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Abstract (323 words) 

Introduction  

Endpoint choice for randomized controlled trials of treatments for novel coronavirus-induced disease 

(COVID-19) is complex.  A new disease brings many uncertainties, but trials must start rapidly to identify 

treatments that can be used as part of the outbreak response. COVID-19 presentation is heterogeneous, 

ranging from mild disease that improves within days to critical disease that can last weeks to over a 

month and can end in death.  While improvement in mortality would provide unquestionable evidence 

about clinical significance of a treatment, sample sizes for a study evaluating mortality are large and may 

be impractical, particularly given a multitude of putative therapies to evaluate.   Furthermore, patient 

states in between “cure” and “death” represent meaningful distinctions.   Clinical severity scores have 

been proposed as an alternative.  However, the appropriate summary measure for severity scores has 

been the subject of debate, particularly in the context of much uncertainty about the time-course of 

COVID-19.  Outcomes measured at fixed time-points, such as a test comparing severity scores between 

treatment and control at day 14, may risk missing the time of clinical benefit.    An endpoint such as 

time-to-improvement (or recovery), avoids the timing problem. However, some have argued that power 

losses will result from reducing the ordinal scale to a binary state of “recovered” vs “not recovered.”  

Methods 

We evaluate statistical power for possible trial endpoints for COVID-19 treatment trials using simulation 

models and data from two recent COVID-19 treatment trials. 

Results 

Power for fixed-time point methods depends heavily on the time selected for evaluation.    Time-to-

improvement (or recovery) analyses do not specify a time-point. Time-to-event approaches have 

reasonable statistical power, even when compared to a fixed time-point method evaluated at the 

optimal time.   
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Discussion  

Time-to-event analyses methods have advantages in the COVID-19 setting, unless the optimal time for 

evaluating treatment effect is known in advance.  Even when the optimal time is known, a time-to-event 

approach may increase power for interim analyses. 

  

Keywords: COVID-19, censoring, clinical trials, endpoints, log-rank test, WHO ordinal scale, proportional 

odds model. 

 
ACTT-1 ClinicalTrials.gov number, NCT04280705. 
LOTUS Chinese Clinical Trial Register number, ChiCTR2000029308.    

http://www.chictr.org.cn/showprojen.aspx?proj=48684
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Introduction 

 

Designing clinical trials for treatments for novel infectious disease brings many challenges, especially 

during a rapidly evolving pandemic.   A new disease brings uncertainties arising from an imperfect 

understanding about the illness, little information about putative treatments, and complexities in 

measuring relevant patient outcomes.  A pandemic adds an overloaded medical system with limited 

resources for research, heightened pressure to find effective treatments quickly, and unpredictability 

about potential case numbers.  Studies need to start quickly for enrollments to track the epidemic curve. 

However, early on, information about endpoints may be lacking.  This means trial design should be 

appropriately flexible to respond to new information, but without compromising scientific rigor. 

 COVID-19 has a heterogeneous presentation and clinical course, ranging from asymptomatic to 

critical disease (Table 1).1 While most infected patients present with asymptomatic or mild disease, 

some develop severe or critical illness that can result in acute respiratory distress syndrome and death.  

The most common symptoms are fever, dry cough, dyspnea, chest pain, fatigue and myalgia, while less 

common symptoms are headache, dizziness, abdominal pain, diarrhea, nausea and vomiting. Most 

patients present with signs of bilateral pneumonia2.  Neurologic symptoms including taste and smell 

disorders have been reported, with rare case reports of severe central nervous system affections.3 

Thrombotic complications in critically ill patients have also been observed.4 Importantly, some COVID-19 

patients recover quickly with limited (or no) complications, while patients suffering from severe disease 

may take 6-8 weeks or longer for full recovery.5   This broad range of disease severity makes finding a 

common endpoint for all COVID-19 trials impractical. Endpoints for a study population representing a 

broad spectrum of disease may be different than those for a study with a narrow spectrum of disease.   
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We describe key considerations for selecting endpoints for COVID-19 treatment trials.  We 

evaluate endpoints according to clinical relevance, ease and reliability of measurement, interpretability 

of its associated statistical analysis, and statistical efficiency.    We discuss differences between fixed 

time-point endpoints and those that naturally incorporate changes over time. We evaluate statistical 

efficiency of multiple approaches with simulation models, as well as using data from two published 

COVID-19 randomized trials.6,7   

Methods 

 

Endpoint selection 

Treatments for COVID-19 are intended to be curative, with the goal that the patient will survive and 

ultimately return to normal function.  This contrasts with a disease such as stroke in which the goal of a 

treatment may be to reduce stroke-induced impairments that occur across a spectrum.8 Likewise, a 

benefit on mortality would be strong evidence of an effect, but deaths are relatively rare.  A study 

powered for mortality benefit would require a large sample size.  For example, a sample size of around 

2,000 is needed (for a two-arm study) to detect a hazard ratio (for death) of 0.65 with 85% power and a 

type I error rate of 5% with a 10% mortality rate.  Lower mortality rates require even larger studies.   In a 

setting with multiple putative therapies, studies powered for mortality will restrict the number of 

therapies evaluated, which may slow provision of effective treatments to support the outbreak 

response. 

  Furthermore, multiple clinical states in between “death” and “cure” represent meaningful 

patient states.  The World Health Organization (WHO) proposed an ordinal scale ranging from death to 

full health, with states in between corresponding to the need for hospitalization, oxygen support 

(including type of support needed), and need for additional medical support (Table 1).9  These states are 
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important markers of how a patient feels and of disease progression (or improvement).  Mechanical 

ventilation (intubation) marks a considerable worsening, as intubated patients often require treatment 

with sedatives and even paralytics to address patient discomfort and maximize therapy. Intubation is 

also associated with a host of complications leading to additional mortality and morbidity, such as 

ventilator-associated pneumonia10, GI bleeding11, and severe physical deconditioning.   In a case series 

of 5,700 COVID-19 patients in New York, considerable numbers of patients remained intubated during 

the entire study12.    Shortening the duration in a state like intubation or avoiding intubation altogether 

is of direct clinical benefit.   

Timing of endpoint evaluation is another important consideration.  A treatment effect that 

occurs early but dissipates over time may not be clinically meaningful. A treatment effect may be missed 

if evaluation is too early, before an intervention has had time for an effect.  Timing of measurement is 

therefore crucial and can be particularly challenging in a novel disease with substantial heterogeneity. 

