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Abstract 15 

Although awareness that air pollution can damage vegetation dates back at least to the 1600s, the 16 

processes and mechanisms of damage were not rigorously studied until the late 20th century.  In the 17 

UK following the Industrial Revolution, urban air quality became very poor, with highly phytotoxic 18 

SO2 and NO2 concentrations, and remained that way until the mid-twentieth century. Since then 19 

both air quality, and our understanding of pollutants and their impacts, have greatly improved. 20 

Air pollutants remain a threat to natural and managed ecosystems. Air pollution imparts four major 21 

threats to vegetation are discussed through a series of case studies. Gas phase effects by the primary 22 

emissions of SO2 and NO2 are discussed in the context of impacts on lichens in urban areas. Effects of 23 

wet and dry deposited acidity from sulphur and nitrogen compounds are considered with a 24 

particular focus on forest decline. Ecosystem eutrophication by nitrogen deposition focuses on 25 

heathland decline in the Netherlands, and ground level ozone at phytotoxic concentrations is 26 

discussed by considering impacts on semi-natural vegetation. We find that, although air is getting 27 

cleaner, there is much room for additional improvement, especially for the effects of eutrophication 28 

on managed and natural ecosystems. 29 
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1. Introduction 33 

There is a very long history of understanding that air pollution is a threat to vegetation.  The 34 

medieval writer and mystic Hildegard von Bingen (1098 – 1179) noted in her book Causae et Curae 35 

[1]that dust within rain was believed to damage crops. In the 1600s developments in early scientific 36 

understanding did not miss the importance of pollutants from combustion processes and industry in 37 

damaging plants, including the first evidence of air pollution as a transnational concern. In the first 38 

decade of the 1600s, King James passed an act “against burning of Ling, and Heath, and other Moor-39 

burning…” noting that “some parts even of France itself lying South west of England, did formerly 40 

make of being infested with Smoakes driven from our Maritime Coasts, which injur'd their Vines in 41 

Flower” [2].  42 

However, prior to the 19th century and the Industrial Revolution, there were no air quality 43 

measurement networks, and evidence that air pollution was damaging vegetation was limited to 44 

areas in the immediate vicinity of point sources (e.g. lime kilns, charcoal production, early smelting 45 

activities). In Sylva [3], John Evelyn recognised the threat to vegetation through being “infected with 46 
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foggs and poys’nous vapours, or expos’d to sulphurous exhalations”, while Fabri (1670) [4] saw 47 

volcanic emanations as a source of acidic damage to fruit.  As industrialisation increased, so did 48 

reports of environmental damage: in the summer of 1794 a visitor to south Wales observed, “Nearer 49 

to Swansea, there are extensive works both of copper and iron, from the malignant influence of 50 

which every trace of vegetation in the neighbourhood has from a very short period after their 51 

erection, been totally annihilated” [5]. At this time the main phytotoxic pollutant was thought to be 52 

SO2 and to a lesser extent HCl and NO2. 53 

An analysis of global sources of the major gaseous pollutants by Hoesly et al. [6] showed the 54 

dominance of sources of SO2 and NOx in Europe and North America from 1880 until 1980 (Figure 1). 55 

Thereafter, following the introduction of control measures in Europe and North America and the 56 

rapid growth of sources in Asia the main sources of SO2 and NOx have been in East and South Asia 57 

(Figure 1). Early records of pollution impacts included observations from both the natural and 58 

agricultural environments.  From around 1800 the dark or melanic form of some species of moths in 59 

England began to increase in frequency. On soot-covered tree trunks,  darker moths were better 60 

camouflaged and thus more avoided predation than light ones [7]. Sheep fleeces became blackened 61 

by smoke [8] and in the industrialising United States bird feathers became covered in black carbon 62 

particles [9].  ‘Black rain’ was observed in remote areas of Scotland [10] and soot from Manchester’s 63 

factories caused black snow in Scandinavia as described by the playwright Ibsen in his play Brand in 64 

1867. Interestingly, the latter observation shows clear evidence of long-range transport of pollutants 65 

in Europe long before the arguments of the 1970s on whether industrial emissions from the UK, 66 

Germany and France contributed to acid deposition in Scandinavia.  67 

The rapid increase in both industrial and domestic SO2 and NO2 emissions in the early 20th century in 68 

several European countries, notably the UK, Germany and France, and in North America (Figure 1), 69 

generated regional surface concentrations sufficient to damage both crop- and wild plant species as 70 

demonstrated by the following examples. An extensive series of field investigations by Cohen and 71 

