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Abstract
Identifying unusual or anomalous patterns in an underly-
ing dataset is an important but challenging task in many
applications. The focus of the unsupervised anomaly detec-
tion literature has mostly been on vectorised data. How-
ever, many applications are more naturally described us-
ing higher-order tensor representations. Approaches that
vectorise tensorial data can destroy the structural informa-
tion encoded in the high-dimensional space, and lead to the
problem of the curse of dimensionality. In this paper we
present the first unsupervised tensorial anomaly detection
method, along with a randomised version of our method.
Our anomaly detection method, the One-class Support Ten-
sor Machine (1STM), is a generalisation of conventional
one-class Support Vector Machines to higher-order spaces.
1STM preserves the multiway structure of tensor data, while
achieving significant improvement in accuracy and efficiency
over conventional vectorised methods. We then leverage the
theory of nonlinear random projections to propose the Ran-
domised 1STM (R1STM). Our empirical analysis on several
real and synthetic datasets shows that our R1STM algorithm
delivers comparable or better accuracy to a state-of-the-art
deep learning method and traditional kernelised approaches
for anomaly detection, while being approximately 100 times
faster in training and testing.

1 Introduction

Unsupervised anomaly detection plays a significant role
in a wide variety of applications in terms of identifying
unusual patterns in the underlying data. Relevant ap-
plications include areas as diverse as intrusion detection,
fault diagnosis, health monitoring and event detection
in sensor networks. Most anomaly detection techniques,
such as One-class Support Vector Machines (1SVMs)
[17], assume that data are encoded in first-order (vec-
tor) or second-order (matrix) tensor spaces. However, in
many real-world applications data are represented more
naturally as higher-order tensors. For example, sensor
data are often organised into the three modes of loca-
tion, type, and time, while videos are represented as 3D
objects corresponding to concatenated frames over time.
In this paper, we address the problem of unsupervised
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anomaly detection for higher-order tensor representa-
tion that retain the intrinsic structure of the data.

Multiway tensors are natural generalisations of vec-
tors (and matrices) and have been a growing topic
of research. In particular, tensorial representations of
data retain the underlying structural information of the
high-dimensional space from which the data was drawn.
In contrast, conventional anomaly detection techniques
need to vectorise (or flatten) the different dimensions
and reshape the data as high dimensional vectors. This
can raise the problem of the curse of dimensionality
for such techniques, and also results in overfitting when
the number of training samples is small [4]. More-
over, tensor representations can preserve higher-order
correlations among the modes of the data. Exploiting
the original tensor data representations can result in
more accurate and interpretable results [8]. Converting
higher-order tensors into vectors can destroy such im-
portant structural information. For example, in a video
object the multiway tensor data structure retains the
relationship between the modes corresponding to the
horizontal and vertical dimensions of video frame, as
well as time. A higher-order anomaly detection method
can then identify anomalous video objects w.r.t. these
three modes. In purely vector-based anomaly detectors,
each frame is represented as an independent vector, los-
ing the notion of time (i.e., the frame order). If each
frame is analysed independently of other frames, low
levels of noise can cause a frame to be misclassified as
an anomaly. Hence, it is highly desirable to retain the
multiway data structure, and devise an anomaly detec-
tion algorithm that can be applied to the original tensor
representation rather than vectorised records. The ma-
jor challenge in tensor learning is to generate a model
that retains the structure of the data.

Over the last decade several solutions have been
proposed to extend support vector machines to tensor
space, i.e., so-called Support Tensor Machines (STMs)
that take a tensor as input. Earlier works on STMs
[3, 21] focused on extending classical linear SVMs [4, 18]
to higher-order tensors. In addition to imposing the as-
sumption of linearly separable data, they used an iter-
ative solution that reduces to a non-convex optimisa-
tion problem. These shortcomings were addressed by
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Signoretto et al. [19], who introduced a kernel-based
framework that unfolds the tensor data and exploits the
(unfolded) matrices to construct nonlinear kernels. Al-
though enabling nonlinear data modelling, the unfolding
stage destroys the inter-mode relationship of the multi-
way data. Recently, He et al. [8] proposed a structure-
preserving kernel for nonlinear tensor learning, incorpo-
rating a tensor factorisation and a structure-preserving
feature mapping to derive the kernel. To this end re-
search on tensor learning has focused on supervised ap-
proaches, and to our knowledge, no research has been
undertaken into unsupervised tensor learning.