Time-to-event endpoints do not require specifying a fixed time (just the observation interval) and are 

more robust in this regard.   We note that longitudinal models of other endpoints are possible, such as a 

mixed-effects proportional odds model13 but are not commonly used.   

Table 2 describes multiple endpoints considered for COVID-19, largely from the perspective of a 

definitive (Phase 3) trial.  Endpoints for earlier phase studies may focus on evaluating mechanism (e.g., 

targeting a specific pathway) or evaluating activity so that “go/no-go” decisions for further evaluation in 

larger trials can be made.  Endpoints are evaluated according to ease of measurement, reproducibility, 

whether they are clinically meaningful, and their ability to capture multiple clinical states and the time-

course of disease.   

Meaningfulness and reproducibility can be distorted when states are influenced by external 

factors, as may happen when patient numbers exceed hospital capacity.  For example, ordinal categories 
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become less meaningful when mechanical ventilators are not available and patients who would 

normally be in this category are shifted to others (or when guidelines recommending early intubation 

are followed more rigorously in some centers than others).  Further, non-invasive ventilators or high-

flow oxygen devices may not be utilized in settings where personal protection equipment is limited (or 

in the absence of negative pressure rooms) due to concerns about health-care worker infection from 

viral aerosolization.   Similarly, hospitals exceeding capacity may discharge patients early due to demand 

for beds.  Additional concerns have been raised that one-unit changes in the ordinal scale are not 

equally important.  For example, extubation may represent a more meaningful improvement than being 

moved from high-flow oxygen to standard, low-flow oxygen.  Both improvements have implications on 

health system resources; however, from the patient view, they may not be equal.   

Endpoints used in other diseases have been considered. For example, the National Early 

Warning Score (NEWS2)14 captures clinical deterioration in patients, but is not specific to COVID-19 and 

might not be sensitive enough for this disease. Other measures, such as SOFA15 are well validated but 

are specific to ICU patients.  Patients who require intensive care have a high mortality of approximately 

30 to 60%.16, 17, 18 

Multiple laboratory parameters are associated with deterioration of clinical status, including 

surrogates for organ injury and markers of systemic inflammation, e.g., markers of cardiac injury 

(troponin T), elevated liver transaminases,  creatinine levels,  procalcitonin levels, D-Dimer 

concentrations, fibrinogen19, lactate dehydrogenase20, and lymphopenia.21 Elevations in C-reactive 

protein (CRP) and ferritin, further reflective of high levels of systemic inflammation, are also associated 

with severe disease, consistent with the observed hyperinflammatory syndrome that appears to occur in 

a subset of patients.21  While tracking these parameters is important to better understand COVID-19, 

they do not directly measure how a patient functions or feels and may not correlate with clinical 
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outcome.  In supplementary Table S1, we provide examples of endpoint choices for several COVID 

clinical trials.     

 

Statistical Considerations  

To evaluate statistical considerations in more depth, we focus on four outcomes: time to death, 

time to recovery/improvement, ordinal scale at a fixed time point, and ordinal scale averaged across 

time points.   We note that, with time-to-improvement/recovery models, the competing event of death 

requires special handling.   Patients who die during follow-up should not be censored at time of death, 

as that assumes their recovery time would be like all who remain alive and unrecovered at that time. To 

state the obvious, once dead, a patient cannot recover.  A death must be set to an infinite recovery 

time, so that at the end of follow-up, the patient is counted as “not recovered.”  We achieve the same 

objective by censoring deaths at the last observation day.  Therefore, patients censored on the last 

observation day reflect two different states: death and failure to recover by day 28.   Standard survival 

analysis methods can then be applied, but the “hazard” ratio refers to the instantaneous risk of a good 

outcome.  Hence, we use the term “recovery rate ratio” (or “improvement rate ratio”). We note that, 

with administrative censoring from staggered entry before day 28, this approach corresponds to the 

Fine-Gray approach to competing risks.22  With staggered entry, Fine-Gray censors deaths at the time 

they would have been censored had they not died (i.e., time of administrative censoring).    

Discretizing a continuous variable is commonly thought to result in a loss of efficiency.23,24  

Similarly, reductions in efficiency may occur when an ordinal scale is discretized into a binary endpoint 

and others have emphasized power advantages of a proportional odds model.25,26  Graubard and Korn 

note that rank-based methods (such as the proportional odds model) may have lower power when the 

marginal sums are not nearly uniform, compared to methods that use pre-assigned numeric values 
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(scores) for categories of the ordinal scale.27  Nonetheless, collapsing information can sometimes 

increase power.  For example, if the distribution of a continuous endpoint is skewed or has wide tails, 

rank-based methods, or even dichotomizing and using a test of proportions, can be more powerful than 

a t-test.  Relatedly if assignment to some ordinal categories is haphazard, methods that collapse 

categories can provide more power.  Dichotomizing can also be useful when there is a clear cut-point 

beyond which negative sequelae of a disease manifest, such as with hemoglobin A1c or fasting glucose 

in diabetes.  Table S2 provides a description of many statistical analysis options. 

The endpoints considered are difficult to compare theoretically with respect to power.  For 

example, time to recovery dichotomizes an ordinal scale into “recovered” and “not recovered”, so one 

might assume there should be a loss in power associated with using this approach.  However, time to 

recovery incorporates health states on multiple days instead of just one, which can increase power.  For 

instance, if the proportional odds model is evaluated so early that no one has recovered (or so late that 

everyone has recovered), power for the proportional odds model on that day will be very low.  Using an 

analysis that incorporates the average ordinal score over multiple days solves that problem, but its 

power gain is not as great as one might imagine because measurements on the same individual on 

different days are likely to be highly correlated.  Furthermore, a between-arm difference in an average 

score may also be more difficult to interpret.  For example, what does an average improvement of 0.4 

units on an ordinal scale mean?       

