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mRNA and microRNA analysis reveals 
modulation of biochemical pathways related 
to addiction in the ventral tegmental area 
of methamphetamine self-administering rats
P J Bosch1, M C Benton2,3, D Macartney‑Coxson2 and B M Kivell1*

Abstract 

Background: Methamphetamine is a highly addictive central nervous system stimulant with increasing levels of 
abuse worldwide. Alterations to mRNA and miRNA expression within the mesolimbic system can affect addiction‑
like behaviors and thus play a role in the development of drug addiction. While many studies have investigated the 
effects of high‑dose methamphetamine, and identified neurotoxic effects, few have looked at the role that persistent 
changes in gene regulation play following methamphetamine self‑administration. Therefore, the aim of this study 
was to identify RNA changes in the ventral tegmental area following methamphetamine self‑administration. We 
performed microarray analyses on RNA extracted from the ventral tegmental area of Sprague–Dawley rats following 
methamphetamine self‑administration training (2 h/day) and 14 days of abstinence.

Results: We identified 78 miRNA and 150 mRNA transcripts that were differentially expressed (fdr adjusted p < 0.05, 
absolute log2 fold change >0.5); these included genes not previously associated with addiction (miR‑125a‑5p, miR‑
145 and Foxa1), loci encoding receptors related to drug addiction behaviors and genes with previously recognized 
roles in addiction such as miR‑124, miR‑181a, DAT and Ret.

Conclusion: This study provides insight into the effects of methamphetamine on RNA expression in a key brain 
region associated with addiction, highlighting the possibility that persistent changes in the expression of genes with 
both known and previously unknown roles in addiction occur.
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Background
Methamphetamine is a highly addictive psychostimu-
lant reported to be the second most highly abused illegal 
drug in the world [1]. Intoxication causes euphoria and 
hyperactivity, as well as depression, anxiety and psycho-
sis [2, 3]. Extensive gene expression changes following 
high levels of methamphetamine have been observed in 
the brain, causing dopaminergic terminal degeneration in 
many rodent models [2, 4].

Pre-clinical research using experimenter-administered 
(non-contingent) exposure to methamphetamine has 
shown extensive gene expression changes in various 
brain regions [5–7]. Acute experimenter-administered 
methamphetamine increases the expression of a num-
ber of immediate early genes, including those encoding 
transcription factors, c-fos, arc, NFκB, preprodynorphin, 
fra2, Egr1-3, Nr4a1 and Nr4a3 in the striatum [8, 9]. 
Chronic methamphetamine exposure has been shown 
to alter genes involved in GTPase signaling, apoptosis, 
and cell cycle control in the striatum, in addition to the 
well-established addiction associated genes fos, arc and 
prodynorphin [10]. Investigation of methamphetamine 
self-administration has shown that contingent exposure 
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elicits different neurobiological consequences to non-
contingent exposure [11] and is a method with greater 
face validity compared with experimenter-administered 
models [12]. Recently, Krasnova et  al. performed an 
extensive transcription survey in the dorsal striatum fol-
lowing methamphetamine self-administration for 15  h/
day, in which gene expression changes persisted for up 
to 1  month of abstinence [13]. Previously, short access 
methamphetamine self-administration has been shown 
to transiently reduce dopamine D2 receptor expres-
sion in the ventral tegmental area (VTA) using in vitro 
quantitative autoradiography following 24  h abstinence 
[11], and to elicit a sensitized dopamine and glutamate 
response in the nucleus accumbens (NAc) following a 
2  mg/kg challenge injection of methamphetamine [14]. 
This suggests that short-access models can be used to 
study neuroadaptations in the absence of dopaminergic 
neurotoxicity.

Micro-RNA (miRNA) are ~22 nucleotide RNA mol-
ecules that act to regulate the expression of mRNA, 
by binding to their 3′ untranslated region (3′UTR); this 
leads to translational inhibition or transcriptional repres-
sion [15]. In the brain, enriched miRNA appear to target 
genes with increased and/or tissue-specific expression, 
and are thought to act to subtly modulate gene expres-
sion networks regulated by many factors including tran-
scriptional activators [16]. MiRNAs have a significant 
role in modulating the effects of drugs of abuse includ-
ing cocaine, alcohol, nicotine, and opioids within brain 
reward circuitry [17]. They are involved in the develop-
ment of synaptic connections and plasticity, direct den-
drite formation in neurons [18], and have an important 
role in the development of addiction-related behaviors 
[19]. The VTA contains dopaminergic cell soma and 
innervates other brain regions, including the NAc and 
prefrontal cortex [20], which are the primary regions of 
methamphetamine’s pharmacological effects [21]. VTA 
neurons have a role in reward and drug reinforcement 
[22] and drug-seeking [23] and as such this is an impor-
tant brain region to study for persistent changes follow-
ing drug administration. Therefore, given the importance 
of the VTA in addiction, the potential relevance of the rat 
drug self-administration model to human drug-taking 
patterns, the importance of gene expression changes in 
addiction and the dearth of such RNA data for the VTA, 
we sought to study miRNA and mRNA expression in 
the VTA using a methamphetamine self-administration 
model followed by 14 days of abstinence.