The main objective of this work is to design an
efficient unsupervised anomaly detection scheme for
higher-order tensors that preserves the multiway struc-
ture of the data. Our contribution is two-fold. First,
we introduce a One-class STM (1STM) for unsuper-
vised anomaly detection that builds on ideas from [8]
for incorporating tensor factorisation to leverage the
tensorial representation, and nonlinear kernels. Mul-
tiway datasets are first factorised using the CAN-
DECOMP/PARAFAC (CP) [10] method, and then
mapped to a tensorial feature space to generate a
structure-preserving higher order kernel. Our main
contribution is a randomised 1STM (R1STM), a novel
structure-preserving kernel machine using randomised
nonlinear features and a linear classifier to derive a
highly scalable algorithm for tensorial anomaly detec-
tion. Our extensive experiments on several benchmark
and synthetic datasets show that our proposed approach
substantially improves the accuracy and efficiency of
anomaly detection, while maintaining the natural rep-
resentation of the data. We show that this improvement
is due to the combination of a tensorial representation
with data randomisation, making it possible to conduct
anomaly detection on large-scale data-intensive applica-
tions.

2 Related Work

The two closest relevant lines of research to our own
work are tensor learning and kernel randomisation,
which we briefly review in this section. Table 1 com-
pares our work with the most relevant kernel machines.

Tensor learning: To extend SVMs to accept
tensorial data input, several studies have focused on re-
forming the data representation, e.g., through subspace
learning or tensor factorisation. Tao et al. [20] devel-
oped supervised tensor learning, a general framework
that extends vector-based learning algorithms for use
with tensor objects, by applying a combination of con-
vex optimisation and multilinear operators. Later in
[21], Tao et al. applied their framework to various clas-
sical SVM algorithms such as C−SVM [4] and ν−SVM

Table 1: Comparison of existing kernel machines with 1STM

and R1STM.

Technique Tensorial Nonlinear Unsupervised Randomised

H1SVM [17] N Y Y N
Tao et al. [21] Y N N N
Signoretto et al. [19] Y Y N N
He et al. [8] Y Y N N
R1SVM [5] N Y Y Y
1STM Y Y Y N
R1STM Y Y Y Y

[18]. In a similar fashion, Cai et al. [3], and Wang
and Chen [23] presented a support tensor machine for
second-order tensors. Liu et al. [11] introduced a lo-
cally maximum margin technique for image and video
classification. The key problem with [21, 3, 23, 11] is
that they involve an iterative optimisation procedure,
raising the problem of non-convex optimisation. Hao et
al. [7] overcome this issue by reformulating the linear
C−SVM model and obtained a tensor space model.

Note that all the above STMs are restricted to linear
classifiers in tensor space. Most recently, [19, 8] have
extended the concept of supervised tensor learning into
tensor factorisations, to merge the desirable properties
of kernel methods and tensor factorisations, for tensorial
data that exists on a nonlinear manifold. A common
approach to exploit the tensor structure with nonlinear
kernel models is to use unfolded matrices to construct
nonlinear kernels [19]. However, such methods only
capture the relationships within each single mode of the
tensor data, because the structural information about
inter-mode relationships of tensor data is lost in the
unfolding process. To avoid this, He et al. [8] proposed
a tensor kernel that preserves tensor structures based on
a dual-tensorial mapping, i.e., by mapping each tensor
sample from the input space to a higher-order tensor
feature space while preserving the structure.

Kernel randomisation: While numerous 1SVM
formulations using nonlinear kernels have been proposed
in the literature, a common feature of many formula-
tions is the solution of a quadratic programming (QP)
problem. In particular, these kernel-based methods rely
on the computation of a kernel matrix over all pairs
of data points, which limits the scalability of training
1SVMs on large datasets. This can also limit the effec-
tiveness of 1SVMs on high dimensional inputs, given the
need to have sufficiently large training samples spanning
the variation in the high dimensional space.

Existing approaches to address the scalability prob-
lems of SVMs either preprocess the data prior to build-
ing the SVM, e.g., using dimensionality reduction tech-
niques such as PCA or Kernel-PCA, or alleviate the QP
problem of kernel machines, e.g., by breaking the prob-
lem into smaller pieces, for example by using chunking



[22], or sequential minimal optimisation [14]. A more re-
cent trend explores the use of randomisation, such as lin-
ear random projection [2] as a substitute for the compu-
tationally expensive cost of kernel matrix construction.
An early example is the work of Achlioptas et al. [1],
which replaces the kernel function by a randomised ker-
nel to speed-up KPCA. The work of Rahimi and Recht
[15, 16] made a breakthrough in this approach. They
replicated an RBF kernel by randomly projecting the
data to a lower dimensional space and then used linear
algorithms. Random projection avoids the complexity
of traditional optimisation methods needed for nonlin-
ear kernels. Recently randomisation has been applied
to other kernel machines, such as dot-product kernels
[9], polynomial kernels [6], and 1SVM [5].

Inspired by the idea of [8] and [15], in Section 4 we
propose a model for using randomised projection in the
context of unsupervised tensor learning, and propose a
randomised tensorial kernel.

