] conducted a longitudinal cohort of 210 adolescent women (14-

17 years old) participants (USA) and identified that 121 experienced a repeat 

infection. In a longitudinal cohort in Australia, 1116 women (16-25 year old) were 

followed, and 14 re-infections were observed from a total of 81 women (three of 

these had two episodes of re-infection) (cumulative risk over 12 months of 20.3%, 

95% CI: 13.2-37.6%) [124]. The infection was classified as re-infection, if the 

genotype of C. trachomatis in the second infection was different from the first 

infection. Walker et al. [124] used the same criteria to characterize women with 

repeat infection; the difference in serovars between the first and second infections, 

and it was further confirmed by negative tests between two positive tests.

Interestingly, in this study in Australia organism load was lower in re-infections 

compared to prevalent infections detected at the study baseline, but there were no 

associations between participant characteristics and re-infection [124] (although this 

was possibly a statistical power issue). However, careful consideration into study 

design is needed when evaluating repeat infection, the Batteiger and Walker studies 

tested quarterly for Chlamydia, and PCR may detect residual DNA from dead 

organisms causing a false positive. A study conducted in Vancouver, showed that the 

repeat infection occurred in 8 of 42 participants in a longitudinal study (both 

genders) indicating a cumulative incidence of 29% (95% CI: 12-46%), although the 

study was confounded by re-testing immediately being conducted in some 

participants [189]. A study in the UK showed re-infection was 29.9 (19.7-45.4) per 
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100 person years from a GP clinic setting [190]. Infection and repeat infection 

significantly associates with sexual behaviour risk factors such as new partners or 

failure to use condoms [124]. These repeat infection rates appear to be higher than 

the reported infertility outcome rates in women who have had a positive Chlamydia

test in the Low et al. [191] retrospective cohort study, suggesting that repeat 

infection alone is not the sole determinant of infertility or pathology. However, there 

is some evidence to suggest that repeat infection increases the risk of developing 

infertility. A retrospective cohort study by Hillis and co-workers in Wisconsin 

examined the risks of hospitalisation for ectopic pregnancy or PID in 11000 

Wisconsin women who had one or more chlamydial infections. They identified 

elevated risks of ectopic pregnancy in women who had two (OR 2.1; 95% CI: 1.3-

3.4), and three or more infections (OR 4.5; 95% CI: 1.8-5.3) [174]. Pelvic 

inflammatory disease risk was also increased for women who had two (OR 4.0; 95% 

CI: 1.6 - 9.9) and three or more chlamydial infections (OR 6.4 95% CI 2.2-18.4) 

[174]. Therefore, repeat infection is likely to be a significant contributing factor in at 

least some cases of chlamydial infertility.

Treatment failures or persistence induced by antibiotics have also been 

proposed to be contributing to repeat infection rates (reviewed [192]). Batteiger et al.

[188] showed that repeat infections in 13.7% of the patients were due to possible or 

probable treatment failures. Additionally, in vitro studies have shown that 

azithromycin induces chlamydial persistence [193]. Therefore, treatment failure or 

persistence (presenting as treatment failure) could be a contributing factor to 

development of infertility in some women via all four of the proposed pathology 

models.

The rise of repeat infections detected over time has resulted in the proposal that 

increased public health investment into chlamydial screening and treatment is 

preventing the development of natural immunity to the infection (arrested immunity 

hypothesis) [194, 195]. These repeat infections may also be the source of 

pathological sequelae that may not occur in women who have a protective immunity 

from a naturally resolved infection [194, 195].



Chapter 2: Literature Review 31

2.4.2 Role of co-infections or microbiome in C. trachomatis pathology

The interactions of Chlamydia trachomatis with microbiome in the human 

genital tract are likely to contribute to the progression of the disease to sequelae. Co-

infections with Neisseria gonorrhoea and Mycoplasma genitalium increase the risk 

of developing PID and tubal factor infertility. Co-infections with other STIs are not 

uncommon, for example 46% of female patients positive for N. gonorrhoeae were 

also be positive for Chlamydia in a family planning clinic in the USA [196]. 

However, a serology study in Zimbabwe, demonstrated that women with antibodies 

to either C. trachomatis of N. gonorrhoeae were significantly more at risk of 

developing PID, ectopic pregnancy, or abnormal fallopian tubes than those women 

with antibodies to both pathogens [197], suggesting that it is not necessary to have 

had infection with both pathogens to develop reproductive pathology. Patients with 

bacterial vaginosis who were a recent contact of a male with chlamydial urethritis 

had an odds ratio of 3.4 (95 % CI: 1.5-7.8) to test positive for chlamydial infection. 

The presence of H2O2 producing lactobacilli in the vagina was protective against 

acquisition of infection (odds ratio 0.4, 95% CI: 0.2-0.8) [198]. Recently an in vitro

model was used to demonstrate that it is actually the acid or pH lowering impact of 

the lactobacilli that confers the anti-chlamydial activity [199]. It has been 

hypothesized that indole producing organisms that increase in the microbiome during 

or subsequent to bacterial vaginosis enable C. trachomatis to synthesize tryptophan 

from indole [200], consequently evading the activity of interferon gamma at the 

infected site and thus may facilitate the infection [200, 201]. 

Bacterial vaginosis (BV) during C. trachomatis or N. gonorrhoeae infection 

was recently found to be associated with risk of PID, although the authors conclude 

that difficult to determine if the bacteria underlying the vaginosis facilitated 

ascension and PID caused by the STIs or alternatively if the bacteria responsible for 

vaginosis cause the PID [202]. Patients with BV were about 3.4 times more likely to 

test positive for C. trachomatis, as it alters the vaginal flora and the succinate 

produced during the infection alters leukocyte function and compromises host 

defences, thereby increasing susceptibility to C. trachomatis infection [198, 203]. 

Although several studies have implicated the role of BV in tubal diseases by 

encouraging ascension of C. trachomatis into upper genital tract [203], Gaudoin et 

al. [204] found that they were independent of each other and found no association 



Chapter 2: Literature Review 32

between active BV or past chlamydial infection in the development of PID. 

However, due to the low power of the study, co-infection with BV might still result 

in the increased risk of tubal infertility in women. Clearly, there is increased 

chlamydial infection risk associated with co-infection or bacterial vaginosis, and also 

evidence for an association with PID, supporting those co-infections could therefore 

result in an increased likelihood of development of infertility. 

2.4.3 Sexual behaviour and age of sexual contact

Age is a risk factor in likelihood of contracting chlamydial infection [205, 

206]. Cross national studies from 1999-2008 in Denmark, Australia and Sweden 

showed that increasing C. trachomatis-related PID rates were associated with 

increasing age (30-34 years), with the exception of New Zealand, where the rates 

were higher in women of ages 15-19 [207]. This could be because New Zealand has 

the highest Chlamydia testing rates compared to any of the countries included in the 

study, and this has led to early detection of Chlamydia-related PID. Consistent with 

previous findings, the highest incidence of C. trachomatis infections were reported in 

women between the ages 16-24 [124]. These studies support the finding that the 

pathology associated with C. trachomatis is more predominant in younger women.

Consistent with these studies, being under 20, having cervical symptoms were all 

risk factors for endocervical chlamydial infection in women, and the organism 

burden was also higher in younger women when measured by viable culture counts 

[208]. Potentially the organism burden may influence the ability to ascend to the 

upper reproductive tract and ability to maintain a longer or persistent infection, 

therefore even though there is no direct evidence, there seems to be the potential for 

younger age of acquisition of chlamydial infection to increase the risk of 

pathological outcomes. 

Sexual behaviour (new partners or higher number of partners) is often 

significantly associated with increased risk of C. trachomatis infection [209, 210]. 

As shown in the study by Skjeldestad et al., 2009 [211], there was a 37% probability 

of a woman acquiring C. trachomatis infection if she has had 3 more partners within 

42 months. A younger age at first coitus, higher number of sexual partners, and self-

reported history of medically diagnosed sexually transmitted infection were all 

significantly associated with tubal infertility compared to fertile controls (p<0.01) 

[212]. However, as these are also known to be significant factors for increased 
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likelihood of acquisition of chlamydial infection it is not certain if they directly 

influence the likelihood of pathology outcomes from the infection.

2.4.4 Confounding variables and covariates associated with chlamydial
infertility in women

Several environmental and lifestyle factors may contribute to the development 

of female infertility, that may present as potential confounders to C. trachomatis-

induced infertility.

Age is considered an important predictor of female infertility. Women of 

advanced age (above 36 years) have 41% chances of conceiving, which is much 

lower than women who are below 30 years, as the likelihood of conceiving could be 

as high as 71% [213]. In Spain, a cross-sectional population based study of women 

between the ages of 30 and 49 (n=443) revealed that 17.5% of women could not 

achieve pregnancy within 1 year, and the prevalence of primary and secondary 

infertility was 6.12% and 11.2% respectively [214]. A cross-sectional based survey 

of 623 women seeking infertility evaluation in USA reported that 30% of women 

between the ages of 37-40 years have undergone infertility evaluation and treatments 

as compared to 8% women between the ages of 25-28 years and 17% of women 

between the ages of 29-32 years [215]. Several studies have demonstrated that 

infertility is more predominant at advanced age due to the decreased levels of ATP in 

oocytes that result in aneuploidy and chromosomal misalignment that cause 

implantation failures and miscarriages [216, 217]. Thus, age has an adverse effect on 

infertility and therefore considered an important covariate with regards to chlamydial 

infertility in women.

Body mass index (BMI) has a negative impact on the reproductive outcomes,

as overweight women (BMIt 25kg/m2) take longer to conceive and have lower 

spontaneous conception [218]. A retrospective study of 52 women seeking infertility 

treatments at Stanford University Medical Centre reported that a meaningful weight 

loss (10% of their maximum weight) yielded significantly higher conception (88% vs 

54%) and live birth (71% vs 37%) rates than those who did not lose weight [218].

Although not significant, the spontaneous conception rate was also higher amongst 

women who had lost t10% of their body weight (35% vs 17%). A similar study 

conducted by Clark et al. [219] reported that 67 anovulatory women who lost 10.2 

kg/m2 after 6 months, resumed ovulation (>66%) of which 77.6% and 67% had
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conceived and attained live births. Based on the hospital records of 6305 subfertile 

couples obtained from 24 hospitals in Netherlands, a lower probability of 

spontaneous pregnancy was observed in women with BMI over 29 kg/m2 (hazard 

ratio: 0.96; 95% CI: 0.91-0.99), and with a unit increase in kg/m2, the probability to 

conceive reduced by 4% [220]. Obese women are at a higher risk of infertility due to 

lower levels of Leptin (product of ob gene) that not only regulates adipose mass 

levels but also embryo implantation [221]. Thus, BMI is an important risk factor for 

infertility. 

Amongst lifestyle factors, smoking and alcohol have been implicated in 

reducing fertility in women. Casreta et al. [222] reported that among 296 infertile 

women, the antra follicle count (AFC), a significant predictor of ovarian response 

was significantly higher in non-smokers (n=194) than current smokers (n=102). The 

study also reported higher levels of follicle stimulating hormone (FSH) in smokers as 

compared to non-smokers. Thus, reduction of AFC and elevation of FSH as a result 

of smoking could lead to follicle atresia and decline in ovarian reserve and oocyte 

quality [222]. Heavy smokers had a higher proportion of immature diploid oocytes as 

compared to non-smokers (21.2% (n=102) vs 5.1% (n=14)), which suggest that

smoking impedes meiotic division in oocytes and reduces the function and viability 

of the oocytes [223]. Due to its effect on oocytes, smoking also has a negative effect 

on the fertility outcome of women undergoing IVF. Van Voohris et al. [224] reported

that the adverse effect of smoking on ovarian function was dose-dependent and 

prolonged, as women who quit smoking before an IVF procedure (33.3%, n=111)

were as likely to have the same ongoing pregnancy rate as non-smokers (35.3%, 

n=351), and they were significantly higher than current smokers (16.2%, n=37). 

Interestingly, several studies have a established a strong correlation between BMI 

and smoking status [225, 226], which in turn may have a detrimental effect on the

fertility in women. A cross-sectional study encompassing 4305 women from 

Germany, Denmark, Sweden, France and Italy reported that women with higher BMI 

(<30 kg/m2) showed strong correlation with infertility only in smokers and not in 

non-smokers (odds ratio (95% CI): 11.54 (3.8, 36.15) [227]. This suggests that the 

risk of infertility may be higher in obese women smokers as compared to obese non-

smokers. The leptin levels in current smokers (19.7ng/mL) were reported to be 

significantly lower than in non-smokers (24.5ng/mL) in a cross-sectional study of 
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Mexican Americans and non-Hispanic white population in San Antonio (n=91)[225]. 

Since smoking reduces the leptin levels, it positively correlates with obesity and 

therefore has a negative impact on fertility.

Alcohol consumption has also been reported to impact female fertility 

negatively. A prospective observational study of 124 women between the ages of 23-

41, revealed that the conception rate was highest in women who did not consume 

alcohol (24.5%, n=28) and the lowest levels were reported in heavy drinkers 

(>91g/week; 8.3%, n=13)[228]. Additionally, alcohol consumption negatively 

impacts the success rate of IVF treatments. The number of oocytes aspirated was 

reported to be 13% more in women who consumed less than 12g of alcohol per week 

(1 year before the procedure) as compared to those who consumed more than 12g of 

alcohol per week (n=148), and the miscarriage rates were 2.2times higher in the latter

a week before the procedure (1 week before the IVF treatment; n=14) [229].

Wdowiack et al. [230] reported that amongst 54 women between the ages 25-39 

years who underwent IVF, the embryo with the best reproductive potential (based on 

embryo implantation capability, same size of blastomeres and symmetry in 

positioning) were the lowest amongst those who consumed alcohol (4.35% (n=23) vs 

41.94% (n=31), particularly those who consumed more than 25g of alcohol daily 

(4.55% (n=19) vs 70% (n=10)) as compared to those who did not consume alcohol. 

As expected, the embryos with abnormalities and lowest reproductive function were 

reported to be highest in women who consumed more than 25g of ethanol daily

(22.73% (n=19) vs 0% (n=10)) and no abnormalities were reported in those who did 

not consume alcohol. Additionally, women undergoing IVF (n=250) who reduced 

their alcohol consumption (20.4%) or abstained (24.8%) before the treatment, were 

twice as likely to be pregnant as compared to those who continued their drinking 

habits (OR (95% CI): 2.27 (1.01-5.15); p=0.049)[231]. This suggests that by 

adopting healthy lifestyle choices, the risk of infertility in women could be 

diminished. 

2.4.5 Hormonal status at time of infection

Oral contraceptive use was found to be a risk factor for C. trachomatis

infection (p=0.006), and the organism burden was found to be higher in oral 

contraceptive users (p<0.001) [208]. Prospective recruitment of young female 

participants (>17) attending genitourinary medicine clinics in the UK identified that 
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those who had a Chlamydia infection were also more likely to have elevated 

progesterone concentrations (p=0.05) [232]. In contrast, oral contraceptive usage has 

been linked to protection against subsequent infertility or conception problems by 

two different studies [146, 233]. However, it would be extremely difficult to link 

hormone status at time of infection with subsequent pathological outcomes such as 

infertility, even in a longitudinal study, given the high numbers of oral contraceptive 

users, and the independent importance of these factors in the risk of acquiring an 

infection. 

Following infection, C. trachomatis infects trophoblast cells which play an 

important role in implantation and placentation, and reduces chorionic gonadotropin 

expression and depletes oestrogen and progesterone synthesis which impairs 

trophoblast functions of implantation and placentation, resulting in infertility [234]. 

Higher prevalence of serum IgG to C. trachomatis in patients whose ovarian 

response was poor to gondatropin suggests that C. trachomatis impairs ovarian 

function [235]. Progesterone is reported to peak during the third week of menses and 

inhibit cell-mediated immunity in several in vitro models. Moreover, it has been 

shown to enhance chlamydial growth in uterine epithelial of several species [236].

2.5 HUMAN GENOTYPIC FACTORS ASSOCIATED WITH C. 
TRACHOMATIS INFERTILITY IN WOMEN

It is interesting to note that among women with asymptomatic infections, 8%-

10% of women infected by C. trachomatis develop sequelae, while 20% resolve the 

infection [203, 237]. C. trachomatis infection and ascension into the upper genital 

tract is greatly influenced by the host genetic factors. The development of C. 

trachomatis related infertility in only some women may be a consequence of a 

genotypic pre-disposition (reviewed comprehensively [238]). 

Toll-like receptors (TLRs) recognize and bind to antigens of pathogen, and 

signal to upregulate an immune response. There are 10 Toll like receptors (TLR) 

identified in the human body, and TLR 1-4 are expressed in the female genital tract 

[239]. TLR2 and TLR4 are also expressed on macrophages, dendritic cells and 

epithelial cells and they bind chlamydial lipopolysaccharide [240]. In a prospective 

genotypic study of female participants attending a sexual health clinic and a fertility 

clinic in Amsterdam, Karimi et al. (2009) [241] demonstrated a possible protective 

role of a TLR2 haplotype. The haplotype consisting of two distinct single nucleotide 
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polymorphisms (SNPS) was found to be present in a significantly higher proportion 

of women with a history of Chlamydia who did not have tubal pathology and in 

sexual health clinic attendees was present in a higher proportion of women who were 

asymptomatic [241]. In the PEACH PID study TLR1 and TLR4 polymorphisms 

were found to significantly associate with chlamydial PID [242], whilst SNPS from 

TLR2 (different SNPs from those included in the Karimi study), TLR6, Myd88, and 

TIRAP did not significantly associate with chlamydial PID [242]. 

Den Hartog et al. [243] identified that the risk of tubal pathology was higher in 

C. trachomatis IgG positive women with multiple TLR polymorphisms. The study 

also showed a trend towards association of various individual polymorphisms in 

TLR9 and TLR4 with increased risk of tubal pathology in C. trachomatis IgG 

positive women [243]. However, the small sample size in the study makes it difficult 

to draw a correlation between the polymorphisms and level of risk for female 

infertility. NLRP3, a component of the inflammasome that activates a pro-

inflammatory response has been identified to have polymorphisms reported to result 

in altered IL-1β secretion (a pro-inflammatory cytokine) [244]. Several NLRP3 

polymorphisms were tested in women prospectively recruited at a sexual health 

clinic and fertility clinics in Amsterdam, women heterozygous or homozygous with 

the one of the NLRP3 polymorphisms were at significant risk of developing 

abdominal pain during C. trachomatis infection [244]. 

Mannose-binding lectin (MBL) is a pro-inflammatory protein that activates 

complement and is locally synthesised in the vagina [245]. MBL and MBL promoter 

polymorphisms have been previously demonstrated to alter the levels of MBL 

produced [245]. It was identified that women with tubal factor infertility who were 

chlamydial seropositive more frequently had the low MBL producing genotypes 

compared to healthy controls [245]. However, this was not the case in an ectopic 

pregnancy group who were less likely to have the MBL-deficient genotypes [245]. 

This later finding sheds some doubt on the role of MBL genotypes, given that it 

seems unlikely that the pathology associate with ectopic pregnancy is distinct from 

tubal infertility.

Human leukocyte antigen (HLA) class II molecules (DR, DQ and DP) present 

peptides to CD4 T cells and induce adaptive immunity. DQ polymorphisms were 

more frequent in women with tubal infertility who were also C. trachomatis
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seropositive [246].Whilst another polymorphism was negatively associated with C. 

trachomatis positive tubal infertility [246]. Wang et al., [247] showed that in 

adolescent females with recurrent chlamydial infections, certain HLA 

polymorphisms were significantly associated with recurrent infections. A recent 

study attempted to link different immune genotypes to immunological outcome by 

testing a functional role for HLA DQ alleles combined with an IL-10 allele for both 

frequency in a tubal factor infertility (Chlamydia positive) cohort compared to 

controls and also for lymphocyte proliferative response to cHSP60 [172]. The HLA 

alleles and IL-10 allele were more frequently identified in the chlamydial tubal factor 

cohort compared to the control, however the lymphocyte proliferation in response to 

cHSP60 was not significantly different in relation to the alleles [172]. However, in a 

different study, distinct IL-10 and IFN-J polymorphisms were found to significantly 

impact on lymphocyte proliferation in response to chlamydial antigens (cHSP60)

[248].

A range of cytokine polymorphisms have been shown to significantly associate 

with women with C. trachomatis tubal infertility, including: IL-10 [249], TNF- D

[249] and IL-12 [250]. Polymorphism in IL-1β and receptor genes were not 

associated with C. trachomatis related tubal pathology [251]. Adolescent females 

with recurrent chlamydial infections had a lower frequency of three IL-10 promoter 

polymorphisms [247]. Eng et al. [252] demonstrated that a CD14 allele (TLR-4 co-

receptor) was associated with increased TNF-α production when whole blood was 

stimulated with C. trachomatis and C. pneumoniae [253]. 

Whilst none of these studies were able to account for all chlamydial tubal 

infertility cases, it is a convincing body of evidence that human genotype is a 

contributing factor in pathology development. It is interesting that to date the vast 

majority of studies have focussed on immune factors, yet as an obligate intracellular 

pathogen Chlamydia has key host nutritional requirements, inclusion vacuole 

requirements, and therefore the ability to ascend and cause pathology may in fact be 

independently determined by a as yet unknown non-immune host genotype. 
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2.6 IMMUNE RESPONSES ASSOCIATED WITH CHLAMYDIA 
TRACHOMATIS IN WOMEN

Insight into the immunological factors that may be involved in C. trachomatis

infertility in women has been obtained through various human studies, including

investigation of; local secretions (cervical and vaginal lavages), human tissues, 

peripheral blood mononuclear cells (PBMC), as well as through in vitro cell culture 

models. A commonly used framework to categorize the immune response is the 

Th1:Th2 paradigm (reviewed [254]). This paradigm suggests that the immune 

response can polarize towards a cytotoxic pathological response (Th1) or a humoral 

antibody mediated response (Th2). The profiles of these responses include Th1 

subset of T helper lymphocytes (Th) and cytokine production such as: IL-2, IL-6, 

tumor necrosis factor (TNF-α), and interferon-gamma (IFN-γ) [255, 256]; and Th2 

responses involve IL-6, IL-4, IL-10, IL-5 and IL-13 [255]. In addition to Th1:Th2 

regulatory immune profiles typified by IL-17 or IL-23 have also recently been 

described (reviewed [257]). The immune responses in different models reviewed 

below and summarised in Table 2.1 enable a better understanding of the chlamydial 

pathology resulting in female infertility.

2.6.1 Immune responses from reproductive sites and tissues

Genital secretions have been used to reveal the immunological responses that 

occur at the site of infection, although it is not possible to link these with subsequent 

pathology. IFN-γ levels were found to be five times higher in the endocervical 

secretions of women with C. trachomatis infection detected by culture (n=47) 

compared to uninfected women (n=52) [258]. Analysis of immune factors using 

multiplex immunoassay in cervical-vaginal lavages of women attending a STD clinic 

with acute C. trachomatis infection (n=5) compared to controls with no infections 

(n=13), revealed significantly higher levels of IL-1β, lactoferrin, TNF-α, IL-8, 

VEGF, G-CSF, IL-10, IL-3, IL-7, IL-12 and IL-6 [259]. However, in a separate 

study in India, IFN-J levels were only significantly higher in women with recurrent 

C. trachomatis infections compared to controls but not higher than those with 

primary infection [260]. IL-17 and IL-22 were 5 times and 3 times higher in the 

cervical secretion of C. trachomatis positive women (n= 27) compared to negative 

controls (n=17) [261]. IgG and IgA antibodies to C. trachomatis EBs were higher in 

the cervical washes of C. trachomatis positive fertile women during primary 
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infection compared to recurrent infection [260]. However, cervical IgG to specific 

chlamydial antigens (cHSP60 and cHSP10) was higher in recurrent infection than 

compared to primary infection, which is what would be expected [260]. Stimulation 

of cervical monocytes with chlamydial EBs showed an increased expression of Toll-

like receptors (TLRs) TLR2 and 4, and both receptors were also expressed at higher 

levels in cervical cells from women with infection compared to uninfected women 

[263]. The levels of IL-1β, IL-4, IL-5, IL-6 and IL-10 were reported to be 

significantly higher from enriched cervical T cells stimulated with chlamydial 

inclusion membrane (Inc) proteins from C. trachomatis related infertile women 

(n=18) as compared to C. trachomatis positive fertile women (n=14) [264]. Whilst 

not always a Chlamydia related pathology, a study by Balasubramaniam et al. [265]

which found that level of cytokines IL-8 and IL-6 were significantly upregulated in 

the fallopian tube immediately in the location of implantation of ectopic pregnancy, 

but not in the fallopian tubes of women undergoing benign hysterectomy. A very 

recent study identified that differences in IFN-J levels correlated with differences in 

the chlamydial cellular morphologies at the cervix when comparing two patients 

[169]. These local responses all support that immune mediated pathology and key 

chlamydial antigens are likely involved in the development of infertility.

The effects of chlamydial infection in human tissue ex vivo studies provided a 

controlled insight into the cellular responses that likely occur in vivo during the 

immediate primary infection. Though ex vivo fallopian tube studies, Hvid et al. [266]

showed that addition of IL-1RA receptor antagonists, blocked IL-1β and IL-8 

production preventing the pathology from chlamydial infection [266]. This confirms 

that IL-1β along with IL-8 are likely major factors for tubal pathology [266], 

supporting the cellular paradigm of pathology development and not supporting the 

hypersensitivity model. Fallopian tube explants from ectopic pregnancy cases that 

were C. trachomatis seropositive were used to demonstrate that C. trachomatis

induced higher expression of a prokineticin receptor via TLR2 binding [267]. The 

prokineticin pathway impacts on smooth muscle contraction and intrauterine 

implantation as well as angiogenesis, which may imply a mechanism for C. 

trachomatis damage leading to ectopic pregnancy [267]. T lymphocytes from 

endometrial and salpingeal tissues cultured ex vivo in the presence of Chlamydia or 

cHSP60 showed induction of lymphocyte proliferation and IFN-J secretion from PID 
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or ectopic pregnancy cases [268]. In the same participants, higher levels of IFN-γ 

mRNA expression and lower levels of IL-5 in fallopian tube and peritoneal cavity 

specimens of PID patients who had T cells proliferating in response to the organism 

ex vivo further implicated Th1 cytokine production in C. trachomatis related 

pathology [268]. Primary endocervical cell cultures infected with C. trachomatis also 

demonstrated a pro-inflammatory cytokine response with abundant production of IL-

8, IL-1α and TNFα, all of which were maximally detected during live infection with 

active bacterial protein synthesis [269]. Combined these data predominantly support 

the cellular paradigm and ascending infection models of pathology and link to a Th1 

profile of immunity.

2.6.2 Immune responses in peripheral blood mononuclear cells (PBMC) in 
women

Peripheral blood mononuclear cells (PBMC) are often used to provide insight 

into immune cell responses to Chlamydia from different participant cohorts. PBMC 

proliferation induced by purified C. trachomatis EBs showed a prominent secretion 

of IFN-γ in women with genital infection [270]. PBMC from women at high risk of 

acquiring an infection (commercial sex workers) were stimulated with cHSP60 and 

the production of IFN-J strongly correlated with protection against incident C. 

trachomatis infection [271]. In a separate study PBMC from healthy donors were 

incubated with C. trachomatis serovar K, leading to the finding that pro-

inflammatory gene expression (measured by microarray and validated by qRT-PCR) 

was sustained for up to seven days, especially for IFN-J, and IL-2receptor [272]. 

However in a separate study, cHSP60 PBMC production of IFN-J was lower in 

women with PID or repeat infections compared to women with current infections 

[273, 274]. Human dendritic cells prepared from human PBMC were infected with 

C. trachomatis serovar E or L2 that induced production of IL-1E, IL-12p70, IL-6, IL-

8, IL-18 and TNF-α [275]. A separate study also detected production of IL-12 and 

TNF-α by human PBMC sourced dendritic cells infected with C. trachomatis L2 

[276]. Hook et al. [277], showed that stimulation of PBMC with chlamydial EBs 

elicited IFN-γ production by natural killer cells. Cohen et al. [271] showed IFN-γ 

production from PBMC stimulated with cHSP60 correlated with participants who 

were protected from acquisition of infection in a longitudinal study of 143 female 

participants [271]. This study also showed the PBMC production of IL-13 in 
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response to chlamydial EBs also correlated with a reduced risk of infection [271]. IL-

6 production was reported from endometrial and endocervical primary ex vivo

cultures from live infections with C. trachomatis [278].

2.6.3 Immune pathway elucidated by in vitro culture models

Epithelial cell culture are most commonly used for in vitro growth and 

characterization for C. trachomatis infection [44]. C. trachomatis infection in HeLa, 

SiHa (human cervical carcinoma epithelial cell) and HEp2 (human epithelial cell) 

were used to demonstrate that IL-1α regulated IL-8 production from these cell lines 

during infection [279]. Similarly, mRNA measurement of cytokine gene expression 

after C. trachomatis infection of HeLa, SiHa cervix squamous carcinoma cells and 

HT-29 colon adenocarcinoma cells showed increased levels of IL-8, GROα, GM-

CSF, IL-6 and IL-1α levels. These cytokines are activators of neutrophils, monocytes 

and T lymphocytes, and potent chemoattractants [269]. A HeLa/THP-1 co-culture 

model attempting to re-capitulate the in vivo cellular cross-talk also identified 

sustained IL-6 and IL-8 cytokine secretion during C. trachomatis infection with IL-

1β transiently detected [280]. IL-6 and IL-8 were also detected in a separate study 

using infections of cervical and epithelial cell models [269]. A HeLa and THP-1 

(mono-nuclear cell) co-cultures model identified that there are distinct profiles of 

innate immune responses to C. trachomatis serovar E compared to L2. The results 

also showed that the monocyte released innate cytokines (such as TNF-D) had 

different effectiveness in controlling the infection in infected epithelia model cells by

the two serovars [281]. Using a similar co-culture model as Rasmussen et al. [269],

Cunningham et al. [278] also demonstrated a sustained IL-6 production in response 

to C. trachomatis L2 infection. A RNAseq- based examination of host and 

chlamydial gene expression enabled investigators to identify that a fibrotic profile of 

gene expression being induced in infected HEP-2 cells [282]. The role of TNF-α in 

inhibiting chlamydial development was evaluated by addition of recombinant TNF-α 

to Hep2 cells prior to infection which resulted in smaller inclusion bodies [283]. 

Furthermore, addition of IFN-γ to the cell line showed that in combination with 

TNF-α, chlamydial replication was inhibited [283]. Lu et al., [284] showed that 

chlamydial infection of several epithelial cell lines resulted in the secretion of mature 

IL-18. IL-18 is known to potentiate the Th1 immune response and enhance 

production of IFN-γ [284].
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Table 2.1: Immune responses associated with C. trachomatis-related infertility in women

Type of model Sample Immune Response References

Reproductive sites 
and Tissues

Cervical secretions from women with acute C. 
trachomatis infection (n=5)

Increased expression of IL-1β, lactoferrin, TNF-α, IL-8, 
VEGF, G-CSF, IL-10, IL-3, IL-7, IL-12 and IL-6

[259]

Cervical washes stimulated with 
C.trachomatis HSP60 and HSP10

High IFN-J production in women with recurrent C. 
trachomatis infections (n=197)

[260]

Cervical secretions from C. trachomatis positive 
infertile women (n=17)

High IFN-J, TNFa, IL-10, IL-12 levels in infertile patients [285]

Cervical secretions stimulated with IncB, Inc C and 
C. trachomatis EBs

Increased expression of IL-1β, IL-4, IL-5, IL-6 and IL-10 in 
women with C. trachomatis-related infertility. 

[264]

Tissue sections of fallopian tube stimulated with C. 
trachomatis serovar D

High levels of IL-1β and IL-8 associated with tubal scarring 
and pathology. 

[266]

Fallopian tube specimens from women with past C. 
trachomatis infection (n=14)

High expression of prokineticin (PROKR2) receptor via 
TLR2 binding. PROK signalling reduces embryo 
implantation and play an active role in tubal ectopic 
pregnancy.

[267]

Salpingeal tissues stimulated with cHSP60 High IFN-J levels in women with PID (n=14) and TFI 
(n=22) may be associated with tubal infertility. 

[268]

Primary endocervical epithelial cell stimulated with 
C. trachomatis L2

IL-8 and IL-1α induce epithelial cytokine production and 
proinflammatory cytokines

[269]

PBMC stimulated with cHSP60 and a mixture of C. 
trachomatis serovars (E, F, K, L2) EB

Increased production of IFN-J and IL-13 conferred a 
protective effect against C. trachomatis infection in 
commercial sex workers (n=18). 

[271]

PBMC stimulated with cHSP60 High IL-10 and low IFN-J and IL-12 production in women 
with PID (n=9) 

[273]



Chapter 2: Literature Review 44

Peripheral Blood 
Mononuclear Cells 
(PBMC)

Dendritic cells stimulated with viable and heat-
inactivated C. trachomatis serovar E or L2 

Increased production of IL-1E, IL-12p70, IL-6, IL-8, IL-18 
and TNF-α. These pro-inflammatory cytokines activate Th1 
T cell responses (resolve infection).

[275]

Dendritic cells stimulated with viable or UV 
inactivated C. trachomatis L2

High levels of pro-inflammatory cytokines, IL-12 and TNF-
α. 

[276]

PBMC stimulated with viable C. trachomatis L2 High levels of IL-6 in women with chlamydial infertility 
(n=3)

[278]

In vitro cell culture

SiHa (human cervical carcinoma epithelial cell) and 
HEp2 cells stimulated with C. trachomatis L2 

High levels of IL-1α and IL-8. [279]

HeLa and SiHa cells infected with C. trachomatis L2 High levels of chemoattractants and pro-inflammatory 
cytokines IL-8, GROα, GM-CSF, IL-6 and IL-1α levels.

[269]

Co-culture of HeLa and THP-1 cells infected with 
CtTsp, CtHtrA, and UV-killed 
C. trachomatis L2 infection

High levels of IL-6. The cytokine may be associated with 
disease pathology. 

[278]

Infection of HeLa , A549 airway epithelial (CCL185) 
and HT-29 colonic epithelial (HTB38) cells with C. 
trachomatis serovars L2, E, F, and K 

Increased production of IL-18 through caspase-1 mediated 
pathway, which facilitates immune evasion of C. 
trachomatis.

[284]

HeLa and SiHa cells infected with C. trachomatis L2 Downregulation of major histocompatibility complex (MHC) 
molecules. 

[277]
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2.7 CHLAMYDIAL FACTORS THAT MAY INFLUENCE THE 
DEVELOPMENT OF PATHOLOGY

Although host/human factors and the host immune response influence the 

outcome of the C. trachomatis infection, the pathogenesis of the bacteria is also 

influenced by characteristics inherent to the bacteria. These factors include 

chlamydial serovars, chlamydial genotypes and virulence factors. 

2.7.1 Association of chlamydial serovars with repeat infection and symptoms 
that may link to a propensity to cause pathology and infertility

Chlamydial serovars are assigned based on the outer membrane proteins, 

typically by sequencing so studies that refer to serovars are actually frequently 

referring to genovars [286]. Serovar E and serovar F are generally found to be 

predominant in most countries including: Australia, Netherlands, and Sweden [287-

291]. Using omp1 PCR based RFLP genotyping Lan et al. [292] reported that in 

women less than 30 years old, serovars D (4/21 asymptomatic women) and I (4/21 

asymptomatic women) were associated with asymptomatic infection, while serovar 

G was associated with symptomatic infections (4/30 symptomatic cases). Similarly, 

Gao et al. [289] also reported the predominance of serovar G in symptomatic 

infection, particularly lower abdominal pain (18/33 patients) as compared to 

asymptomatic patients (P<0.001) amongst female sex workers and STD patients in 

China. 47.5% (28/59) asymptomatic patients had serovar E [289]. Verweij et al., 

(2014) reported that different serovars induced differential serological responses in 

510 women with PCR confirmed C. trachomatis infection [293]. The study showed 

that serovar D (n=45) and E (n=217) from serogroup B elicited the highest IgG 

response (Median IgG titre of 200) followed by serovar H (n=20) [293]. Women 

with persisting infections were found to have twice as may serovar E infections 

(67%, 8/12) compared to women who naturally cleared infections (33% 3/9) during a 

longitudinal study of women with asymptomatic C. trachomatis infections, however 

this was not significantly different [294]. Consistent with previous findings, 

Workowski et al. [295] also showed that while serovars F, B and C showed no 

apparent association with infertility in women with PID, serovar F exhibited different 

symptoms compared to B and C in women with lower genital tract infection (n=99), 

and it was accompanied by fewer clinical manifestations of mucopurulent 
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endocervical. However, several study design flaws have been raised and therefore it 

may not be relevant to include these data to make conclusions about the effect of 

serovars on resolution of infection [296, 297]). Whilst not linked directly to 

infertility, the majority of evidence from these studies support that different serovars 

do have different associations with symptoms, re-infection, or infection duration, all 

of which may contribute to pathology development. 

2.7.2 Chlamydial genotypes can mediate tissue tropism and may be a factor in 
pathology development

There are several published examples of C. trachomatis genotypic changes 

associating with tissue tropism, however, no reports yet aligning chlamydial 

genotype with pathology development and infertility. The most well know genotype 

that mediates tissue tropism is actually polymorphisms in the trpAB operon and the 

ability to synthesis tryptophan from indole between C. trachomatis ocular and genital 

strains [201, 298] which we will mention here given the significance of this finding 

to the field even though this review is focussed on infertility. There is also evidence 

of positively selected genotypes that align with tissue trophism (ocular, genital, 

mononuclear/invasive), for example in a review of 59 C. trachomatis genome 

sequences, it was reported that tarp, and the pmp genes have positively selected 

polymorphisms that significantly cluster with tissue niche [299]. Polymorphisms in 

three distinct open reading frames have been found to associate with rectal but not 

cervical serovar G isolates, and two further open reading frame polymorphisms were 

found to associate with rectal and cervical tropism of serovars E, F and J [300]. 

These studies do not identify pathology-associated polymorphisms, however they do 

support the theoretical potential for chlamydial genotypes to exist that either 

improved ascension, or upper reproductive tract survival or polymorphisms that alter 

the immune response. Any association a chlamydial genotype has with pathology 

development would only be possible by a longitudinal study of a large group of 

women throughout their reproductive years with continual sampling and analysis of 

infecting chlamydial strains.

2.7.3 Virulence factors associated with chlamydial pathology in women 

Secretion of immunomodulatory antigens is one of the principle virulence 

mechanisms of Chlamydia trachomatis. These proteins enable organisms to evade 
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host immune system thus leading to the development of serious sequelae such as 

Tubal factor infertility and ectopic pregnancy.

Heat shock proteins (HSPs) are chaperones that aid in correct folding of 

intracellular proteins [126]. Chlamydial heat shock proteins (cHSP60) are strong B 

and T cell antigens that play an important role in the immunopathology of sequelae 

of chlamydial infections [172, 301]. Kinnunen et al. (2003) [270] showed that when 

PBMCs were stimulated with cHSP60, a higher level of IFN-γ, IL-2 and IL-10 was 

produced, as opposed to weaker IL-10 production by the C. trachomatis Elementary 

bodies. Since, protective immunity and chlamydial clearance is dependent on the 

mutual interplay between IL-12 and IFN-γ, any imbalance could result in the 

development of TFI. Additionally, IL-10 does not support protective immunity and 

control of infection, thus leading to pathology [270]. The development of sequelae is 

highly dependent on the balance Th1 and Th2 immunity. Based on the cytokine 

expression obtained from salpingeal tissues and PBMC of patients with endometritis, 

PID and multiple infections, it was reported that cHSP60 induced a dominant Th2 

response, which leads to chronic inflammation [273, 302]. Th1 immunity is 

associated with clearance of infection, while Th2 induces pathology. Hence, based 

on his findings, Debattista et al. (2002) [273] proposed that during chronic 

inflammation, a premature switching from Th1 to Th2 occurs. In addition to cHSP60, 

cHSP10 has also been shown to elicit T and B cell responses that contribute to 

pathology [303, 304]. cHSP10 is genetically linked to cHSP60 and perform similar 

roles as cHSP60 in protein folding and denaturation. On comparing acute infection to 

TFI, Srivastava et al. (2008)[303] found that in conjunction with higher antibody 

titres, both cHSPs induced higher production of IL-10 and IFN-γ in the latter. TNF-α 

was not found to be significant between patients with acute infection and patients 

with C. trachomatis-related infertility. The higher antibody titres for cHSP10 in the 

previous study is concurrent to the study Betsou et al. [304] which showed that anti-

cHSP10 IgG antibodies are associated with chronicity. 