Results
Methamphetamine self‑administration
Rats trained for methamphetamine self-administration 
showed preference for the active lever over the inactive 

lever on FR-1, FR-2 and FR-5 schedules of reinforcement, 
as expected from previous studies [24]. The rats that 
self-administered methamphetamine gained weight at a 
slower rate than the control rats during the course of the 
study (Figure 1a).

Two-way ANOVA between active and inactive lever 
responses of the methamphetamine self-administration 
rats revealed a significant effect of lever [F(1,20) = 115.1, 
p < 0.0001] over the 20 FR-5 sessions. There was no sig-
nificant effect of time [F(19,380) = 0.4254, p = 0.9848] or 
interaction [F(19,380) = 0.9515, p = 0.5189].

Body weight was significantly different between the 
control and methamphetamine self-administration 
groups on days 35 and 40 (p  <  0.05, Student’s t test). 
Rats did not display escalation of drug intake during 
the course of the study; the average total methampheta-
mine intake across the whole study was 43.9 ± 5.4 mg/kg 
(range 26.1–58.2 mg/kg total intake, Figure 1b). The con-
trol group did not show a preference for the active lever 
over the inactive lever and received an average of 0.9 mL/
day of the heparinized saline solution, compared with 
2.2 mL/day for the methamphetamine self-administering 
rats (Figure 1c).

mRNA expression changes following methamphetamine 
self‑administration in rats
Unsupervised hierarchical clustering of the mRNA 
expression data grouped the samples by treatment (Addi-
tional file  1: Figure S1). Differential expression of 150 
transcripts was observed at an adjusted p < 0.05 (BH) and 
an absolute log2 fold change >0.5. Of these, 48 mapped to 
annotated genes, with 17 showing downregulation and 31 
upregulation (Table 1). Pathways analysis of the 48 anno-
tated mRNA revealed significant enrichment for three 
processes important in addiction: regulation of dopamine 
metabolic process (adj p =  2.02 ×  10−2), regulation of 
biological quality (adj p =  2.02 ×  10−2) and genes inte-
gral to the plasma membrane (adj p = 9.90 × 10−3). We 
observed upregulation of the precursor transcript miR-
181a-2 on the Exon array (fold change (log2) = −0.69, 
adj p  =  0.00085). Furthermore, genes targeted by two 
transcription factors, c-Myc and cAMP response element 
binding protein (CREB) were highly enriched within the 
mRNA dataset (p < 1.7 × 10−32) (Figure 2a). In addition, 
pathways enrichment of protein–protein interactions 
revealed a core group of 18 of the 48 differentially-
expressed mRNA that show evidence-based co-expres-
sion and/or co-localization. These included cell surface 
proteins DAT (Slc6a3), Ret (F1MAG5_RAT), Tachy-
kinin receptor (Tacr3), Melanocortin receptor (Mc3r) 
Nicotinic cholinergic receptor (Chrna6) and Hnrnpa3 
(ROA3_RAT), as well as the transcription factor, Foxa1 
and scaffold protein Lin7a (Figure 2b).
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We also interrogated for potential mRNA:mRNA corre-
lations between the significantly differentially-expressed 
mRNA transcripts (Pearsons). Distinct differences were 
observed between mRNA showing strong correlations in 

their expression levels (R > 0.7) in drug naïve compared 
to methamphetamine self-administration samples (Addi-
tional file 2: Figure S2).

microRNA expression changes 
following methamphetamine self‑administration in rats
Unsupervised hierarchical clustering of the miRNA 
expression data grouped the samples principally by 
drug administration (Additional file  3: Figure S3). Dif-
ferential expression of 78 precursor and mature miRNA 
was observed at an adjusted p < 0.05 (BH) and an abso-
lute log2 fold change >0.5 with the majority of these 
miRNA (n  =  71) downregulated in methamphetamine 
self-administration rats compared to drug naïve controls 
(Table 2, Additional file 4: Table S1 for full list).

Overlap of miRNA and mRNA
mRNA expression/stability can be regulated by miR-
NAs. Therefore we interrogated the 3′UTR of differ-
entially-expressed mRNA for putative miRNA binding 
sites and investigated whether any of these miRNA were 
differentially expressed in our analyses. This revealed 
12 transcripts which were up-regulated in comparison 
to a downregulation of their respective putative target 
miRNA (Table  1). In addition, we performed miRNA 
enrichment analyses for the 48 differentially expressed 
mRNA (Table  3). Of these, two (miR-9, adj p =  0.0228 
and miR-145, adj p = 0.0298) that were identified as sig-
nificantly enriched, were also significantly differentially-
expressed in the miRNA microarray results.

Validation of miRNA and mRNA differential expression
We selected a number of miRNA and mRNA for further 
analysis using qRTPCR. MiRNA candidates were selected 
based on novelty and mRNA targeting (miR-125a-5p, 
miR-145). The mRNA were chosen based on previously 
reported roles in drug addiction.

