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Abstract. Reliable predictions of the aero- and hydrodynamic loads acting on floating offshore 

wind turbines are paramount for assessing fatigue life, designing load and power control 

systems, and ensuring the overall system stability at all operating conditions. However, 

significant uncertainty affecting both predictions still exists. This study presents a cross-

comparative analysis of the predictions of the aerodynamic loads and power of floating wind 

turbine rotors using a validated frequency-domain Navier-Stokes Computational Fluid 

Dynamics solver, and a state-of-the-art Blade Element Momentum theory code. The considered 

test case is the National Renewable Energy Laboratory 5 MW turbine, assumed to be mounted 

on a semi-submersible platform. The rotor load and power response at different pitching 

regimes is assessed and compared using both the high- and low-fidelity methods. The overall 

qualitative agreement of the two prediction sets is found to be excellent in all cases. At a 

quantitative level, the high- and low-fidelity predictions of both the mean rotor thrust and the 

blade out-of-plane bending moments differ by about 1 percent, whereas those of the mean rotor 

power differ by about 6 percent. Part of these differences at high pitching amplitude appear to 

depend on differences in dynamic stall predictions of the approaches. 

1.  Introduction 

The increasing amount of R&D efforts in Floating Offshore Wind Turbine (FOWT) technologies 

stems from the potential of these devices to enable a significantly larger exploitation of wind energy 

for renewable electricity generation. This is achievable due to the possibility of installing FOWTs 

further away from the coast, where the wind has higher speed and is often less turbulent than at the 

offshore sites of current fixed-bottom offshore turbines, and where fixed tower foundations cannot be 

used due to the technical and economic burden incurred by their use in water depths of 50 meters and 

more. 
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However, the durable and profitable operation of FOWTs poses new multi-disciplinary challenges 

not encountered in the case of fixed-bottom horizontal axis wind turbines [1]. The overall system 

stability of FOWTs, in fact, is determined by the interaction of a) the hydrodynamic loads on the 

floater due to surface gravity waves and marine currents, b) the aerodynamic loads on the rotor, 

nacelle and tower, and c) the restoring loads due to platform mooring lines. Resolving with adequate 

reliability the physics of each of these load-inducing phenomena is key to the design of the FOWT 

control and the verification of the overall system damping. Moreover, the development of FOWT wind 

farms also requires analyzing the generation process [2] and the propagation characteristics [3] of 

FOWT wakes, which are likely to differ from those of fixed-bottom turbines. 

 In both the industrial and academic communities, FOWT R&D is often based on the use of low-

fidelity engineering codes, such as those implementing the blade element momentum theory (BEMT). 

These codes were derived and calibrated for fixed-bottom turbine analysis and design. The additional 

entrainment velocities due to the relatively large FOWT tower motion results in higher and different 

unsteady aerodynamics of FOWT rotors, and this introduces significant uncertainty in the FOWT 

analysis making use of legacy low-fidelity aerodynamic codes. To investigate and, ultimately, reduce 

this uncertainty, several research groups began cross-comparisons of FOWT aerodynamics using low-

fidelity codes and high-fidelity Navier-Stokes (NS) Computational Fluid Dynamics (CFD) [4], and 

these analyses are increasingly becoming of a multi-disciplinary nature [5,6], adopting CFD to resolve 

both rotor aerodynamics and floater hydrodynamics in a fully coupled fashion.  

When using NS CFD for wind turbine aerodynamics, both compressible and incompressible codes 

can be used. Historically, incompressible codes were used more widely due to their lower 

computational costs and the fact that the highest relative speeds past turbine rotor did not exceed Mach 

0.2. The rapid growth of rotor diameters, however, is prompting more interest in compressible codes 

[7,8,9], due to the expectation of some that the highest rotor speed of future wind turbines may exceed 

the Mach 0.2 threshold. In the case of FOWT rotors, the tower entrainment velocities can result in the 

highest relative air speeds past the blades being well above the compressibility threshold of Mach 0.3, 

even in the case of rotors which have maximum speeds well below this value when mounted on a 

fixed-bottom tower. The high speed observed in the FOWT rotor case may result in notable 

differences between compressible and incompressible flow analyses [2]. 

