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Abstract 

The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on 

retention of their proliferative expansion potential in conjunction with the ability to 

differentiate toward multiple lineages. Successful utilisation of these cells in clinical 

applications linked to tissue regeneration requires consideration of biomarker expression, 

time in culture and donor age, as well as their ability to differentiate towards mesenchymal  

(bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential 

therapeutic suitability we examined hMSCs after extended expansion including 

morphological changes, potency (stemness) and multilineage potential. Commercially 

available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days 

and > 50 population doublings. Distinct growth phases (A-C) were observed during serial 

passaging and cells were characterised for stemness and lineage markers at representative 

stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 

days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, 

stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR 

revealing MSCs maintained their multilineage potential, including neural lineages throughout 

expansion. Co-expression of multiple lineage markers along with continued CD45 expression 

in MSCs did not affect completion of osteogenic and adipogenic specification or the 

formation of neurospheres. Improved standardised isolation and characterisation of MSCs 

may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure 

increased reproducibility and routine production of MSCs for therapeutic applications 

including neural repair. 

	

	

	

	

	

	

	

	



	

Introduction 

Embryonic (pluripotent) and adult stem cells (multipotent) represent a biological reservoir of 

cells that retain differentiative ability into a number of cell types to accommodate tissue 

homeostasis and repair. Traditionally, adult mesenchymal stem cells (MSCs) have been 

isolated from the bone marrow (an invasive procedure) but other sources including fat, 

umbilical cord blood, dental pulp, skeletal muscle and amniotic fluid are clinically relevant 

alternatives [1-7]. The multilineage potential of MSCs, their relative ease of isolation and 

culture, as well as their high ex vivo expansive potential makes these cells an attractive 

therapeutic tool [8-10]. However, MSCs do not have unlimited proliferative capacity and 

their ability to differentiate into multiple lineages is influenced by multiple factors including 

donor age [11]. Contributing to current disadvantages for these cells in regenerative medicine 

is the imprecision of the identification and classification of MSCs from different biological 

sources and/or laboratories, with differentiative potential shown to vary dependant on the 

source (reviewed in [12,13]).  

The standard definition according to the International Society of Cell Therapy identifies 

properties of MSCs, regardless of their origin and method of isolation, as: capable of 

adhesion to plastic, tri-lineage differentiation into adipo-, chondro- and osteocytic cells and 

expression of CD105, CD90, CD73 without expression of CD34, CD45, CD11 and HLA-DR 

[14,15]. In addition, along with the common tri-lineage of bone, cartilage and fat, MSCs have 

been demonstrated to retain the ability to differentiate toward neural lineages [16-19].  Most 

recently, MSC ability to generate ectopic bone tissue was shown to positively correlate with 

CFU-F efficiency, cell size and their ability for long-term growth and the expression of 

STRO-1, DERMO-1 and TWIST-1 [20]. 

Along with those listed above, other cell surface markers most commonly reported as 

positive in MSCs include STRO-1, CD166, CD146, CD106, CD105, CD90, CD73, CD54, 

CD44, CD34, CD29 and CD13, while the most commonly reported negative markers include 

CD106, CD49d, CD45, CD34, CD31, CD14, CD11b and CD10 [21,22]. A number of these 

markers have been reported as both positive and negative, demonstrating the accepted 

inconsistency observed in the cell surface profile of MSCs [22]. In addition, several of these 

markers are also widely expressed on non-stem cells and cancer cells, making it very difficult 

to distinguish MSCs from neighbouring cells in vivo and in tissue preparations [15,23]. This 



confusion is further compounded by conflicting evidence surrounding common markers such 

as CD45 and CD44 [22]. As such, to date, the literature has focused more closely on the 

commonalities of markers positively expressed by MSCs rather than any identified 

differences [22].  

Important routine functions of MSCs are executed during tissue growth and repair, where 

elevated demand for precursors requires recruitment of uncommitted progenitors from other 

sources [9,24-28] with migrating stem cells differentiating only when they reach an 

appropriate microenvironment in which to flourish [29,30]. As such, the mechanisms 

regulating the ability of MSCs to migrate from the bone marrow to distant sites of injury, 

including the brain [31], are of great therapeutic interest and significance. Evidence 

supporting the potential of MSCs to give rise to non-mesenchymal tissues includes work by 

our group under standard culture conditions using commercially available MSCs [32], and by 

Foudah et al in freshly isolated bone marrow MSCs during culture and following osteogenic 

and adipogenic lineage differentiation [33]. In addition, after injection into neonatal mouse 

brains, murine MSCs have been shown to migrate throughout the forebrain and cerebellum 

and differentiate into astrocytes [34]. 

However, to more fully identify and exploit the therapeutic potential of MSCs, a 

comprehensive definition of stemness, lineage, cell surface markers and transcription factors, 

along with source, isolation and expansive potential of the cells is required. In addition, the 

expression by adult MSCs of non-immunogenic surface antigens (MHC class I not MHC 

class II) [35] provide the opportunity to transplant MSCs into an allogeneic host without the 

need for immunosuppression [36] making commercially isolated and characterised MSCs 

viable therapeutic contenders due to consistent, reproducible isolation protocols. Here, we 

have expanded in vitro commercially available human bone marrow derived MSCs (hMSCs) 

and monitored the cells for morphological changes along with the expression of specific 

markers influencing lineage specification during extended culture. The cells were 

characterised using commercially available panels to identify cell surface MSC markers as 

well as markers of neural stem cell lineages. In addition, cultures were examined by 

immunocytochemistry, Western blot and Q-PCR at distinct phases of growth, during 

osteogenic and adipogenic lineage differentiation and neurosphere formation for changes in 

MSC-specific and neural-specific marker expression.  



To date, the majority of studies examining the neural potential of hMSCs have examined 

expression of neural markers at early passages after brief (before P+3) expansion in vitro, 

with only a few studies examining neural potential after extended (after P+10) culture 

[33,37]. Under our culture conditions, hMSCs were successfully differentiated (osteogenic 

and adipogenic lineages) throughout expansion (Phase A (P+5), Phase B (P+7), Phase C 

(P+13)) with cells maintaining neural potential at these growth phases. In addition, Phase A 

cultures (P+5) cells formed neurospheres demonstrating maintenance of mesenchymal and 

neural lineage potential during expansion and multiple passaging of hMSCs.   

 

Materials and Methods 

Cell Culture 

Five human mesenchymal stem cell (hMSCs) populations isolated from the iliac crest of 

normal donors were obtained from Lonza (Australia) and expanded as a monolayer culture. 

These cells were obtained through informed consent (see manufacturer’s supporting 

documentation (USWV-10276)) and have been used previously in numerous studies [38-40]. 

Cultures were maintained in human mesenchymal stem cell growth media (hMSCGM) 

containing basal medium (hMSCBM) supplemented with 10% human mesenchymal stem 

cell growth supplement, 100U/mL gentamycin/ampicillin and 10% L-glutamate (Lonza, 

Australia). Cells were grown in a 5% CO2 humidified atmosphere at 37oC and plated at 3000 

cells/cm2 in 100mm culture dishes (Corning, Australia) in maintenance media.  For 

immunocytochemistry (ICC) experiments cells were grown in CC2 coated, 8 chamber glass 

slides (Labtek, Australia). For Q-PCR experiments cells were plated at 3000 cells/cm2 in 6 

well plates (3x104 per well; Corning) and RNA harvested after three days. 

hMSC Differentiation 

For differentiation protocols, hMSCs were plated at 3000 cells/cm2 in 6 well plates (3x104 

per well). Cells were plated in hMSCGM and allowed to attach overnight. 