Ruston published in 1925 [11] substantiated the observations of various earlier workers on the 72 

effects of coal-smoke polluted atmosphere on city vegetation.  Using a transect from the suburbs 73 

towards the centre of Leeds, Cohen and Ruston [11] found depressions in yield, various degrees of 74 

visible damage and alterations in growth habit of a number of species (e.g. Laurus nobilis), which 75 

increased in intensity as pollution levels increased towards the city centre.  The ill effects on 76 

vegetation were positively correlated with the annual wet deposition of particulate matter and 77 

sulphur compounds, but the relative toxicity of the different components of the coal smoke was not 78 

determined.  In 1928 Pettigrew [12] described extensive damage to plants and the total failure of 79 

ornamental trees and shrubs in Manchester parks as a result of atmospheric pollution, while in 1941 80 



4 
 

Metcalfe [13] described the pollution-induced premature shedding of leaves, flowers and buds on 81 

ornamental species (e.g. Begonia foliosa) in towns during periods of foggy weather. 82 

Much of the earlier interest in the effects of air pollution on vegetation in the UK focused on such 83 

damage to ornamental species in urban areas, where losses were considered to be more serious 84 

from an aesthetic rather than economic viewpoint [e.g. 11, 12, 13].  However in 1952 Bleasdale [14] 85 

devised an experiment to show that a coal-smoke polluted atmosphere can considerably depress the 86 

yield of the economically important strain of the pasture grass Lolium perenne.  When attempts 87 

were made to improve the quality of hill pastures in heavily polluted districts of East Lancashire by 88 

reseeding with this strain of Lolium perenne, the plants became established successfully, but soon 89 

declined in productivity and eventually disappeared.  Bleasdale grew the plants in Manchester in two 90 

greenhouses: one ventilated with polluted ambient air and the other with air purified by passage 91 

through a water scrubber. Significant depressions in yield occurred in the plants in the polluted 92 

greenhouse compared with those grown in purified air.  Importantly, there were no observable 93 

lesions on the leaves, something that had previously been considered an indicator of damage [15]. 94 

Metal pollution was a further concern, with hotspots of metal deposition recorded close to smelters 95 

in Canada, the United States and at several locations in Europe [16-18]. Effects of metal pollution on 96 

vegetation were relatively local, within 30 km of the source, but the scale of emissions and 97 

persistent nature of some of the metal species left long-term soil contamination in these areas and 98 

damage to some flora and fauna. Research was largely concerned with the possibility of metals 99 

entering the human body via ingestion of contaminated crops.  Of wider concern was the use of 100 

tetraethyl lead in petrol, which had been introduced as an anti-knocking agent in many countries in 101 

the 1920s.  By the middle of the twentieth century, it became apparent that lead was deposited 102 

alongside roads, with levels falling exponentially with distance from the road, but detectable up to 103 

100 m away [19]. The identification of such widespread environmental contamination by lead 104 

resulted in massive pressure to reduce the use of tetraethyl lead, leading to a ban throughout much 105 

of the world.  106 

Ground level ozone became an important part of the global pollution climate in the mid-20th 107 

century. Trends in surface ozone from measurements over the last 6 decades [20] show large, long-108 

term trends in Europe. In presenting trends at remote sites, the effects of local sources are 109 

minimised and the regional trend becomes clearer. In the analysis by Cooper et al. [20], annual 110 

average surface ozone concentrations increased from 20 to 40 ppb between 1950 and 2000 and 111 

changed little since then in Europe. Remote sites in North America and East Asia show increases of 112 

typically 10 ppb between 1980 and 2010, whereas the monitoring stations in the remote Pacific, 113 
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Antarctica, and Tasmania show quite small changes (<10ppb) between 1980 and 2010 [20]. Ozone is 114 

produced within the troposphere through photochemical degradation of volatile organic compounds 115 

in the presence of NO2. Ozone  became recognised as an important regional phytotoxic compound in 116 

the 1960s, initially in California [21], but extending to much of the United States and Southern 117 

Canada and detected in Europe during the 1970s [22].  118 

Air pollution issues of the mid-20th century gradually extended to ever-larger areas as global 119 

emissions of sulphur approached peaks (Figure 1).  In part, these changes were due to the number 120 

and scale of sources, but also to the increasing heights of emission, with tall stacks on industrial 121 

sources of 200 m or more and large buoyant plumes of pollutant gases effectively injected towards 122 

the top of the boundary layer, promoting wide dispersion and long-range transport.  These tall 123 

stacks, which were deployed to reduce ground-level pollution, essentially turned a local pollution 124 

problem into a regional one. Ecological effects of long-range transport of sulphur and nitrogen 125 

compounds began to be recognised in countries remote from the sources of the primary pollutants, 126 

initially as effects of acid deposition in Scandinavia [23] and in Scottish lochs [24]. By the end of the 127 

20th century, various national air quality laws and programmes had been implemented in many 128 

developed countries around the world. These had the effect of reducing emissions and deposition of 129 

many air pollutants, though emissions and deposition still remained higher than would be expected 130 

in the absence of anthropogenic emissions across much of the world.  131 

Considering this background, we discuss four main threats for the global pollution climate in the late 132 