This study focuses on the analysis of FOWT rotor aerodynamics, and its main aim is to analyze and 

discuss the correlation of the predictions a BEMT code and rotor-resolved NS CFD simulations for 

selected regimes of pitching FOWT rotors. The selected pitching FOWT configuration is the National 

Renewable Energy Laboratory (NREL) 5MW reference turbine assumed to be mounted on a semi-

submersible platform with the same characteristics of that used in [4]. The main objectives of the 

study are to: a) characterize the dependence of FOWT power and loads on the kinematic parameters of 

the prescribed harmonic pitching motion, b) assess the amount of nonlinearity in the rotor 

aerodynamic response to the considered harmonic forcing, and c) analyze and quantify the correlation 

between the results of the BEMT and NS CFD analyses as the pitching parameters are varied. 

2.  Computational aerodynamics 

The high-fidelity NS CFD code of this study is the Lancaster University COSA compressible code 

[10], whereas the low-fidelity BEMT code is the NREL open-source AeroDyn BENT code [11], used 

within the NREL aero-hydro-servo-elastic wind turbine FAST code. Further detail of both simulation 

set-ups is provided below.     

2.1.  COSA Harmonic Balance solver 

The compressible 3D NS equations are a set of equations expressing the conservation of mass, 

momentum and energy in a viscous fluid flow. Averaging the NS equations on the turbulence time-

scales yields the Reynolds-averaged Navier-Stokes (RANS) equations, which contain an additional 

term, the Reynolds stress tensor. In the COSA CFD code used in this study, the Reynolds stress tensor 

is computed with Menter’s 2-equation k - 𝜔 shear stress transport SST turbulence model. COSA uses 
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structured multi-block grids and discretizes the convective fluxes of both the RANS and SST 

equations with a second order upwind finite volume scheme; it uses second order centered finite 

differences for both the diffusive fluxes and the space derivatives in the source terms of the SST 

model. The code can solve rotor flows in both the relative (non-inertial) frame attached to the blades 

and the absolute (inertial) frame. All COSA FOWT simulations reported herein are performed in the 

absolute frame of reference.  

Several wind turbine flows can be viewed as periodic, and in this circumstance their frequency-

domain CFD solution can substantially reduce the analysis runtime with respect to that of the 

conventional time-domain approach. Nonlinear frequency-domain solution methods of wind turbine 

flows have been successfully used in several CFD codes [12,13], including COSA [14,15]. Indeed, the 

harmonic balance (HB) solver has been shown to solve yawed wind turbine flows up to 30 times more 

rapidly than the standard TD approach with negligible loss penalties in [15], which also reports 

comprehensive validation of the steady, TD and HB COSA solvers based on the experimental flow 

measurements of the NREL Phase turbine. In the HB framework, the sought periodic flow is written as 

a truncated Fourier series retaining only the first few complex harmonics whose frequency is a 

multiple of the known fundamental frequency of the excitation. The lower runtime of the HB approach 

is due to the fact that one solves directly for the periodic flow of interest, removing the lengthy time-

dependent transient occurring when solving in the TD.  

2.2.  OpenFAST blade element momentum theory set-up 

The low-fidelity simulations of this study use the NREL OpenFAST code in conjunction with the 

AeroDyn module for solving turbine aerodynamics using BEMT, and the ElastoDyn module for 

computing the rigid movements and the deformations of the structure. The simulations are carried out 

using the rigid body model for all system components by disabling all structural flexibility input in 

ElastoDyn, but enabling the rigid body motion of the platform, as discussed below. The aerodynamic 

models of AeroDyn allow obtaining the aerodynamic loads acting on both the rotor blades and the 

turbine tower. Four sub-models are available for turbine aerodynamics, enabling one to account for a) 

rotor wake induction, b) blade airfoil aerodynamics, c) tower influence on blade aerodynamics, and d) 

tower drag. The tower is not modelled in this study, and therefore only functionalities a) and b) are 

used for the low-fidelity results below. To account for the rotor flow unsteadiness due to the FOWT 

motion, the AeroDyn modelling feature based on the Dynamic Blade Element Momentum Theory 

(DBEMT), which considers the time-dependence of induction and wake in the balance equations, is 

adopted. The calculation of the induction factors and resulting inflow velocities and angles relative to 

the moving blades are based on the local flow field around each analysis node of the considered blade. 

The effects of local inflow skew, wind shear, turbulence, and tower flow disturbances can also be 

included in the analysis, but they are not in the present study.  

