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Abstract 24 

Polygenic profiling has been proposed for elite endurance performance, using an additive 25 

model determining the proportion of optimal alleles in endurance athletes. To investigate 26 

this model’s utility for elite triathletes, we genotyped seven polymorphisms previously 27 

associated with an endurance polygenic profile (ACE Ins/Del, ACTN3 Arg577Ter, 28 

AMPD1 Gln12Ter, CKMM 1170bp/985+185bp, HFE His63Asp, GDF8 Lys153Arg and 29 

PPARGC1A Gly482Ser) in a cohort of 196 elite athletes who participated in the 2008 30 

Kona Ironman championship triathlon. Mean performance time (PT) was not 31 

significantly different in individual marker analysis. Age, sex, and continent of origin had 32 

a significant influence on PT and were adjusted for. Only the AMPD1 endurance-optimal 33 

Gln allele was found to be significantly associated with an improvement in PT (model 34 

p=5.79 x 10-17, AMPD1 genotype p=0.01). Individual genotypes were combined into a 35 

total genotype score (TGS); TGS distribution ranged from 28.6 to 92.9, concordant with 36 

prior studies in endurance athletes (mean±SD: 60.75±12.95). TGS distribution was 37 

shifted toward higher TGS in the top 10% of athletes, though the mean TGS was not 38 

significantly different (p=0.164) and not significantly associated with PT even when 39 

adjusted for age, sex, and origin. Receiver operating characteristic curve analysis 40 

determined that TGS alone could not significantly predict athlete finishing time with 41 

discriminating sensitivity and specificity for three outcomes (less than median PT, less 42 

than mean PT, or in the top 10%), though models with the age, sex, continent of origin, 43 

and either TGS or AMPD1 genotype could. These results suggest three things: that more 44 

sophisticated genetic models may be necessary to accurately predict athlete finishing time 45 

in endurance events; that non-genetic factors such as training are hugely influential and 46 

should be included in genetic analyses to prevent confounding; and that large 47 
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collaborations may be necessary to obtain sufficient sample sizes for powerful and 48 

complex analyses of endurance performance. 49 

 50 

Abbreviations 51 

ACE, angiotensin-converting enzyme; ACTN3, alpha-actinin-3; AGE, agarose gel 52 

electrophoresis; AMPD1, adenosine monophosphate deaminase 1; AUC, area under the 53 

curve; BDKRB2, bradykinin receptor B2; CKMM, creatine kinase-MM; FPR, false 54 

positive rate; GDF8, growth differentiation factor 8 (also known as MSTN or myostatin); 55 

GLUT4, glucose transporter type 4; HFE, high iron Fe, more commonly known as 56 

Human hemochromatosis gene; HIT, high-intensity interval training; HREC, Human 57 

Research Ethics Committee; HRM, high resolution melt; HWE, Hardy-Weinberg 58 

Equilibrium; NOS3, nitric oxide synthase 3; PPARGC1A, peroxisome proliferator-59 

activated receptor gamma, coactivator 1 alpha; RFLP, restriction fragment length 60 

polymorphism; ROC, receiver operating characteristic; TGS, total genotype score; TPR, 61 

true positive rate.                   .              62 
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Introduction 63 

The ability of sport scientists to predict which athletes amongst an elite group will 64 

become world-class is limited because the interactions between biological factors, 65 

training, recovery and competitive performance are not fully understood [1]. Human 66 

physical performance depends on environmental factors such as physical training, 67 

nutrition and technological support, as well as on genetic factors such as blood lactate 68 

threshold, maximal oxygen uptake (VO2max), glucose/lipid metabolism, and muscular 69 

strength [2]. Over 150 DNA polymorphisms have been associated with some form of 70 

human physical performance [3]. Many of these studies have only investigated individual 71 

polymorphisms or genes; however, despite the number of genes being investigated and 72 

associated with elite endurance performance, the achievement of elite endurance 73 

performance by a relatively small number of athletes is more than likely influenced by a 74 

combination of favourable genetic alleles. 75 

 76 

Recent studies [4-7] have proposed or utilised polygenic profiles for elite athletic 77 

performance, using a model originally outlined by Williams and Folland (2008) for 78 

optimal endurance performance [3]. While Williams and Folland’s original model 79 

contained 23 genetic polymorphisms associated with endurance performance, later 80 

models focused on smaller numbers of more strongly associated polymorphisms for 81 

endurance (seven to ten) [4, 5]. In order for comparability between models with different 82 

numbers of polymorphisms, the total genotype score (TGS) calculated generally 83 

represents the percentage of ‘optimal’ alleles for a particular phenotype. These models 84 

have been tested with other phenotypes such as success in a sporting field (in terms of the 85 

number of medals won or ranking in World and/or National Championships) [7, 8] and 86 

models with alternative polymorphisms have been proposed for speed/power  87 



 5 

performance [6, 9], mitochondrial biogenesis specific endurance models [10], and even 88 

disease/health risk models [11]. While sporting success has been previously evaluated in 89 

terms of numbers of medals won [7] or ranking in different world championship events 90 

[8], no current study has examined athlete performance within a single sporting event. 91 

However, while associations of polygenic profile polymorphisms have been well 92 

established in endurance versus power athletes, or athletes versus non-athletes, the 93 

influence of these polymorphisms on performance success within a single race event has 94 

not yet been assessed.  95 

 96 

In this study we therefore  investigate the utility of the seven-marker optimal endurance 97 

model [5] to distinguish more successful athletes (faster performance time) from less 98 

successful athletes (slower performance time) in a cohort of 196 elite endurance athletes 99 

who participated in the 2008 Kona Ironman World Championship triathlon. This cohort 100 

was initially collected in 2008 and the association of ACTN3 Arg577Ter polymorphism 101 

analysed in this cohort in a prior study [12]. These race participants represent athletes 102 

with an extremely high level of endurance ability and present a valuable opportunity to 103 

investigate genetic endurance polymorphisms in relation to elite endurance athlete race 104 

performance. Despite the fact that participants can be classified into ‘faster’ and ‘slower’ 105 

groups based on their performance in the 2008 Kona Ironman, all qualifying athletes can 106 

be considered among the elite of worldwide endurance triathletes as the event is 107 

considered one of the most extreme endurance events in the world due to the strict 108 

qualifying requirements and the severe environmental conditions encountered during the 109 

‘ultra’ distance race.  110 

 111 
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This study investigated whether the seven polymorphisms strongly associated with an 112 

endurance polygenic profile as described in Ruiz et al. 2009 [5]—ACE Ins/Del, ACTN3 113 