3 Preliminaries

3.1 Notation Throughout this paper vectors are de-
noted by bold, italic lower-case letters, e.g., x, matrices
by bold, upright capital letters, e.g., X, and tensors by
calligraphic letters, e.g., X . Their elements are denoted
by indices ranging from 1 to the capital letter of the
index, e.g., n = 1, . . . N . X ∈ RI1×,...,×IN means X is
a real N th-order tensor. R denotes the rank of tensor.
‖.‖F denotes the Frobenius norm.

3.2 Tensor Algebra

Definition 3.1. (Tensor) An N th−order tensor
X ∈ RI1×...×IN is a multi dimensional array of real
numbers. An elment of X is denoted by xi1,...,iN , where
1 6 in 6 In, and 1 6 n 6 N .

Definition 3.2. (Tensor Product) The tensor
product, also known as outer product, of two tensors
X ∈ RI1×...×IN and Y ∈ RI′1×...×I′M is defined by

(3.1)

(X ⊗ Y)i1,...,iN ,i′1,...,i′M = xi1,...,iN yi
′
1, . . . , i

′
M

for all values of the indices.

Definition 3.3. (Inner Product) The inner prod-
uct, also known as scaler product, of two same size ten-
sors X ,Y ∈ RI1×...×IN is defined as the sum of the prod-
ucts of their entries:

〈X ,Y〉 =

I1∑
i1=1

. . .

IN∑
iN=1

xi1,...,iN yi1,...,iN .(3.2)

Definition 3.4. (Frobenius Norm) The Frobenius
norm of a tensor X ∈ RI1×...×IN computes the square
root of the sum of the squares of all its elements,

(3.3)

‖X‖F =
√
〈X ,X〉 =

√√√√ I1∑
i1=1

. . .

IN∑
iN=1

x2i1,...,iN .

Definition 3.5. (Rank-1 Tensor) An N th−order
tensor X has rank one if it is the tensor product of N
vectors ui ∈ RIi , where 1 6 i 6 N ,

X = u1 ⊗ . . .⊗ uN =

N∏
n=1

⊗un.(3.4)

The rank R of an N th−order tensor X is determined
by the minimum number of rank-1 tensors that produce
X in a linear combination.

Definition 3.6. (CP Factorisation) Given a ten-
sor X ∈ RI1×...×IN , it can be factorised if it can be
decomposed as rank-one tensors with length R,

X =

R∑
r=1

x(1)
r ⊗ . . .⊗ x(N)

r .(3.5)

3.3 One-class SVM (1SVM) Let X = {xi :
i = 1, . . . ,M} be a set of training samples and yi ∈
{−1, 1} be their corresponding labels. In practice,
X is mapped from the input space Rn to a feature
space RH via a nonlinear function φ(.) : R → RH ,
resulting in a set of image vectors Xφ = {φ(xi) :
i = 1, . . . ,M}. A hyperplane-based 1SVM (H1SVM)
[17] aims to identify anomalies in the feature space by
finding the hyperplane that best separates the data from
the origin. The decision function of H1SVM returns
+1 in a region where most of the data points occur
(i.e., where the probability density is high), and returns
−1 elsewhere. This problem can be formulated as the
following quadratic optimisation function:

min
w, ξ, ρ

1
2‖w‖2 + 1

Mν

M∑
i=1

ξi − ρ(3.6)

s.t. (w.φ(xi)) ≥ ρ− ξi,
ξi ≥ 0, ∀ i = 1, . . . ,M.

where ν ∈ (0, 1] is a regularisation parameter that
controls the fraction of anomalies and the fraction of
support vectors, and ξi are the slack variables that
allow some of the data vectors to lie on the wrong
side of the hyperplane. Since non-zero slack variables
ξi are penalised in the objective function, the H1SVM



estimates a decision function f(x) = sgn(w.φ(x) − ρ)
that maximises the distance of all the data points (in
the feature space) from the hyperplane to the origin,
parameterised by a weight vector w and an offset ρ.

By introducing the Lagrange multipliers and setting
the primal variables w, ξ and ρ equal to zero, the
quadratic program can be derived as the dual of the
primal program in Eq. (3.6):

min
α

1
2

∑
ij αiαjk(xi,xj)(3.7)

s.t. 0 ≤ αi ≤ 1
Mν ,

∑
i αi = 1,

where αi are the Lagrange multipliers. The decision
function is defined as:

f(x) = sgn(w.φ(x)− ρ),(3.8)

= sgn

(
M∑
i=1

αik(xi,x)− ρ
)
.

4 Our Approach

In this section we first introduce the 1STM and then
describe our randomised tensorial kernel.

