
Instituto Nacional de Matemática Pura e Aplicada

Convertible Bond Pricing: A Monte Carlo
Approach

Author: Leandro Amato Loriato

Advisor: Maria Rodríguez Nogueiras
Co-Advisor: Jorge Passamani Zubelli

Rio de Janeiro
May, 2014

Para minha amada, Lenita.

i

Agradecimentos

Em primeiro lugar, agradeço a Deus, por todas as bençãos que me concedeu e concede
todos os dias da minha vida.

Agradeço aos meus pais, Umbelino e Ana, pelo seu amor incondicional e por sempre frisa-
rem a importância dos estudos.

Agradeço aos meus familiares e amigos, que souberam entender os momentos de ausência
em diversos eventos, encontros e confraternizações, quando tive de abrir mão da companhia
maravilhosa de vocês para cumprir as tarefas e obrigações do curso. Agradeço em especial
à minha namorada Lenita, quem mais sofreu com minhas ausências e compromissos do
curso, mas continuou me amando muito, sempre me apoiando e incentivando ao longo do
curso, tanto nos momentos felizes quanto nos difíceis.

Agradeço aos meus orientadores Maria Nogueiras e Jorge Zubelli, por me orientarem e
ajudarem na confecção deste trabalho.

Agradeço aos companheiros do IMPA, em especial aos amigos mais próximos, Romeu Del-
lazeri, Lucas Barcellos, Wanderson Costa, Douglas Vieira e Diogo Gobira, pelas constantes
conversas, trocas de ideias, momentos de descontração e apoio mútuo. A convivência com
vocês nestes anos aliviou bastante este árduo curso.

Agradeço aos professores mais próximos, Hugo De La Cruz, Vinícius Albani, Welington de
Oliveira e Luca Mertens, pelo incentivo e pelas diversas dicas teóricas e práticas nos vários
tópicos relacionados a este curso, Matemática Pura e Finanças em geral.

Agradeço ao Instituto Militar de Engenharia (IME), minha alma mater, pela sólida forma-
ção em matemática e computação, que certamente me ajudou muito durante este mes-
trado.

Por fim, agradeço ao Instituto Nacional de Matemática Pura e Aplicada (IMPA), pela honra
de poder cursar o mestrado em tão nobre e renomada instituição.

iii

Abstract

Convertible Bonds are interesting hybrid instruments with debt- and equity-like features that
have received increasing attention for the last years, especially after the sub-prime mortgage
crisis in 2008. This work aims at presenting the main concept behind those instruments, its
related features and pricing issues, exhibiting in a constructive manner, from simple products
to complex ones, how one may model and price them.

To deal with the possibility of American exercises, we implement least-squared and hedged
Monte Carlo pricing methods. A clear, flexible, extensible and ready-to-use code imple-
mentation for the proposed pricing framework is provided together with some examples of
contracts. A discussion of attained numerical results is also presented.

Keywords: convertible bond, least-squared Monte Carlo, hedged Monte Carlo

v

Resumo

Debêntures Conversíveis são interessantes instrumentos híbridos com características de
títulos de dívida e de ações que têm recebido atenção crescente nos últimos anos, es-
pecialmente após a crise imobiliária americana em 2008. Esse trabalho tem por objetivo
apresentar o conceito principal por trás desses instrumentos, suas características e dificul-
dades de precificação, exibindo de forma construtiva, de produtos simples a outros mais
complexos, como alguém consegue modelar e precificá-los.

Para lidar com a possibilidade de exercícios Americanos, implementamos os métodos de
precificação de Monte Carlo com mínimos quadrados e com cobertura de risco. Uma im-
plementação clara, flexível, extensível e pronta para uso para o framework de precificação
proposto é apresentada com alguns exemplos de contratos. Uma discussão de resultados
numéricos encontrados também é apresentada.

Palavras-chave: debêntures conversíveis, Monte Carlo com mínimos quadrados, Monte
Carlo com cobertura de risco

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Structure of the Work . 2

2 Convertible Bond Concepts 5
2.1 Basics . 5
2.2 Features/Terms . 7
2.3 Pricing Issues . 12

3 Pricing Methods 15
3.1 Black-Scholes Model . 15
3.2 Tree Methods . 18

3.2.1 Main Idea . 18
3.2.2 Binomial Trees . 19
3.2.3 Other Tree Types . 22

3.3 Monte Carlo Methods . 23
3.3.1 Regular Monte Carlo . 23
3.3.2 Projection/Backward induction techniques 26
3.3.3 Least-squared Monte Carlo (LSMC) 27
3.3.4 Hedged Monte Carlo (HMC) . 29

3.4 Comparison of Pricing Methods . 30

4 Convertible Bond Modelling and Pricing 31
4.1 Convertible Bond Modelling Review . 31
4.2 Setting 1: Non-callable Non-puttable European Convertible Bond 33
4.3 Setting 2: Non-callable Non-puttable American Convertible Bond 44
4.4 Setting 3: Callable Puttable American Convertible Bond 59
4.5 Setting 4: Path-dependent Callable Puttable American Convertible Bond . . 69
4.6 Calibration Issues and Possible Extensions 72

5 Conclusion 77

A Implementation 79
A.1 Choice of Platform/Programming Language 79
A.2 Implementation Approach . 80

A.2.1 Main code: CB_price.r . 81
A.2.2 Bond-related Functions: bond.r . 87
A.2.3 Payoff-related Functions: payoff.r . 88

ix

CONTENTS x

A.2.4 SDE Simulation: sde.r . 90
A.2.5 Backward Induction Monte Carlo Methods: backward_induction.r . . . 92

A.3 Final Remark . 101

List of Figures

2.1 Historical returns in Swiss market in the last few years. Source: Bloomberg,
Credit Suisse AG, 2011 . 7

3.1 2-period non-recombinant binomial tree . 20
3.2 2-period recombinant binomial tree . 21
3.3 Example of 100Monte Carlo paths generated for stock price evolution following

Equation 3.1.1 using Euler-Maruyama scheme, with S0 = 100, T = 1, r =
0.1, σ = 0.3, Nt = 100 . 25

4.1 Non-callable non-puttable european Convertible Bond price with respect to
stock price. Source: [Zad10] . 37

4.2 Variance/Confidence Interval analysis of the influence of number of Monte
Carlo paths on Example 4.2.1 Convertible Bond price. 40