Arg577Ter, AMPD1 Gln12Ter, CKMM 1170 bp/985+185bp, HFE His63Asp, GDF8 114 

Lys153Arg and PPARGC1A Gly482Ser—were individually associated with performance 115 

time (both unadjusted and adjusted for significant demographic variables) or whether the 116 

combined influence of these polymorphisms as a total genotype score (TGS) could 117 

distinguish ‘faster’ from ‘slower’ performance time of the Ironman athletes. Each of the 118 

genes included in Ruiz et al.’s profile is a strong candidate for involvement in endurance 119 

performance and has been found to be associated previously with improvements in 120 

physical ability. The functions of these seven genes and the impact of the profile 121 

polymorphisms on gene function are outlined below. 122 

 123 

ACE Ins/Del (rs4340) 124 

The ACE 287bp Ins/Del polymorphism (I/D; rs4340) is located in intron 16 of the gene 125 

angiotensin converting enzyme (ACE), which is heavily involved in the cardiovascular 126 

system, in particular with blood pressure regulation. The ACE gene encodes a zinc 127 

metallo-carboxypeptidase that converts the inactive angiotensin I peptide into the potent 128 

vasoconstrictor angiotensin II [13, 14], which is the end product of the renin-angiotensin 129 

system (RAS) for the regulation of blood pressure. It also contributes to the regulation of 130 

blood pressure through the kinin-kallikrein system by degradation of bradykinin, a strong 131 

vasodilator [14], and is also thought to be important for muscle development due to the 132 

fact that angiotension II stimulates growth of endothelial, cardiac, and smooth muscle 133 

cells [5, 15]. The presence of the 287bp insertion (I allele) in the ACE gene is associated 134 

with lower levels of ACE activity in serum and tissues, with the II genotype carriers 135 

having about half the activity level of DD carriers, while ID carriers have intermediate 136 
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levels [14]. The higher level of ACE activity for D allele carriers results in an increase in 137 

both angiotensin II and an increase in the metabolism of bradykinin, which, in addition to 138 

blood pressure regulation, has a significant impact on metabolic processes including 139 

uptake of glucose [15]. The D allele has also been shown to be associated with increased 140 

left ventricular hypertrophy [14] and some studies show an association with increased 141 

grip strength [9], indicating that the DD genotype may possibly be more beneficial for 142 

power sports or strength-trained athletes. Conversely, the II genotype has been found to 143 

be strongly associated with various types of endurance athletes [14, 15], and is one of the 144 

most strongly replicated associations in endurance athletes.  145 

 146 

ACTN3 R577X (rs1815739) 147 

The ACTN3 gene encodes α-actinin-3, which is a tissue-specific actin-binding protein 148 

expressed in skeletal muscle fibers to assist in anchoring actin filaments of the sarcomere 149 

during muscle contractions. Although both α-actinin-3 and highly similar protein α-150 

actinin-2 are both expressed in muscle, α-actinin-3 is only expressed in type II (fast-151 

twitch, anaerobic/glycolytic) muscle fibers, which have an increased contraction speed 152 

and contraction force compared to type I (slow-twitch, oxidative) fibers [12]. The ACTN3 153 

Arg577Ter nonsense mutation (R577X; rs1815739) results in a truncated and non-154 

functional protein which subsequently results in α-actinin-3 deficiency, and has been 155 

shown in knockout mouse models to decrease muscle strength and contraction force due 156 

to a decrease in the size of type II fibers. Presence of the R allele is therefore thought to 157 

improve strength and speed of contraction and has been shown to be significantly more 158 

common in sprinting athletes [9]. It has also been shown that the X allele, which results 159 

in the α-actinin-3 deficiency, shifts the type II fibers energy generation from their usual 160 

anaerobic processes to aerobic, oxidative processes, increasing the fatigue-resistance of 161 
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the fibers [12]. While this suggests that the X allele may be advantageous for endurance, 162 

at a cost to speed and strength, association studies in endurance athletes have had mixed 163 

results [9]. Nevertheless, this polymorphism has a clear, replicable effect on strength and 164 

speed, and has thus been included in every profile on athletic performance. 165 

 166 

AMPD1 Q12X (rs17602729) 167 

The AMPD1 Gln12Ter polymorphism (Q12X; rs17602729), also known as the C34T 168 

polymorphism, is located in the muscle-specific isoform of the AMP deaminase gene 169 

(AMPD1), which deaminates the adenosine monophosphate (AMP) that accumulates 170 

during exercise into inosine monophosphate (IMP) as part of the purine nucleotide cycle 171 

[16, 17]. An accumulation of AMP results in loss of AMP and an increase of adenosine in 172 

the tissues, which results in decreased alertness and lower time to fatigue. AMPD1 thus 173 

assists in salvaging adenosine molecules and helping regulate the levels of IMP, AMP, 174 

adenosine diphosphate (ADP), and adenosine triphosphate (ATP) in skeletal muscles 175 

during exercise [5]. Additionally, the AMPD1 enzyme helps promote the generation of 176 

ATP from ADP by the enzyme myokinase by altering the reaction equilibrium [17], and 177 

is therefore extremely important in determining the energy availability to skeletal 178 

muscles during exercise. The substitution of a T nucleotide for a C at position 34 results 179 

in a nonsense mutation whereby a glutamine is converted to a stop codon, resulting in a 180 

truncated non-functional protein, and therefore resulting in AMPD1-deficiency. The lack 181 

of AMPD1 enzyme has been associated with an increased frequency of mild forms of 182 

myopathy post-exercise, with lower time to fatigue and muscle cramping [16], though not 183 

all individuals with AMPD1 deficiency will experience these symptoms [17].  Although 184 

the deficiency of AMPD1 was originally expected to predominantly affect short-term 185 

exercise, and although it has been associated with a lower mean anaerobic power and 186 
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faster decline in power output [18], the X allele resulting in AMPD1 deficiency has been 187 

found to be about half the frequency in endurance athletes compared to controls [17]. It 188 

has since been suggested by studies examining accumulation of IMP and AMP during 189 

exercise that at the end of long endurance events when energy stores are depleted, an 190 

accumulation of AMP occurs which is necessarily converted to IMP by AMPD1 enzyme 191 

[17]. The Q allele is thus associated with an advantage for endurance performance while 192 

X allele carriers may be disadvantaged by early AMP accumulation and fatigue.  193 

 194 

CKMM 3’ UTR NcoI RFLP (rs8111989) 195 

The gene CKMM contains a NcoI RFLP in the 3’ untranslated region of the gene (3’ UTR  196 

NcoI RFLP, rs8111989), resulting in two alleles named for their fragment lengths, the 197 

more common 985+185bp allele and the rarer 1170 bp allele [19], which correspond to a 198 

T to C single nucleotide substitution, respectively. The CKMM gene is a muscle-specific 199 

form of creatine kinase (CK) which catalyses the conversion of phospho-creatine (PCr) 200 

and ADP into creatine and ATP, as well as the reverse reaction. This CK/PCr energy 201 

buffering system acts as a temporal buffer for energy by ensuring that ATP can be 202 

quickly generated from cellular stores of ADP when required [5, 19]. It also acts as an 203 

energy ‘shuttle’ between subcellular locations. The activity of CKMM in catalysing the 204 

reaction therefore can impact on ATP availability to the muscle, which may limit 205 

performance. In fact, type I (slow twitch, oxidative) muscle fibers have been reported to 206 

show a two-fold lower CK activity compared to type II (fast-twitch, glycolytic) muscle 207 

fibers [19]. Although the NcoI RFLP is located in the 3’ UTR and thus does not result in 208 

a functional change in the CKMM protein, deletion of the CKMM 3’ UTR results in a 209 

change to the mRNA cellular localisation signal, which is important for correct CK/PCR 210 

shuttling [20] and which may possibly result in altered expression levels of CKMM due to 211 
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mRNA instability [21]. Though the mechanisms by which this may affect performance 212 

are still not clear, it has been shown through performance studies that the CC genotype 213 