20th century: 133 

1. Gas phase effects of the primary emissions of SO2 and NO2 reflecting their emissions in 134 

urban areas and industrial regions including substantial tracts of arable cropland in Europe, 135 

North America, East and South Asia, 136 

2. Effects of wet and dry deposited acidity from sulphur and nitrogen compounds, notably in 137 

upland areas where inputs are dominated by wet deposition. We give particular attention to 138 

the poorly buffered geological regions throughout Northern Europe, Scandinavia, the north-139 

eastern states of the USA and parts of Eastern Canada.   140 

3. Ecosystem eutrophication by nitrogen deposition in both oxidised and reduced forms over 141 

much of northern Europe and large parts of eastern North America,  142 

4. Ground level ozone present at phytotoxic concentrations over much of the arable cropland 143 

of Europe and North America, East and South Asia. 144 

In addition to the four main threats to vegetation more localised effects of metals, especially heavy 145 

metals, close to smelters and other metal processing industries, are notable through the 20th 146 
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century, but severe cases of damage to vegetation were not regional in scale. These four main 147 

pollutant threats will be examined via a series of case studies of major pollution impacts. 148 

2. Gas phase effects of SO2, NO2 and NH3: case study lichen decline 149 

In Europe at the beginning of the twentieth century, industrialisation and large populations of cities 150 

produced high concentrations of SO2 and NO2 and thus urban air quality was typically very poor. The 151 

peaks in emissions and exposure of vegetation were between 1960 and 1970 for SO2 in Europe and 152 

North America thus during the middle decades of the 20th century extensive areas of cropland and 153 

semi-natural areas of Europe and North America were exposed to damaging concentrations of SO2 154 

[25].  As a consequence of air pollution legislation, concentrations of SO2 declined steadily in many 155 

developed countries from about 1970. By 2015, there were no significant areas of Europe or North 156 

America experiencing concentrations of SO2 at levels damaging to plants from anthropogenic 157 

sources [26]. In East Asia peak emissions were later, but since 2012 emissions of SO2 in China have 158 

declined by approximately 40%. Emissions of NO2 peaked around 1990 in Europe, rather later than 159 

SO2 due to the rapid growth in vehicle usage, as well as industry and the slower introduction of 160 

effective controls on vehicle NO2 emissions.  Thus, concentrations of NO2 remained high in urban 161 

and many rural areas through to the early years of the 21st century in Europe and North America 162 

[26]. 163 

Ammonia emissions, mainly from agricultural activities, steadily increased in all industrial countries 164 

through the 20th century [27]. Few countries have made significant reductions in emissions, the 165 

Netherlands and Denmark being notable exceptions, each of which have reduced emissions over the 166 

last two decades by approximately 50% [28, 29]. The overall global emissions of NH3 continue to 167 

increase and as emissions of NH3 are closely coupled to ambient temperature, it is likely that 168 

changes in climate will further increase emissions [27].  169 

These broad changes in the chemical climate of industrial countries have had widespread effects on 170 

crops and natural vegetation, only some of which have been documented in detail. Here, the effects 171 

on lichens, which are particularly sensitive to atmospheric composition are used as an example of 172 

the changing chemical climate of industrial countries.  173 

Lichens are rarely a dominant feature of terrestrial habitats yet they are a ubiquitous component of 174 

most habitats globally, from arctic to desert to tropical forest, and in both managed and natural 175 

ecosystems. Although dependent on the substratum for their physical attachment, lichens have no 176 

vascular root system: they receive nutrients and water directly from the atmosphere, making them 177 

highly susceptible to changing atmospheric conditions.  178 
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In 1866 Nylander [30] observed that ‘lichen deserts’ were created around Paris, often extending for 179 

considerable distances aligned to the direction of the prevailing wind.  Similar patterns were 180 

observed around that time across Europe, and in the mid-twentieth century around New York City 181 

[31] as well as other parts of the U.S. [32-34]. A cause of these declines was hypothesised as 182 

concentrations of acidifying pollutants in urban air. However, there were no systematically-183 

measured air quality data to support the observations.  In the UK it took the dramatic loss of life 184 

associated with the London smog in the winter of 1952 (estimated 12,000 deaths [35]) to establish a 185 

national air quality recording system across both urban and rural areas; by the 1960s this comprised 186 

c. 1300 stations [36].  In the late 1960s, Hawksworth and Rose [37] correlated the distribution of 187 

lichen species across the UK with recorded levels of SO2 from this network to create a ten-point scale 188 

of estimated SO2 pollution based on species’ sensitivity to air pollution. Since lichens absorb 189 

pollutants directly from the air, shrubby or hanging filamentous lichens with a large surface area 190 

such as Usnea  species were at the top of the list of sensitive species, while crustose species  191 

associated with naturally acidic habitats such as Lecanora conizaeoides and leprose species of 192 