Chlamydial protease like activity factor (CPAF) is a major [305] virulence 

factor that is secreted into host cytosol and has been reported to manipulate host 

immune system [305-307]. It is an atypical serine protease conserved within the 

chlamydiales [305]. The protease plays an important role in the developmental cycle 

of C. trachomatis through expansion of inclusion [307]. CPAF degrades host 
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transcription factors USF-1 and RXF-5 that are required for MHC Class I and II gene 

activation [308]. In women with cervicitis, antibody response to CPAF was found to 

be higher than MOMP and cHSP60 [306]. Downregulation of chlamydial protease-

like activity factor (CPAF) and upregulation of high mobility group box 1 (HMGB1) 

protein renders the bacteria apoptosis-resistant and pro-inflammatory, thus promoting 

chronic inflammation [309]. 

The inclusion membrane proteins (Inc) are the only known proteins that reside 

in the inclusion membrane that interact with host proteins. These proteins share a 

common bilobular hydrophobicity motif that spans the inclusion membrane, but the 

common amino acid sequences among themselves are limited [20, 63]. Inc proteins 

were first identified in C. psittaci [64] and subsequently identified in C. trachomatis

[20, 65]. IncA, first identified in C. psittaci, regulates the fusion of inclusions and

interaction between the inclusion and intracellular compartment [67-70]. The 

SNARE-like fusion protein IncA facilitates fusion between endoplasmic reticulum 

and inclusion membrane, and the ER is essential in antigen processing and 

presentation [310]. IncB and IncC were reported to be higher in the cervical cells of 

infertile women (C. trachomatis infection) than women with acute infection. They 

also induce higher levels of IL-12, IFN-γ, TNF-α, IL-6, IL-4 and GMCSF in the 

PBMC of C. trachomatis infected fertile women [311]. The expression of these 

cytokines indicates that InC and IncB induce strong Th1 immune response in the 

genital tract. 

2.8 DIAGNOSIS OF CHLAMYDIA TRACHOMATIS

Historically, cell culture was the diagnostic technique for C. trachomatis

infections. This was followed by the DFA (direct fluorescent antibody) techniques, 

and today the most widely used techniques are the NAATs (nucleic acid 

amplification tests). However, the asymptomatic nature of the disease means many 

people do not get tested. Table 2.1 illustrates the sensitivity, specificity and the 

characteristics of the various diagnostic techniques used to detect C. trachomatis

[312].
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Table 2.2:A brief summary of the various diagnostic techniques for C. 
trachomatis infections

The table lists the specificity and sensitivity, advantages and disadvantages 

associated with cell culture, antigen testing, enzyme immunoassay, nucleic acid 

amplification testing and point of care tests. (Table directly adapted from Mylonas et 

al. [286]. 

Test procedure Sensitivity Specificity Advantages Disadvantages 

DNA 
amplification 

80-90% >98% Sensitive test 

Non-invasive 
specimen 
collection

Cost 

Appropriate 
material storage 
and processing 

Cell culture 60-80% >99% Appropriate for 
medical-legal 
issues

Specific strain 

Low sensitivity

Labour intensive 

Direct 
fluorescence of 
antibodies 
(DFA)

65-75% 97-99% Simple test 

Unit test

Low sensitivity

Labour intensive 

Subjective 
reading 

Enzyme 
immunoassay 
(EIA)

60-75% 97-99% Automation Low sensitivity

Verification test 
recommended

Rapid point of 
care test (POC)

25-67% >97% Low cost 

Unit test

Very low 
sensitivity 

Verification test 
recommended
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2.8.1 Cell culture 

Tang et al. [313] were the first to successfully isolate and culture a trachoma 

biovar strains of C. trachomatis from embryonated chicken eggs. C. trachomatis

strains infect only certain cell lines such as HeLa-229, McCoy, Buffalo green 

monkey kidney and BHK-21 [314]. Studies by Hodinka et al. [315] suggested that 

cell line infection by C. trachomatis is enhanced by centrifugation which promotes 

phagocytic entry and prevents phagosome-lysosome fusion. The chlamydial 

inclusion bodies are visualised with the help of immunofluorescence and iodine or 

Giesma stain [316]. Despite isolating the bacteria from specialized culture medium, 

and with the assistance of skilled staff, cell culture techniques achieves a sensitivity 

of around 70-80% for detecting C. trachomatis [314]. Additionally, the technique is 

difficult, time consuming and costly [314].

2.8.2 Non-Culture Techniques (Non-nucleic amplification tests)

The non-culture techniques involve direct visualization of the chlamydial 

organism through cytologic examination, immunohistochemical detection of antigen 

and hybridization to DNA probe (EIA and DFA) [317]. Unlike culture techniques, 

non-culture techniques are standardized test that are rapid and less labour intensive 

[317]. 

Direct immunofluorescence assay involves the use of fluorescein-tagged 

monoclonal antibody specific for C. trachomatis to detect the infection [318]. 

Another technique that employs the use of fluorescein tagged molecule is the 

commercially available MicroTrak test which detects individual elementary bodies of 

C. trachomatis using fluorescein-labelled monoclonal antibodies [319]. Using this 

technique, the sensitivity and specificity of detecting C. trachomatis antigen in 

endocervical swabs of infertile women (n=200) was reported as 66.7% and 100% 

respectively, which was much higher than EIA (sensitivity=48.1%; specificity 

=100%)[320]. DFA is a rapid technique that has a higher specificity. However, its 

broad range of sensitivity suggests that it is highly subjective and is not suitable for 

large number of samples [321]. A study conducted by Rahm et al. [321] showed that 

the sensitivity of DFA was only about 85% among asymptomatic patients, thus it is 

not the preferred diagnostic technique for asymptomatic patients. Thejls et al. [322]
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reported that C. trachomatis elementary bodies were detected in 8.2% (n=256)of 

women with infertility using DFA and it was comparable to EIA. EIA. is prone to

false positives due to cross-reactions with lipopolysaccharide (LPS) of other 

microorganisms [323]. 

2.8.3 Nucleic acid amplification tests 

Nucleic acid amplification tests are highly accurate techniques that are widely 

used in C. trachomatis diagnosis [318]. They detect small amounts of chlamydial 

nucleic acids, transcripts from genital specimens, and non-invasive samples such 

urine specimens and self -obtained vaginal swabs [318]. NAATs have a sensitivity of 

95% and specificity of 100%, hence they are considered the “gold standard” for 

chlamydia diagnosis. The amplification techniques include PCR, real-time PCR, 

strand displacement amplification, transcription-mediated amplification and nucleic 

acid sequence based amplification [323]. NAAT is particularly useful in 

asymptomatic women because it is capable of detecting C. trachomatis at low IFU 

(inclusion forming units) counts which is a direct correlation to the endocervical 

discharge and other anatomical changes associated with chlamydial infection [324]. 

Although, NAAT is capable of detecting C. trachomatis in FCU (First- catch urine) 

from women, vaginal swabs specimens are preferred over FCU due to the presence 

of inhibitors in urine such as phosphate that inhibit LCR reactions [325] . The 

evaluation of the sensitivity and specificity of NAAT techniques such as strand 

displacement amplification (SDA), PCR and Abott ligase reaction (LCR) to C. 

trachomatis showed that the three techniques performed similarly with regards to 

sensitivity and specificity [326]. However, when compared to the performance of 

EIA, the detection rate by PCR was 62% higher than that of EIA [327]. The

commercial NAATs for C. trachomatis that are widely used due to their high 

specificities and sensitivities are COBAS Amplicor test (Roche systems; 16S rRNA 

PCR-based NAAT), Abbott m2000 (Abbott systems; LCR-based NAAT), APTIMA 

C. trachomatis (Gen-Probe; Transcription-mediated NAAT) and BD ProbeTec 

(Becton Dickson, USA; SDA-based NAAT). The sensitivities for detecting C. 

trachomatis in vaginal swabs of 575 women recruited from sexual health clinics for 

APTIMA (Gen-Probe), Abbott m2000 and ProbeTec were 96.2%, 98% and 90.6% 

respectively, while in urine samples the sensitivities were reduced to 88%, 76.9% 

and 75.5% respectively [328]. The specificities all the assays ranged between 98.4% 
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to 100%. Among self-collected vaginal swabs (n=675), COBAS ® 4800 (Roche 

systems) and Abbott m2000 (Abbott systems) had sensitivities of 97.1% and 100% 

respectively, and specificities of 99.7% and 99.5% respectively, in detecting C. 

trachomatis infections [329]. Despite their high specificities and sensitivities, in 

Sweden, the NAATs yielded a high number of false negatives owing to the lack of 

detection of a new variant of C. trachomatis (nvCT) that was discovered in the 

country in 2006 [330]. This 377-bp deletion in the cryptic plasmid of the bacteria is 

often the target sequence for most NAATs and thus the bacteria was not detected. 

Moller et al. [331] compared the performance of Roche COBAS Amplicor CT 

(RCA), Abbott m2000 (Abbott systems), Gen-probe Aptima combo 2 assay (targets 

23S rRNA) and Aptima C. trachomatis assay (targets 16S rRNA) in detecting nvCT 

in first catch urine samples and vaginal swabs from female participants in Sweden 

(n=1231). The study reported that both Gen-probe NAATs (specificity=100%; 

sensitivity =99.6%-99.9%) had higher sensitivity and specificity in detecting nvCT 

than m2000 (sensitivity= 68.7%; specificity= 99.9%) and RCA (sensitivity = 63.8%; 

specificity= 99.9%) in detecting all mutant strains characterized by in-house PCR 

[331]. Klint et al. [330] reported that in 2007 counties in Sweden that used 

Abbot/Roche systems had high proportion of nvCT, while counties using BD Probe 

Tec had lower proportion of nvCT, but after rountine testing the proportion declined 

in 2009 (65% to 48% with Abbot/Roche, 24% to 18% in Uppsala with BD). A 5-year 

follow-up revealed that in 2011 the proportion of the new variant had reduced to one-

fifth of the absolute and relative numbers, while the proportion of wild type remained 

the same in Skane (Sweden) [332]. Thus, this highlights the importance of 

appropriate and routine screening of chlamydial strains in order to control their rate 

of transmission. 

The disadvantages of NAAT is that they require sophisticated laboratory 

conditions [333, 334]. Several studies have used PCR testing to determine the 

prevalence of C. trachomatis infections in a population [320, 335-337], the organism 

load [338-341] and rapid detection of multiplex detection of C. trachomatis along 

with other microorganisms such N. gonorrohoeae [342-346]. In Iran, PCR testing of 

150 women with infertility and 200 fertile healthy women revealed that C. 

trachomatis was detected in 32% of women with infertility as compared to 8% of 

healthy fertile women [347]. In another study, the prevalence of C. trachomatis
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among infertile women (n=106) recruited from fertility clinic in Brazil was 

determined as 58% using PCR amplifying C. trachomatis DNA plasmid [348]. In-

house real time PCR targeting cryptic plasmid and omp1 gene in endocervical swabs 

collected from 200 infertile participants in an fertility clinic in India, showed that C. 

trachomatis was present in 13.5% infertile women. 

2.8.4 Point of Care tests to detect C. trachomatis infections

Point of care tests (POC) are assays that are affordable, sensitive, specific, user 

friendly, rapid and robust, equipment free and deliverable (ASSURED) [349]. There 

are several commercial POC tests such as Chlamydia Rapid Test, QucikVue test and 

Clearview Chlamydia for chlamydial diagnosis. Although, they are cost-effective and 

rapid, their sensitivity and specificity falls short in comparison to the current “gold 

standard”; nucleic acid amplification tests. Alarmingly poor performance has been 

reported by Dommelen et al. [333] which revealed that the sensitivities of Chlamydia

Ag test, QuickVue Chlamydia test and Handilab-C were extremely poor and were 

prone to false positive results. Similar results were obtained in the study conducted 

by van der Helm et al. [334] who reported poor sensitivities (41.2%) for Chlamydia

Rapid test (CRT). However, continued efforts have been undertaken to improve the 

performance of POC tests and some of the techniques developed recently have 

demonstrated improved diagnostic performance. Cepheid GenXpert CT/NG test is 

the first genetic POC that amplifies one chromosomal target for C. trachomatis

detection and it can detect 15 serovars of C. trachomatis including nvCT [349]. A 

field evaluation trial of POCs GenXpert and Diaquick CT for C. trachomatis

detection in remote Aboriginal communities of Australia reported that GenXpert CT 

had a sensitivity of 100% and a specificity of 99.5% (n=198), while Diquick CT had 

a sensitivity of 27.3% and a specificity of 66.7%[350]. Similar sensitivities and 

specificities for GenXpert CT were also reported by Gaydos et al. [344], wherein 

testing of endocervical, vaginal and urine samples from 1722 females yielded

sensitivities between 97.4% -98.7%, while maintaining a specificity of 99%. Several 

novel POC techniques with superior sensitivities and specificities have been 

developed, but they are yet to be used widely. Some of the techniques include Velox 

technology [351] that utilizes novel electrochemical detection principle and reported 

a sensitivity of 98.1% and specificity of 98% in a pre-clinical validation of 306 

clinical samples. aQcare Chlamydia TRF kit which is based on the newly based 
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lateral flow immunoassay that uses europium (Eu) (III) chelated nanoparticles as a 

labeling substances also yielded a high sensitivity of 93% and a specificity of 98% 

(n=441) [352]. Thus, quick, user friendly and cost-effective POC could improve 

screening strategies and effectively control C. trachomatis infection and prevalence. 

2.8.5 Serological diagnosis 

Serological assays for C. trachomatis involve detection of antichlamydial 

antibodies [2]. It is a useful technique in diagnosing ectopic pregnancies, pelvic 

inflammatory diseases and recurrent miscarriages [2]. Serological diagnosis 

overcomes the problem of invasive sampling using techniques in upper genital tract 

infection in women, such as needle aspiration of the affected fallopian tubes in 

women with salpingitis [353]. The type of antibody and the specific antigen/epitope 

in the serum may also aid in differentiating between past and present infection. For 

instance, IgA and IgM antibodies have a half-life of five to six days, hence they are 

markers of active chlamydial infection [355], while IgG are markers of previous or 

long-term infections [356]. 

Van den Broek et al. [357] analyzed the association of serum IgG, serum IgA,

mucosal IgG and mucosal IgA with infertility and active C. trachomatis infection. 

The anti-chlamydial antibodies obtained from the sera and vaginal swabs of infertile 

women attending fertility clinics (n=85) and women attending STI clinic (n=117) 

demonstrated strongest correlations between infertile participants and serum IgG and 

mucosal IgA (P<0.001), but not mucosal IgG. Similar results were reported for 

women recruited from STI clinics with active infection (PCR positive), who showed 

strong associations to serum IgG, IgA and mucosal IgA, but not mucosal IgG. This 

shows that serum IgG had stronger associations with current or past infections, and 

local IgA had a better diagnostic predictive value than mucosal IgG in detecting tubal 

pathology. In women with a history of PID, immunofluorescence test revealed that 

although the proportion of serum IgG was higher than serum IgA and cervical IgA, 

there was a correlation between both serum antibodies [358]. Although IgA 

antibodies have also been implicated in chronic infection as reliable markers of 

persistent infection [356], the findings by Muvunyi et al. [359] contradict previous 

studies by showing that the role of IgA is negligible in chronic C. trachomatis

infection in women. IgG antibodies were also so found to be higher in women with 

tubal occlusion or with prior ectopic pregnancy [360]. Additionally, In sub-fertile 
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women, the IgG seroprevalence ranged between 17.3% to 18.8% and IgA 

seroprevalence rates was 7.4% [359]. 

Regardless of test performance, numerous studies have identified a correlation 

of Chlamydia serology positivity (Chlamydia antibody testing: CAT) with diagnosed 

tubal factor infertility (typically using a case: control design of tubal infertility 

compared to other causes of infertility). These studies include the following: a 

significantly higher percentage of women with tubal pathology were CAT positive 

(50.2%, n=141) compared to infertile for other reasons (29.6%, n= 326, p<0.001) 

using microimmunoflourescence (MIF) [361]. In a separate study high CAT titres 

using MIF correlated with presence of tubal damage (n=434) compared to all women 

with infertility n=1006 (p<0.001), as did pelvic adhesions [362]. The study further 

demonstrated that participants with tubal damage (median 1:1024) had significantly 

higher titers than participants with endometriosis (median <1:64) (P<0.001). The 

degree of tubal adhesion also positively correlated with C. trachomatis seropositivity 

[363]. Thus, the level of antibody titers is instrumental in diagnosing the type of 

infertility. Another study reported that CAT (MIF) was 74% sensitive and 93% 

specific for detection of tubal disease (total 210 patients) p<0.001 [364]. In contrast, 

a study by Muvunyi et al. [359] reported that the sensitivity and specificity of three 

different chlamydial ELISAs in detecting C. trachomatis infection in subfertile 

women from Rwanda was low compared to the fertile post-natal controls (n=312).

The study concluded that Chlamydia is not a major cause of tubal pathology in this 

population because despite having high proportion of tubal pathology among infertile 

participants (185 of 303 infertile participants), the prevalence of C. trachomatis

infections were reported to be low in this cohort.

The Microimmunofluorescence (MIF) test developed by Wang and Grayston 

[366] showed a high sensitivity and it is still considered the serologic “gold 

standard”. However, it is labour intensive and highly subjective [2]. Enzyme linked 

immunosorbent assay (ELISA), overcomes the problems posed by MIF and further 

enhances the specificity to C. trachomatis with the help of recombinant chlamydia 

antigens [367]. ELISA-based serological tests are capable of detecting C. 

trachomatis antibodies in a large number of samples, and are less expensive, rapid 

and less labour intensive than MIF [2]. Serological assays are instrumental in 

identifying novel antigens that are specific to C. trachomatis. 
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The commercial ELISAs are generally based on recombinant peptide antigens 

derived from immunodominant antigens such as cHSP60 and MOMP (major outer 

membrane protein). The MEDAC pELISA (MOMP peptides) in the Netherlands was 

able to predict tubal disease in infertile women (n=40 CAT positive, compared to 

n=167 CAT negative) with a sensitivity of 0.37 (95% CI: 0.26-0.49) and specificity 

of 0.88 (95% CI 0.82-0.92) [368]. IgA reactive with MOMP has been detected in the 

urogential tract, which suggest that MOMP might confer protective immunity and 

maybe associated with host clinical outcomes [369]. Among the serological 

diagnostic techniques, the majority of the studies have demonstrated that ELISA had 

a higher sensitivity and specificity compared to MIF [370, 371]. Furthermore, it was 

also reported that in asymptomatic infertile women, a decline of IgG antibody titers 

were observed after a 4-7 year interval by MIF, however, it was not reflected in the 

ELISA [372]. Thus, it highlights the credibility of MIF in detecting tubal infertility 

after a long-term persistent infection. Additionally, comparison of MIF positive 

subfertile participants with MIF negative subfertile participants revealed a significant 

difference in the prevalence of C. pneumoniae antibodies (P<0.0005), which 

indicates a high rate of cross-reactivity between C. trachomatis and C.pneumoniae

[373]. However, a meta-analysis of individual patient data found that the diagnostic 

accuracy of MIF in diagnosing tubal pathology was significantly better than accuracy 

of ELISA and IF alone [374]. In another study, the performance of six enzyme 

immunoassays were compared on women with ectopic pregnancy (n=90), infertility 

(n=187), and PID (n=33), and MEDAC MOMP ELISA was reported to have highest 

specificity (97.2%) and showed a high correlation to whole inclusion 

immunofluorescence (correlation coefficient =0.7)[375]. This was supported by 

another study that showed that the MEDAC MOMP pELISA was the best of three 

ELISAs (compared with Savyon and Labsystems) for detection of tubal pathology in 

infertile women at a fertility treatment clinic with 55% sensitivity and 87% 

specificity [376]. The same study compared two MIF tests (n=315, with 51 tubal 

pathology cases) reported that with a cut-off titre of 1/64 the Biomerieux test had 

71% sensitivity and 74% specificity, compared to 47% sensitivity and 95% 

specificity for the Labsystems test [376]. Bax et al. [377] compared the performance 

of a Chlamydia enzyme immunoassay (EIA) (ANILabsystems), MEDAC MOMP 

pELISA and MIF in women with subfertility (n=76)and reported that despite its low 

sensitivity (36.4%), MEDAC MOMP had the highest specificity (85.7%). Therefore, 
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making MEDAC MOMP a good alternative for MIF in detection of chlamydial 

infertility. However, a meta-analysis conducted in 2011 compared MIF and several 

ELISA and found that MIF had the highest accuracy (area under the curve) for 

detection of tubal pathology P<0.001, and P=0.01 (for bilateral occlusion) [374]. 

Although, MIF is still considered a ‘gold standard’, ELISAs also show great promise 

as a diagnostic tool for C. trachomatis- related infertility due to its ease of use and its 

ability to exploit a wide range of antigens to achieve high sensitivity and specificity. 

One of the important markers for C. trachomatis sequelae is the Chlamydia

heat shock protein 60 (cHSP60) [378]. Antibody responses to cHSP60 was detected 

in women with Chlamydia-associated tubal infertility (n= 72) with a sensitivity and 

specificity of 81.3%, and 97.5% respectively. However, these women were first 

tested by laparoscopy for tubal damage and for a positive result in the MIF 

serological assay to assign case group before testing the ELISA so this study has 

likely over-reported the test performance [379]. In a subsequent study of a further 77 

participants this group further reported that cHSP60 antibodies were 92% specific 

and 44% sensitive for tubal factor infertility [380]. cHSP60 ELISA positivity was 

also found to be significantly more frequent in women with tubal factor (n=88) 

compared to controls of infertile women with other know factors for infertility or 

healthy blood donors (n=163) (43.2% vs 13.5%) in a study conducted in Helsinki 

[381]. Although, antibody response to cHSP60 is expected to be abundant in the 

serum of C. trachomatis infected women, it was found that contrary to expectations, 

anti-cHSP60 antibodies were not detected in women infected less than four months 

and a very small proportion (18%) were found in patients with PID, multiple 

infection and post infection [382]. In addition to cHSP60, antibody response to

cHSP10 exhibited a strong correlation to women with TFI (n=33) when compared to 

women with acute C. trachomatis infections (n=139) (P<0.001) [383]. Serological 

analysis of infertile women before their initial IVF cycle revealed that antibodies to 

cHSP10 was more predominant in women with hydrosalpinx (46.8%) than in women 

with tubal occlusion (P=0.0009; 15.5%)[179]. Antibodies to cHSP10 had a 

sensitivity of 41.7% and a specificity of 86.1% in detecting women with ectopic 

pregnancy (n=72), however it was reported to have high cross-reactivity with C. 

pneumoniae (78.4% identity) and 14.5% of the participants showed cross-reactivity 

[304]. Persson et al. [384] reported that in addition to correlating with women with 
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TFI (n=163; rs = 0.46, P <0.001), cHSP60 antibodies showed no correlation with C. 

pneumoniae (rs = 0.17, P =0.03).Women with secondary tubal infertility were 

reported to have a higher number of anti-cHSP60 (54.8%, 30%) or cHSP10 (40.5%, 

26.7%) than women with primary infertility, of which higher specificity was 

obtained for cHSP60 [378]. Hence, a commercial ELISA screening test has been 

developed using cHSP60 (Medac) to facilitate easy diagnosis of C. trachomatis. 

Thus, the Medac-cHSP60 assay is not the preferred diagnostic technique as it has a 

sensitivity of only 69% and specificity of 93% [126].

Identification of novel antigens associated with chlamydial infertility

In addition to cHSP60, several new antigens have been discovered that could 

improve the serological approach for diagnosing tubal pathology associated with C. 

trachomatis in women. Antigens used in combination have proved to be more 

specific and sensitive than those used alone in serological diagnosis, at least in 

research studies, although large scale commercial or clinical trials have not yet been 

reported with many of those discussed here. Rodgers et al. [385], conducted a 

genome wide identification of antigens, using a proteome array containing individual 

chlamydial GST (glutathione-S transferase) fusion proteins, and the serological 

response in women with TFI (n=31) and infertile women with no TFI (n=25) was 

estimated. The study reported that a high antibody titer to C. trachomatis (P<0.001) 

as compared to C. pneumoniae (P=0.269) was obtained in participants with TFI, the 

study further identified 10 antigens specific only to the participants with TFI (CT110 

(HSP60), CT322, CT376, CT381, CT414, CT443, CT681, CT795, CT798, and 

CT813). While these antigens maintained 100% specificity, combination of all 10 

antigens yielded a sensitivity of 67.7% (n=21). However, the sensitivity was also 

maintained with the combination of four antigens (HSP60, CT376, CT381 and 

CT798) and two antigens (CT443 and CT381). Interestingly, Combination of CT443 

and CT381 yielded higher specificity and sensitivity than other techniques used to 

diagnose tubal infertility, such as hysterosalpinogram (sensitivity=65%; specificity 

=83%) and Hsp60 (sensitivity=35.5%; specificity =100%)[386]. Using the same 

glutathione-S-transferase fusion protein microplate ELISA as in the previous study, 

Budrys et al. [387] reported that combination of HSP60, CT376, CT557 and CT443 

identified women with TFI from fertile controls with a sensitivity of 63% and 

specificity of 100%. Furthermore, the study also reported that a combination of 
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CT875 and CT147 identified women with acute C. trachomatis infection from 

women with C. trachomatis indued TFI with a sensitivity of 63% and specificity of 

100%. Other immunodominant antigens include OmcB [388] [identified through 

fusion protein microplate ELISA]; CT795 [369, 389], CT089[369], CT694 [369]

[identified using microplate array with 156 chlamydial fusion proteins] and Pgp3

[390] [identified through western blotting and indirect ELISA]. CT147 and CT314 

found in female patients are associated with multiple C. trachomatis infections [382]. 

CT396 antigen is conserved between C. trachomatis and C. pneumoniae, while 

CT157 is the least conserved antigen between the chlamydial species and it is greatly 

decreased in C. pneumoniae [382]. Using two-dimensional proteomic analysis and a 

novel line immunoassay, Forsbach-Birk et al. [353] identified proteins such as PmpD 

(polymorphic membrane protein D) (sensitivity =71%; specificity=82%) and OMP2 

(outer membrane protein) (sensitivity=94%; specificity =100%) that had high 

sensitivity and specificity in PCR-confirmed women with upper genital tract 

infection (n=20). Another immunodominant antigen is Pgp3, which is a plasmid 

encoded, membrane associated protein that is found within the chlamydial inclusion 

[391]. Among the antigens (OMP2, LPS, cHSP60) analysed using serum ELISA, 

pgp3 exhibited the highest specificity (89%) for C. trachomatis infection [391]. The 

IgG pgp3 antibody responses were evident in patients seropositive for C. 

trachomatis, but not in patients whose serum contained C. pneumoniae antibodies. 

This suggests that pgp3 antigen is specific for C. trachomatis infection in the human 

genital tract [391]. Furthermore, the immunization of mice with pgp3 inhibited the 

spread of C. trachomatis infection from LGT to UGT in C3H/ HeN mice [392]. 

Although the pgp3 antibody response is reported to be specific to C. trachomatis in 

humans, it is also evident in majority of chlamydial infected animals, hence the 

degree of cross-reactivity between different species need to be evaluated [370]. 

Proteomic techniques have been widely used to identify novel 

immunodominant antigens. Protein microarray technology is valuable in serological 

diagnosis because it is a rapid technique that involves a semi-quantitative antibody 

detection and requires low volume of sera [2]. In addition to protein microarray 

techniques, a general proteomic approach to identifying novel antigens include 

protein solubilisation and digestion, isolation of immunoreactive proteins using 

western blot or two-dimensional blots, identification of proteins by Mass 
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spectrometry analysis followed by protein expression, purification and testing [353, 

393, 394]. Using this technique, several antigens such as MOMP, OMP2, cHSP60, 

PmpD, TARP, TSAP, RpsA and HP 17 have been identified and evaluated for 

diagnostic purposes [353]. Therefore, by identifying novel antigens and developing 

specific-peptide based serological assays, the sensitivity and specificity of the 

chlamydial diagnosis could be enhanced.

The value of serological diagnosis in C. trachomatis-related tubal factor 
infertility 

Infertility is estimated to affect 8%-12% of the population worldwide, and in 

high prevalence regions, the rates of infertility could reach upto 30% [395]. Tubal 

pathology are among the most common causes of infertility and it affects 30%-35% 

of couples [396]. A mathematical model, including a number of assumptions, and 

adjusting for serology test sensitivity and specificity estimated that 45% of tubal 

factor infertility episodes are likely to be attributable to C. trachomatis (CI: 28-62%) 

[103]. Currently, the techniques that are used to diagnose C. trachomatis-related 

tubal infertility are laparoscopy and hysterosalpinography (HSG). Laparoscopy is the 

gold standard for diagnosing tubal infertility, however it is invasive, expensive, can 

lead to major surgical complications [1] and are prone to misdiagnosis [397].

Hysterosalpinography is commonly used in the detecting tubal pathology [364] and 

based on the meta-analysis of seven primary articles (n=4521), its sensitivity and 

specificity in detecting tubal occlusion was 53% and 87% respectively [398]. 

However, several studies [396, 399] have demonstrated that HSG has lower 

diagnostic accuracy than laparoscopy. Additionally, they cannot detect adenxal and 

peritubular adhesion [399] and may not be effective in detecting bilateral tubal 

occlusion.

As desribed previously, CAT has also emerged as one of the techniques that 

can effectively diagnose tubal infertility in women. Thomas et al. [400] demonstrated 

that CAT could potentially replace laparoscopy in routine testing as it is non-

invasive, cost-effective and was able to identify women with tubal damage from 

those without (P<0.001). It was also reported that HSG followed by CAT did not 

provide additional diagnostic value in detecting tubal pathology [401]. Additionally, 

The receiver operating (ROC) curves obtained from meta-analyses of 188 studies 

revealed that the discriminative capacity of CAT using MIF, immunofluorescence 
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and ELISA were comparable to that of HSG [402]. Dabekausen et al. [403] showed 

that in 112 infertile women, CAT had a higher positive likelihood ratio as compared 

to HSG in detecting TFI (9.1 vs 2.6). Johnson et al. [404] used ELISA for CAT and 

validated with MIF and reported that in women with tubal disease (n=36), a negative 

predictive value of 81% was obtained for CAT which was significantly higher than 

when clinical features were analyzed (61%). 

The diagnostic performance of CAT could be augmented by complementing 

the assay with medical history. Coppus et al. [368] demonstrated that using CAT or 

medical history alone in 207 subfertile women, yielded low sensitivities of 37% and 

38% respectively, but on combination, the sensitivity increased to 54%. In another 

study, the seropositivity of C. trachomatis (ELISA) in women with a history of 

infertility (n=50) and women with more than three abortions (bad obstetric history) 

(n=80) was 35% and 62.5% respectively [405]. While healthy fertile women (n=50) 

and women with a history of fewer than two abortions showed low seropositivity of 

4% and 7.3% respectively [405]. In addtion to gynecological history, risk factors 

such as smoking can be identified through medical history. Smoking was identified 

as a risk factor in C. trachomatis-induced tubal infertility (P<0.001) [362]. 

Although, serological diagnosis could identify tubal pathology in women and 

recommend IVF treatment, they may not be able to predict the outcome of the 

treatment. A prospective observational study at a reproductive health centre in New 

York used MIF serological prediction of previous C. trachomatis infection to 

compare with infertility diagnosis and treatment outcomes. A total of 1279 

participants were screened and 70 (5.5%) were positive for C. trachomatis [185]. Of 

those selected for investigation of tubal disease seropositive women were 

significantly more likely to have hysterosalpingography detected tubal blockage 

(37.5% compared to 10.1%; P= 0.001) or laparoscopically diagnosed tubal damage 

(85.7% compared to 48.9%, P= 0.002) [185]. In women with secondary infertility 

(n=40), 63% of women seropositive for C. trachomatis had tubal occlusion [406]. 

Seropositive women also had 57% less pregnancy rates than seronegative women 

prior to IVF but once IVF treatment commenced they were equally likely to conceive 

by IVF as women with other causes of infertility [185]. Concurrent with previous 

findings, Barberyrac et al. [186] showed that the presence of past or current C. 

trachomatis did not affect the IVF outcome of subfertile couples as the number of 
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oocytes retrieved, fertilization rate, the mean embryos transferred and transfer rate 

was not different between C. trachomatis- positive and C. trachomatis- negative 

women. Combined, these studies provide substantial evidence that a past history of 

chlamydial infection is significantly associated with tubal pathology and infertility in 

women, regardless of serological assay performance. However, they do not allow us 

to determine how frequently this tubal infertility is an outcome of primary infection, 

and therefore the attributable risk of Chlamydia for infertility is not known. 

In a 2002 survey, Collins [407] estimated that the cost of a single IVF cycle 

varied between countries, the most expensive being USA with each cycle costing 

upto $9547 and the average cost from 25 countries were estimated at $3518. As the 

costs associated with Assisted reproductive technologies (ART) are high and a pose a 

significant economic burder on the health care systems, it is important to ensure that 

the diagnostic techniques used to evaluate tubal infertility are highly sensitive and do 

not yield false positives. Thus, there is a need to develop a serological diagnostic 

technique that could detect C. trachomatis-related infertility that would result in 

recommendation for progress directly to IVF, without additional diagnosis by 

laparoscopy/dye studies. Additionally a serological assay would be non-invasive, 

cost-effective and that could be widely applied in early infertility investigation in 

IVF clinics.
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3.1 GENERAL STOCKS AND SOLUTIONS 

3.1.1 10X Phosphate buffered saline 

10X Phosphate buffered saline was prepared by a combination of 0.007M of 

disodium hydrogen phosphate (Na2HPO4.H2O), 0.027M sodium hydrogen phosphate 

(NaH2PO4.H2O), 1.37M of sodium chloride (NaCl) and 800mL of distilled water. 

The pH was adjusted to 6.6 and the final volume was topped up to 1L. 

3.1.2 Phosphate Buffered saline (PBS)

Phosphate Buffer Saline (PBS) was prepared from 10X stock by adding 100ml 

of 10X PBS to 900mL of distilled water. The pH was adjusted to 7.3. For cell 

culture, PBS was autoclaved at 121qC for 15 minutes prior to use.

3.1.3 1X PBS-Tween (PBST)

PBST was prepared by adding 0.1% Tween 20 to 1XPBS. The solution was 

stored at room temperature. 

3.1.4 2X PBS-Tween (PBST)

2XPST was prepared by diluting 10XPBS stock in the ratio 1:5 with distilled 

water (200mL of 10 X PBS in 800 mL of distilled water) and 0.1% Tween 20. 

3.1.5 Sucrose Phosphate Glutamate (SPG)

SPG was prepared by adding 10mM sodium phosphate (Na3PO4), 250mM 

sucrose and 5mM L-glutamine. The pH of the solution was maintained at 7.2 by 

addition of 1M sodium hydroxide (NaOH). The solution was filter sterilized and 

stored at 4°C. 

3.1.6 3,3,5,5- Tetramethyl benzadine (TMB)

TMB stocks were prepared by dissolving 0.1g of TMB in 10mL Dimethyl 

sulfoxide (DMSO). The solution was stored at room temperature and it is light 

sensitive.

3.1.7 Red blood cell (RBC) lysis buffer

RBC lysis buffer was prepared by adding 155mM Ammonium chloride 

(NH4Cl), 10mM Sodium bicarbonate (NaHCO3) and 0.1mM of 
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Ethylenediaminetetraacetic acid (EDTA). The solution was prepared by adding 1L of 

milli-Q water and the pH was adjusted to 7.4. The solution was filter sterilized (0.22 

µm filter) and stored at 4qC. 

3.2 HUMAN CELL LINE CULTURE AND MAINTENANCE 

3.2.1 Fetal Calf serum (FCS)

Heat inactivated Fetal calf serum (Lonza, Mt. Waverly, Victoria) was added to 

cell culture media. FCS was heat inactivated by placing the bottle in water bath at 56 

°C for 42 minutes. 

3.2.2 Growth Media

Dulbecco’s Modified Eagle Medium (DMEM) was used as a culture medium 

for McCoy and HeLa cells. The media was supplemented with 10% Heat inactivated 

Fetal calf serum (HI-FCS) (Lonza, Mt Waverly Australia), 25µg mL-1 Gentamycin 

(Invitrogen) and 100µg mL-1streptomycin sulphate (Sigma-Aldrich).

3.2.3 Cell lines

Cell lines used in this project were obtained from American Type Culture 

Collection (ATCC). Hep-2 (ATCC CCL-23), human adherent epithelial cells and 

McCoy B (ATCC CRL-1696), mouse adherent fibroblast cells, THP-1 (ATCC TIB-

202), human peripheral blood monocyte cells were used in this study. For McCoy 

and HeLa cells, DMEM supplemented with FCS, gentamycin and streptomycin were 

used. THP-1 cells were grown in RPMI 1640 medium with 2mM L-glutamine and 

10% FCS. THP-1 cells were made adherent using PMA (phorbol myristate acetate) 

treatment. All three cell lines were cultured in 175cm2 tissue culture flasks (BD 

Bioscience, North Ryde, Australia) with their appropriate growth media at 37°C and 

5% CO2 . They were periodically tested for Mycoplasma spp. contamination using 

PCR in section 3.2.4.

3.2.4 Testing of Mycoplasma spp. in human cell lines

All cell lines were tested for Mycoplasma spp. contamination by PCR 

periodically. The cells were cultured in 175cm2 tissue culture flasks (BD Bioscience, 

North Ryde, Australia) for 24 hours until they were confluent. On achieving the 

confluency, the cells were dislodged by adding 1mL Trypsin (Invitrogen) and 

incubating for 5 minutes at 37qC. The DNA was extracted using the QIAamp DNA 
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mini kit (Qiagen, Victoria, Australia). The primers for PCR was a universal primer 

targeting the conserved 16s rRNA gene of Mycoplasma spp. Cycling conditions was 

initiated at 94qC for 3 minutes, followed by denaturation at 94qC for 60 seconds, 

annealing at 55qC for 30 seconds and extension at 72 qC for 60 seconds repeated for 

a total of 32 cycles. The amplicon size was 425bp and it was verified on an agarose 

gel electrophoresis. 

3.3 CHLAMYDIA STRAIN CULTURE 

C. trachomatis D (ATCC VR-885) and F strain (ATCC VR-346) were cultured 

in McCoy cells. Confluent cells were infected with the strains and incubated at 37qC 

for 44 hours. The infection was enhanced by centrifugation at 500 u g at 25qC for 60 

minutes. The media was changed after four hours of infection and 1mg mL-1

cycloheximide was added along with the fresh media to control further propagation 

of McCoy B cells. Following infection, the strains were harvested and semi-purified 

or ultra-purified as described in section 3.3.2. 

3.3.1 Semi-purification of Chlamydia strains 

The infection was stopped by removing the media and adding cold SPG. The 

cells were dislodged using cell scraper and homogenized using glass beads. The 

samples were centrifuged at 300 u g for 5minutes at 4qC to pellet the cell debris. The 

supernatant was removed and centrifuged at 18,000 u g for 30 minutes at 4qC to 

pellet the semi-purified chlamydial strains. The pellet was resuspended in SPG and 

stored at -80qC. The semi-purified Chlamydia strains may contain host cells, which 

was removed through ultra-purification. 

3.3.2 Ultra-purification of Chlamydia strains 

The semi-purified Chlamydia strains were further purified through Ultra-

purification. 500U/mL of Heparin, 10mM/mL MgCl2, 40U/mL DNase I were added 

to the semi-purified Chlamydia strains and incubated at 37qC for 30 minutes. A 

density gradient was prepared by adding 29% v/v urografin Ultravist® (Bayer, USA) 

in ultracentrifuge tubes Optima® L-90K ultracentrifuge (Beckman Coulter, 

Gladsville, Australia). The strains were centrifuged at 335 u g for 5 minutes and the 

supernatant was layered on top of the 29% v/v Ultravist solution and the tube was 

topped up with 1xPBS. The solution was centrifuged at 70,000 u g (20,000 rpm 
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using SW-40) for 35 minutes at 4qC. The Chlamydia that has been pelleted was re-

suspended in SPG and it is devoid of host debris. 