(1170bp/1170bp) results in a lower change in VO2max (ml / kg • min) in response to 214 

endurance training, while the TT genotype results in 1.5- to 3-fold higher change in 215 

VO2max [19]. This suggests that the T allele (985+185bp) may be beneficial for endurance 216 

performance [5]. The TT genotype has also been associated with an increased likelihood 217 

of extremely high blood CK levels post-exercise which may indicate damage to skeletal 218 

muscle [21] and therefore may also be involved in exercise tolerance.  219 

 220 

GDF8 K153R (rs1805086) 221 

The GDF8 Lys153Arg polymorphism (K153R; rs1805086) is located in exon 2 of the 222 

growth differentiation factor 8 gene (GDF8), which is more commonly known as 223 

myostatin (abbreviation MSTN). Myostatin functions as a negative regulator of myoblast 224 

differentiation into muscle fibers, by signaling to increase p21, resulting in the inhibition 225 

of Cdk2 and thus the hyperphosphorylation of retinoblastoma (Rb), which then promotes 226 

cell cycle progression and thus myoblast proliferation [22, 23]. It is therefore a key factor 227 

in the determination of both the number and size of muscle fibers [22, 23], and 228 

myostatin-deficient animals, whether due to knockout, as in mouse models, or naturally 229 

deficient, as in cattle showing the ‘double-muscle’ phenotype, have been well established 230 

to exhibit up to three times as much muscle mass as wildtype [22]. Myostatin deficiency 231 

has been demonstrated to result in a similar hypertrophy of skeletal muscle in rare human 232 

cases also [24]; however, the K153R SNP, more common in humans than recessive 233 

homozygous myostatin deficiency, has also been shown to result in significant increases 234 

in skeletal muscle mass and strength for the RR genotype [23], thought to be due to 235 

alteration in binding affinity resulting in a less effective inhibition of myoblast 236 
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proliferation. Its clear importance for the determination of muscle mass and strength 237 

make this marker a strong candidate for any polygenic profile of athletic performance. 238 

 239 

HFE H63D (rs1799945) 240 

The HFE His63Asp polymorphism (H63D; rs1799945) is located in the hereditary 241 

haemochromatosis gene (HFE; standing for High Fe) which is a transmembrane protein 242 

with a key role in regulating iron absorption. The HFE protein is thought to regulate the 243 

interaction of other key molecules involved in iron uptake and circulation [25],  including 244 

transferrin, a plasma protein that binds absorbed iron for circulation; the transferrin 245 

receptor (TfR, encoded by TFRC and TRF2 genes), a transmembrane glycoprotein 246 

facilitating intake of transferrin-bound iron into cells; ferroportin (FPN1 or SLC40A1), a 247 

transmembrane protein located on the basolateral surface of gut cells macrophages, which 248 

allows transport of absorbed iron out of cells into circulation; and hepcidin (HAMP), a 249 

negative regulator of iron transport that competitively binds ferroportin, preventing 250 

release of iron from cells. HFE primarily interacts with TfR by decreasing the affinity of 251 

transferrin for the TfR, thus reducing the uptake of transferring-bound iron [26, 27] as 252 

well as possibly influencing regulation of hepcidin levels, with decreases in hepcidin 253 

levels reducing the negative inhibition of ferroportin and thus increasing export for iron 254 

from gut cells into circulation and tissues [25, 28]. The H63D polymorphism has been 255 

shown to reduce the ability of the HFE protein to bind to its ligand, thereby preventing 256 

the inhibition of transferrin-TfR binding and resulting in increased transport of iron into 257 

circulation and cells [26, 27, 29]. This results in an increased level of iron, as measured 258 

by transferrin saturation (TS, or percentage of TfR bound to transferrin), serum ferritin 259 

concentration (SF, the acute-phase storage molecule for iron) [25, 29], even in the 260 

absence of additional mutations in HFE and the other key iron transport genes TRF2, 261 
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FPN1, and HAMP [29]. As endurance athletes require reasonable iron levels to improve 262 

their oxygen-carrying capacity, any impairments to the iron transport mechanisms that 263 

result in a decreased level of iron, even if not at anaemic levels, may result in a poorer 264 

aerobic capacity, possibly through oxidative enzyme and respiratory protein activity [30]. 265 

Alternatively, the H63D polymorphism, by resulting in hyperferritinaemia, may have the 266 

potential to boost aerobic capacity in athletes, and indeed the D allele has been found to 267 

be at a significantly higher frequency in endurance cyclists and Olympic-class endurance 268 

runners compared to sedentary population controls [31], despite the fact that some studies 269 

have not found a significant impact on VO2max from HFE mutations [31, 32]. The 270 

increased frequency of D allele (specifically heterozygotes) in endurance athletes 271 

therefore supports its inclusion in a polygenic model; however, due to the fact that a 272 

homozygous DD genotype may increase iron levels adversely, leading to symptoms of 273 

iron overload such as iron deposition in abdominal organs and cardiac tissue [27, 33], the 274 

heterozygous HD carrier may have the better endurance advantage, leading to its optimal 275 

weighting in Ruiz et al.’s polygenic profile [5].   276 

 277 

PPARGC1A G482S (rs8192678) 278 

The PPARGC1A Gly482Ser polymorphism (G482S; rs8192678) is located in the 279 

peroxisome proliferator-activated receptor-γ coactivator-1α gene (PPARGC1A), which is 280 

a coactivator of regulatory genes for the oxidative phosphorylation (OXPHOS) pathway 281 

for generation of ATP. As endurance athletes predominantly utilise aerobic energy 282 

generation through oxidative phosphorylation, requiring higher maximal oxygen uptakes 283 

(VO2max) compared to sprint and power sports, the PPARGC1A gene could potentially 284 

impact on energy availability [34]. However, PPARGC1A is also involved in the 285 

activation of other pathways which may also equally be important for endurance athletes, 286 
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including stimulating mitochondrial biogenesis through binding with nuclear respiratory 287 

factors NRF-1 and NRF-2 and mitochondrial transcription factors [34, 35]. PPARGC1A 288 

is also involved in glucose and lipid oxidation through its interaction with peroxisome 289 

proliferator-activated receptor α (PPARA) [34, 35]. PPARGC1A has also shown to be 290 

important for the transformation of muscle fibers to type I (slow-twitch, high levels of 291 

mitochondria) though binding with myocyte enhancer factor 2 (MEF2), which occurs as a 292 

result of the normal response of muscle tissue to endurance training, improving oxidative 293 

capacity and resistance to fatigue [36]. The importance of PPARGC1A is so manifold, 294 

through co-activation of differing pathways which all impact on the oxidative capacity of 295 

the skeletal muscles, that a single episode of extended endurance exercise can result in a 296 