We also note that time-to-event analysis is advantageous from the perspective of interim 

analyses, as data from all patients with any amount of follow-up time are included.  This contrasts with a 

fixed timepoint analysis, which only includes observations from patients who have made it to the 

prescribed follow-up milestone (e.g., all 14 days).  In rapidly enrolling trials, time-to-event analysis may 

improve power to evaluate early efficacy (or harm) of treatments, and hence increase the speed at 

which treatment recommendations can be made.   
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Evaluation of statistical efficiency and interpretability of methods 

Power is compared using two simulation methods and applications to two published studies of COVID 

treatments.  For the simulation studies, ordinal trajectories were generated according to a random line, 

θ0i + θ1i log(d) for person i, where d is the day since randomization.    For day d, the ordinal score for that 

day was given as floor[θ0i + θ1i  log(d)], where the notation floor[x] indicates the integer part of x.  Death 

(score=7) and recovery (score=1) were considered absorbing states (i.e., values above 7 or below 1 were 

set to 7 and 1, respectively).    One can visualize the trajectory as a subject deterministically sliding up or 

down their own “line of destiny” over 28 days and reporting their integer value each day.  Loosely, 10% 

(5%) of placebo (active) patients were destined to die (having a large value of θ1i) within the 28-day 

observation period.  The remaining subjects were destined to recover (with negative value of θ1i).   

Multiple parameter values for generating θ0i and θ1i were considered until trajectories roughly reflected 

our understanding of COVID-19 disease progression.  Figure 1 depicts results for the reference scenario.   

Each setting was simulated 1,000 times, with 800 subjects total, equal randomization to the two arms, 

and 28 days of follow-up.  We evaluated the proportional odds model at different days, a Wilcoxon rank-

sum test on the mean ordinal score (1-7) up to day 28,  a test of proportions on day 28 mortality, and 

Cox models for time to (a) recovery, (b) a 2-point improvement, and (c) death.   One possible criticism of 

the above simulations is that the proportional odds assumption may not hold.  A second set of 

simulations compared methods under the proportional odds assumption.  Technical details and results 

are given in the appendix.    

Patient-level data from two published studies were obtained to compare methods.   The 

Adaptive COVID-19 Treatment Trial stage 1 (ACTT-1) randomized 1,062 patients to remdesivir or placebo 

and followed patients for 28 days.6 The primary outcome was time-to-recovery, although ordinal scales 
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were also assessed. Due to a surge in enrollments, the study exceeded its target sample size of 400 

recoveries, reaching 482 by the time of the planned DSMB interim analysis.  Data were taken from a 

preliminary report from an April 28, 2020 data freeze (before results were made public and before 

actively enrolled patients were offered cross-over treatment).  Data cleaning for this data snapshot are 

ongoing, and the results presented here are intended to inform trial design.   We compare empirical 

power for various methods with repeated random sampling of 50, 150 and 300 per arm. For each 

sample size, we replicated random sampling 100,000 times.   Additionally, we present multiple analyses 

applied to the LOTUS study of lopinavir/ritonavir by Cao et al.7 This study was stopped prior to reaching 

the pre-planned sample size.  We present analyses with the original data (199 patients) as well as with 

hypothetical augmented data corresponding to 398 patients.   

Results 

 

Simulation studies 

Power comparisons for simulations are shown in Table 3.    For the reference scenario, the proportional 

odds model has increasingly better power for later days, with highest power at day 28.   Empirical power 

for both time-to-(2-point) improvement and time-to-recovery is somewhat lower than that for the 

proportional odds model at the optimal time.  Empirical power for mortality is notably lower than for 

other methods, which is no surprise due to the low event rate and modest effect.   We explored four 

perturbations from this reference scenario to more fully assess performance.  The perturbations were 1) 

lagged treatment effect, 2) faster recovery, 3) faster mortality and 4) effect solely on mortality. (Table 

S4).  Under the lagged effect scenario, power for the proportional odds model decreases at days 7 and 

14 but is similar on day 28 (compared to the reference scenario).    This underscores the fragility in 

getting the day right with the proportional odds model.  The faster recovery scenario has similar relative 
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behavior to the reference scenario though power is uniformly increased.   The faster mortality scenario 

has power like the reference scenario.  These two perturbations show some robustness of the 

conclusions of the reference scenario.    The last row of Table 3 provides scenarios with differences 

between arms from mortality only.   Here, mortality has the highest power, as expected.  More deaths 

on placebo necessarily implies more recoveries on treatment, which is why power for both time to 

improvement and time to recovery is around 30%. 

Simulation studies under models that enforce the proportional odds assumption are provided in 

Table S3 and Figure S1. Results from these simulations show are similar. Namely, when the fixed 

timepoint is chosen well, the proportional odds model performs well but suffers a loss of power if the 

time point is chosen poorly.  

 

Applications to published COVID-19 treatment studies 

Table 4 shows estimates and p-values from various models applied to the ACTT-1 study data.    At the 

time of the data snapshot, the following proportion of subjects had ordinal score data available: 91% 

day 7; 89% day 14, 74% day 21 and 70% day 28.  On the observed data, the proportional odds model 

estimates decrease over time (opposite the simulation results above), with estimates of 1.62, 1.50, 1.42, 

1.34 for days 7, 14, 21 and 28, respectively.  The odds ratio of 1.50 at day 14 indicates a 50% increase in 

the odds of a one-category improvement for remdesivir relative to control (at day 14).  The test of mean 

difference between arms at days 7, 14, 21 and 28 gives estimates of 0.56, 0.62, 0.53, 0.41 for days 7, 14, 

21, and 28, respectively.  The average difference at day 14 indicates an average improvement of 0.62 on 

the ordinal scale for remdesivir relative to placebo.  The mean difference of the time-average (days 7, 

14, 21 and 28) was 0.56. The time to recovery and time to (1- and 2-point) improvement analyses give 

estimates of 1.32, 1.29 and 1.28, respectively.  The recovery rate ratio of 1.32 indicates a 32% faster 
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(instantaneous) rate of recovery with remdesivir (relative to placebo).  The hazard ratio (for mortality) of 

0.70 indicates a lower hazard of death in the remdesivir group. 