Adipogenesis 

Following plating, cells were allowed to proliferate in hMSCGM until >95% confluent, prior 

to contact inhibition.  Phase C cultures (P+13) cells did not exceed 60% confluence and 



differentiation protocols were applied after 7 days in culture. When confluent, the hMSCGM 

was replaced with Adipogenic Induction Medium (AIM; Lonza). After three days, AIM was 

replaced with Adipogenic Maintenance Medium (AMM; Lonza).  The cells underwent three 

cycles of three days in AIM followed by three days in AMM.  At the end of this period, cells 

were maintained in AMM for a further seven days. At the completion of adipogenic 

induction, cells were fixed in 4% paraformaldehyde (PFA; Sigma-Aldrich, Australia) prior to 

staining of lipid vacuoles with Oil Red O (Sigma-Aldrich) and plates imaged on a flat-bed 

scanner. 

Oil Red O Staining 

Briefly, at the end of the induction/maintenance period, cells were washed twice with 1X 

phosphate buffered saline (PBS) and then fixed in 4% PFA for 15 min. A second wash in 1X 

PBS was conducted and then 70% ethanol was added to cover the monolayer.  Plates were 

stored at 4oC until required for staining.  

Oil Red O was diluted to a 1% working solution in ddH2O immediately prior to use. Prior to 

staining, cells were washed in 1X PBS. The cell monolayer was incubated in 1mL of Oil Red 

O working solution at room temperature for 10-20 minutes.  The cells were then washed 3 

times in ddH2O and plates scanned. 

Osteogenesis 

Following plating, cells were allowed to attach overnight.  The following day, hMSCGM was 

replaced with Osteogenic Induction Media (OIM; Lonza).  Media was changed every 2-3 

days and the cells maintained in OIM for 14-21 days. At the completion of osteogenic 

induction the cell monolayer was fixed in 4% PFA prior to staining with Alizarin Red 

(Sigma-Aldrich) and von Kossa stain (Merck-Millipore, Australia) for calcium deposition. 

Plates were imaged on a flat-bed scanner. 

Alizarin Red Staining 

As for Oil Red O staining, cells were fixed in 4% PFA and stored in 70% ethanol at 4oC prior 

to staining. Alizarin Red dye powder was resuspended in ddH2O, filtered and diluted to a 1% 

stock solution in ddH2O and the pH adjusted to pH 4.3 with 1M sodium hydroxide (NaOH; 

Sigma-Aldrich). Prior to use, the stock solution was diluted 1/10 to a working solution. To 



each well of a 6 well plate, 2mL of diluted Alizarin Red dye was added and cells incubated at 

room temperature for 30 min with gentle shaking. Cells were washed, the plates air dried and 

visualised on a flat-bed scanner. 

Neurosphere formation 

To induce neurosphere formation, hMSCs were plated at Phase A (P+3) at ~3000 cells/m2 

(2.5 x 105 /100mm dish) in standard culture conditions until 70-80% confluent. Cells were 

passaged using 0.25% trypsin-EDTA (Life Technologies) to dissociate cells from culture 

dishes.  After subsequent passaging, all Phase A (P+5) cells (3-5x106) were plated in low 

attachment 100mm culture dishes (Corning) in Knockout DMEM/F12 media (KO 

DMEM/F12; Life Technologies) with 100U/mL penicillin 1µg/mL streptomycin, 20ng/mL 

epidermal growth factor (EGF; R&D Systems), 20ng/mL basic fibroblast growth factor 

(bFGF; R&D Systems) and 10µg/mL heparin (Sigma Aldrich). Cells began clustering to form 

spheres after a few hours and spheres were observed in increasing numbers from three hours 

to three days. At day three, the media was changed using a 40µm cell filter (Interpath) and 

fresh growth factors added to the culture media. Spheres were maintained in KO DMEM/F12 

for 7 days after which they were imaged for live/dead analysis using FDA/PI (1:1000 

dilution) and remaining cells harvested for RNA and protein.  

Cells were harvested by removing culture medium from culture dishes washing the cell 

monolayer twice with 1X PBS on ice. Following washes, 1mL Trizol or 500uL protein-lysis 

buffer was added to the cell monolayer, the monolayer homogenised and stored at -80oC for 

Q-PCR and WB applications respectively. Protein-lysis buffer is described below (Western 

blotting). 

Immunocytochemistry 

Phase A (P+5), Phase B (P+7) and Phase C (P+13) cells were plated at 12,500 cells/chamber 

into CC2 coated 8-chamber glass slides.  Following overnight attachment cells were fixed in 

4% paraformaldehyde (PFA) and stored in 70% ethanol at 4oC until staining. Cells were then 

blocked in either 1% normal goat serum (NGS; Sapphire Bioscience; Australia) in 1X PBS 

for MSC markers, 5% normal donkey serum (NDS; Sapphire Bioscience) in 1X PBS (non-

permeable; for O1) or 5% NDS, 0.3% Triton X-100 in 1X PBS (permeable; for internal 

neural makers) for 1 hr. Primary antibodies were diluted in appropriate blocking solutions 

and incubated at 4oC overnight. Slides were washed three times in appropriate blocking 



solutions and then blocked for a further 30 min before incubation for 30 min with appropriate 

secondary antibodies. Secondary antibodies used were: Chromeo488 (goat anti-rabbit; Life 

Technologies, Australia), Chromeo546 (goat anti-mouse; Life Technologies), FITC (donkey 

anti-mouse; Millipore), Cy3 (donkey anti-rabbit; Millipore) and AlexaFluor594 (donkey anti-

mouse IgM; Jackson Laboratories, USA). Following incubation, cells were washed twice 

more in 1X PBS and mounted with Fluoroshield anti-fade mounting media containing DAPI 

(Sapphire Bioscience, Australia). Negative controls included secondary antibody only 

(Chromeo488, Chromeo546, FITC, Cy3, AlexaFluor594) and isotype controls (donkey anti-

mouse IgG, donkey anti-mouse IgM, donkey anti-rabbit IgG; Millipore). Primary and 

secondary antibodies and concentrations can be found in Table 1.  

Table	1: Primary	 and	 secondary	 antibody	 concentrations	 for;	

Immunocytochemistry	(ICC)	and	Fluorescence	Assisted	Cell	Sorting	(FACS).		