In AeroDyn, Glauert’s empirical correction with Buhl’s modification replaces the linear momentum 

balance at high axial induction factors. Three-dimensional flow features are modelled by using Prandtl 

tip and hub loss corrections and the Pitt-Peters skewed wake correction model. Modelling of airfoil 

unsteady aerodynamics is accomplished with the Beddoes-Leishman unsteady model, activated by 

selecting the Minemma-Pierce formulation. This formulation corrects airfoil lift and drag data 

accounting for trailing and leading edge separations, and dynamic stall. Since in the FOWT 

simulations below the angles of attack undergo periodic variations and may exceed the static stall 

limit, the activation of this formulation is essential. 

The possible occurrence of a relatively large motion of the whole turbine system, including tower, 

nacelle and rotor, is a distinctive feature of FOWTs. OpenFAST enables the calculating of the motion 

of the whole turbine system resulting from the dynamic equilibrium of all loads acting on the turbine, 

the floater and the mooring lines. In this study, however, the motion of the tower is prescribed, and an 

ad-hoc procedure has been adopted to enforce the desired tower motion and prevent this from being an 

output of the analysis. To calculate the motion law of the whole turbine system, OpenFAST imposes 

its dynamic equilibrium including the aerodynamic loads on rotor and tower, and the hydrodynamic 
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loads on the floater, restoring loads of the mooring lines and structural loads such as those due to 

gravity. Mass, damping and stiffness data are required for each component. To incorporate floater 

dynamics in the analysis, the ExtPtfm input file enables users to assign structural properties and 

forcing loads at the tower base. To ensure that the tower moves according to the desired law of 

motion, a two-step process is performed. In the first step, one assigns very high values of mass, 

rigidity and stiffness to the floating platform, and, applying the equations of dynamic equilibrium of 

the whole turbine system without aerodynamic loads and using the target tower motion as an input, 

calculates the forcing loads at the tower basis yielding the desired tower kinematics. The order of 

magnitude of these loads is very high, due to the adopted high values of the structural properties of the 

floater. The aerodynamic FOWT analysis is then performed imposing the tower forcing loads obtained 

in the first step, and using again the set of high values of the structural properties of the floater. This 

procedure ensures that the aerodynamic forces provide a negligible contribution to the dynamic 

equilibrium, resulting in the tower moving with the desired motion under the effect of the sole forcing 

load at the tower base. 

3.  Rotor grid configuration and CFD set-up 

The considered pitching FOWT is based on the NREL 5 MW virtual turbine, which has tower height 

of 90 m and features a three-blade rotor with diameter of 126 m; the rotor has an overhang of 5 m, a 

shaft tilt of 5o and pre-coning of 2.5o. Of these three features, only the rotor overhang and tilt have 

been accounted for in the simulations below. 

The rotor geometry and the selected wall boundary conditions are reported in the left schematic of 

Fig. 1, and the grid around the airfoil at 50 percent tip radius is depicted in the left image of Fig. 1. 

The outer shape of the physical domain is cylindrical with the rotor center positioned on the cylinder 

centerline 10 rotor radii from the inlet circular boundary at the front, 20 radii from the outlet circular 

boundary at the back, and 11 radii from the cylindrical far field boundary. Characteristic far field 

boundary conditions are enforced on all far field boundaries. 

The computational grid has about 10 M cells, and the distance of the first grid nodes off the wall 

boundaries (blades and hub) from such boundaries results in a y+ value of about 1 in all presented 

simulations. A butterfly mesh scheme is adopted around the rotor centerline to prevent the formation 

of degenerate cells. This grid has been shown to deliver mesh-independent solutions in [2], where a 

finer mesh with about 80 M is used to compute two steady state solutions of the considered rotor. The 

fine grid was obtained by halving the mesh spacing in all three directions. 

 

Figure 1. CFD analysis of NREL 5 MW rotor: rotor geometry and wall boundary conditions (left), 

and airfoil grid at 50 percent tip radius (right). 
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4.  Pitching FOWT configurations 