7- to 10-fold increase in PPARGC1A expression peaking within two hours [34].  The 297 

functional polymorphism G482S, which is thought to interfere with PPARGC1A binding 298 

ability, has been shown to be strongly associated with performance, with a significantly 299 

lower frequency of the S allele in endurance athletes compared to both sedentary/unfit 300 

controls [34, 35] and sprint athletes [35], highlighting the endurance advantage conferred 301 

by the more common G allele. Though there is some evidence to suggest that the S allele 302 

impede mitochondrial biogenesis by decreasing activation of mitochondrial transcription 303 

factor TFAM, stronger evidence suggests that the S allele may interfere with muscle fiber 304 

transformation as the mutation is located within the MEF2-binding site of PPARGC1A 305 

and disrupts its binding [36]. This is further supported both by mouse studies, which 306 

show that PPARGC1A overexpression increases type I fiber ratio while knockout models 307 

show a decrease in type I and shift to type IIx and IIb fibers, and a recent study 308 

examining human muscle biopsies, which showed a lower level of post-training type I 309 

fibers in S carriers compared to G carriers, though mitochondrial density and activity, and 310 

intracellular lipid content was not different between different genotype groups [36]. 311 
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These data point to a clear advantage of G allele carriers in endurance performance and 312 

as such is an important component of any polygenic athletic profile. 313 

 314 

Materials and Methods 315 

Study population 316 

Ethical approval was obtained from the Human Research Ethics Committee 317 

(HREC) at Griffith University (Protocol No: MSC/06/05/HREC) and Queensland 318 

University of Technology (Approval number: 1300000499) and written consent was 319 

obtained from each participant. The study population consisted of a previously described 320 

[12] cohort of 196 elite endurance triathletes, whose selection as an “elite endurance 321 

athlete” was based on participation in the 2008 Ironman World Championship triathlon. 322 

This event involves a 3.8 km swim, 180 km bike ride, and 42.2 km marathon on the Kona 323 

coast of Hawaii [37]. Questionnaires were administered at the Kona Ironman event 324 

collecting data on a variety of demographic, health, and exercise-related variables, and 325 

approximately 1-2 ml saliva was collected for each participant using saliva collection kits 326 

(OG-250 Oragene Kit, DNA Genotek Inc.). DNA was extracted from saliva samples as 327 

described previously [12] and overall finishing time (referred to henceforth as 328 

performance time, or PT) was obtained from the official Kona 2008 Ironman results [38] 329 

for 173 of the 196 recruited participants. Eligibility criteria, methodology, and cohort 330 

characteristics are described in detail elsewhere [12]. 331 

 332 

Briefly, eligibility for the Kona Ironman championship is gained by earning a 333 

qualifying place in yearly qualifying half-Ironman or full-Ironman marathons run at 334 

differing locations worldwide. Approximately three-quarters of the participants were 335 
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male (N = 143, 73.0%) while about one-quarter were female (N = 53, 27.0%). Athletes 336 

originated from various countries from around the world, and were grouped according to 337 

continent of origin. Although 83.7% of athletes originated from North America (N = 104) 338 

or Europe (N = 60), although a small number did originate from Oceania (N = 23), South 339 

America (N = 6), Asia (N = 2) and Africa (N = 1). Most participants were between the 340 

ages of 30 and 50 (N = 123, 63.3%), with mean participant age 42.5 ± 11.4 yrs. Further 341 

detail on the cohort baseline characteristics and questionnaire data may be found in 342 

Grealy et al., 2013 [12].  343 

 344 

Genotyping assays 345 

Genotyping for the seven gene polymorphisms was performed by PCR 346 

amplification followed by various assays, including agarose gel electrophoreses (AGE), 347 

restriction fragment length polymorphism (RFLP) analysis, and high resolution melt 348 

(HRM) analysis (see Supporting Information Table S1 for primer sequences and assay 349 

details). Briefly, the ACE I/D polymorphism (287 bp Alu insertion, rs4340) was 350 

genotyped by PCR amplification using a previously published primer set [39] slightly 351 

adapted. The amplicon sizes for the deletion and insertion alleles were 182bp and 470bp 352 

respectively, allowing genotype discrimination after separation by AGE. The AMPD1 353 

Q12X polymorphism (C>T, rs17602729) was genotyped by PCR amplification using a 354 

previously published primer set [16] followed by restriction enzyme digestion with  355 

HpyCH4IV. The GDF8 K153R polymorphism (A>G, rs1805086),  the HFE H63D 356 

polymorphism (C>G, rs1799945), and the PPARGC1A G482S polymorphism (G>A, 357 

rs8192678) were all genotyped by PCR amplification using primer sets designed for this 358 

study, followed by restriction enzyme digestion with PspOMI, BclI, and MspI 359 

respectively. The ACTN3 R577X polymorphism (C>T, rs1815739) had been genotyped 360 
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in this cohort previously [12]; data from this study was used for this multi-gene analysis. 361 

The genotyping method in the prior study was PCR amplification followed by HRM 362 

analysis. The CKMM NcoI 3’-untranslated region polymorphism (A>G, rs8111989) was 363 

genotyped by PCR amplification using a HRM primer set designed for this study, 364 

followed by HRM analysis. Positive controls for each genotype were created for each 365 

assay, and were genotyped using both the original assay and an alternative assay method 366 

such as sequencing or RFLP. Both typing methods resulted in 100% concordance of 367 

genotypes, for all assays. Positive controls were subsequently included in all genotyping 368 

runs on cohort samples. Additionally, HRM assays were genotyped in duplicate, with 369 

samples re-typed in cases of disagreement between duplicates. 370 

 371 

Statistical analysis 372 

Genotype frequencies were tested for conformation to Hardy-Weinberg 373 

Equilibrium (HWE), and compared to HapMap reference population frequencies using χ2 374 

tests or Fisher’s exact tests where appropriate. Performance time (PT) was analysed by 375 

one-way ANOVA tests to determine whether PT differed between genotype groups for 376 

individual polymorphisms in this cohort. PTs were also used to group the athletes into 377 

two extreme phenotypes, the top 10% performers (with fastest times) and the bottom 10% 378 

performers (with slowest times). Genotype frequencies in the top and bottom 10% groups 379 

were compared using Fisher’s exact tests. The combined effect of having multiple 380 

optimal alleles was assessed using the total genotype score procedure outlined previously 381 