Primary	
Antibody	

Dilution	 Application	 Secondary	
Antibody	

Dilution	

CD29	 1/100	 ICC,	FACS	 Chromeo488	 1/1000	

CD44	 1/500	 ICC,	FACS	 Chromeo546	 1/1000	

CD45	 1/500	 ICC,	FACS	 Chromeo488	 1/1000	

CD90	 1/200	 ICC	 Chromeo546	 1/1000	

CD105	 1/200	 ICC	 Chromeo546	 1/1000	

Nestin	 1/200	 ICC,	FACS	 FITC	 1/1000	

Sox2	 1/1000	 ICC,	FACS,	 Cy3	 1/1000	

GFAP	 1/500	 ICC	 Cy3	 1/1000	

MAP2	 1/200	 ICC	 FITC	 1/1000	

O1	 1/500	 ICC	 AlexaFluor594	 1/500	

Mouse	IgG	 1/1000	 ICC	 FITC/Chromeo546	 1/1000	

Mouse	IgM	 1/500	 ICC	 AlexaFluor594	 1/500	

Rabbit	IgG	 1/1000	 ICC	 Cy3/Chromeo488	 1/1000	

	

RNA Isolation and Reverse Transcription 

RNA was isolated from cells cultured in 6 well plates. Following culture, cells were washed 

twice in 1X PBS and placed on ice. To each well, 500µL of TRIzol (Invitrogen, Australia) 



was added to the cell monolayer, the monolayer homogenised and samples stored at -80oC for 

at least 24 hours. RNA was isolated using Zymo RNeasy MiniKit (Zymo, Australia) for RNA 

cleanup.  Quality and quantity of RNA was assessed using Nanodrop (Thermo Fisher 

Scientific, Australia). For conversion to cDNA 100-150ng RNA was reverse transcribed with 

10U Reverse Transcriptase (Roche, Australia), 1X RT buffer, 3µg random primers 

(Invitrogen, Australia), 1mM dNTPs (NEB, Australia) and 20U RNaseOUT (Invitrogen) in a 

30µL reaction.  Reverse transcription reactions were conducted in duplicate.  Resulting 

cDNA was diluted to a working concentration of 40ng/µL. 

Q-PCR 

We examined the gene expression of a number of markers commonly used to define MSCs 

and neural stem cells (NSCs).  These included markers for each of the three mesenchymal 

lineages (bone, cartilage and fat) as well as markers specific to NSCs and early and late 

neural development.  For the genes of interest, mRNA levels were quantified using Q-PCR 

(Life Technologies QuantStudioTM 7).  Briefly, 120ng cDNA was amplified with 200µM 

primers (forward and reverse) with SYBR®-Green PCR Master Mix (Promega, Australia) in 

a 10µL reaction. Cycling conditions were as follows: 50oC for 2 min, 95oC for 3 min then 50 

cycles of 95oC for 3s, 60oC for 30s. Gene expression was normalised against expression of 

18S and calculated using 2-ΔΔCt.  Specific primer sequences (IDT, USA) for the genes 

investigated can be found in Supplementary Table 1. Mean gene expression (2-ΔΔCt) was 

calculated between three independent experiments and graphed with SEM.  All experiments 

were performed in quadruplicate.  

Statistical	Analysis	of	Q-PCR	Data	

All Q-PCR experiments on undifferentiated cells were performed in quadruplicate on 

biological triplicates. Experiments on differentiated neurospheres were conducted in 

triplicate. Variation between undifferentiated hMSCs and neurospheres was assessed using a 

two-tailed unpaired Student’s T-test assuming unequal variances. Mean gene expression (2-

ΔΔCt) was calculated for each population and graphed with standard error of the mean (SEM). 

Statistical analysis was deemed significant when P<0.05.	

Fluorescence Activated Cell Sorting (FACS) 



Cells were harvested using standard techniques. Briefly, growth media was removed from 

plates and cells washed once with 1X PBS followed by the addition of 5mL of trypsin 

(Gibco, Life Technologies) to the cell monolayer in a 100mm cell culture dish.  Cells were 

incubated at 37oC for approximately 5 min, or until all cells had lifted from the plastic 

surface. To this, an equal volume (5mL) of trypsin neutralising media (TNS, culture medium 

+ 10% foetal bovine serum) was added and the cells encouraged into a single cell suspension.  

Cells were counted using an automated cell counter (BioRad, Australia) and centrifuged at 

650rcf for 5 min.  Following this, trypsin/TNS was removed and the cell pellet resuspended 

in 5mL 1X PBS. Cells were centrifuged once more and the pellet resuspended in 4mL cold 

1X PBS.  To this, 6mL of ice cold 100% ethanol was added dropwise to the cells under 

gentle mixing and the cell suspension stored at 4oC for at least 30 min. Cells were then 

incubated in 1% BSA in 1X PBS for 15 min followed by blocking in 4% goat serum (GS) in 

1X PBS for 15 min, centrifuged at 900rcf for 5 min and the pellet resuspended in 1% GS and 

incubated with primary antibody for 30 min at room temperature.  All subsequent 

centrifugation steps were conducted at 900rcf for 5 min. Cells were washed in 1% BSA and 

incubated for 15min in 4% GS. Secondary antibodies (FITC/Cy3) were diluted in 1% GS and 

the cells incubated for 20 min at room temperature. Finally, cells were washed in 4% GS 

containing 0.1% TritonX-100 followed by a wash in 1% GS containing 0.3% Tween-20.  The 

cells were resuspended in 1% GS and analysed on a BD FACS ARIA (BD Australia). 

Secondary antibody only negative controls were used for normalisation. 

Western Blotting 

Total protein was extracted using protein-lysis buffer (20 mM HEPES, 25% Glycerol, 1.5 

mM MgCl2, 420 mM NaCl, 0.5 mM DTT, 0.2 mM EDTA, 0.5% Igepal CA-630, 0.2 mM, 0.2 

mM Na3VO4, 1 mM PMSF and Milli-Q-H2O containing protease and phosphatase inhibitors) 

and protein concentration determined using the BCA protein quantitation assay (Pierce).  

Approximately 50 μg of protein was separated by SDS-PAGE using 12% pre-cast gels 

(Mini-PROTEAN®TGXTM, Biorad), after which protein was transferred to a PVDF 

membrane using the Bio-Rad Transblot turbo system. The membrane was blocked with 5% 

milk, after which primary antibodies diluted in 5% BSA were added to the membrane and 

incubated on over night at 4 oC.  Primary antibodies used were: anti-CD29 (ab52971, Abcam, 

1/500), anti-PPARγ (sc-7273, Santa Cruz Biotechnology, 1/200), anti-COL1A1 (sc-28657, 

Santa Cruz Biotechnology, 1/200), anti-TUBB3 (ab18207, Abcam, 1/1000) and anti-SOX2 



(#AB5603, Millipore, 1/500) with anti-GAPDH (#2118, Cell Signaling, 1/1000) and anti-beta 

tubulin (#2128S, Cell Signaling, 1/1000) used as a loading control. The following day 

primary antibodies were removed and the membrane washed with PBST (1x PBS + 0.1% 

Tween-20) HRP-conjugated secondary antibodies (anti-Rabbit IgG, #7074 and anti-Mouse 

IgG, #7076, both from Cell Signaling used at 1/3000 dilution) were diluted in 5% BSA and 

the membrane incubated for 2h at room temperature. Detection of target proteins was 

performed with ECL (ClarityTM ECL, Bio-Rad) using the Fusion FX Spectra 

chemiluminescence system (Vilber Lourmat, Fisher Biotec). 