4.1 One-class Support Tensor Machine (1STM)
Let {Xi, yi} be a pair corresponding to a training sample
for binary classification, where Xi ∈ RI1×,...,×IN is an
N th-order tensor and yi ∈ {−1, 1} is the corresponding
label for i = 1, . . . ,M . In [8] it was shown that the
tensor binary classification problem can be modeled
as a convex quadratic optimization problem in the
framework of the standard nonlinear SVM. Based on
this finding and the H1SVM, we present a framework
for a one-class STM.

The optimization problem of binary tensor classifi-
cation can be formulated as follows:

min
W,b,ξ

1
2‖W‖2F + C

M∑
i=1

ξi,(4.9)

s.t. yi(〈W, φ(Xi)〉+ b) ≥ 1− ξi,
ξi ≥ 0,∀i = 1, . . . ,M,

where W is the weight tensor of the separating hyper-
plane, C is a regularisation parameter that balances
the trade-off between the classification margin and
misclassification error, and b is the bias. Let φ be a
feature mapping that maps a dataset into the Hilbert
space H, given a tensor X ∈ RI1×,...,IN then

φ : X → φ(X ) ∈ RH1×...×Hq .(4.10)

The optimisation problem in Eq. (4.9) is a gener-
alisation of the standard nonlinear SVM. The mapping

function projects each mode of X to a higher dimension
called the high-dimensional tensor space. To perform
anomaly detection one needs to find the hyperplane that
best separates the data from the origin. In other words,
the decision function in the 1STM returns +1 in the re-
gion where most of the data points occur, and returns
-1 elsewhere. To separate the data set from the origin,
we solve the following quadratic program:

min
W,ξ,ρ

1
2‖W‖2F + 1

Mν

M∑
i=1

ξi − ρ(4.11)

s.t. (〈W, φ(Xi)〉) ≥ ρ− ξi,
ξi ≥ 0,∀i = 1, . . . ,M.

By introducing the Lagrange multipliers, we arrive at
the following quadratic problem, which is the dual of
the primal problem in Eq. (4.11):

min
α1,...,αM

1
2

M∑
i,j=1

αiαjk(Xi,Xj),(4.12)

s.t. 0 ≤ αi ≤ 1
Mν ,

M∑
i=1

αi = 1.

Further, W =
∑
i αiφ(Xi). Using the Karush-Kuhn-

Tucker optimality conditions (KKT conditions), tensor
data can be characterised in terms of whether they fall
below, above, or on the hyperplane boundary in the
feature space depending on the corresponding αi values.
Tensor data with positive αi values are the support
tensors. Further, for 0 < αi < 1/Mν, the tensor data
fall on the hyperplane and hence ρ can be recovered
using these tensors, given that ρ = 〈W,φ(Xi)〉 =∑
j αjk(Xj ,Xi). Therefore, the tensor-based decision

function can be written as

f(X ) = sgn

(
M∑
i=1

αik(X ,Xi)− ρ
)
.(4.13)

The solution to the quadratic program in Eq. (4.13)
is characterised by the parameter ν, which sets an upper
bound on the fraction of anomalies (training examples
regarded as out-of-class) and a lower bound on the
number of training examples used as support vectors.

Like other kernel machines, learning with the 1STM
degenerates into computing the kernel function. A ten-
sor dataset retains the essential information embedded
in its multiway structure, therefore an important as-
pect of kernel learning for such complex objects is to
represent them by sets of key structural features and
design kernels on such sets. CP factorisation extracts
a structure-preserving kernel in the tensor product fea-
ture space. In this way, each tensor object is represented



as a sum of rank-one tensors in the original space, and
is then mapped to the tensor product feature space for
tensor kernel learning [8].

Let X =
∑R
r=1

∏N
n=1⊗X(n)

r be the CP factorisa-
tion of X ∈ RI1×...×IN . When a tensor’s rank R = 1,
the feature space tensor mapping is defined as

φ : X (n) → φ(X (n)) ∈ RH1×...×HN ,(4.14)

and the kernel for two same-sized tensors X and Y is
reduced to

k(X ,Y) =

N∏
n=1

k(x(n),y(n)).(4.15)

In the case of higher-order tensors the kernel can
be derived in a similar fashion. Given that the tensor
feature space is a high-dimensional space of the original
space, the same operations are applicable. Hence, tensor
data can be factorised in the feature space, similar to
the original space. Then the mapping is derived as:

φ :

R∑
r=1

N∏
n=1

⊗X (n) →
R∑
r=1

N∏
n=1

⊗φ(X (n)).(4.16)

This corresponds to mapping tensor data into a
higher dimensional tensorial feature space and perform-
ing the factorisation in this space. Then the kernel in
the higher space is just the standard inner product of
the tensor data [8],

k

(
R∑
r=1

N∏
n=1

⊗x(n)
r ,

R∑
r=1

N∏
n=1

⊗y(n)
r

)
(4.17)

=

R∑
i=1

R∑
j=1

N∏
n=1

k
(
x
(n)
i ,y

(n)
j

)
.