[5]. Briefly, each genotype for a gene is scored as 0, 1, or 2, with the most optimal 382 

genotype for endurance scored as 2. For most of the markers, the scoring system by Ruiz 383 

et al. assumed an additive effect of an advantageous allele, with homozygotes of the non-384 

optimal allele assigned a score of 0 and heterozygotes with one copy of the optimal allele 385 
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assigned a score of 1. The only marker that did not fit this pattern was the HFE H63D 386 

polymorphism, in which H/D heterozygotes were scored as 2 while the H/H homozygote 387 

was scored as 0 and the D/D homozygote was scored as 1. This was due to the prior 388 

finding that heterozygotes are significantly overrepresented in endurance athletes versus 389 

controls [5, 31]. Genotype scores for each gene are summed to a total, divided by the 390 

maximum possible score (14 for 7 genes) and divided by 100 to yield a TGS for every 391 

individual. The distribution of TGS was plotted in the overall cohort and in the 10% 392 

fastest and 10% slowest race performers, and differences in TGS were analysed in these 393 

groups by t-test analysis. PT was modeled using linear regression with stepwise forward 394 

selection, to determine whether the TGS or any of the polymorphisms individually would 395 

be a significant factor in performance time, adjusting for the demographic variables age, 396 

sex, and continent of origin (shown to significantly influence performance time in our 397 

cohort previously [12]). Due to the heterogeneity in clinical characteristics (e.g. age, sex), 398 

lifestyle characteristics (e.g. smoking status), and fitness training characteristics (e.g. 399 

estimated number of exercise hours per week), demographic, health, and exercise-related 400 

data obtained from questionnaires (described previously in Grealy et al., 2013) were also 401 

examined for association with PT. 402 

 403 

Receiver operating characteristic (ROC) area under the curve (AUC) analyses 404 

were conducted to determine whether models with demographic and genetic variables 405 

could predict: (1) whether athlete performance time would be less than the median time; 406 

(2) whether athlete performance time would be less than the mean time; and (3) whether 407 

athletes would fall into the top 10% of performance times. Models included TGS only, 408 

demographic variables only, TGS and demographic variables, individual genes and 409 

demographic variables. The ROC curve is defined as a plot of test sensitivity or true 410 
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positive rate (TPR) as the y coordinate versus its specificity or false positive rate (FPR) 411 

as the x coordinate. It is an effective method to evaluate the quality or the performance of 412 

an diagnostic test [40]. The clinical performance of a laboratory test can be described in 413 

terms of diagnostic accuracy, or the ability to correctly classify subjects into clinically 414 

relevant sub-groups [41]. The most common way to quantify the diagnostic accuracy of a 415 

laboratory test is to measure the area under the ROC plot or AUC. The AUC value range 416 

between 1.0 (perfect separation of the test values of the two groups) and 0.5 (no apparent 417 

distributional difference between the two groups of test values) [40, 41]. All statistical 418 

analyses were conducted using the SPSS software (IBM SPSS v. 20.0 for Windows; IBM 419 

Corporation, Somers, NY) with an α level of 0.05.  420 

 421 

Results 422 

Genotyping success rate ranged from 99-100% for all markers except HFE 423 

(97.4% of samples successfully genotyped). The genotype distributions for all markers 424 

was found to conform with Hardy-Weinberg Equilibrium (HWE) in the overall cohort 425 

and in the subgroups of the 10% fastest and 10% slowest race performers (p > 0.05) for 426 

all groups and markers; see Supporting Information Table S2. Genotype frequencies for 427 

all Ironman athletes are shown in Table 1; these concorded well with reference 428 

frequencies derived from the HapMap CEU population (Utah residents with ancestry 429 

from Northern and Western Europe) [42] and were not significantly different for any 430 

marker except ACE rs4340. No data was available for ACE rs4340 in HapMap CEU 431 

population; data shown in Table 1 is drawn from Keavney et al. 2000, which is a UK 432 

study involving 5934 Caucasian myocardial infarction controls [43]. The Ironman cohort 433 

had a significantly higher frequency of the D/D genotype compared to this study 434 

(Ironman 42.3% D/D compared to 27.6%; χ2 p =1.68 x10-6).  Genotype distribution was 435 
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not significantly different in males and females, athletes from different continents, or 436 

athletes of different ages (see Supporting Information Table S3, Table S4, and Table S5); 437 

thus further analyses were undertaken without stratification by these groups. Genotype 438 

frequencies in the 10% fastest and 10% slowest race performers are also shown in Table 439 

1 and Figure 1; these were not significantly different for any marker, though this is most 440 

likely due to a lack of power as n = 17 for each group. There were non-significant trends 441 

observed in genotype distribution in top and bottom performers (see Supporting 442 

Information Figure S1), particularly  ACE, with a higher frequency of the I/I genotype in 443 

the top 10% performers (17.6% compared to 0.0%); for AMPD1, with a higher frequency 444 

of the Q/Q genotype in the top 10% performers (88.2% compared to 70.6%); and for 445 

CKMM, with a lower frequency of the G/G genotype in the top 10% performers (0.0% 446 

compared to 17.6%).  447 
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Table 1: Genotype frequency data in the Ironman athletes and the HapMap CEU reference population [42] 448 

aNumber of successfully genotyped samples per marker: ACE = 196 (100%); ACTN3 = 196 (100%); AMPD1 = 195 (99.5%); CKMM = 196 449 

(100%); GDF8 = 195 (99.5%); HFE = 191 (97.4%); PPARGC1A = 195 (99.5%).  bNo available data for ACE rs4340 in HapMap CEU 450 

population; data shown from Keavney et al. (2000) UK study involving 5934 Caucasian myocardial infarction controls [43]. cWhere a small 451 

number of observations prevented use of χ2, Fisher’s exact test was used.  452 

    Genotype frequency, n (%)  Genotype frequency, n (%)  

Gene rsID Markera Genotype HapMap CEU All athletes χ2  p Top 10% Bottom 10% Exact pc 

ACE rs4340 D/I D/D 1637b (27.6%) 83  (42.3%) 1.68 x10-6 5 (29.4%) 7 (41.2%) 0.278 

I/D 2980b (50.2%) 92   (46.9%)  9 (52.9%) 10 (58.8%)  

I/I 1317b (22.2%) 21   (10.7%)  3 (17.6%) 0 (0.0%)  

ACTN3 rs1815739 R577X R/R 22 (19.5%) 52  (26.5%) 0.29 5 (29.4%) 5 (29.4%) 1.000 

R/X 66 (58.4%) 98  (50.0%)  7 (41.2%) 8 (47.1%)  

X/X 25 (22.1%) 46  (23.5%)  5 (29.4%) 4 (23.5%)  

AMPD1 rs17602729 Q12X Q/Q 86 (76.1%) 149  (76.4%) 0.54c 15 (88.2%) 12 (70.6%) 0.398 

Q/X 24 (21.2%) 44   (22.6%)  2 (11.8%) 4 (23.5%)  

X/X 3 (2.7%) 2  (1.0%)  0 (0%) 1 (5.9%)  

CKMM rs8111989 3’ UTR   

NcoI RFLP 

A/A 58 (51.3%) 93  (47.4%) 0.32 9 (52.9%) 10 (58.8%) 0.156 

A/G 49 (43.4%) 83  (42.3%)  8 (47.1%) 4 (23.5%)  

G/G 6 (5.3%) 20  (10.2%)  0 (0.0%) 3 (17.6%)  

GDF8 rs1805086 K153R K/K 58 (96.7%) 186  (95.4%) 1.00c 17 (100.0%) 16 (94.1%) 1.000 

K/R 2 (3.3%) 9  (4.6%)  0 (0.0%) 1 (5.9%)  