3.3.3 Quantification of C. trachomatis

To quantify the amount of C. trachomatis yielded during an infection, 96-well 

plates were seeded with Hep-2 cells and incubated for 24 hours at 37qC. After 

obtaining 90% confluency, the cells were infected with several dilutions (ten-fold 

dilutions) of C. trachomatis stored in SPG. The plates were centrifuged at 500 u g for 

30 minutes at 25qC to enhance the infection and the media was replenished after 4 

hours of infection with 1mg mL-1 cycloheximide. After 24 hours of incubation, the 

media was removed and cells were washed with sterile PBS. The cells were fixed 

with 100% methanol for 10 minutes and subsequently washed with PBS. The plates 

were then permeablised with 0.5% Triton-X and blocked overnight with 1% Bovine 

serum albumin (BSA). The cells were incubated at room temperature for 1 hour with 

1:500 of primary antibody anti-HtrA rabbit sera and 125ng/mL of 4’,6-diamidino-2-

phenylindole, dihydrochloride (DAPI) (Invitrogen). The cells were washed with 

PBST (0.2% v/v Tween-20) and treated with 1:600 dilution of secondary antibody 

goat anti-rabbit IgG (H+L)- Alexa Flour 488 (Invitrogen), incubated at room 

temperature for 1 hour. The plates were washed thoroughly with PBS, and stored in 

PBS solution at 4qC in the dark. 

The plates were viewed under a Nikon Eclipse TE2000-U fluorescent inverted 

microscope with Nikon Digital Eclipse DXM 1200C camera (Nikon Pty Ltd, 

Lidcombe, Australia). The chlamydial inclusion- forming units (IFU) were 

determined using a Metamorph Imaging series 7.6 software (Molecular Devices, 

Sunnyvale, USA). The IFU/well was determined by multiplying the average 

IFU/FOV (field of view) x Total FOV/well. The IFU/mL was determined by 

multiplying the IFU/well with the dilution factor of 1000, and dividing it by the 

volume of strain aliquoted in each well.

3.4 SEROLOGICAL DIAGNOSIS OF C.TRACHOMATIS AND 
C.PNEUMONIAE INFECTIONS USING COMMERCIAL KITS

Serological assays are a useful technique in diagnosing ectopic pregnancies, 

pelvic inflammatory diseases and recurrent miscarriages [2]. The presence of C. 

trachomatis specific antibodies in the participant sera was tested using commercial 
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serological assays such as MEDAC C. trachomatis IgG p-ELISA (Medac GmbH, 

Wedel, Germany), MEDAC cHSP60 IgG p-ELISA (Medac GmbH, Wedel, 

Germany), ANILabsystems C. trachomatis IgG ELISA and 

Microimmunofluorescence (MIF) IgG assay. The presence of IgG antibodies against 

C. trachomatis indicates previous exposure to C. trachomatis. Since MIF is 

considered a gold standard among chlamydial serological assays, the assay was 

included in cohort definition and participants positive for C. trachomatis MIF assay 

were considered positive for C. trachomatis infections. The diagnostic performance 

of the in-house peptide ELISA on the cohorts was compared to existing commercial 

chlamydial serological assays. 

3.4.1 MEDAC serological assays

The MEDAC serological assays used in this study were C. trachomatis IgG p-

ELISA and MEDAC cHSP60 IgG p-ELISA. The MEDAC C. trachomatis IgG p-

ELISA is based on the peptides derived from immunodominant antigen MOMP 

(major outer membrane protein). MEDAC cHSP60 IgG p-ELISA is based on 

cHSP60, an immunodominant antigen associated with chlamydial infertility [270, 

380].

According to the recommended guidelines by The Dutch Society for Obstetrics 

and Gynaecology, the absorbance values of MEDAC C. trachomatis IgG p-ELISA 

greater than 1.1 could be used to determine the potential risk of infertility and could 

be used as a first line of investigation for subfertile couples [409]. Additionally, 

guidelines by MEDAC manufacturer’s highlight that positive outcomes in both 

MEDAC assays in participant sera indicate a high risk of C. trachomatis induced 

infertility (Referred to as MEDAC infertile in this study). Therefore, the sera from all 

cohorts were tested with Chlamydia trachomatis-IgG ELISA-plus MEDAC 

(specificity=87%; sensitivity=55%; determined against women with infertility 

(n=315)) [410] and cHSP60-IgG ELISA MEDAC (cHSP60 protein) (specificity = 

93%; sensitivity=69% determined against women with tubal factor infertility (n=70))

[126].

The assay was validated by the mean absorbance values of negative (<0.1) and 

positive control (<0.8). The cut off was determined by adding the mean absorbance 

value of negative control to a previously established value of 0.34 and 0.35 for 

MEDAC IgG C. trachomatis pELISA (MEDAC MOMP) and cHSP60 IgG ELISA 



Chapter 3: Materials and Methods 69

(MEDAC cHSP60) respectively. The absorbance values of participant sera that were 

above the cut-off value was considered positive for C. trachomatis infection, while 

those whose absorbance values were below the cut-off value were considered 

negative for C. trachomatis infections. The absorbance values of those participants 

that were within 10% less than and more than the cut-off value were considered to be 

in the grey zone. The samples that were in the grey zone were considered as 

equivocal (neither positive nor negative) for the test and the testing was repeated on 

the sera. 

C. pneumoniae in the serum was tested using Chlamydia pneumoniae IgG 

ELISA plus MEDAC. The assay uses a purified C. pneumoniae antigen. The assay 

was validated by the absorbance value of a negative (<0.1) control and the lot–

specific absorbance value of positive control. The mean OD value of calibrator was 

also lot-specific and the absorbance was corrected by dividing the nominal 

absorbance value of the calibrator (lot-specific) by the measured absorbance value of 

the calibrator. The concentration was determined using the formula: concentration 

[AU/mL]= b/(a/OD corrected-1); a and b were arbitrary values specific to the lot that 

was used for the assay. The cut-off value was set at 25 AU/mL and the absorbance 

values of sera that were above the cut off value was considered positive for C. 

pneumoniae infection and those that were below the cut-off value were considered 

negative for the infection. 

3.4.2 ANILabsystems C. trachomatis serology kits

The sera was also tested with another commercial serological assay, 

ANILabsystems C. trachomatis IgG ELISA, which is based on synthetic peptides 

from C. trachomatis -specific variable domain of MOMP (major outer membrane 

protein). The specificity and sensitivity of the assay was estimated to be 84% and 

86% respectively, by screening the sera of 330 women with infertility and PCR 

diagnosed C. trachomatis infection [365]. The assay was considered valid if the 

mean absorbance value of negative control was < 0.2 and the mean absorbance of the 

positive control was between 0.7 and 2, and the calibrator values lay between 0.4 and 

1.2. The participants were considered negative for C. trachomatis infection if the 

Signal (S)/ Cut-off (CO) was <1 and positive for the infection if the ratio was above 

1.4.



Chapter 3: Materials and Methods 70

3.4.3 C.trachomatis IgG Microimmunofluorescence assay (MIF)

Microimmunofluorescence assay was used to characterize the participants as 

serologically negative or positive for C. trachomatis IgG antibodies. The Focus 

Diagnostics Chlamydia MIF IgG assay (mdi Europa GmnH, Langenhagener, 

Germany) comprised of a slide with twelve wells. Each well constitutes elementary 

bodies of a single strain of C. pneumoniae, 2 strains of C. psittaci and 8 serotypes 

(D-K) of C. trachomatis. Chlamydial elementary bodies devoid of interfering LPS 

were diluted in 3% yolk sac served as a control for background fluorescence. The 

detectable control served as the positive control while non-detectable control was the 

negative control. The sera were loaded onto the slide and incubated at 37qC for 30 

minutes. The plates were then rinsed with PBS and treated with IgG conjugate for 30 

minutes at 37qC. The slides were rinsed again with PBS and mounting medium was 

added onto the slide and covered with 24x50mm coverslip. The slides were 

subsequently viewed under a fluorescence microscope at a final magnification of 

400X.

3.5 IN-HOUSE PEPTIDE ELISA

The in-house peptide ELISA developed through this study was based on 

peptides selected through bioinformatics analysis from a series of 55 unique peptides 

that showed serological response to C. trachomatis. Stansfield et al. [411] developed 

and designed the peptides that was capable of distinguishing women with C. 

trachomatis-related infertility from those without. The methodology is outlined as 

follows. 

3.5.1 Peptide identification and design for in-house ELISA

The peptides were derived from immunodominant proteins such as HtrA (High 

temperature requirement protein), cHSP60 (chlamydial heat shock protein 60) and 

CT443 (outer membrane chlamydial protein). The B cell epitopes, antigenicity and 

hydrophilic domains were identified using software such as BepiPred algorithm 

software, antigenicity prediction software respectively [412]. The specificity of the 

linear B cell epitopes were tested using BLAST and the peptides were selected if 

their E values were <0.0004 for C. trachomatis and >0.1 for C. pneumoniae. The 

epitopes were used to design a series of peptides. The peptide epitopes were 

synthesized commercially using solid phase synthesis onto a Biotin-SGSG motif 
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(Mimotopes, Melbourne, Australia) and solubilized in 50% isopropanol overnight to 

make up a concentration of 1mg ml-1. 

The serological responses of the peptides to C. trachomatis-related infertility 

were tested using an ELISA format and screened against 39 participant sera 

belonging to five cohorts. The five cohorts included sequelae (tubal factor infertility, 

ectopic pregnancy, PID), acute, multiple, negative (infertile but C. pneumoniae

seropositive) and negative (seronegative for C. trachomatis and C. pneumoniae, 

infertile but no tubal damage). The peptides that obtained a higher absorbance in the 

sequelae cohort as compared to negative and acute cohort (>0.015), and obtained an 

absorbance <0.015 between the two negative cohorts were chosen to design the in-

house ELISA. Based on these criteria, peptides HSP60-E2 [SGSGVFSSPPFSNKPP-

NH2](derived from chlamydial heat shock protein 60), 443-N2 

[SGSGPVSFSGPTKGTIT-NH2] �(derived from outer membrane protein Ct443) 

and 443-A3 [SGSG VDRKEVAPVHES –NH2](derived from outer membrane 

protein Ct443) were selected for in-house peptide ELISA. One of the higher 

performing peptide, peptide 11 (ADTRGILVVAVE) (derived from HtrA) was tested 

on 129 women with primary and secondary infertility, and a specificity of 95% and 

sensitivity of 46% were obtained on this cohort. In order to improve the sensitivity of 

the assay, peptide based ELISA was designed with peptide 11 in combination with 

peptides from other immunogenic peptide antigens such as Hsp60-E2, 443-N2 and 

443-a3. 

3.5.2 ELISA based on peptide 11 in combination with other immunogenic 
peptides

The biotinylated peptides were coated on high binding capacity streptavidin 

plates (Thermofisher Scientific, Victoria, Australia). Peptide 11, Hsp60-E2, 443-N2 

and 443-A3 at concentration of 1mgmL-1 (0.25µg well-1) was diluted in 1XPBST 

(1:100) and coated separately on each well. The peptides were incubated for 1 hour 

at room temperature. The plates were then blocked overnight with SuperBlock PBS 

(Thermofisher Scientific, Victoria, Australia) at 4qC. The sera was diluted in 

superblock blocking buffer PBS with 0.1% Tween20 at 1:200 dilutions, and 

incubated for 1 hour at 37°C. The plates were rinsed thoroughly with 2X PBST. The 

secondary antibody, goat anti-human IgG HRP was then coated at a dilution of 

1/15,000 in superblock blocking buffer PBS with 0.1% Tween 20. The plate was 
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developed by addition of 100µg/mL of 3,3,5,5-Tetramethyl benzadine (TMB) in 

DMSO dissolved in phosphate citrate buffer with sodium perborate and incubated at 

10 minutes at room temperature. The reaction was stopped with 1M H2SO4 and the 

plates were read on Bio-Rad xMark microplate spectrophotometer at 450 nm. The 

optimization of the assay for superior sensitivity and specificity included assessment 

of the influence of several parameters such as peptide concentrations and 

combinations, dilution of secondary antibodies and peptide solubility. 

3.6 PERIPHERAL BLOOD MONONUCLEAR CELLS ISOLATION
(PBMC)

The PBMC were processed from the whole blood from patients as soon they 

were obtained. The blood was centrifuged at 78 u g for 10 minutes to remove the 

plasma layer. The removal of plasma layer was followed by dilution of the blood 

with 2mL DMEM media. The blood was then layered onto a tube containing 2mL 

Ficoll-PlaqueTM Premium reagent (GE Healthcare). The solution was centrifuged at 

754 u g for 25 minutes at 4qC (deceleration set to zero). The centrifugation separated 

the solution into three layers, of which the middle layer that comprised of the 

lymphocytes was transferred to a tube containing the media. To the solution, 5mL of 

RBC lysis buffer was added to remove the red blood cells. The solution was 

centrifuged at 754 u g for 10 minutes at 4qC, and the pellet was resuspended in 

DMEM. The pellet was washed until it appears white and resuspended in 1mL of 

media. The cells were counted using a hemocytometer and the desired number of

cells were added to the wells and stimulated with the antigen. The cells were 

incubated for 15 hours at 37qC. 

3.7 STATISTICAL ANALYSIS

All statistics (relative risk, sensitivity, specificity, chi squared statistics and 

forest plots) were calculated in the R statistical environment (3.0.1) using the ‘EpiR’

(0.9-48) and ‘metafor’ package (1.9-1) for conducting meta-analyses in R 

(Viechtbauer 2010). Mixed-effects models were used to combine cohort data using a 

fixed-effect model with a restricted maximum likelihood estimate of the log odds 

ratio [413]. All calculations were performed in the R statistical environment (v 3.0.1) 

using the Linear and Nonlinear Mixed Effects Models package ‘nlme’ (v 3.1-111) 

[414] .
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4.1 INTRODUCTION

Sexually transmitted C. trachomatis infections in women can have adverse 

effects on their reproductive health [195]. The infection can manifest as 

mucopurulent cervicitis and urethritis in the lower genital tract. However, it can 

progress to pelvic inflammatory disease (PID), ectopic pregnancy (EP) and tubal 

factor infertility (TFI) in the upper reproductive tract [102]. The risk of developing 

PID after a lower genital tract infection is reported to be 9.5% in untreated women 

(n=1275) [415], and in about 20% of cases, PID leads to tubal pathology [416]. The 

prevalence of tubal factor infertility in sub-fertile couples is reported to be between

10%-30% [417], and analysis of published literature indicate that 45% of TFI is 

caused by C. trachomatis infection [103]. Heinonen et al. [418] reported that C. 

trachomatis was the primary pathogenic agent in 44% of women with acute PID 

(n=72) (laparoscopy confirmed). The study further reported that C. trachomatis was 

more predominant in women with severe PID (n=35) as compared to other 

pathogenic agents such as Neisseria gonorrhea. C. trachomatis was also more 

predominant in women with endometritis (n=26) (p<0.001) than in women without 

endometritis or salpingitis (n=83) [419]. 

The techniques that are used to diagnose tubal fertility are typically 

hysterosalpinography and laparoscopy. Hysterosalpinography (HSG) detects tubal 

patency using oil or water based contrast medium in the uterine cavity and fallopian 

tubes [398]. In a study by Lavy et al. [420], among 23 women who were HSG 

positive for bilateral tubal occlusion, 30% were found to have patent tubes by 

laparoscopy. While in another study, omission of tubal patency verification by 

laparoscopy in 41% (n=126) of participants who were diagnosed for bilateral 

occlusion by HSG, would have resulted in 60% of the participants being 

misdiagnosed [421]. Thus, laparoscopy is recommended for diagnosis of tubal 

pathologies even after HSG treatment. 

Although laparoscopy is considered a gold standard for diagnosing tubal 

pathologies, the invasive nature of the technique increases the risk of complications

[422]. In addition, the high costs associated with laparoscopy (upto $976) limits its 

availability to women in developing nations and low resource settings [423].
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Chlamydia antibody testing (CAT) has been widely employed during the 

infertility investigation to identify women who may have tubal damage [362, 402]. 

Jones et al. [424] established the earliest association of C. trachomatis in TFI women, 

by reporting that antichlamydial antibodies were detected in 35% of infertile women 

(n=172) and 75% of women with tubal infertility. These findings were supported by 

Sellors et al. [425] who reported significantly higher levels of anti-chlamydial IgG 

and IgM (p<0.0001) antibodies in participants with TFI (n=52; 79.1%) as compared 

to participants who are sterile due to tubal ligation (n=114) and have had a 

hysterectomy as a result of PID (n=99). Mol et al [402] showed that although the 

ability of CAT to diagnose tubal pathology did not vary significantly between 

laparoscopically verified tubal pathology and verification of tubal pathology using a 

combination of HSG and laparoscopy (p=0.8). Thus, the diagnostic performance of 

CAT is comparable to both laparoscopy and HSG.

The two main CAT methods are MIF and ELISA. The IgG titers in MIF is 

instrumental in determining the risk of developing tubal damage, as low titers (1:32) 

indicated 5% incidence of developing tubal damage, while titers greater than 1:32 

were associated with tubal pathology (n=57) [400]. In Brazil, MIF assay on a 

relatively small cohort of infertile women (n=33), revealed that 42% of the 

participants had a MIF IgG titer greater than 1:64 and the IgG titer was greater than 

1:128 in women with tubal occlusion (42.4%) and ectopic pregnancy (40.9%) [360]. 

Gijsen et al. [372] compared the MIF test results with ELISA (ANILabsystems IgG 

ELISA) in women with TFI (n=39) and, and reported a decline in MIF IgG titers

from an initial titer of >1:64 after 4-7 years in 18% of the participants, however these 

changes were not reflected in the ELISA and the signal remained the same. Thus, 

ELISAs are capable of detecting past C. trachomatis infection long after the 

infection. Although, MIF is considered the “gold standard”, it is labor intensive, time 

consuming and shows high cross-reactivity between different chlamydial species

Meta analysis of 14 primary studies containing data of 3453 women by Broeze 

et al. [374] showed that the sensitivity and specificity for ELISA, MIF and IF assays 

for any tubal pathology ranged between 23%-91% and 41%-100% respectively, 

while for bilateral tubal pathology the sensitivities and specificities ranged between 

31%-70% and 52%-86% respectively. Thus, this suggests that in order for serological 
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assays to be used for early infertility investigations, the sensitivity and specificity for 

diagnosing tubal pathology need to be improved. 

Although most commercial serological assays are often based on antigens such 

as chlamydial elementary bodies, variable regions of outer membrane protein 

(MOMP) and chlamydial LPS, the sensitivity and specificity of the assays needs to be 

improved. Hence, several novel antigens that are immunodominant in women with 

TFI have been identified that may have diagnostic value. Chlamydial heat shock 

protein has been widely reported to be immunodominant in women with chlamydial 

infertility [126, 179, 380, 387]. Serological analysis of infertile women before their 

initial IVF cycle revealed that antibodies to cHSP10 was more predominant in 

women with hydrosalpinx (46.8%) than in women with tubal occlusion (p=0.0009; 

15.5%)[179]. 

Shaw et al. [426] identified 21 proteins through 2-D electrophoresis and 

MS/MS, and with immunoblotting with the sera from participants with PID, Omp-2, 

HtrA, HSP70 was identified [427]. Forsbach-Birk et al. [428] used two- dimensional 

immunoblot analysis of chlamydial proteins and electrospray ionization MS/MS 

identified MOMP, OMP2 and CPAF to have a specificity of 100% and sensitivities 

of 87%, 90% and 94% respectively in diagnosing women with upper genital tract 

infections (n=33). 

Development of a peptide ELISA involves the following steps; identification of 

immunodominant antigen through proteomic [371, 389, 390] or in silico methods 

[429]; evaluation of immunogenicity of the antigen through western blot [390, 429, 

430] analysis against participant sera from well- defined cohorts; determine the 

performance of the assay by estimating it’s sensitivity and specificity; comparison of 

diagnostic performance of the assay with existing commercial assays [389, 390, 430]; 

and validation of the assay by estimating its reproducibility and testing against a 

separate validation participant set [390, 429, 430]. The diagnostic performance is 

determined by constructing a receiver operating characteristic (ROC) curve which 

establishes a cut-off value based on sensitivity or specificity, and the accuracy is 

determined by the area under the curve (AUC) that usually ranges from 0.5 (least 

accurate) to 1 (perfect test) [431]. Sensitivity is defined as the ability of test to 

correctly classify an individual as diseased (function of true positive and false 
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negative), while specificity is the ability of a test to correctly classify an individual as 

non-diseased (function of true negative and false positive) [432]. 

In this study, an in silico approach was applied to identify and design novel 

peptide antigens that are specific to women with C. trachomatis-related infertility, 

and develop a peptide ELISA that could potentially replace invasive techniques such 

as laparoscopy for the infertility investigation. This is a follow up to the study 

conducted by Stansfield et al. [411] wherein, using an in silico approach, peptide 11 

was identified and its sensitivity and specificity in diagnosing C. trachomatis

associated tubal factor infertility was estimated as 47% and 95% respectively. 

Through this study, the diagnostic performance of peptide 11 ELISA has been 

improved by combination of other C. trachomatis-specific immunodominant peptide 

antigens.

4.2 METHODS AND MATERIALS

4.2.1 Identification of immunodominant peptides specific to C. trachomatis –
related infertility

The ‘initial proof of concept’ of peptide ELISA has been detailed in Materials 

and Methods 3.5. The peptides identified by Stansfield et al. [411] through in silico

analysis were used in this study. The peptides were derived from proteins the targets 

HtrA [433], cHSP60 [387] and CT443 (Omcb) [385, 387] which have been shown to 

be immunodominant in women with tubal factor infertility. The peptides were 

identified from a series of 55 unique peptides that were selected through 

bioinformatic analyses. The B cell epitopes, antigenicity and hydrophilic domains 

were identified using software such as BepiPred algorithm software, antigenicity 

prediction software respectively [412].The peptides selected for diagnostic purposes 

were chosen based on the criteria as outlined in section 3.5.1. The peptides chosen 

were Peptide 11 (ADTRGILVVAVE), Hsp60-E2 (VFSSPPFSNKPP) and 443-N2 

(VSFSGPTKGTIT). The peptides were screened for homology between other 

chlamydial species and the BLAST E values for C. trachomatis were peptide 11, 

HSP60-E2 and 443-N2 were 0.001, 0.0003 and 0.0005 respectively. The BLAST E 

values for C. pneumoniae were 0.11, 0.86 and 12 respectively. The peptides were 

considered specific for C. trachomatis if the E values < 0.004 for C. trachomatis and 

>0.1 for C. pneumoniae. Since all the peptides met these conditions, they were 

selected based on their specificity and antigenicity. The peptide epitopes were 
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synthesized commercially using solid phase synthesis onto a Biotin-SGSG motif 

(Mimotopes, Melbourne, Australia). These peptides were used in combination in 

single-well and in multi-well ELISA formats to optimize the assay for the best 

diagnostic performance in identifying participants with tubal factor infertility. 

4.2.2 Development of In-house peptide ELISA 

The peptide ELISA involves coating of high binding streptavidin plates with 

biotinylated peptides. These peptides were coated individually in separate wells 

(multi-well) and in combination in one well (single well). The specificity and 

sensitivity of both multi-well and single well formats were assessed. The secondary 

antibody used in this study was goat anti-human IgG HRP (1:15,000) (Invitrogen). 

The combination and the multi-well format that had the diagnostic performance was 

designated the QUT Chlamydia infertility test. The peptide ELISA was performed as 

described in 3.5.2. 

4.2.3 Commercial serological assays used to detect acute C. trachomatis
infections and chlamydial infertility 

The commercial assays used in the study have been detailed in 3.4.4. The 

commercial assays include Focus Diagnostics Microimmunofluorescence (MIF) IgG 

assay (described in 3.4.3) (mdi Europa GmnH, Germany), which is considered to be 

gold standard among serological assays in detecting chlamydial infertility. Among 

ELISAs, MEDAC IgG ELISA (MEDAC MOMP) (Medac GmbH, Wedel, Germany) 

and cHSP60 IgG ELISA MEDAC (MEDAC cHSP60) (Medac GmbH, Wedel, 

Germany) was used. A positive result in both MEDAC MOMP and MEDAC 

CHSP60 would indicate that the participants are at a risk of developing TFI and was 

referred to as MEDAC Infertile assay as recommended by manufacturer. 

ANILabsystems C. trachomatis IgG ELISA was also used in the study to determine 

the presence of past C. trachomatis infection. The participants were also tested for C. 

pneumoniae with Chlamydia pneumoniae IgG ELISA plus MEDAC) (MEDAC

GmbH, Wedel, Germany). 

4.2.4 Characterization of participants based on gynecological and C. trachomatis
infection history

The participant recruitment process and the Human research ethics committee 

approval numbers are detailed below. The participants recruited for this study were 

characterized into cohorts based on their gynecological history. Figure 4.1 shows 
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experimental design for the development and validation of QUT Chlamydia infertility 

test.

Determination of sample size of women recruited for development of multi-
antigen peptide ELISA 

The required sample size was estimated based on the method outlined by 

Buderer et al. [434]. Based on a conservative estimate of 7% prevalence chlamydial 

infertility in Australian IVF clinics, the sample size required to yield 98% specificity 

(with 1% precision) would be 120 participants. In order to obtain a 70% sensitivity 

(95% C.I of 58-82%) with 0.12 precision, a sample size of 809 participants would be 

needed. However, despite having several collaborations with hospitals and fertility 

clinics, only 354 participants were included in the study.

Recruitment of women with Tubal Factor Infertility and healthy controls 

Human Research Ethics Committee approval was granted for these, including 

Sexual Health Clinics (Prince Charles Human Research Ethics Committee approval 

number EC2809), Ipswich and West Moreton Health Services District (Human 

Research Ethics Committee approval number (10-09)), Gold Coast Hospital District 

(Human Research Ethics Committee approval number (200893)), Cairns Sexual 

Health Clinic (HREC/09/QCH/4-554), and Ethical approval for the study was 

obtained via Queensland University of Technology Human Research Ethics 

(1300000003 and 080000268). Participants were also recruited from several 

Australian fertility clinics including IVF clinics based in Brisbane (UC Health 

Human Research Ethics Committee approval number 1314) and Melbourne (Human 

Research Ethics Committee approval number 12099). 

The target cohort included women with tubal factory infertility and a history of 

C. trachomatis infections. Women attending IVF clinics who were trying for more 

than a year to conceive were invited to participate in the study. Participants were 

included in the study only after providing written informed and complete a 

questionnaire regarding their history, including factors such as age of the patient, 

number of sexual partners, previous C. trachomatis infections, previous sexually 

transmitted infections, smoking habits and previous record of infertility such as 

ectopic pregnancy and tubal factor infertility.
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Cohort Characterization

The participants were characterized into cohorts based on their disease state-

infertile women recruited from IVF clinics with a history C. trachomatis infections; 

infertile women recruited from IVF clinics with no history of C. trachomatis

infections; women with acute C. trachomatis infections (women recruited from 

sexual health clinics with current C. trachomatis infections as diagnosed by PCR); 

and fertile healthy controls (women recruited from obstetrics clinics with current 

spontaneous pregnancies). 

Infertile cohort: women with infertility (n=97)
Infertility was defined as the inability to conceive after trying for a period of 1 

year or greater. Participants in this cohort were recruited from an IVF clinic based in 

Melbourne (n=97). They were given a unique ID and were informed written consent

was an inclusion criteria. These participants provided a blood specimen for the study. 

The participants were also requested to complete a questionnaire with information 

regarding their fertility and gynecological history. Their questionnaire included 

questions regarding history of gynecological surgeries such as endometrial polyp, 

fibroids, endometriosis, ectopic pregnancy, miscarriages, polycystic ovaries and 

patent tubes. The descriptive analyses of demographic characteristics of participants 

are enlisted in Appendix 8.1.

The participants were divided into TFI cohort and non-TFI cohort based on 

their tubal patency. The tubal patency was determined using techniques such as 

laparoscopy, hysterosalpinography and hysteroscopy. Participants with unilateral or 

bilateral tubal blockage were characterized as TFI positive (n=45). Polycystic ovary 

syndrome and fibroids were common among patients in TFI cohort. The TFI cohort

comprised of women with partial tubal patency (n=3), bilateral occlusion (n=21) and 

unilateral occlusion (n=21). The non-TFI cohort (n=52) comprised of women with 

infertility (infertility associated with other factors and not tubal damage) caused due 

to endometriosis, idiopathic PCO (polycystic ovary syndrome), fibroids or due to 

unknown reasons. 

TFI cohort was further characterized as CT TFI cohort and negatives cohort

based on the C. trachomatis infection status. The positive cohort (n=11) was defined 

by the presence of C. trachomatis specific IgG antibodies in the sera from TFI 

participants as determined by micro immunofluorescence (Focus Diagnostic, USA). 
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The negative cohort (n=251) comprised of TFI participants who were seronegative in 

MIF, and non-TFI infertile participants who were negative all the serological tests. 

Acute infection cohort: women with acute C.trachomatis infections (n=112)
The acute infections cohort comprised of participants with clinically and PCR 

diagnosed acute C. trachomatis infections, with no or minor symptoms reported. A 

total of 112 women between the ages of 22- 53 years with acute C. trachomatis

infections were included in this study. 112 participant sera and their corresponding 

medical history report enlisting their fertility and disease states were collected from 

sexual health clinics and hospitals. 

Healthy cohort: fertile women infections (n=53)
The healthy control cohort comprised of fertile women between the ages of 28-

42 years attending a tertiary care hospital (Brisbane) who have current spontaneous 

pregnancies and were able to get pregnant within less than a year of trying (n=53). 

The participants were requested to provide a written consent to participate in the 

study and had to complete a questionnaire with questions pertaining to their 

gynecological history and history of sexually transmitted infections.

Collection and storage of sera from patients 

Sera were collected from patients from IVF clinics, sexual health clinics and 

hospitals around Queensland. Each sera and the corresponding patient history sheet 

had a unique numbered-identification code for the study. 200PL of the serum was 

aliquoted into cryovials labeled with the unique code and stored in -80q C freezers. 

4.2.5 Characterization of cohorts for small –scale evaluation of peptide ELISA 

A ‘triage’ process used a small sample size of participants to optimize the 

ELISA conditions worthy of larger scale testing. For this small- scale evaluation of 

peptide assay, the CT infertile cohort included participants recruited from IVF clinics 

who were seropositive in MEDAC MOMP and MEDAC cHSP60 (n=9). The acute 

infections cohort included participants recruited from sexual health clinics who were 

diagnosed with active C. trachomatis infection by PCR, and were positive in 

MEDAC MOMP (n=9). The Negative cohort (n=9) included participants who were 

fertile (able to get pregnant within a year of trying) (n=7); infertile participants who 

were seronegative for C. trachomatis in MEDAC MOMP or MEDAC cHSP60 (n=2). 
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4.2.6 Characterization of cohorts for large-scale evaluation of peptide ELISA 
(development cohort)

The performance of QUT Chlamydia infertility test was evaluated on 262

participants (development cohort) and an absorbance threshold was established and 

the specificity and sensitivity was evaluated in this cohort (Figure 4.1). Infertile 

participants were women who required assisted reproductive technologies (ART) 

were recruited from IVF clinic based in Melbourne (n=97) (cohort characterization 

outlined in section 4.2.4); participants with PCR diagnosed acute C. trachomatis

infections were recruited from sexual health clinics and GP clinics (n=112); and 

participants with current spontaneous pregnancies were recruited from a tertiary 

hospital antenatal clinic (n=53). The acute infections cohort (described in detail in 

4.2.4) included participants who were diagnosed with acute C. trachomatis infections 

by PCR (n=112) and the fertile controls (described in detail in 4.2.4) included 

participants who were pregnant within a year of trying (n=53). Based on the C. 

trachomatis infection status as determined by microimmunofluorescence (MIF) 

assay, the participants were characterized as positive for C. trachomatis-related tubal 

infertility (CT TFI cohort) (n=11). The sera were also tested with commercial assays 

outlined in 4.2.3. An absorbance threshold was determined on this evaluation group 

when the assay was controlled for high specificity for both single-well and multi-well 

peptide ELISA formats. The peptide format that was most specific and sensitive to C. 

trachomatis-related TFI in this cohort was designated the QUT Chlamydia infertility 

assay and it was subsequently validated on the separate validation group.

4.2.7 Characterization of cohort for validation of the peptide ELISA (validation 
cohort)

The validation cohort included participants retrospectively and prospectively 

recruited from an IVF clinic based in Brisbane (Australia) (n=73) (Figure 4.1). The 

women who have completed their IVF cycle (retrospective) and those who are yet to 

complete their treatment (prospective) were included in this cohort. The participants 

were infertile. Their gynecological history consisted of information pertaining to 

tubal patency, parity and previous gynecological surgeries and diseases (PID, 

endometriosis). There were 19 participants with tubal pathology, 23 participants with 

unknown etiology and 32 participants with PCOS, salpingitis, PID and endometritis

(Table 8.3 (Appendix)). The QUT Chlamydia infertility assay was validated on this 

cohort using the cut-off obtained in the development cohort. The specificity, 
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sensitivity, positive predictive value and the negative predictive of the assay were 

determined on this cohort. 

4.2.8 Identification and evaluation of diagnostic performance of peptide variants 
of peptide 11

Peptide 11 was less soluble in 50% isopropanol solvent compared to HSP60-E2 

8% hydrophilic, 58% hydrophobic, basic) and 443-N2 (8% hydrophilic, 38% 

hydrophobic, basic). Peptide 11 has a net acidic charge and contains 25% hydrophilic 

residue and 58% hydrophobic residue. Since it is an acidic peptide, it should be 

readily soluble in aqueous solutions; however, high proportion of hydrophobic 

residues hinders its solubility. Although, peptide 11 was soluble in 0.001M NaOH, 

several smaller variants of peptide 11 were manufactured with varied antigenic 

epitopes. The peptide variants were DTRGI (20% hydrophobic, TRGILVV (neutral, 

57.14% hydrophobic), ILVVAVEAGSPA (66.7% hydrophobic, neutral) and 

ILLVVAVEAGSP (neutral, 63.64% hydrophobic). Since most of these peptides are 

neutral, they were soluble in 50% isopropanol solution. The ability of assays based 

on peptide 11 variants and their combination with HSP60-E2 and 443-N2 to identify 

C. trachomatis-related TFI in women was evaluated on the development cohort. 

4.2.9 Antibody production in rabbits immunized with peptides from QUT 
Chlamydia infertility assay

Sera from rabbits immunized with In-house peptides (peptide 11, HSP60-E2 

and 443-N2) developed for QUT Chlamydia infertility assay were used as controls 

for inter and intra assay variability studies. Prior to immunization, sera was extracted 

from the animals which served as a negative control for inter and intra assay 

variability assays. Each animal was dosed four times with 0.2-0.5mg of the peptide 

for 9 weeks. The peptides were conjugated with keyhole limpet hemocyanin (KLH) 

for HSP60-E2 and 443-N2, while peptide 11 was conjugated with cysteine at the C 

terminal. After the final dosage, the sera was collected and showed a strong 

serological response to C. trachomatis and hence they were used as positive controls 

for inter and intra assay variability tests.

The animal work and immunizations were undertaken at South Australian 

Health and Medical Research Institute (SAHMRI) (Adelaide).
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4.2.10 Inter and intra assay variability of QUT Chlamydia infertility assay 

The diagnostic accuracy and reproducibility of the QUT Chlamydia infertility 

test was further evaluated by determining inter and intra-assay variability. The intra 

assay variability was determined by testing the six samples from each cohort (CT TFI 

cohort, non-TFI cohort, acute infection and healthy cohort) six times on a single 

plate. Inter assay variability was measured by testing the same six samples on 6 

different plates at different times. The mean, the standard deviation and coefficient of 

variation (%CV= 100 x standard deviation/mean) was calculated to evaluate 

variability. 

In addition to participant sera, rabbit sera immunized with peptide 11, HSP60-

E2 and 443-N2 were also tested for intra and inter assay variability. The pre-bleed 

that was extracted from the rabbit before exposure to the antigens served as a 

negative control. 

4.2.11 Determination of diagnostic performance of QUT Chlamydia infertility 
test and statistical analysis

The performance of the QUT Chlamydia infertility test was evaluated on the 

development cohort. The absorbance threshold was determined from Area Under the 

Curve analysis (AUC). The sensitivity and specificity of the assay as a function of the 

cut- off value was determined using the receiver operating characteristic curve 

(ROC). All statistics (relative risk, sensitivity, specificity, chi squared statistics and 

correlation) were calculated in the R statistical environment (3.0.1) using the ‘EpiR’

(0.9-48) and ‘metafor’ package (1.9-1) for conducting meta-analyses in R [413]. In 

addition to sensitivity and specificity, positive predictive value (PPV) and negative 

predictive value (NPV) were determined. Positive predictive value is the probability 

that those patients positive for the infection and truly infected, and negative 

predictive value is the probability that those patients negative for the infection are 

truly negative [435]. Diagnostic odds ratio unlike the conventional odds ratio 

measures the test performance in diagnosing the disease by combing the strengths of 

sensitivity and specificity as prevalence independent indicators [436]. Mixed-effects 

models were used to combine cohort data using a fixed-effect model with a restricted 

maximum likelihood estimate of the log odds ratio. Inter and intra assay variation 

was estimated using linear-mixed effects models which were calculated for the 

different assays taking into account fixed differences in sample absorbance with 
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plate-to-plate differences as a separate stochastic variable. The resulting inter and 

intra assay standard errors were calculated as restricted maximum likelihood 

estimates. All calculations were performed in the R statistical environment (v 3.0.1) 

using the Linear and Nonlinear Mixed Effects Models package ‘nlme’ (v 3.1-111).
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Figure 4.1: Flow chart illustrating the experimental design for the development 
of QUT Chlamydia infertility test for diagnosing chlamydial infertility in women 

in the development cohort (n=262) and the validation cohort (n=73). 
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4.3 RESULTS 

4.3.1 Small-scale analysis reveal multi-well peptide ELISA format had the best 
potential for diagnostic performance 

An initial triage using a small sample size was conducted to compare multi-

well and combined well formats for the different peptides to determine which formats 

should be more rigorously tested and developed using larger sample size. The 

diagnostic performance of peptide 11, HSP60-E2, 443-N2 and 443-A3 were 

evaluated against women with C. trachomatis-related infertility (n=9) and also 

against the Negative cohort (participants with acute C. trachomatis infection (n=9) 

and healthy fertile participants (n=9). Table 4.1 lists the sensitivities and specificities 

of individual peptides, double combination of peptides in a single well and multi-

well format, triple combinations of peptides in a single well and multi-well format. 