 Table 4 also shows empirical power (proportion of statistically significant p-values <0.05 out of 

the 100,000 simulations) for sample sizes of 50, 150, and 300 per group.  Power is greatest at day 7 

using the proportional odds model, with rejection rates of 24%, 62% and 97% for sample sizes of 50, 150 

and 300 per group.  Results for the t-test were similar, with rejection rates of 22%, 59% and 95% for the 

three samples sizes.   Rejection rates for the proportional odds model and t-test evaluated at day 14 

were lower for all sample sizes  (day 14 proportional odds rejection rates: 16%, 41% and 79%; day 14 t-

test rejection rates: 17%, 46% and 85%, respectively for sample sizes of 50, 150 and 300 per group).   By 

day 28, empirical power was lower, although the t-test rejection rates were higher than for the 

proportional odds (proportional odds rejection rates: 7%, 13% and 19%; t-test rejection rates: 9%, 20% 

and 40%, respectively for sample sizes of 50, 150 and 300 per group).   The lower number of 

observations at the later time point explains some of the loss in power, although not entirely.  The 

proportion with observations at day 7 and day 14 was similar (91% vs 89%), and the power reductions 

were considerable (62% vs 41% for the proportional odds model at day 7 and 14, respectively, with 150 

per group). 

Rejection rates for the recovery rate ratio were 18%, 48% and 87%, respectively for sample sizes 

of 50, 150 and 300.  Results for the time to improvements were 19%, 51% and 90% (one-point 

improvement) and were 17%, 44% and 84% (two-point improvement) for sample sizes of 50, 150 and 

300 per group, respectively.   Rejection rates for the hazard ratio for mortality were 7%, 12% and 18%, 

for the three sample sizes considered, consistent with the low power for mortality in this setting. 

Table S3 in the appendix show results from the LOTUS study of lopinavir/ritonavir. In the 

observed and augmented data analysis, none of the days the proportional odds was estimated were 
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statistically significant, while with the augmented data, the time to a two-point improvement indicated 

a 31% faster rate of improvement with p<0.05.     

Discussion 

  One important challenge with COVID-19 is disease heterogeneity.  An endpoint of cure or 

death would be the strongest clinical evidence of treatment effect. Trials using these endpoints may 

take an unfeasibly long time and preclude evaluation of other candidate treatments. The WHO ordinal 

scale reflects meaningful patient states. However, distinctions between categories may depend on 

limited resources (such ventilators or high-flow oxygen devices).  Further, local differences in standard 

of care (including different guidelines recommending early intubation and/or limiting non-invasive 

oxygen treatments) may affect results in multicenter trials. Ideally, such guidelines would be unified 

within clinical trials, but dogmatic restrictions could limit enrollments.  A placebo-controlled trial will 

reduce the potential for subjectivity to influence changes made to a patient’s status. 

Studies need to be launched quickly in order to inform the response, at a time when little 

information about the disease may be available. Planning for additional trial flexibility, without 

compromising scientific rigor, is important.28  Changes made to endpoints based on results external to 

the trial (and prior to reviewing data) are acceptable.29  In the ACTT-1 trial, the initial primary endpoint 

was the proportional odds model at day 14, based on early WHO guidance that recommended an 

analysis of ordinal scale at a fixed time point.   At the time, many thought the clinical course was more 

like influenza illness, with recoveries occurring over two weeks. However, in late February, it became 

apparent, that the course of illness was more prolonged than previously thought.  Consequently, follow-

up was extended to 28-days and simulation results (presented in this manuscript), revealed the fragility 

of a fixed-time point analysis and highlighted the advantages of a time-to-recovery endpoint.  

While both simulations and our examples show that power is comparable between a fixed-time 

point analysis and a time-to event analysis if the timing of the former is chosen well, marked power 
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losses are apparent when this is not the case.  Additionally, we believe that time-to-

improvement/recovery analysis is easier to interpret.  We also note that improvement in time-to-

improvement/recovery is of relevance to the patient, as an indicator of faster improvement in clinical 

status, but also to a health system at maximum capacity.  While a mortality improvement would have 

provided stronger evidence about treatment efficacy, initial estimates indicated a sample size of about 

2,000 would be needed.   This was deemed impractical given the goal to evaluate multiple therapeutic 

candidates.     

The time-to event analysis offers other advantages such as that, for interim analyses, all data 

collected up until the data freeze were included, which can be important in an outbreak setting with 

rapid study enrollment.  The PALM Ebola virus disease treatment trial provides one example.30 In PALM, 

the primary endpoint was 28-day mortality.  Due to rapid enrollment, there was a striking discrepancy 

between the number enrolled and the number with 28 days of follow-up.  At the August 9, 2019 Data 

and Safety Monitoring Board meeting, 673 patients (of the 725 target) were enrolled but only 376 had 

28-day follow-up; the study had enrolled 93% of its targeted sample size, but information (for the 

mortality proportion at day 28) was only 52%.   A time-to-event analysis would have included data on all 

participants (for their observed time), and information would have been 65-70% at this analysis. 

In our evaluations of the ACTT-1 data, day 7 had the highest power. However, evidence of an 

effect this early would likely not have been convincing for a definitive trial.   A day 7 evaluation may be 

more appropriate for phase 2 trials.   An alternative to the time-to-event approach would have been to 

specify multiple outcomes (e.g., ordinal scale at day 7, 14, 21 and 28), with multiplicity adjustments.  

This was considered but concerns were raised about interpretation and the need to focus on an 

important measure of clinical benefit.      
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Regardless of the primary endpoint chosen, collection of core outcome measures will ensure 

comparability across studies and will be important for subsequent efforts to synthesize data from 

different trials.31 
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Table 1. NIAID disease severity categories and WHO ordinal scale 

 

NIAID disease severity categories 

 

 

WHO Ordinal Scale 

Asymptomatic/Presymptomatic infection: 
Individuals who test positive for SARS-CoV-2 but have 
no symptoms 
 

0- Uninfected, no clinical or virological 
evidence of infection 

Mild illness: 
Individuals who have any of various signs and 
symptoms (e.g., fever, cough, sore throat, malaise, 
headache, muscle pain) without shortness of breath, 
dyspnea, or abnormal imaging 
 

1- Ambulatory, no limitation on activities 

Moderate illness: 
Individuals who have evidence of lower respiratory 
disease by clinical assessment or imaging and a 
saturation of oxygen (SaO2) >93% on room air at sea 
level 

2- Ambulatory, limitation on activities 

Severe Illness: 
Individuals who have respiratory frequency >30 
breaths per minute, SaO2 ≤93% on room air at sea 
level, ratio of arterial partial pressure of oxygen to 
fraction of inspired oxygen (PaO2/FiO2) <300, or lung 
infiltrates >50% 

3- Hospitalized, mild disease, no oxygen 
therapy 

Critical Illness: 
Individuals who have respiratory failure, septic shock, 
and/or multiple organ dysfunction 

4- Hospitalized, mild disease, oxygen by 
mask or nasal prongs 

 5- Hospitalized, severe disease, non-
invasive ventilation or high-flow oxygen 

6- Hospitalized, severe disease, intubation 
and mechanical ventilation 

7- Hospitalized, severe disease, ventilation 
and additional organ support—pressors, 
RRT, ECMO 

8- Death 
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Table 2. Possible endpoints for trials in COVID-19, corresponding target population, categorization of 
whether the endpoint is clinically meaningful, captures the diverse nature of disease, easy to measure 
and reproducible. 