Results 

hMSCs Expansion 

We successfully expanded commercially available hMSC populations from five different 

donors for more than 20 passages and 60 population doublings in maintenance media culture 

conditions. During expansion, cells underwent morphological changes and the cultures were 

monitored for growth and viability, with all populations demonstrating a multiphasic pattern 

of growth (Figure 1A). At P+5, cells had completed approximately 10 population doublings, 

while at P+7, this increased to 20 population doublings.  Continued monitoring of expansion 

from P+7 to P+13, demonstrated a slower proliferation rate, with the cells completing a 

further 10 population doublings (approximately 30 by P+13).  The proliferation rate was 

significantly slower after this passage with population doublings increasing to approximately 

35 by P+15 with cultures maintaining viability >70% at all stages. At P+15, the proliferation 

rate slowed considerably with two of the populations ceasing to proliferate with no increase 

in cell number observed for more than 3 weeks. With all hMSC cultures demonstrating very 

similar morphological and growth characteristics we selected representative passages for 

each phase of growth from three of the five hMSC populations for more detailed analyses: 

Phase A - passage 5 (P+5) cells; Phase B - passage 7 (P+7) cells; and Phase C - passage 13 

(P+13) cells. The donor populations identified for further examination are summarised in 

Table 2. 

Under maintenance culture conditions during Phase A (Figure 1B) the cultures were 

comprised of small, homogeneous fibroblastic-like cells with a rapid proliferation rate (3-4 

days between passages). During Phase B (Figure 1C), the cells maintained their homogenous 

fibroblastic appearance with an increase in cell size and a slowing down of their proliferation 



rate (4-6 days between passages). By Phase C (Figure 1D), the cells became larger in size, 

with a reduced proliferation rate (7-14 days between passages), while maintaining their 

fibroblastic appearance with the cells becoming more heterogeneous. The cells were 

observed to enter into a stage of stasis with the cessation of proliferation accompanied by a 

flattening morphological change. However, one population (hMSC-1) demonstrated 

significant morphological changes with the appearance of colonies of small, rapidly 

proliferating cells of a more epithelial appearance (Figure 1A – P+16, P+19), with the cells 

appearing to escape terminal growth arrest. We have previously observed this in primary 

mammary epithelial cultures [41], however this, emergence from crisis only occurred in one 

of the hMSC populations examined. During the end of Phase C and entering Phase D (not 

shown) these smaller epithelial-like cells outnumbered the larger fibroblastic-like cells and 

the proliferation rate of the population increased (Figure 1A – P+19). While there was some 

observed variation in the total number of days in culture and population doublings between 

the populations, these differences were minor. 

 

Table	2: Total days in culture and population doublings (PD) for individual 

hMSC populations. Total number of days in culture and population doublings 

calculated for each population at each passage representing each phase of growth.  

Average days in culture and population doublings for the three hMSC populations 

examined are presented. 

Population	 Age	of	
Donor	

Sex	of	
Donor	

Days	in	
Culture		
P+5	

PD	
P+5	

Days	in	
Culture		
P+7	

PD	
P+7	

Days	in	
Culture		
P+13	

PD	
P+13	

hMSC-19604	
(hMSC-1)	 20	 F	 16	 12	 24	 21	 46	 43	

hMSC-20176	
(hMSC-2)	 33	 M	 9	 11	 16	 17	 35	 35	

hMSC-21558	
(hMSC-3)	 39	 M	 10	 16	 16	 23	 46	 41	

Average	 31	 	 12	 13	 19	 20	 42	 40	

	

Figure	1: Expansion and morphology of hMSC populations (A) Growth 

curve of hMSC populations. Five different hMSC populations were expanded for 

more than 20 passages, 60 population doublings and 60 days in culture. 

Population doublings (PD) were calculated using the formula: 



PD=log [A/(BC)]/log2; where A was the number of collected cells, B was the 

number of plated cells and C was the attachment efficiency [41]. The five 

populations examined displayed similar patterns of growth allowing selection of 

three populations for ongoing experiments. Viability remained greater than 70% 

for all populations over this time. P+: passage; coloured lines represent each of 

three different hMSC populations selected for continuing experiments; red: 

hMSC-19604 (hMSC-1), green: hMSC-20176 (hMSC-2), blue: hMSC-21558 

(hMSC-3). Representative phase contrast images of hMSC populations at (B) 

P+5 (C) P+7 (D) P+13 chosen to represent each growth phase (Phase A-C). 

Images shown at 10X magnification. Scale bar represents 70µm. 

hMSCs are positive for MSC markers throughout expansion, including CD45 

We next examined the cultures for MSC cell surface markers using a commercial panel of 

antibodies for detection by immunocytochemistry (ICC) and FACS. The panel consisted of 

antibodies against human CD44 (Figure 2A-C), CD29 (alpha integrin, beta 1; Figure 2D-F), 

CD90 (Thy-1; Figure 2G-I), CD105 (Figure 2J-L) and CD45 (Figure 2 M-O). ICC revealed 

specific staining for each of the positive markers of MSC stemness (CD105, CD90, CD44, 

CD29) while expression of the negative marker (CD45) was undetectable in Phase A cells 

(P+5) but increased to detectable levels in Phase C cells (P+13) (Figure 2; Table 2). Minimal 

background fluorescence was detected in isotype controls (ICC) and secondary antibody only 

controls (FACS) consistent with negative detection (not shown). 

Figure	2: hMSC populations are positive for markers of MSC stemness. 

ICC showing positive staining for each of the five markers used to confirm hMSC 

stemness. Each of three hMSC populations was stained for each marker at each 

phase of growth.  Cells are positive for: A-C: goat anti-mouse-CD44 (1/1000); 

D-F: goat anti-rabbit-CD29 (1/200); G-I: goat anti-mouse-CD90 (1/500); J-L: 

goat anti-mouse-CD105 (1/500); and negative for M-O: goat anti-rabbit-CD45 

(1/500) at Phase A, Phase B and Phase C. At Phase C populations also become 

positive for CD45. Secondary antibodies used were anti-mouse-Chromeo546 

(yellow; 1/1000) and anti-rabbit-Chromeo488 (green; 1/1000). Cells were 

mounted in mounting media containing DAPI (blue) to counterstain nuclei. Scale 

bar represents 70µm. 



We then examined the cells via FACS for a sub-selection of the MSC marker panel at growth 

phases A-C (Figure 3). FACS analysis determined the populations were >95% positive for 

established MSC markers (CD29 (A-C); CD44 (D-F)). Interestingly, >90% of the cells were 

also positive for the marker, CD45 (G-I). While among the most commonly cited negative 

markers of MSCs, cultures with low levels of CD45 have previously been reported [22,42].  

Secondary antibody only staining of these cells produced negligible levels of auto-

fluorescence against which samples were normalised. In addition Western blotting (WB) 

analysis confirmed CD29 protein in undifferentiated hMSCs at each growth phase (Figure 3 

Insert C). 

To ensure the cell surface maker profile was representative of commercially isolated and 

expanded hMSCs, expression of these markers was then validated by colleagues in additional 

(n=2) hMSC populations from the same supplier by Q-PCR.  Gene expression analysis 

supported our observations, with strong gene expression of CD44 and CD29 and low CD45 

gene expression (10,000X lower than CD44) detected at all growth phases, with strong gene 

expression of CD105 and CD90 also observed (equal to CD44; data not shown). This data 

examining hMSC populations by ICC, FACS and Q-PCR suggest MSCs maintain their 

multipotentiality during expansion under standard culture conditions, but may demonstrate 

reduced or restricted lineage potential or efficiency of differentiation due to the continued 

expression of CD45.  