All analyses herein use a close-to-rated wind speed of 11 m/s and a rotor speed of 12 RPM, 

corresponding to a frequency of 0.2 Hz. The top and front views of the fixed-bottom turbine are 

depicted, respectively, in the left and middle schematics of Fig.2, along with the orientation of the axes 

and the positive rotations in the xy plane. The segments labelled B1, B2, B3 denote the blade axes, and 

the angle θr denotes the time-dependent angular position of the reference blade B1, given by θr=Ωrt, 

with Ωr being the rotor angular speed. Since all simulations are carried out in the absolute frame, the 

position of the xyz Cartesian system, whose origin coincides with the rotor center of the fixed-bottom 

turbine, does not change during either the fixed-bottom or FOWT analyses presented below. The side 

view of the considered pitching FOWT is reported in the right schematic of Fig. 2, in which Ωp 

denotes the angular frequency of the tower pitching motion. The time-dependent inclination of the 

tower is θp=Θpsin(Ωp+φp), where Θp is the user-given tower pitching amplitude, and φp is the user-

given phase between the rotor revolution and the tower pitching, which is constant when Ωp is an 

integer multiple of Ωp. In the FOWT simulations below, φp=0 and the rotor pitching center is located 

at the tower base (yp=-90 m) and accounts for the rotor overhang (zp=5 m). This choice is 

representative of semi-submersible FOWT platforms. 

 

                      
Figure 2. Top view (left schematic) and front view (middle schematic) of fixed-bottom turbine with 

axis orientation and positive rotation conventions, and side view of FOWT with axis orientation and 

positive rotations conventions (right schematic). 

 

In the COSA HB NS simulations below, the effect of the rotor tilt has been incorporated by inclining 

the oncoming wind by 5o upwards on the rotor axis (z axis). Four simulations have been performed. 

One has motionless tower but is nevertheless unsteady due to the constant 5o misalignment of wind 

direction and rotor axis. The other three simulations all consider a pitching FOWT with pitching 

frequency of 0.1 Hz, and have three different pitching amplitudes, namely 1o, 2o and 4o. The selected 

frequency of 0.1 Hz for the pitching tower is likely to be higher than the pitching eigenfrequency of 

the floater/turbine system. For example, this eigenfrequency for the OC4 DeepCwind semi-

submersible platform mounting the NREL 5 MW turbine considered herein is about 0.038 Hz [16]. 

The resonant pitching frequency during operation is expected to be higher, although still below 0.1 Hz, 

due to metocean condition-dependent wind, hydrodynamic and mooring line damping [17]. The 

pitching frequency of 0.1 Hz has been used in other recent FOWT CFD studies [3,4,5], and, to enable 

cross-comparison of this study’s results with other in the literature, it has been decided to continue 

using this same frequency. 

In the AeroDyn analyses embedded in the OpenFAST analyses, the pre-cone angle of the blades 

has been removed. and the hub radius has been set to 5 m to make these analyses fully consistent with 

the CFD simulations. The tilt angle has been assigned in the form of a geometric inclination of the 
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rotor. The tower pitching motion is enabled by activating the corresponding rigid degree of freedom in 

ElsatoDyn, and prescribing a forcing load at the tower base determined as described in Section 2. 

5.  Results 

Here, the simulations of COSA and OpenFAST/AeroDyn (named FAST in the remainder of this 

section for brevity) for different pitching FOWT regimes are cross-compared to a) establish the 

dependence of the mean, amplitudes and detailed periodic patterns of rotor thrust and power, and 

blade out-of-plane bending moments on the pitching FOWT regime, and b) analyze the correlation of 

low- and high-fidelity analyses as the pitching amplitude increases. The COSA harmonic balance 

solver [14], whose validation was presented in [15], is used for all CFD analyses below. The use of a 

nonlinear frequency-domain CFD solver, also has the advantage of enabling one to establish the level 

of nonlinearity due to the flow unsteadiness induced by the platform motion.  

5.1.  Comparative analysis of rotor thrust and power 

The periodic profiles of rotor thrust T and rotor power P obtained with the COSA HB NS simulations 

and the FAST BEMT analyses for Θp=1o, Θp=2o and Θp=4o are reported in Figures 3, 4 and 5 

respectively. In each figure, the left plot compares the low- and high-fidelity periodic profiles of the 

rotor thrust, and the right plot compares those of the rotor power. The variable t/T along the x-axis of 

all plots is a nondimensionalized time variable used to plot the evolution of the considered output from 

the start to the end of one pitching cycle, and the symbol T denotes the period of one rotor revolution. 

The phase φp between the rotor revolution and the tower pitching cycle is zero, and therefore θp= θr=0 

at t/T=0 and t/T=n, with n being any even integer. All plots report the COSA HB solutions obtained 

retaining 1, 3 and 4 harmonics in the representation of the sought periodic flow field. It is noted that 

the difference between the HB3 and HB4 profiles is very small in all cases, indicating that using 3 

complex harmonics is sufficient to adequately capture FOWT flow physics at the considered regimes. 