Using popular kernels such as the Gaussian RBF
kernel, the above equation can be formulated as:

(4.18)

k (X ,Y) =

R∑
i=1

R∑
j=1

exp

(
−σ

N∑
n=1

‖x(n)
i ,y

(n)
j ‖2

)
.

However, the computational complexity of 1STM
grows quadratically with the number of training sam-
ples. A linear kernel imposes linear computational com-
plexity, but it introduces a bias to the origin. This prob-
lem can be removed by using an RBF kernel, which has
a higher computational complexity associated with the
higher dimensional kernels, thus making it cumbersome
for processing large scale datasets.

In order to overcome this limitation, in the next
subsection, we propose to exploit nonlinear random
projections inside a linear 1STM, which serves as a good
approximation of a nonlinear kernel.
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Figure 1: Random tensorial kernel.

4.2 Randomised 1STM (R1STM) We propose
R1STM, a nonlinear randomised variant of our 1STM,
which applies the original linear 1STM method on a
randomised nonlinear projection of the tensor data. We
first discuss how to generate the nonlinear random fea-
tures from the original data, and then we show how
to employ these features to detect anomalies using a
linear machine. This approach eliminates the need to
deal with large kernel matrices for large datasets, con-
sequently reducing the computational complexity while
achieving comparable detection accuracy to conven-
tional nonlinear machines.

4.2.1 Generating Nonlinear Random Features
Consider the problem of fitting a function f to the data
set {Xi, yi}, where yi values are always set to 1 for
the one-class problem. This fitting problem consists of
finding f that minimises the following empirical risk

(4.19) Rreg[f(X )] = Remp[f(X )] +
1

2
‖f(X )‖2H

where Remp(.) is the empirical risk and 1
2‖f(X )‖2H is

the regulariser. The empirical risk is the average loss
and can be written as

(4.20) Remp[(X )] ≡ 1

M

M∑
i=1

l(f(Xi), yi),

where l(f(Xi), yi) is the loss function that penalises the
deviation between the prediction f(.) and the label y,
i.e., this captures the cost of the errors caused when f(.)
is negative on the training samples.

For the 1STM problem, the loss function l(y, y′) is
of the form l(y, y′) = max(0, 1− yy′). Using the kernel
function, the function f(X ) = sgn(〈W,φ(X )〉 − ρ) be-

comes f(X ) =
∑M
i=1 αik(X ,Xi). By jointly optimising

over W and αi in a greedy manner, the solution can
be found. However, this is computationally intensive.
It was proven in [16] that the nonlinear optimisation
problem over (α,w1, . . . ,wM ) for matrix (and vector)
spaces, can be solved by randomly sampling thewi ∈ Rd
from a data-independent distribution p(w) and creat-
ing d-dimensional random features z(X) = [z1 · · · zd],



where zi = [cos(wT
i x1 + bi), . . . , cos(wT

i xM + bi)] and
ej = [cos(wT

j y1 + bj), . . . , cos(wT
j yM + bj)] are Fourier

based random features.
In order to take advantage of this randomisation

in our tensorial kernel, we use CP factorisation and
randomise the rank-one tensors, as shown in Figure 1.
Therefore, Eq. (4.17) is simplified to

k

(
R∑
r=1

N∏
n=1

⊗x(n)
r ,

R∑
r=1

N∏
n=1

⊗y(n)
r

)
(4.21)

=

R∑
i=1

R∑
j=1

N∏
n=1

(z
(n)
i )Te

(n)
j .

Then, we arrive at the following simplified optimisation
problem:

min
α1∈Rd

1
M

∑
i l(α

Tzi, yi)(4.22)

s.t. ‖α‖∞ 6 B

where B is a regularisation constant. Furthermore, it is
shown by [16] that using randomly selected features in
nonlinear spaces causes only bounded error compared to
using optimised features:

Theorem 4.1. Let p be a distribu-
tion on Ω and |φ(x;w)| 6 1. Let
F =

{
f(x) =

∫
δ
α(w)φ(x;w)dw : |α(w)| 6 Bp(w)

}
.

Draw w1, · · · ,wd iid from p. Further let λ > 0, and
l be some L-Lipschitz loss function, then the function
f∗(x) =

∑d
i=1 αiφ(x;wi) minimises the empirical risk

l(f∗(x), y) has a distance from the l-optimal estimator
in F bounded by:

Ep[l(f
∗(x), y)]−min

f∈F
Ep[l(f(x), y)](4.23)

6 O

((
LB√
M

+
1√
d
LB

)√
log

1

δ

)

with a probability of at least 1− 2δ.