Endpoint Example Population 
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Additional comments 

Binary outcomes 
Mortality Death by 28 

 
Moderate 
Severe 
Critical 

+ o o + + + Most relevant in severe/critical 
disease. 

− May miss other meaningful 
improvements in patient status. 

− Requires large sample size  
Recovery(discharge, 
discharge-eligible) 

Recovered by 
day 28 

Moderate 
Severe 

+ o o + o − May require long observation times in 
higher severity populations.  

− Deaths require special consideration 
Respiratory Failure ECMO or 

mechanical 
ventilation 

Moderate 
Severe 

+ o o + o − Depends on resources 
− Deaths require special consideration 

Hospitalization Admission within 
28 days 

Mild + - o + o − Depends on resources 
− Does not capture improvement 
− Deaths require special consideration 

ICU admission Admission within 
28 days 

Moderate + - o + o − Depends on resources 
− Does not capture improvement 
− Deaths require special consideration 

Ordinal outcomes 
Ordinal disease 
severity scale 

WHO scale at a 
fixed day 

Moderate 
Severe 

+ + - o o − Depends on resources 
− Defining clinical benefit less 

straightforward 

Time-to-event outcomes 
Time-to-recovery Time to 

discharge or 
eligible for 
discharge 

Moderate 
Severe 

+ o + + o − Depends on resources 
− Potential for “relapse” (sustained 

improvement removes this concern) 
− Deaths require special consideration 

Time to 1- or 2-point 
improvement in 

ordinal scale1 

Time to 2-point 
improvement in 
WHO ordinal 
scale 

Moderate 
Severe 
Critical 

+ o + o + − Changes in categories must be 
meaningful and should be considered 
equally important 
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− Potential for “relapse” (sustained 
improvement removes this concern) 

Time to intubation 
or death 

 Moderate 
Severe 

+ - + + o  

Continuous outcomes 
National Early 
Warning Score 
(NEWS score) 

 Moderate 
Severe 

o + o - + + Familiar measure 
− Not disease specific and hence not as 

sensitive to certain aspects of COVID 
− Deaths need special consideration 

Viral load 
/Viral Clearance 

 Mild 
Moderate 
Severe 
Critical 

- o o - - − Difficult to reliably measure 
− Relation to clinical outcomes not well 

established 
− Deaths need special consideration  

Oxygen, SpO2/FiO2 
or paO2/FiO2 

Daily SpO2/FiO2  
until discharge, 
death or 28 days 

Mild 
Moderate 

o o o - + − Relation to clinical outcomes not well 
established. 

− Modified by oxygen supplementation 
− SpO2/FiO2 not well-validated 
− paO2/FiO2 only broadly available for 

ICU patients 
− Deaths need special consideration 

Duration of a 
specific ordinal state 

Hopitalization 
days; Mechanical 
ventilation days 

Severe 
Critical 

o - o + o + Captures dimension meaningful to 
health system 

+ Depends on the resources available 
+ Deaths need special consideration 

FLU-PRO Change from 
baseline to day 
14 

Mild 
Moderate 
Critical 

o + - o o + Captures aspects important to patients 
− Deaths need special consideration 
− Not validated for COVID-19 

SOFA score Change from  
baseline to day 
14 

Severe 
Critical 

o + - o + + Captures disease severity and 
incorporates most relevant organ 
systems 

− Familiar for ICU setting 
− Not validated for COVID-19 and not 

disease-specific 
−  Deaths need special consideration 

 “+” indicates good performance, “ –“ indicates poor performance on this characteristic, neutral is 
denoted by “○”.   
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Table 3.   Simulated power for different analysis methods under various scenarios for simulations (type 1 error rate = 5%).    

 

 

 Proportional Odds  Time-to-event Proportion 
Scenario Day 

1 
Day 7 Day 14 Day 28 Mean 

Score 
Time to 
2-point 

improvement 

Time to 
Recovery 

 

Time to 
Death 

28 Day 
Mortality 

Reference  0.05 0.76 0.85 0.88 0.80 0.81 0.82 0.63 0.58 
Lagged treatment 
effect 

0.05 0.05 0.76 0.86 0.66 0.82 0.78 0.58 0.73 

Faster recoveries 0.05 0.86 0.93 0.93 0.87 0.87 0.89 0.65 0.59 
Higher mortality rate 0.05 0.76 0.85 0.88 0.80 0.81 0.82 0.75 0.71 
Mortality differences 
only 

0.05 0.23 0.26 0.32 0.24 0.31 0.28 0.51 0.46 
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Table 4.  Evaluation of methods applied to ACTT-1 study data: observed data and simulated sample sizes of 50, 150, and 300 per group. Subsets 
of data were replicated 100,000 times. 

    Observed data (n=1059) Empirical power from simulations 
    Estimates 95% CI p-value 50 per group 150 per group 300 per group 

Proportional 
odds model 

Day 3 1.49  (1.16,1.82) 0.001 0.16 0.39 0.77 
Day 5 1.54 (1.23,1.93) <0.001 0.20 0.52 0.91 
Day 7 1.62  (1.29,2.04) <0.001 0.24 0.62 0.97 

Day 10 1.61 (1.26, 2.04) <0.001 0.21 0.55 0.94 
Day 14 1.50 (1.18,1.92) 0.001 0.16 0.41 0.79 
Day 21 1.42 (1.09,1.85) 0.009 0.11 0.25 0.50 
Day 28 1.34 (0.99,1.82) 0.063 0.07 0.13 0.19 

 Day 3 0.28 (0.11,0.46) 0.002 0.15 0.37 0.74 
 Day 5 0.45 (0.22,0.68) <0.001 0.20 0.52 0.91 

Mean difference 
(t-test) 