In general agreement with the array data, we observed 
a trend towards downregulation of miR-125-a-5p 
(p = 0.079, fold change −1.79) and miR-145 (p = 0.089, 
fold change −1.82) in methamphetamine self-adminis-
tration rats (Figure 3a, n = 6 in each group). In concord-
ance with the array data, we observed a 3.3 fold-change 
significant upregulation of Ret (p  <  0.01) and 10.8 fold-
change significant upregulation of DAT (p < 0.05) mRNA 
in methamphetamine self-administration compared to 
drug naïve control rats (Figure 3b; n = 5 control, n = 6 
methamphetamine).

Discussion
We report the first combined mRNA and miRNA pro-
filing of the VTA following methamphetamine self-
administration and abstinence compared with drug 
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Figure 1 a Rat weight during the course of the self‑admin study. 
Methamphetamine self‑administration rats (n = 11) gained less 
weight than controls (n = 11) for the duration of the study; the 
weights were significantly different at day 35 and day 40 (p < 0.05, 
Student’s t‑test). b Number of active and inactive lever responses 
over the course of the study for methamphetamine self‑administra‑
tion rats, and c control rats lever responses.
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Table 1 Differential expression of mRNA from methamphetamine self-administration rats

Gene name Fold change (log2) p‑value miRNA targeta

Upregulated

 Endosomes

  Slc9a6 −0.51 0.0025 miR‑181a/d, 16, 195, 124

  Mtpn −1.00 0.0028 miR‑124, 9, 181, 140, 143, 26a, let‑7

  Myo18b −0.53 0.0049

 Cell signaling

  Ankh −0.56 9.30E−05 miR‑9

  Ppm1h −0.56 0.00087 miR‑125a‑5p/b‑5p, 351

  Gpr64 −0.60 0.0012 miR‑23a/b

  Cd47 −0.52 0.0016 miR‑181d, 9

 Neurite growth/extension

  Ntn1 −0.75 0.0010 let‑7d/e, miR‑27a/b, 20a, 106b

  LOC691277 −0.52 0.0040

 Neuroprotection

  Pex3 −0.64 0.00052 miR‑30b‑5p/c/d

  Coa5/6330578E17Rik −0.87 0.00024

  Ret −0.88 0.0023 miR‑23a/b, 128, 27a/b, 125a‑5p/b‑5p

  Hsp90ab1 −0.82 0.0030

 RNA processing

  Hnrnpa3 −0.62 0.00034 miR‑221, 222, 206

  Rpp30 −0.55 0.0022

  Rpl19 −0.94 0.0037

  LOC100359671 −0.55 0.0049

 Membrane transporters/receptors

  Olr527 −1.05 0.00040

  Slc6a3 −2.45 0.0010

  RGD1561777 −0.82 0.0014

  Mc3r −1.03 0.0030

  Tacr3/Nk3R −0.83 0.0031

  Chrna6 −1.76 0.0045

  Slc47a2 −0.51 0.0047

 Transcriptional regulation

  Foxa1/HNF3‑alpha −0.78 0.00054 miR‑106b, 194, 30b‑5p/c, 20a

  Mir181a‑2 −0.69 0.00085

  LOC690309 −0.78 0.0012 miR‑26a, 29a/b/c, 222, 383

  Pfdn1 −0.67 0.0014

  Smg6 −0.51 0.0029

 Other

  Cry1 −0.58 0.0010

  Samd9 l −0.69 0.0038

Downregulated

 Endosomes

  Dnah3 0.63 0.00021

  Lin7a/MALS‑1 0.64 0.00043

  LOC494539 0.51 0.0029 miR‑125a‑5p

  Ifitm7 0.72 0.0039

 Cell signaling

  Dkk3 0.66 0.0011 let‑7

  Gtpbp4 0.78 0.0012
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naïve rats, using microarrays to identify significant 
changes in the level of 150 mRNA transcripts and 78 
miRNAs. Methamphetamine is suggested to be either 
neurotoxic or neuroadaptive to neurons depending on 
the dose administered [25]. Our study sought to iden-
tify neuroadaptations associated with chronic low-dose 
methamphetamine by using a 2 h short-access model to 
identify persistent gene expression changes. The self-
administration model is a well-established drug addic-
tion model [26], provides greater face validity to human 
drug intake and provides a number of benefits for future 
gene expression studies; notably, gene expression pat-
terns can be studied within the scope of behavioral cor-
relates of human addiction, for example, reinstatement, 
relapse and escalation of intake. This study aimed to use 
self-administration to determine it’s suitability for the 
detection of long lasting gene expression changes in a 
small brain region. Long lasting gene expression changes 
in the VTA have been purported to be important in the 
addiction process [20, 27] and the effects of metham-
phetamine has not been studied in as much detail in the 
VTA as in the dorsal striatum and nucleus accumbens, 
areas of it’s primary pharmacologic effect. Our observa-
tions of differential mRNA expression suggest that the 
VTA plays an important role in response to long-term 

methamphetamine exposure, identifying many genes 
with known and potential roles in addiction.