On the other hand, large quantitative differences exist between the HB1 profiles on one hand and the 

HB3 and HB4 profiles on the other, indicating a significant level of flow nonlinearity due to rotor 

pitching even for the fairly small pitching amplitude of 1o. 

The agreement between the COSA HB3 and FAST predictions of the thrust profiles is very good at 

Θp=1o and Θp=2o, with the maximum difference of 3.4 percent observed at t/T=0.16 for Θp=2o. 

Interestingly, at Θp=1o and Θp=2o, the largest discrepancies between the two predictions occur in the 

first 25 percent of the pitching cycle (0<t/T<0.5), the interval corresponding to the retreating part of 

the pitching trajectory, a phase in which rotor/wake interactions are more pronounced. The different 

approach of the two codes to resolving these interactions is thus likely to account for the differences 

between the thrust profiles in this part of the cycle. The comparison of the low- and high-fidelity 

power profiles at Θp=1o and Θp=2o is qualitatively similar to that discussed for the thrust profiles, 

although the power differences are slightly higher than the thrust differences, with the maximum 

power difference of 12.5 percent occurring at t/T=0.12 for Θp=2o. It is also observed that the 

agreement of the power profiles in the interval 1.2<t/T<1.6, which corresponds to a significant portion 

of the windward pitching trajectory, improves moving from Θp=1o to Θp=2o. A possible reason for this 

is that the forward speed of the rotor increases with Θp, and rotor/wake interactions will tend to 

decrease in the windward trajectory of the FOWT, as the forward speed increases. 

At Θp=4o a qualitative change in the trends discussed above is noted. In the interval 0.8<t/T<1.3 the 

FAST thrust and power curves flatten out more rapidly than their COSA HB3 counterparts, and this 

results in larger discrepancies between the CFD and BEMT predictions in this region of the pitching 

cycle, corresponding to the highest windward entrainment speeds of the tower. In this condition, the 

angle of attack perceived by the blades may increase significantly and result in stall, reducing blade 

lift and, in turn, rotor torque and thrust. The power difference of about 1 MW at t/T=1 between BEMT 

and CFD predictions is due to the fact that the CFD simulation does not predict the same level of stall 

of the BEMT method, whose prediction is quite sensitive to correlation and semi-analytic models, 

such as corrections for 3D flow effects and dynamic stall models. In field applications the blade pitch 
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control is likely to prevent the occurrence of very high angles of attack due to tower pitching, but this 

is a condition that may occur in extreme cases, such as sudden faults of the blade pitch actuation.   

 

  
Figure 3. COSA harmonic balance and OpenFAST/AeroDyn predictions of periodic profiles of thrust 

T (left) and power P (right) of pitching NREL 5 MW rotor at Θp=1o.  

 

  
Figure 4. COSA harmonic balance and OpenFAST/AeroDyn predictions of periodic profiles of thrust 

T (left) and power P (right) of pitching NREL 5 MW rotor at Θp=2o.  

 

  
Figure 5. COSA harmonic balance and OpenFAST/AeroDyn predictions of periodic profiles of thrust 

T (left) and power P (right) of pitching NREL 5 MW rotor at Θp=4o.  

 

To provide more quantitative and engineering practice-relevant estimates of how the agreement 

between CFD and BEMT FOWT rotor performance and load predictions vary with the severity of the 

pitching regime, the mean and the maximum values of the T and P computed with the two methods are 

reported in Tables 1 and 2 respectively. In both tables, the fifth row also provides the percentage 

difference of the high- and low-fidelity predictions. For reference, the second and third columns of 

both tables also report the analysis results for the fixed-bottom counterpart of the three FOWT regimes 

discussed so far. The results of the mean outputs presented in Tab. 1 show that the difference of mean 

thrust of the two codes is about 1 percent in all four turbine operation modes, whereas that of mean 

power is about 6 percent, and is maximum at Θ=4o , due to the differences in stall prediction. 
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Table 2 highlights that the CFD and BEMT predictions of the maximum values of rotor thrust and 

power for the fixed-bottom turbine and the FOWT with pitching amplitudes Θp=1o and Θp=2o differ by 

amounts similar to those observed for the mean output analysis in Tab. 1. At Θp=4o, however, the 

percentage differences of maximum rotor and thrust grow significantly due to the higher detrimental 

impact of stall predicted by the BEMT analysis. 