4.3 Influence of volatility on relative error for LSMC in Setting 2 52
4.4 Influence of volatility on relative error for HMC in Setting 2 53
4.5 Exercise boundary obtained for Example 4.3.1 using Tree method and 100

time steps . 55
4.6 Exercise boundary obtained for Example 4.3.1 using Tree method and 1000

time steps . 55
4.7 Boundaries obtained with LSMC for Example 4.3.1 56
4.8 Boundaries obtained with HMC for Example 4.3.1 57
4.9 Influence of volatility on relative error for LSMC for Example 4.4.3 in Setting 3 64
4.10 Influence of volatility on relative error for HMC for Example 4.4.3 in Setting 3 65
4.11 Exercise boundary obtained for Example 4.4.3 using Tree method and 1000

time steps . 68

xi

LIST OF FIGURES xii

List of Tables

2.1 Steinhoff 2013 Convertible Bond . 12

4.1 Exercise actions and respective payoffs in Setting 1 38
4.2 Non-callable non-puttable european Convertible Bond 38
4.3 Results for Example 4.2.1 . 39
4.4 Example 4.2.1 Convertible Bond with increased redemption ratio 41
4.5 Results for Example 4.2.2. All methods used 100 time steps. For Monte Carlo

simulations, 10000 paths were used. 41
4.6 Example 4.2.1 Convertible Bond with increased conversion ratio 42
4.7 Results for Example 4.2.3. All methods used 100 time steps. For Monte Carlo

simulations, 10000 paths were used. 42
4.8 Example 4.2.1 Convertible Bond with coupon payments 43
4.9 Results for Example 4.2.4. All methods used 100 time steps. For Monte Carlo

simulations, 10000 paths were used. 43
4.10 Exercise actions and respective payoffs in Setting 2 45
4.11 Non-callable non-puttable american Convertible Bond 48
4.12 Results for Example 4.3.1. 49
4.13 Boundary regions in Setting 2 . 51
4.14 Exercise actions and respective payoffs in Setting 3 60
4.15 Pure-puttable american Convertible Bond . 61
4.16 Pure-callable american Convertible Bond . 61
4.17 Callable puttable american Convertible Bond 62
4.18 Results for Example 4.4.1. 66
4.19 Results for Example 4.4.2. 66
4.20 Results for Example 4.4.3. 67
4.21 Boundary regions in Setting 3 . 67
4.22 Exercise actions and respective payoffs in Setting 4 70
4.23 Path-dependent callable puttable american Convertible Bond 70
4.24 Results for Example 4.5.1. 71

xiii

LIST OF TABLES xiv

Listings

A.1 CB_price.r . 81
A.2 bond.r . 87
A.3 payoff.r . 88
A.4 sde.r . 90
A.5 backward_induction.r . 92

xv

LISTINGS xvi

Chapter 1

Introduction

In the last few years, specially after american subprime mortgage crisis and its following
repercussions all over the world in the last quarter of 2008, the tide of uncertainty and risk
aversion has led to a rising interest in fixed income instruments1, specially the so-called
Convertible Bonds.

Convertible Bonds are hybrid instruments with debt- and equity-like features. Although there
is no uniformity in this type of instrument and the exact features depend upon contract terms,
they are bonds that, besides paying periodical coupons, also grant the investor the right to
convert it, in pre-determined time periods, into an equivalent amount of the underlying equity.
Some put and call optionalities are also commonly observed, granting the investor and issuer
each the right to, in certain pre-determined periods, end the contract before its maturity.

Despite the growing interest and the numerous works about equities and bonds separately,
surprisingly there are few works about Convertible Bonds.

1.1 Motivation

The problem that we will focus in this work is the modelling and fair pricing of Convertible
Bonds, i.e. its price under arbitrage free assumptions.

The study of this problem is motivated by the following reasons:

• The correct pricing of these instruments allows one to identify, avoid, limit or even ex-
plore arbitrage oportunities2;

1In a 2011 report [Com11], McKinsey & Company highlights that outstanding global debt had reached US$93
trillion, almost twice the capitalization of global equity market, US$54 trillion.

2There’s a common belief that Convertible Bonds market practiced prices are, in average, below those gen-
erated by theoretical models, possibly generating arbitrage opportunities. Some works, like [AKW08], however,
do not support this belief.

1

CHAPTER 1. INTRODUCTION 2

• The new international accounting standard, International Financial Reporting Stan-
dards (IFRS)[IFR], that is gradually been adopted by many countries around the world3,
requires companies to mark their assets by their market value, effectively demanding
them to know how to precify these instruments.

As we shall see later in this work, Convertible Bond pricing has its own subtleties and math-
ematical challenges, depending on the product and its chosen model specific features.

1.2 Goals and Structure of the Work

The goals of this work are:

• To present the concept of a Convertible Bond, its related features and terms and fair
pricing issues;

• To exhibit, in a constructive manner, how one may, beginning from more simple prod-
ucts to others more complex, model and price Convertible Bonds using a stock value-
based model and Monte Carlo methods;

• To provide a concrete, clear and ready-to-use code implementation for the proposed
pricing framework, which can be used and extended by others to treat more general
Convertible Bond contracts and also other types of exotic securities.

We shall focus in this work primarily on Monte Carlo methods for pricing, because, as we
shall see later, they are reasonably simple to implement, of easy interpretation and easily
extendable to cope with more complex products, like those found in market.

This work is organized as follows:

• In Chapter 2, we introduce the Convertible Bond instrument, its main concepts, features
and associated issues;

• In Chapter 3, we present Tree methods and Monte Carlo methods, the pricing tech-
niques that will be used in this work;

• In Chapter 4, we discuss the strategy adopted in this work for pricing Convertible Bonds,
starting from a more simple product and simplified model, working on towards more
complex settings with use of Monte Carlo methods, presenting related results along
the text;

• In Chapter 5, we summarize the attained results and conclude the work;

3In Brazil, Federal Law 11.638/07 instituted as mandatory IFRS use in financial statements of publicly held
companies, keeping it as optional for private companies. Through Statement 14.259/06, Central Bank of Brazil
demanded that, from 2010 on, all financial institutions must issue their statements in accordance with IFRS.

3 1.2. GOALS AND STRUCTURE OF THE WORK

• In Appendix A, the implementation approach and developed code are presented, along
with the discussion of implementation specific issues

CHAPTER 1. INTRODUCTION 4

Chapter 2

Convertible Bond Concepts

In this chapter, we introduce the Convertible Bond security, presenting its main features and
associated issues.

In Section 2.1, we present the definition of a Convertible Bond, present some historic per-
spective behind it, an insight into nowadays market and some of the compelling reasons
parties tend to look for it.

Next, in Section 2.2, the most relevant features/terms of a Convertible Bond’s contract are
presented.

Finally, in Section 2.3, we discuss the issues found while trying tomodel and price Convertible
Bond’s, some of which we will address in the models presented later in Chapter 4.

2.1 Basics

To grasp the basic idea behind a Convertible Bond, one must first recall the concept of a
(corporate) bond: a (corporate) bond is a security issued by a firm (issuer) that entitles the
holder (sometimes, called the investor) with the right to receive the bond’s face value at
a final date (maturity time) and interest rate payments (coupons) over the face value in a
predetermined (not necessarily, but usually regular) fashion until maturity.

From holder’s point of view, it’s a fixed income instrument: an instrument that he expects to
receive periodic payments, vinculated to interest rates. From this remark, it’s pretty obvious
that the bond payments, and as a consequence, its value are influenced by interest rate term
structure.