The convergence rate of our randomised R1STM to
its original kernel 1STM version can be expressed by the
following theorem [12]:

Theorem 4.2. Given the data X ∈ RM×d, a shift
invariant kernel k, a kernel matrix Kij = k(xi,xj) and

its approximation K̂ using d random features, it can be
proven that

(4.24) E‖K̂ −K‖ 6
√

3M2 logM

d
+

2M logM

d
.

The proof to this theorem can be found in [12].
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Figure 2: Illustration of third-order CASIAA and Banana
datasets.

5 Empirical Analysis

In this section, we evaluate the performance of our
1STM and R1STM techniques with experiments on
eight real dataset and two synthetic datasets. The aim
of these experiments is to compare the performance of
the proposed techniques in terms of accuracy and effi-
ciency with conventional anomaly detection approaches.

Datasets: The experiments are conducted on
four sensor measurement datasets1 that are formed
into third-order tensors (i.e., features×samples×time):
(i) Daily and Sport Activity (DSA), (ii) Gas Sen-
sor Arrays in Open Sampling Settings (GSAOS)2,
(iii) PAMAP2 Physical Activity Monitoring Dataset
(PAMAP2), and (iv) University of Southern Califor-
nia Human Activity Dataset (UHAD); and four gait
datasets (v) University of South Florida Gait (USFG)
including 3 gait recognition datasets with 32, 64 and 128
number of features, and (vi) dataset A from CASIA gait
recognition3 (CASIAA). We also use a synthetic dataset
known as (vii) Banana dataset, which is a mixture of two
banana shaped distributions. The components of these
two datasets are randomly moved in any two modes.
Table 2 summarises more details about these datasets,
and Figure 2 shows two examples of tensorial represen-
tations of the CASIAA and Banana datasets.

Baseline methods: To evaluate the performance
and efficiency of 1STM and R1STM, we compare them
with the following unsupervised baseline methods:

(i) H1SVM [17]: a hyperplaned based 1SVM with
RBF kernel, one of the most prevalent anomaly detec-
tion techniques.

(ii) R1SVM (Randomised 1SVM) [5]: our work on
1SVMs with randomised kernels, replacing nonlinear
kernels with random features and a linear classifier.

(iii) DRDAE (Deep Recurrent Denoising Autoen-
coder) [13]: a recurrent implementation of a state-of-
the-art deep learning technique known as a Denoising
Autoencoder. Since all of the datasets are time series,
it is interesting to compare our approaches with an ef-

1Datasets i–iii are from the UCI repository, and dataset iv is

from http://sipi.usc.edu/HAD/.
2The original GSAOS dataset contains about 2 million fea-

tures, but in this study only the first 13800 features were used.
3http://www.cbsr.ia.ac.cn/users/szheng/?page id=71



Table 2: Details of datasets.

Dataset Banana DSA GSAOS PAMAP2 UHAD USFG32 USFG64 USFG3128 CASIAA
Features 80×80× 20 125× 45× 60 150× 92× 50 52× 100× 50 6× 600× 5 32× 22× 10 64× 44× 20 128× 88× 20 240× 352× 15
Objects 500 152 360 344 168 731 731 731 1162

Table 3: Comparison of AUC, training and test time (in seconds) of 1STM and R1STM with conventional anomaly detection

techniques.

H1SVM DRDAE R1SVM 1STM R1STM

Dataset AUC Train Test AUC Train Test AUC Train Test AUC Train Test AUC Train Test

Banana 0.78 4.77×105 6.65×103 0.98 7.69×102 96.48 0.98 3.21 1.16 0.93 12.43 4.35 0.98 2.11 0.91
DSA 0.84 8.04×103 6.73×102 0.98 6.15×102 8.12 0.98 0.56 0.06 0.98 0.27 0.13 0.99 0.09 0.04
GSAOS 0.83 1.70×103 6.01×102 0.98 3.49×102 10.09 0.99 0.21 0.03 0.96 0.45 0.22 0.99 0.05 0.02
PAMAP2 0.90 2.07×105 6.23×103 0.96 4.87×102 52.02 0.96 1.38 0.29 0.97 2.72 1.43 0.98 0.51 0.24
UHAD 0.85 2.97×104 1.56×103 0.96 2.05×102 21.19 0.96 0.10 0.02 0.95 0.41 0.20 0.99 0.14 0.07
USFG32 0.86 2.23×105 4.33×103 0.97 4.83×102 61.00 0.96 1.62 0.68 0.93 7.32 2.92 0.99 1.36 0.58
USFG64 0.87 2.94×105 4.86×103 0.97 5.08×102 69.41 0.97 1.69 0.74 0.94 8.01 3.46 0.99 1.52 0.71
USFG128 0.88 4.18×105 5.37×103 0.97 5.63×102 87.32 0.97 1.83 0.85 0.96 8.12 3.94 0.99 1.71 0.80
CASIAA 0.81 5.32×105 7.75×103 0.98 1.21×103 1.35 ×102 0.96 6.06 2.16 0.95 18.21 5.14 0.98 3.01 1.12

Average 0.86 2.32×105 3.57×103 0.97 5.76×103 60.10 0.97 1.85 0.67 0.95 6.44 2.42 0.99 1.14 0.50

fective sequential data modeling technique, which com-
bines the multiple levels of representation.