Figure	3: Mesenchymal lineage markers expressed in hMSC by FACS 

and Western Blotting. Detection by FACS demonstrates positive expression of 

three hMSC markers. Populations are more than 95% positive for A-C: CD29 

and D-F: CD44. G-I: In addition, hMSC populations are more than 80% positive 

for the negative marker CD45 at each of the three passages examined during 

expansion. Dark grey histogram is the marker of interest. Light grey histogram is 

the secondary antibody only control. Insert C: The MSC marker CD29 (120-

130kDa is present in hMSCs during all growth phases when examined by WB.  

GAPDH was used as a loading control.. 

Table	3: Mesenchymal markers examined by FACS.  Percentage of the cells 

positive for each MSC marker examined in MSCS at Phases A-C. Average 

percentage was calculated between the hMSC populations examined. 



Marker	 Population	 Phase	A	 Phase	B	 Phase	C	

CD29	 hMSC-20176	 98%	 98%	 96%	

	 hMSC-21558	 99%	 98%	 69%	

	 Average	 98.5%	 98%	 83%	

CD44	 hMSC-20176	 99%	 99%	 95%	

	 hMSC-21558	 99%	 98%	 75%	

	 Average	 99%	 98.5%	 85%	

CD45	 hMSC-20176	 91%	 93%	 88%	

	 hMSC-21558	 98%	 97%	 64%	

	 Average	 95%	 95%	 76%	
	

hMSCs retain mesenchymal lineage differentiative ability (Osteoblasts and Adipocytes) 

throughout expansion 

Having established the hMSC cultures retain lineage potential and the associated cell surface 

marker profile for these cells, we next examined if the MSCs maintained multilineage 

potential during expansion. All hMSC populations included in the study were successfully 

differentiated toward adipogenic and osteogenic lineages at each growth phase. Adipocytes 

stained positive for Oil Red O (adipogenic stain) indicating the presence of lipid vacuoles, 

and osteoblast differentiation was confirmed by staining with Alizarin Red indicating 

mineralisation via the deposition of calcium (not shown). Although cultures were 

successfully differentiated at all phases, some variability was observed, with lower numbers 

of lipid vacuoles visible at Phase C (P+13) (Figure 4 A) and reduced adipogenic staining (Oil 

Red O), however, hMSC cultures retain multilineage potential throughout expansion and into 

late growth phases. MSC osteoblast differentiation cultures demonstrated mineralisation 

(Figure 4A), confirmed via von Kossa staining (not shown). In addition, several MSC lineage 

proteins, collagen I (COL1A1; osteoblast) and peroxisome proliferator-activated receptor 

gamma (PPARG; adipocyte), were also detected by WB analysis in all phases of growth 

(Figure 4B and 4C). The mesenchymal marker CD29 was upregulated in both adipogenic and 

osteogenic cultures at all passages, with PPARG downregulated in adipogenic differentiated 

MSCs. Tubulin remained relatively stable following differentiation and collagen I (COL1A1) 

demonstrated decreased expression in osteogenic cultures with multiple bands observed in 

the differentiated cultures (Figure 4C). 



Figure	4: Adipogenic and osteogenic differentiation of MSCs at each 

passage during expansion. A: Phase contrast images of differentiated 

adipogenic and osteogenic cultures showing phenotypic changes as well as lipid 

droplet accumulation and mineralisation of the cultures. WB analysis 

demonstrating protein detection of MSC markers CD29, PPARG and COL1A1 

in undifferentiated hMSC at each growth phase in B: differentiated Adipogenic 

cultures and C: Osteogenic cultures. GAPDH was used as the loading control. 

Scale bar represents 60µm. 

MSC marker gene expression throughout expansion 

Following confirmation cultures maintained stemness, adipogenic and osteogenic potential, 

to more fully define MSCs, we examined an extended panel of biomarkers (n=56), 

transcription factors (n=83) and cell surface markers (n=69) by Q-PCR in the additional MSC 

cells. Results revealed that a number of cell surface markers (IGTA3, CD54, CD36 and 

CD14) and transcription factors (ZFX, PPARG, MOSPD1 and NKX3-2) traditionally used to 

identify MSCs increased expression during expansion (Figure 5).  

Figure	5: Gene expression changes of MSC cell surface markers and 

transcription factors. Several specific cell surface markers (CD14, CD26, CD54, 

ITGA3) and transcription factors (ZFX, PPARG, MOSPD1, NKX3-2) examined 

in extended hMSCs demonstrate increased expression in late growth phases. 

Further Q-PCR analysis revealed that hMSC populations continue to express MSC lineage 

specific genes at each phase of growth.  Expression of bone specific markers alkaline 

phosphatase (AP) and osteocalcin (OCN) decreased throughout expansion. The adipogenic 

transcription factor peroxisome proliferator-activated receptor gamma (PPARG) was 

examined for each isoform, with isoform 1 (PPARG1) demonstrating decreased expression 

throughout expansion.  In contrast, expression of bone sialoprotein II (BSPII) and PPARG 

isoform 2 (PPARG2) increased throughout expansion. Of the remaining adipogenic 

transcription factors examined, expression of C/EBPa remained relatively constant, while 

expression of C/EBPd peaked at Phase B (Figure 6). Notably expression levels of PPARG 1 

& 2 was very low, approximately 10 times less than C/EBPd and observed expression of AP 

was much higher than both OCN and BSPII.  



In addition to common markers of mesenchymal lineages, we also examined the expression 

of a number of other mesenchymal related genes.  These included ACTA2, ADIPOQ, FSP1 

(S100A4), FN1, COL1A1 and CDH2 (NCAD). With the exception of ADIPOQ, expression 

of these genes peaked in Phase B, following the expression pattern of C/EBPd. Smooth 

muscle actin (ACTA2), fibronectin (FN1) and the osteoblast lineage marker collagen 1 alpha 

1 (COL1A1) were expressed at higher levels than the adipogenic transcription factors 

(C/EBP and PPARG) and osteocyte specific markers, AP, BSPII and OCN.  Expression 

levels of the adipocyte lineage marker ADIPOQ was lowest at Phase B, similar to levels 

observed for adipogenic transcription (C/EBPa, C/EBPd, PPARG1, PPARG2) and osteocyte 

markers (OCN, BSPII).  Interestingly, the observed continued expression of CD44 described 

above, a marker commonly used as a marker of MSC stemness, was expressed at a similar 

level to those of FSP1, C/EBP and PPARG2 but at a much lower level than COL1A1, FN1 

and ACTA2 (Figure 6). 