 

Table 1. COSA HB3 and OpenFAST/AeroDyn mean values of rotor thrust T [KN] and rotor power P 

[MW] for examined fixed-bottom and pitching FOWT cases. 

 Fixed-bottom FOWT: Θp =1o FOWT: Θp =2o FOWT: Θp =4o 

 T P T P T P T P 

FAST 672.6 4.64 672.3 4.68 670.4 4.78 661.2 5.11 

COSA 678.4 4.94 677.8 4.97 676.8 5.07 670.9 5.48 

Δ (%) 0.85 6.07 0.81 5.84 0.95 5.72 1.45 6.75 

  

Table 2. COSA HB3 and OpenFAST/AeroDyn peak values of rotor thrust T [KN] and rotor power P 

[MW] for examined fixed-bottom and pitching FOWT cases. 

 Fixed-bottom FOWT: Θp =1o FOWT: Θp =2o FOWT: Θp =4o 

 T P T P T P T P 

FAST 672.7 4.64 758.3 5.96 835.8 7.32 957.8 9.78 

COSA 679.7 4.95 766.7 6.21 834.2 7.61 980.0 10.7 

Δ (%) 1.03 6.26 1.10 4.03 -0.19 3.81 2.27 8.60 

 

5.2.  Comparative analysis of blade out-of-plane bending moment 

The out-of-plane bending moment (BM) of all three blades predicted by the COSA HB3 and HB4 

analyses and the FAST simulations at Θp=1o, Θp=2o and Θp=4o are depicted in Figures 6, 7 and 8 

respectively. The considered BM is calculated with respect to the axis contained in the rotor plane, 

normal to the blade axis and passing through the rotor center. The blade counting indicated in all three 

figures is that adopted in the middle schematic of Fig. 2. As Ωr=2Ωp and φp=0o, the maximum BM of 

all blades always occurs at t/T=1, when the tower is upright and its top has maximum windward 

velocity. For each FOWT regime, the maximum BM is experienced by blade 1, since this blade 

always experiences the highest tower-induced entrainment velocity and angles of attack at t/T=1. A 

cross-comparison of the periodic BM profiles in Figures 6, 7 and 8 highlights that while the mean 

value of the blade BM does not vary significantly as Θp increases, its variation over the pitching cycle 

increases significantly with the pitching amplitude. For example, the variation of BM1 doubles 

moving from Θp=1o to Θp=2o, an occurrence which has a significant impact on FOWT design with 

respect to fatigue loads. 

At all considered pitching amplitudes, the BM predictions of the FAST and COSA HB analyses are 

in very good agreement, although the estimates of the former analyses are marginally higher than 

those of the CFD predictions. One also notes that some small differences also exist between the COSA 

HB3 and HB4 BM profiles, which are larger than the differences between the HB3 and HB4 profiles 

of rotor thrust and power examined in Figures 3, 4 and 5. A possible cause for the small mismatch of 

the BM profiles obtained with the HB3 and HB4 solutions could be that more harmonics may be 

required to achieve a harmonic-independent estimate of this variable. 
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Figure 6. COSA harmonic balance and OpenFAST/AeroDyn predictions of periodic profiles of the 

out-of-plane bending moment BM on the blades of the pitching NREL 5 MW rotor at Θp=1o.  

 

 
Figure 7. COSA harmonic balance and OpenFAST/AeroDyn predictions of periodic profiles of the 

out-of-plane bending moment BM on the blades of the pitching NREL 5 MW rotor at Θp=2o. 

 
Figure 8. COSA harmonic balance and OpenFAST/AeroDyn predictions of periodic profiles of the 

out-of-plane bending moment BM on the blades of the pitching NREL 5 MW rotor at Θp=4o.  

 

A quantitative comparison of the blade out-of-plane bending moment obtained with the CFD and 

BEMT-based analyses is provided in Tables 3 and 4. The third and fourth rows of the former table 

provide the mean value of BM of all blades at all examined pitching amplitudes obtained with FAST 

and COSA HB3 analyses, respectively, whereas the data of the third and fourth rows of the latter table 

provide the maximum values of the same variable obtained with the two aforementioned analyses. For 

reference purpose, the second and third columns of both tables also report the analysis results for the 

fixed-bottom counterpart of the three examined FOWT regimes. In both tables, the fifth row provides 

the percentage difference of the high- and low-fidelity predictions. The data of Tab. 3 confirm that 
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both low- and high-fidelity analyses predict a very low sensitivity of the mean bending moments to the 

pitching amplitude of the tower, while those of Tab. 4 indicate a strong dependence of the amplitude 

of the periodic variation of BM on Θp. The data of the row of percentage errors show that mean values 

of the CFD and BEMT analyses differ by about 1 percent and the peak values by about 2 percent. 