We identified upregulation of mRNA expression for 
DAT and Ret (Table 1; Figure 3b), two genes with estab-
lished roles in regulating dopamine levels in the VTA 
[20, 28]. DAT is the primary substrate of methampheta-
mine and inhibition or knockout of DAT prevents the 
pharmacological effects of methamphetamine (e.g. 
increased energy, euphoria). Methamphetamine can 
induce changes in DAT function and expression within 
the dorsal striatum and nucleus accumbens [29, 30] and 
thus affect drug-taking behavior. Unfortunately, protein 
samples were not available to us, but it will be important 
to determine whether these mRNA expression changes 
relate to differences at the protein level in future studies. 
In addition, our pathways analysis highlighted impor-
tant dopaminergic cell markers such as TH and Nurr1 
(Nr4a2), as well as a specific midbrain microRNA, miR-
133b [31]. Further pathways analysis indicated enrich-
ment for targets of two transcription factors, CREB and 
c-Myc, which both have identified roles in addiction (Fig-
ure 3a) [9, 32]. Increased phospho-CREB enrichment was 
reported on promoter regions of addiction-associated 
genes c-fos, FosB, BDNF and synaptophysin in the stria-
tum following methamphetamine self-administration 

RER ratio of enrichment.
a Listed are miRNA transcripts significantly differentially expressed in the microarray experiment.
b Determined using WebGestalt.

Table 1 continued

Gene name Fold change (log2) p‑value miRNA targeta

 Membrane transporters/receptors

  Olr625 0.64 0.00048

  Vom1r2 0.69 0.0018

  Vom1r26 0.93 0.0022

  Olr1373 0.63 0.0033

 Transcriptional regulation

  Naca 0.57 0.00066

 Other

  LOC690000 0.53 0.00096

  LOC691519 0.50 0.0018

  LOC691988 0.84 0.0029

  Senp17 1.34 0.0029

  Apol3 1.14 0.0031

  XTP2 0.90 0.0046

Canonical pathwayb mRNA p‑value RER

Ribosome biogenesis in eukaryotes Rpp30, Gtpbp4 0.0024 27.45

Neuroactive ligand‑receptor interac‑
tion

Tacr3, Chrna6, Mc3r 0.0019 12.27

RNA transport Rpp30, Senp17 0.0081 14.78

Pathways in cancer Hsp90ab1, Ret 0.0313 7.23
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Figure 2 a Significant enrichment of genes regulated by transcription factors, c‑Myc and CREB. Key: blue circles upregulation; red circles downregu‑
lation. Significant values for both enrichments were p‑value = 1.62e−32, zScore 123.52 and gScore 123.52. b Enrichment of 18 of the 48 differen‑
tially‑expressed mRNA transcripts which are either co‑expressed or co‑localized. Key: Myotrophin (Mtpn); B2RYX0_RAT, Naca; ROA3_RAT, Hnrnpa3; 
RGD1565095, Coa5; F1MAG5_RAT, Ret.
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[13]. Synaptic activity leads to a prolonged phospho-
rylation of CREB, and multiple drugs of abuse lead to 
increased pCREB in the dStr and NAc, including cocaine 
[33, 34]. Our results suggest that CREB and c-Myc may 
have a role during abstinence, providing a possible 

mechanism for long term transcriptional changes follow-
ing repeated drug exposure.

We observed differential mRNA expression of a num-
ber of other genes with known or putative roles in brain 
biology/addiction, but not previously reported for meth-
amphetamine exposure: Slc47a2 which is a multi-drug 
and toxin extrusion transporter that removes organic 
cations and interacts with organic cation transporters 
[35]; Slc9a6 (NHE6) which has a role in neurological dis-
ease and axon and dendrite branching [36], and Netrin-1 
which is involved in axon guidance and is important in 
both brain development and adult brain function. As 
the Netrin-1 receptor is upregulated in the VTA with 
repeated amphetamine exposure [37] it is possible that 
perturbations of netrin-1 may regulate vulnerability to 
relapse.

Pathways analysis of the 48/150 differentially expressed 
transcripts that were annotated revealed that proteins 
encoded by 18/48 were co-expressed or co-localized 
(Figure  2b), providing strong evidence for the potential 
relevance of this study to addiction biology. A number 
of these were cell surface receptors previously shown 
to be involved in drug addiction. The Tachykinin recep-
tor (Tacr3, also known as neurokinin receptor Nk3R), 
has a role in reinforcement processes, and cocaine con-
ditioned place preference can decrease methylation in 
the promoter region of this receptor [38]. Thus, future 
work investigating changes of methylation in the Tacr3 
promoter in response to methamphetamine is war-
ranted. Single nucleotide polymorphisms in Tacr3 have 
been associated with alcohol and cocaine dependence in 
humans [39], and thus genetic variation may also play a 
role in methamphetamine addiction. Nicotinic cholin-
ergic receptor (Chrna6) is a subunit of nicotinic acetyl-
choline receptors expressed in the VTA and substantia 
nigra, has a role in both nicotine and alcohol adminis-
tration [40] and influences dopamine levels in the dorsal 
striatum and NAc [41]. Thus, our observation of Chrna6 
upregulation may be indicative of changes to dopamin-
ergic systems following repeated methamphetamine 
exposure. In addition, heterogeneous nuclear ribonu-
cleoprotein (Hnrnpa3) is expressed in the brain and has a 
role in mRNA maturation and Lin7a is a scaffold protein 
involved in neurite extension and filopodia formation in 
neurons [42]. Analyses of the 48 differentially expressed 
and annotated mRNA revealed genes with both known 
and previously unreported roles in addiction (as dis-
cussed above). Future analysis of the 102 unannotated 
transcripts may provide further biological insights.