From issuer’s point of view, a bond is a debt security: it’s used to captate money from the
market, as a kind of a loan. In exchange, the issuer promises to repay the face value as well
as the agreed coupons. From this remark, it’s quite easy to see that the bond payments and

5

CHAPTER 2. CONVERTIBLE BOND CONCEPTS 6

value are also influenced by the issuer’s credit risk1.

After introducing the concept of a bond, the concept of a Convertible Bond is fairly straight-
forward and given by its essential feature: it’s a bond for which the holder has the right
to, at prespecified times and, possibly, under some prespecified restrictions, give up future
coupons in exchange for a certain number of issuer’s stocks (parity). This procedure is called
conversion of the bond, which gives name to the security2. Because of these equity-like and
debt-like features, it’s called an hybrid security.

The investor’s decision to convert is related to whether or not he/she expects firm’s stock
price to rise farther in the future than the value to be received from bond’s coupons. From
this remark, it’s clear that the convertible bond’s value, besides of other factors that affect
bond’s value, is also affected by the stock price and its volatility.

According to a Credit Suisse’s 2012 white paper [AG12], the market of Convertible Bonds
reached in 2011 a total of US$ 500 billion, been today primarily dominated by USA issuers
(43%), followed by European issuers (29%). There has also been observed a trend of issue
growth in Asia and America.

Convertible Bonds are also not a recent security, have now been around for over 150 years.
They were first issued in mid-nineteenth century by american railroad companies, in a time
where US economy was growing at a fast pace, but capital was not easy to obtain. To captate
money to finance their growth, they attracted investors with the possibility of high equity gains
as companies tended to grow quickly, but with the safeness of a traditional bond.

Nowadays, Convertible Bonds continue to be an attractive security, not only to investors but
also to issuers, for the following reasons:

• For the investor:

– In worst-case scenarios, it provides the safety of a traditional bond. In the best-
case scenarios, it can also provide a equity-like rentability;

– It provides higher yields than those attainable via traditional stock purchases.

• For the issuer:

– Because of its implicit conversion optionality, its paid coupons are usually smaller
than those paid in traditional bonds, thus constituting a cheaper captating method
than traditional bonds. For a small firm, facing budget constraints, this is a very
good feature;

1In some countries, including Brazil, people use the term debenture interchangebly with bond. In many other
countries, however, the term debenture is used only for bonds with long-termmaturity and/or whose firm’s credit
risk is negligible. To avoid confusion, we will only use the term bond throughout this work.

2In the market, some call this type of convertible bond a Vanilla Convertible Bond, as there is another type
of convertible bond, called Mandatory Convertible Bond, which obliges the holder to convert it at maturity. In
this work, we shall deal only with Vanilla Convertible Bonds.

7 2.2. FEATURES/TERMS

– As opposed to traditional stock issue, it allows a firm to delay diluition, as stocks
may be emitted along the bond’s lifetime and only when/if the firm grows in a
steady pace and confirms good future prospects. For small, private companies,
this is critically important, as it allows the firm to formalize its governance structure
before stock issuance.

From a portfolio optimization and risk perspective, having a Convertible Bond in a portfolio
seems to also offer the following advantages [AG12]:

• It provides good risk diversification;

• It reduces the portfolio’s Expected Shortfall.

Historical data also indicates, in the last few years, a higher rate of return with lower volatility
for Convertible Bonds when compared to stock shares, as shown in the following graph of
Swiss market [AG12]:

Figure 2.1: Historical returns in Swiss market in the last few years.
Source: Bloomberg, Credit Suisse AG, 2011

For all this, we can no doubtly say that Convertible Bonds are regarded nowadays are a
creative and very attractive security, and will continue to be so and have an important role in
market in the forthcoming years.

2.2 Features/Terms

As Convertible Bond’s contracts are not standardized ones, but in fact very heterogeneous
in practice, the specific features of a given convertible depends upon the exact terms of
its prospectus. Besides the common bond’s terms (interest rate, coupon frequency, first

CHAPTER 2. CONVERTIBLE BOND CONCEPTS 8

coupon date, nominal value, maturity date), there are, though, features/terms which are more
commonly observed in these contracts. Below we enlist the most relevant ones:

Conversion Provisions

A conversion provision is an obligatory clause which specifies at which conditions may
take place. The following terms are commonly found in conversion provisions:

Conversion Dates

The conversion dates term specifies in which period the investor may exercise the conver-
sion. In practice, any sparse structured exercise period may be specified.

Usually, this term is not informed and it is assumed that conversion is american-styled, i.e. it
may take place at any date between issuance and maturity.

Conversion Restrictions

Besides conversion dates, it has become more and more common nowadays to include
other conversion restrictions, which must be met in order to allow the investor to execute
conversion, giving some kind of protection for the issuer against conversions in situations
where, whilst it would be very attractive to the investor, it would not be so good for the firm.
This specially useful, for example, for small companies, as it may delay stock dilution to a
time when the firm has achieved good growth and good governance structure.

In its most common form, a conversion restriction is composed of a level which the firm’s
stock price must reach in order to trigger conversion. Usually it is a percentage level in terms
of the stock price initial value, but could also be a fixed value.

Whenever conversion restrictions are specified, we call the convertible bond a Contingent
Convertible Bond (sometimes abbreviated as CoCo Bonds).

Conversion Ratio/Conversion Price

The conversion ratio specifies the number of stock shares into which each bond unity
(bought at a specified nominal value) can be converted. Typically, it remains fixed through-
out all bond’s lifetime, but may be adjusted by certain clauses (see reset clause below).

Instead of specifying a conversion ratio, the prospectus may specify a conversion price.
This is the price for which stock shares would be bought upon conversion.

9 2.2. FEATURES/TERMS

Specifying a conversion ratio or a conversion price is equivalent and they are related as
follows:

conversion price = (nominal value/conversion ratio)

Conversion ratio x conversion price equivalence Consider a Convertible Bond with a
nominal value = 100 and conversion ratio = 2.25. We would then have:

conversion price = 100/2.25 = 44.44

At a given time, a Convertible Bond may also be classified with respect to its conversion price
as follows:

• If stock price > conversion price, it’s said to be in the money, because one would
rather choose to convert it than buy stocks at the market;

• If stock price < conversion price, it’s said to be out of the money, because one would
rather choose buy stocks at the market than convert it.

As we have seen, conversion ratio and conversion price are dual terms: specifying one
implicitly specifies the other. Hence, only one of them must be informed in the prospectus.
Without loss of generality, throughout this work, we shall assume that a conversion ratio term
is specified.

Conversion Ratio Adjustment Clause

A Conversion ratio adjustment clause is an optional clause that specifies that the conver-
sion ratio may be adjusted upwards or downards when certain events occur.

Traditionally, they are created to protect the investor from events that may harm the firm’s
value and consequently lower its stock price, effectively diminishing the possibilities of con-
version. But they could also be used to hedge the issuer in cases in which conversion would
be excessively attractive and harm issuer’s interests.