R/R 0 (0.0%) 0  (0.0%)  0 (0.0%) 0 (0.0%)  

HFE rs1799945 H63D H/H 36 (64.3%) 138  (72.3%) 0.34c 13 (76.5%) 12 (75.0%) 1.000 

H/D 20 (35.7%) 51  (26.7%)  4 (23.5%) 4 (25.0%)  

D/D 0 (0.0%) 2  (1.0%)  0 (0.0%) 0 (0.0%)  

PPARGC1A rs8192678 G482S G/G 51 (45.1%) 74 (37.9%) 0.42 8 (47.1%) 7 (41.2%) 0.811 

G/S 45 (39.8%) 84  (43.1%)  7 (41.2%) 6 (35.3%)  

S/S 17 (15.1%) 37  (19.0%)  2 (11.8%) 4 (23.5%)  
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Figure 1: Distribution of genotypes in seven endurance related genes in the top and 453 

bottom 10% performers. 454 

 455 

Mean performance time (PT) overall was 11 hr 44.4 min ± 1 hr 51.4 min; the 456 

fastest finishing time was 9 hr 5.3 min, while the slowest finishing time was 16 hr 55.2 457 

min. Mean PTs and ANOVA comparisons for each genotype group are shown in Table 2. 458 

For each of the genes, the fastest PT was for:  ACE I/I genotype (685 min); ACTN3 R/R 459 

genotype (697 min); AMPD1 Q/Q genotype (704 min); CKMM A/G (695 min); GDF8 460 

K/R genotype (694 min); HFE D/D genotype (697 min); and PPARGC1A G/S genotype 461 

(704 min). For ACE and AMPD1, the fastest PT corresponded with the ‘optimal’ 462 

genotype for endurance. For CKMM, GDF8, PPARGC1A and HFE, the less optimal 463 

genotype had the fastest PT. Interestingly, for ACTN3, the fastest PT corresponded with 464 

the genotype optimally associated with speed/power (the R/R genotype), not endurance. 465 

For AMPD1, a trend of increasing mean PT for decreasing number of optimal alleles was 466 

observed; however, mean PT did not significantly differ between genotype groups for 467 

any of the individual polymorphisms in this cohort (p > 0.1). 468 

469 
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Table 2: Mean performance time (PT) in minutes within genotype groups 470 

 471 

Though these markers were not shown to be associated with being in the top 10% 472 

or significantly influence mean performance time individually, the combined effect of 473 

multiple optimal alleles was determined by calculating the TGS as per Ruiz et al. (2009), 474 

which is a percentage of optimal alleles obtained across all seven markers. In the total 475 

cohort of Ironman athletes, the mean ± SD of the TGS was 60.75 ± 12.95 (Fig. 2). The 476 

TGS ranged from a minimum score of 28.6 to 92.9,  with only two athletes having both 477 

the lowest and highest scores, and the distribution was both symmetrical (skewness 478 

statistic ± SE: -0.003 ± 0.18) and mesokurtic (kurtosis statistic ± SE: -0.230 ± 0.35). In 479 

Gene rsID Genotype n Mean PT (SE PT) F p Levene p 

ACE rs4340 D/D 75 704.6 (12.4) 0.655 0.521 0.304 

I/D 81 716.9 (13.2)    

I/I 17 684.9 (23.1)    

ACTN3 rs1815739 R/R 45 696.7 (16.4) 0.509 0.602 0.789 

R/X 85 716.7 (12.1)    

X/X 43 704.2 (17.2)    

AMPD1 rs17602729 Q/Q 132 704.4 (9.5) 1.805 0.168 0.240 

Q/X 38 716.9 (18.5)    

X/X 2 849.4 (166.4)    

CKMM rs8111989 A/A 83 717.3 (13.2) 0.954 0.387 0.144 

A/G 73 694.8 (11.2)    

G/G 17 723.0 (31.8)    

GDF8 rs1805086 K/K 164 709.6 (8.8) 0.148 0.701 0.262 

K/R 8 694.0 (32.7)    

R/R 0 - -    

HFE rs1799945 H/H 119 706.4 (10.3) 0.093 0.911 0.573 

H/D 47 714.2 (15.7)    

D/D 2 697.2 (50.8)    

PPARGC1A rs8192678 G/G 67 711.9 (14.2) 0.126 0.882 0.319 

G/S 72 703.9 (12.4)    

S/S 33 713.6 (20.7)    
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the top and bottom 10% performers (Fig. 3), the mean ± SD of the TGS was 65.1 ± 13.09 480 

and 58.9 ± 11.81, respectively (n=17 for top 10%; n=16 for bottom 10%). The TGS 481 

distribution was also symmetrical and mesokurtic in both the top 10% (skewness statistic 482 

± SE: -0.610 ± 0.55; kurtosis statistic ± SE: -0.734 ±1.06) and bottom 10% (skewness 483 

statistic ± SE: -0.354 ± 0.56; kurtosis statistic ± SE: -0.354 ± 1.09). The distribution in 484 

the top 10% was shifted to the right (towards higher TGS) compared to the bottom 10%. 485 

This difference was more clearly observed when TGS distribution was grouped into 10-486 

unit intervals (Fig. 4). Though mean TGS was smaller by ~6.2 units in the bottom 487 

performers compared with the top performers (or approximately one optimal allele fewer 488 

on average), this was not shown to be significant by t-test analysis   (t = 1.425, df = 31, p 489 

= 0.164).  490 

 491 

Figure 2. Frequency distribution of total genotype score (TGS) in overall Ironman 492 

cohort. 493 

 494 

Figure 3. Frequency distribution of total genotype score (TGS) in top and bottom 495 

10%. 496 

 497 

Figure 4. Frequency distribution of total genotype score (TGS) binned by 10-unit 498 

intervals. 499 

 500 

Performance time (PT) modelling using linear regression showed that clinical 501 

characteristics such as being a twin (n = 1), being a smoker (n = 1), and presence of a 502 

known disorder (n = 18) were not significantly associated with changes in PT. 503 

Occupational activity level and preferred exercise type were also shown to not 504 
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significantly influence PT. There was a significant trend of decreasing mean PT with 505 

increasing estimated weekly exercise hours, with mean PT ± SD of 761 ± 126 min for 506 

athletes exercising at least 3-8 hrs per week, 701 ± 109 min for weekly exercise at least 8-507 

12 hrs, and 682 ± 89 min for athletes exercising more than 12 hrs per week (F = 4.6, p = 508 