Lepraria, at the bottom of the list, were tolerant and becoming widespread in urban areas [37].  193 

As SO2 pollution declined, reactive nitrogen became the dominant atmospheric pollutant (Figure 1), 194 

both as NOx from vehicular and industrial emissions and as NH3
 from agricultural processes. The 195 

effect on lichen communities was dramatic, as species tolerant of nitrogen (nitrophytes) began to 196 

appear, in urban and agricultural areas.  Gaseous ammonia deposited onto wet surfaces acts as a 197 

base, removing hydrogen ions from water and producing ammonium and hydroxide ions.  Thus, in 198 

areas receiving high ammonia deposition, formerly common species tolerant of acid (acidophytes) 199 

became rare [38].  In areas affected by ammonia deposition, including naturally acidic moorland and 200 

heathland vegetation dominated by terricolous species of lichen, Cladonia died back [39, 40].  The 201 

effect of ammonia is to increase bark pH, and research in the UK showed a strong correlation 202 

between lichen communities and bark pH and ammonia concentrations [41-43]. Quantitative studies 203 

of epiphytes on a range of tree species in sites where ammonia was monitored showed that lichen 204 

communities varied with tree species as well as air quality, so that acidophytes survived longer on 205 

acid-barked trees such as oak and birch, while nitrogen-tolerant species of the Xanthorion alliance 206 

appeared earlier on trees with a higher bark pH such as ash or poplar (Figure 2) [41, 43-47].  This 207 

shift in lichen communities from acidophyte species to nitrophyte species was demonstrated by a 208 

resurvey of twig communities on a nature reserve in Wales after ten years which showed a loss of 209 

nitrogen-sensitive species on branches and the appearance of the Xanthorion [48]. A nationwide 210 

survey of sensitive and tolerant species of epiphytic macrolichens in the UK was used to test their 211 

response to measured ammonia at air pollution monitoring sites across the UK using lichen 212 
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frequency and bark pH as measured variables. The results showed that a loss of nitrogen-sensitive 213 

species was taking place prior to the appearance of nitrophytes, and that this was happening at c. 214 

1µg m3 NH3, well below the current critical level (concentration above which direct adverse effects 215 

are thought to occur) of 8µg m3 [49]. Since then 1µg m-3 has been accepted as the critical level for 216 

lichens [50]. 217 

3. Deposited acidity in upland areas: case study forest decline 218 

Prior to the late 1970s, concerns about acid deposition focused primarily on aquatic ecosystems.  219 

However, in the late 1970s and early 1980s, foresters and scientists began to notice widespread 220 

diebacks of forest trees in both the north-eastern US and Europe, and suspicion mounted that acid 221 

deposition was the cause.  The European decline was popularly known as “Waldsterben” (forest 222 

death): it affected both hardwood and softwood trees and was characterized by extreme thinning of 223 

the crown, premature senescence, discolouration and loss of foliage, active casting of green foliage, 224 

and loss of fine root biomass [51].    The North American decline was most severe in red spruce 225 

(Picea rubens) in mountainous locations of New York and New England [52].   Red spruce decline 226 

symptoms were the same on both continents and included reddening of needles in the early spring, 227 

a condition usually associated with winter freezing damage.   228 

Most researchers on both continents pointed the finger at air pollution as the driving force behind 229 

the forest declines.  Large concentrations of acidity in orographic cloud and a windy upland climate 230 

for many forests leads to high deposition rates of the pollutants contained within the cloud water, 231 

which were shown to reduce the frost hardiness of red spruce [53].  Furthermore, Cape et al. [50] 232 

showed that it was the acidity and SO4
2- ions rather than NO3

- that were responsible for the observed 233 

reduction in frost hardiness. In Europe two major sets of hypotheses around the mechanisms gained 234 

prominence [51, 54, 55], The ‘top-down’ hypotheses focused on the direct impacts to leaves and 235 

needles of high levels of pollutants, particularly oxides of sulphur and nitrogen, and ozone [e.g. 51, 236 

56].  Other pollutants such as metals and organic compounds were also implicated.   The ‘bottom-237 

up’ hypotheses proposed that the primary causal element of forest decline lies in the soil, through 238 

acidification and depletion of basic cations from soil exchange sites, leading to mobilization of toxic 239 

aluminium, as well as the excess enrichment by reactive nitrogen, leading to nutrient imbalances 240 

and acidifying nitrification pulses [e.g. 57, 58]. Soluble aluminium causes a range of physiological 241 

damage, including direct mortality to fine roots and mycorrhizae, impaired ability to transport 242 

calcium and magnesium at the soil-root interface and a loss of the soil fauna that transport oxygen 243 

and nutrients to the deeper soil [59]. These two groups of hypotheses were generally not considered 244 

mutually exclusive, but which were the primary and which were the contributory factors was hotly 245 
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debated. Since forest decline damage was ultimately recorded across a large number of hardwood 246 