The following types of conversion ratio adjustment clauses are more commonly found in
Convertible Bond prospectus:

Reset Clause A reset clause is the most commonly found and more general conversion
ratio adjustment clause. It is an optional conversion ratio adjustment clause that takes place

CHAPTER 2. CONVERTIBLE BOND CONCEPTS 10

if the firm’s performance happens to be far from what was expected in issue time, with its
stock price remaining outside of a specified region, defined in terms of its initial value, for a
specified amount of time.

In its most common variant, it provides an lower-bounded region, i.e. it adjusts the conver-
sion ratio upwards if the stock price remains under a specified level, protecting the investor
from downward fluctuations. But it could also be used to provide an upper-bounded or box
(upper- and lower-bounded) region to also protect the issuer against situation’s where stock
price rises too much and conversion becomes excessively attractive, harming issuer’s inter-
ests.

Being defined in terms of the stock price as a proxy for the firm’s value and perception
in the market, it may account not only for price formation fluctuations but also other firm-
related events, such as changes of credit rating, which ultimately will be reflected in the
stock price.

Dilution Protection Clause A dilution protection clause is a more specific conversion
ratio adjustment clause that protects the investor against the event of loss on stock price due
to issuer’s capital dilution, adjusting the conversion ratio upwards.

Takeover Protection Clause A takeover protection clause is a more specific conversion
ratio adjustment clause that protects the investor against variations on stock price due to a
merger involving the issuer.

Redemption Ratio

The redemption ratio specifies how much of the bond’s face value may be redeemed at
maturity. Usually, we have redemption ratio = 1, but sometimes a convertible bond may be
issued with redemption ratio > 1, when it’s said to be issued at premium.

Call Provision

A call provision is a clause which gives the issuer the right (but not the obligation) to, in
certain prespecified periods, end theConvertible Bond’s contract beforematurity time, forcing
the investor either to redeem it for an strike price, which may be a fixed amount of cash or
may be set to include the principal and any accrued interest. Also, upon call exercise the
investor may be granted the option to convert the bond. If the payoff earned by converting
the bond is greater than the strike price earned with the call when not converting it, since
the investor is considered to be rational, he/she will be practically forced by the issuer into

11 2.2. FEATURES/TERMS

converting the Convertible Bond. Because of this, this type of conversion is called a forced
conversion, in contrast with its voluntary counterpart.

As a call provision grants the issuer a right to prematurely end the contract, effectively denying
the investor the safety of a regular bond, this clause is often badly perceived by investors.
To protect the investor, call protection clauses have been also commonly found in call
provisions:

Hard Call Clause

A hard call clause is a call protection clause which specifies an period of time, usually at
beginning of the Convertible Bond’s lifespan, in which the issuer may not exercise the call.
After this period, the issuer may then exercise the call normally (respecting the prespecified
call dates).

Soft Call Clause

A soft call clause is call another protection clause which specifies quantitative restrictions,
usually the stock price reaching a percentage level of its initial value, which must be met in
order to trigger the possibility of call by the issuer. Unless these restrictions are met, the
issuer may not exercise the call.

Besides call protection clauses, it is also very common to require the issuer to notify the
investor of its intention to call the bond before the call itself takes place. The amount of time
prior to the call itself that the notice must be made is called call notice period.

Put Provision

A put provision is the investor-equivalent of a call provision clause: it gives the investor the
right (but not the obligation) to, in certain prespecified periods, end the Convertible Bond’s
contract before maturity time, forcing the issuer to buy the bond back for an strike price,
usually a fixed amount of cash.

Contraty to call provision clauses, put provision clauses are very attractive features to the
investor. To protect issuers from an excessively attractive put provision, usually exercises
dates are restricted to narrow or sparse periods.

To better illustrate the above defined terms, below is presented an example of Convertible
Bond’s contract:

CHAPTER 2. CONVERTIBLE BOND CONCEPTS 12

Example 2.2.1. Convertible Bond’s contract example

Regular bond features/terms
Issue date 30 Jun 2006
Maturity 31 Jul 2013
Face value ZAR 100
First coupon date 31 Jan 2007
Coupon frequency 2 (semi-annual)
Coupon ratio 5.7%
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: - (american-styled)

Conversion restrictions: -
Conversion ratio: 3.64964
Conversion ratio protection clauses: -

Call provisions Strike price: principal amount plus accrued interest
Call dates: - (american-styled)
Hard call clause: 3 years
Soft call clause: 130% initial stock price value trigger

Put provisions - (non-puttable)

Table 2.1: Steinhoff 2013 Convertible Bond

This example was adapted from a Convertible Bond contract from south-african market, pre-
sented in [Zad10].

2.3 Pricing Issues

As seen in Sections 2.1 and 2.2, Convertible Bonds are amazingly versatile and flexible
debt-equity hybrid instruments. Unfortunately, all this flexibility comes at a price of difficult
and troublesome pricing. Below we present the main issues found whilst pricing Convertible
Bonds:

Contract uniqueness

Convertible Bonds are instruments very difficult to price because their contracts are often
unique: they are not standardized instruments, but highly heterogeneous. They may or may
not contain specific clauses and its exacts terms vary wildly, as they are taylored to meet the
exact issuer’s money captation needs, whilst providing attractive features for the investor.
This heterogeneity in Convertible Bond contracts makes it practically impossible to exhibit
a generic closed-form solution for their prices, whilst also making very difficult to employ
numerical PDE pricing methods, because its pricing problem and boundary conditions are

13 2.3. PRICING ISSUES

very difficult to state in a sufficiently general way to encompass all possibilites3.

A Convertible Bond is also unique in another sense: it is issued at a specific point in time,
with specified maturity, when a specific conjuncture is found. Whilst, although very rare,
there exists the possibility that the same firm does issue another Convertible Bond with same
features and terms, its pricing will not be the same because the main factors affecting its price
- stock price, credit risk issues, volatility of the stock and interest rates - will naturally not be
the same, as the firm itself would have changed over time, affected by the convertible’s issue
itself, and so would the market. Thus, it is practically impossible to price Convertible Bond’s
by similarities with other convertibles, even with the ones issued by the same firm.

Complex features/terms

As seen, any of the possible optionalities of a Convertible Bond contract - conversion, call, put
- may have flexible, american-, canary-, verde-, bermudan-styled or any other sparse struc-
tured exercise dates. This againmakes it practically impossible to exhibit generic closed-form
solution for its price and very difficult to use PDE methods. Also, as we shall see later on
Chapter 3, regular Monte Carlo methods cannot correctly cope with these types of exercise.
Only specially modified Monte Carlo and tree methods may then be used for its pricing.

Also, many of its clauses are very liberal when it comes to its exact terms and may assume
complex, path-dependent forms. For example, a Convertible Bond contract may have a
reset clause that states that ”the conversion ratio will be adjusted to 0.9 whenever the mean
stock price of the last 3 weeks remain above 130% of initial stock price”. This kind of time-
dependency makes it quite to difficult to use tree methods, leaving only simulation-based,
specially Monte Carlo, methods as flexible enought to cope with these complex terms.