The expression of miRNA is high in the central nervous 
system, which may indicate a particular importance for 
miRNA in this area of the body [15]. However, the study 
of miRNA within the brain following exposure to drugs 

Table 2 Significantly differentially expressed miRNA 
with methamphetamine self-administration

Top 10 downregulated miRNA shown, for full table, see Additional file 4: Table 
S1.

Full I.D. I.D. Fold change 
(log2)

Adj p‑value B

Downregulated

 rno‑miR‑27a_st Mir27a 2.95 0.041 −2.7

 rno‑miR‑378_st Mir378 2.5 0.031 −1.94

 rno‑miR‑129_st Mir129 2.48 0.025 1.42

 rno‑miR‑29c_st Mir29c 2.39 0.025 1.3

 rno‑miR‑128_st Mir128 2.36 0.04 −2.64

 rno‑miR‑9*_st Mir9* 2.36 0.049 −3.03

 rno‑miR‑146a_st Mir146a 2.35 0.026 −0.92

 rno‑miR‑192_st Mir192 2.32 0.035 −2.31

 rno‑miR‑30d_st Mir30d 2.31 0.028 −1.43

 rno‑miR‑106b_st Mir106b 2.31 0.049 −3.06

Upregulated

 rno‑miR‑741‑3p_
st

Mir741‑3p −0.51 0.025 1.26

 rno‑miR‑3570_st Mir3570 −0.53 0.025 −0.55

 rno‑miR‑369‑3p_
st

Mir369‑3p −0.60 0.025 −0.52

 rno‑miR‑145*_st Mir145* −0.50 0.029 −1.81

 hp_rno‑mir‑
216b_st

Mir216b −0.60 0.033 −2.09

 hp_rno‑mir‑17‑1_
st

Mir17‑1 −0.57 0.032 −2.03

 hp_rno‑mir‑
181b‑1_st

Mir181b‑1 −0.54 0.033 −2.13

Table 3 Significantly enriched miRNA using the mRNA 
dataset (WebGestalt)

Italics indicate miRNA that were identified as differentially-expressed in the 
microarray experiment.

Micro RNA Pathways enrichment

Raw p‑value Adjusted p‑value (Bonferroni)

miR‑509 0.0008 0.0096

miR‑141, miR‑200a 0.0023 0.0138

miR‑149 0.0069 0.0228

miR-9 0.0076 0.0228

miR‑518a‑2 0.0122 0.0293

miR-145 0.0149 0.0298

miR‑182 0.0304 0.0521
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of abuse is still a new field, with little known about the 
effects of drug exposure on global miRNA expression. 
We observed 78 miRNA with significant differential lev-
els in the VTA between methamphetamine self-admin-
istration and drug naïve rats using microarray analyses. 
Strikingly, the majority of these (71) were downregulated 
on methamphetamine exposure and it is possible that 
methamphetamine exposure fundamentally alters the 
dynamics of miRNA expression in the VTA. Although 
speculation, this could be due to changes in methylation, 
chromatin remodeling or transcription factors. Given 
that the current model of miRNA regulation is tran-
scriptional degradation or translational inhibition, it is 
possible that downregulation of miRNA removes a con-
stitutive repression of genes that are important for condi-
tions in the brain that maintain addiction-type behaviors. 
The increased expression of such genes may then be 
the important factor underlying the persistence of drug 
addiction even after long periods of abstinence. Further 
studies are required to investigate these possibilities and 
confirm changes in miRNA expression.

Upregulation of miR-181a following amphetamine 
exposure has been reported in the ventral midbrain [17], 
consistent with our observation of increased expression 
of the precursor transcript on methamphetamine self-
administration. In the dorsal striatum, miR-212 influ-
ences cocaine addiction behaviors [43]. We observed a 
trend towards downregulation of miR-212 in the VTA on 
methamphetamine self-administration (Additional file 5: 
Figure S4). We were interested to observe the higher 
variability of miR-212 and mature miR-181a (from the 
miRNA array data) on methamphetamine self-admin-
istration compared to drug naïve controls (Additional 
file 5: Figure S4); this may be indicative of a dysregulation 

following methamphetamine exposure and warrants 
further investigation. In addition, we observed reduced 
expression of miR-9 and miR-140 expression consistent 
with that observed on ethanol exposure [44].