0.011). However, this effect was not significant when weekly exercise hours was 509 

included in the PT regression model with other variables (β = -47.7, p = 0.224). Only the 510 

demographic variables of age (β = 4.6, p = 7.782 x 10-12), sex (β = 76.9, p = 2.585 x 10-6), 511 

and continent of origin (β = -20.4, p = 0.008) were statistically significant, accounting for 512 

most of the variance in performance time (35.1%). Regression models of individual 513 

markers followed an additive genetic model adjusted for age, sex, and continent of origin; 514 

shown in Table 3. Only the AMPD1 marker was significantly associated with PT (model 515 

p = 5.79 x 10-17, AMPD1 genotype p = 0.01). Each AMPD1 null allele (non-optimal for 516 

endurance) resulted in an increase of about 39 minutes in PT, with X/X genotypes having 517 

an average increase of 78 min in PT compared to Q/X genotypes. The model accounted 518 

for 37.3% of the variance in PT, which was a significant improvement (F change = 6.99, 519 

p = 0.009) on the next best model of age, sex, and continent of origin alone (which 520 

accounted for 36.8% of the variance in performance). The regression model for total 521 

genotype score (Table 3) showed that TGS was not significantly associated with PT even 522 

when adjusted for age, sex, and continent of origin. The model with TGS accounted for 523 

only 34.4% of the variance in PT, which was not an improvement compared to a model 524 

with age, sex, and continent of origin alone (35.1%) or with the model of age, sex, and 525 

continent of origin with AMPD1 genotype (37.3%).   526 

 527 

Table 3: Regression models for performance time (adjusted for age, sex, continent) 528 

Gene N Model R Adjusted R2 Model F Model p Gene β Gene p 
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ACE 173 0.603 0.348 23.97 1.07 x 10-15 -5.86 0.581 

ACTN3 173 0.602 0.347 23.88 1.19 x 10-15  2.89 0.765 

AMPD1 172 0.622 0.373 26.38 5.79 x 10-17  38.71 0.010 

CKMM 173 0.607 0.353 24.46 5.82 x 10-16 -13.04 0.215 

GDF8 172 0.605 0.351 24.12 9.24 x 10-16 -5.47 0.867 

HFE 168 0.600 0.345 22.96 4.65 x 10-15 -13.45 0.353 

PPARGC1A 172 0.605 0.351 24.11 9.35 x 10-16  0.64 0.946 

TGS 168 0.600 0.344 22.86 5.22 x 10-15 -0.42 0.428 

 529 

Furthermore, ROC AUC analysis determined that TGS alone could not 530 

significantly predict whether an athlete would finish in (a) less than the median PT of 531 

681.33 min (AUC = 0.52, p = 0.674); (b) less than the mean PT of 708.39 min (AUC = 532 

0.48, p = 0.626); or (c) the top 10% fastest PT i.e. less than 593.7 min (AUC = 0.61, p = 533 

0.132). However, models with the demographic variables of age, sex, and continent of 534 

origin only, demographic variables and TGS, and demographic variables and AMPD1 535 

genotype were all found to significantly predict athlete finishing time for all three 536 

outcomes (less than median PT, less than mean PT, or in the top 10%). ROC AUC graphs 537 

for all analyses are shown in Fig. 5. The model with age, sex, continent and AMPD1 538 

genotype was found to be the most significant for predicting whether athletes would 539 

finish in less time than both the mean and median (Median AUC = 0.82, p = 8.92 x 10-13, 540 

95%CI = 0.75 to 0.88; Mean AUC = 0.81, p = 4.72 x 10-12, 95%CI = 0.75 to 0.87), while 541 

the model with age, sex, continent and TGS was the most significant model for predicting 542 

whether athletes would finish in the top 10% (AUC = 0.91, p = 3.50 x 10-8, 95%CI = 0.86 543 

to 0.96). However, the model with age, sex, continent, and AMPD1 genotype had similar 544 

though slightly less significant results (AUC = 0.90, p = 4.93 x 10-8, 95%CI = 0.85 to 545 

0.96). Of all the ROC AUC analyses (Fig. 5), the models for predicting top 10% finishers 546 

had the highest discrimination of performance in terms of sensitivity and specificity. The 547 
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point where sensitivity was maximized (sensitivity = 1.000) while minimizing the false 548 

positive rate and thus maximizing specificity (specificity = 0.742) corresponded to a 549 

model value of 672.28. Using the model equation PT = (4.65 • age) + (79.90 • sex) + (-550 

21.36 • continent) + (-0.42 • TGS) + 552.6, this would indicate that a North American 551 

male aged 35 yrs old would need a TGS of 51 or more in order to obtain the identified 552 

criteria cutoff of 672.28; however, a trade-off among the variables means that a lower 553 

TGS in combination with optimal values for the demographic variables would be equally 554 

likely to finish in the top 10%.  555 

 556 

Figure 5. Receiver operating characteristic curves (ROC) determining potential for 557 

PT prediction using four models.   558 

 559 

Discussion 560 

Overall, although expected genotype frequencies corresponded well with 561 

expected Caucasian frequencies from HapMap, none of the individual polymorphisms 562 

had significantly different genotype frequencies in the top and bottom 10% performers.  563 

This is perhaps due to power limitations, given that the top and bottom 10% of 564 

performers consisted of only seventeen individuals in each group for this study. However, 565 

none of the individual polymorphisms were found to significantly impact performance 566 

time when unadjusted for confounding demographic variables. Interestingly, an age-, sex- 567 

and continent of origin-adjusted analysis of AMPD1 Gln12Ter genotype showed a 568 

significant result, with the endurance-optimal Gln allele decreasing mean performance 569 

time.  570 

 571 
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As previously reported [12], age, sex, and continent of origin were extremely 572 

significant predictors of performance time and were included in all models to control for 573 

confounding effects. This is an extremely important additional step in any genetic 574 

analysis of endurance due to the heterogeneity of athletes performing at elite levels. Some 575 

studies have avoided the main confounders of ethnicity and sex by analysing subgroups 576 

(such as males) only [5]. This approach is useful for eliminating confounders but 577 

necessarily decreases the available pool of athletes for study and may result in lack of 578 

power. Additionally, age is rarely adjusted for in endurance case-control studies, which 579 

may be an important oversight given that age was the most highly significant variable in 580 

our analyses. This is even more important when the range of age of study participants can 581 

vary (as in analyses of professional athletes). Additionally, restricting analysis by ethnic 582 

group may not remove all of the confounding present in country or continent of origin; 583 

we found a significant effect for continent of origin. This is unlikely to be due to 584 

confounding from continent-specific genetic effects as only small sample sizes were 585 

obtained from South America, Africa, and Asia, and may instead reflect continent-586 

specific socio-economic factors relating to training availability or training type.  587 

 588 

Indeed, training variables are an additional important factor to account for in such 589 

studies, as different training types and durations can have hugely significant impacts on 590 

athlete capabilities. In this study, fitness training characteristics were determined only 591 

through estimated weekly exercise hours (determined by exercise frequency and duration 592 

questions). However, this data alone cannot meaningfully inform the effect of athlete 593 

training on performance, as even low volume exercise may potently increase athlete 594 

endurance performance for certain training types, such as high-intensity interval training 595 

(HIT). For instance, muscle mitochondrial capacity, resting muscle glycogen, and 596 
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GLUT4 protein content were all found to be improved significantly by HIT in a 2010 597 

study, despite the fact that the training was merely six training sessions of 8-12 x 60 598 

second intervals (with interspersed 75-second recovery periods)[44]. Furthermore, this 599 

study showed significant decreases in time to complete 50kJ and 750kJ cycling time trials 600 

with significant increases in mean power output also[44]. The benefits of HIT have even 601 

been observed for sedentary and middle-aged individuals, which obtains the health 602 

advantages of traditional endurance training with only a small time commitment[45]. 603 