Credit risk issues

One of the main factors affecting the Convertible Bond’s price ([BS77]), credit risk issues are
quite difficult to model and treat using PDE and tree methods. Some successful approaches
make use of Poisson processes and jump-diffusion SDEs in Monte Carlo methods, requiring
a more refined stochastic calculus theory.

All these difficulties have made credit risk issues the greatest research topic in the last few
years, evenmore after the SubprimeMortgage Crisis and its repercussions around the world,
leading to stricter credit risk regulations in financial market.

3As may easily be seen in many works on Convertible Bonds, although in its most general form Convert-
ible Bond’s pricing is very difficult to solve with closed-form solutions and PDE methods, there are restricted,
simplified and well-defined versions of this problem which do have closed-form and/or PDE solutions.

CHAPTER 2. CONVERTIBLE BOND CONCEPTS 14

Firm-related events

Some of the Convertible Bond contract’s clauses may depend upon events that are firm
related. Even if firm-based models are employed instead of stock-based ones (see 4.1),
firm-related events are really difficult to model, specially ones related to changes in its capital
structure, like mergers and stock dilution.

To try to mend this, one may choose to treat these events are exhogeneous ones and try
to emulate them using jump processes. This method naturally works as good as how well
calibrated the rates of events are. So, they usually do not work very well, because these
events are very localized in time and do not repeat in the same manner, resulting in little data
available for calibration.

Chapter 3

Pricing Methods

Before stepping into Convertible Bondmodels, we briefly present the main pricing techniques
we will be using in this work: Tree methods and Monte Carlo methods.

In Section 3.1, we present the classic Black-Scholes stochastic model, the base model we
shall use throughout this work for the asset’s stock price dynamics.

In Section 3.2, we present the general idea behind Tree methods and the specific method
we will be using throughout this work, the Cox-Ross-Rubinstein tree.

Finally, in Section 3.3, we present the general idea behind Monte Carlo methods, the motiva-
tion behind the introduction of backward induction/projection techniques, and the techniques
of Least-squared Monte Carlo (LSMC) and Hedged Monte Carlo (HMC), that we will use later
in this work.

3.1 Black-Scholes Model

This work shall use the Black-Scholes model as the base model for pricing Convertible
Bonds. Initially proposed by Black and Scholes in their seminal paper [BS73] and later for-
malized by Robert Merton in [Mer73] using Stochastic Calculus, the Black-Scholes Model
became one of the most known and used models for fair pricing financial instruments, laying
strong and solid foundations for more refined models and shaping the Finance industry in
the past 40 years. It was a so important scientific contribution, authors Scholes and Merton
earned a Economics Nobel prize in 1997 for it1.

Whenever using the Black-Scholes Model, it should always be kept in mind that it relies on
the following important market assumptions:

• Market is assumed to contain exactly one riskless asset, a zero-coupon bond, with

1Black was ineligible because it had died in 1995, but was mentioned as one of its contributors.

15

CHAPTER 3. PRICING METHODS 16

an associated risk-free interest rate, and one risky asset, a stock, with an associated
uncertainty source. Any money which is not invested in stock must be invested in the
zero-coupon bond.

• Investors are not able foresse market events;

• Investors act rationally and in a self-financing way;

• The actions of a single investor do not influence stock prices;

• Investors may borrow and/or lend any ammount of money at risk-free interest rate;

• Investors may buy or sell any ammount of stocks, including fractional ones;

• Short-selling by investors is allowed;

• Market is frictionless: there are no fees or costs involved in transactions;

• Market is complete: every contingent claim is attainable, i.e. may be replicated using a
self-financing strategy envolving the riskless and risky assets. As a consequence (see
[KK01]), market is arbitrage-free (i.e. there are no arbitrage opportunities) and each
contingent claim has only one (fair) price.

Under the aforementioned assumptions, the Black-Scholes Model (sometimes also called
Black-Scholes-Merton Model) is formulated as follows:

Let S(t) > 0 be the (risky) asset’s stock price at time t, with associated constant volatility σ
and paying a constant continuous dividend yield q. Let r also be the deterministic, constant
risk-free interest rate. Since the market is complete, it may be proved [KK01] that there is
only one Equivalent Martingale Measure, called Risk-neutral Measure, denoted Q2. Under
this probability measure Q, stock price dynamics is governed by the following drift-diffusion
Stochastic Differential Equation (SDE)

{
dS(t) = S(t)((r − q)dt+ σdWQ(t))

S(0) = S0

(3.1.1)

where {WQ(t)}t is a Wiener process modelling the uncertainty source associated with this
asset. The interpretation of SDE 3.1.1 is, under risk-neutral perspective, the stock price
tends to rise deterministically with constant rate but is disturbed by a random noise scaled
by its constant volatility.

It must be noted that SDE 3.1.1 is a fairly simple one and thus has an explicit solution ([KK01])
given by

2This is in contrast with the Real-world Probability Measure P.

17 3.1. BLACK-SCHOLES MODEL

S(t) = S0exp

((
(r − q)− σ2

2

)
t+ σWQ(t)

)
(3.1.2)

Thus, we see that the stock price process S(t) is modelled as aGeometric BrownianMotion
in Black-Scholes Model.

Let C(t, S(t)) be the fair price at time t of an european contingent claim that pays B =
h(T, S(T)) at time t = T . This fair price may be stated, under this stochastic pricing frame-
work, as the discounted expected value of the future payoff under risk-neutral measure
([KK01]):

C(t, S(t)) = EQ
(

P0(t)

P0(T)
B|Ft

)
=

P0(t)

P0(T)
EQ(B|Ft) ⇒

C(t, S(t)) = e−r(T−t)EQ(B|Ft)

with P0(t) = ert being the zero-coupon bond (which happens to be the associated numeráire
for Q) and Ft = σ(WQ(t)).

At time t = 0, in particular, we have:

C∗ = C(0, S(0)) = EQ
(
P0(0)

P0(T)
B|F0

)
=

1

P0(T)
EQ(B) ⇒

C∗ = e−rTEQ(B) (3.1.3)

For some special cases of contingent claims, the above mentioned equation yields a closed-
form formula for the fair price of the contingent claim. For more general cases of contingent
claims, specially for those with path-dependent payoffs, no closed-form formula is avail-
able

A classical and noteworthy example of closed-form formula derived from Equation 3.1.3 is
that obtained for an european call option with strike price K. Its fair price is formulated
as:

C∗ = e−rTEQ (S(T)−K)+

It can be then showed ([KK01]) that, under the Black-Scholes Model, the above equation
gives place to the following closed-form formula, known as the notorious Black-Schole For-
mula for the price of european call option:

C∗ = S0e
−qTΦ(d1)−Ke−rTΦ(d2) (3.1.4)

CHAPTER 3. PRICING METHODS 18

with

d1 =
1

σ
√
T

(
log(

S0

K
+ ((r − q) +

σ2

2
)T

)
d2 = d1 − σ

√
T

Φ(x) =

∫ x

−∞
e−

1
2
z2dz

This brief overview of Black-Scholes Model shall be sufficient for understanding its use in
this work. For a more formal discussion of this model and general security pricing under it,
refer to [KK01], [Shr04] and [MR06] .