MiRNA bind to target region(s) in the 3′UTR of mRNA, 
and regulate mRNA expression via translational inhi-
bition or transcriptional repression [19]. We identified 
mRNA with target sites in their 3′UTR for differentially-
expressed miRNA and observed that 12/31 significantly 
upregulated mRNA contained such sites for miRNA 
downregulated in our parallel analyses (Table  1). For 
example, a significant decrease in miR-125a-5p was seen 
following methamphetamine administration along with 
increased Ret mRNA expression, one of its purported 
targets. miR-125a-5p has not previously been implicated 
in addiction. Pathways analysis of the 48 differentially-
expressed and annotated mRNA showed enrichment 
for two miRNA which were significantly downregulated 
in the array analyses (Table  3). miR-9 has been linked 
to nicotine and ethanol exposure [44]; however, dys-
regulation of miR-145 has not previously been reported 
after administration of any drug of addiction. Validation 
experiments using qRTPCR showed a trend for miRNA-
125a-5p and miR-145 in a consistent direction to the 
array data, however, this did not reach statistical signifi-
cance. We suspect that this is due to the small sample size 
used for this complex self-administration experiment. 
Future experiments which knock-down specific miRNA 
of interest and investigate subsequent changes of the tar-
get mRNA and protein level will yield insights into the 
biological significance of our observations.

A number of the genes identified as part of the pro-
tein–protein interaction network (Figure  2b) are also 
potentially regulated by differentially-expressed miRNA 

Figure 3 a qRTPCR expression levels for candidate miRNA. ∆Ct values (CtmiRNA − CtU6) are plotted on the Y axis. P‑values for the difference 
between means (one‑tailed T‑test, as informed by the array data) are shown (n = 6 in each group). b qRTPCR expression levels for DAT and Ret. 
∆Ct values (CtmRNA − CtGAPDH) are plotted on the Y axis. There was a 3.3 fold‑change upregulation of Ret and 10.8 fold‑change upregulation of DAT. 
P‑values for the difference between means (one‑tailed T‑test, as informed by the array data) are shown (control n = 5, methamphetamine n = 6).
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in this study. For instance, we observed a decrease 
in the levels of 5 miRNA with predicted target sites 
in the Foxa1 3′UTR (miR-106b, miR-194, miR-30c, 
miR-30b-5p and miR-20a) along with increased Foxa1 
mRNA expression on methamphetamine exposure. 
Foxa1 is a member of the forkhead box family, is a 
marker for dopaminergic neurons, regulates dopamine 
neuron development in the midbrain [45], and is linked 
to the maintenance of the dopaminergic neuron pheno-
type [46]. Therefore, Foxa1 may represent a previously 
unrecognized mediator of methamphetamine effects, 
and further study of Foxa1 regulation of dopaminer-
gic cells within the VTA as a modulator of persistent 
molecular changes in abstinence is warranted. A main 
feature of drug addiction is relapse months or years 
after last exposure to drug; therefore, alterations to 
transcription factors may be an important way for this 
addiction potential to be maintained.

Recent research implicates epigenetics as a mecha-
nism for persistent gene expression changes due to 
repeated exposure to drugs of abuse [47]. We observed 
differential regulation of multiple transcripts related 
to epigenetic mechanisms and it is possible that these 
mechanisms hold the key to persistent changes. It is 
also possible that the general downregulation of miRNA 
we observed is modulated by these epigenetic mecha-
nisms. DNA methylation, histone modification and 
miRNA all play a role in epigenetic regulation. Meth-
amphetamine has previously been shown to increase 
mRNA expression of DNA methyltransferase 1 (Dnmt1) 
[48]. Our study identified significant upregulation of a 
transcript annotated as “similar to DNA methyltrans-
ferase 3B (LOC690309)”, which overlaps the DNA meth-
yltransferase 3B gene (Dnmt3B) and appears to contain 
an identical 3′UTR. In addition, 6 miRNA downregu-
lated in our analyses (miR-26a, 29a/b/c, 222, and 383, 
Additional file 4: Table S1) are predicted to bind 3′UTR 
of Dnmt3B, with miR-222, miR-383 and miR-29b have 
demonstrated to directly affect Dnmt3B expression 
[49, 50]. We also identified differential expression of a 
number of miRNAs which target histone modification 
enzymes; miR-145 suppresses histone deacetylase 2 
(HDAC2) [51], miR-129 is predicted to target HDAC2 
mRNA and miR-29 targets HDAC4 mRNA [52]. Long-
non-coding RNA (lncRNA) are also involved in epige-
netic regulation and their relevance to brain biology has 
recently been recognized [53]. On examination of the 
unannotated transcripts from the mRNA array against 
rat lncRNA databases [54] we identified one lncRNA 
(lincRNA7834551) with less expression in methamphet-
amine self-administration compared to drug-naïve con-
trols (Additional file 6: Figure S5).