The absorbance threshold for maximum sensitivity and specificity for each 

individual peptide assay and its combination was determined by receiver operator 

characteristic analysis (ROC). Although individual peptide assays exhibited high 

specificity ranging from 83% to 89% in detecting CT infertile cohort from negative 

cohort, peptide combinations in single well and multi-well format improved the 

sensitivity of the assay. While triple combination of peptides still demonstrated lower 

specificity (78%) and sensitivity (83%), double combination of peptide 11/ HSP60-

E2 yielded a high specificity of 100% and sensitivity of 94%. The sensitivities were 

maintained at 100% when using the multi-well format for peptide11 and HSP60-E2; 

Peptide 11 and 443-N2; HSP60-E2 and 443-N2; and peptide 11, HSP60-E2 and 443-

N2. However, compared to single-well peptide ELISA the specificity of the assay 

ranged from 78% and 89% depending on the combination of antigens. Importantly, 

the multi-well combinations had tighter confidence intervals compared to single well 

formats. This indicated lower variability in the assays. Due to greater specificity and 

sensitivity of the multi-well assay, this format was adopted for all further analysis and 

evaluation. This triage process was conducted on this smaller cohort, to enable 

streamlining of the assays to be conducted on the full development cohort as detailed 

in 4.3.2.
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Table 4.1: Small-scale evaluation of peptides 11, HSP60-E2 and 443-N2 in single and multi-well format for the detection of women with 
C. trachomatis - related infertility

CT infertile 
cohort
(n=9)

Negative cohort

(n=18)

Sensitivity 
[95% CI]

Specificity [95% 
CI]

P 
(Chisq)

Odds ratio [95%]

Assay (absorbance threshold) Assay 
+

Assay
-

Assay 
+

Assay
-

Peptide 11 (>0.296) 6 3 2 16 0.67[0.3-0.93] 0.89[0.65-0.99] 0.003 16[2.12-120.65]
Peptide HSP60-E2 (> 0.25) 8 1 3 15 0.89 [0.52-1] 0.83[0.59-0.96] <0.001 40[3.56-450]
Peptide 443-N2 (>0.22) 9 0 2 16 1[0.55-1] 0.89[0.65-0.99] <0.001 125.4[5.43-2895.88]
Single-well: aPeptide 11/
HSP60-E2 combo assay (>0.28)

9 0 1 17 1[0.55-1] 0.94[0.73-1] <0.001 221.67[8.20-5989.75]

Single-well: aPeptide 11/HSP60-
E2/443-N2 (>0.23)

7 2 3 15 0.78[0.4-0.97] 0.83[0.59-0.99] 0.002 17.5[2.36-129.51]

Multi-well: bPeptide 11 (>0.23) 
and HSP60-E2 (>0.22)

9 0 3 15 1[0.55-1] 0.78[0.52-0.94] <0.001 61.22[2.95-1272.36]

Multi-well: bPeptide 11 (0.18) 
and 443-N2 (>0.22)

9 0 4 14 1[0.55-1] 0.78[0.52-0.94] <0.001 61.22[2.95-1272.36]

Multi-well: b HSP60-E2 (>0.22) 
and 443-N2 (>0.22)

9 0 2 16 1[0.55-1] 0.89[0.65-0.99] <0.001 125.4[5.43-2895.88]

Multi-well: bPeptide11 (>0.18) 
and HSP60-E2 (>0.22) and 443-
N2 (>0.22)

9 0 2 16 1[0.55-1] 0.89[0.65-0.99] <0.001 125.4[5.43-2895.88]

a The maximum specificity and sensitivity of combination peptide antigens in a single well at established absorbance thresholds (in parenthesis) in identifying participants with C. 
trachomatis-related infertility. The level of significance tested by chi-square test at p<0.05

bThe maximum specificity and sensitivity of combination peptide antigens in multiple wells at established absorbance thresholds (in parenthesis) in identifying participants with C. 
trachomatis-related infertility. The level of significance tested by chi-square test at p<0.05
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4.3.2 Large scale evaluation of peptides in multi-well format and selection of 
assay format for the QUT Chlamydia infertility test on the development 
cohort

The multi-well format was selected for larger scale assay development after the

small-scale evaluation in 4.3.1 showed that individual wells allowed for higher 

specificity and sensitivity with smaller confidence intervals than when antigens were 

combined in a single-well. Peptide 11, HSP60-E2 and 443-N2 were coated on 

separate wells of the plate and the antibody response from women with and without 

chlamydia-related infertility was analyzed individually as well as in combination, in 

order to develop a sensitive and specific ELISA for women with chlamydial 

infertility. Using ROC analysis, an optimal absorbance threshold was achieved after 

controlling for maximum specificity in detecting C. trachomatis –related infertility, 

which is critical for assay development. The absorbance threshold for maximum 

specificity was determined against CT TFI cohort (n=11) and a cohort comprising of 

non-TFI participants and MIF negative TFI participants (n=80). The absorbance 

threshold that was determined in this analysis was later applied to evaluate the 

diagnostic performances of peptide combination multi-well assays in identifying 

infertile women with tubal pathology from those without (Evaluation 1). The 

absorbance threshold was also applied to identify women with C. trachomatis-related 

infertility in CT TFI cohort from the negative cohort (Evaluation 2). The diagnostic 

performance of several multi-well peptide combinations were tested on these cohorts 

and the combination with superior sensitivity and specificity in identifying true 

positives was designated as the QUT Chlamydia infertility test. The concordance 

between the assay and commercial serological assays were determined and its 

reproducibility was assessed through intra and inter assay variability. 
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Figure 4.2: The flow chart depicts the characterization of cohorts based on the 
gynecological data and C. trachomatis infection seropositivity (MIF) of 

participants
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Figure 4.2 depicts the serological response to C. trachomatis was determined by MIF, 

based on which the cohorts were further characterized as true positive and the 

negative cohort. Two main questions have been evaluated through this assay. 

Evaluation 1 (Assign cut-off) includes the ability of the QUT Chlamydia infertility 

test to effectively differentiate infertile participants with tubal factor infertility (TFI) 

from those without (excluding acute/fertile) by estimating the cut off controlled for 

maximum specificity. Though evaluation 2 (evaluation of cut-off), the diagnostic 

ability of QUT Chlamydia infertility test using the same cut-off to differentiate 

participants with CT associated TFI from participants belonging to the negative 

cohort (participants with acute infections, fertile healthy participants and non-TFI 

infertile participants and TFI participants seronegative for C. trachomatis infection). 

Establishing the absorbance threshold for maximum specificity of the 
ELISA to be significantly able to differentiate women with C. trachomatis-
related infertility from infertile women without TFI

The absorbance threshold controlled for maximum specificity was estimated in 

this assay. Individual peptides and their combination assays were tested against 

infertile women with and without tubal pathology (n=97). The assays were tested 

against women with C. trachomatis related infertility (women who were seropositive 

in MIF CT) (n=11) and negative cohort (n=80) that comprises of non-TFI infertile 

participants seronegative for C. trachomatis and non-TFI infertile women 

seropositive for C. trachomatis. When adjusting for confounders, six women were 

excluded due to missing information regarding BMI and smoking status. Table 4.2 

lists the absorbance threshold and the corresponding sensitivity and specificity of 

peptide ELISA in single and multi-well format in diagnosing women with C. 

trachomatis-related TFI. All commercial serological assays such as MEDAC 

infertile, MEDAC MOMP and ANILabsystems could significantly differentiate 

women with C. trachomatis-related infertility from the negative cohort (p<0.05).

MEDAC infertile had the highest sensitivity (36%) while MEDAC MOMP had the 

highest specificity (99%). Amongst peptide ELISAs, individual peptide could not 

effectively identify CT TFI cohort from negative cohort, but their combination assays 

could (p=0.009).

Double combination of peptides, peptide 11, HSP60-E2 or 443-N2 (Peptide 11 

t 0.686 or HSP60E2t0.559 or 443N2 t0.5715), peptide 11 with HSP60-E2 and 443-
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N2 (Peptide 11 t0.216 and HSP60E2 t0.106 and 443N2 t 0.4025) and peptide 11 

with 443-N2 (Peptide 11t0.216 and 443N2 t0.4025) yielded a sensitivity of 27% and 

a specificity of 95%. The odds ratio was lowered for combination assays and 

MEDAC infertile assay after adjusting for factors such as BMI and smoking status. 

This suggests that one of these factors could be a confounding variable for these 

assays. The absorbance threshold was applied in evaluation 1 and evaluation 2 to 

evaluate the performance of peptide ELISAs and identify the best ELISA format to 

diagnose C. trachomatis-related infertility in women.
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Table 4.2: The diagnostic performance of individual and combination of peptides in a multi-well assay format and commercial 
serological assays in identifying infertile participants with C. trachomatis related TFI (n=11) from negative cohort (MIF-negative TFI 

and Non-TFI participants) (n=80)[Estimating absorbance threshold]. 
.

CT TFI 
cohort 
(n=11)

Negative 
cohort 
(n=80)

Assay

Absorbance 
Threshold(s) 
criteria

Tru
e 
posi
tive
s

Fals
e 
nega
tives

Fals
e 
posi
tives

True 
nega
tives

aSensit
ivity 
(95% 
CI)

aSpeci
ficity 
(95% 
CI)

bPositive 
predictive 
value 
(95% CI)

bNegative 
predictive 
value (95% 
CI)

Odds 
Ratio 
(95% 
CI)

Chi 
Squared P 
value 
(unadjuste
d)

cAdjusted 
Odds 
Ratio 
(95% CI))

MEDAC Infertile 4 7 3 77

0.36 
(0.11-
0.69)

0.96 
(0.89-
0.99)

0.57 (0.18-
0.9)

0.92 (0.84-
0.97)

14.67 
(2.72-
79.1) <0.001

7.9 (1.1-
54)

ANIlabsystems IgG ELISA 3 8 6 74

0.27 
(0.06-
0.61)

0.92 
(0.84-
0.97)

0.33 (0.07-
0.7)

0.9 (0.82-
0.96)

4.62 
(0.97-
22.15) 0.039

4.8 (0.67-
35)

MEDACMOMP
MEDAC MOMP > 
1.2 1 10 1 79

0.09 
(0-
0.41)

0.99 
(0.93-
1)

0.5 (0.01-
0.99)

0.89 (0.8-
0.94)

7.9 
(0.46-
136.4
1) 0.096

5.1 (0.17-
150)

MIF C. trachomatis
(MIF CT) 11 0 5 75

1 
(0.62-
1)

0.94 
(0.86-
0.98)

0.69 (0.41-
0.89) 1 (0.93-1)

Inf 
(NaN-
Inf) <0.001

7e+234 
(0-Inf)

MIF C. pneumoniae
(MIF CP) 7 4 21 59

0.64 
(0.31-

0.74 
(0.63-

0.25 (0.11-
0.45)

0.94 (0.85-
0.98)

4.92 
(1.31- 0.012

4.9 (1.1-
22)
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0.89) 0.83) 18.51)

MIF C. psittaci (MIF 
CS) 4 7 1 79

0.36 
(0.11-
0.69)

0.99 
(0.93-
1)

0.8 (0.28-
0.99)

0.92 (0.84-
0.97)

45.14 
(4.42-
461.0
3) <0.001

34 (2.5-
470)

Peptide 11 Peptide 11 t0.411 1 10 4 76

0.09 
(0-
0.41)

0.95 
(0.88-
0.99)

0.2 (0.01-
0.72)

0.88 (0.8-
0.94)

1.9 
(0.19-
18.73) 0.577

0.84 
(0.063-
11)

HSP60- E2 HSP60E2 t0.522 1 10 4 76

0.09 
(0-
0.41)

0.95 
(0.88-
0.99)

0.2 (0.01-
0.72)

0.88 (0.8-
0.94)

1.9 
(0.19-
18.73) 0.577

3.3 (0.26-
41)

443-N2 443n2 t 0.539 1 10 4 76

0.09 
(0-
0.41)

0.95 
(0.88-
0.99)

0.2 (0.01-
0.72)

0.88 (0.8-
0.94)

1.9 
(0.19-
18.73) 0.577

0.89 
(0.061-
13)

Double combination of 
either peptides: Peptide 
11or HSP60-E2 or 443-
N2

Peptide 11 t0.686 
or HSP60E2 
t0.559 or 443N2 t
0.5715 3 8 4 76

0.27 
(0.06-
0.61)

0.95 
(0.88-
0.99)

0.43 (0.1-
0.82)

0.9 (0.82-
0.96)

7.12 
(1.35-
37.65) 0.009

5.2 (0.67-
39)

Triple peptide 
combination: Peptide11 
and HSP60-E2 and 
443-N2

Peptide 11 t 0.216 
and HSP60E2 t
0.106 and 443N2 
t0.4025 3 8 4 76

0.27 
(0.06-
0.61)

0.95 
(0.88-
0.99)

0.43 (0.1-
0.82)

0.9 (0.82-
0.96)

7.12 
(1.35-
37.65) 0.009

3.9 (0.59-
25)

Double combination: 
Peptide 11 and 443-N2

Peptide 11 t0.216 
and 443N2 t
0.4025 3 8 4 76

0.27 
(0.06-
0.61)

0.95 
(0.88-
0.99)

0.43 (0.1-
0.82)

0.9 (0.82-
0.96)

7.12 
(1.35-
37.65) 0.009

3.9 (0.59-
25)

aSpecificity and Sensitivity: Range is 0-1, 95% confidence intervals in parenthesis; bPositive predictive value and negative predictive value: range 0-1, 95% confidence 
intervals in parenthesis; cAdjusted ratio after accounting for BMI and smoking 
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Evaluation 1 (assign cut-off): QUT Chlamydia infertility test can 
differentiate participants with TFI from infertile participants without TFI 
with greater specificity and sensitivity as compared to commercial 
serological assays

The peptides in multi-well format were assayed against sera from participants 

with TFI (n=45) and infertile participants without TFI (n=52). The participants who 

tested equivocal in the commercial serological assays were excluded from the 

analysis (n=6). Therefore, only 47 non-TFI participants and 44 TFI participants were 

tested against commercial serological assays. Table 4.3 showed the performance of 

individual peptides and combination of peptides in multi-well formats against TFI 

and non- TFI participants. The absorbance threshold that was determined in Table 4.2 

was applied in Evaluation 1 and the corresponding specificity and sensitivity was 

determined. 

The commercial ELISAs assayed against the cohort showed high specificity 

(94%-98%), however the sensitivities were low, with MEDAC MOMP being the 

lowest (2%) and ANILabsystems the highest (14%). The MEDAC infertile assay had 

a sensitivity of 11% and had higher positive predictive values (71%) in detecting 

participants with TFI compared to other commercial ELISAs. Although, MIF CT

(MIF C. trachomatis) had the highest sensitivity compared to commercial assays 

(27%) in detecting TFI in women, the specificity was lower than other assays (89%). 

Furthermore, its positive predictive value (PPV) was also lower than other assays. 

Amongst individual peptides assays, HSP60-E2 (cut off value=0.522; 

sensitivity=7%; specificity=96%) and 443-N2 (cut off value=0.539; specificity=9%; 

sensitivity=98%) showed better diagnostic performance as compared to peptide 11 

(cut off value=0.411; sensitivity =4%; specificity=94%) in identifying TFI 

participants from non-TFI participants. Combination of peptide 11 (=0.686) with 

either HSP60-E2 (absorbance threshold =0.559) or 443-N2 (absorbance threshold 

=0.5715) yielded a sensitivity of 27% and a specificity of 95% in differentiating TFI 

participants from non-TFI infertile participants (p=0.006). The combination of all 

three peptides, peptide 11 (absorbance threshold =0.216), HSP60-E2 (absorbance 

threshold =0.106) and 443-N2 (absorbance threshold =0.4025); and combination of 

peptide 11 (absorbance threshold =0.216) and 443-N2 (absorbance threshold 

=0.4025) showed equal sensitivity and specificity in identifying TFI participants. The 

positive predictive value was 100% in combination assays, which shows that all the 
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samples that tested positive were positive. Although, double combination of any of 

the following peptides, peptide 11, HP60-E2 and 443-N2, yielded higher sensitivity, 

triple combination of all three peptides yielded higher specificity and could 

significantly differentiate TFI participants from Non-TFI participants (p<0.004). 

Therefore, it was considered a potential candidate for QUT Chlamydia infertility test. 

The double and triple peptide combination assays had the highest sensitivity 

and specificity compared to all commercial serological assays, including MIF. The 

best performing commercial assay, MEDAC Infertile had only 11% sensitivity and 

96% specificity, whereas triple combination assays had much higher sensitivity 

(16%) and specificity (100%), and could effectively differentiate infertile participants 

with TFI from those without TFI (p=0.004). The odds ratio was adjusted for factors 

such as birth year, smoking, BMI and history of alcohol consumption using multiple 

logistic regression analysis. The decrease in odds ratio after the adjustments suggest 

that one of these factors could be a possible confounder for the analysis and may 

influence the outcome of all the peptide assays.
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Table 4.3: The diagnostic performance of individual and combination of peptides in a multi-well assay format and commercial 
serological assays in identifying infertile participants with TFI from those infertile participants without TFI [Evaluation 1 on 
development cohort]. 

TFI Positive (n=45) Non-TFI (n=52)

Assay
True 
positives

False 
negatives

False 
positives

True 
negatives

aSensitivit
y (95% ci)

bSpecificit
y (95% ci)

Positive 
predictive 
value 
(95% CI)

Negative 
predictive 
value
(95% CI)

Chi 
Squared P 
value 
(unadjuste
d)

Odds 
Ratio 
(95% CI)

cAdjusted 
odds ratio 
(95% CI)

MEDAC Infertile 5 39 2 45

0.11 
(0.04-
0.25)

0.96 
(0.85-
0.99)

0.71 
(0.29-
0.96)

0.54 
(0.42-
0.65) 0.203

2.88 
(0.53-
15.71)

1.9 (0.31-
12)

ANILabsystems 6 38 3 44

0.14 
(0.05-
0.27)

0.94 
(0.82-
0.99)

0.67 (0.3-
0.93)

0.54 
(0.42-
0.65) 0.247

2.32 
(0.54-9.9)

2.8 (0.5-
16)

MEDACMOMP 
>1.2 1 43 1 46

0.02 (0-
0.12)

0.98 
(0.89-1)

0.5 (0.01-
0.99)

0.52 
(0.41-
0.62) 0.962

1.07 
(0.06-
17.64)

0.56 
(0.027-

12)

MIF C. trachomatis 11 33 5 42
0.25 
(0.13-0.4)

0.89 
(0.77-
0.96)

0.69 
(0.41-
0.89)

0.56 
(0.44-
0.67) 0.072

2.8 (0.89-
8.85)

3.9 (0.95-
16)

MIF C. psittaci 4 40 1 46

0.09 
(0.03-
0.22)

0.98 
(0.89-1)

0.8 (0.28-
0.99)

0.53 
(0.42-
0.64) 0.145

4.6 (0.49-
42.86)

3.4 (0.33-
35)

MIF C. 
pneumoniae 12 32 16 31

0.27 
(0.15-
0.43)

0.66 
(0.51-
0.79)

0.43 
(0.24-
0.63)

0.49 
(0.36-
0.62) 0.484

0.73 (0.3-
1.78)

0.61 
(0.23-1.6)

Peptide 11 t0.411 2 43 3 49 0.05 0.94 0.4 (0.05- 0.53 0.701 0.7 (0.11- 0.7 
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(0.01-
0.15)

(0.84-
0.99)

0.85) (0.43-
0.64)

4.39) (0.093-
5.3)

HSP60E2 t0.522 3 42 2 50

0.07 
(0.01-
0.18)

0.96 
(0.87-1)

0.6 (0.15-
0.95)

0.54 
(0.44-
0.65) 0.592

1.65 
(0.26-
10.35)

2.5 (0.36-
17)

443N2 t0.539 4 41 1 51

0.09 
(0.02-
0.21)

0.98 (0.9-
1)

0.8 (0.28-
0.99)

0.55 
(0.45-
0.66) 0.145

4.6 (0.49-
42.86)

5.7 (0.45-
73)

Double 
combination of 
either peptides: 
Peptide 11t0.686 
or HSP60E2 
t0.559 or 443N2 t
0.5715 3 38 4 52

0.27 
(0.06-
0.61)

0.95 
(0.89-
0.99)

0.43 (0.1-
0.82)

0.91 
(0.83-
0.96) 0.203

2.88 
(0.53-
15.71)

3.3 (0.5-
21)

Triple combination:
Peptide 11 t 0.216 
and HSP60E2 t
0.106 and 443N2 t
0.4025 7 38 0 52

0.16 
(0.06-
0.29) 1 (0.9-1) 1 (0.47-1)

0.58 
(0.47-
0.68) 0.004

Inf (NaN-
Inf)

4.1e+07 
(0-Inf)

Double 
combination:_
Peptide 11 t 0.216 
and 443N2 t0.4025 7 38 0 52

0.16 
(0.06-
0.29) 1 (0.9-1) 1 (0.47-1)

0.58 
(0.47-
0.68) 0.004

Inf (NaN-
Inf)

4.1e+07 
(0-Inf)

a Specificity and Sensitivity: Range is 0-1, 95% confidence intervals in parenthesis; b Positive predictive value and negative predictive value: range 0-1, 95% confidence 
intervals in parenthesis, c The analysis also accounts for variables such as BMI and smoking status.
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Evaluation 2 (evaluation with cut-off): QUT Chlamydia infertility test can 
identify participants with chlamydial TFI from other cohorts

The second evaluation aimed to determine if any of the assays under 

development here had high specificity for women with C. trachomatis-related 

infertility and not detect fertile women, or women who have a recent or current CT 

infection with no reported fertility problems. Therefore through evaluation 2, the 

diagnostic performance of peptide ELISA in identifying participants with C. 

trachomatis-related infertility was assessed and compared with other commercial 

serological assays. Since, the MIF is considered the gold standard, it was used to 

define participants as C. trachomatis–related tubal infertility based on their 

serological status. MIF and confirmed tubal infertility was used to characterize 

participants into CT TFI positive cohort (n=11) and Negative cohort (comprises of 

infertile women with non-TFI, acute CT infections and fertile controls) (n=251) 

(Table 4.4). Participant sera that tested equivocal in the commercial serological 

assays were excluded from analysis. Therefore, 17 participants were excluded from 

ANILabsystems and 3 participants from MIF analysis. MEDAC infertile assay had 

the highest sensitivity (36%) compared to other commercial serological assays such 

as ANILabsystems and MEDAC MOMP. Although, its specificity was low (86%), 

the positive predictive (10% vs 5%) and the negative predictive value (97% vs 96%) 

was higher than other commercial assays. Additionally, it could effectively identify 

C. trachomatis-related TFI participants from negative cohort (p=0.04). 

Multiple peptides had greater sensitivity and specificity in detecting C. 

trachomatis related infertile participants from negative cohort compared to individual 

peptides. Double peptide combinations (peptide 11 with either Hsp60-E2 or 443-N2 

and peptide 11 and 443-N2) and triple peptide combinations (peptide 11, HSP60-E2 

and 443-N2) had a sensitivity of 27%, while their specificity ranged from 93%-94%. 

Although the assays had low positive predictive values (18%-43%), the combination 

assays generally had fewer false positives as they had high negative predictive values 

of 97%. This suggests that out of 227 samples tested, 97% of the samples that tested 

negative in the assay were truly negative. This suggests that the peptide assay test 

were highly specific to C. trachomatis-related infertility. 

The peptide combination assay also demonstrated greater diagnostic 

performance in identifying women with C. trachomatis –related TFI compared to the 
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best performing commercial assay, MEDAC infertile. Although, MEDAC infertile 

assay had higher sensitivity than peptide combination assays (36% vs 27%), the 

specificity (96%-97% vs 86%), PPV (14%-18% vs 10%) and the odds ratio (4.85-

6.35 vs 3.41) were higher for the peptide combination assays (p=0.004). Additionally, 

Women with CT TFI were significantly more likely to be positive in the peptide 

combination assays than the leading commercial ELISA MEDAC infertile. Although, 

the diagnostic sensitivities and specificities were comparable between both double 

and triple peptide combination assays, the triple peptide combination assay (peptide 

11, HSP60-E2 and 443-N2) showed greater odds ratio and level of significance in 

identifying participants with C. trachomatis-related infertility (p=0.004). 

Additionally, the triple peptide combination assays were also adept in identifying 

participants with TFI from those without TFI with the highest specificity (100%) 

compared to all other assays. Hence, this triple peptide was selected as the QUT 

Chlamydia infertility test and its performance was further validated in a secondary 

validation group. 



Chapter 4: Development and evaluation of a novel multi-antigen peptide ELISA for the diagnosis of C. trachomatis-related infertility in women 101

Table 4.4: The diagnostic performance of individual and combination of peptides in a multi-well assay format and commercial 

serological assays in identifying CT TFI cohort (n=11) from negative cohort (n=251)[Evaluation 2 on development cohort].

CT TFI cohort (n=11) Negative cohort (n=251)

Assay
True 
positives

False 
negatives

False 
positives

True 
negatives

aSensitivity 
(95% CI)

Specificity 
(95% CI)

bPositive 
predictive 
value (95% 
CI)

Negative 
predictive 
value (95% 
CI)

Chi 
Squared P 
value 
(unadjusted
)

Odds Ratio 
(95% CI)

MEDAC 
Infertile 4 7 36 215

0.36 (0.11-
0.69)

0.86 (0.81-
0.9)

0.1 (0.03-
0.24)

0.97 (0.94-
0.99) 0.047

3.41 (0.95-
12.25)

ANIlabsystems 3 8 62 172
0.27 (0.06-
0.61)

0.74 (0.67-
0.79)

0.05 (0.01-
0.13)

0.96 (0.91-
0.98) 0.955

1.04 (0.27-
4.05)

MEDACMOMP 
>1.2 1 10 24 227

0.09 (0-
0.41)

0.9 (0.86-
0.94) 0.04 (0-0.2)

0.96 (0.92-
0.98) 0.959

0.95 (0.12-
7.71)

MIF C. 
trachomatis 11 0 84 164 1 (0.62-1)

0.66 (0.6-
0.72)

0.12 (0.06-
0.2) 1 (0.97-1) <0.001

Inf (NaN-
Inf)

MIF C. 
pneumoniae 7 4 110 138

0.64 (0.31-
0.89)

0.56 (0.49-
0.62)

0.06 (0.02-
0.12)

0.97 (0.93-
0.99) 0.209

2.2 (0.63-
7.69)

MIF C. psittaci 4 7 4 244
0.36 (0.11-
0.69)

0.98 (0.96-
1)

0.5 (0.16-
0.84)

0.97 (0.94-
0.99) <0.001

34.86 
(7.21-

168.63)
Peptide 11 
t0.411 1 10 27 207

0.09 (0-
0.41)

0.88 (0.84-
0.92)

0.04 (0-
0.18)

0.95 (0.92-
0.98) 0.802

0.77 (0.09-
6.2)

HSP60E2 t
0.522 1 10 14 220

0.09 (0-
0.41)

0.94 (0.9-
0.97)

0.07 (0-
0.32)

0.96 (0.92-
0.98) 0.72

1.47 (0.18-
12.2)

443N2 t0.539 1 10 11 223
0.09 (0-
0.41)

0.95 (0.92-
0.98)

0.08 (0-
0.38)

0.96 (0.92-
0.98) 0.465

2.18 (0.26-
18.59)
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Double 
combination of 
either peptides:
Peptide 11 
t0.686 or 
HSP60E2 
t0.559 or 
443N2t0.5715 3 8 14 237

0.27 (0.06-
0.61)

0.94 (0.91-
0.97)

0.18 (0.04-
0.43)

0.97 (0.94-
0.99) 0.004

6.35 (1.52-
26.59)

Triple 
combination: 
Peptide 11 t
0.216 and 
HSP60E2t0.106 
and 
443N2t0.4025 3 8 13 221

0.27 (0.06-
0.61)

0.94 (0.91-
0.97)

0.19 (0.04-
0.46)

0.97 (0.93-
0.98) 0.004

6.35 (1.52-
26.59)

Double 
combination: 
Peptide 11 t
0.216 and 
443N2 t0.4025 3 8 14 220

0.27 (0.06-
0.61)

0.94 (0.9-
0.97)

0.18 (0.04-
0.43)

0.96 (0.93-
0.98) 0.006

5.9 (1.42-
24.55)

a Specificity and Sensitivity: Range is 0-1, 95% confidence intervals in parenthesis; b Positive predictive value and negative predictive value: range 0-1, 95% confidence 
intervals in parenthesis
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The diagnostic performance of variants of peptide 11 is comparable to 
individual peptides, but does not outperform QUT Chlamydia infertility test 
in identifying women with tubal pathology and C. trachomatis-related 
infertility

The ability to use a more soluble format of peptide 11 was an important factor 

for consideration as the process to dissolve the peptide 11 was labour intensive 

leading to concerns about possible future manufacture process. This difficulty is 

likely due to the high hydrophobicity of peptide 11 (58% hydrophobicity, 25% 

hydrophilic). Hence, several peptide variants were designed attempting to bias the 

selection towards the hydrophilic amino acid residues while maintaining the antigenic 

epitope (ADTRGILVV, SPA). The variants included DTRGI, TRGILVV, 

ILVVAVEAGSPA and ILLVVAVEAGSP. Table 4.5 showed that the sensitivity of 

peptide variants TRGILVV (sensitivity =5%; specificity =93%) and 

ILVVAVEAGSPA (sensitivity=7%; specificity=96%) were comparable to that of 

peptide 11 and HSP60-E2 in identifying infertile women with tubal pathology.

Peptide variants in combination with peptide 11 and HSP60-E2 increased the 

sensitivity and specificity to 7% and 96%, which was higher than individual peptides; 

but were lower than the QUT chlamydia infertility test (sensitivity=16%; 

specificity=100%).

The peptide variants, individually and in combination with HSP60-E2 and 443-

N2, were tested on CT TFI cohort and negative cohort to determine its diagnostic 

performance in identifying women with C. trachomatis-related infertility. While 

neither individual peptide variants nor combination assays were able to identify 

women with CT TFI from the negative cohort, the combination of these peptides with 

HSP60-E2 and 443-N2, the specificity was improved while the sensitivity was 

maintained at 9% (Table 4.6). The positive predictive value of these individual 

peptide variants and their combination (20%) were higher than peptide 11 (3%), 

HSP60-E2 (6%) and 443-N2 (8%) and was comparable to QUT chlamydia infertility 

test (18%). Additionally, The odds ratio of combination assays of peptide 11 variant 

TRGILVV and ILVVAVEGSPA were comparable to that of QUT Chlamydia

infertility test. Thus, peptide variants of peptide 11 are likely candidates for a CT TFI 

diagnostic that can be further optimized for improved performance in the future. 
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Table 4.5 The diagnostic performance of peptide 11 variants in individual assays and in combination with HSP60 and 443-N2 in 
identifying women with tubal factor infertility from infertile women without tubal pathology were estimated.

TFI positive (n=41) Non-TFI (n=46)

P11 variant Assay
True 

positives
False 

negatives
False 

positives
True 

negatives
aSensitivity 
(95% CI)

aSpecificity 
(95% CI)

bPositive
predictive 
value (95% 
CI)

bNegative 
predictive 
value (95% 
CI)

Odds ratio 
(95% CI)

Chi 
Squared P 

value 
(unadjusted

)

cAdjuste
d odds 
ratio 
(95% 
CI)

Peptide 11 t0.411 2 43 3 49
0.05 (0.01-
0.15)

0.94 (0.84-
0.99)

0.4 (0.05-
0.85)

0.53 
(0.43-
0.64)

.7 (0.11-
4.39) 0.701

0.7 
(0.093-
5.3)

DTRGIt0.311
1 40 2 44

0.02 (0-
0.13)

0.96 (0.85-
0.99)

0.33 (0.01-
0.91)

0.52 (0.41-
0.63)

0.55 (0.05-
6.3) 0.626

0.57 
(0.036-
8.9)

DTRGI. t0 and HSP60E2 
t0.444 and 443N2 t
0.4025 3 41 2 45

0.07 (0.01-
0.19)

0.96 (0.85-
0.99)

0.6 (0.15-
0.95)

0.52 (0.41-
0.63)

1.65 (0.26-
10.35) 0.592

3 (0.42-
22)

TRGILVVt 0.3265
2 39 3 43

0.05 (0.01-
0.17)

0.93 (0.82-
0.99)

0.4 (0.05-
0.85)

0.52 (0.41-
0.64)

0.74 (0.12-
4.63) 0.742

1.2 
(0.17-
8.5)

TRGILVV. tand 
HSP60E2 t0.444 and 
443N2 t 0.4025 3 41 2 45

0.07 (0.01-
0.19)

0.96 (0.85-
0.99)

0.6 (0.15-
0.95)

0.52 (0.41-
0.63)

1.65 (0.26-
10.35) 0.592

3 (0.42-
22)

ILVVAVEAGSPAt
0.4825 3 38 2 44

0.07 (0.02-
0.2)

0.96 (0.85-
0.99)

0.6 (0.15-
0.95)

0.54 (0.42-
0.65)

1.74 (0.28-
10.95) 0.553

2.3 
(0.29-
18)

ILVVAVEAGSPA. t 0 
and HSP60E2 t0.444 and 
443N2 t 0.4025 3 41 2 45

0.07 (0.01-
0.19)

0.96 (0.85-
0.99)

0.6 (0.15-
0.95)

0.52 (0.41-
0.63)

1.65 (0.26-
10.35) 0.592

3 (0.42-
22)

ILVVAVEAGSP t0.676
1 40 3 43

0.02 (0-
0.13)

0.93 (0.82-
0.99)

0.25 (0.01-
0.81)

0.52 (0.41-
0.63)

0.36 (0.04-
3.59) 0.364

0.35 
(0.032-
3.8)

ILVVAVEAGSPt0 and 
HSP60E2 t 0.444 and 
443N2 t0.4025 3 41 2 45

0.07 (0.01-
0.19)

0.96 (0.85-
0.99)

0.6 (0.15-
0.95)

0.52 (0.41-
0.63)

1.65 (0.26-
10.35) 0.592

3 (0.42-
22)

a Specificity and Sensitivity: Range is 0-1, 95% confidence intervals in parenthesis; b Positive predictive value and negative predictive value: range 0-1, 95% confidence intervals in 
parenthesis, c The analysis also accounts for variables such as BMI and smoking status.
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Table 4.6: The diagnostic performance of peptide 11 variants individually and in combination with HSP60 and 443-N2 in identifying 

women with C. trachomatis-related tubal factor infertility from women non-TFI infertile women who are seronegative for C. trachomatis

infection (for individual peptides (n=82)) and Negative cohort (for combination assays (n=244).

a Specificity and Sensitivity: Range is 0-1, 95% confidence intervals in parenthesis; b Positive predictive value and negative predictive value: range 0-1, 95% confidence intervals in parenthesis

CT TFI 
positive (n=11)

Negative 
cohort (n=244)

Assay
True 

positiv
e

False 
negativ

es

False 
positiv

es

True 
negativ

es

Sensitivit
y (95% 

CI)

Specificity 
(95% CI)

Positive 
predictive 

value (95% 
CI)

Negative 
predictive value 

(95% CI)

Odds Ratio 
(95% CI)

Chi 
Squared P 

value 
(unadjuste

d)

Peptide 11 t0.411 1 10 27 207

0.0

9

(0-0.41)
0.88 (0.84-

0.92) 0.04 (0-0.18) 0.95 (0.92-0.98) 0.77 (0.09-6.2) 0.802

DTRGI t0.311 0 11 4 78 0 (0-0.38) 0.95 (0.88-
0.99) 0 (0-0.72) 0.88 (0.79-0.94) 0 (0-NaN) 0.454

DTRGIt0 and HSP60E2 t0.444 and 443N2 t
0.4025

1 10 4 240 0.09 (0-
0.41) 0.98 (0.96-1) 0.2 (0.01-

0.72) 0.96 (0.93-0.98) 6 (0.61-58.71) 0.081

TRGILVVt 0.3265 1 10 4 78 0.09 (0-
0.41)

0.95 (0.88-
0.99)

0.2 (0.01-
0.72) 0.89 (0.8-0.94) 1.95 (0.2-19.22) 0.561

TRGILVVt0 and HSP60E2 t 0.444 and 443N2 
>= 0.4025

1 10 4 240 0.09 (0-
0.41) 0.98 (0.96-1) 0.2 (0.01-

0.72) 0.96 (0.93-0.98) 6 (0.61-58.71) 0.081

ILVVAVEAGSPA t0.4825 1 10 4 78 0.09 (0-
0.41)

0.95 (0.88-
0.99)

0.2 (0.01-
0.72) 0.89 (0.8-0.94) 1.95 (0.2-19.22) 0.561

ILVVAVEAGSPAt0 and HSP60E2 t0.444 and 
443N2 t0.4025

1 10 4 240 0.09 (0-
0.41) 0.98 (0.96-1) 0.2 (0.01-

0.72) 0.96 (0.93-0.98) 6 (0.61-58.71) 0.081

ILVVAVEAGSP t0.676 0 11 4 78 0 (0-0.38) 0.95 (0.88-
0.99) 0 (0-0.72) 0.88 (0.79-0.94) 0 (0-NaN) 0.454

ILVVAVEAGSP. t0 and HSP60E2t0.444 and 
443N2 t0.4025

1 10 4 240 0.09 (0-
0.41) 0.98 (0.96-1) 0.2 (0.01-

0.72) 0.96 (0.93-0.98) 6 (0.61-58.71) 0.081
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QUT Chlamydia infertility test does not correlate with commercial 
serological assays in detecting C. trachomatis-related infertility in women in 
the development cohort

In order to determine if the same participants are being detected by the different 

serological tests a concordance analysis was conducted. Table 4.7 illustrated that all 

MOMP peptide based commercial serological assays including MEDAC Infertile 

assay, ANILabsystems, MEDAC MOMP showed great concordance with each other 

and with MIF CT (p<0.05). However, these assays also showed significant 

concordance with MIF CP (C. pneumoniae) and MIF CS (C. psittaci) (p<0.05). This 

suggests that there is a potential for cross-reactivity between other chlamydial species 

in commercial serological assay, which compromises the specificity of the assay. 

Thereby, possibly increasing the rate of false positive tests for these assays. 

As for QUT Chlamydia infertility test, the assay showed concordance with all 

peptide combination assays and individual peptides such as HSP60-E2 and 443N2. 