Day 7 0.56 (0.29,0.83) <0.001 0.22 0.59 0.95 
Day 10 0.58 (0.28,0.88) <0.001 0.20 0.53 0.91 
Day 14 0.62 (0.27, 0.96) <0.001 0.17 0.46 0.85 
Day 21 0.53 (0.18, 0.87) 0.003 0.13 0.33 0.67 
Day 28 0.41 (0.07, 0.74) 0.017 0.09 0.20 0.40 

All-days average 0.55 (0.31, 0.79) <0.001 0.27 0.69 0.98 

Time to event 
(log rank) 

Recovery rate 
ratio 

1.32 (1.12, 1.55) <0.001 0.18 0.48 0.87 

Improvement rate 
ratio (1-point) 

1.29 (1.11, 1.49) <0.001 0.19 0.51 0.90 

Improvement rate 
ratio (2-point) 

1.28 (1.10, 1.50) 0.001 0.17 0.44 0.84 

Hazard ratio 
(death) 

0.70 (0.47, 1.04) 0.073 0.07 0.12 0.18 
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Figure 1. Ordinal outcome values by day of study from 100 simulated trajectories from the reference 
scenario.  The smooth lines represent the average trajectories, while the bent lines represent the observed 
scores for individual patients. 
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APPENDIX: 
 
 
Table S1. Selected Clinical Trials for Covid19 with outcomes and ordinal scales 

Study Primary outcome Ordinal scale Treatments Study Design Population 

LOTUS 
ChiCTR200002
9308 

Time to clinical 
improvement 

 
Clinical improvement 
defined as two points 
improvement on a 7-
category ordinal 
scale or discharge 
from the hospital, 
whichever came first. 

1) Not hospitalized with 
resumption of normal activities  
2) Not hospitalized, but unable to 
resume normal activities 
3) Hospitalized, not requiring 
supplemental oxygen 
4) Hospitalized, requiring 
supplemental oxygen  
5) Hospitalized, requiring nasal 
high-flow oxygen therapy, 
noninvasive mechanical 
ventilation, or both 
6) Hospitalized, requiring ECMO, 
invasive mechanical ventilation or 
both 
7) Death. 

1) Lopinavir/ritonavir 
2)  Standard of care 

Randomized, controlled, 
open-label trial.  
 
Randomization ratio: 1:1.  
 
Final:199 
99 Lopinavir-Ritonavir 
100 SOC 

Severe Covid-19 patients 
hospitalized adult patients 
with confirmed SARS-CoV-2 
infection, and Sao2 <94% 
while breathing ambient air 
or Pao2/Fio2 < 300 mm Hg. 

ACTT  
NCT04280705 

Time to recovery 
28 days from 

randomization 
 
Recovery defined as 
category 1, 2 or 3. 

1) Not hospitalized, no limitations 
on activities 
2) Not hospitalized, limitation on 
activities and/or requiring home 
oxygen  
3) Hospitalized, not requiring 
supplemental oxygen - no longer 
requires ongoing medical care 
4) Hospitalized, not requiring 
supplemental oxygen - requiring 

Stage 1:  
1) Remdesivir 
2) Placebo      

 
Stage 2: 
1) Remdesivir + 

baricitinib 
2) Remdesivir 

Adaptive randomized, 
double-blind, placebo-
controlled platform trial.  
 
Randomization ratio: 1:1 
 
Stage 1 sample size: 
 400 recoveries  
 
Stage 2 sample size: 
723 recoveries 

Hospitalized adults with 
COVID-19, mild, moderate, 
and severe patients 
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ongoing medical care (COVID-19 
related or otherwise) 
5) Hospitalized, requiring 
supplemental oxygen 
6) Hospitalized, on non-invasive 
ventilation or high flow oxygen 
devices 
7) Hospitalized, on invasive 
mechanical ventilation or ECMO 
8) Death 

Remdesivir in 
Adults with 
Severe COVID-
19 

NCT04257656  

Time to clinical 
improvement: 

 
Clinical improvement 
defined as two points 
improvement on a 6-
category ordinal 
scale or discharge 
from the hospital, 
whichever came first. 

1) hospital discharge; 
2) hospitalized, not requiring 
supplemental oxygen;  
3) hospitalized, requiring 
supplemental oxygen;  
4) Hospitalized, requiring nasal 
high-flow oxygen therapy, 
noninvasive mechanical 
ventilation, or both 
6) Hospitalized, requiring ECMO, 
invasive mechanical ventilation or 
both 
6) death;  

1) Remdesivir 
2) Placebo 
 

Randomized, double-
blind, placebo-controlled 
 
Randomization ratio: 2:1 
 
Planned sample size: 325 
clinical improvements 
 

Adults (≥18 years) with 
laboratory confirmed 
COVID-19 virus infection, 
and severe pneumonia signs 
or symptoms, and 
radiologically confirmed 
severe pneumonia (severe 
patients) 
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Randomized 
Evaluation of 
COVID-19 
Therapy 
(RECOVERY) 
ISRCTN 
50189673 

All-cause mortality at 
28 days after first 
randomization 

None First randomization:  
1) Lopinavir/ritonavir 
2) Low-dose 

Corticosteroid 
3) Hydroxychloroquine 
4) Azithromycin   
5) Standard of care 

              
 

Second randomization 
(in worsening patients): 
1) Tocilizumab 
2) Standard of care 
 

Adaptive, randomized, 
placebo-controlled, 
multicenter, multi-arm 
designed, open-label trial  
 
Planned sample size: 
unknown, depending on 
scale of pandemic 

Hospitalized adults with 
SARS-CoV-2 infection 
(clinically suspected or 
laboratory confirmed), 
mild, moderate, and severe 
patients 

Trial of 
Treatments 
for COVID-19 
in Hospitalized 
Adults 
(DisCoVeRy) 
NCT04315948 

Day 15 subject 
clinical status on 7-
point ordinal scale 

1) Not hospitalized, no 
limitations on activities 

2)  Not hospitalized, limitation 
on activities 

3) Hospitalized, not requiring 
supplemental oxygen 

4) Hospitalized, requiring 
supplemental oxygen 

5) Hospitalized, on non-invasive 
ventilation or high flow 
oxygen devices 

6)  Hospitalized, on invasive 
mechanical ventilation or 
ECMO 

7) Death. 