In human chronic users, methamphetamine adminis-
tration occurs either in consistent low dose administra-
tion or cycles of high dose binges [55]. Users that are not 
classed as dependent may still take methamphetamine 
regularly for the purposes of alertness, concentration, 
increased energy or as a dieting aid. Despite the limita-
tions of applying animal models to the human condition, 
we hypothesized that the model of self-administration 
we used would be potentially applicable to the human 
drug takers outlined above, and could thus be used to 
provide additional insights into this aspect of addiction 
biology. We believe that our identification of persistent 
expression changes in genes with both known and previ-
ously unknown roles in addiction and related biological 
pathways demonstrates the potential relevance and effi-
cacy of this model in the study of addiction, providing a 
cost efficient model of drug taking. The study provides 
a preliminary insight into changes in the VTA follow-
ing methamphetamine self-administration, representing 
drug-taking, rather than drug addiction. A number of 
key targets identified potentially provide a mechanistic 
insight into the effects of methamphetamine in the VTA 
and their functions can be further elucidated in experi-
ments to relate them to the pharmacological effect of 
methamphetamine. Future work expanding this model to 
include longer access, non-contingent exposure, extinc-
tion and drug challenge should provide additional under-
standing reflective of human addiction.

Conclusion
Our study demonstrates that short-access metham-
phetamine self-administration is a useful model to elu-
cidate biologically meaningful changes in the brain. We 
observed a large number of changes in our microarray 
analyses to mRNA and miRNA levels with metham-
phetamine self-administration and found a strong rela-
tionship between addiction biology and the genes that 
were differentially-expressed, as well as clues towards the 
regulation of mRNA by miRNA. Our data suggests an 
important role for small RNA molecules in the regulation 
of gene expression changes in the VTA and that this may 
well influence vulnerability to addiction.

Methods
Animals
Male Sprague–Dawley rats (Rattus norvegicus, 300–
350 g) were housed individually in hanging polycarbonate 
cages, at 19–21°C, and 55% humidity with 12 h light/dark 
cycling. Animals had ad libitum access to food and water 
except during self-administration training. All experi-
ments were approved by and carried out in accordance 
with Animal Ethics Committee guidelines at Victoria 
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University of Wellington. Animals were deeply anaes-
thetized (Ketamine, 90  mg/kg, I.P., Xylazine, 9  mg/kg, 
I.P.), fitted with chronic indwelling jugular catheters and 
assigned randomly to control (n =  11) or methamphet-
amine self-administration (n  =  11) groups. Following 
5 days of recovery post-surgery, rats received self-admin-
istration training for methamphetamine in standard 
operant chambers (Med Associates, ENV-001, St Albans, 
VT, USA) in the School of Psychology at Victoria Univer-
sity of Wellington using methods reported in previous 
studies [24], for review of the procedure, see [26]. Prior 
to each 2 h session, catheters were flushed with 0.2 mL 
heparin–penicillin solution. When the active lever was 
pressed, rats received a 12 s, 0.1 mL infusion of metham-
phetamine-HCl (BDG Synthesis, Wellington, NZ, USA, 
0.1 mg/kg/infusion) dissolved in sterile heparinized (3 U/
mL) physiological saline concurrent with illumination of 
a light above the active lever. Control animals received 
heparinized saline (3  U/mL) infusions upon depression 
of the active lever. Rats began on a fixed ratio-1 (FR-1) 
schedule of reinforcement, which gradually progressed 
to a FR-5 schedule using an intermediate FR-2 sched-
ule, similar to published studies [56]. The requirements 
for progression between schedules was an active:inactive 
lever ratio of 2:1 and greater than 10 infusions per ses-
sion for three consecutive days. On the FR-5 schedule, 
rats were run in daily sessions for 6  days/week. Rats 
were maintained on the FR-5 reinforcement schedule for 
20 days prior to a 14 day forced abstinence period similar 
to previous work investigating gene expression changes 
in cocaine self-administering rats [27]. Lever responses 
were recorded using Med Associates software (MED-PC 
IV, version 4.2). Rats were euthanized by CO2 asphyxia-
tion and decapitation. Brains were quickly removed and 
the VTA was rapidly dissected using an acrylic stere-
otaxic brain matrixes block (Alto, AgnTho’sAB, Sweden) 
on a glass Petri-dish on ice. The brain region coordinates 
(−6.72  mm from Bregma) were used according to the 
brain atlas of Paxinos and Watson [57] and all regions 
were freehand-dissected. Immediately following dissec-
tion, samples were homogenized in 400 μL Trizol® (Life 
Technologies, Auckland, NZ, USA) and frozen at −80°C 
until use.

RNA extraction
Total RNA was extracted using Trizol and a Zymo Direct-
zol™ RNA MiniPrep kit (Ngaio Diagnostics, Nelson, NZ, 
USA) following the manufacturer’s protocol. Samples 
were eluted in 20 μL of RNase-free H2O, quantified using 
a Nanodrop ND-1000 (Thermo Fisher Scientific) spectro-
photometer and RNA integrity (RIN) assessed using the 
Bioanalyzer 2100 (Agilent Technologies Inc. CA, USA). 