Figure	6: Relative gene expression of MSC lineage markers in hMSC 

populations throughout growth phases. Relative gene expression changes for A: 

Stemness markers (CD44); lineage specific B-E: adipogenic (C/EBPa, C/EBPd, 

PPARG1/2); F-H: Fibroblastic (ACTA2, FN1, FSP1); and I-L: osteogenic (AP, 

COL1A1, BSPII, OCN) in hMSCs (n=3) at each passage. The majority of genes 

examined (lineage and stemness) increased expression at Phase B followed by 

decreased expression by Phase C (ACTA2, CD44, C/EBPd, COL1A1, FN1, 

FSP1). In contrast, lineage specific markers osteocalcin; OCN, Alkaline 

Phosphatase; AP and PPARG1 demonstrated decreased expression throughout 

expansion with bone sialoprotein II; BSPII, C/EBPa and PPARG2 demonstrated 

increased expression throughout expansion. 

Expression of neural cell surface markers and transcription factors 

In addition to the mesenchymal markers examined in detail and described above, we 

investigated a number of transcription factors and cell surface (CD) markers reported to 

influence neural differentiation by Q-PCR. This data determined that hMSCs express a 

number of neural specific lineage markers including low expression levels for the neural 

transcription factors HES1, KLF4, MEF2C, PAX3 and PAX9 as well as SOX5, 6 & 9 in 

Phases A-C (Figure 7).  In addition, cell surface markers used to aid in the identification of 



neural cells were also expressed at low levels including CD304, CD271, CD200, CD146, 

CD73, CD56 (NCAM) and CD24 (not shown). 

Figure	7: Neural transcription factors and cell surface CD marker 

expression. Undifferentiated hMSCs express transcription factors and cell 

surface CD markers including stemness (CD73, CD271, HES1, KLF4, SOX5/6/9) 

and neuronal (CD24, CD56, CD200, CD304, MEF2C, PAX3/9) markers 

reported to influence neural differentiation. With the exception of CD73 and 

CD304, expressed at levels equal to CD44 (a cell surface marker of MSCs), these 

neural markers were expressed at levels 10-10000X lower than CD44. 

Neural markers throughout expansion 

We next examined the cultures for markers commonly used to identify neural stem cells 

(NSCs) and neural lineages by ICC.  The maker panel consisted of Nestin, Sox2 (progenitor; 

Figure 8A-C and D-F), GFAP (astrocyte; Figure 8G-I), MAP2 (neuronal; Figure 8J-L) and 

O1 (oligodendrocyte; Figure 8M-O) with hMSCs expressing these markers at each growth 

phase. Some variation in expression level between the populations was observed, with Sox2 

expression seen to decrease at Phase B. Interestingly Sox2 localisation altered during 

expansion with a more nuclear expression observed at Phase B compared to the more 

cytoplasmic expression at both Phase A and Phase C. In contrast, most of the other makers 

remained at similar levels of expression at each passage.  In order to quantify this, estimates 

were made by comparing the number of cells with positive staining to the total number of 

cells defined by DAPI stained nuclei. Nestin expression remained low with less than 50% of 

the population expressing this marker. The marker for mature neurons, MAP2 was expressed 

at a very low level with less than 2% of the population expressing MAP2 in ICC. In contrast, 

both the astrocyte marker GFAP, and the oligodendrocyte maker O1 were expressed in >80% 

of cells. 

Figure	8: hMSCs are positive for neural markers throughout expansion. 

Representative ICC images showing positive neural marker staining for A-F: 

neural markers in each of the three MSC populations examined at each of the 

three passages investigated. Cells stained positive for: A-C: neural stem cell 

markers, donkey anti-mouse-Nestin (1/300); and D-F: donkey anti-rabbit-Sox2 

(1/1000); as well as G-I: lineage markers donkey anti-rabbit-glial fibrillary 



acidic protein (astrocyte; GFAP; 1/500); J-L: donkey anti-mouse-microtubule 

associated protein 2 (neuronal; MAP2; 1/300); and M-O: donkey anti-mouse 

IgM-O1 (oligodendrocyte; 1/500). Secondary antibodies anti-mouse-FITC 

(green; 1/1000), anti-rabbit-Cy3 (yellow; 1/1000), anti-mouse IgM-

AlexaFluor594 (red; 1/500). Cells were mounted in mounting media containing 

DAPI (blue) to counterstain nuclei. Scale bar represents 70µm. 

We then confirmed ICC staining by FACS analysis of neural markers Nestin and Sox2 

(Figure 9). The average percentage of cells positive for Nestin, as determined by FACS 

analysis increased throughout expansion (28%-48%), however, there was significant 

variation, particularly at P+7, between the two populations examined (Figure 9A-C). 

Similarly, FACS analysis of Sox2 expression revealed a reduced percentage of the population 

positive at P+7 (49% on average) with increased expression at P+13 (90%) with substantial 

observed differences between the two populations at P+7 (Figure 9D-F and Table 4).  At each 

growth phase, we examined the neural proteins SOX2 and TUBB3 via WB analysis in 

undifferentiated hMSCs. Both markers remained relatively stable during expansion of MSCs 

with a decrease in Sox2 observed in Phase C cultures. Loading control was GAPDH (Figure 

9G). 

Figure	9: Neural marker proteins examined by FACS and WB in MSCs 

during expasion. Positive expression of neural markers is demonstrated.  A-C: 

Populations average more than 30% positive for the neural stem cell marker, 

Nestin; and D-F: more than 50% positive for Sox2. Variation was observed 

between populations in percentages of the population positive for each maker, 

with the greatest variation seen at Phase B. Dark grey histogram is marker of 

interest. Light grey histogram is secondary antibody only control. G: Neural 

proteins TUBB3 and SOX2 were detected in undifferentiated hMSCs by WB 

during expansion. 

Table	4: Summary of NSC markers examined by FACS. Percentage of the 

population positive for each NSC maker. Average percentage was calculated 

between the hMSC populations examined. 

Marker	 Population	 P+5	 P+7	 P+13	

Nestin	 hMSC-20176	 42%	 80%	 61%	



	 hMSC-21558	 14%	 3%	 34%	

	 Average	 28%	 42%	 48%	

Sox2	 hMSC-20176	 60%	 2%	 91%	
	 hMSC-21558	 98%	 95%	 88%	

	 Average	 79%	 49%	 90%	
	

hMSC neural gene expression profile  

We then examined the gene expression of a number of neural markers in the hMSC cultures 

including markers used to define stemness in neural stem cells (Figure 10A-D) as well as 

lineage specific markers (astrocyte, Figure 10E-F; neuronal, Figure 10G-I; oligodendrocyte, 

Figure 10J-L). Notably, there was variability in the expression level of the genes investigated 

between populations. The neural progenitor markers Nanog and Oct3/4 demonstrated similar 

expression patterns with a reduction in expression between Phase A and Phase B (0.2-0.5 

fold) and a subsequent increase in expression at Phase C (3-4 fold).  Interestingly, the 

astrocyte marker GFAP and the oligodendrocyte marker GalC followed a similar pattern, 

with expression of GFAP substantially higher in Phase C than Phase B cultures. The other 

astrocyte marker examined, S100B, showed a consistent expression level throughout 

expansion. Additional neural progenitor markers Nestin and Sox1 showed very different 

expression patterns. In contrast to the other neural genes examined, Nestin showed a peak in 

expression at Phase B, similar to the expression observed for NEFM (not shown) and β-III-

tubulin. In contrast, Sox1 expression increased throughout expansion demonstrating a similar 

expression pattern to two oligodendrocyte markers, Olig1 and Olig2 (Figure 10). Both 

neuronal markers MAP2 and ENO2 were observed to reduce gene expression throughout 

expansion. Variability between populations was greatest in neural marker expression with 

Neurog2 (not shown), Sox1, Olig1 and Olig2, which were detected in only two of the three 

populations examined. No expression of DCX or MSI1 was detected.  