Although, the assay did not show concordance with any other commercial serological 

assays, it exhibited high correlation with MIF CS (p=0.032). Since, none of the 

individual peptides showed correlation to MIF CS, and MIF CS had exhibited its 

ability to differentiate CT TFI cohort from negative cohort (Table 4.4) and also 

correlates with MIF CT (p=0.002), it could be inferred that MIF CS may recognize 

cross-reacting antibodies with C. trachomatis. 
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Table 4.7: Concordance between commercial serological assays and In-house peptide ELISA in identifying C. trachomatis related tubal 
infertility in women in the development cohort 

MED
ACIn
fertil
e

ANIl
absys
tems

MED
ACM
OMP

MIF.
CT

MIF.
CP

MIF.
CS

Pepti
de.11

HSP
60E2

443N
2

Double 
combo 
(either)
Peptide
.11_or
_HSP6
0e2_or
_443n2

QUT 
Chla
mydia 
inferti
lity 
test

Do
ubl
e 
co
mbi
nati
on: 
pep
tide 
11 
and 
443
N2

Peptide
11.var.
DTRGI

DTR
GI + 
HSP6
0E2 + 
443-
N2

Pep
tide.
11.v
ar.T
RGI
LV
V

TRGIL
VV + 
HSP60
E2 
+443N
2 

Pepti
de 
11.va
r.ILV
VAV
EAG
SPA

ILVVAV
EAGSP
A+HSP6
0E2+443
N2

Peptide
.11.var.
ILVVA
VEAG
SP

ILVVA
VEAG
SP+
_HSP6
0e2_+4
43n2

MEDACInfertile
a<0.0
01

<0.00
1

<0.0
01

<0.0
01 0.01

<0.0
01 0.065 0.094 0.494 0.077 0.327

0.3
95 0.531 0.768 0.35 0.768 0.481 0.768 0.531 0.768

ANIlabsystems
<0.00
1

<0.00
1

<0.0
01

<0.0
01 0.145 0.019 0.475 0.99 0.902 0.982 0.304

0.3
96 0.478 0.504

0.49
3 0.504 0.493 0.504 0.478 0.504

MEDACMOMP
<0.00
1

<0.00
1

<0.0
01

<0.0
01 0.047 0.007 0.453 0.595 0.249 0.121 0.747

0.8
14 0.709 0.467

0.67
5 0.467 0.675 0.467 0.709 0.467

MIF.CT
<0.00
1

<0.00
1

<0.0
01

<0.0
01 0.004 0.002 0.227 0.358 0.714 0.119 0.15

0.2
24 0.351 0.449

0.86
5 0.449 0.865 0.449 0.351 0.449

MIF.CP 0.01 0.145 0.047 0.004
<0.0
01 0.015 0.572 0.732 0.009 0.111 0.064

0.0
43 0.856 0.245

0.57
9 0.245 0.141 0.245 0.191 0.245

MIF.CS
<0.00
1 0.019 0.007 0.002 0.015

<0.0
01 0.228 0.491 0.282 0.002 0.032

0.0
41 0.626 0.03

0.13
6 0.03 0.584 0.03 0.626 0.03

Peptide.11 0.065 0.475 0.453 0.227 0.572 0.228
<0.0
01 0.106 0.561 0.001 0.106

0.1
37 <0.001 0.437

0.58
4 0.437 0.584 0.437 0.626 0.437

HSP60E2 0.094 0.99 0.595 0.358 0.732 0.491 0.106
<0.0
01 0.008 <0.001

<0.00
1

<0.
001 0.075

<0.00
1

<0.
001 <0.001 0.584 <0.001 0.075 <0.001

443N2 0.494 0.902 0.249 0.714 0.009 0.282 0.561 0.008
<0.0
01 <0.001

<0.00
1

<0.
001 0.626

<0.00
1

0.13
6 <0.001 0.136 <0.001 0.075 <0.001



Chapter 4: Development and evaluation of a novel multi-antigen peptide ELISA for the diagnosis of C. trachomatis-related infertility in women 108

Double combo 
(either)
Peptide.11_or_HSP
60e2_or_443n2 0.077 0.982 0.121 0.119 0.111 0.002 0.001

<0.0
01

<0.0
01 <0.001

<0.00
1

<0.
001 0.176 0.003

<0.
001 0.003 0.277 0.003 0.176 0.003

Triple combination 0.327 0.304 0.747 0.15 0.064 0.032 0.106
<0.0
01

<0.0
01 <0.001

<0.00
1

<0.
001 0.56

<0.00
1

0.27
7 <0.001 0.512 <0.001 0.176 <0.001

Double 
combination: 
peptide 11 and 
443N2 0.395 0.396 0.814 0.224 0.043 0.041 0.137

<0.0
01

<0.0
01 <0.001

<0.00
1

<0.
001 0.56

<0.00
1

0.27
7 <0.001 0.512 <0.001 0.176 <0.001

Peptide.11.var.DTR
GI 0.531 0.478 0.709 0.351 0.856 0.626

<0.0
01 0.075 0.626 0.176 0.56

0.5
6 <0.001 0.626

0.07
5 0.626 0.626 0.626 0.665 0.626

DTRGI + HSP60E2 
+ 443-N2 0.768 0.504 0.467 0.449 0.245 0.03 0.437

<0.0
01

<0.0
01 0.003

<0.00
1

<0.
001 0.626

<0.00
1

<0.
001 <0.001 0.136 <0.001 0.075 <0.001

Peptide.11.var.TRG
ILVV 0.35 0.493 0.675 0.865 0.579 0.136 0.584

<0.0
01 0.136 <0.001 0.277

0.2
77 0.075

<0.00
1

<0.
001 <0.001

<0.00
1 <0.001 0.626 <0.001

TRGILVV + 
HSP60E2 +443N2 0.768 0.504 0.467 0.449 0.245 0.03 0.437

<0.0
01

<0.0
01 0.003

<0.00
1

<0.
001 0.626

<0.00
1

<0.
001 <0.001 0.136 <0.001 0.075 <0.001

Peptide.11.var.ILV
VAVEAGSPA 0.481 0.493 0.675 0.865 0.141 0.584 0.584 0.584 0.136 0.277 0.512

0.5
12 0.626 0.136

<0.
001 0.136

<0.00
1 0.136 0.075 0.136

ILVVAVEAGSPA
+HSP60E2+443N2 0.768 0.504 0.467 0.449 0.245 0.03 0.437

<0.0
01

<0.0
01 0.003

<0.00
1

<0.
001 0.626

<0.00
1

<0.
001 <0.001 0.136 <0.001 0.075 <0.001

Peptide.11.var.ILV
VAVEAGSP 0.531 0.478 0.709 0.351 0.191 0.626 0.626 0.075 0.075 0.176 0.176

0.1
76 0.665 0.075

0.62
6 0.075 0.075 0.075 <0.001 0.075

ILVVAVEAGSP+
_HSP60e2_+443n2 0.768 0.504 0.467 0.449 0.245 0.03 0.437

<0.0
01

<0.0
01 0.003

<0.00
1

<0.
001 0.626

<0.00
1

<0.
001 <0.001 0.136 <0.001 0.075 <0.001

aCorrelation and concordance between serological assay defined by level of significance (p<0.05). 
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Women predicted to have C. trachomatis-related infertility in the QUT 
Chlamydia infertility test are equally likely to conceive by IVF as other 
infertility and therefore it is valid to recommend progression to IVF 

Tubal factor infertility and previous IVF success rates were evaluated as 

prognostic indicators of successful infertility treatment in Table 4.8. Women with 

Tubal factor infertility had a lower success rate for IVF in this study, as the number 

of live births in infertile women without tubal pathology was significantly higher than 

that reported from women with tubal factor infertility (p=0.032, 24 vs 13). The odds 

ratio also suggested that non-TFI women were twice as likely to have a live birth than 

women with TFI after IVF treatment. Thus, compared to previous successful live 

birth and pregnancy outcome in an IVF procedure (p>0.05), tubal status of women 

proved to be a negative prognostic indicator of IVF outcome (p=0.032; AOR (95% 

CI)=3.9 (1.4-11). 

Table 4.9 showed that none of the C. trachomatis serological assays including 

the QUT Chlamydia infertility test, MEDAC infertile assay, MEDAC MOMP, MIF 

CT and peptide 11 variant assays could effectively differentiate participants with 

successful IVF outcome from those who did not achieve a successful IVF outcome

(p>0.05). Thus, the inability of the QUT Chlamydia infertility test to differentiate 

participants based on IVF outcomes suggests that participants positive for C. 

trachomatis-related infertility in this assay were as likely to achieve a successful IVF 

outcome as those infertile C. trachomatis seronegative participants. The sensitivity to 

detect positive live births and pregnancy rates were generally low (3%-5%) in both 

the peptide ELISAs and commercial serological assays (MEDAC infertile and 

MEDAC MOMP). Contrary to other commercial serological assays, ANILabsystems 

was able to effectively predict the IVF outcome (p=0.04). If a participant tested 

positive in this assay, they were 2.5 times more likely to have a successful IVF 

outcome. The analysis (Figure 4.3) also showed that the number of IVF cycles taken 

to achieve live birth or pregnancy rates were not statistically significantly between 

women with C. trachomatis-related TFI and women with other forms of infertility. 

This indicates that IVF treatments are as likely to be successful for women with C. 

trachomatis-related infertility as women with other forms of infertility.

.
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Table 4.8:Prediction of IVF outcome (Live birth) based on the tubal status of infertile participants, history of live births and pregnancy 

in previous IVF cycles.

Factor (+/-) Live 
birth, 
factor 

+

Live 
birth, 
factor 

-

No live 
birth, 

factor +

No live 
birth, 

factor -

Sensiti
vity 

(95% 
CI)

Specifi
city 

(95% 
CI)

Positive 
predictive 

value (95% 
CI)

Negative 
predictive 

value (95% 
CI)

Odds 
Ratio 
(95% 
CI)

Chi Squared 
P value 

(unadjusted
)

Adjusted 
Odds Ratio 
(95% CI)

Tubal status 
(Non-TFI (n= 

52)/ TFI (n=45)

24 13 18 26 0.65 
(0.47-
0.8)

0.59 
(0.43-
0.74)

0.57 (0.41-
0.72)

0.67 (0.5-
0.81)

2.67 
(1.08-
6.58)

0.032 3.9 (1.4-
11)

Previous live
birth outcome 

(TRUE / 
FALSE)

7 30 6 38 0.19 
(0.08-
0.35)

0.86 
(0.73-
0.95)

0.54 (0.25-
0.81)

0.56 (0.43-
0.68)

1.48 
(0.45-
4.86)

0.519 1.6 (0.44-
5.6)

Previous 
pregnancy 

outcome (TRUE 
/ FALSE)

8 29 12 32 0.22 
(0.1-
0.38)

0.73 
(0.57-
0.85)

0.4 (0.19-
0.64)

0.52 (0.39-
0.65)

0.74 
(0.26-
2.05)

0.557 0.71 (0.24-
2.2)

a Specificity and Sensitivity: Range is 0-1, 95% confidence intervals in parenthesis; b Positive predictive value and negative predictive value: range 0-1, 95% confidence 
intervals in parenthesis, c The analysis also accounts for variables such as BMI and smoking status.
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Table 4.9: The sensitivity and specificity of commercial serological assays and In-house peptide ELISA to predict IVF outcome in 

infertile women (n=97) in the development cohort

No. of women with 
successful live 
births/ 
pregnancies
(n=44)

No. of women with 
failed live births/ 
pregnancies 
(n=47)

Assay

True 
positive
s

False 
negatives

False 
positives

True 
negatives

aSensitivity 
(95% CI)

aSpecificity 
(95% CI)

bPositive 
predictive 
value 
(95% CI)

bNegative 
predictive 
value (95% 
CI)

Chi 
Square
d P 
value 
(unadju
sted)

Odds 
Ratio 
(95% 
CI)

cAdjusted 
odds ratio 
(95% CI)

MEDAC Infertile 5 39 2 45
0.11 
(0.04-0.25)

0.96 
(0.85-0.99)

0.71 (0.29-
0.96)

0.54 (0.42-
0.65) 0.528

0.57 
(0.1-
3.31) 1.9 (0.31-12)

ANILabsystems 6 38 3 44
0.14 
(0.05-0.27)

0.94 
(0.82-0.99)

0.67 (0.3-
0.93)

0.54 (0.42-
0.65) 0.04

4.9 
(0.95-
25.26) 2.8 (0.5-16)

MEDAC MOMP >1.2 1 43 1 46
0.02 
(0-0.12)

0.98 
(0.89-1)

0.5 (0.01-
0.99)

0.52 (0.41-
0.62) 0.273

Inf 
(NaN-

Inf)
0.56 (0.027-

12)

MIF C. trachomatis 6 31 6 38
0.16
(0.06-0.32)

0.86 
(0.73-0.95)

0.5 (0.21-
0.79)

0.55 (0.43-
0.67) 0.745

1.23 
(0.36-
4.18)

0.57 (0.12-
2.8)

MIF C. pneumoniae 15 22 10 34
0.41
(0.25-0.58)

0.77 
(0.62-0.89)

0.6 (0.39-
0.79)

0.61 (0.47-
0.74) 0.084

2.32 
(0.88- 1.9 (0.68-5.5)
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6.07)

Peptide 11 t0.411 3 34 2 42
0.08 
(0.02-0.22)

0.95 
(0.85-0.99)

0.6 (0.15-
0.95)

0.55 (0.43-
0.67) 0.507

1.2 
(0.16-
8.96) 2 (0.24-17)

HSP60E2 t 0.522 2 35 2 42
0.05 
(0.01-0.18)

0.95 
(0.85-0.99)

0.5 (0.07-
0.93)

0.55 (0.43-
0.66) 0.859

1.85 
(0.29-
11.73) 1.4 (0.15-12)

443N2 t0.539 1 36 4 40
0.03 
(0-0.14)

0.91 
(0.78-0.97)

0.2 (0.01-
0.72)

0.53 (0.41-
0.64) 0.234

1.2 
(0.16-
8.96)

0.29 (0.021-
4.1)

Double combination 
(either peptides):
Peptide 11t0.686 or 
HSP60E2 t0.559 or 
443N2 t 0.5715 2 35 5 39

0.05 
(0.01-0.18)

0.89 
(0.75-0.96)

0.29 (0.04-
0.71)

0.53 (0.41-
0.64) 0.342

0.28 
(0.03-

2.6)
0.33 (0.045-

2.4)

QUT Chlamydia infertility 
test 2 35 5 39

0.05 
(0.01-0.18)

0.89 
(0.75-0.96)

0.29 (0.04-
0.71)

0.53 (0.41-
0.64) 0.342

0.45 
(0.08-
2.45)

0.32 (0.048-
2.2)

Double combination:
Peptide 11 t 0.216 and 
443N2 t 0.4025 2 35 5 39

0.05 
(0.01-0.18)

0.89 
(0.75-0.96)

0.29 (0.04-
0.71)

0.53 (0.41-
0.64) 0.342

0.45 
(0.08-
2.45)

0.32 (0.048-
2.2)

Peptide 11 variant 
(DTRGI) t0.311 2 35 1 39

0.05
(0.01-0.18)

0.98 
(0.87-1)

0.67 (0.09-
0.99)

0.53 (0.41-
0.64) 0.51

2.23 
(0.19-
25.66) 1.8 (0.13-26)

Peptide.11.variant..DTRGI
. t0 and HSP60E2 t 0.444 
and 443N2 t 0.4025 1 36 3 41

0.03 
(0-0.14)

0.93
(0.81-0.99)

0.25 (0.01-
0.81)

0.53 (0.42-
0.65) 0.394

0.38 
(0.04-
3.81)

0.5 (0.042-
6.1)

Peptide 11 variant 3 34 2 38 0.08 0.95 0.6 (0.15- 0.53 (0.41- 0.58 1.68 1.8 (0.23-13)
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(TRGILVV) t 0.3265 (0.02-0.22) (0.83-0.99) 0.95) 0.65) (0.26-
10.64)

Peptide.11.variant..TRGIL
VV. t 0 and HSP60E2 t
0.444 and 443N2 t0.4025 1 36 3 41

0.03 
(0-0.14)

0.93 
(0.81-0.99)

0.25 (0.01-
0.81)

0.53 (0.42-
0.65) 0.394

0.38 
(0.04-
3.81)

0.5 (0.042-
6.1)

Peptide 11 variant 
(ILVVAVEAGSPA) 
t0.4825 2 35 2 38

0.05 
(0.01-0.18)

0.95 
(0.83-0.99)

0.5 (0.07-
0.93)

0.52 (0.4-
0.64) 0.936

1.09 
(0.15-
8.13)

0.99 (0.11-
9.3)

Peptide.11.variant..ILVVA
VEAGSPA. t 0 and 
HSP60E2 t 0.444 and 
443N2 t 0.4025 1 36 3 41

0.03 
(0-0.14)

0.93 
(0.81-0.99)

0.25 (0.01-
0.81)

0.53 (0.42-
0.65) 0.394

0.38 
(0.04-
3.81)

0.5 (0.042-
6.1)

Peptide 11 variant 
(ILVVAVEAGSP) t
0.676 0 37 2 38

0 
(0-0.14)

0.95 
(0.83-0.99) 0 (0-0.91)

0.51 (0.39-
0.62) 0.168

0 (0-
NaN)

5.7e-08 (0-
Inf)

Peptide.11.variant..ILVVA
VEAGSP. t 0 and 
HSP60E2 t0.444 and 
443N2 t 0.4025 1 36 3 41

0.03 
(0-0.14)

0.93 
(0.81-0.99)

0.25 (0.01-
0.81)

0.53 (0.42-
0.65) 0.394

0.38 
(0.04-
3.81)

0.5 (0.042-
6.1)

a Specificity and Sensitivity: Range is 0-1, 95% confidence intervals in parenthesis; b Positive predictive value and negative predictive value: range 0-1, 95% confidence 
intervals in parenthesis, c The analysis also accounts for variables such as BMI and smoking status.
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Figure 4.3: The association of number of cycles to achieve an IVF outcome in infertile women with C. trachomatis commercial and 
peptide ELISAs 
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Inter and intra assay variability 

The inter and intra assay variability was estimated for QUT Chlamydia

infertility test by assaying against 6 samples from each cohort; CT TFI cohort, CT 

negative infertile participants with no tubal pathology, participants with acute C. 

trachomatis infections, healthy fertile controls. The variability was measured across 

three replicates and over six days. Table 4.10 showed that the intra assay variability 

for peptide 11, HSP60-E2 and 443-N2 were 0.07, 0.069 and 0.074 respectively. The 

inter assay variability for peptide 11, HSP60-E2 and 443-N20 were 0.13, 0.139 and 

0.136, respectively. Since the coefficient of variation of both inter and intra assay 

variability was less than 15%, the peptide ELISAs yielded reproducible results, 

therefore QUT Chlamydia infertility test that includes a combination of all three 

assays would be reproducible and robust. 

Table 4.10: The inter and intra assay variability in 24 samples over the span of 6 
days for peptide ELISAs that constitute QUT Chlamydia infertility test

Assay Intra assay

variability (n=24) (%CV)

Inter assay

variability (%CV) (n=6)

Peptide 11 0.07 0.13

HSP60-E2 0.069 0.139

443-N2 0.074 0.136
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4.3.3 Testing of QUT Chlamydia infertility test as a diagnostic test on infertile 
participants recruited from an IVF clinic (Validation cohort)

The QUT Chlamydia infertility test was tested on 73 infertile participants 

recruited from an IVF clinic (Brisbane, Australia). The diagnostic performance of the 

assay in identifying tubal pathology and C. trachomatis-related infertility was 

evaluated and compared against commercial serological assays. 

QUT Chlamydia infertility test and commercial serological assays could not 
differentiate women with TFI from non-TFI infertile women in the 
validation cohort

The QUT Chlamydia infertility test was tested against another development 

cohort consisting of women recruited from another IVF clinic to validate its 

performance. The assay was tested against 19 infertile women with tubal pathology 

and 54 infertile women with no tubal pathology. Participant sera that tested equivocal 

for C. trachomatis infection in the commercial serological assays were excluded from 

the analyses. Among participants who tested equivocal, 2 participants were excluded 

from MEDAC Infertile and MEDAC MOMP, 3 participants from ANILabsystems 

and one participant from MEDACHSP60. Table 4.11 showed that while none of the 

commercial serological assays yielded significant differences between women with 

TFI and non-TFI women, MIF CT showed the highest sensitivity (26%) and positive 

predictive value (38%) compared to all other assays for identifying tubal pathology in 

women. Although, the MEDAC infertile assay and QUT Chlamydia infertility test 

showed significant difference in identifying women with C. trachomatis-related 

infertility from C. trachomatis-negative non-TFI women in the development cohort, 

the assays could not detect a single true positive in the validation cohort, but had high 

negative predictive value (72%). However, only peptide 11 showed a sensitivity of 

11% and a specificity of 81% (not significant) in detecting C. trachomatis-related 

tubal factor infertility in women. The overall low diagnostic performance of 

serological assays in this cohort could be attributed to its limited sample size and that

the tubal pathology in this cohort might not be a consequence of C. trachomatis

infections. 
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Table 4.11: The validation of the diagnostic performance of QUT Chlamydia infertility test in identifying women with TFI (n=19) from 
infertile women not associated with TFI (n=54) in the validation cohort

TFI positive 
(n=19)

Non-TFI 
(n=54)

Assay

True 
positi
ve 

False 
negati
ve 

False 
positiv
e 

True 
negati
ve 

Sensitivit
y (95% 
ci)

Specificit
y (95% 
CI)

Positive 
predictive value 
(95% CI)

Negative 
predictive value 
(95% CI)

Odds 
Ratio 
(95% CI)

Chi Squared P 
value 
(unadjusted)

MEDAC Infertile 0 19 2 50 0 (0-0.25)
0.96 
(0.87-1) 0 (0-0.91) 0.72 (0.6-0.83) 0 (0-NaN) 0.386

MEDACMOMP 1 18 3 49
0.05 (0-
0.26)

0.94 
(0.84-
0.99) 0.25 (0.01-0.81) 0.73 (0.61-0.83)

0.91 
(0.09-9.3) 0.935

MEDACHSP60 3 16 6 47
0.16 
(0.03-0.4)

0.89 
(0.77-
0.96) 0.33 (0.07-0.7) 0.75 (0.62-0.85)

1.47 
(0.33-
6.57) 0.613

ANIlabsystems 3 15 6 45

0.17 
(0.04-
0.41)

0.88 
(0.76-
0.96) 0.33 (0.07-0.7) 0.75 (0.62-0.85)

1.5 (0.33-
6.75) 0.595

MIF.CT 5 14 8 46

0.26 
(0.09-
0.51)

0.85 
(0.73-
0.93) 0.38 (0.14-0.68) 0.77 (0.64-0.87)

2.05 
(0.58-
7.29) 0.26

MIF.CP 9 10 28 26

0.47 
(0.24-
0.71)

0.48 
(0.34-
0.62) 0.24 (0.12-0.41) 0.72 (0.55-0.86)

0.84 
(0.29-
2.38) 0.737

MIF.CS 1 18 1 53
0.05 (0-
0.26)

0.98 (0.9-
1) 0.5 (0.01-0.99) 0.75 (0.63-0.84)

2.94 
(0.17-
49.54) 0.433
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PEPTIDE11 2 17 10 44

0.11 
(0.01-
0.33)

0.81 
(0.69-
0.91) 0.17 (0.02-0.48) 0.72 (0.59-0.83)

0.52 (0.1-
2.61) 0.419

HSP60E2 0 19 3 51 0 (0-0.25)

0.94 
(0.85-
0.99) 0 (0-0.81) 0.73 (0.61-0.83) 0 (0-NaN) 0.294

443N2 0 19 4 50 0 (0-0.25)

0.93 
(0.82-
0.98) 0 (0-0.72) 0.72 (0.6-0.83) 0 (0-NaN) 0.222

Double combination 
(either peptides) 0 19 6 48 0 (0-0.25)

0.89 
(0.77-
0.96) 0 (0-0.58) 0.72 (0.59-0.82) 0 (0-NaN) 0.129

QUT Chlamydia
infertility test 0 19 6 48 0 (0-0.25)

0.89 
(0.77-
0.96) 0 (0-0.58) 0.72 (0.59-0.82) 0 (0-NaN) 0.129

Double combination 
(Peptide11 and 
443N2) 0 19 6 48 0 (0-0.25)

0.89 
(0.77-
0.96) 0 (0-0.58) 0.72 (0.59-0.82) 0 (0-NaN) 0.129
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QUT Chlamydia infertility test and commercial serological assays could not 
differentiate women with tubal pathology or unknown etiology from women 
with neither tubal pathology nor unknown etiology 

The QUT Chlamydia infertility test was tested against women with tubal 

pathology or unknown etiology (n=42) against women with other forms of infertility 

(neither tubal nor unknown etiology) (n=31) (Table 4.12). Several participants were 

excluded from the study if they tested equivocal for C. trachomatis infection in the 

commercial serological assays. Therefore, only 29 participants were included in 

MEDAC Infertile, MEDACMOMP and ANILabsystems, while 30 participants were 

included in MEDACHSP60. While none of the commercial serological assays or In-

house peptide ELISAs including QUT Chlamydia infertility test yielded significant 

difference in identifying women with either tubal pathology or unknown etiology, 

MEDAC cHSP60 had the highest sensitivity (17%) amongst commercial assays. 19% 

(8/42) of participants with tubal pathology/unknown etiology were positive in MIF, 

while only 2% (1/42) and 4% (2/42) of the participants were detected by MEDAC 

Infertile and QUT Chlamydia infertility assay (sensitivity =5%; specificity =87%).
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Table 4.12: The validation of the diagnostic performance of QUT Chlamydia infertility test in identifying women with women with 
unknown etiology or tubal pathology (n=42) from infertile with no tubal pathology/unknown etiology (n=31) in the validation cohort

Assay

Unknown or 
Tubal 
pathology / 
assay +

Unknown or 
Tubal 
pathology / 
assay -

Pathology 
neither 
Tubal or 
Unknown / 
assay +

Pathology 
neither 
Tubal or 
Unknown / 
assay -

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Positive 
predictive 
value (95% 
CI)

Negative 
predictive 
value (95% 
CI)

Odds Ratio 
(95% CI)

Chi Squared 
P value 
(unadjusted)

MEDACInf
ertile 1 41 1 28

0.02 (0-
0.13)

0.97 (0.82-
1)

0.5 (0.01-
0.99)

0.41 (0.29-
0.53)

0.68 (0.04-
11.38) 0.789

MEDACM
OMP 3 39 1 28

0.07 (0.01-
0.19)

0.97 (0.82-
1)

0.75 (0.19-
0.99)

0.42 (0.3-
0.54)

2.15 (0.21-
21.8) 0.507

MEDACHS
P60 7 35 2 28

0.17 (0.07-
0.31)

0.93 (0.78-
0.99)

0.78 (0.4-
0.97)

0.44 (0.32-
0.58)

2.8 (0.54-
14.55) 0.206

ANILabsyst
ems 6 34 3 26

0.15 (0.06-
0.3)

0.9 (0.73-
0.98)

0.67 (0.3-
0.93)

0.43 (0.31-
0.57)

1.53 (0.35-
6.7) 0.571

MIF.CT 8 34 5 26
0.19 (0.09-
0.34)

0.84 (0.66-
0.95)

0.62 (0.32-
0.86)

0.43 (0.31-
0.57)

1.22 (0.36-
4.18) 0.747

MIF.CP 21 21 16 15
0.5 (0.34-
0.66)

0.48 (0.3-
0.67)

0.57 (0.39-
0.73)

0.42 (0.26-
0.59)

0.94 (0.37-
2.37) 0.892

MIF.CS 1 41 1 30
0.02 (0-
0.13)

0.97 (0.83-
1)

0.5 (0.01-
0.99)

0.42 (0.31-
0.55)

0.73 (0.04-
12.17) 0.827

PEPTIDE11 6 36 6 25
0.14 (0.05-
0.29)

0.81 (0.63-
0.93)

0.5 (0.21-
0.79)

0.41 (0.29-
0.54)

0.69 (0.2-
2.4) 0.564

HSP60E2 2 40 1 30
0.05 (0.01-
0.16)

0.97 (0.83-
1)

0.67 (0.09-
0.99)

0.43 (0.31-
0.55)

1.5 (0.13-
17.33) 0.744

443N2 2 40 2 29
0.05 (0.01-
0.16)

0.94 (0.79-
0.99)

0.5 (0.07-
0.93)

0.42 (0.3-
0.55)

0.72 (0.1-
5.45) 0.754

Double 
combination 3 39 3 28 0.07 (0.01- 0.9 (0.74- 0.5 (0.12- 0.42 (0.3- 0.72 (0.13- 0.697
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(either 
peptides)

0.19) 0.98) 0.88) 0.54) 3.82)

QUT 
Chlamydia
infertility test 2 40 4 27

0.05 (0.01-
0.16)

0.87 (0.7-
0.96)

0.33 (0.04-
0.78)

0.4 (0.28-
0.53)

0.34 (0.06-
1.97) 0.211

Double 
combination 
(Peptide11 
and 443N2) 2 40 4 27

0.05 (0.01-
0.16)

0.87 (0.7-
0.96)

0.33 (0.04-
0.78)

0.4 (0.28-
0.53)

0.34 (0.06-
1.97) 0.211
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Concordance of QUT Chlamydia infertility test with commercial assays

The concordance between QUT Chlamydia infertility test and commercial 

serological assays in detecting tubal pathology were compared in this cohort (Table 

4.13). MIF CT correlated with MOMP based serological assays, MEDAC Infertile 

and ANILabsystems (p<0.001). Although, QUT Chlamydia infertility showed no 

concordance with all commercial serological assays, it showed high concordance 

with MIF CS (p<0.001). As all the peptides in the QUT Chlamydia infertility assay 

are specific only to C. trachomatis (as confirmed by BLAST), the concordance to 

MIF CS could be due to possible cross-reactivity between C. psittaci and C. 

trachomatis.
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Table 4.13: Concordance of QUT Chlamydia infertility test with commercial and In-house peptide ELISAs in the validation cohort

MEDAC
MOMP

MEDAC
HSP60

AN
ILa
b

MIF.
CT

MIF.
CP

MIF.
CS

PEPT
IDE1
1

HSP
60E2

443N
2

Double 
combo 
(either)

QUT 
Chlamydia
infertility test

Double combo: 
peptide 11 and 
443N2

MEDACMOMP <0.001 0.021
<0.
001

<0.0
01

0.93
1 0.726 0.378

0.66
5 0.615 0.532 0.532 0.532

MEDACHSP60 0.021 <0.001
0.0
31

0.20
3

0.24
7 0.588 0.151

0.50
4 0.437 0.334 0.334 0.334

ANILab <0.001 0.031
<0.
001

<0.0
01

0.22
5 0.578 0.581

0.49
3 0.425 0.321 0.321 0.321

MIF.CT <0.001 0.203
<0.
001

<0.0
01

0.38
8 0.504 0.124

0.47
3 0.338 0.939 0.234 0.234

MIF.CP 0.931 0.247
0.2
25

0.38
8

<0.0
01 0.984 0.226

0.08
1 0.317 0.095 0.414 0.414

MIF.CS 0.726 0.588
0.5
78

0.50
4

0.98
4

<0.00
1 0.194

0.76
7 0.73 0.668 0.029 0.029

PEPTIDE11 0.378 0.151
0.5
81

0.12
4

0.22
6 0.194

<0.00
1

<0.0
01 0.062 0.001 0.001 0.001

HSP60E2 0.665 0.504
0.4
93

0.47
3

0.08
1 0.767

<0.00
1

<0.0
01 0.03 <0.001 0.106 0.106

443N2 0.615 0.437
0.4
25

0.33
8

0.31
7 0.73 0.062 0.03

<0.00
1 <0.001 <0.001 <0.001

Double combo. (Either 
peptides) 0.532 0.334

0.3
21

0.93
9

0.09
5 0.668 0.001

<0.0
01

<0.00
1 <0.001 <0.001 <0.001

QUT Chlamydia
infertility test 0.532 0.334

0.3
21

0.23
4

0.41
4 0.029 0.001

0.10
6

<0.00
1 <0.001 <0.001 <0.001

Double combo: 
peptide 11 and 443N2 0.532 0.334

0.3
21

0.23
4

0.41
4 0.029 0.001

0.10
6

<0.00
1 <0.001 <0.001 <0.001
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Women predicted to have C. trachomatis-related infertility in QUT 
Chlamydia infertility test is as likely to conceive with IVF as women with 
other forms of infertility 

The specificity and sensitivity of QUT Chlamydia infertility test to predict IVF 

outcome was assessed in Table 4.14. A total of 63 infertile women who have 

undergone IVF were included in this study. Serum samples of participants that tested 

equivocal for C trachomatis infection in commercial were excluded in the study. 

Therefore only 61 participants were included in the MEDACMOMP and MEDAC 

Infertile analysis, while only 59 participants were included in the ANILabsystems 

analysis. The QUT Chlamydia infertility assay could not effectively predict the IVF 

outcome (p>0.05). MIF was the only serological assay that could effectively predict 

live birth outcome after an IVF cycle (p=0.034). Despite showing significant 

difference, MIF CT showed very low sensitivity and specificity. This shows that 

women who are positive for C. trachomatis-related infertility in QUT Chlamydia

infertility test have equal likelihood of live birth or pregnancy via IVF as women with 

other forms of infertility. Since the women in this group were currently undergoing 

IVF, their final outcome is not yet known.
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Table 4.14: The sensitivity and specificity of commercial serological assays and QUT Chlamydia infertility test to predict IVF outcome in 
infertile women (n=63) in the validation cohort

Assay
Live birth / 
assay +

Live birth / 
assay -

No live 
birth / 
assay +

No live 
birth / 
assay -

aSensitivity 
(95% CI)

aSpecificity 
(95% CI)

bPositive 
predictive 
value (95% 
CI)

bNegative 
predictive 
value (95% 
CI)

Odds Ratio 
(95% CI)

cChi 
Squared P 
value 
(unadjusted
)

MEDAC Infertile 0 30 2 30 0 (0-0.17)
0.94 (0.79-
0.99) 0 (0-0.91)

0.5 (0.37-
0.63) 0 (0-NaN) 0.164

MEDACMOMP 1 29 3 29
0.03 (0-
0.17)

0.91 (0.75-
0.98)

0.25 (0.01-
0.81)

0.5 (0.37-
0.63)

0.33 (0.03-
3.4) 0.333

MEDACHSP60 2 29 5 27
0.06 (0.01-
0.21)

0.84 (0.67-
0.95)

0.29 (0.04-
0.71)

0.48 (0.35-
0.62)

0.37 (0.07-
2.08) 0.247

ANILabystems 3 25 6 25
0.11 (0.02-
0.28)

0.81 (0.63-
0.93)

0.33 (0.07-
0.7)

0.5 (0.36-
0.64)

0.5 (0.11-
2.22) 0.357

MIF.CT 3 28 10 22
0.1 (0.02-
0.26)

0.69 (0.5-
0.84)

0.23 (0.05-
0.54)

0.44 (0.3-
0.59)

0.24 (0.06-
0.96) 0.034

MIF.CP 14 17 20 12
0.45 (0.27-
0.64)

0.38 (0.21-
0.56)

0.41 (0.25-
0.59)

0.41 (0.24-
0.61)

0.49 (0.18-
1.35) 0.167

MIF.CS 1 30 1 31
0.03 (0-
0.17)

0.97 (0.84-
1)

0.5 (0.01-
0.99)

0.51 (0.38-
0.64)

1.03 (0.06-
17.28) 0.982

PEPTIDE11 7 24 4 28
0.23 (0.1-
0.41)

0.88 (0.71-
0.96)

0.64 (0.31-
0.89)

0.54 (0.39-
0.68)

2.04 (0.53-
7.83) 0.292

HSP60-E2 2 29 1 31
0.06 (0.01-
0.21)

0.97 (0.84-
1)

0.67 (0.09-
0.99)

0.52 (0.38-
0.65)

2.14 (0.18-
24.86) 0.535

443-N2 3 28 0 32
0.1 (0.02-
0.26) 1 (0.84-1) 1 (0.19-1)

0.53 (0.4-
0.66)

Inf (NaN-
Inf) 0.071
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a Specificity and Sensitivity: Range is 0-1, 95% confidence intervals in parenthesis; b Positive predictive value and negative predictive value: range 0-1, 95% confidence 
intervals in parenthesis, c The analysis also accounts for variables such as BMI and smoking status.

Double combo 
(either peptides) 4 27 1 31

0.13 (0.04-
0.3)

0.97 (0.84-
1)

0.8 (0.28-
0.99)

0.53 (0.4-
0.67)

4.59 (0.48-
43.63) 0.151

QUT Chlamydia
infertility test 4 27 1 31

0.13 (0.04-
0.3)

0.97 (0.84-
1)

0.8 (0.28-
0.99)

0.53 (0.4-
0.67)

4.59 (0.48-
43.63) 0.151

Double combo 
assay (peptide 11 
and 443N2) 4 27 1 31

0.13 (0.04-
0.3)

0.97 (0.84-
1)

0.8 (0.28-
0.99)

0.53 (0.4-
0.67)

4.59 (0.48-
43.63) 0.151
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4.4 DISCUSSION 

The QUT Chlamydia infertility test exhibited superior specificity and sensitivity 

compared to the current commercially available serological assays in diagnosing 

women with tubal pathology and C. trachomatis-related tubal infertility. The assay 

was developed based on the peptides that were identified in Stansfield et al. [411]. 

The peptides included Peptide 11, HSP60-E2 and 443-N2 that were derived from a 

wide range of antigens that were also known to be immunodominant in women with 

C. trachomatis-related tubal infertility. The initial proof of concept peptide ELISA 

based on peptide 11 had a specificity of 95% and a sensitivity of 47% in identifying 

women with C. trachomatis-related infertility [411]. In order to improve the 

sensitivity of the peptide 11 ELISA, a novel peptide ELISA was designed by 

combining peptide 11 with other peptides. Like peptide 11, they were specific only to 

C. trachomatis and did not show cross-reactivity with other chlamydial species (by 

BLAST). 

A range of methods and conditions were evaluated on a small- scale assay to 

triage the conditions for the large-scale tests. While all peptide assays including 

individual and combination assay formats identified women with C. trachomatis

related infertility (p<0.01), peptide combinations in multi-well format were selected 

for assay design due to its superior diagnostic performance (sensitivity=100%; 

specificity =78%-89%). 

In this study, the definition of tubal infertility and inclusion (unilateral or 

bilateral tubal occlusion) and exclusion criteria in recruiting participants for 

development and validation cohort are consistent with previous studies [362, 377, 

410]. The cohort definitions and experiment design applied in this study is similar to 

that of Bax et al. [377], who also evaluated the performance of two commercial 

ELISAs against MIF in identifying participants with tubal pathology in women with 

infertility (confirmed by laparoscopy). This was followed by evaluation of diagnostic 

performance of the commercial ELISAs in identifying C. trachomatis-related 

infertility in participants with MIF as the gold standard [377]. The study reported that 

MEDACMOMP ELISA had high specificity and could potentially be good alternative 

to MIF. 
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For large scale-evaluation of the diagnostic performance of peptide assays, the 

target groups included infertile women with tubal pathology (confirmed by 

laparoscopy) (evaluation 1) and women with C. trachomatis-related infertility 

(evaluation 2). Since MIF was considered the gold standard and used widely in CAT 

[374, 400, 404], it was used to define the infection status of the cohorts. The group 

included women with C. trachomatis- related TFI and the negative cohort included 

non-TFI infertile women seronegative and seropositive for C. trachomatis infections 

by MIF CT. Therefore, the assays were developed to be specific only to women with 

tubal infertility, and who were seropositive for C. trachomatis. 

The absorbance threshold and the corresponding diagnostic performance were 

evaluated on women with CT TFI (n=11) and negative cohort (infertile seronegative 

for C. trachomatis infection and tubal pathology; n=80) (Table 4.2). The absorbance 

threshold that yielded highest sensitivity and specificity in both individual and peptide 

combination assays were applied in evaluation 1 and evaluation 2. In evaluation 1, the 

ability of peptide assays to identify women with tubal pathology (n=45) from infertile 

women without tubal pathology (n=47) was determined. The diagnostic performances 

of peptide assay formats (individual and combination) were compared commercial 

serological assays, including MIF CT. Although MIF CT had the highest sensitivity 

(25%) in identifying tubal infertility in women as compared to commercial and In-

house peptide ELISAs, its specificity was the lowest (89%) (Table 4.3). This is 

consistent with findings of Dabekausen et al. [403] that showed that participants with 

TFI had a 9.1 times likelihood of testing positive in MIF than participants without 

TFI. The low sensitivity of MIF suggests that C. trachomatis infections may not 

account for all tubal pathology in women in this cohort. Therefore, overall sensitivity 

would be lower for all assays in this cohort. Additionally, the assay usually detects 

women with past CT infections regardless of infertility, thus compromising its 

specificity. Compared to commercial serological assays and peptide ELISAs, only 

double combination of peptides (peptide 11 and 443-N2) and triple combination of 

peptides (peptide 11, Hsp60-E2 and 443-N2) were able to significantly differentiate 

women with TFI from infertile women with non-TFI (p=0.004). In addition, the 

sensitivity (16%) and specificity (100%) of the peptide combination assays were 

higher than MEDAC infertile (sensitivity=11%; specificity =96%) and 

ANILabsystems IgG ELISA (sensitivity=14%; specificity=94%) in identifying 
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women with tubal pathology. BMI and smoking status have been implicated in female 

infertility in several studies [222-224]. Studies have shown a positive correlation of 

smoking and BMI, and their compounded effects on female infertility [222]. Thus, the 

odds ratio was adjusted for factors such as BMI and smoking status, which through 

step-wise logistic regression analysis were found to be associated with tubal 

infertility.

While the diagnostic performance of peptide ELISAs in identifying tubal 

pathology was evaluated in Evaluation 1, the diagnostic performance of the assays in 

identifying C. trachomatis-related infertility in women were evaluated in evaluation 2 

(Table 4.4). MEDAC infertile assay and the peptide combination assays were the only 

serological assays that could significantly differentiate women with C. trachomatis-

related infertility (CT TFI cohort) (n=11) from negative cohort (CT negative women 

without tubal infertility, women with acute infections, fertile women) (n=251) 

(p<0.001). MEDAC Infertile assay had the highest sensitivity (36%) in identifying 

women with C. trachomatis-related TFI compared to commercial serological assays. 

All three peptide combination assays had a sensitivity of (27%) and specificity (94%). 

Based on the evaluation 1 and evaluation 2, the triple combination assay (peptide 11, 

HSP60-E2 and 443-N2) showed the highest sensitivity (27%) and specificity (94%) 

and hence chosen as the QUT Chlamydia infertility test. Although the sensitivity of 

QUT Chlamydia infertility test was lower than MEDAC infertile assay, the positive 

predictive value of the assay was (18%-19%) were higher, which suggests that 19% 

women who tested positive in the QUT Chlamydia infertility test were true positive 

for C. trachomatis-related TFI as compared to 10% women who tested positive in 

MEDAC infertile assay. Thus, it could detect a higher proportion of participants with 

TFI that were missed by MEDAC Infertile assay. Additionally, the high specificity 

and negative predictive value (NPV) of the assay would ensure low false positive rate. 