and conifer species over a wide area and range of environmental conditions in Europe, it is highly 247 

likely that the primary and secondary drivers of damage also varied.   However, to our knowledge 248 

there has been no comprehensive analysis of the literature to provide an overview of the relative 249 

roles of these different mechanisms across European forests. 250 

The cause of declines in red spruce in the north-eastern US was identified as foliar leaching of 251 

calcium, specifically membrane-bound calcium, causing reduced frost hardiness that could lead to 252 

winter damage [53, 60, 61].  The problem was particularly acute for red spruce because it occurred 253 

primarily in montane forests where it was exposed to cold winter temperatures and high deposition 254 

of acid rain and also to extremely acidic cloud droplets which, are very effectively scavenged by 255 

conifer needles [62].  Low calcium availability in the soil could exacerbate the problem, as indicated 256 

by a study that showed that, compared to a reference catchment, frost damage was much reduced 257 

in a catchment in which calcium was added experimentally to the soil [63]. The same study showed a 258 

major improvement in the health of sugar maple (Acer saccharum) in the calcium-treated 259 

catchment, underscoring that it had also been affected by acid rain in the north-eastern U.S. [64].  260 

Researchers have since reported that many other species likely show similar effects, though possibly 261 

not as severe and not as widespread because they are less common across the landscape [65]. 262 

In recent decades, the decline in acid deposition in the eastern US has led to a resurgence of red 263 

spruce, which is growing well throughout the region and expanding its range into lower-elevation 264 

forests [66, 67]. Similarly the International Co-operative Programme on the Assessment and 265 

Monitoring of Air Pollution Effects on Forests (ICP Forests) showed no major changes in the 266 

proportion of damaged trees in Europe overall from the mid-1990s to the early 2010s, with conifers 267 

showing an improvement in condition and broadleaves showing a decline.  Much of this was due to 268 

the new inclusion of Mediterranean ecosystems, where oak have shown a strong decline in recent 269 

years, mainly attributed to drought and insect damage [68]. In 2018 and 2019 a new decline in forest 270 

condition was reported in central and northern Europe; it is thought the primary driver is a 271 

widespread, persistent drought [69].  272 

As sulphur emissions began to decline in North America and Europe, research focused increasingly 273 

on nitrogen deposition.  The concept of “nitrogen saturation” was advanced by Ågren and Bosatta 274 

[70]  and Aber et al. [71] to indicate deposition of nitrogen exceeding the biological capacity of the 275 

ecosystem to retain it. According to these studies, this leads to a sequence of changes in ecosystem 276 

function including increased plant tissue nitrogen concentrations, increased nitrogen cycling in the 277 

soil, increased nitrification, and ultimately elevated nitrogen leaching and soil acidification. Elevated 278 
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nitrogen leaching was found to occur in many catchments in the eastern US where deposition was 279 

above 8 kg N ha-1 y-1 [72] and in many forest plots in Europe where deposition was above about 10 280 

kg N ha-1 y-1, especially if in the soil pH was low and % organic nitrogen was high [73].  The nitrogen 281 

saturation theory was further refined by Lovett and Goodale [74] who noted that the impacts of 282 

excess nitrogen deposition were not necessarily sequential, but rather all could occur simultaneously 283 

and their expression was controlled by the relative strength of the vegetation and soil sinks for 284 

nitrogen in the ecosystem. The nitrogen saturation theory marked a major shift in thinking about 285 

nitrogen by forest ecologists: previously nitrogen was primarily considered a key limiting nutrient, 286 

but the nitrogen saturation theory argued that when chronic deposition levels are high, it can also 287 

have adverse effects. 288 

The impact of air pollution on forest health is now considered as a part of, or an acceleration to, a 289 

combination of stresses, especially drought [75, 76].  Past management is also clearly a contributing 290 

factor: many parts of central Europe had a history of poor silviculture practices including even-aged, 291 

monocultural plantations with little genetic variability and litter-raking which removed valuable 292 

nutrients [75].  Thus the extreme acid deposition of the late 1970s may have been a ‘final straw’ for 293 

a large area of European forest already damaged and predisposed to further stress, triggering a 294 

widespread decline.  295 

As pollutant emissions continue to decline, there may be a long-term legacy of damage done to soils 296 

by decades of acid deposition. Key studies show that forests where acidification is reduced can 297 

undergo major shifts in ecosystem pools and processes, including reductions in forest floor and 298 

upper mineral soil carbon and nitrogen pools and mobilization of nitrogen into deeper soil levels or 299 

export from the ecosystem [55, 64, 77, 78]. The impact and duration of legacy effects in the 300 

ecosystem for both nitrogen and sulphur are determined by the extent to which the “slow pools” in 301 

the ecosystem have been affected. These slow pools could include the available base cation pools 302 

that are replenished primarily by mineral weathering, or the stable soil organic matter pools that 303 

turn over very slowly [79, 80].  As a result, we see some impacts of acid deposition reversing quickly 304 