1) Remdesivir 
2) Lopinavir/ritonavir 
3) Lopinavir/ritonavir + 

Interferon ß-1a  
4) Hydroxychloroquine 
5) Standard of care 

Adaptive, randomized, 
open-label clinical trial 
 
Randomization ratio: 
participants 1:1:1:1:1  
 
Planned sample size: 
3100 participants 

Hospitalized adult patients 
with laboratory-confirmed 
SARS-CoV-2 infection as 
determined by PCR, in any 
specimen < 72 hours prior to 
randomization 
 
Clinical assessment of 
pneumonia (evidence of 
rales/crackles on exam) AND 
SpO2 ≤ 94% on room air 
OR acute respiratory failure 
requiring supplemental 
oxygen, high flow oxygen 
devices, non-invasive 
ventilation, and/or 
mechanical ventilation.  

Austrian 
CoronaVirus 
Adaptive 

Time to clinical 
improvement 
 

The 7-categories of the World 
Health Organization proposed 
scale, as 

 1) Hydroxychloroquine 
 2) Lopinavir/ritonavir 
 3) Standard of care  

A multicenter, 
randomized, open label, 
controlled platform trial 

Laboratory confirmed (i.e. 
PCR-based assay) infection 
with SARSCoV- 
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Clinical Trial 
(ACOVACT) 
NCT04351724 

 defined as time from 
randomization to a 
sustained 
improvement of at 
least one 
category on two 
consecutive days 
compared to the 
status at 
randomization 
measured on a 
seven-category 
ordinal scale 
(proposed 
by WHO). 

follows: 
1. Not hospitalized, no limitations 
on activities 
2. Not hospitalized, limitation on 
activities; 
3. Hospitalized, not requiring 
supplemental oxygen; 
4. Hospitalized, requiring 
supplemental oxygen; 
5. Hospitalized, on non-invasive 
ventilation or high flow oxygen 
devices; 
6. Hospitalized, on invasive 
mechanical ventilation or ECMO; 
7. Death. 

 4) Pooled plasma or 
IVIG from 
reconvalescent 
patients* 
 
*Treatment arm will 
only be opened when 
product and the 
respective 
necessary documents 
are available. 

 
Randomization ratio for 
anti-viral treatment arms 
1:1:1 
 
Planned sample size is 
500 participants 
 
The main study is for the 
comparison of anti-viral 
treatments 
 
Interim analysis after 50 
patients in a treatment 
arm 
 
ACOVAT includes further 
sub-studies with 
additional randomization 
on top of the anti-viral 
treatments 

2 (ideally but not necessarily 
≤72 hours before 
randomization 
for “antiviral” treatments) 
OR radiological signs of 
COVID-19 in chest 
X-ray or computed 
tomography 
• Hospitalization due to 
SARS-CoV-2 infection (for 
anti-viral treatment 
arms) 
• Requirement of oxygen 
support (due to oxygen 
saturation <94% on 
ambient air or >3% drop in 
case of chronic obstructive 
lung disease) 
OR radiological signs of 
COVID-19 
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Table S2. Statistical analysis strategies including advantages and disadvantages. 

Endpoint Possible statistical 
analysis strategy 

Advantages Disadvantages 

Binary analyses 
1. Proportion recovered/improved 

(by one or two categories on an 
ordinal scale) from baseline to 
specified time point like 2 weeks.   
 

χ2-Test, Boschloo’s test 
of proportions, logistic 
regression 

Accounts for baseline, clinically 
relevant, interpretation 

Fixed time, loss of power due to 
dichotomization and using a binary 
endpoint 

2.  Mortality by day 28 χ2-Test, Boschloo’s test 
of proportions, logistic 
regression 

Clinically meaningful, easy to 
interpret 

Requires large sample sizes when mortality 
rate low 

Ordinal scale analyses 
3. Ordinal outcome such as a 6-point 

scale at a fixed time point (e.g., 2 
weeks),  

Wilcoxon 
 

Captures multiple states Fixed time, no baseline, ties, scale 
categories should be objective and clinically 
meaningful, interpretation 

4. Change in ordinal scale from 
baseline to follow-up  

t-test or Wilcoxon Accounts (partly) for baseline Fixed time, edge effect (little room for 
improvement/worsening for those at 
tails/edges), ties, interpretation 

5.  Ordinal scale at a fixed time point 
(e.g., 2 weeks). 

Proportional odds 
model  

More robust (no normality 
assumption), score test is 
asymptotically like Wilcoxon test 

Fixed time,  
Assumption of constant treatment to 
control odds ratio for each 1 unit change in 
ordinal scale; efficiency 

6. Ordinal outcome at a fixed time 
point adjusted for baseline value  

 

Generalized 
proportional odds 
model, analysis of 
covariance (ANCOVA)  

Accounts for baseline, power, 
and is equivalent to the analysis of 
endpoint (4) when using Change in 
ordinal outcome from baseline to 
fixed time point with an ANCOVA 
adjusting for baseline as covariate 

Fixed time, edge effect  (little room for 
improvement/worsening for those at 
tails/edges), ties, interpretation 

7. Average of ordinal scale over daily 
(or at least frequent) 
measurements during follow-up. 

 

(potential analysis see 
4) 

Covers a predefined range of days, 
power 

Duration and severity are mixed (e.g., 1-day 
death equals 7 days healthy), clinical 
relevance? Diluted effect if treatment 
effect established later 
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8. Average of ordinal scale over daily 
(or at least frequent) 
measurements during follow-up 
minus baseline ordinal scale 
measurement. 