3.2 Tree Methods

3.2.1 Main Idea

The main idea behind tree methods is to approximate the continuous state of a stochastic
variable (veat least the asset’s price) in a time span ranging from initial time t0 to final time T
using a discrete structure, a tree, with each node level representing states distant a ∆t time
step from previous node level3.

Starting from an initial node (representing initial time t0), the possible outcomes of any given
node are modelled in the n succeeding nodes, each one of them with an assigned probability
to occur.

After building the tree structure, it can then be used to calculate prices of securities. For
european-styled securities, the method works as follows:

1. On leaf nodes (those representing final time T), security value is calculated as just the
payoff of the security;

2. At any preceding node, the value of the security is the expected value (usually under
the risk neutral measure Q) of the possible security values in succeeding nodes.

3. Finally, the value of the security is its value at the initial node.

For american-styled securities (or even bermudan, canary, verde, or any other security with
sparse exercise structure), the structure is pretty much the same, except on step , if the

3In fact, if one’s model only has one stochastic variable, the structure is a 2-dimensional structure, a tree.
If more than one stochastic variable is involved, each node maps a possible outcome for the entire set of
stochastic variables, which result in a more general discrete structure, a kind of multidimensional tree known
as lattice.

19 3.2. TREE METHODS

security may be exercised at that moment, its value will be maximum between the averaged
value of succeeding nodes and the intrinsic value obtained if exercise takes place.

Tree methods yields as a result an exact value for the security price. Approximating the
continuous structure of stochastic variables state incurs in an discretization error. Smaller
∆t values (or equivalently, bigger number of time discretization steps) lead to more precise
values but with also more computational cost. As we will be see as a very recurring trend,
this poses a challenge whilst choosing ∆t, to balance precision level with computational
cost.

3.2.2 Binomial Trees

Although the main idea is pretty much the same behind every tree method, they differ usually
in how many n succeeding nodes each node has and what are the probabilities of ocurrence
of each node.

The most popular tree in mathematical finance is the binomial tree, in which one have only
two nodes succeding each node:

• One for which the stochastic variable’s value would rise from S in current node to uS
with a probability p;

• Other for which the stochastic variable’s value would fall from S in current node to dS
with a probability 1− p

A commonly found and useful (but not required) property of a binomial tree is that udS = duS,
that is, the notes after an upward movement and downard movement in any particular order
are exactly the same. This kind of tree are called recombinant trees.

Assuming a recombinant binomial tree, using combinatorial reasoning is not difficult to show
that, after some k∆t time steps from a node with initial value S, an specific node after i
upward movements and j = k − i downward movements would have a value

Si,j = uidjS = uidk−iS

Thus, in a recombinant binomial tree, any nodemay be uniquely identified by this notation Si,j.
Moreover, we see that, having u, d and p well defined, it is quite easy to build a recombinant
binomial tree.

Suppose we follow the Black-Scholes Model (see Section 3.1). Let Ci,j be the price of an
european-style security at node with stock price Si,j. It is also uniquely identified by this
notation as its underlying node is unique identified. The security price Ci,j at an specific
node is then given by

CHAPTER 3. PRICING METHODS 20

..

. . ..u2S

. ..uS .

. . ..udS

..S . .

. . ..duS

. ..dS .

. . ..d2S

..t = t0 ..t = t0 +∆t ..t = t0 + 2∆t = T

.

p

.

1−
p

.

p

.

1− p

.

p

.

1− p

Figure 3.1: 2-period non-recombinant binomial tree

21 3.2. TREE METHODS

..

. . ..u2S

. ..uS .

..S . ..udS

. ..dS .

. . ..d2S

..t = t0 ..t = t0 +∆t ..t = t0 + 2∆t = T

.

p

.
1− p

.

p

.

1− p

. p.

1− p

Figure 3.2: 2-period recombinant binomial tree

Ci,j = e−r∆t(pCi+1,j + (1− p)Ci,j+1)

that is, an risk-neutral mean of the prices if the stock goes up or goes down. For an american-
style security, the price Ci,j would then be

Ci,j = max(e−r∆t(pCi+1,j + (1− p)Ci,j+1, h(Si,j))

which is, as seen, a maximum between the intrinsic value obtained by exercising it at current
node and the risk-neutral mean of the prices of succeeding nodes.

For a more detailed description on binomial trees, refer to [Hul09].

We move on to present the most commonly used binomial tree, the Cox-Ross-Rubinstein
Binomial Tree, which will be the one we will use in this work.

Cox-Ross-Rubinstein Binomial Tree (CRR Tree)

Introduced in the seminal article [CRR79], the Cox-Ross-Rubinstein Binomial Tree (CRR
Tree) is a very popular tree method in mathematical finance. It consists in a binomial tree in

CHAPTER 3. PRICING METHODS 22

which parameters u, d and p as set as

u = eσ
√
∆t

d =
1

u

p =
(er∆t − d)

(u− d)

This parameters were chosen ([CRR79]) so as to better approximate, in terms of mean and
variance, the dynamics given by SDE (3.1.1).

It has also been shown in [CRR79] that the price given by a CRR tree asymptoptically con-
verges to the ones given by original Black-Scholes framework for vanilla options. This useful
property explains why this pricing method is one of the most popular one amongst financial
industry.

The CRR tree can also be extended to deal with important features found in the market,
such as continuous and discrete dividend yields. For a more detailed description on this
extensions, refer to [Hul09].

3.2.3 Other Tree Types

Besides binomial trees, more general trees can also be found in mathematical finance con-
text.

Trinomial trees (which have 3 succeeding nodes for each node) and non-regular trees (which
have variable number of succeeding nodes for any number) are very useful for capturing
events such as credit risk defaults, which cannot be modelled using a simple a binomial
trees. But this flexibility also turns these trees in general more difficult to build than binomial
ones.

Examples of such more general trees include Hull Trees and Hung-Wang Trees. As we
shall not use these other tree types in this work, we will not dwelve much into these tree
models. For more details, see [Zad10] and [Hul09].