(e.g., lower foliar leaching of nutrients, improved health of trees and declining stream nitrate fluxes 305 

and concentrations [81-83]) while other impacts, such as the depleted base saturation of acidified 306 

soils, may take decades or centuries to recover [84].  Thus, although the forests have appeared to 307 

stabilize and even improve in some areas, reducing acid deposition has also not removed all of the 308 

stresses.   309 

 310 
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4. Ecosystem eutrophication by nitrogen deposition:  case study heathland decline and 311 

biodiversity losses 312 

As described above, air pollution in Europe during the second half of the 20th century is dominated 313 

by the gradual reduction in sulphur emissions and deposition and the slower decline in emissions 314 

and deposition of oxidized nitrogen. Notably, the deposition of nitrogen has been largely unchanged 315 

as emissions of NH3 continued largely unabated [38]. The European hot spots for nitrogen deposition 316 

have been, and largely remain, the low countries of northern mainland Europe and the Netherlands 317 

in particular. Parts of the intensive livestock farming areas of the UK France and Denmark also 318 

receive high levels of nitrogen deposition and gas phase NH3 [42]. 319 

The most dramatic impacts of nitrogen deposition have been large community shifts in nutrient-320 

poor terrestrial habitats such as grassland, heathland and bogs.   In the Netherlands during the 321 

1970’s and 80’s, large areas of heathland transitioned to grassland. This typically occurred quite 322 

rapidly at a site (one to two years as documented in one study [85]) and by 1983 80 km2 of 323 

heathland in the Netherlands, nearly 20% of the total, had become dominated by grasses [86, 87]. 324 

The grasses that became dominant were typically Molinea caerulea and Deschampsia flexusosa. It 325 

was observed that outbreaks of heather beetle (Lochmaea suturalis) caused serious damage to 326 

Calluna vulgaris which led to the death of heather plants and a replacement by grasses. This was 327 

first linked to eutrophication in 1977 by de Smit [88] and early experiments pointed to the existence 328 

of relationships between eutrophication, heather beetle infestation and grass encroachment [86]. 329 

In the 1970’s nitrogen deposition in the Netherlands ranged from around 40 to 80 kg N ha-1 y-1 [89]. 330 

Experiments demonstrated, however, that even at N addition levels much higher than ambient (200 331 

kg N ha-1 yr-1), M. caerulea did not directly outcompete Calluna vulgaris [90]. Instead, fertilisation by 332 

atmospheric deposition of N increased the quality of C. vulgaris as food plant for heather beetles. 333 

Heather beetle infestations on C. vulgaris cause many individual plants to die, which opens up the 334 

canopy and allows vigorously-growing grasses to become dominant. During a heavy infestation of 335 

heather beetles little nitrogen is lost from the system: almost none is leached and only about 1 kg N 336 

ha-1 is lost with dispersing insects [86]. Soils under dead C. vulgaris were found to have high 337 

mineralisation and large N pools and low NH4
+ immobilisation, these conditions led to ammonium 338 

accumulation under dead heather, facilitating grass invasion [91].  339 

Heather beetle larvae are able to detect and feed preferentially on the most N-rich shoots [92] and 340 

experiments showed that the beetles from fertilised plots showed higher growth rates compared to 341 

unfertilised plots and were the heaviest adults [85, 93, 94]. This was a consequence of better 342 

survival rates at larval stage and through hibernation induced by high nitrogen in the larval food 343 
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supply [92]. The increased survival rates led to an increase in the severity (outbreak densities can be 344 

as high as 2000 beetles m-2 [95]) and frequency of beetle outbreaks [93] with the frequency of 345 

outbreaks increasing from every 20 years to every 8 years [96]. It has since been shown that 346 

population numbers are highest after long-term nitrogen addition, indicating that impacts are likely 347 

to be exacerbated over time [92]. 348 

The conversion of heathland to grassland is very visible, but other impacts of nitrogen deposition on 349 

biodiversity are less apparent without surveys. One of the most reported of these is wide-spread 350 

losses of plant species richness. Declines in species richness with increasing nitrogen deposition had 351 

been observed in experimental situations for many years [e.g. 97, 98]. In well-buffered prairie 352 

grasslands long-term N-addition experiments in the field showed declines in species richness as a 353 

consequence of competition for other resources [99, 100]. In 2004 it was demonstrated that the 354 

plant species richness of acidic grasslands was negatively correlated with ambient levels of nitrogen 355 

deposition across the UK. In acidic grasslands the decline equated to one plant species lost for every 356 

additional 2.5 kg N ha-1 y-1 [101] of long-term N deposition.  Forbs in particular declined in species 357 

richness and cover, whilst cover of grasses tended to increase.  358 

Since 2004 negative correlations between nitrogen deposition and plant species richness have been 359 

reported in a wide range of habitats [e.g. 102, 103] and in different parts of the world [e.g. 104, 105, 360 