Experimental setup: All the records in each
dataset are normalised between [0,1], and mixed with
5% anomalous objects, randomly drawn from U(0, 1).
All the hyper-parameters in our learning models, com-
prising the width ν (0 − 1) and gamma g (−4 − 4)
for H1SVM, the learning rate (0.001 − 0.1), number of
epochs (10− 200), and number of hidden units (h� n)
for the autoencoder, and the rank R (1−12) for CP fac-
torisation [7, 8], are selected through grid search based
on the best performance on a validation set. Note that
training is performed in an unsupervised way, and labels
are only used for testing.

Metrics: The Receiver Operating Characteristic
(ROC) curve and the corresponding Area Under the
Curve (AUC) are used to measure the accuracy of all
the methods. The reported training/testing times are
in seconds based on experiments run on a machine with
an Intel(R) Core(TM) i7 CPU at 3.60 GHz and 16 GB
RAM. For 1SVM based methods LIBSVM was used.

5.1 Performance Evaluation Table 3 shows the
performance results and their average over all the
datasets. The best case, i.e., the highest AUC and
lowest training/test time, for each dataset is stressed
through bold-face. The reported time only includes
the training and test time of the studied models, and
no preprocessing time, e.g., data vectorisation or fac-
torisation, has been included. Section 5.3 analyses the
preprocessing stage of 1STM and R1STM. For ease of
interpreting the reported results, Figure 3 graphically
demonstrates the average rankings of the three metrics,
AUC, training and test time, obtained from Friedman’s
test. As shown in this graph, R1STM delivers the best

Table 4: Wilcoxon test to compare the performance of the

studied methods regarding the p-values. W+ corresponds to the

sum of the ranks for the method on the left, and W− for the right.
The W values in bold indicate that the null hypothesis is rejected

for the corresponding method.

Accuracy Training Time Test Time

Method W+ W− p W+ W− p W+ W− p

R1STM vs. 1STM 45 0 0.0039 0 45 0.0039 0 45 0.0039
R1STM vs. R1SVM 28 1 0.0156 1 44 0.0078 5 40 0.0391
R1STM vs. DRDAE 28 0 0.0156 0 45 0.0039 0 45 0.0039
R1STM vs. 1SVM 45 0 0.0039 0 45 0.0039 0 45 0.0039
1STM vs. R1SVM 2.5 33.5 0.0391 43 2 0.0117 45 0 0.0039
1STM vs. DRDAE 2 26 0.0313 0 45 0.0039 0 45 0.0039
1STM vs. 1SVM 36 0 0.0078 0 45 0.0039 0 45 0.0039
R1SVM vs. DRDAE 1.5 4.5 0.7500 0 45 0.0039 0 45 0.0039
R1SVM vs. 1SVM 45 0 0.0039 0 45 0.0039 0 45 0.0039
DRDAE vs. 1SVM 45 0 0.0039 0 45 0.0039 0 45 0.0039

performance both in terms of accuracy and efficiency.
A statistical analysis is performed to explore the ef-

fect of tensor representation and randomisation on these
results, and also to assess the statistical significance of
the performance of the various methods. For this pur-
pose, we perform pairwise comparisons between differ-
ent methods using the Wilcoxon signed-rank test. The
test returns a p-value associated with each comparison,
representing the lowest level of significance of a hypoth-
esis that results in a rejection. This value allows one
to determine whether two algorithms have significantly
different performance and to what extent. For all the
comparisons in this study the significance level α is set
to 0.05. Table 4 summarises the output of this compar-
ison on all the performance results from Table 3.

Comparing 1STM with H1SVM, a significant boost
is obtained in both accuracy and efficiency revealing
the beneficial effect of the tensorial representation.
Similar results are achieved when using randomisation,
i.e., R1SVM vs. H1SVM, but the best result occurs
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Figure 3: Comparison of rankings of anomaly detection methods

for 3 metrics. The bars represent average rankings based on the
Friedman test, and the number on the top of the bars indicates

the ranking of the algorithm, from the best (1) to worst (5) for

each given measure, and if a tie occurs then the best mean result
is taken. The ranking is determined for all datasets and finally

an average is calculated as the mean of all rankings.