Samples with sufficient RNA to probe both array types 
(>230  ng total RNA) and a RIN >8 were accepted for 
microarray analysis. This resulted in seven control and 
seven methamphetamine samples to be used for array 
experiments.

mRNA and miRNA gene expression arrays
Microarrays were carried out by New Zealand Genomics 
Limited (NZGL), at the University of Auckland facility. 
Total RNA (100  ng) was analyzed using the Affymetrix 
GeneChip Rat Exon 1.0 ST microarray. This chip has 
approximately 1  million probe sets, covering 850,000 
exon clusters. 130  ng of total RNA was analyzed using 
the Affymetrix GeneChip microRNA 3.0 arrays which 
contain probes for 680 mature and 486 pre Rattus nor-
vegicus miRNAs.

Expression microarray analysis
Analyses were performed using R version 2.15.2 (http://
www.r-project.org, RRID:nif-0000-10474) [58], Biocon-
ductor packages (RRID:nif-0000-10445) [59] and cus-
tom bash scripts. The mRNA Affymetrix CEL files were 
imported into AROMA (http://www.aroma-project.
org/, RRID:OMICS_00703) [60], an R package specifi-
cally developed for Affymetrix Exon arrays. mRNA data 
was background corrected, quantile normalized and 
log2 transformed prior to further analyses. The miRNA 
CEL files were analyzed using a combination of the affy 
(RRID:OMICS_00740) [61] and oligo [62] packages, 
and were also background corrected and log2 trans-
formed prior to analysis of differential expression. Qual-
ity assessment after background correction revealed two 
samples (1 control and 1 methamphetamine self-admin-
istration) that were outliers; therefore these samples 
were removed from subsequent analyses. Normalized 
expression data were analyzed using the Limma R pack-
age (RRID:OMICS_00769) [63]. To account for some of 
the variance between arrays, the array weights function 
was used. All differential analyses included a correction 
for multiple testing using the Benjamini–Hochberg [BH] 
correction as implemented in R. Microarray data will be 
deposited in GEO.

Pathways enrichment
Enrichment analyses were performed using WebGestalt 
(WEB-based Gene SeT AnaLysis Toolkit, http://bio-
info.vanderbilt.edu/WebGestalt, RRID:nif-0000-30622) 
[64]. Gene IDs were uploaded and analysis performed 
against the rat reference genome using Bonferroni 
adjusted threshold of p  <  0.05 with a minimum obser-
vation of n  =  2. GeneIDs for miRNA targets were 
obtained from miRBase (http://www.mirbase.org, 

http://www.r-project.org
http://www.r-project.org
http://www.aroma-project.org/
http://www.aroma-project.org/
http://bioinfo.vanderbilt.edu/WebGestalt
http://bioinfo.vanderbilt.edu/WebGestalt
http://www.mirbase.org
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RRID:nif-0000-03134). Enrichment analysis for tran-
scription factors was performed using Metacore™ 
(Thomson Reuters, https://portal.genego.com, 
RRID:nif-0000-20874). In addition, we used GeneMA-
NIA (http://www.genemania.org, RRID:nlx_149159) 
to generate a schematic overview of predicted pro-
tein–protein interactions of the 48 significantly dif-
ferentially-expressed mRNA. These predictions are 
informed by evidence-based results, which include 
co-localization and co-expression. TargetScan (http://
www.targetscan.org, RRID:OMICS_00420) was used to 
find predicted mRNA targets for miRNA identified as 
differentially-expressed.

Quantitative real time polymerase chain reaction (qRTPCR)
Six control samples and six methamphetamine self-
administration samples were used for qRTPCR valida-
tion, this included two from each group in the original 
array experiment.

Reverse transcription PCR
miRNA: 50  ng total RNA was reverse transcribed to 
cDNA using the Taqman miRNA RT kit (#4366596), 
2  mM dNTP, 100 U Multiscribe™ reverse transcriptase, 
5  U RNase inhibitor, RT buffer and a pool of the five 
small RNA primers according to the manufacturer’s 
instructions (Applied Biosystems, Life Technologies). 
mRNA: 50  ng total RNA was reverse transcribed using 
the High capacity RNA-to-cDNA reverse transcription 
kit (Applied Biosystems, #4387406). All cDNA samples 
were stored at −20°C until use.

Quantitative real‑time PCR
miRNA qRTPCR analysis was performed using 
Taqman assays (Applied Biosystems) (Cat #4429795): 
miR-145 (Assay #2278), miR-125a-5p (Assay #2198). 
The endogenous control was U6 snRNA (Assay #1973). 
Analysis of mRNA expression for Ret and DAT used 
(Cat #4331182, Rn00562224_m1) and (Cat #4331182, 
Rn01463098_m1) respectively. GAPDH (Cat #4331182, 
Rn01775763_m1) was selected as an endogenous con-
trol [56]. Analyses were performed with a final volume 
of 10  µL of miRNA cDNA, or 20  µL of mRNA cDNA 
and Universal PCR Mastermix (#4369016) in a Bio-
Rad CFX Connect Real-time system cycler (Bio-Rad, 
CA, USA). Each sample was run in triplicate. Expres-
sion was normalized (∆Ct) using the appropriate 
endogenous control; small nuclear RNA U6 for the 
miRNA, and GAPDH for the mRNA analyses. A one-
tailed T-test (comparison of means) was used to test 
for significance, in line with the differential expression 
observed for the array data.
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