106]. These changes in species richness are accompanied by changes in the chemistry of soils, 361 

microbial communities [e.g. 107] and soil processes [e.g. 108]. It is likely that changes in plant 362 

species richness and composition are driven by a combination of mechanisms including acidification, 363 

eutrophication and subsequent plant competition and interactions with secondary drivers. The 364 

relative importance of these drivers is likely influenced by habitat type, soil properties and climate as 365 

well as other variables. Such widespread changes in plant species richness are probably having 366 

impacts on invertebrate communities and higher up the food chain. There is growing evidence of 367 

these impacts [109] although this is an area where further research is needed. N deposition in some 368 

regions of the world continues to increase, but in parts of Europe it is beginning to decline [26]. 369 

However, evidence from some long-term experiments indicates plant species richness and 370 

composition in many damaged areas are unlikely to recover without active management [e.g. 110, 371 

111-113].  372 

5. Ground-level ozone at phytotoxic concentrations 373 

Ground level ozone is formed in a series of photochemically driven reactions between oxides of 374 

nitrogen and volatile organic compounds. Unlike sources of SO2 and NO2, ozone is produced within 375 

the atmosphere, through the photochemical degradation of VOC in the presence of NO2 [114]. The 376 
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rate of production varies between the organic compounds as well as NO2 mixing ratios and the VOC 377 

emitted by traffic provide some of the largest ozone production rates. Ozone production continues 378 

throughout the troposphere where the reactants and solar radiation are present and methane is a 379 

major contributor to tropospheric ozone production in remote regions [115].  Ozone is a 380 

hemispheric scale pollutant [114] among the gaseous pollutants its effects on vegetation may occur 381 

much further from the sources of the precursor pollutants than the effects of SO2 and NO2. Ground 382 

level ozone pollution is an issue in much of the mid-latitudes of the northern hemisphere as well as 383 

parts of the southern hemisphere, with highest levels during summer in Southern Europe, South and 384 

East Asia and large areas of the southern states of the USA and Mexico [116].  Concentrations of 385 

ozone in the Northern Hemisphere mid-latitudes doubled between the late 19th century and 1980 386 

and have continued to increase more slowly, reaching current levels of 35–40 ppb [116]. Ozone is a 387 

toxic pollutant to both agricultural crops and semi-natural vegetation. As a powerful oxidant it exerts 388 

its effects primarily following stomatal uptake and the extent of injury is proportional to the 389 

absorbed stomatal dose [117].  Ozone impacts on crops are discussed in depth by Emberson et al.  390 

[118]. 391 

Ozone impacts on vegetation were first recognised in Los Angeles, California in the 1950s. At the 392 

time poor air quality in the region was characterised by dense smogs which led to eye irritation and 393 

had a distinctive odour. These smogs were first linked to ozone by the chemist Arie Haagen-Smit, 394 

who described the process of ozone formation by photochemical oxidation of hydrocarbons and 395 

nitrogen oxides [119]. The impacts of the smog on crops were already well described, but Haagen-396 

Smit isolated ozone as the cause using laboratory fumigation experiments with spinach, beets, 397 

endive, oats and alfalfa. The results showed damage from ozone that was indistinguishable from 398 

that produced by the smog [119]. Whilst the impacts of ozone on crops had already been described 399 

[120] this was the first time they were linked to smog. 400 

Until the early 1970s it had not been considered that ozone could ever become a problem in Britain 401 

due to the cooler climate, but then cases of extensive plant damage in the Rotterdam district of 402 

Holland occurred as a result of photochemical pollutants.  Atkins, Cox and Eggleton [22] 403 

subsequently detected summertime elevated ozone levels in a rural district of Berkshire UK, remote 404 

from any large conurbations.  Bell and Cox [121] followed up these measurements by recording 405 

visible ozone damage on an ozone-sensitive cultivar of tobacco at the same location and showed 406 

that the injury correlated with ambient levels.   407 

For the next two decades research into the impacts of ozone on plants focussed on damage to crops, 408 

with many species identified as showing visible damage and yield reductions [122]. Forest damage in 409 
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the San Bernadino Mountains, California, in the early 1970s and visible signs of ozone stress in 410 

central European forests led to research into the impacts of ozone on young trees. This work led to 411 

clear evidence that ozone can affect the chlorophyll content, photosynthetic rate [123] and carbon 412 

allocation [124] of trees.  Despite this, separating out the effects of ozone, acid deposition and other 413 

stressors on crown condition was a challenge. A number of regional- and continental-scale studies 414 

were devised to address this [125]. However, it was not until the 1990s that interest in impacts of 415 

ozone widened from crops and trees. In 1998 a thorough review of ozone impacts on wild species 416 

highlighted the urgent need to investigate ozone impacts widely on semi-natural vegetation [125]. 417 