23 3.3. MONTE CARLO METHODS

3.3 Monte Carlo Methods

3.3.1 Regular Monte Carlo

First, we present the definition of a (regular) Monte Carlo method:

Definition 3.3.1 (Monte Carlo method). Let (Ω,F ,P) be a probability space and X be a
random variable defined in this space, with known distribution.
Let {xi}Mi=1 be a sequence of random samples from X, i.e.

x1, x2, · · · , xM ∼ X

Let g(.) be a functional into R of random variables defined over the above probability space.
A Monte Carlo method is a method to approximate E(g(X)). From Law of Large Numbers,
if E(g(X))) < ∞ this can be done as:

E(g(X)) ≃ 1

M

M∑
i=1

g(xi) = ḡM

Moreover, from Central Limit Theorem, we have that:

ḡM
d−→ N(E(g(X)),

1

M
Var(g(X)))

In this work, we are interested in using Monte Carlo methods to obtain the fair price of secu-
rities. To note how this can be done, consider the following scenario:

Suppose we have a security which pays h(T, S(T)) at time t = T . Suppose also that we follow
the Black-Scholes Model (see Section 3.1). Using Equation 3.1.3 and noting that

W (t+∆t)−W (t) ∼ N(0,∆t) ∼
√
∆tN(0, 1) ,

sinceW (t) is a Brownian motion process, we may calculate the price of this security by using
Monte Carlo method to estimate EQ(B) = EQ(h(T, S(T))) as follows ([Iac09]):

1. Choose adequate parameters NMC (number of simulation paths) and Nt (number of
discretization steps used in each path);

2. Compute ∆t = T/Nt;

3. For i = 1, · · · , NMC do:

(a) For j = 1, · · · , Nt do:

CHAPTER 3. PRICING METHODS 24

i. Generate a (pseudo)random number sample z from standard Gaussian dis-
tribution N(0, 1);

ii. Set tj = tj−1 +∆t;

iii. Set W (tj) = W (tj−1) + z
√
∆t;

iv. Compute S(tj) from a discretized version of Equation 3.1.1, using some finite
difference discretization scheme (see below)

(b) Compute Bi = h(tNt , S(tNt))

4. Finally, compute C∗ = e−rTEQ(B) ≃ 1

NMC

NMC∑
i=1

Bi

As seen previously (3.3.1), C∗ is better aproximated as NMC → ∞. But choosing bigger
values for NMC leads to simulating more paths, which increases the computational cost of
Monte Carlo simulation. Therefore, NMC must be chosen as to balance computational cost
and precision level on C∗ estimation.

As both stochastic processes S(t) and W (t) in Equation 3.1.1 are continuous in t, by dis-
cretizing this equation4 with Nt steps, we are incurring in an error. Choosing bigger values
for Nt leads to more fine-grained simulations, with less error but more computational cost.
Like with NMC , choosing Nt also involves balancing computational cost and precision level
in the simulation.

For discretizing Equation 3.1.1 there are several finite difference schemes, relying heavily
on Ito-Taylor Expansion, an Ito-Calculus variant of classic Taylor Expansion. It is not in the
scope of this work to discuss Ito-Taylor Expansion, but if needed one may refer to [KP11] for
a formal discussion on this subject.

We present here the two discretization schemes used in this work:

Euler-Maruyama Scheme

Euler-Maruyama scheme5, sometimes simply called Euler scheme, is a very simple dis-
cretization scheme. In this scheme, an SDE of the form

4One could easily question the need to discretize Equation 3.1.1 since it has an explicit solution given by
3.1.2 and, if payoff h(., .) only depends on current value of S(t), only the value of S(T) need to be simulated
using the above solution and could be used directly to compute C∗. Hence no time step ∆t smaller than T
would be needed and therefore there would be no need to discretize Equation 3.1.1 at all.
Although this is correct, in a more general case one may have a more complex, non-lognormal dynamics for
S(t), for which its describing SDE has no explicit solution, and/or a path-dependent payoff. When this happens,
we can no longer make use of a explicit expression for S(t) and may need to use some of its intermediary path
values in order to compute the payoff. Hence, in order to provide a method which accounts for this more general
case, we include here explicitly a step to discretize the SDE.

5Its name comes from it being based on Euler’s original method for ODE discretization

25 3.3. MONTE CARLO METHODS

{
dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t)

X(0) = X0

(3.3.1)

is discretized as

Xi+1 = Xi + b(ti, Xi)(ti+1 − ti) + σ(ti, Xi)(Wi+1 −Wi)

Figure 3.3: Example of 100 Monte Carlo paths generated for stock price evolution following Equation
3.1.1 using Euler-Maruyama scheme, with S0 = 100, T = 1, r = 0.1, σ = 0.3, Nt = 100

Milstein Scheme

Euler-Maruyama relies on a very simple first-order approximation of Ito-Taylor Expansion of
X(t) process, which leads to truncation error. To provide a better approximation, Milstein
developed a first-order approximation scheme that includes more terms from Ito-Taylor Ex-
pansion.

In Milstein scheme, SDE 3.3.1 is discretized as

CHAPTER 3. PRICING METHODS 26

Xi+1 = Xi + b(ti, Xi)(ti+1 − ti) + σ(ti, Xi)(Wi+1 −Wi)+

+
1

2
σ(ti, Xi)σx(ti, Xi)((Wi+1 −Wi)

2 − (ti+1 − ti))

It has been shown ([KP11]) that, despite being computationally more costly, Milstein Scheme
in general has better convergence properties and is numerically more stable than Euler-
Maruyama.

For a discussion about other discretization schemes, more rigorous numerical analysis and
implementation tips, refer to [KP11], [Iac09] and [Gla04].

One final remark must be made on Monte Carlo methods: in contrast to Tree methods,
because of (pseudo)random number generation, Monte Carlo methods have a probabilistic
nature, yielding not an exact value, but rather an estimated value and a confidence interval,
given by Central Limit Theorem.

The asymptotic convergence of Monte Carlo methods guarantees that, for sufficiently large
NMC values, the true value we want to estimate will be at the given confidence interval.

To achieve more precise (i.e. narrower) confidence intervals, there are variance reduc-
tion techniques like antithetic sampling, control variate and importance sampling (see
[Iac09] and [Gla04] for details). For the sake of simplicity and to focus solely on plain Monte
Carlo algorithms, this work does not make use of any variance reduction technique. How-
ever, if desired, straightforward approaches like antithetic sampling should be fairly easy to
incorporate.

3.3.2 Projection/Backward induction techniques

Now, consider an american security. Assuming a rational strategy, the holder will exercise it
only when its current intrinsic value is greater than the expected value of holding the security
for an additional ∆t (continuation value). Thus, at a given time t ∈ [0, T], the price of an
american security may also be stated as ():

C(t) = max(B(t),EQ(C(t+∆t)|Ft)) (3.3.2)

To obtain the fair price of american securities at time t = 0, a naive approach would be to
use Equation 3.3.2, rolling a Monte Carlo simulation to obtain EQ(C(t+∆t)|Ft).

But as C(t+∆t)may also be expressed by Equation 3.3.2 as a function of another continua-
tion value, this incurs in a recursive problem, requiring many other Monte Carlo simulations,
which makes this approach computationally unfeasible.

Thus, to correctly price american securities using Monte Carlo methods, one must resort to
more efficient techniques.

27 3.3. MONTE CARLO METHODS

One of the techniques to correctly price american securities in a more efficient manner is the
so-called projection or backward induction technique. It consists in:

1. With a time discretization step of ∆t, simulate the evolution of stochastic components
through regular Monte Carlo;

2. Calculate the price of the security in a backward manner: starting from T ,where the
its price C(T) is known, project the calculated price C(t +∆t) into a selected basis of
functions at time t to calculate C(t)

As we will see, both Least-squared Monte Carlo ([LS01]) and Hedged Monte Carlo ([PBS01])
methods are examples of backward induction techniques.