 

Table 3. COSA HB3 and OpenFAST/AeroDyn mean values of out-of-plane bending moment BM 

[MNm] of all blades for examined fixed-bottom and pitching FOWT cases. 

 Fixed-bottom FOWT: Θp =1o FOWT: Θp =2o FOWT: Θp =4o 

 BM1 BM2 BM3 BM1 BM2 BM3 BM1 BM2 BM3 BM1 BM2 BM3 

FAST 9.59 9.59 9.59 9.58 9.58 9.59 9.53 9.53 9.57 9.34 9.45 9.51 

COSA 9.46 9.46 9.46 9.45 9.46 9.46 9.43 9.46 9.46 9.30 9.40 9.42 

Δ (%) -1.37 -1.37 -1.37 -1.38 -1.27 -1.37 -1.06 -0.74 -1.37 -1.37 -1.37 -1.38 

 

Table 4. COSA HB3 and OpenFAST/AeroDyn peak values of out-of-plane bending moment BM 

[MNm] of all blades for examined fixed-bottom and pitching FOWT cases. 

 Fixed-bottom FOWT: Θp =1o FOWT: Θp =2o FOWT: Θp =4o 

 BM1 BM2 BM3 BM1 BM2 BM3 BM1 BM2 BM3 BM1 BM2 BM3 

FAST 9.84 9.84 9.84 11.05 10.51 10.89 12.42 11.53 11.98 14.04 13.17 14.08 

COSA 9.60 9.60 9.61 10.84 10.42 10.69 12.13 11.46 11.82 14.61 13.41 13.97 

Δ (%) -2.50 -2.50 -2.39 -1.94 -0.86 -1.87 -2.39 -0.61 -2.50 -2.50 -2.39 -1.94 

  

For both the fixed-tower and the pitching rotor cases, the results of Tables 1-4 show a good agreement 

of low- and high-fidelity predictions in terms of rotor thrust and blade BMs, and slightly larger relative 

differences of rotor power data. This is possibly due to differences of the axial induction predicted at 

the rotor position by COSA and AeroDyn, caused, in turn, by different modelling/simulation 

approaches, such as a semi-empirical tip loss correction independent of the actual blade tip geometry 

with BEMT, and a complete 3D tip flow field resolution with CFD. Using steady analyses does not 

alter qualitatively the aforementioned differences of BEMT and CFD results. The comparison of the 

steady COSA/AeroDyn fixed-bottom turbine analyses of the NREL 5 MW rotor without shaft tilt [6] 

shows excellent power agreement but higher AeroDyn thrust. This indicates that the BEMT/CFD 

differences for the FOWT rotor with both small and high amplitudes are also due to differences in the 

unsteady flow modelling/simulation features of the two approaches, with some indication that further 

analysis of the present formulation/implementation of the Beddoes-Leishman model may be needed. 

6.  Conclusions 

A cross-comparative analysis of a pitching FOWT rotor based on the BEMT functionalities embedded 

in the OpenFAST code, and the COSA harmonic balance NS CFD code has been presented. Here, the 

NREL 5 MW turbine rotor at close-to-rated wind speed and subject to pitching amplitudes of 1, 2 and 

4 degrees with pitching frequency of 0.1 Hz is considered. The overall correlation of BEMT and CFD 

results is quite good, with estimates of rotor thrust and blade out-of-plane bending moments differing 

by about 1 percent, and rotor power by up to 6 percent. The largest differences between the predictions 

of the two approaches are found at the largest pitching amplitude, due to differences in the prediction 

of the detrimental effects of dynamic stall. These effects are more pronounced in the BEMT analysis.  

Both BEMT and CFD methods predict a fairly low sensitivity of the mean rotor thrust and blade 

bending moments to the pitching amplitude, but a quite high sensitivity of the amplitude of the 

periodic variations of these two loads. Both methods predict that the increment of the amplitude of the 

blade bending moments with the tower pitching amplitude is notably higher than the increment of the 

amplitude of the rotor thrust, a trend expected on the basis of fundamental wind turbine aerodynamics. 
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