Figure	10: Relative gene expression of neural stem cell and lineage 

specific markers in hMSC populations throughout growth phases. A-D: Nestin, 

Nanog, OCT3/4 and SOX1 are markers of pluripotency in neural stem cells.  

Expression of these markers at each passage suggests the cells maintain 

pluripotency necessary for differentiating into different neural cell types. 

Expression of Nestin increased between Phase A and Phase B with a subsequent 



decrease in expression to Phase C.  In contrast, both Nanog and OCT3/4 reduced 

expression at Phase B compared to Phase A and Phase C.  Expression of each of 

these markers suggests the hMSC cultures maintain their ability to differentiate 

down each of the three neural lineages.  Lineage specific markers examined 

include E-F: astrocyte markers GFAP and S100B; G-I: neuronal markers ENO2, 

MAP2 and TUBB3; J-L: Oligodendrocyte markers GalC, Olig1/2. Expression of 

MAP2 decreases over time, suggesting reduced ability to differentiate down a 

neural lineage.  Expression of GFAP shows decreased expression at Phase B 

followed by a subsequent increase by Phase C.  In contrast, TUBB3 expression 

increased between Phase A and Phase B cultures followed reduced expression at 

Phase C. These results may indicate optimal time points for differentiation to 

each of the neural lineages. 

hMSC derived neurospheres 

In order to confirm neural lineage potential, hMSCs were differentiated into neurospheres at 

Phase A.  Spheres were observed as little as one hour after plating into differentiation 

conditions. Over subsequent hours, sphere number and size steadily increased to a maximum 

size of around 600µm (Figure 11 A, B, C). The ratio of live to dead cells within the spheres 

was determined by FDA/PI staining. Live cells (positive FDA (green) staining, dead cells 

positive for PI (red); Figure 11B) for each population, demonstrated the spheres consisted of 

more than 50% live cells (Figure 11D).  

Figure	11: Characterisation of Phase A neurospheres. A: Phase contrast 

image (20x magnification, scale bar = 90 uM) of hMSC Phase A neurospheres B: 

FDA/PI stain indicating the presence of live (=green) and dead (=red) cells in  

hMSC neurospheres (40x magnification, scale bar = 90 uM). Bar graphs 

indicating C: the average sphere diameter for each hMSC population and D: the 

ratio of live/dead cells indicated by FDA and PI stain signal intensity. E: Q-PCR 

expression of self-renewal, neural and MSC lineage markers in undifferentiated 

Phase A hMSCs compared to neurospheres with significant differences in 

expression observed in multiple markers (*** p<0.001). F: ICC (40x 

magnification, scale bar = 90 uM) of Nestin, SOX2, CD44 and TUBB3 in 

neurospheres along with a bar graph indicating relative signal intensity of each 

of the markers when compared to DAPI.  



We then examined the gene expression profile of the spheres including a number of MSC and 

neural makers previously examined in undifferentiated hMSCs (Figure 11E). Nestin, a 

marker of neural stemness demonstrated a non-significant reduction in gene expression 

(p=0.192460416) in neurospheres compared to hMSCs while SOX2 demonstrated increased 

expression in neurospheres (p= 0.230056363). In contrast, the MSC marker of stemness, 

CD44, demonstrated a non-significant increase in expression in neurospheres when compared 

to undifferentiated hMSCs (p=0.218534045). Of the neural lineage markers examined, the 

early neuronal marker TUBB3 demonstrated reduced expression in neurospheres 

(p=0.00013324), as did the astrocyte maker, S100B (p=1.20405E-06). In contrast, the 

oligodendrocyte maker, GALC, demonstrated increased expression in neurosphere cultures 

(p=0.000431688). MSC lineage markers, ACTA2, ADIPOQ and CO1A1 demonstrated 

significantly decreased expression in neurospheres when compared to undifferentiated 

hMSCs (ACTA2: p=0.000218789; ADIPOQ: p=0.000327476; COL1A1: p=2.16575E-06).  

When examined by ICC, the MSC neurospheres clearly demonstrated positive staining for 

Nestin, Sox2, CD44 and TUBB3 (Figure 11F). ICC and FACS analysis of undifferentiated 

cells determined that on average, less than 50% of hMSCs were positive for Nestin, while 

ICC staining of spheres suggests all cells within the sphere are positive for this marker. The 

number of undifferentiated hMSCs staining positive for Sox2 was elevated (50-90%) and this 

high percentage of positive stained cells was maintained in neurospheres with more than 90% 

of cells positive. 

Discussion 

Human MSCs co-express mesenchymal and neural markers throughout expansion, however, 

this does not inhibit their ability to differentiate toward adipogenic and osteogenic lineages or 

their ability to form neurospheres. This study contributes to the growing body of evidence 

including work by Wetzig et al, demonstrating common MSC markers do not discriminate 

between MSC and non-stem cell mesenchymal cultures [43]. In order to improve MSC 

therapeutic efficacy, there is a need for the identification of better MSC markers 

encompassing cell surface and gene expression to identify and control potency [20] and 

lineage potential. 

While some cells examined in this study by ICC continued to express the haematopoietic 

marker, CD45, this expression was low in the majority of hMSC donor populations examined 

when compared with FACS staining of CD44 and CD29 and by gene expression analysis 



including the extended donor cultures. This correlates with the CD45low expression reported 

previously by Yu et al where both CD44 and CD45 were reported in MSCs at low levels [42] 

supporting CD45+ direct selection of mesenchymal stem cells [44]. Depleting fresh bone 

marrow of haematopoietic cells (non-MSC) using negative selection based on CD45 [45] 

resulted in the fibroblastic colony forming units (CFU-F) detected in the CD45+ fraction [44]. 

Why unprocessed MSCs were shown to be CD45+ while cultured or more mature MSCs were 

CD45- may in part be explained by different CD45 isoforms [46]. Expression of CD45 by 

haematopoietic stem cells (HSCs) and MSCs combined with their bone marrow localisation 

suggest that these cells are perhaps more closely related than previously reported [44]. Some 

evidence suggests that the co-existence of haematopoietic stem cells with MSCs provides 

cooperation for differentiation to both cell types [47,48] including an early study by Singer et 

al, where bone marrow stromal cell lines were generated that expressed haematopoietic 

markers [49]. Indeed, the consistently observed increase of CD45 in hMSCs during 

expansion did not diminish their osteogenic and adipogenic lineage-specific differentiation or 

alter expression of their associated lineage markers. However, there remains inconsistency 

regarding the accepted cell surface profile of hMSCs [22].  