Percentage of shuffled objects
0 5 10 15 20 25 30

A
cc

u
ra

cy

0.75

0.8

0.85

0.9

0.95

1

Banana
UHAD
CASSIA
Banana
UHAD
CASSIA

Figure 4: Comparison of accuracy with respect to increasing
the percentage of shuffled objects. The solid and lines present the

results for 1STM and the dotted lines present for R1STM.

when using the tensorial representation in conjunction
with randomisation. The p−values in the comparison
of R1STM with 1STM and R1SVM, reject the null
hypothesis for the accuracy and efficiency measures with
a level of significance of α = 0.05, implying a significant
improvement of R1STM over the two other methods.

5.2 Effect of Tensorial Representation The main
objective of the tensor representation of data is to retain
the natural structure and correlation of the records. To
study this effect on 1STM and R1STM, we shuffled the
third order (sequence) of some of the test objects in the
Banana, UHAD and CASIAA datasets. As shown in
Figure 4, the accuracy of the tensor machines decreases
as the percentage of the shuffled objects increases.

That is, existing techniques have a fatal modelling
flaw in that they fail to capture the inherent sequential
nature of data and treat the inputs as bags of randomly
permutable items agnostic to any sequential structure.
This modelling property essentially suggests that the
test objects could be randomly shuffled and still result
in the same object. To overcome this limitation, a tensor
representation is proposed to faithfully represent the
spatio-temporal dependencies in the data.

5.3 Rank Sensitivity Evaluation The optimal
rank R of CP factorisation is conventionally found
through grid search, but it is important to determine
the sensitivity of this parameter in training 1STM and
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Figure 5: Comparison of accuracy with respect to increasing

number of CP ranks R.
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Figure 6: Comparison of accuracy with respect to increasing the

percentage of sample objects. The solid dotted lines present the

results for USF128 and CASIAA dataset, respectively.

R1STM. Deliberate adjustment of R is important since
it plays a significant role in the performance of the al-
gorithms. Moreover, a higher value of R indicates a
higher number of items, and correspondingly a higher
training/test time of the model. Figure 5 shows the re-
sults of our experiments conducted on all the datasets
to measure the sensitivity of 1STM to R. As can be
seen in this figure, the optimal value of R for 1STM is
quite data dependent, it varies from one to the other.
In this experiment, the range of R ∈ [1, 12] were con-
sidered, but since no improvement was observed for val-
ues larger than 8, only the results from the range of
R ∈ [1, 8] were reported. In the range of R ∈ [1, 2],
R1STM delivers the AUC values presented in Table 3.
For higher values of R, the AUC value slightly fluctuates
(about 1%), hence no figure was included for R1STM.
Table 5 compares the factorisation time of 1STM and
R1STM. From this experiment it can be concluded that
although CP factorisation adds an extra parameter to
the list of grid-search, the optimal value of R lies in a
narrow range, especially in the case of R1STM.

5.4 Scalability Evaluation A desirable property of
an anomaly detection method, in addition to accu-
racy, is its efficiency and scalability. The computa-
tional and memory complexity of 1STM and R1STM
are O(DM2R2) and O(dMR), respectively, where D =∏N
n=1 In, d =

∏N
n=1 Jn, and Jn � In. The scalabil-

ity comparison of these two algorithms on two largest
datasets, CASIAA and USF128, suggests that the train-
ing/testing time of the randomised methods, unlike



Table 5: Comparison of CP decomposition time (in seconds) for

1STM and R1STM.

Dataset 1STM R1STM Dataset 1STM R1STM

Banana 112.09 38.14 USFG32 76.58 6.89
DSA 11.18 8.03 USFG64 131.74 17.67
GSAOS 36.83 19.73 USFG3128 273.25 76.03
PAMAP2 137.87 36.05 CASIAA 647.45 123.11
UHAD 16.28 8.78

1STM, grow linearly at a fairly low rate, see Figure 6.

6 Conclusions and Future Work

In this paper we have introduced two unsupervised ten-
sorial anomaly detection methods, 1STM and R1STM,
that directly apply to tensor objects and retain the
data’s structure. 1STM is an extension of the conven-
tional one-class SVMs to tensor space. R1STM, ad-
ditionally, approximates the nonlinear tensorial kernel
through applying the original linear classifier method
on a randomised nonlinear projection of the data. Our
empirical analysis on several benchmark and synthetic
datasets shows that 1STM and R1STM not only main-
tain the data’s structure, but also they deliver signifi-
cant improvements over conventional anomaly detection
methods — especially R1STM, which achieves better
or comparable performance to a state-of-the-art deep
recurrent autoencoder, while reducing its training and
testing time by more than two orders of magnitude.
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