The high NPV (96%-97%) obtained in all ELISAs in the study is consistent with 

previous reports, which report a NPV of 85%-90% for CAT [362, 410, 437].

Therefore, these characteristics make QUT Chlamydia infertility test a suitable 

diagnostic for detection of C. trachomatis tubal factor infertility and IVF could be 

recommended without any additional diagnosis for women positive in the assay. 

This superior diagnostic performance of QUT Chlamydia infertility test as 

compared to commercial serological assays suggests that combined peptides from 
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cytosolic proteins HSP60, outer membrane protein CT443 and a periplasmic protein 

HtrA showed greater antibody reactivity to women with C. trachomatis-related TFI 

than traditional protein antigens such as MOMP. Multi-well formats have been 

evaluated in the development of peptide ELISA combining CT226, CT795 and 

CT694, wherein triple combination of peptides yielded higher sensitivity but the 

specificity was compromised when compared to double combinations [389]. Bas et al.

[367] also showed that the combination of HSP60 and PGP3 improved the sensitivity 

(76%) and specificity (77%) of the assay to detect acute C. trachomatis infections as 

compared to HSP60 (sensitivity =62%; specificity =80%) and PGP3 

(sensitivity=53%; specificity =80%) used alone. Genome wide identification of 

antigens identified HSP60 and CT443 to be preferentially recognized by TFI 

participants (n=33), and reported that proteins in combination yielded higher 

sensitivity than when used alone in identifying women with tubal infertility compared 

to non-TFI infertile controls (n=23) [385]. Additionally, Budrys et al. [387] reported 

that peptide fragments of CT443 had better diagnostic value in identifying tubal 

infertility in women than full-length CT443 proteins. This shows that epitopes on 

peptides are show greater antibody reactivity than epitopes in full- length proteins. 

This highlights the antigenicity of the linear B-cell epitopes identified through 

bioinformatics analysis. Linear B-cell epitopes have been previously identified in 

MOMP [429, 439], which identified MOMP377-386 (TRLIDERAAH) to be 

immunogenic and a potential vaccine and a diagnostic candidate [429].

Several variants of peptide 11 were designed that were selected in order to

improve its solubility. The diagnostic performance of peptide variants in identifying 

women with tubal pathology and C. trachomatis-related infertility were assessed. 

Some peptide variants were detected to have slightly improved performance than 

peptide 11 in detecting tubal pathology in women (Table 4.5). However, the 

diagnostic performance did not differ between peptide 11 and its variants when C. 

trachomatis-related infertility was considered the positive group (Table 4.6). 

It was interesting to note that although MEDAC Infertile and QUT Chlamydia

infertility test were able to identify C. trachomatis-related TFI in women with high 

sensitivity and specificity, however, there was no concordance between the two 

assays (p>0.05) (Table 4.7). All commercial serological assays had significant

concordance with MIF CS and MIF CP. This suggests that the commercial serological 
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assays have a high rate of cross-reactivity between C. pneumoniae and C. psittaci. 

Land et al. [410] reported that with the exception of MEDAC MOMP all serological 

assays such as MIF, ANILabsystems showed significant cross-reactivity with C. 

pneumoniae in 315 subfertile women. C. pneumoniae has not been reported to 

contribute to tubal pathology [440], but high prevalence of serological positive people 

the population are thought to lead to false positive results in MIF CT [373]. Contrary 

to commercial serological assays, individual peptide ELISAs did not correlate with 

MIF CP and MIF CS, thus highlighting the specificity of the peptides to C. 

trachomatis alone. However, peptide combination assays including double 

combination of either peptides (p=0.002), double combination of peptide 11 and 443-

N2 (p=0.041), triple combination (p=0.032) showed high correlation with MIF CS. 

Since the peptide combination assays were controlled for high specificity, it resulted 

in a higher rate of true negatives while fewer true positives were identified. The low 

prevalence of MIF CS indicated a high rate of true negatives, which accounts for the 

correlation in the diagnostic performance between both MIF CS and the peptide 

combination assays.

The participants in the development cohort included women who underwent 

treatment at IVF clinics. The factors associated with IVF outcome was evaluated in 

Table 4.8. Amongst other factors such as previous history of live birth and pregnancy 

in previous IVF treatments, tubal pathology in women significantly correlated with 

IVF outcome (p=0.032). Infertile women without tubal pathology were 3.9 times 

more likely to have a successful IVF outcome (pregnancy/ live birth) compared to 

women with tubal pathology. The analysis was adjusted for variables such as BMI 

and smoking status, and the increase in the adjusted odds ratio suggest that one of 

these variables may also be a confounder to IVF outcome prediction. Since women 

with tubal infertility are more likely to have a successful IVF outcome, the likelihood 

of women predicted to have C. trachomatis-related infertility by QUT Chlamydia

infertility test in conceiving via IVF as women with other forms of infertility were 

represented in Table 4.9. 

With the exception of ANILabsystems, none of the serological assays including 

QUT Chlamydia infertility test were significantly different based on the IVF outcome 

or the number of cycles to achieve it in infertile women (Table 4.9). This could be due 

to the influence of confounding factors such as BMI and smoking status. Consistent 
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with the findings in this study, Tasdemir et al. [441] evaluated 51 couples undergoing 

IVF and embryo transfer treatment and reported that presence of C. trachomatis

antibodies did not alter the success rates of IVF-ET and achieved a pregnancy rate of 

32.7% as compared to participants seronegative for C. trachomatis (17.4%). Keltz et 

al. [185] also demonstrated that per-cycle pregnancy rate did not differ significantly 

in CT positive and CT negative infertile participants (n=1279). The study also showed 

that while pregnancy rates were lower in women with C. trachomatis induced 

infertility; it did not affect the IVF outcome. Among tubal factor infertility 

participants, cHSP60 seropositive participants had greater pregnancy rate than 

cHSP60 seronegative participants after oocyte pick-up (OR = 8.9, 95% CI = 2.3 to 

27.5) (n=195) [442]. Thus, it could be inferred that amongst all assisted reproductive 

technologies, IVF is most ideal and effective treatment strategy for women with C. 

trachomatis-related tubal pathology. Therefore, women positive in QUT Chlamydia

infertility could proceed directly to IVF without undergoing additional investigations. 

The reproducibility and robustness of QUT Chlamydia infertility test was 

validated by measuring inter and intra assay variability (Table 4.10). The coefficient 

of variation (%CV) was less than 15% in both assays; therefore QUT Chlamydia

infertility test was robust and reproducible. 

The diagnostic performance of the assay was validated on another cohort 

comprising of women retrospectively and prospectively recruited from a separate IVF 

clinic (n=73) (Table 4.11). Contrary to the development cohort, none of the 

serological assays including QUT Chlamydia infertility test effectively identified 

women with tubal pathology (n=19) (p>0.05). MIF CT had low sensitivity and 

specificity of 25% and 85% respectively. The inability of serological assays to detect 

tubal pathology could be due to the low prevalence of C. trachomatis-induced tubal 

pathology in the group. Group definitions may be the major factor influencing these 

results. Another explanation could be that this clinic may represent a distinct 

demographic of patients from the first, with some other aetiology being more 

commonly responsible for tubal fertility.

Keltz et al. [185] reported that women with tubal damage confirmed by 

laparoscopy and hysterosalpinography who are seropositive for C. trachomatis were 

less likely to conceive without IVF compared to women who were seronegative for 

the infection. The study also showed CAT positive women had significantly more 
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tubal damage on HSG (37.5% vs 10.1%; p=0.001) and laparoscopically confirmed 

tubal damage (85.7% vs 48.9%; p=0.002) than CAT negative participants. Therefore, 

HSG and laparoscopy may not detect all the tubal damage associated with C. 

trachomatis infection. Although not statistically significant, by including infertile 

participants with unknown etiology, the sensitivity was higher with QUT Chlamydia

infertility test as well as other serological assays (Table 4.12). Hence, in this study 

women with unknown infertility were also included, so as to determine if their 

infertility was associated with C. trachomatis infections. However, MIF CT showed 

reduced sensitivity (19%) but higher specificity in this cohort compared to women 

with tubal pathology alone (not significant). This suggests that MIF CT is more likely 

to detect tubal pathology than any other forms of infertility. The concordance between 

commercial assays and QUT Chlamydia infertility test in identifying tubal pathology 

was also assessed (Table 4.13). Similar to the development cohort results, the 

commercial assays showed great correlation with each other and not with QUT 

Chlamydia infertility assay and other peptide ELISAs. However, contrary to the 

development cohort results, the commercial assays did not show cross-reactivity with 

other species, while QUT Chlamydia infertility test showed concordance with MIF 

CS. Since very low number of positives were detected by QUT Chlamydia infertility 

test in this group as compared to commercial assays (such as ANILabsystems and 

MIF CT), it is likely that of the two samples detected, one sample could have shown 

cross-reactivity with C. psittaci. However, since the prevalence of C. trachomatis –

induced TFI has been estimated to be low in this cohort, a larger sample size would be 

needed to effectively independently validate the performance of QUT Chlamydia

infertility test. The prevalence rate of C. trachomatis-related TFI estimated by MIF in

the development cohort and validation cohort was 11.95% and 7.04% respectively, 

which was similar to previous literature (5.5% (n=1279)[185], 20.8% (n=1482)

[361]). However, high prevalence rate has also been reported by Bax et al. [377] of 

31.6% in 76 women with subfertility. Similar to the development cohort, the QUT 

Chlamydia infertility test could not predict the IVF outcome (Table 4.14). Since most 

of the women in this cohort have only begun their IVF treatment, their pregnancy 

outcomes are still unknown. Therefore, the analysis may not be relevant. 

QUT Chlamydia infertility test has demonstrated a high specificity in 

identifying women with tubal pathology (100%) and C. trachomatis-related infertility
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(94%). While, the assay significantly reduces the rate of false positives, making it an 

ideal early infertility investigative tool in fertility clinics, its sensitivity has been 

limited to 16% and 27% respectively. However, the low sensitivity means that a 

negative result in this test does not exclude the possibility of chlamydial tubal 

infertility. In addition, the multi peptide ELISA outperformed current commercial 

serological assays in identifying women with tubal pathology and chlamydial 

infertility. Despite the lack of validation in a separate IVF clinic, QUT Chlamydia

infertility is highly promising and could be developed into a specific test for 

chlamydial infertility in women. The assay validation could be further improved by 

considerably increasing the sample size of target cohort, in order to evaluate and 

enhance its diagnostic ability.

The highly specific QUT Chlamydia test can be applied through a two-step 

diagnostic pathway that could be routinely implemented during the infertility 

investigation of women presenting at the fertility clinic setting. Firstly, a MIF positive 

result could be used to indicate if further tubal investigation is needed or possible 

non-detectable tubal damage is present. If other infertility aetiologies were absent in 

the individual, then IVF would be recommended. Secondly, a highly specific ELISA, 

such as the multi-peptide test developed here, could be used to identify women who 

(if positive) are likely to have chlamydial tubal damage that might be best 

recommended to progress directly to IVF treatment. Since the study demonstrated 

equivalent IVF success rates from both fertility clinic cohorts for women who were 

positive in the serological tests compared to women who were negative. Thus, IVF 

treatment is a valid recommendation in the context of these serological results.
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5.1 INTRODUCTION

The progression of C. trachomatis infection from the lower genital tract to 

upper genital tract and its role in female infertility has been investigated using various 

in vitro [443-445], ex vivo [446-450], and mouse models [451-455]. These studies 

indicate that a pro-inflammatory response from the local tissue is likely a major 

contributor to the pathological outcome in some cases, while in others it has been 

associated with resolution of the infection.

In vitro studies have shown that infection with C. trachomatis in HeLa cells 

induced the expression of genes that regulate innate immunity [443] and Interleukin-8 

(IL-8) cytokine [444]. Buchholz et al. [444] further confirmed that IL-8 was produced 

as a result of bacterial protein synthesis at 15 hours post infection and transcription of 

IL-8 responses such AP-1, NFL6 and NFNB were also up regulated. Thus, the study 

illustrates that in in vitro, one of the early immune responses associated with C. 

trachomatis infection are IL-8 production and the genes associated with its 

transcription. Zhou et al. [445] further illustrated the signalling pathways regulating 

key pro-inflammatory immune genes that are associated with chlamydial pathology. 

The study showed that infection with a C. trachomatis pORF5 protein (secreted 

protein by pORF5 plasmid) in HeLa cells, induced the expression of genes such TNF-

D, IL-1E and IL-8 through p38/mitogen activated protein kinase (MAPK) and 

extracellular signal-regulated kinase (ERK)/MAP signaling pathways. In addition to 

IL-8, pro-inflammatory cytokine IL-6 was reported to be upregulated in a HeLa/THP-

1 co-culture model, and using a multiplexed cytometric bead array assay, the study 

reported a downregulation of IL-10, IL-12p70, and TNF-D [280].

Consistent with the findings in in vitro models, among ex vivo studies, infection 

with C. trachomatis serovar D on primary cells isolated from human fallopian tube 

showed that under hypoxic condition, IFN-J facilitated the development of persistent 

infections in the upper genital tract [447]. While the study reports the role of pro-

inflammatory cytokine in C. trachomatis-related tubal pathology, it also highlights the 

likely role of environmental conditions such as oxygen supply in reducing clearance 

of bacteria and development of pathology in the upper genital tract. Contrary to these 

findings, ex-vivo stimulation of PBMC and endometrial tissue of women with C. 

trachomatis showed an accumulation of IL-4 [449] and a polarization towards Type 2 
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immunity [448]. This was supported by genome-wide microarray analysis, which also 

revealed up-regulation of genes such as matrix metalloproteinase 10, GATA-3 

(transcription factor regulating Th2 differentiation), IL-4 as compared to IL-17 and 

IFN-J [448]. Several studies have elucidated the role of innate immunity in C. 

trachomatis –related pathology in the upper genital tract. Immumohistochemistry 

(IHC) on fallopian tubes of women with ectopic pregnancy (n=50) revealed 

expression of IL-6, IL-8 and its receptor CXCR1 [456]. Shaw et al. [267] showed an 

increased expression of prokineticin (PROK1) and its receptor PROKR1, a molecule 

that controls smooth muscle contractility and genes associated with intrauterine 

implantation, in fallopian tubes of women with a history of C. trachomatis infection

and ectopic pregnancy (n=14). The study further identified higher expressions of 

TLR2 and TLR4 in the fallopian tubes by IHC, and cell culture models further 

supported these results and showed that in addition to the innate molecules, NFNB 

was activated on C. trachomatis infection [267]. Higher expression of TLR2 and 

TLR4 were also evident in cervical monocytes obtained from women with fertility 

disorders who are positive for C. trachomatis infection (n=57) [263]. Interestingly, 

cytokine analysis of laparoscopic specimens of fallopian tube and cervical secretions 

of infertile women (n=37) revealed that the secretion of cytokines varied between 

different sites [285]. Most cytokines including IL-6, IL-2 and IL-12 levels were 

significantly much lower in the fallopian tubes of C. trachomatis positive infertile 

women compared to infertile women negative for C. trachomatis infection (p<0.05)

[285]. However, in the cervical secretions, the level of IFN-J, IL-10 and IL-12 were 

significantly higher in infertile women with C. trachomatis infection compared to 

infertile women negative for the infection (p <0.05) [285]. The presence of IL-10 and 

IFN-J in the cervical secretions of infertile participants indicates that genital mucosa 

produces both Th1/Th2 responses during C. trachomatis infection. 

The C. muridarum mouse model can replicate most pathologies associated with 

C. trachomatis in women, including ascension of infection and subsequent oviduct 

scarring, hydrosalpinx and infertility; hence it is considered a good experimental 

model for C. trachomatis [457]. Khamesipour et al. [450] illustrated that inoculation 

of C. trachomatis MoPn biovar in the ovarian bursa of C3H/ HeN and C57BL/6 mice 

resulted in salpingitis in both mice which correlated with high antibody response to 

cHSP60. The infection adversely affected the pregnancy outcome, with significantly 
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lower pregnancy rates in infected mice as compared to the control (p <0.05) (8% of 

C3H and 25% of C57BL/6). Murine models have shown that infection with C. 

trachomatis activates the development of CD8+T memory cells that elicit protection 

against pathology on secondary infection [453]. Gondek et al. [458] reported that 

secondary C. trachomatis infections in upper genital pathology induced by 

transcervical inoculation resulted in a 100-fold level of protection by CD4+T cells 

against the infection as compared to CD4+T cell naïve control. However, C. 

muriadarum immune mice that had undergone CD4+T cells depletion before 

secondary challenge did not exhibit any protective effect against the infection. Thus, 

this shows that, in addition to CD8+ T cells, CD4+T cell-specific cells skewed towards 

Th1 immunity elicit protective immunity in the upper genital tract against re-

infection. However, CD8 T-cell clones derived from infected mice showed that it 

contributed to immunopathology through production of IL-10, TNF-D and IL-13, 

which revived replication of C. muridarum in epithelial cells and subsequent scarring 

of tissues [457]. Nagarajan et al. [446] reported that infection of mouse macrophages 

and fibroblasts with C. trachomatis MoPn resulted in the production of IFN-E and IP-

10 (chemokine involved in T cell recruitment) in cells deficient in Toll like receptors, 

TLR2 and TLR4. The study showed that the production of the pro-inflammatory 

cytokines is not dependent on the TLRs, rather it adopts the MyD88 singalling 

pathway. Thus, it gives an insight into the innate immune markers associated with 

chlamydial pathology. Therefore, these studies indicate that a pro-inflammatory 

response from the local tissue is likely a major contributor to the pathological 

outcome.

Several studies have identified immune factors expressed from peripheral blood 

mononuclear cells from Chlamydia infected or infertile participants. The stimulation 

of PBMC from infertile women (n=133) with chlamydial 60kDa heat shock protein 

yielded higher production of IFN-J, IL-10 and IL-12 cytokines, while stimulation 

with EB antigen induced a weaker production of IL-10 cytokine [270]. This suggests 

that cHP60 plays an important role regulating Th1-Th2 balance and in the 

immunopathogenesis of chlamydial infection in the upper genital tract. In vitro

lymphocyte proliferation of PBMC with C. trachomatis 57-kDa HSP showed that the 

proportion of women with salpingitis (n=18) who exhibited antigen mediated 

lymphocyte proliferation were significantly higher than women with cervicitis (n=10), 
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recurrent miscarriages (n=5) and healthy fertile women (n=45) (p<0.001) [459] . This 

shows that C. trachomatis induces tubal pathology in the upper genital tract. Cytokine 

assay on PBMCs stimulated with cHSP60 revealed that the proportion of IFN-J to IL-

10 was significantly lower in women with PID and history of C. trachomatis infection 

(n=9; 0.006, P<0.01)) [273]. Thus, cHSP60 elicits a Th2 immune response in women 

with C. trachomatis- related PID. Similarly, stimulation of PBMCs from women with 

tubal factor infertility and a history of C. trachomatis infection (n=4) with chlamydial 

antigens CtTSp (Chlamydia trachomatis tail-specific protease) and CtHtrA showed 

higher production IL-6 and IL-10 [278]. In addition to cytokine and gene expression 

analysis, the influence of host gene polymorphisms were elucidated in Ohman et al.

[249]. The study reported that infertile women (n=34) with IL-10-0182 and 

IFNG+874 SNPs showed an abundance of IL-10 secretion in the PBMC compared to 

IFN-J on infection with C. trachomatis. Thus, host gene polymorphisms in IFN-J and 

IL-10 genes affect the susceptibility to TFI by influencing the cytokine profile and 

immune response to C. trachomatis infection. The PBMC studies reveal that both Th1 

and Th2 mediated immune responses are associated with C. trachomatis-related 

infertility in women. 

Diagnosis of women with chlamydial infertility is typically conducted using 

surgical or sonographic investigation for fallopian tubal blockage [460]. However, 

even in the absence of apparent tubal occlusion women who are seropositive for C. 

trachomatis are 50% less likely to conceive other than by IVF treatment [185]. 

However, serology, particularly the gold standard microimmunofluorescence, is not 

specific enough to be used as a diagnostic to proceed directly to IVF treatment [2]. It 

is estimated that 5.5% of IVF patients have chlamydial infertility (due to positive 

Chlamydia serology) in the USA [185]. However, in spite of the prevalence of this 

condition we still only have limited understanding of the underlying disease 

mechanism that results in pathology.

In this study, gene expression of 88 innate and adaptive genes (excluding 5 

house-keeping genes) and 10 secreted cytokines were measured from PBMC from 

infertile female participants who are undergoing or had recently undergone IVF 

treatment were isolated and cultured ex vivo in the presence of C. trachomatis. The 

immune response was measured in order to help understand the possible disease 

processes that have occurred from women with a history of C. trachomatis infection. 
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5.2 MATERIALS AND METHODS

5.2.1 Patient recruitment 

Whole blood and sera was collected from fully consented voluntary participants 

attending an IVF hospital (Brisbane, Australia). 31 women with infertility (requiring 

IVF treatment with multiple etiologies) (UC Health Ethics approval 1314, QUT

Human Research Ethics approval 1300000505) participated in the study. The bloods 

were processed and the PBMC were isolated the same day it was collected. The sera 

were stored at -80qC. Chlamydia Microimmunofluorescence (MIF) IgG (Focus 

Diagnostics, USA) assay (described in detail in section 3.4.4.3.) was conducted on the 

participant sera to determine the C. trachomatis infection history status.

5.2.2 C. trachomatis strain D and F strain culture 

C. trachomatis D (ATCC VR-885) and F strain (ATCC VR-346) were cultured 

in McCoy cells. Confluent cells were infected with the strains and incubated at 37qC 

for 44 hours. Following infection, the strains were semi-purified (described in section 

3.3.1.). To prepare a mixture of C. trachomatis D and F strains, the cultures were 

mixed together (equal ratio of EBs) and purified using density gradient centrifugation 

(29% v/v urografin Ultravist® (Bayer, USA)) (described in detail in Materials and 

methods 3.3.2.), and stored in sucrose phosphate buffer at -80qC.

5.2.3 PBMC proliferation and stimulation 

Peripheral blood mononuclear cells (PBMC) were isolated and purified as 

described in the section 3.6. They were cultured in 48-well cell culture plates at a 

1x106 cells/well. The PBMCs were stimulated at a MOI of 5 with 4 antigens; purified 

C. trachomatis serovar F (ATCC VR-346), purified C. trachomatis D and F mix 

(50:50 elementary bodies (EBs)), phytohemaglutinin (PHA) (positive control) and 

media (negative control). The cells were incubated for 15 hours at 37qC. After 

incubation, the cells were centrifuged at 800 ug, and the supernatant was collected.

The pelleted cells were resuspended in 1mL of RNA cell protect® reagent (Qiagen, 

Victoria, Australia) for gene expression analysis. The plates are placed in -80qC until 

further use. 
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6.1.1. History of C. trachomatis infection

The presence of past C. trachomatis infection in women with TFI was 

determined using microimmunofluorescence (MIF) (Focus Diagnostics, USA) on 

patient sera. Those patients that were rendered positive by MIF were considered as C. 

trachomatis-positive. The method has been detailed in section 3.4.4.3.

6.1.2. Expression of innate and adaptive immune genes using RT -qPCR array

The expressions of innate and adaptive immune genes that are associated with 

C. trachomatis-related infertility in women were analysed using the Qiagen RT2

Profiler PCR array. 

5.2.4 RNA isolation from PBMC

The RNA from PBMC was extracted using the RNeasy micro kit (Qiagen, 

Victoria, Australia). The cell protectant agent was removed from the cells by

centrifuging at 3000 ug for 5 minutes at 4qC. The cells were resuspended in 350PL of 

RLT lysis buffer and the RNA was extracted as per manufacturer’s instructions. The 

concentration and purity of RNA was determined by measuring the absorbance at 

260nm and 280 nm using a NanoDrop spectrophotometer (Thermofischer, USA). The 

absorbance ratios of A260/280 >2 and A230/260 >1.2 were indicative of pure RNA. An 

on-column Dnase (Qiagen, Australia) digestion for 10 minutes at room temperature 

was conducted to remove genomic DNA. The RNA was eluted into nuclease-free 

water and stored at -80qC until use.

5.2.5 cDNA synthesis

The total RNA was reverse-transcribed to cDNA using the Qiagen First Strand 

synthesis (Qiagen, Victoria, Australia). The kit includes a genomic DNA elimination 

buffer, random hexamers and oligo dT primers for reverse transcription. The RNA 

was added to the reverse transcription mix, and incubated 42qC for 15 minutes 

followed by 95qC for 5 minutes. 6PL of the resulting mixture (1:10 dilution) was used 

directly in the RT-PCR profiler array. 

5.2.6 Expression of genes using RT-PCR profiler array 

The expression of innate and adaptive immune genes were determined using 

Qiagen RT2 Profiler PCR arrays which contains preset primers for 88 genes. The 

expression levels of all genes were normalized to 5 reference genes (ACTB, B2M, 
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GAPDH, HPRT1, RPLP0) as per manufacturer’s instructions. The RT-PCR profiler 

array involves a combination of real-time PCR performance and ability of 

microarrays to detect multiple gene expressions. The kit includes a RT2 SYBR Green 

mastermix and the 384-well plates are embedded with several controls such as 

Genomic DNA control, Reverse transcription and positive PCR controls. The arrays 

were run on the Applied Biosystems ABI7900HT PCR systems. The reaction was 

initiated at 95qC for 10 minutes, followed by 40 cycles of 15s at 95qC and 1 minute at 

60qC. The fold change between C. trachomatis-positive infertile women and C. 

trachomatis-negative infertile women were determined using 2-''Ct method [461]. 

5.2.7 Cytokine ELISAs

The level of IFN-J, IL-12, IL-1B, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17 and TNF-

D were measured from the supernatants using cytokine ELISA kits (Elisakit.com, 

Melbourne, Australia) as per manufacturer’s instructions. 
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5.3 RESULTS 

5.3.1 Classification of women into cohorts based on C. trachomatis serology and 
gynecological history 

Participants were classified as C. trachomatis-positive infertile women using 

Chlamydia MIF IgG assay (four out of 31 were MIF positive and considered positive 

for C. trachomatis-related infertility). All participants were women undergoing or 

recently had IVF treatment for infertility (Table 5.1). The type of infertility was 

diagnosed using laparoscopy and the participants were characterized as positive for 

tubal infertility if they had tubal occlusion, damage or salpingitis. The participants 

who were seronegative to C. trachomatis infection were characterized as C. 

trachomatis-negative (n=27). The innate and adaptive immune responses associated 

with chlamydial infertility was analysed using cytokine ELISAs and qRT-PCR 

analysis. The immune responses induced by C. trachomatis D and F strain treatments 

within the same group were compared to the cells stimulated by media (negative 

control).

The gynecological history and demographic status of participants are outlined in 

Table 5.1. The average age of women in the C. trachomatis-positive infertile group 

was 39.5 years while the average age of women in the C. trachomatis-negative group 

was 36.8 years. In C. trachomatis-positive infertile group (n=4), 75% had tubal 

infertility accompanied by other gynecological disorders such salpingitis (n=1) PID 

(n=1) and tubal adhesion (n=2). The IVF outcome based on number of successful or 

failed live births or pregnancies after IVF treatment were reported for both C. 

trachomatis-positive infertile women and C. trachomatis-negative infertile women 

(Table 5.1). Among C. trachomatis-positive participants who underwent IVF, 75% 

were nulliparous in the past and 50% attained a successful IVF outcome. 

In the C. trachomatis-negative infertile group (n=27), 18.5% of the women had 

tubal infertility (n=5), accompanied by gynecological disorders and surgeries such as 

PID (n=1), salpinigitis (n=1), ovary removal (n=2), tubal obstruction (n=2), 

endometriosis (n=2) and polycystic ovarian syndrome (n=1). Amongst non-tubal C. 

trachomatis-negative infertile women, 33.3% (n=9) had for unknown etiology, 18.5% 

(n=5) had endometriosis (n=2). 22.2% (n=6) of the participants had polycystic 

ovarian syndrome and only one person had ectopic pregnancy and non-tubal ovary 
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removal. 77% of C. trachomatis-negative infertile women were nulliparous and about 

62% achieved a successful IVF outcome. 
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Table 5.1: Demographic and gynecological history of study participants
C. trachomatis

serology status by 

MIF

Mean 

Age 

(years) 

Type of infertility

*ectopic (n=)

*tubal(n=)

IVF outcome (live 

birth/pregnancy)

*success(n=)

*failure (n=)

Gravidas past 

*nulliparous(n=)

*multiparous (n=)

Gravidas at the 

time of

collection

(n=)

C. trachomatis-

positive infertile 

women (n=4)

39.5 Tubal (n=3) [PID (n=1); salpingitis (n=1); 

tubal adhesion (n=2)]

Unknown etiology (n=1)

Success (n=2)

Failure (n=2)

Nulliparous (n=3)

Multiparous (n=1)

0

C. trachomatis-

negative infertile 

women (n=27)

36.8 Tubal (n=5)[ovary removal (n=2); PID 

(n=1); salpingitis (n=1); tubal obstruct 

(n=2); PCOS (n=1), Endometriosis (n=2)]

Ectopic pregnancy (n=1)

Polycystic ovarian syndrome (PCOS) 

(n=6)

Endometriosis (n=5) [PID=(n=2)]

Unknown etiology (n=9)[PCOS (n=2)]

Non-tubal ovary removal (n=1)

Success (n=17)

Failure (n=10)

Nulliparous (n=21)

Multiparous (n=6)

n=7
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5.3.2 The level of IL-1E was significantly higher in women with C. trachomatis-
related infertility than in women with other forms of infertility 

The level of secreted cytokines produced by stimulated PBMCs isolated from C. 

trachomatis- positive infertile and C. trachomatis-negative infertile women was 

analysed in Figure 5.1. In response to C. trachomatis D and F EBs, high levels of IL-8 

(617.5pg/mL versus 602.5pg/mL) and TNF-D (111 pg/mL versus 71.73pg/mL) were 

secreted in PBMCs isolated from C. trachomatis-positive infertile women and C. 

trachomatis-negative infertile women. However, only IL-1E (96.42pg/mL versus 

41.42pg/mL) production in the PBMCs of C. trachomatis-positive infertile women 

was significantly higher than the levels in the PBMCs of C. trachomatis-negative 

women (p<0.05). Within the C. trachomatis-positive infertile women, the levels of 

IL-8 (617.5pg/mL and 515pg/mL), TNF-D (111pg/mL and 7.557pg/mL) and IL-1E

(96.42 pg/mL vs 7.76pg/mL) were significantly higher in the PBMC stimulated with 

C. trachomatis D and F strains compared to the negative control (Media; unstimulated 

PBMC) (Figure 5.2). Therefore, the secreted cytokines observed in the PBMC of C. 

trachomatis-positive infertile provides insight into the immune markers associated 

with C. trachomatis-related infertility.  

5.3.3 CXCL10, CXCL11 and HLA-A were significantly up-regulated in women 
with C. trachomatis-related infertility than in women with other forms of 
infertility 

Expression of 88 innate and adaptive immune genes in the stimulated PBMCs

of C. trachomatis-positive infertile and C. trachomatis-negative infertile women were

analysed using a RT-PCR array. The expression of each gene was normalized to 

reference genes and the fold change in gene expression between C. trachomatis

infertile women and women with infertility for other reasons tested (2-''Ct). Three 

genes showed increased expression levels (not significant; p > 0.05) in C. 

trachomatis-positive infertile women (n=4) compared to C. trachomatis-negative 

infertile women (n=27) (Table 5.2). The chemokines CXCL10 (5.48-fold) and 

CXCL11 (2.31-fold), and human leukocyte antigen HLA-A (2.22-fold) showed the 

most notable differences between the two participant groups (these were not 

significantly different, possibly due to the small sample size of women with C. 

trachomatis-related infertility).
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Figure 5.1: The graph shows the concentration of cytokines detected in the 
stimulated PBMCs (C. trachomatis D and F strains) of C. trachomatis- positive 

infertile women and C. trachomatis-negative infertile women .
C. trachomatis-positive infertile women (n=4) and C. trachomatis-negative infertile 
women (n=27) were compared. * indicates p<0.05. 
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Figure 5.2: The graph shows the concentration of cytokines detected in the 
stimulated PBMCs (C. trachomatis D and F strains) and unstimulated PBMCs 

(Media; negative control) of C. trachomatis- positive infertile women.

The PBMCs stimulated with C. trachomatis D and F EBs (n=4) was compared 

with the unstimulated PBMCs (media only) (n=4). * indicates p<0.05
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Table 5.2: Gene expression (2-''Ct) for PBMCs from C. trachomatis-positive infertile women compared to C. trachomatis-negative 
infertile women
Gene symbol Gene function [462] Fold change (C. 

trachomatis-positive

infertile vs C. 

trachomatis-negative

infertile)*

P value 

CXCL10 CXC motif ligand 10 or interferon gamma inducible protein 10 (IP10)- stimulation of T 

cells, natural killer cells and monocytes

5.480 0.0557889

CXCL11 Induced by IFN-J, a chemotactic for T cells 2.319 0.0717008

HLA-A Human leucocyte antigen presents peptides from endoplasmic reticulum lumen 2.224 0.0796689

MX1 Gene encodes guanosine triphosphate metabolizing protein that is induced by type I and 

type II interferons.

2.044 0.15578

TNF Tumour necrosis factor regulates cell proliferation, differentiation, apoptosis, lipid 

coagulation and metabolism. 

1.689 0.374361

HLA-E Human leucocyte antigen belongs to class I heavy chain that binds to a subset of peptides 

derived from leader peptides of other class I peptides

1.317 0.590575

C3 Complement component 3 1.190 0.471629

NFKBIA Nuclear factor of Kappa light polypeptide gene enhancer in B-cells inhibitor, alpha 1.105 0.867405
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inhibits NFK-E/REL complexes that are involved in inflammatory responses

IRF3 Interferon regulatory transcription factor (IRF) 0.185 0.97611

IL1B Interleukin 1 induces cytokine inflammatory response and regulates a variety of cellular 

activities, including cell proliferation, differentiation, and apoptosis

1.08 0.980821

CCL5 Chemokine, chemoattractant for blood monocytes, eosinophils and memory T helper 

cells

1.055 0.806007

STAT3 Mediates the expression of a variety of genes in response to cell stimuli, cell growth and 

apoptosis

1.010 0.979167

IL8 Chemoattractant, and a potent angiogenic factor. 0.995 0.657476

FASLG Member of the tumor necrosis factor superfamily FAS/FASLG signalling pathway is 

essential for immune system regulation, including activation-induced cell death (AICD) 

of T cells and cytotoxic T lymphocyte induced cell death.

0.988 0.961924

DDX58 DEAD box proteins, putative RNA helicases 0.962 0.816789

STAT1 Signal transducer and activator of transcription (STAT1) is vital for cell viability in 

response to different pathogens and cell stimuli

0.926 0.96934

MYD88 Cytosolic adapter protein; central role in the innate and adaptive immune response. 0.913 0.870936

IFNAR1 Receptor for interferons alpha and beta 0.912 0.829671

CD14 Surface antigen expressed on monocytes/macrophages; mediates the innate immune 

response to bacterial lipopolysaccharide. 

0.875 0.886719
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IL1A Interleukin 1 cytokine family; pleiotropic cytokine involved in various inflammatory 

processes, immune responses, and hematopoiesis

0.854 0.974281

STAT4 Signal transducer and activator of transcription; essential in regulating the differentiation 

of T helper cells and for mediating responses to IL12 in lymphocytes

0.831 0.906692

CSF2 Colony stimulating factor 2; production, differentiation and function of granulocytes and 

macrophages

0.818 0.972042

IL23A Subunit of the cytokine interleukin 23 (IL23). Activate the transcription activator 

STAT4, and stimulate the production of interferon-gamma (IFNJ).

0.782 0.746775

NFKB1 Transcription regulator activated by intra- and extra-cellular stimuli such as cytokines, 

ultraviolet irradiation, oxidant-free radicals, and bacterial or viral products.

0.744 0.537021

ICAM1 Intercellular adhesion molecule 1 cell surface glycoprotein; typically expressed on 

endothelial cells and cells of the immune system.

0.710 0.988701

CD40 Member of the TNF-receptor superfamily; receptor on antigen-presenting cells. memory 

B cell development, T cell-dependent immunoglobulin class switching, and germinal 

centre formation.

0.689 0.708097

CXCR3 G protein-coupled receptor with selectivity for three chemokines, termed CXCL9/Mig 

(monokine induced by interferon-g), CXCL10/IP10 (interferonJ-inducible 10 kDa 

protein) and CXCL11/I-TAC (interferon-inducible T cell a-chemoattractant). 

0.629 0.524409

IL6 Cytokine that functions in inflammation and the maturation of B cells 0.622 0.862861
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TBX21 T-box genes encode transcription factors that regulate developmental processes. 0.591 0.556515

CASP1 Cysteine-aspartic acid protease (caspase) family; apoptosis. 0.580 0.708687

CD80 Membrane receptor; induces T-cell proliferation and cytokine production. 0.578 0.923101

IRF7 IRF7 encodes interferon regulatory factor 7 (IRF); role in the transcriptional activation of 

virus-inducible cellular genes.

0.546 0.500677

STAT6 Exert IL4 mediated biological responses that induce the expression of BCL2L1/BCL-xL, 

which is responsible for the anti-apoptotic activity of IL4

0.532 0.01862

IFNG Type II interferon family 0.519 0.741645

IFNGR1 This gene (IFNGR1) encodes the ligand-binding chain (alpha) of the gamma interferon 

receptor. 

0.515 0.253977

MAPK1 MAP kinases, also known as extracellular signal-regulated kinases (ERKs); involved in a 

wide variety of cellular processes such as proliferation, differentiation, transcription 

regulation and development.

0.448 0.928017

ITGAM This gene encodes the integrin alpha M chain. 0.441 0.797051

IFNA1 Produced by macrophages and has antiviral activity 0.4068 0.621741

CD8A The CD8 antigen is a cell surface glycoprotein found on cytotoxic T lymphocytes. 

Mediates efficient immune cell-cell interactions 

0.403 0.874176

IFNB1 Production of Interferon E 0.394 0.606598
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TRAF6 TNF receptor associated factor (TRAF) protein family; mediate signal transduction 0.392 0.8323

NOD1 NOD (nucleotide-binding oligomerization domain) family; cytosolic protein, 0.374 0.857525

CXCR5 This gene encodes a multi-pass membrane protein that belongs to the CXC chemokine 

receptor family; binds to B-lymphocyte chemoattractant (BLC).

0.359 0.678219

CD4 Membrane glycoprotein of T lymphocytes; interacts with major histocompatibility 

complex class II antigens.

0.340 0.700329

CD86 Expressed by antigen-presenting cells; is the ligand for two proteins at the cell surface of 

T cells, CD28 antigen and cytotoxic T-lymphocyte-associated protein 4

0.323 0.549186

MAPK8 MAP kinases; involved in a wide variety of cellular processes such as proliferation, 

differentiation, transcription regulation and development.

0.310 0.591922

CCL2 Chemokine displays chemotactic activity for monocytes and basophils 0.294 0.601704

IL10 Cytokine pleiotropic effects in immunoregulation and inflammation. 0.292 0.539064

TICAM1 Adaptor protein containing a Toll/interleukin-1 receptor (TIR) homology domain, 

mediates signal-transduction components and protein-protein interactions between the 

Toll-like receptors (TLRs).

0.271 0.651261

JAK2 Janus kinase 2 involved in a cytokine receptor signalling pathways; is required for 

responses to gamma interferon.

0.257 0.291592

LYZ Lysozyme, targets bacterial cell wall peptidoglycan 0.257 0.72527

TLR3 Toll-like receptor (TLR) family; pathogen recognition and activation of innate 0.2541 0.722248
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immunity.

IL2 Proliferation of T and B lymphocytes 0.225 0.712847

CCR6 Beta chemokine receptor family; preferentially expressed by immature dendritic cells 

and memory T cells.