It remains the case that less is known about ozone impacts on semi-natural plants than agricultural 418 

crops, but understanding has developed considerably over the last two decades.  Understanding the 419 

mechanisms of ozone impacts in semi-natural ecosystems is complicated by the need to account for 420 

species interactions which can lead to shifts in species composition and losses of biodiversity [126]. 421 

Wide variation in the responses of semi-natural species have been reported, as well as intra-specific 422 

variability in ozone sensitivity and heritable differences in ozone responses [126, 127]. These 423 

heritable differences are likely a consequence of previous exposure [126].  Legumes [128] and 424 

summer annual plants [127] have been identified as particularly sensitive to ozone, but beyond this 425 

there remains debate about whether sensitivity can be predicted from plant traits [126]. 426 

Predicting community responses remains a challenge. Mills et al. [129] used EUNIS (European Nature 427 

Information System) level 4 communities to predict community-wide ozone sensitivity from the 428 

published responses of individual species.  They found all 54 of the EUNIS communities they 429 

considered had six or more sensitive species and were thus defined by the authors to be ozone 430 

sensitive. Grasslands had the most sensitive communities followed by heathland, scrub and tundra 431 

and mires, bogs and fens. However, Bassin et al. [130] caution that the risk to low-productivity 432 

perennial grasslands  is commonly less than predicted from risk assessments based on individual 433 

species or immature mixtures in chambers.   434 

6. Learning from the past and looking to the future 435 

It is clear that we have come a long way in our understanding of the effects of atmospheric pollution 436 

on managed and natural vegetation. Pollution effects on plants have been observed for hundreds of 437 

years, but the identity of the pollutants responsible, the dose response relationships, and causal 438 

mechanisms were unknown until the mid-20th century.  439 

This paper has reviewed the evidence for four main threats from air pollution: (1) direct phytotoxic 440 

effects from gas phase constituents, (2) indirect effects from deposition of acidifying agents, (3) 441 
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indirect effects from deposition of nutrients and (4) direct toxicity of ozone. The evidence suggests 442 

that each of these is not controlled by a single mechanism, nor do they operate in isolation. Rather, 443 

there are multiple pathways through which each mechanism may operate, many of which are 444 

occurring simultaneously, but to different degrees, within the same ecosystem [131, 132]. For SO2, 445 

direct phytotoxic effects appear to mostly be localized phenomena around point sources, although 446 

historically, when emissions were less regulated, direct effects were likely more widespread [11, 12]. 447 

Acidifying and eutrophicating effects appear to be widespread and simultaneous phenomena, but 448 

differ in relative magnitude based on a host of factors including the composition of the atmosphere. 449 

Ozone interactions are commonplace because ozone usually occurs in concert with other air 450 

pollutants such as sulphur and nitrogen oxides, which may affect plants simultaneously.   451 

Although we have learned much about the possible outcomes related to increasing pollution 452 

deposition, we are only beginning to understand the reversibility of effects [79, 113]. Pollution 453 

deposition has been decreasing through much of Europe and North America since the 1980s and 454 

1990s and much more recently in parts of Asia [133]. These patterns provide an opportunity for 455 

“natural experiments” to learn about the reversibility of these effects, in addition to the few 456 

controlled experiments. Early signs indicate that “fast cycling” processes may recover fairly quickly 457 

(e.g. foliar nutrient balances, nitrate leaching, etc.), while “slow cycling” processes may take several 458 

decades or more to recover (e.g. soil N pools, base cation availability, plant communities) [55, 64, 77, 459 

78]. In some cases, an alternative stable state may be reached and recovery may not occur over 460 

timescales relevant to public decision-making (e.g. several decades) without management 461 

intervention [79, 134]. 462 

Looking forward, it is clear that there are multiple paths that different countries may follow either 463 

intentionally or unintentionally. Many developed nations are beginning to reduce pollution 464 

emissions and deposition through successful environmental policies, although the ultimate 465 

outcomes of many of those national policies on the environment are undetermined because the 466 

timescales of some anticipated changes are expected to take many decades and so far, insufficient 467 

time has passed. Developing nations may tread the same paths as developed nations, increasing 468 

both economic activity and air pollution emissions leading to regional reductions in biodiversity, soil 469 

acidification and eutrophication, only later to consider recovery, or they may evade the worst by 470 

learning from history.   The axiom that “an ounce of prevention is worth a pound of cure” is 471 

especially germane, as these developing nations, with the right international support and domestic 472 

incentives, have the opportunity to avoid many of these adverse effects of air pollution; for example 473 

the costs of renewable energy have reached grid parity with many fossil fuels in many nations [135]. 474 

Regardless, the global scientific community has made significant strides in understanding and 475 
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addressing the ecological effects from air pollution, though much work remains as we assess the 476 

reversibility of these effects and the transferability of these lessons to understudied ecosystems. 477 
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