Thus, explicit recording of training type, as well as training volume, are vitally important 604 

for future analyses of endurance performance.  605 

 606 

These findings highlight the importance of including potentially confounding 607 

environmental factors in genetic analyses of athletic performance. This should not be 608 

surprising, given that while endurance endophenotypes have been shown to have high 609 

heritabilities (h2 = 40-60%) and while athletic status itself has also been reported to be 610 

highly heritable (h2 >50%) [4], non-genetic environmental factors must still contribute at 611 

least half of the variance in endurance phenotype. This can be due to both shared 612 

environment (such as the training provided to national-level athletes for a specific 613 

country) and non-shared environment (individual efforts in training sessions, frequency 614 

and duration of training sessions, etc.). As genetic analyses show that each allele must 615 

contribute relatively small amounts of variance to the overall phenotype compared with 616 

environmental factors [46], these types of variables should be consistently accounted for 617 

in order to prevent masking of significant genetic effects, such as we observed for 618 

AMPD1 Gln12Ter.  619 

 620 
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Another method of preventing polymorphisms with individual small effect from 621 

escaping statistical detection is to analyse their joint effects using the TGS system. This 622 

has been used to successfully show a significant difference in genetic profile 623 

‘favourability’ between endurance athletes versus non-athlete controls for the seven-gene 624 

endurance profile [5] or a ten-gene endurance profile [4], endurance athletes and non-625 

athlete controls versus power athletes for a six-gene power profile [6], and endurance 626 

athletes versus power athletes and non-athlete control for a six-gene mitochondrial 627 

biogenesis endurance profile [10]. However, although the TGS distribution for our 628 

Ironman athletes (mean 60.75 ± std. dev. 12.95) was comparable to the distribution of 629 

TGS of Spanish non-athletic controls described in Ruiz et al. 2009 (mean 62.43 ± std. 630 

dev. 11.45), the TGS distribution in the Ironman athletes was overall lower than for 631 

Spanish endurance athletes (mean 70.22 ± std. dev. 15.58). Similar to the reported results 632 

in Spanish endurance athletes by Ruiz et al. 2009, we observed multiple ‘peaks’ in the 633 

distribution of the endurance athletes. The first peak was observed at a TGS ~43 and was 634 

common to both top and bottom performers; the second peak was observed at a TGS of 635 

~57 for the bottom 10% but ~64 for the top 10%; a possible third peak was observed for 636 

top 10% performers at TGS of ~79. The difference in frequency of higher TGS for top 637 

performers compared with lower TGS for bottom performers was more clearly observed 638 

when TGS distribution was grouped into 10-unit intervals. This might suggest that there 639 

groupings of optimal alleles, perhaps, the likelihood of an optimal allele for one marker 640 

increases the likelihood of having other optimal alleles (and vice versa). Thus far, this 641 

possibility has not been explored in relation to the TGS, as what all the currently existing 642 

TGS models have in common is that they represent the proportion or percentage of 643 

‘optimal’ alleles for a particular phenotype, and assumes an additive genetic model of 644 

allele favourability for all polymorphism except HFE (where the heterozygote is 645 
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considered ‘most optimal’). Furthermore, the TGS follows a simple additive model of 646 

athletic advantage between different polymorphisms, which may not be the case if gene-647 

gene and gene-environment interactions result in non-additive advantages for certain 648 

allele combinations. Several papers have already reported gene-gene interactions for 649 

small combinations of genes [4, 47, 48]; of particular interest is that performance time of 650 

South African Ironman triathletes was significantly influenced by the interaction of the 651 

NOS3 and BDKRB2 genes (individuals with the NOS3 GG genotype + BDKRB2 19 allele 652 

were significantly slower than other combinations) [48]. More sophisticated TGS models 653 

taking such interactions into account may be necessary to accurately model genetic 654 

advantages for performance; however it is also clear that currently information on gene-655 

gene interactions and gene-environment interactions for these genes are lacking [46]. It is 656 

also important to realise that any TGS model which accounts for gene-gene or gene-657 

environment will become additionally complex. The power to perform such analyses may 658 

also be lacking, given that sample size has typically been an issue for elite performance 659 

studies [46, 49]. 660 

 661 

These reasons may also partly explain why TGS was not significantly associated 662 

with PT in our cohort even when adjusted for age, sex, and origin and that ROC AUC 663 

analysis determined that TGS alone could not significantly predict whether an athlete 664 

would finish in less than the median or mean or the top 10% fastest PT. Alternatively, the 665 

TGS profile for ‘optimal endurance’ may not be an appropriate profile for examining 666 

event performance as an outcome, even an endurance event. Additionally, even differing 667 

types of endurance events may show different levels of association with ‘endurance’ 668 

genes; while acknowledged as one of the most gruelling endurance events in the world, 669 

the Ironman championships require a blend of cycling, running, and swimming skills, 670 
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which makes them more of a complex phenotype than single-sport endurance events such 671 

as running. Triathlons may thus require different set of ‘optimal alleles’, emphasising not 672 

only endurance-associated genes but perhaps power-associated as well. “Success” in any 673 

kind of endurance event relies, in addition to endurance capabilities, on speed and 674 

strength to outperform competitors.  675 

 676 

Thus, in the TGS profile we employed, the ACTN3 Arg577Ter null allele (X) was 677 

coded as the ‘optimal’ endurance allele and the X/X genotype was given a genotype score 678 

of 2, the R/X genotype given a score of 1, and the R/R genotype given a score of 0. 679 

However, the R allele is highly associated with speed and power [6], and the presence of 680 

an R allele may give an endurance event competitor an edge over an athlete with 681 

homozygous X/X genotype. In fact, Ruiz et al.’s 2010 speed/power profile showed three 682 

common polymorphisms to the endurance profile (ACE Ins/Del, ACTN3 Arg577Ter, and 683 

GDF8 Lys153Arg), albeit with inverse allele coding [6]. Thus, 3 out of the 14 684 

polymorphisms used in our TGS calculation may in fact be more suitable with the power 685 

allele coded as the ‘optimal’ allele. An alternative profile for performance time may need 686 

to be investigated in order to determine a model that will predict athlete finishing time 687 

with discriminating sensitivity and specificity. Such as model may be useful in assisting 688 

with athletic training as well as helping athletes understand what factors underlie their 689 

performance, by allowing athletes to pinpoint factors to work on in order to improve 690 

performance time, as well as personalize their training to their optimal genetic profile. 691 

Before this can be done, however, more sophisticated genetic models should be 692 

investigated to ensure that the additive model is not masking gene-gene or gene-693 

environment interactions; non-genetic factors such as training methods and duration 694 

should be recorded and included in future genetic analyses to prevent confounding; and 695 
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large collaborations should be undertaken to obtain sufficient sample sizes for powerful 696 

and complex analyses of endurance performance. 697 
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