0.211 0.573793

TLR7 Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition 

and activation of innate immunity

0.204 0.416802

IRAK1 Interleukin-1 receptor-associated kinase 1; partially responsible for IL1-induced 

upregulation of the transcription factor NF-kappa B.

0.198 0.637532

CD40LG Surface of T cells; regulates B cell function by engaging CD40 0.191 0.866972

SLC11A1 Solute carrier family 11 (proton-coupled divalent metal ion transporters) family divalent 

transition metal transporter 

0.183 0.574461

FOXP3 Member of forkhead/winged-helix family of transcriptional regulator 0.162 0.614845

NLRP3 Upstream activator of NF-kappaB signaling, and it plays a role in the regulation of 

inflammation, the immune response, and apoptosis.

0.159 0.604511

TLR2 Member of the Toll-like receptor (TLR) family; fundamental role in pathogen 

recognition and activation of innate immunity

0.143 0.172989

CCR5 Beta chemokine receptor family, 0.142 0.39416

IL18 Proinflammatory cytokine; augments natural killer cell activity and stimulates interferon 

gamma production in T-helper type I cells.

0.138 0.639216
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IL1R1 Cytokine receptor interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor 

antagonist

0.117 0.579764

TLR1 Plays a fundamental role in pathogen recognition and activation of innate immunity 0.098 0.544638

TLR4 Lipopolysaccharide (LPS) found in most Gram-negative bacteria induces signal 

transduction events

0.098 0.532769

LY96 Protein associates with toll-like receptor 4 on the cell surface and confers responsiveness 

to lipopolysaccyaride (LPS)

0.089 0.675998

NOD2 Nod1/Apaf-1 family; primarily expressed in the peripheral blood leukocytes; role in the 

immune response to intracellular bacterial lipopolysaccharides (LPS)

0.088 0.653912

TLR8 Predominantly expressed in lung and peripheral blood leukocytes 0.086 0.569824

TLR6 Receptor functionally interacts with toll-like receptor 2 to mediate cellular response to 

bacterial lipoproteins

0.081 0.552111

RAG1 Involved in activation of immunoglobulin V-D-J recombination and recognition of the 

DNA substrate

0.081 0.658209

IL5 Interleukin 5 cytokine acts as a growth and differentiation factor for both B cells and 

eosinophils

0.080 0.626102

GATA3 GATA family of transcription factors; endothelial cell biology. 0.080 0.663112

IL17A Proinflammatory cytokine produced by activated T cells; regulates the activities of 

mitogen-activated protein kinases and NF-kappaB 

0.078 0.655239
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TLR5 Receptor mobilizes the nuclear factor NF-NB; inflammatory gene regulation 0.076 0.632839

CXCL13 Chemokine; promotes the migration of B lymphocytes 0.075 0.642325

IL4 Interleukin 4; pleiotropic cytokine produced by activated T cells 0.073 0.648235

MBL2 Soluble mannose-binding lectin found in serum; innate immune 0.073 0.651894

APCS Glycoprotein; 0.072 0.637162

TLR9 Toll-like receptor (TLR) family; role in pathogen recognition and activation of innate 

immunity

0.072 0.636229

CRP Host defence related functions; recognize foreign pathogens 0.071 0.651894

IL22 Interleukin-22 (IL-22); host defence at mucosal surfaces [463] 0.045 0.646686

IL13 Immunoregulatory cytokine; B-cell maturation 0.041 0.646695

MPO Myeloperoxidase (MPO). 0.037 0.611395

CCR4 G-protein-coupled receptor family; receptor for the CC chemokine 0.036 0.688041

TYK2 Tyrosine kinase Janus kinases (JAKs) protein families; interferon signalling pathways. 0.034 0.671997

CCR8 Beta chemokine receptor family; G protein-coupled receptors; important for migration of 

various cell types into the inflammatory sites.

0.015

RORC DNA-binding transcription factor; inhibits the expression of Fas ligand and IL2. 0.081 0.640822

*'CT was obtained by normalizing the level of expression of gene of interest to the expression level of housekeeping genes (HKG) ('CT= CTGOI - CTAVG HKG). Fold 
change in gene expression (2-''CT) was determined by dividing the normalized expression of gene of interest of the experimental sample by the normalized expression of 
the same gene of interest in the control sample; where ''CT= 'CT (C. trachomatis-positive infertile sample)- 'CT (C. trachomatis-negative infertile sample
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5.4 DISCUSSION

The cytokines secreted in response to CT stimulation and expression of 

immune genes in peripheral blood mononuclear cells were tested to provide 

information into the immune pathway modulated by C. trachomatis in women with

chlamydia-related infertility. Within 15 hours of co-culture with C. trachomatis, 

three immune genes, HLA-A (2.224-fold), CXCL10 (5.480- fold) and CXCL11 

(2.31-fold) were expressed at greater than 2 fold higher levels in C. trachomatis-

positive infertile women compared to C. trachomatis-negative infertile women (not 

significant). Amongst secreted cytokines, IL-1E was significantly up-regulated in 

women with C. trachomatis-related infertility compared to infertile women 

seronegative for C. trachomatis (p<0.05). The PBMCs were stimulated with a mix of 

two well characterized and common C. trachomatis strains, rather than a single 

strain, although these may not have been the same as the strain that originally 

infected the participants to cause the infertility. Serovar F is one of the most 

prevalent C. trachomatis strains in Australia [124]. Serovar D was reportedly found 

to be predominant in women with PCR confirmed C. trachomatis infection and 

elicited the highest mean IgG response (Mean IgG titre of 200) compared to other 

serovars such as such as serovas B, C and I [293]. Genotyping of C. trachomatis

from endocervical specimens of infertile Mexican women (n=152) who were positive 

for C. trachomatis infection (n=24), revealed that serovar F was the most prevalent 

serovar (54.2%), as compared to other serovars (serovars K, E, LGV, D, H, Ia) [464]. 

These two strains will not cover all of the relevant diversity of C. trachomatis, but 

were used to provide more diversity in the simulating antigen mix than a single 

strain. 

In this study, the expression of HLA-class I molecule, ecncoded by the HLA-A 

gene was upregulated in women with C. trachomatis-related infertility (not 

significant). Infection by C. trachomatis is likely to trigger a range of immune 

responses as a result of antigen binding human leukocyte antigens (HLA) molecules. 

Although several studies have established strong association between HLA class II 

molecules and their genotypes in women with chlamydial infertility [172, 465], HLA 

class I molecules and alleles have also been reported to in increasing the 

susceptibility to tubal pathology and infertility caused by C. trachomatis infections 
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[466, 467]. Kimani et al. [466] reported that HLA-A31 allele was a significant risk 

factor for C. trachomatis PID (OR (95%CI): 3.9(1.04-14.5); p=0.04; n=23) in a 

longitudinal study of urban female sex worker in Kenya (n=23 PID cases). 

Additionally, HLA-A2 was reported to elicit cytotoxic T lymphocyte responses to C. 

trachomatis MOMP in peripheral blood of patients infected by C. trachomatis [467]. 

Therefore, the upregulation of HLA-A genes in women with C. trachomatis-related 

infertility indicate that functional CD8+ T cytotoxic lymphocytes may play a role in 

chlamydial pathology.

The study also showed an increased expression of two chemokines, CXCL10 

(IP-10) and CXCL11 (IFN-inducible T cell D-chemoattractant or i-TAC) in PBMCs 

fromwomen with C. trachomatis-related infertility compared to PBMCs from

infertile women seronegative for C. trachomatis. Chemokines are small pro-

inflammatory molecules that induce migration of leucocytes [468]. The role of 

CXCL10 in protective immunity against chlamydial infections has been implicated 

in several studies [469-475]. The cytokine response to C. trachomatis in endocervical 

epithelium showed that there was a reduction of CXCL10 in polarized polA2EN 

epithelial cells [470]. CXCL10 recruits CXCR3 and CCR5 positive leukocytes such 

as T cells and natural killer cells to the site of infection and regulates IFN-J-

mediated resolution of C. trachomatis [470]. The reduced levels of CXCL10 indicate 

that endocervial epithelial cells could subvert the chemokine, which prevents the 

migration of IFN-J producing T cells to the site of infection, thus leading to 

pathology [470]. The C. muridarum model has also been used to investigate the role 

of CXCL10 in protective immunity against C. trachomatis infections [469]. The 

study showed that the levels of CXCL10 was highest 21 days post infection and 

declined after 42 days which corresponded with resolution of the disease. 

Additionally, previous studies using mouse models have shown that CXCL10 is 

predominantly expressed in upper genital tract infection and mediate protection 

through Th1 or pro-inflammatory immunity [469, 473, 476]. Similar to CXCL10, 

CXCL11 is also induced by IFN-J, which recruit CCR3, and is exclusively 

associated with Th1 responses [477].Wan et al. [478] showed that CXCL11 gene 

expression levels were higher in the secretory phase of endocervical epithelial cells 

on infection with C. trachomatis, thus indicating the potential role of hormones in 

modulating immune system. Thus, the upregulation of both CXCL10 and CXL11 in 
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the mononuclear cells of women with chlamydial infertility are indicative of Th1 

mediated immune-responses against C. trachomatis infection. 

Whilst a trend towards an increase in mRNA levels were observed for IL-1E

and TNF-D (not significant), ELISAs detection of the secreted protein showed that 

secreted IL-1E levels were significantly higher in PBMC isolated from women with 

C. trachomatis-related infertility as compared to PBMCs from C. trachomatis

seronegative infertile women (p<0.05). Consistent with the findings of Hvid et al.

[266], this study also shows that IL-1E is the pro-inflammatory cytokine induced by 

C. trachomatis infection, and an important contributor to pathology during C. 

trachomatis infections. Here the IL-1E was detected from primary ex vivo culture of 

PBMC rather than reproductive tract epithelia (as in Hvid et al., [266]), suggesting 

that both the innate epithelial response and innate mononuclear response from some 

women in response to C. trachomatis infection is pro-inflammatory and involves IL-

1E. TNF-D, a pro-inflammatory multifunctional cytokine that triggers a variety of 

immune responses on infection, also regulates production of several cytokines by 

activating various components of cellular signal transduction that has detrimental 

effect on the genital tract [479, 480]. 

Murine models have previously established the role of CD8+T cells mediated 

upper genital tract pathology via production on TNF-D by examining the oviduct 

pathology in TNF-D deficient mice [481] and OT-1 transgenic mice (CD8+T respond 

only to Ova 257-264 peptide, and not C. trachomatis- specific antigens) [482]

transgenic mice. In cervical mononuclear cells isolated from infertile women (n=70) 

stimulated with cHSP60 and cHSP10, an increase in the production of TNF-D

suggests that it maybe involved in the immunopathological condition associated with 

infertility [303]. Both IL-1E and TNF-D are potent inducers of IL-8 [479], hence high 

levels of the cytokine were observed in the supernatants of women with C. 

trachomatis-related infertility. 

The serology and gynaecology status of the participants recruited from IVF 

clinics showed that patients who were positive for chlamydial serology were 

predominantly positive for tubal pathology (75%) as compared to those who were 

negative for chlamydial serology (18.5%). C. trachomatis specific IgG antibodies in 

sera are indicative of chlamydial infertility as it was reported to be higher in women 
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with tubal factor infertility (41.4%; n=33) [165]. Analysis of follicular liquid of 253 

IVF patients revealed that cHSP60 antibodies were predominant in infertile women 

with tubal occlusion (69.5%), and it was also predominant in 74.1% of women 

whose embryo implantation failed during IVF [184]. Sharara et al. [483] showed that 

the presence of elevated serum C. trachomatis IgG in infertile women undergoing 

gamete intra-fallopian transfer cycles significantly lowered the implantation rate 

(7.1% in C. trachomatis-positive group vs 16.5% in negative C. trachomatis-

negative group) and increased the early pregnancy loss (33.3% in C. trachomatis-

positive vs 14.6% in C. trachomatis-negative group). In this study, 75% of women 

with C. trachomatis –related infertility were nulliparous compared to 62% of infertile 

seronegative for C. trachomatis. This is consistent with the findings of Coppus et al.

[484] that showed that positive C. trachomatis IgG serology in women with tubal 

pathology (n=1882) was associated with 33% lower conception rate. Thus, CXCL10, 

CXCL11, HLA-A and IL-1E maybe associated with the pathology in the upper 

genital tract that lead to severe tubal damage and lower pregnancy rate in women 

with C. trachomatis-related infertility. 

The limitations of our study include a small sample size that might account for 

the lack of significance between the groups for many factors. By restricting the 

stimulation to 15 hours, we were able to effectively identify early mononuclear 

cellular responses that are associated with C. trachomatis-related infertility in 

women. The observed differences in responses here for women with C. trachomatis-

related infertility compared to women with other causes of infertility supports the 

model that some women launch a more pronounced pro-inflammatory response to 

the infection and thus develop more serious pathology and disease sequelae and these 

responses may reflect the original response to the infection in the local tissue. 
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6.1 INTRODUCTION

Chlamydia (C.) trachomatis is one of the most common bacterial sexually 

transmitted infections in the world [102]. Due to the asymptomatic nature of the 

disease, the infection is frequently undiagnosed, resulting in the development of 

serious sequelae such as pelvic inflammatory disease, ectopic pregnancy and tubal 

infertility in women [485, 486]. Clinical infertility or subfertility is defined as the 

inability to become pregnant after 12 months of unprotected intercourse [374]. The 

lack of adequate diagnosis and timely treatment of the disease has allowed this 

infection to reach endemic levels in developing countries [487]. 

The prevalence rate (estimated by PCR) ranges from 1.5% to 5% in the 

developed affluent countries [488, 489] while it is significantly higher, ranging from 

3.7% to 15% in the developing world [490, 491]. In the United States, between the 

years 1999 and 2000, a cross-sectional population assessment of C. trachomatis

infection in 20,836 people aged 14-39 years estimated that the overall prevalence as 

1.6% [492]. However, in the years 2007-2008, an increase in the prevalence rate to 

2.2% was reported in 2667 women aged between 14- 39 years [492]. A similar 

prevalence rate of 2.0% was recorded among pregnant women aged 15-24 years 

recruited from prenatal clinics in the United States between the years 2004-2009 

[493]. The prevalence rate in Europe was similar to that reported in United States. 

For instance, a prevalence rate of 2.2% was reported in in German adolescents 

(n=1136 girls) using a nucleic acid amplification test (strand displacement 

amplification)[494]. A prevalence rate similar to Germany was reported in Ireland, 

where the prevalence of C. trachomatis infection in women recruited from antenatal 

clinics was 3.7% using polymerase chain reaction (PCR) (n=945)[495]. Conversely, 

a high prevalence rate of 7.3% (estimated by PCR) was reported in a cross-sectional 

population based study of adolescent girls in Norway, and the study further reported 

that girls were twice as more likely to be infected as boys (95% CI 5.3-9.7 vs 2.3-6) 

[496]. Similarly, a cross-sectional population based sero-surveillance study in 

Netherlands showed that seroprevalence of C. trachomatis infection in women aged 

15-39 years was 10% [497]. Davies et al. [111] reported that in 307 sex workers 

recruited from Genito- Urinary Medicine (London), the rate of PID in women with 

recent chlamydial infection was 27.4 per 100 person-years as compared to the 11.2 in 
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women with previous chlamydial infection as estimated by direct 

immunofluorescence.

In developing countries such as Nigeria, the overall prevalence rate of 

asymptomatic C. trachomatis infection estimated by PCR in 132 infertile women 

attending Gynaecological clinic was 20.5% as opposed to 10.4% in the UK and other 

developed countries [125, 126]. Out of 125 patients attending infertility and STD 

clinics in Nigeria, the prevalence rate was 8.7% in the fertility clinic (estimated by 

Chlamydia Rapid test, an immunoassay technique that detects C. trachomatis from 

swab or urine) and 10.7% in an STD clinic [128]. Using PCR, a similar prevalence 

rate to Nigeria of 18.6% also reported amongst infertile women (n=264) in India 

[498]. A higher prevalence rate of 52.8% (n=106) was reported in infertile women 

attending fertility clinics in the Manaus-Amazon (Brazil) using PCR [348]. The 

higher incidence of C. trachomatis infection has been reported in developing 

countries could be accounted by lack of regular screening strategies or untimely 

treatment of the infection, resulting in recurrent re-infection and transmission of the 

infection. Table 6.1 lists the prevalence of C. trachomatis infections in developed 

and developing countries. 
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Table 6.1:The prevalence of C. trachomatis infections in developed and developing countries

Country Study setting (number of 
women) Prevalence Testing method Reference

USA Population-based assessment 
(n=2667)

2.2% PCR [492]

USA Prenatal clinics (n=166) 2% PCR [493]
Germany Adolescent girls (n=1136) 2.2% PCR [494]
Ireland Antenatal clinics (n=945) 3.7% PCR [495]
Norway Adolescent girls (n=800) 7.3% PCR [496]

Netherlands Population sero-surveillance 
study

10% CAT [497]

India Gynaecology outpatient clinic 
(n=593)

23% PCR [487]

Italy STD outpatient clinic (n=43) 18.6% PCR [489]
Kenya Antenatal clinic (n=300) 6% Chlamydia Rapid Test [490]
Egypt IVF clinics 40% PCR and CAT [499]

Nigeria Population based prospective 
study (n=286)

29.4% CAT [500]

Haiti Women’s health clinic (n=303) 11.9% PCR [501]
Spain Cross-sectional population study 

(n=277)
4% PCR [502]

Suva Antenatal clinics (n=440) 50% CAT [503]
Iran Obstetrics and Gynaecology 

clinics (n=255)
2.4% PCR [504]

Samoa Antenatal clinics (n=299) 26.8% PCR [505]
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Sullivan et al. [506] previously estimated the prevalence rate of C. trachomatis

infection in Samoa to be 30.9%, based on pregnant women (mean age =26 years)

attending antenatal clinics between the years 1999 and 2000 (n = 427). The 

prevalence of sexually transmitted infections in pregnant women from antenatal 

clinics was also studied by Cliffe et al. [505] between the years 2004 and 2005 who 

reported that amongst all STIs such as Gonorrhoea and Syphilis, chlamydial 

prevalence (n=299) was the highest in women of all ages (26.8%) who were 

recruited from antenatal clinics. However, this group may not represent the general 

or at risk members of the population and consequently, an accurate estimate of the 

prevalence remains unknown. The high incidence of C. trachomatis infection may 

imply a high probability of increased risk of sequelae such as infertility in Samoan 

women. 

Serological assays have been used to detect anti-chlamydial antibodies during 

the infertility investigation in women as a method to predict women with tubal factor 

or chlamydial infertility [359, 377]. There are several serological tests that could be 

used to detect C. trachomatis infection. The Microimmunofluorescence (MIF) test 

developed by Wang and Grayston [366] showed a high sensitivity and it is still 

considered the serologic “gold standard”. However, it is labour intensive and highly 

subjective [2]. This has accounted for poor interpretation of MIF results that has led

to conclusions about its poor specificity. Enzyme linked immunosorbent assay 

(ELISA), overcomes the problems posed by MIF with high specificity to C. 

trachomatis as it is based on recombinant chlamydial antigens [371]. Since 

Chlamydia IgG antibodies in serum are associated with tubal pathology, ELISAs

have been introduced as non-invasive screening for implementation during the initial 

fertility investigation in some countries [365, 400]. For instance, Muvunyi et al.

[359] demonstrated that three commercial ELISA kits, ANILabsystems IgG, Vircell 

IgG and ANILabsystems IgA had a high specificity of 84%, 86%, 95% respectively 

and a positive predictive values of 73%, 76% and 81% respectively, in detecting 

tubal pathology (n=312). Thomas et al. [400] estimated that in participants with 

infertility (n=57), an IgG titer greater than 1 in 32 was effective identifying those 

with tubal damage. 

While IgG titres are indicative of past infection, positive chlamydial IgA titres 

indicate active ongoing infection [357]. Serum IgA antibodies have a half-life of 



Chapter 6: Sero- epidemiological assessment of C. trachomatis infection and infertility in Samoan women 166

about 5-7 days; hence they are useful markers of active chlamydial infections [507]. 

A number of commercial ELISAs are available to detect C. trachomatis infections.

They are often based on variable domains of MOMP synthetic peptide specific to C. 

trachomatis [371]. MOMP makes up to 60% of the outer membrane protein content 

and contains species- specific and serotype- specific epitopes [390, 393, 410, 437]. 

Several studies have implicated strong serological responses to cHsp60 (Heat Shock 

Protein60) and cHsp10 in women with subfertility [304, 508-510]. Therefore, several 

commercial kits utilise cHSP60 protein or peptide as the antigen to detect persistent 

infection or past infection. In a meta-analysis of published evaluations of various 

assays, Broeze and co-workers identified that micro immune-fluorescence (MIF) 

(various companies) was the most sensitive, but relatively low in specificity. In the 

same study, the MEDAC and ANIlabsystems ELISAsystems enzyme linked 

immunosorbent assays (ELISA) appeared to be the most specific, although less 

sensitive than MIF [365] to diagnose women with uni or bi-lateral tubal damage 

detected by surgical or sonographic technologies. These commercial tests are based 

on whole Chlamydia (MIF), or antigens (typically the major outer membrane protein 

(MOMP) and/or cHSP60). Numerous studies have reported a correlation with 

Chlamydia antibody testing (CAT) against MOMP and/or cHSP60 with diagnosed 

tubal infertility [365]. However, a proportion of women with infertility and who are 

serologically positive by CAT are absent of detectable tubal blockage or adhesions, 

but still require IVF to conceive [365].

Nucleic acid amplification tests are highly accurate techniques that are widely 

used in C. trachomatis diagnosis [318]. They detect chlamydial nucleic acids, 

transcripts from genital specimens, and non-invasive samples such urine specimens 

and self -obtained vaginal swabs, and are highly sensitive [318]. The evaluation of 

the sensitivity and specificity of NAAT techniques such as strand displacement 

amplification (SDA), PCR and Abbott ligase reaction (LCR) to C. trachomatis

showed that the three techniques performed similarly with regards to sensitivity and 

specificity [326]. However, when compared to the performance of 

enzymeimmunoassay, the detection rate for PCR was 62% higher than that of ELISA 

[327].Although it cannot be used to detect past infections, its superior sensitivity and 

specificity allows efficient diagnosis of active C. trachomatis infection [511]. In 

fertility studies, several reports on women with infertility have shown that PCR 
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prevalence rate of C. trachomatis may be lower than seroprevalence rate which 

indicates that markers of past chlamydial infections are important in determining 

chlamydial infertility as infertile women may not longer have the infection [512-

514]. 

In developing countries, very little is known about C. trachomatis and 

infertility. In Rwanda, 67.8% of sub-fertile women attending a fertility clinic were 

found to have tubal pathology by hysterosalpinography, and of these 38 (20.5%) 

were also found to have C. trachomatis serum antibodies using the ANILabsystems 

IgG ELISA for C. trachomatis infertility [365]. In India, 55% of women with 

secondary infertility had C. trachomatis IgG antibodies, and of these 63.6% had 

confirmed tubal occlusion [406]. In Ghana, women reporting infertility were more 

likely to have C. trachomatis IgG antibodies (odds ratio 2.1) compared to fertile 

women in a case-control study design that included 439 women (39% vs. 19%) 

[514]. Additionally in Alexandria, Egypt, higher titers of anti-Chlamydia IgG 

antibodies were significantly more likely in women with TFI and ectopic pregnancy 

compared to fertile or healthy pregnant controls [515]. These studies suggest that in 

fertility clinic studies within developing countries, C. trachomatis infertility is more 

common than that reported in developed countries. 

In the current study, a sero-epidemiological analysis on a Samoan population 

of women was conducted using existing commercial serological kits to evaluate both, 

the prevalence of, and the epidemiological risk factors associated with infertility 

caused by C. trachomatis. 
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6.2 MATERIALS AND METHODS

6.2.1 Epidemiological and serological assignment of groups 

The following figure (Fig 6.1) summarises the assignment and characterization 

of Samoan women using clinical history and serological techniques. It includes the 

number of samples analysed in the study and the tests conducted on the samples on 

the sexually active women in Samoa. The inclusion criteria were that participants 

were (1) sexually active (2) do not use contraceptives (3) have stayed a minimum of 

one year in the village, and (4) they should not have undergone any gynaecological 

surgeries that would render them infertile or unable to reproduce. 
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Figure 6.1: Schematic representation of the cross-sectional study design and 
analysis including the epidemiological assignment of cohorts and the serological 

assays.
The cross-sectional study included 239 female participants between the ages 18-29. 

Based on the patient data sheet, patients with incomplete data or unknown status 

were excluded from data analysis and the participants that satisfied the inclusion 

criteria were categorized as self-reported fertile (n=152) and self-reported infertile

(n=87).
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6.2.2. Cross-sectional participant recruitment in Samoan population

Study design and sample size estimation

The study design and sampling for this study has already been published in 

Walsh et al. [516]. This was a cross-sectional study set on the island of Samoa, 

which comprises of two main islands, Savaii and Upolu, and six smaller outer 

islands. Samoa is divided into four regions, the Apia Urban Area (63 villages), Upolu 

(111 villages), North-West Upolu (54 villages), and Savai’i (102 villages). Based on 

the Samoa demographic and health survey of 2009 [517], 47% of women were 

sexually active, of which 30% were assumed to meet the inclusion criteria and could 

participate in the study. The estimated C. trachomatis prevalence was 30% [505],

and in order to obtain 95% confidence interval from 26.8 to 33.2%, 800 participants 

needed to be recruited through cluster sampling method. The cluster sampling 

method included grouping the villages into 16 clusters and the samples were 

collected randomly using a sampling interval number. This yielded a total of 48 

villages, with each cluster encompassing between 1 and six villages. This cluster 

design would ensure that a minimum of 125 participants be recruited, with 50 

participants recruited from each cluster [516]. Due to the subsequent damage caused 

by the cyclone that hit in 2011, seven villages were excluded from the study. For the 

41 selected villages, the Ministry of Women, Community and Social Development 

provided the contact details of Sui o le Malo or Sui tama’ita’i o le Nu’u 

(representative of the village women’s committee) for each village. 249 sexually 

active women from the ages of 18-29 years were recruited from 41 villages. The 

approval was obtained from National University of Samoa Research Ethics 

Committee, the Oceania University of Medicine, The Samoan Ministry of Health and 

the Lower South Regional Ethics Committee in New Zealand (LRS/10/11/059). The 

approval for the study was also obtained from Queensland University of Technology 

Human Research Ethics Committee (approval number 1100000276). 

Collection of demographic and epidemiological information

Participants provided informed written consent, and completed an interview-

led questionnaire addressing their reproductive history, sexual, lifestyle and medical 

(general health, current levels of smoking, drinking, exercise, BMI) and demographic 

information (age, marital status, educational level, own and partner’s occupation). 

Table 8.4.in the appendix lists the demographic and epidemiological information of 
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the participants. The questionnaire responses were used to assign women to 

‘infertile’ (or otherwise ‘fertile’) groups based on reporting at least 12 months of 

unprotected intercourse without conceiving a pregnancy. Based on the questionnaire, 

women were classified as self-reported infertile if they reported that they have been 

trying to get pregnant, and they have been doing so for more than a year . Women 

who have indicated no problems in getting pregnant and have taken less than 1 year 

to do so were categorized as fertile. The recruitment was conducted in schools, 

churches and community halls in larger villages, and local Women’s committee 

members house was used in smaller villages. A nurse was appointed to record all the 

responses of the participants and the participants who tested positive for C. 

trachomatis were given 1000 mg of azithromycin. Their partners or recent sexual 

contact were also provided with 1000mg of azithromycin. 
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6.2.3. Diagnosis of Chlamydia trachomatis infection using NAAT

After completing their questionnaire, the first catch urine specimen and blood 

(processed to obtain sera) samples were collected from these patients. All 

questionnaires and urine specimens were de-identified labelled with the participant’s 

unique study code, and the urine specimens were analysed locally with BD 

ProbeTech Chlamydia Amplified DNA assay according to manufacture’s 

recommendations (Becton, Dickson, Franklin Lake, New Jersey, USA) as previously 

reported [516]. Urine specimens were transported to the laboratory at the end of each 

village visit. Any sample showing inhibition in the test was repeated twice and 

reported as inhibited if the tests continued to fail. 

6.2.4. Serological diagnosis of C. trachomatis infection 

The participant sera were tested for C. trachomatis antibodies using three 

commercial tests; Chlamydia trachomatis-IgG ELISA-plus MEDAC (peptides from 

MOMP protein) and cHSP60-IgG ELISA MEDAC (cHSP60 protein). The kits were 

used according to the manufacturer’s instructions. According to the MEDAC 

manufacturer-provided instructions, samples positive in both MEDAC IgG C. 

trachomatis pELISA and cHSP60 IgG ELISA indicate a high risk of developing C. 

trachomatis induced tubal factor infertility (MEDAC Infertile). ANILabsystems C. 

trachomatis IgG ELISA based on synthetic peptides from C. trachomatis -specific 

variable domain of MOMP (major outer membrane protein), identified women with 

C. trachomatis PCR diagnosed infection and infertility with a sensitivity and 

specificity of 84% and 91% respectively (n=303) [365]. C. trachomatis IgA pELISA 

MEDAC which is also based on the immunodominant region of MOMP peptide

measures the level of IgA antibodies which is an indication of current infection.

Mouton et al. showed that MEDAC IgA pELISA had a sensitivity of 53.3% and 

specificity of 90.2% in identifying women with tubal factor pathology (n=15)[437]. 

According to the manufacturer’s instructions, samples positive for MEDAC IgG p-

ELISA and C. trachomatis IgA pELISA MEDAC are definite positive for C. 

trachomatis infection. However, if they were positive only in MEDAC IgA assay, 

then the participant has a possibility of early stages of infection.
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6.2.5. Statistical analysis

Serological assays were conducted on all serological specimens collected 

during this study and analysed against epidemiological and PCR data. All statistics 

were calculated in R statistical environment (3.0.3) using the ‘EpiR (0.9-57) and 

‘metafor’ package (1.9-2) for calculation and presentation of odds ratios (forest 

plots) and embedded routines for generalized linear models for logistic regression

[413]. Odds ratios (OR) were calculated with restricted maximum likelihood 

estimates of error.

6.3. RESULTS

6.3.1. Epidemiological and demographic factors associated with infertility 

Table 6.2 lists the epidemiological and demographic factors that are associated 

with infertility. The factors that significantly associated to infertility were age, 

alcohol (frequency of drinking beer and spirits) and relationship status (p<0.05). The 

BMI of 10 women (5 infertile) were not reported. Hence, the BMI of only 82 women 

were included. Younger women between the 18-24 years, who were single, with no 

children and did not consume alcohol, were more likely to be infertile than fertile. 

The likelihood of developing infertility was four times higher in women who were 

between the ages of 18-24 years as compared to women who between the ages of 25-

29 years (OR=4.22, 95% CI=2.27-7.84), and in women who were single as compared 

to married/de-facto/separated/widowed (OR=4.00, 95% CI=2.2342-7.1613). 

Although not significant, women who were unemployed were five times more likely 

to develop infertility as compared to women who were employed (OR=5.32, 95% 

CI= 2.3-12.4).
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Table 6.2:The effect of epidemiological and demographic factors on infertility 
using chi-square tests 
Infertility vs Fertility Number 

of 
infertile 
women

Chi 
square 
value

P 
value 

OR (95% CI)

Age

18-24 years

25-29 years

70

17

22.453 <0.01 4.22 (2.2786-
7.8431)

BMI

Underweight 

Normal weight

Over weight

Obese 

0

14

37

31

3.216 0.36

-

-

1.3974 (0.686-
2.8458)

1.567 (0.75-3.26)

Problems becoming 
pregnant

No

Yes
1

1

0.155 0.694 -

1.76 (0.107-28.7)

Age of first sex

19years or older

18 years or lesser

55

32 0.255 0.614

0.8679 (0.5-1.50)

Number of sex partners

1 sex partner

2 sex partners

3 or more sex partners

54

20

13

4.629 0.099

1.77 (1.03-3.03)

Paid work

No

Yes

66

21

3.502 0.061 5.32 (2.3-12.4)
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6.3.2. A high proportion of women reporting infertility by an epidemiological 
questionnaire were serologically predicted to have chlamydial infertility

There were 239 participants in the study, and 152 of these were identified as 

being fertile. The remaining 87 women were defined as infertile. The commercial 

assays that are specifically developed to detect women with C. trachomatis infertility

(MEDAC Infertile, ANILabsystems ELISA) or women with C. trachomatis infection 

history (MEDAC MOMP, MEDAC cHSP60), or current infection (MEDAC IgA) 

were used to investigate the participant’s serological responses. 

Figure 6.2. illustrates the correlation between the diagnostic tests; PCR, 

MEDAC infertile, MEDAC MOMP, MEDAC IgA and ANILabsystems ELISA. A 

total of 9 participants were positive in all five assays including PCR. 4 participants 

tested positive only in ANILabsystems IgG ELISA, while 19 participants were 

uniquely recognized by MEDAC cHSP60 IgG ELISA. PCR, MEDAC IgA ELISA 

and MEDAC MOMP ELISA were able to identify only 5, 2 and 1 participant 

respectively. 11 participants showed co-positivity between all three IgG serological 

assays, while 16 participants showed positivity in all three IgG serological and PCR.
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Figure 6.2: Venn diagram representing concordance of positive results for PCR 
status, MEDAC Infertile and ANILabsystems ELISA, MEDAC cHSP60 and 

MEDAC IgA serology
112 participant results, excluding 127 participants who were unequivocal or 

beyond the detection range of the assay, were analysed for positive results in 

either/both or all ANILabsystems ELISA, MEDAC Infertile, MEDAC MOMP, 

MEDAC cHSP60, MEDAC IgA or current infection (PCR) tests. 9 of the 112

women testing ANILabsystems ELISA, MEDAC MOMP, MEDAC cHSP60, 

MEDAC IgA and MEDAC Infertile positive demonstrated current infection. 

Table 6.3 summarizes the ability of commercial serological assays to 

differentiate self-reported infertility in women from the fertile women in the 

population. Participant sera that tested equivocal or whose absorbance values lay 

beyond the upper and lower limit range of positive and negative controls were 

excluded from analysis. Therefore, out of 239 participants in the study, MEDAC 

infertile assay comprised of 163 participants, while 205 participants were included in 
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MEDAC MOMP. 182 participants, 218 participants and 192 participants were 

included in MEDAC cHSP60 IgG ELISA, MEDAC IgA ELISA and ANILabsystems 

IgG ELISA respectively. With 38 infertile participants in MEDAC MOMP assay 

(61.2%; OR (95%CI): 1.94 (1.09, 3.46), the assay showed significant association 

with infertility (p=0.024) and were almost twice as more likely to be infertile than 

fertile. Although not significant, participants who tested positive in MEDAC infertile 

assay and ANILabsystems were 1.7 and 1.75 times more likely to be infertile than 

fertile, respectively.

Among 85 participants positive by PCR (Figure 6.2.B), 34 women (were

seropositive in MEDAC Infertile and was significantly associated with the PCR 

status (p<0.01; OR=4.36, 95% CI= 2.19-8.68). In addition to MEDAC Infertile, all 

serological assays including MEDAC MOMP, MEDAC IgA and ANILabsystems 

IgG could significantly differentiate participants with acute C. trachomatis infections 

from those without (p<0.01). Amongst the serological assays, ANILabsystems IgG 

ELISA had the highest odds ratio, with PCR positive participants testing positive in 

ANILabsystems 6 times more than women who are PCR negative (OR=6.68, 95% 

CI=3.46-12.93). 
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Table 6.3: Correlation of Chlamydia antibodies detected by commercial serological assays with fertility status 

Infertile Fertile
Assay (+/-) Assay + Assay - Assay + Assay - Odds Ratio (95% CI) P value
MEDAC Infertile (+/-) 26 36 30 71 1.71 [0.88, 3.31] 0.11
MEDAC MOMP (+/-) 38 37 45 85 1.94 [1.09, 3.46] 0.024
MEDAC cHSP60 (+/-) 40 30 64 48 1.00 [0.55, 1.83] 1
MEDAC IgA (+/-) 11 69 12 126 1.67 [0.7, 3.99] 0.242
ANILab (+/-) 40 32 50 70 1.75 [0.97, 3.16] 0.062
MEDAC C. 
pneumoniae (+/-)

77 4 107 28 5.04 [1.70, 14.95] 0.002

Table 6.4:Correlation of Chlamydia antibodies detecting by commercial serological assays with current infection status as determined by 
PCR

Chlamydia + Chlamydia -
Assay (+/-) Assay + Assay - Assay + Assay - Odds Ratio (95% CI) P value

MEDAC Infertile (+/-) 34 28 22 79 4.36 [2.19. 8.68] <0.001
MEDAC MOMP (+/-) 46 27 37 95 4.37 [2.38, 8.04] <0.001
MEDAC cHSP60 (+/-) 52 19 52 59 3.11 [1.63, 5.91] <0.001
MEDAC IgA (+/-) 14 66 9 129 3.04 [1.25, 7.39] 0.011
ANILab (+/-) 53 18 37 84 6.68 [3.46, 12.93] <0.001
MEDAC C. 
pneumoniae (+/-)

71 8 113 24 1.88 [0.8, 4.43] 0.141
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6.3.1. Chlamydia pneumoniae serology correlates with infertility in this 
population

The prevalence of antibodies to C. pneumoniae in this population was high at 

85.1% (184/216 participants). However, it was surprising that antibodies to C. 

pneumoniae were found to be significantly more likely to be detected in women with 

infertility (p=0.002; OR 5.04, 95% CI: 1.7–14.95) (Fig 6.3A). This was not a false 

positive detection of antibodies against C. trachomatis in the C. pneumoniae assay 

because a current infection (C. trachomatis PCR positive result) and a positive result 

in C. pneumoniae serological assay did not correlate (of the 216 positive, only 71 

(35.6%) with the PCR positive result (Pearson’s chi-square test, p=0.141).
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6.4. DISCUSSION

A cross-sectional sero-epidemiological study of sexually active Samoan 

women between the ages of 18-29 years was undertaken to determine the overall 

prevalence of C. trachomatis infection and the risk of developing chlamydial

infertility. In addition to estimating the risk of chlamydial infertility using serology, 

the epidemiological and demographic factors associated with chlamydial infertility 

were determined. 

The high prevalence rate (35.6%) of C. trachomatis infection, as diagnosed by 

PCR, in the Samoan population indicates that the infection may be endemic. High 

prevalence of C. trachomatis in Samoa has been reported previously. In 2005, 

Sullivan et al. [506] reported a prevalence rate of 30.8% in 452 pregnant women 

attending antenatal clinics in Samoa using PCR. Similarly in 2008, Cliffe et al. [505], 

reported prevalence rate of 26.1% for 1618 pregnant women recruited from antenatal 

clinics. However, because these studies only evaluated women who attended 

antenatal clinics for the first time, the prevalence could be expected to be much 

higher in the population of sexually active women in Samoa. In other developing 

countries such as Kenya and Cameroon, the prevalence rate was estimated based on 

sexually active urban women recruited in antenatal clinics and student volunteers 

respectively. A cross-sectional study was conducted in Kenya, where vaginal swabs 

from sexually active women aged 18-45 years were tested by PCR and the 

prevalence was estimated to be 6% (95%CI: 3.31%-8.69%) [490]. Using Direct 

fluorescence assay (DFA) and PCR on cervical and urethral swabs, the prevalence 

rate was estimated to be 3.96% (95% CI: 2.61%-5.93%) in Cameroon [491]. In 

Bangladesh, the prevalence of C. trachomatis was estimated based on 110 sexually 

active women and 40 sex workers between the ages of 15-35 years. The prevalence 

was determined from endocervical swab specimens from the participants through 

PCR and/or immunochromatography and was estimated to be 27% in local female 

populations and 58% in female sex workers [519]. This suggests that the prevalence 

of C. trachomatis infections in Samoa is relatively higher than some other 

developing countries, thus drawing attention to the immediate need to implement 

effective diagnosis and control of the disease. 