The commercial identification panel used in this study was comprised of five of the currently 

accepted most common markers used in the identification and characterisation of MSCs – 

CD105, CD90, CD44, CD29 (positive) and CD45 (negative). Several markers previously 

reported primarily for the identification of other types of stem cells have also been reported to 

be detected in MSC populations, including Nanog and Sox2, which are generally accepted as 

neural progenitor markers [22,50]. In addition to cell surface markers, several transcription 

factors have been reported in the identification of MSC and neural stem cells (NSCs) for 

understanding the lineage specific potential of stem cell progenitor cells as well as the 

identification of stem cell type. In MSCs, the transcription factor HES1 has been reported to 

inhibit adipogenesis [51] while in NSCs HES1 has been demonstrated to have roles in 

neurosphere proliferation and neuronal differentiation [52]. Cell surface markers such as β-1 

integrin CD29 are used in the identification of MSCs and as a neural differentiation antigen 

on proliferating NSC-derived neurons [53]. Other cell surface markers used in the 

identification of both MSCs and NSCs include CD146, CD73, CD56 (NCAM) and CD24. 

Transcription factors reported in both cell types include HES1 (maintenance of stemness), 

KLF4 (growth & development [54]), MEF2C (neuronal morphogenesis [55]), as well as PAX 



family (lineage specific proliferation, migration and neural development [56,57]) and SOX 

family (stem cell maintenance [58]) genes.  

Several studies have examined the neural potential of MSC demonstrating expression of 

neural markers in undifferentiated and unstimulated conditions [32,33]. However, most 

studies, with the exception of this study and our previous study [32] which reported 

expression of both mesenchymal and neural markers in commercially obtained MSC cultures, 

have used freshly isolated MSCs from bone marrow aspirates [33] or other sources, including 

adipose tissue and dental pulp [11]. Interestingly, a more specific neural marker expression in 

undifferentiated MSCs throughout expansion has recently emerged in murine cells. Foudah et 

al (2012) reported the presence of neural markers between P+0 (Phase A equivalent cultures) 

and P+40 (Phase C equivalent cultures) following isolation of rat MSCs from bone marrow 

[37] with a greater number of cells expressing Nestin towards the middle of the expansion 

period followed by a decline in positive cell numbers [37]. In addition they also reported a 

steady decline in GFAP positive cells throughout expansion [37]. A similar trend is observed 

in the expanded donor hMSCs with the peak in Nestin gene expression observed in the 

middle of the expansion (Phase B). In addition, both studies report similar results for β-III-

tubulin, with the peak in gene expression similarly occurring in early to mid cultures, with the 

peak expression in the rat MSCs occurring earlier than the human cells, in Phase A 

equivalent cultures [37]. This demonstrates heterogeneity in the MSC cultures, with some 

cells expressing neural markers while others do not, suggesting subpopulations of cells with 

varying differentiation capacity.  In addition, this data also highlights our current lack of 

knowledge in terms of the neural lineage capacity of hMSCs. In order to broaden the 

therapeutic potential of these cells, controlling lineage commitment and specification is 

needed to maximise their differentiation capacity. 

However, the complexity of defining cells by their origin and function is not limited to 

MSCs. Neural lineage markers are also expressed in a wide range of cell types including 

murine MSCs, osteoblasts and adipocytes [33]. β-III-tubulin, an early neuronal marker, is 

expressed in embryos, adults [59,60], tumour cells [61,62] and as a component of the mitotic 

spindle [63]. Nestin, considered a neural progenitor marker [64] has also been found in extra-

neuronal tissues [65] including human solid tumours [66] and has been used as a predictor of 

poor prognosis in malignant melanoma [67]. Markers of mesodermal-specific lineages such 

as the osteogenic markers osteopontin and osteocalcin along with the adipogenic marker 



PPARG have been detected, in turn, in neural cells [68,69]. In addition, one of the most 

commonly reported MSC positive cell surface markers, CD44, is also reported to be a marker 

of immature astrocytes [70-72]. Other studies have demonstrated astrocyte-restricted 

precursor cells isolated from the glia rich postnatal day 3 mouse cerebellum to have high 

CD44 expression [70], while CD44+ astrocyte-restricted precursor cells have been identified 

in the developing rodent spinal cord prior to the acquisition of positive GFAP 

immunoreactivity [72]. The involvement of CD44 in neural development is not limited to the 

astrocyte lineage, with an important role for CD44 in oligodendrocyte differentiation 

supported by decreased oligodendrocyte maturation in CNP-CD44 transgenic mice 

overexpressing CD44 [72,73].  

This study has demonstrated that commercially isolated hMSCs have shorter doubling times 

(4-7 days between passages) than freshly isolated cultures (2 weeks between passages; [33]). 

It is possible that commercially isolated cells are a more homogeneous representative 

population, removing the confusion that heterogeneous freshly isolated populations bring to 

the definition and characterisation of hMSCs. In addition, although expression of neural 

markers is suggestive of neural potential in hMSCs it is not evidence of the cells’ ability to 

differentiate toward neural lineages. However, the formation of neurospheres along with 

associated neural lineage marker expression changes confirm the MSCs have and maintain 

neural potential during expansion. The observed morphological changes however do not 

demonstrate functionality, and this is an important focus of future work. While staining 

techniques examining ion uptake may indicate restricted neuronal function and 

morphological changes indicative of neural differentiation, physiological examination of 

differentiated cells is required to confirm functionality. To establish electro-physiological 

neuronal function, extended in vitro culture (likely > 100 days) is required. However, 

evidence provided here suggests that there are optimal in vitro intervals and some key marker 

expression interactions that may help to achieve this goal.  

While the evidence suggests that due to its widespread and variable expression, CD44 is not a 

suitable marker to differentiate between MSCs and other cell types, it is important to 

remember that there are a number of isoforms of CD44 generated by alternative splicing of 

the extracellular domain [74]. This alternative splicing is tissue-specific [75] with most 

normal tissues expressing the standard form [74,76]. However, in haematopoietic cells, 

alternative splicing of exons has been induced by cell activation or treatment with 



inflammatory cytokines such as interleukin-1 (IL-1) [77-81].  Further, CD44 isoforms 

carrying heparan sulfate chains have been demonstrated to regulate fibroblast growth factor 

activation [74], an important signalling pathway in MSC differentiation. Determining the 

specific CD44 isoform present in neural cells compared to MSCs would refine its’ usefulness 

to differentiate between MSCs and other cell types.  

Conclusion 

It is becoming increasingly clear that it is not only the cell surface profile of MSCs that is 

important for their definition and characterisation, but also the context (cellular niche) from 

which they have been isolated. In order to realise the full therapeutic potential of these cells 

we must distinguish between origins of MSCs – bone marrow-, adipose-, dental pulp-derived 

– to establish how this affects their targeted application. To achieve this, perhaps only in the 

short term, the use of commercially isolated hMSCs with their reduced variability in isolation 

may provide a homogenous cell population enabling detailed, consistent characterisation of 

these valuable cells. Our study and others indicate the need for standardised isolation, 

characterisation and definition of MSCs for the analyses of biomarkers and gene expression 

necessary for adequate definition of these cells. In addition, our study has demonstrated the 

continued lineage multipotentiality of MSCs during extended culture including neural 

lineages. Our ability to limit variability and improve therapeutic efficacy through better 

defined cultures will provide much needed improvements in the translation of MSCs to the 

clinic for increased reproducibility and routine production of MSCs for therapeutic 

applications. 
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