(potential analysis see 
4) 

covers a predefined range of days, 
power, accounts for baseline 

Duration and severity are mixed, clinical 
relevance? Diluted effect if treatment 
effect established later 

9. Average of ordinal scale over daily 
(or at least frequent) 
measurements during follow-up 
adjusted for baseline  

(potential analysis see 
6, ANCOVA) 

covers a predefined range of days, 
more power than 8, accounts for 
baseline 

Duration and severity are mixed, clinical 
relevance, interpretation, Diluted effect if 
treatment effect established later 

10. Area under the curve of ordinal 
scale over frequent measurements. 

 

Endpoint similar to 7 
(potential analyses see 
3 or 7) 

covers a predefined range of days, 
area smaller if less time (similar 
problem for 7, 8, and 9) 

Clinical relevance, diluted effect if 
treatment effect established later 

Time-to-event analyses 
11. Time to a specified level of 

improvement  (e.g., time to 
recovery) 

Log-rank test (or Cox 
Regression) 
Deaths censored  
Max follow-up 

Captures time element 
Interpretation: rate of recovery and 
median days to recovery  

Does not consider starting point and 
individual courses to improvement 
(For  unstratified log-rank test)  

12.  Time to a specific magnitude of 
improvement  (e.g., 2-point 
improvement in ordinal scale) 

Log-rank test (or Cox 
Regression) 
Deaths censored  
Max folllowup 

Captures time element 
Interpretation: rate of 2-point 
improvement, median days to 2-point 
improvement 

Improvements are considered equally 
regardless of starting point (e.g., from 6 to 
4 considered equal to 3 to 1) 
(For Cox proportional hazard assumption) 

13.   Time to recovery and time to 
death  

Standard Kaplan-Meier 
& Cox for death.   Fine-
Gray  
models for recovery 

Provides treatment effects on two 
different aspects 

Unclear how to combine the treatment 
effects in a single analysis.   

Continuous data analyses 
14.  Difference in days of  oxygen 

use/intubation/etc 
t-test, Wilcoxon Possible statistical efficiency May not correlate with eventual outcome  

15.   Difference in viral loads  t-test, Wilcoxon Possible statistical efficiency May not correlate with eventual outcome  
16.  Various biomarkers t-test, Wilcoxon Possible statistical efficiency May not correlate with eventual outcome  
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Table S3. Demonstration of difference in statistical methods applied to reported study data from the 
LOTUS lopinavir/ritonavir study  

  Based on observed data (n=199) Hypothetical example 
 each observation included twice 

(n=398) ┼ 

Proportional odds model  

Day 7 odds ratio  1.206 (95% CI: 0.710, 2.054) 
p=0.488 

 
p=0.327 

Day 14 odds ratio 1.376(95% CI: -0.835, 2.274 ) 
p=0.212 

 
p=0.077 

Day 21 odds ratio 1.196 (95%CI: 0.676, 2.124) 
p=0.539 

 
p=0.386 

Day 28 odds ratio 1.370 (95%CI: -0.740, 2.563) 
p=0.319 

 
p=0.159 

Average score (t-test) 

 Mean difference -0.1678 (95%CI: -0.575;0.240) 
p=0.418 

 
p=0.250 

Average score change from baseline (t-test) 

Mean difference, 
change from baseline 

-0.247 (95%CI: -0.628,0.134) 
p=0.202 

 
p=0.070 

Time-to-recovery (log rank test) 

 Recovery rate ratio 1.248 (95%CI: 0.899,1.732) 
p=0.187 

 
p=0.061 

Time-to-improvement (log rank test) 

 Beneficial ratio 1.307 (95%CI: 0.946;1.807) 
p=0.105 

 
p=0.022 

Mortality (Fisher’s exact test) 

Odds ratio 0.786 (95%CI:0.372, 1.644) 
p=0.602 

 
p=0.390 
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Details of simulation  

Ordinal trajectories for each subject were generated according to a linear random effects model with 

time index log of the day since randomization  Informally, subject i drew a random curve  of ‘destiny’ 

and foreach day of follow-up, the integer part of the line at that day was given as ordinal score.  Except 

for the lagged effect scenario, the model is given by 

Y id =  B0 + B1 log(d) +  B2 Z log(d)+  b0i + b1i *log(d) +  W e id                                              (1) 

with b0i distributed N(0,1.52)  and b1i distributed   I x N(-4,.32)   +  (1-I) N(7,s 2)  with I distributed 

Bernoulli(p=0.10) for placebo and Bernoulli(p=0.05)~Be(.05) for treatment, e id distributed N(0,.252), and 

Z the indicator of the treatment group.   Note that there is a treatment effect both on the speed of 

recovery (as B2 <0) and mortality as I has a different Bernoulli probability for the two groups.    

For the lagged effect scenario, the day 1 treatment effect begins at day 8:  

Y id =  B0 + B1 log(d)+  B2 Z I(d>7)*log(d-7) + b0i + b1i *Z*I (d>7) log(d-7) +  W e id           (2) 

With settings for the random variables as described for equation (1). Table S4 provides the parameter 

values used for the different scenarios.  

 

Table S4:  Table of parameters used for the various model.  The feature that is changed relative to the 
reference case is bolded.   All scenarios use equation (1) except for the lagged effect which uses 
equation (2) 

Scenario B0  B1 B2 s W 
Reference  0 -.05 -.10 .15 0 
Lagged Effect* 0 -.05 -.10 .15 0 
Faster Recovery 0 -.10 -.10 .15 0 
Faster Mortality  0 -.05 -.10 .30 0 
Only Mortality benefit  0 -.05 0 .15 0 
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Details of simulation enforcing proportional odds assumption at each time point 
 
Random multinomial data were generated corresponding to baseline ordinal scores. Then a trajectory of 

ordinal scores was applied as method 1 above, except that the trajectories were generated with the 

same distribution for treatment and control arms.  Treatment-arm proportions at observation days were 

then re-scaled to satisfy a proportional odds assumption with according to a common odds ratio for 

specific treatment effects each day (as specified in table S5). Additional simulation studies (not shown) 

demonstrated that blinded (pooled) pilot studies are not very informative for guiding the determination 

of the optimal time.  Blinded (pooled) data provide information about the overall proportions in each 

category, but simple rules such as selecting the time where there are a certain proportion of good 

outcomes or when the distribution is the most variable do not seem to improve identification of the 

optimal time for evaluation.  Note the one peculiarity of how these models are set up. 

 

Table S5. Simulated power for different tests under different scenarios. 

 True common odds ratio by day Empirical Power/Rejection Rates 
 

Days 
1-10 

Days 
11-13 

Day 
14 

Day 
21 

Day 
28 

Proportional 
odds at day 

14 

Proportional 
odds at day 

28 

Log-rank 
(time to 

recovery) 

Average 
score  

Scenario A 1 1 1 1.5 1.75 0.052 0.879 0.395 0.271 
Scenario B 1 1 1.25 1.5 1.75 0.244 0.884 0.442 0.384 
Scenario C 1 1.1 1.15 1.25 1.75 0.126 0.884 0.418 0.254 
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Figure S1. Stacked bar plots for ordinal scores and Kaplan-Meier curves for time-to-recovery for three 
scenarios for simulation method 2. 

 

 