The prevalence of approximately 50% C. trachomatis serum antibody positive 

results (MEDAC Infertile 52.5%, MEDAC MOMP 55.3%, MEDAC cHSP60 



Chapter 6: Sero- epidemiological assessment of C. trachomatis infection and infertility in Samoan women 181

42.02%, ANILabsystems ELISA 50.9%) for infertile women was high in this 

population compared to that reported in developed countries. It is not unexpected that 

the infertility assays did not correlate significantly with the infertile group, as there 

are multiple reasons for infertility. In addition, these assays were developed in 

Western countries, where the prevalence of C. trachomatis infections was much 

lower than Samoa. Most studies where a significant association is found is when the 

tubal factor infertility is the specified outcome. Consistent with the findings in this 

study, Agholor et al. [134] reported that the prevalence of serum antibodies to C. 

trachomatis in women with ectopic pregnancy in Nigeria was 48% (98 ectopic 

pregnant women) compared to 16.3% in women with normal intrauterine pregnancy. 

Although the study did report a significant difference in the prevalence of chlamydial

antibodies between women with ectopic pregnancy and fertile controls, the absence 

of C. trachomatis antibodies in 52% of women with ectopic pregnancy highlights 

that Chlamydia infection may play a less than significant role in the aetiology of the 

ectopic pregnancy in this population. In this population there is a limited knowledge 

of other fertility factors, as this was a village based survey study in the absence of 

any gynecological investigations that would normally be conducted in a fertility 

clinic. This lack of gynecological data is a limitation of the study. It is important to 

note that this study is also limited by the number of villages that were included as 

sites to recruit participants, however, the age range and sexual behavior used for 

inclusion criteria are highly relevant for women likely to be seeking pregnancy. The 

important observation is that by any of the assays it appears that approximately half 

of the women who are identified as infertile in this population have evidence of C. 

trachomatis infertility. This is higher than most studies report; even those conducted 

in fertility clinics, but are consistent with a fertility clinic study in India that found a 

similar prevalence [406]. This is likely a reflection of the absence of routine 

screening and treatment for C. trachomatis infections in this population. This may 

support that the widespread implementation of screening programs in several 

developed countries is effectively reducing the sequelae such as infertility. 

Whilst a higher proportion of infertile participants were positive compared to 

fertile participants in most serological assays, only MEDAC MOMP showed 

significant association to infertility (43.6%; P<0.05) (Table 6.3.). Mouton et al. [437]

showed that C. trachomatis specific IgG was reported in 41-57% of women with 
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tubal factor infertility (n=85), and MEDAC MOMP detected women with infertility 

with a sensitivity of 55.3% and a specificity of 75.5%. Similar to the results obtained 

in this study, MEDAC MOMP detected C. trachomatis specific IgG in 39.1% (n=23) 

of women with tubal pathology as compared to 10.4% of infertile women with 

ovulation dysfunction and idiopathic infertility (n=48) [105]. Consistent with the 

findings in Jeremiah et al. [520], the absorbance values that correspond to anti-

chlamydial antibodies in MEDAC MOMP showed a significant difference between 

women with chlamydial infertility from those without. Additionally, they were able 

to distinguish women with current C. trachomatis infection than those without. 

Whilst not recommended by the manufacturer for the test used here, many studies 

use cHSP60 antibodies as a test for chlamydial infertility. In this population, 40 of 

the 70 infertile women were positive in this test; however, this was not significantly 

higher than in the infertile compared with the fertile group. Nevertheless, the high 

prevalence of cHSP60 antibodies in this population suggests that chronic infections 

or sequelae are high in this population. A possible limitation is that the serological 

results may be influenced by a higher number of repeat infections given the high 

prevalence of infection in this population. However, the prevalence of antibodies to 

C. trachomatis was reported to be lesser in women with repeat infections than in 

women with primary infections. This was elucidated in van den Broek et al. [357], 

which reported that the prevalence of IgG was 78% in primary infection and 23% in 

recurrent infection. Similarly, the prevalence of IgA was 52% in women with 

primary infection and 37% in women with recurrent infection.

All IgG serological assays, including MEDAC MOMP, MEDAC cHSP60, 

ANILabsystem ELISA and MEDAC IgA, showed significant association with PCR 

status (p<0.01) (Table 6.4). The IgA antibody response to C. trachomatis infection 

and its correlation with PCR positivity (active infection) in the Samoan population 

confirms that C. trachomatis infection elicits humoral response. This is consistent 

with the findings of van der Broek [357], where in 94% of participants who were 

positive for C. trachomatis infection by PCR were also seropositive in MEDAC 

MOMP. In this study, amongst those women who were positive for PCR confirmed 

C. trachomatis infection, 8.03% (9/112) were also seropositive in MEDAC MOMP, 

ANILabsystems IgG ELISA, MEDAC IgA ELISA and MEDAC cHSP60 IgG 

ELISA. Using PCR alone, C. trachomatis infections was detected in 47.1% (41/87) 
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of infertile participants, while 33.3% (16/48) of infertile participants with PCR 

confirmed C. trachomatis infection also showed seropositivity in IgG serological 

assays [357]. The study also highlighted that the presence of IgA antibodies to C. 

trachomatis in the vaginal mucosa of women (PCR negative for C. trachomatis

infection), might indicate an ongoing Chlamydia infection. This also indicated a

chronic low-grade immune response in the upper genital tract [357]. Therefore, 

humoral response is detectable in women following chlamydial infection. Consistent 

with the results obtained in the study, Abdella et al. [499] estimated that the 

prevalence of chlamydial infertility in Egyptian women as 40% (n=50) by both PCR 

and ELISA. Using PCR alone, current infection was detected in 6% women, and C. 

trachomatis specific IgG antibodies were detected in 38.9% of women with primary 

infertility (n=36) and 28.6% of women with secondary infertility (n=14). Marashi et 

al. [347] reported that in Iran, the C. trachomatis prevalence estimated from 

endocervical swabs using indirect immunofluorescence was 22.6% for infertile 

women (n=150) and 4.5% for fertile healthy controls (n=200). PCR analysis of 

endocervical swabs on the same cohorts estimated the prevalence rate to be 32% in 

infertile women and 8.7% in fertile healthy controls [347]. Therefore, while PCR can 

be used to determine with current infections, serological assays are instrumental in 

identifying women with past C. trachomatis infections. 

The demographic and epidemiological factors associated with infertility 

included age, alcohol and relationship status. In this study, younger women between 

ages of 18-24 years were at a higher risk of developing infertility than women 

between the ages of 25-29 years (OR: 4.22; 95% CI = 2.27-7.84) (Table 6.2). 

Contrary to the findings in this study, majority of the studies conducted on women 

with C. trachomatis-related infertility or ectopic pregnancy showed that the mean 

age was above 28 years [134, 348, 520, 521]. Mueller et al. [522] estimated that a 

higher proportion of women between the ages of 25-29 years had a history of 

inflammatory disease as compared to women less than 25 years and greater than 30 

years (38.8%; n=129). A similar result was determined by Iris et al., [523] in which 

the mean age of infertile women with primary infertility was determined as 31.2r 3.8 

years. Savolainen et al. [524] reported that over a period of 16 years (1999-2006) the 

mean age of patients with fertility complications was 25.1 years.
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The increased prevalence observed could be explained by various factors. The 

reports of Samoa demographic and health survey, 2009 by Ministry of Health (Apia, 

Samoa) [517] showed that 55% of younger women between the ages of 15-29 years 

do not use contraceptives due to the lack of knowledge of method or source of the 

method and 59% of women are opposed to the use of contraceptives. Due to low 

condom usage rates in Samoa, there is an increasing incidence in adolescent 

pregnancy rates [517]. Additionally, only 11% of married women and 12% of never 

married women between the ages of 15-29 self-reported being likely to refuse having 

sexual intercourse with a man who has STI, the rest were supportive of having sexual 

intercourse with their partner knowing that they have an STI [517].

IgA antibodies in sera is an indication of current infection [165, 357], and 

consistent with the literature, the serum IgA was significantly associated with PCR 

status (p=0.011). Additionally, 17.5% participants who were serum IgA positive, 

were three times more likely to test positive for C. trachomatis infection in PCR as 

compared to participants who were serum IgA negative (OR=3.04, 95% CI= 1.24-

7.39). van der Broek [357] reported that 33% (n=24) of women seropositive for 

serum IgA were also positive in PCR testing, and serum IgA had a sensitivity of 32% 

and a specificity of 95% in detecting women with active infection. In this study 

MEDAC IgA antibodies were prevalent in 13.75% of women with infertility and 

were unable to differentiate women with infertility from those without. Consistent 

with this study, Muvunyi et al. [359] reported a higher prevalence of 14% (n=14) in 

women with acute infections than women with subfertility (7.8%, n=303) a 

specificity and sensitivity of 93% (95%CI= 91-95) and 14% (95%CI: 3.00-44.00) 

respectively. However, contrary to results obtained in this study, C. trachomatis

specific IgA levels were reported to be higher in women with TFI and persistent 

chlamydial infection (83.3%), and were further able to discriminate between 

participants with TFI from those with spontaneous miscarriage [165]. Komoda et al.

[528], showed that in 52 women clinically diagnosed with cervicitis/ and or PID, 

very low levels of C. trachomatis specific serum IgA was observed using a synthetic 

peptide- based ELISA test. However, it is present at early stages of infection and the 

IgA positivity rate decreased from 82.7% at the first testing to zero after 200 days

[528]. Hence, it is important to conduct additional tests such as PCR to confirm C. 

trachomatis infection. Serum IgG levels generally show greater association with 
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PCR status as evident in several studies [357, 365]. The low IgA levels were also 

reflected in the earliest studies conducted in Samoa by Ushijima et al. [529], where 

antibody testing using microplate Fluorescent antibody method reported that amongst 

192 adolescents recruited from health centres, 39% were C. trachomatis IgG 

positive, while only 10% were IgA positive. 

C. pneumoniae is a common respiratory infection associated with community 

acquired pneumonia and has been associated with systemic dissemination and 

chronic diseases such as atherosclerosis and Alzheimer’s disease [530]. Serology to 

C. pneumoniae is highly prevalent in many populations with 50–70% prevalence 

reported [531]. More recently, 57% seropositivity was reported in Australia in 

women attending sexual health or fertility clinics, suggesting the previously reported 

50–70% range is relevant [373]. However, there were no reports of the prevalence of 

C. pneumoniae serology in Samoa, therefore, this test was included in the serological 

assays conducted on this population. In this study, C. pneumoniae was significantly 

associated with infertility (p=0.002) but it did not correlate with the C. trachomatis

PCR result (p=0.141). Serology to C. pneumoniae has been previously significantly 

correlated with various diseases [530], but not infertility. One possible explanation 

for high sero-prevalence to C. pneumoniae in infertile population is that the infertile 

women here have tissue lesions or adhesions in the fallopian tube that may form a 

reservoir for the pathogen (similar to the lesions in the other chronic diseases, 

although this has never been reported) and therefore these participants more 

frequently have a positive serological response to the pathogen. Additionally, the 

antigens associated with pathogenesis may be highly conserved between C. 

trachomatis and C. pneumoniae. Another concern for the high prevalence of C. 

trachomatis in the Samoan population was that the commercial serological assays 

were possibly showing cross-reactivity with ocular C. trachomatis strains. Ocular C. 

trachomatis strains have been reported to be endemic in the Pacific Islands [532]. 

However, a study by Lees et al. [532] reported that among 200 participants who 

attended the clinic in 2011 and 2012, and 150 participants who attended in 2013, 

none of them were positive for trachoma. The study was conducted from 2009 to 

2013 and investigated eye diseases in patients attending Ophthalmology outreach 

clinics in Pacific islands, Fiju, Kiribati, Papua New Guinea, Samoa, Solomon 

Islands, Tonga, Vanuatu. Thus, the prevalence of trachoma is extremely low and it is 
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unlikely that it would interfere with the serological diagnosis of genital C. 

trachomatis infections.

In summary, the high prevalence of C. trachomatis infections in Samoa could 

be leading to increased preventable infertility in this population. Women need to be 

educated about safe-sex practices and made aware of the symptoms and diagnosis of 

C. trachomatis infections. Public health strategies such as implementation of routine 

testing and treatment for the infection could reduce the disease burden from 

infertility and could also reduce the other morbidities (PID and ectopic pregnancy) 

within this population.
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C. trachomatis infections are one of the major causes of tubal pathology in 

women, and tubal pathology accounts for up to 35% of all causes of infertility [416]. 

Since infertility treatments are financially as well as psychologically costly, it poses a 

significant burden on health care systems and individuals. Laparoscopy and 

hysterosalpinography, which cost up to AUD $4500, are currently used for 

diagnosing C. trachomatis-related tubal factor infertility. These are costly and have 

limited availability in developing countries [423]. Additionally, the invasive nature 

of the technique increases the risk of surgical complication [421]. These 

shortcomings have the potential to be overcome by a sensitive and specific 

serological diagnosis of C. trachomatis tubal infertility, a technique that is non-

invasive, easy, cost-effective [362, 403, 404]. However, none of the current 

serological diagnostic assays have been adopted for routine implementation during 

infertility investigation in fertility clinics owing to their lack of specificity, possibly 

due to cross-reactivity between other chlamydial species and lack of sensitivity 

[533]. 

Through this study, the QUT Chlamydia infertility test was developed that had 

the highest specificity of 94% and a sensitivity of 27% in identifying women with C. 

trachomatis-related TFI when compared to current commercial serological assays. 

The QUT Chlamydia infertility test comprised of three peptides; peptide 11, HSP60-

E2 and 443-N2 that were derived from antigens that are immuno-dominant in women 

with C. trachomatis induced TFI. Novel antigens for diagnosis of C. trachomatis

associated infertility in women have been identified previously, most commonly, 

through proteomic analysis via two- dimensional electrophoresis and mass 

spectrometry [353, 426, 427], and proteome array using glutathione fusion proteins 

[386, 387]. However in this study, the peptides used in the development of the assay 

were identified through in silico analysis based on their antigenicity and specificity 

to C. trachomatis (BLAST E value for C. trachomatis in HSP60-E2 and CT443 

peptides are 0.0003 and 0.005 respectively) [411]. Frikha-Gargouri et al. [534]

identified an OmcB antigen through in silico analysis, and although it showed 72.7% 

concordance with MIF and a specificity of 94.3% in detecting C. trachomatis

antibodies in participants positive in MIF, its sensitivity was very low at 23.9% 

(n=24). 



Chapter 7: General Discussion and Conclusions 189

Although, The QUT chlamydia infertility test had the highest specificity 

(100%) in identifying women with tubal pathology, its sensitivity was lower than 

MIF (16% vs 27%) (Table 4.3). However, MIF had the lowest specificity (89%) in 

detecting women with TFI (n=45). Bax et al. [377] also reported that compared to 

MEDAC MOMP, MIF had the highest sensitivity (63.6% vs 36.4%) but a lower 

specificity (81% vs 85.7%) in detecting tubal pathology (n=76). Consistent with the 

findings in the study, the sensitivity, specificity, PPV and NPV of commercial MIF 

(MIF FOCUS and MIF ANILabsystems) and ELISA (ELISA ANILabsystes and 

ELISA Vircell) in identifying sub-fertile women with tubal damage compared to 

women without (n=104) were in the ranges of 15%-27%, 88%-93%, 53%-60% and 

62%-64% respectively [359]. Therefore, compared to the commercial assays in this 

study, and those assays in previously published literature, the QUT Chlamydia

infertility test had a much higher specificity (100%) and PPV (100%). Additionally, 

this assay could significantly differentiate women with tubal damage from women 

without tubal damage (P=0.004) unlike the commercial assays used in this study. 

Thus, the QUT Chlamydia infertility test could be a potential screening test for

identifying tubal pathology in infertile women. 

The QUT Chlamydia infertility assay also demonstrated the highest specificity 

(94%), sensitivity (27%) and PPV (19%) compared to other commercial serological 

assays in detecting women with C. trachomatis-related tubal factor infertility (n=11) 

from the negative cohort (n=251) (seronegative C. trachomatis women with no TFI, 

women with acute C. trachomatis infections and fertile women). Although the 

commercial ELISA, MEDAC infertile assay (combination of MEDAC MOMP and 

MEDAC cHSP60) had a higher sensitivity and could significantly differentiate CT 

TFI cohort from negative cohort, like the QUT Chlamydia test, its PPV (10%) was 

lower than the peptide assay. Consistent with the literature, the MEDAC infertile 

assay was the best performing assay (sensitivity=36%; specificity =86%) amongst all 

commercial assays [535]. Jones et al. [375] also reported that MEDAC MOMP had 

the highest specificity in diagnosing chlamydial infertility compared to five 

commercial ELISAs, including ANILabystems. 

The high diagnostic performance of the QUT Chlamydia infertility test could

be attributed to the use of non-traditional antigens in this assay, unlike commercial 

assay that are generally based on MOMP and HSP60. The combination of peptides 
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from the cytosolic protein HSP60 (HSP60-E2), a periplasmic protein HtrA (peptide 

11) and the outer membrane protein CT443 (443-N2) potentially increased the range 

of epitopes that would improve the antibody response in women with C. trachomatis-

related TFI. Several novel antigens specific to C. trachomatis-related TFI have been 

identified previously, however none of these antigens have been developed for a 

clinical setting. Whilst Rodgers et al. [385] identified antigens that were uniquely 

recognized by participants with C. trachomatis-related infertility and combination of 

antigens that could improve the sensitivity (67%) and specificity (100%) of detecting 

women with TFI (combination of four antigens HSP60, CT376, CT381 and CT798 

and combination of two antigens CT443 and CT381), it was a predictive model 

rather than a functional diagnostic. Budrys et al. [387] further evaluated the ability of 

these antigens to discriminate between different disease groups and reported that the 

combination of six antigens HSP60, CT376, CT557 and CT443 could differentiate 

women with TFI (n=24) from fertile women (n=25) (sensitivity =63%; 

specificity=100%). However, unlike QUT Chlamydia infertility test, it was unable to 

discriminate between women with TFI and women with acute infections. 

The QUT Chlamydia infertility assay did not show complete concordance with 

any of the commercial serological tests used in this assay to identify C. trachomatis-

related TFI in women (P>0.05). However, the commercial assays correlated with 

each other as they share a common antigen (MOMP), and even with MEDAC 

infertile correlated with MIF C. pneumoniae and MIF C. psittaci. This indicates that 

the commercial assays may have a high rate of cross-reactivity between C. 

pneumoniae and C. psittaci. Although, individual peptide assays did not correlate 

with MIF C. psittaci, QUT Chlamydia infertility test did. This could be due to the 

high specificity of the assay, which ensures effective identification of true negatives 

and elimination of false positives. Since, the prevalence of C. psittaci was very low 

in the population, the number of true negatives may coincide with that of the peptide 

assay. Thus, a concordance was observed between QUT Chlamydia infertility test 

and MIF CS. Freidank et al. [536] reported a high number of C. pneumoniae

antibodies in women with tubal infertility (53% in women with one occluded tube 

(n=30) and 75% in bilateral tubal occlusion (n=64)). However, it did not correlate to 

cHSP60 from C. trachomatis [384] and was reported not to be associated with tubal 

pathology but are likely to cause false positive results in MIF [373]. 
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The assay was validated on a separate group that only included infertile women 

who were recruited from a different IVF clinic (n=74). Contrary to the development 

cohort, none of the serological assays including QUT Chlamydia infertility test 

showed a statistically significant difference in identifying women with TFI from 

women with other forms of infertility (p>0.05) in the validation cohort. However, the 

inclusion of women with unexplained infertility resulted in an increase in sensitivity 

and specificity of all serological assays. Interestingly, MEDAC MOMP (sensitivity 

=7%, 97%), MEDAC cHSP60 (sensitivity= 17%, specificity =93%) and 

ANILabsystems (sensitivity =15%, specificity =90%) showed greater sensitivity and 

specificity than MEDAC infertile (sensitivity= 2%, specificity 97%) and QUT 

Chlamydia infertility test (sensitivity= 5%, specificity =87%) in identifying women 

with unknown infertility or pathology from infertile women without tubal pathology 

and known infertility. However, the differences were not significant (P>0.05). The 

poor performance of the serological assays on this group could have been due to the 

small sample size. The low overall prevalence of C. trachomatis in the validation 

cohort could also be due to the geographical location of the IVF clinic from where 

these participants were recruited. Since the participants for assay development and 

validation were recruited from separate IVF clinics situated at different geographical 

locations, the prevalence of C. trachomatis will differ between both groups. 

Although, C. trachomatis seropositivity is associated with decreased pregnancy 

rates in infertile women, the literature suggests that it does not influence the IVF 

outcome. Tasdemir et al. [441] and Claman et al. [442] reported that after an IVF 

cycle, TFI women who were seropositive for C. trachomatis had a higher pregnancy 

rate than infertile women who were seronegative for C. trachomatis. Keltz et al.

[185] also demonstrated that participants who were seropositive for C. trachomatis

were more likely to conceive with IVF treatment than other non-IVF treatments. 

Consistent with these findings, QUT Chlamydia infertility test also could not predict 

IVF outcome (pregnancy and live birth rates) in both test and validation cohorts. 

Therefore, women who are positive for chlamydial infertility as diagnosed by the 

QUT Chlamydia infertility test are as likely to conceive via IVF as those women 

with other forms of infertility. This is important for a diagnostic assay, as the 

clinician could recommend these women to proceed to IVF without additional 

treatments or diagnosis. The limitations of this study are that due to the small sample 
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size in the validation cohort, the assay performance could not be validated 

effectively. Since, the prevalence of chlamydial infertility was higher in the 

diagnostic cohort (11 %) compared to the validation cohort (7%), an increased 

sample size would also allow higher number of participants with tubal pathology 

associated with C. trachomatis,. Future studies should include the evaluation of QUT 

Chlamydia infertility test on larger numbers of infertile participants

Thus, QUT Chlamydia infertility test is highly specific for tubal pathology and 

can effectively differentiate women with C. trachomatis induced tubal infertility 

from non-TFI infertile women seronegative for C. trachomatis, women with acute C. 

trachomatis infections and healthy fertile women. The assay is cost effective, robust 

and easy to use. Additionally, women positive in the assay could be recommended 

treatment by IVF directly. These characteristics make QUT Chlamydia test an ideal 

diagnostic tool for early infertility investigation. The accessibility and ease of use 

would also be potentially useful in low-resource setting or in countries with high 

prevalence of C. trachomatis infections. 

While several techniques have been developed for the diagnosis of C. 

trachomatis-related infertility in women, the underlying mechanism leading to tubal 

factor infertility is yet to be understood. Cytokine analyses of peripheral blood 

mononuclear cells (PBMC) from infertile women have shown the involvement of 

both cytotoxic pathological response (Th1) [270] or a humoral antibody mediated 

response (Th2)[273]. In this study the expression of 88 innate and adaptive immune 

genes and the levels of 10 secreted cytokine from PBMC s were compared between 

infertile women seronegative for C. trachomatis (n=27) and infertile women 

seropositive for C. trachomatis (n=4). After 15 hours of stimulation with C.

trachomatis EBs, the genes that were predominant in PBMC of women with C. 

trachomatis-related infertility were CXCL10, CXCL11 and HLA-A, while the 

secreted cytokine was IL-1E. Although, HLA class II molecules have been reported 

to be associated with cHSP60 and enhance Th2-type immune responses in infertile 

women (n=53) [172], HLA-A2 was reported to elicit cytotoxic T lymphocyte 

responses to C. trachomatis MOMP in the peripheral blood of C. trachomatis

infected patients [467]. In a longitudinal study of urban female sex workers in Kenya 

(n=23), HLA-A31 was reported to be a significant risk factor C. trachomatis-related 

PID [466]. Proinflammatory chemokines, CXCL10 and CXCL 11 that induce 
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migration of leucocytes, were highly expressed in stimulated PBMCs from women 

with C. trachomatis-related infertility. Both chemokines play an important role in 

regulating the Th1 type immune pathway, as CXCL10 recruits CXCR3 and CCR5 

positive leukocytes such as T cells and natural killer cells to the site of infection 

[470] and upregulation of CXCL11 (IFN-inducible T cell D-chemoattractant or i-

TAC) leads to further infiltration of IFN-J secreting T cells resulting in a positive 

feedback loop [539]. Additionally, several studies have reported that CXCL10 is 

predominantly expressed during upper genital tract infection by C. trachomatis [469, 

473, 476]. Therefore, it could be inferred that Th1 type immune pathway is one of 

the early mononuclear immune responses associated with C. trachomatis pathology.

Amongst the secreted cytokines, IL-1E, IL-8 and TNF-D were predominantly 

secreted in PBMCs from women with C. trachomatis-related infertility, however 

only IL-1E showed significantly higher levels compared to infertile women 

seronegative for C. trachomatis PBMCs. The synergistic effects of secreted 

cytokines IL-1E, IL-8 and TNF-D have been elucidated in several studies [173, 479, 

480]. Though ex vivo fallopian tube studies, Hvid et al. [173] showed that addition of 

IL-1RA receptor antagonists, blocked IL-1E and IL-8 production preventing the 

pathology from chlamydial infection. This confirms that IL-1E along with IL-8 were 

likely major factors for tubal pathology. Additionally, IL-1 production triggers and 

primes superoxide production which lead to destruction of ciliated cells and 

subsequent scarring of the fallopian tubes [173]. C. trachomatis infection in 

epithelial cells is associated with high levels of IL-8 and TNF-D, triggering a pro-

inflammatory response could either resolve the infection or lead to tissue fibrosis and 

scarring [269]. The study identified significant up-regulation and production of pro-

inflammatory cytokines and chemokines, including a trending increase in IL-8 and

TNF-D in women with C. trachomatis-related TFI. This suggests that C. trachomatis

infection triggers pro-inflammatory cytokines that augment cellular inflammatory 

response resulting in tissue damage and subsequent tubal pathology [540]. The IgG 

and IgA antibodies that were identified in women with chlamydial infertility indicate 

that humoral immunity plays an active role in infection clearance. The B-

lymphocytes serve as antigen-presenting cells to T-lymphocytes, and the resolution 

of infection is facilitated by Th1 activation [541]. Since key Th1 (IFN-J, IL-12) and 

Th2 (IL-10, IL-4) were not upregulated in stimulated PBMCs from women with 
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chlamydial infertility, the exact role of Th1 and Th2 in chlamydial pathology cannot 

be elucidated. However, the study has identified markers that contribute to a better 

understanding of mechanisms that lead to C. trachomatis-related tubal factor 

infertility in women. 

This study also evaluated the sero-epidemiological prevalence of C. 

trachomatis-related infertility in Samoa, a developing country with high prevalence 

of C. trachomatis infections in the population. Using PCR, Sullivan et al. [506] and 

Cliff et al. [505] previously reported high prevalence rates of 30.9% and 26.8% in 

women attending antenatal clinics. Given that these prevalence rates have been 

estimated on a small cohort of women attending antenatal clinics, the prevalence in 

the population has the potential to be much higher. The study tested the sera of 239 

sexually active women between the ages of 18-29 from 41 villages for C. 

trachomatis infections. Walsh et al. [516] estimated the prevalence of C. trachomatis

in the population as 35.6% using PCR. 

MEDAC infertile, characterized by a combination of MEDAC MOMP and 

MEDAC cHSP60 was used to identify women with C. trachomatis-related infertility 

in the population. Additionally, the assay had the best diagnostic performance 

compared to other commercial serological assays in identifying women with tubal 

pathology and women with C. trachomatis-related infertility (as reported during the 

evaluation of QUT Chlamydia infertility assay). There was a high proportion of 

women with self-reported infertility (36.4%) based on their epidemiological 

questionnaire. In support of the high prevalence of self-reported infertility in the 

population, it was reported that women in low resource settings suffer from high 

rates of secondary infertility [395]. The WHO estimated the prevalence of secondary 

infertility caused by sexually transmitted infections to be higher in developing 

countries such as Sub-Saharan Africa (119/1000 population), Latin America/ 

Caribbean (71/1000) compared to developed countries such North America/ Western 

Europe (19/1000) [542]. 

The concordance between PCR (detects active C. trachomatis infection) and 

serological assays (MEDAC infertile, MEDAC MOMP, MEDAC cHSP60, MEDAC 

IgA and ANILabsystems) was evaluated and only 8% of samples showed 

concordance with all serological assays and PCR. Although the serological assays 

reported a high prevalence rate of C. trachomatis infections of 50% (MEDAC 
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Infertile 52.5%, MEDAC MOMP 55.3%, MEDAC cHSP60 42.02%, ANIlabsystems 

ELISA 50.9%) in infertile women in the Samoan populations, only MEDAC MOMP 

could significantly differentiate self-reported infertile women from fertile women

(Table 6.3).

This study found that younger women between the ages of 18-24 years were at 

a higher risk of developing infertility than women between the ages of 25-29 years.

Kennedy et al. [544] noted that based of DHS reports (Demographic health and 

survey reports, 2009), the median age for first marriages in women in Samoa were 

23.6 years, and while 2.7% of the women between the ages of 15-19 were currently 

married, 9.4% had commenced childbearing. Thus, high infertility rates reported 

amongst younger women in this population may be associated with early 

childbearing.

IgA antibodies in sera is an indication of current infection [165, 357], and in 

this study, the IgA levels in serum significantly associated with women with PCR 

positive C. trachomatis infection (p<0.001). However, contrary to results obtained in 

this study, C. trachomatis specific IgA levels have been reported by others to be 

higher in women with TFI and persistent chlamydial infection (83.3%), and were 

further able to discriminate between participants with TFI (n=33) from those with 

spontaneous miscarriage (n=54)[165]. Van den Broek et al. [357] reported that a 

higher proportion of women from the STI clinic (n=116) who were PCR positive had 

higher serum IgG (98%) than serum IgA (38%), and further concluded that serum 

IgG was a better predictor of current/past infection. Interestingly, the study also 

reported that mucosal IgA showed a high specificity for tubal pathology, comparable 

to that of serum IgG (Kappa IgA 0.41, P<0.001) (n=87). The low prevalence of IgA 

antibodies and a high prevalence of IgG antibodies in the population may reflect a 

high rate of repeat infections or past infections.

Antibodies to C. pneumoniae are highly prevalent in many populations with 

50–70% prevalence reported [531]. Gijsen et al. [373] reported that 87% of C. 

pneumoniae were found in 240 subfertile women, which suggests that the prevalence 

rate of C. pneumoniae in women with infertility. Interestingly, it was more prevalent 

in women without TFI and positive for C. trachomatis by MIF (84%) compared to 

without TFI and seronegative for C. trachomatis infections (69%) [373]. 

Additionally, the C. pneumoniae antibodies did not differ significantly between 
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women with tubal pathology and without tubal pathology [440]. In the Samoan 

population, antibodies to C. pneumoniae showed significant correlation with 

infertility, but it did correlate with acute C. trachomatis as determined by PCR. This 

reflects on the high prevalence of C. pneumoniae in this population, and possible 

cross-reactivity of chlamydial antibodies exhibited by commercial serological assays.

In this population we have limited knowledge of the other fertility factors, as 

this was a village based survey study in the absence of any gynecological 

investigations that would be conducted in a fertility clinic. This lack of gynecological 

data is a limitation of the study. The important observation is that by any of the 

assays it appears that approximately half of the women who are identified as infertile 

in this population have evidence of C. trachomatis-related infertility. This is higher 

than most studies report, even those conducted in fertility clinics, but is consistent 

with a fertility clinic study in India that found a similar prevalence of 55% in 96 

women with secondary infertility [406]. This is likely a reflection of the absence of 

routine screening and treatment for C. trachomatis infections in this population. This 

may support that the widespread implementation of screening programs in several 

developed countries is effectively reducing the sequelae such as infertility. 

7.1 CONCLUSION

Through this study, the QUT Chlamydia infertility test was designed, which is 

a peptide based diagnostic assay that showed superior sensitivity and specificity 

compared to all commercial serological assays in identifying women with C. 

trachomatis-related infertility. It is non-invasive, user-friendly, cost-effective and we 

found that women with predicted chlamydial infertility by QUT infertility test were 

as likely to conceive via IVF as women with other forms of infertility; thus, making 

it an ideal diagnostic for early infertility investigation that could recommend IVF 

without additional tests. The QUT Chlamydia infertility test would be an ideal 

diagnostic tool, particularly in routine testing for low resource settings like Samoa, 

where the prevalence of C. trachomatis-related infertility is very high. This study 

also estimated the prevalence of chlamydial infertility in a developing country,

Samoa, which has a high prevalence of C. trachomatis infections. The study also 

showed that one of the earliest immune response in women with C. trachomatis-

related infertility include a pro-inflammatory response to infection, which may be 

associated with tubal pathology an subsequent infertility. 
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7.2 FUTURE DIRECTIONS

The QUT Chlamydia infertility has higher sensitivity and specificity in 

identifying women with C. trachomatis-related infertility compared to other 

commercial assays. Its performance could be further validated in longitudinal studies 

that would assess the ability of QUT Chlamydia infertility test to predict the risk of 

women developing tubal pathology and subsequent infertility. QUT Chlamydia

infertility test could also be applied on the Samoa cohort to determine the risk of 

infertility in the population and compare its diagnostic performance with the 

commercial assays used in the study. The assay needs to be further tested for 

reproducibility and repeatability, an eventually developed for clinical purposes by 

improving its fitness of purpose by improving its performance costs, sample 

throughput, shelf-life, turn-around times for test results and quality control and 

assurance. 

The immunological aspect of the study identified the initial markers associated 

with C. trachomatis induced infertility. Further transcriptomic and translational 

studies on a larger cohort of samples could reveal a better understanding of the pro-

inflammatory cytokines in influencing the Th1/Th2 balance that induce pathology. 

Understanding the immune mechanisms associated with pathogenesis and protective 

immunity could be instrumental in the development of vaccines against C. 

trachomatis infection. The high prevalence of chlamydial infertility in the women of 

Samoa stresses the need for routine testing and increasing the awareness regarding 

STIs and their consequences. Since the mean likelihood of C. trachomatis - related 

infertility was higher in younger women, screening should be implemented for 

women starting from the age of 15 years. Steps must be taken to ensure that these 

women are checked for infertility and recommended treatment immediately. 
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Table 8.1: Demographic and gynaecological characteristics of participants from 
the infertile cohort recruited from an IVF clinic (development cohort)

Participa
nt ID

Average 
age 
(years) 

Gynaecological
history 

Average 
BMI

Parity Duration 
of 
infertility

Smokin
g status

Alcohol Average 
no. IVF 
cycles for 
successfu
l outcome 

Tubal 
factor 
infertilit
y (n=45)

36.88 History of fibroids 
(n=12)

History of 
endometriosis 
(n=14)

History of 
hydrosalpinx (n=9)

Polycystic ovaries 
(n=8)

Unilateral tubal 
blockage (n=16)

Bilateral tubal 
blockage (n=29)

History of PID 
(n=4)

Ectopic pregnancy 
(n=11)

23.75 No 
pregnancy 
(n=14)
Miscarriag
e (n=19)

<1year 
(n=5)
1-2 years 
(n=10)
2-4 years 
(n=14)
>4 years 
(n=14)

Past 
(n=17)
Never 
(n=27)
Current 
(n=1)

Never 
(n=27)
Yes 
(n=18)

3.55

Non-TFI 
associate
d 
infertilit
y (n=52) 

38.26 History of fibroids 
(n=10)

History of 
endometriosis 
(n=12)

Endometritis (n=3)

Polycystic ovaries 
(n=9)

Ectopic pregnancy 
(n=2)

25.01 No 
pregnancy 
(n=10)
Miscarriag
e (n=18)

<1year 
(n=4)
1-2 years 
(n=10)
2-4 years 
(n=22)
>4 years 
(n=14)

Past 
(n=12)
Never 
(n=37)
Current 
(n=1)

Never 
(n=31)
Yes 
(n=21)

4.34
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Table 8.2: Correlation between demographic and lifestyle factors to tubal 
infertility (development cohort)

Infertility Age 
[Correlation
coefficient (p 

value)]

BMI
[correlation 
coefficient (p 

value)]

Smoking 
[correlation 
coefficient (p 

value)]

Alcohol 
consumption
[correlation
coefficient 
(p value)]

Tubal pathology 0.136 (0.093) 0.052 (0.306) 0.179 (0.04)* 0.004 (0.485)
*Smoking showed significant correlation with tubal pathology (Spearman 

correlation coefficient)
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Table 8.2: Demographic and gynaecological characteristics of participants from 
the infertile cohort recruited from IVF clinic (Brisbane) (validation cohort)

Participant 
ID

Average 
age 
(years) 

Gynecological 
history 

Average 
BMI

Parity No. of sex 
partners 

Smoking 
status

Pregnancy 
outcome 
after IVF

Live 
birth 
oucome 
after 
IVF

Tubal 
factor 
infertility 
(n=19)

37.33 Tubal adhesion 
(n=4)
Tubal obstruction 
(n=7)
Ovarian cystecty 
(n=5)
PCOS (n=4)
Endometritis (n=5)
Fibroids (n=1)
Salpingitis (n= 6)
Ectopic pregnancy 
(n= 3)
PID (n=3)

23.2
No 
pregnancy 
(n=10)

<10 (n=2)
>10(n=6)
<5 (n=11)

Past 
(n=1)
Never 
(n=18)

No (n=12)
Yes (n=7)

No 
(n=13)
Yes 
(n=4)

Non-TFI 
associated 
infertility 
(n=54) 

37.10 History of fibroids 
(n=1)
Endometritis (n=13)
Polycystic ovaries 
(n=14)
Ectopic pregnancy 
(n=1)
PID (n=4)
Unknown etiology 
(n=23)

22.76 No 
pregnancy 
(n=40)

<10 (n=20)
>10(n=12)
<5 (n=20)

Past 
(n=12)
Never 
(n=40)
Current 
(n=2)

Yes (n=19)
No (n=35)

Yes 
(n=28)
No 
(n=26)
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Table 8.3: Demographic and epidemiological information of participants from 
Samoa

Demographic/ epidemiological variables Number of participants 
(N=239)

Employed
No

Yes 

196

43

Occupation
None

Clerical/ office work 

Hospitality

Retail/ sales 

Health care worker

Government worker

Police/ military 

Farmer

Street sales

Teacher

Other

196

12

8

6

1

2

1

3

1

3

6

Education qualifications 
University degree

Tertiary level diploma

Tertiary level certificate

High school

None

4

11

30

129

65

Fertility problem diagnosed
Blocked fallopian tubes

Unexplained infertility

Other

No diagnosis

1

3

1

234

Relationship status
Married

Living with partner 

Separated

Single 

102

43

19

75
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Age of first sex
19 or older 

18 or less

156

83

Number of sex partners in life
1 sex partner

2 sex partners

3 or more sex partners

127

72

40

Past pregnancy
No

Yes

88

151

Not intending to stop pregnancy
Yes, not preventing pregnancy now

Yes, in the future

No

Missing

13

42

8

176

Duration of preventing pregnancy
Less than 1 year
1-2 years

Over 2 years

Missing

2
10

5

222

Seek medical advice 
Upto 6 months

1 year

2 years

3 years

Over 3 years

Missing

25

14

15

1

23

165

Number of children
1 child

2 children

3 children

94

70

75

Time taken for first pregnancy
Less than 12 months 74
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12-24 months

Greater than 24 months

None

41

34

94

Trying for a child after last pregnancy
No

Yes

152

87

Time taken to get pregnant after last 
pregnancy
Less than a year

1-2 years

Over 2 years

Don’t know 

Missing 

12

10

26

12

179

Regard family complete
No

Yes

Unsure

Missing

61

33

57

88

Problems becoming pregnant 
No

Yes

Missing 

96

55

88

Age
18-24 years

25-29 years

145

94

BMI 
Underweight

Normal weight

Over weight

Obese

Missing

1

45

87

96

10

Smoking status
Current smoker

Ex-smoker

44

7
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Never smoked 188

Number of cigarettes per day
1

2

3

4

5

6

8

9

10

15

Missing

1

7

6

3

9

4

1

1

7

1

199

Frequency of drinking wine
Never

Less than once a week

Once or twice a week

229

9

1

Frequency of drinking beer
Never

Less than once a week

Once or twice a week

More than twice a week

210

23

4

2

Frequency of drinking spirits
Never

Less than once a week

Once or twice a week

219

17

3

Health problems
None

Tubal surgery

Pelvic surgery

Other pelvic infection

230

3

1

5
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