3.3.3 Least-squared Monte Carlo (LSMC)

In the article [LS01], the authors present a backward induction technique for pricing american
securities (specifically, american options), named Least-squared Monte Carlo (LSMC).

The main idea behind LSMC algorithm is, while computing the fair price at time t in a back-
ward manner, in order to calculate C(t − ∆t, St−∆t), to project C(t, St) at space L2. More
formally, we have:

C(t−∆t, St−∆t) = EQ(C(t, St)|Ft−∆t) =

= argmin
g(St−∆t)∈L2(Ω,Ft−∆t,Q)

VarQ{g(St−∆t)− C(t, St)e
−r∆t}

But, it may be shown that EQ(g(St−∆t) − C(t, St)e
−r∆t) = 0. So, the previous equation may

be rewritten as:

C(t−∆t, St−∆t) = EQ(C(t, St)|Ft−∆t) =

= argmin
g(St−∆t)∈L2(Ω,Ft−∆t,Q)

EQ((g(St−∆t)− C(t, St)e
−r∆t)2)

L2 is a convenient choice for a subspace onto which project C(t, St) for 2 basic reasons:

1. To make use of common stochastic modelling techniques, it’s common practice to re-
quire that functions be measurable and members of L2. So, the above stated require-
ment is not so much of a strong requirement;

CHAPTER 3. PRICING METHODS 28

2. Since L2 is a Hilbert space, it may be shown that there exists a countable orthonor-
mal basis of functions {χj(S)}j such that g(St−∆t) may be expressed as g(St−∆t) =∑
j

αiχj(St−∆t). Thus, the stated optimization problem relies onto a least-squares prob-

lem (which explains the method’s name).

After clarifying its main idea, the LSMC algorithm may then be fully stated as follows:

1. Simulate NMC paths for the stochastic components with regular Monte Carlo

2. Choose a family of basis functions {χj(S)}nj=1

3. For eachMonte Carlo path, computeC(t, St) initially as the intrinsic value of the security
at t

4. For t = T −∆t, T − 2∆t, · · · ,∆t, 0 do:

(a) Find (αi)i s.t.
α = argmin

α∈Rn

E((C(t+∆t, St+∆t)e
−r∆t − α · χ(St))

2)

(b) For each Monte Carlo path, calculate C ′(t, St) = α · χ(St)

(c) If optionality can be exercised at this moment, for each Monte Carlo path, update
C(t, St) as:

C(t, St) =

{
C(t, St) , if C(t, St) ≥ C ′(t, St)

e−r∆tC(t+∆t, St+∆t) , otherwise

5. Finally, compute the value of the security as E(C(0, S0))

The convergence of the LSMC algorithm was briefly discussed in the original article. Later
on, it was proved and discussed in more detail in [CLP02] and [GY04].

In the original article, for demonstrating the algorithm, the authors use Laguerre Polynomials
as basis functions, but highlight that other choices are also possible: Legendre, Chebyshev
(1st, 2nd and 3rd type), Hermite, Gegenbauer and Jacobi Polynomials may be used, but also
non polynomial-based basis, such as Fourier ones.

In a sense of reduced computational cost and more precise computation (i.e. narrower confi-
dence interval), choosing the best-suited family of basis functions and its optimal dimension
is usually a security-dependent concern6. Hence, to determine which basis functions and
dimension to use pilot tests are usually taken.

6In the particular case of american options, in [GY04] the authors succeeded to prove that, given a specified
number of Monte Carlo paths, there exists an optimal basis dimension that guarantees the convergence of
LSMC algorithm.

29 3.3. MONTE CARLO METHODS

3.3.4 Hedged Monte Carlo (HMC)

It’s worth notice that LSMC method was designed to work only data given in with risk-neutral
measure Q, as values are treated as risk-neutral ones and discounted using it’s associated
numeráire P0(t) = ert. To also cope with historical data, in the article [PBS01], the authors
propose an extension to LSMC algorithm, named Hedged Monte Carlo (HMC).

The main idea behind HMC algorithm is to, while solving for the projection model in step 4a,
to also take into account a basis of hedge functions ϕj(S)j:

(α, β) = argmin
α,β∈Rn

E((C(t+∆t, St+∆t)e
−r∆t − α · χ(St)− β · ϕ(St)(St+∆te

−r∆t − St))
2) (3.3.3)

Essentially, what HMC method does is the same a trader would do: to price and hedge his
option so as to minimize variations on its wealth due to random fluctuations on underlying
asset’s price. By doing this, the algorithm implicitly transforms data from historical measure
into risk-neutral one ([BP04]).

To lower computation burden, authors suggest that a good simplification is to take

ϕj(S) =
dχj(S)

dS
βj = αj

With this, Equation (3.3.3) becomes

α = argmin
α∈Rn

E((C(t+∆t, St+∆t)e
−r∆t − α · χ(St)− α · χ′(St)(St+∆te

−r∆t − St))
2)

When not dealing with fat tail scenarios, this is usually a fairly good approximation for the
hedge, since the difference between Black-Scholes ∆-hedge and optimal hedging strategy
is often small.

Finally, the authors argue that, besides coping with data in historical measure, the proposed
algorithm also has the following advantages over LSMC:

• Provides a more precise computation (i.e. a narrower confidence interval) for the true
value of the security price

• Provides a value for the strategy to correctly hedge the security

Although not justified in the original article, this remarks are explored in more details in
[BP04].

CHAPTER 3. PRICING METHODS 30

3.4 Comparison of Pricing Methods

After presenting each pricingmethod, we now summarize their similarities and differences.

Both methods, tree and Monte Carlo ones, are fairly used for pricing securities, quite easy to
understand7 and implement and can correctly cope with american-styled exercises. But tree
methods do not correctly cope with path-dependent features (e.g. asian-style payoffs). On
the other hand, Monte Carlo methods, because of its simulation-based nature, may easily be
extended to cope with these features. Also, Monte Carlo methods are more easily adaptable
to cope with exhogenous events, such as exhogeneous or firm-related events (e.g. credit
risk defaults, mergers, stock dilution, etc), whilst this is very difficult to do in tree methods, as
its capabilities are engraved in the very tree structure.

Computational cost in tree methods rises exponentially with smaller ∆t (or equivalently, with
more time discretization step), whilst for Monte Carlo methods, it rises in a linear way with
greater Nt and gretare NMC .

In general, tree methods are usually faster than Monte Carlo ones. But if its parameter ∆t is
sufficiently small, the number of tree nodes becomes very big and computation cost rise too
much, and tree method may become slower than equivalent Monte Carlo ones.

A final important difference we saw is with respect to result values yielded by each method:
tree methods yield only an estimated value for the price, whilst Monte Carlo ones yield an
estimated value and a confidence interval.

Finally, summarizing our discussion, tree methods are faster and yield exact values, which
makes them the reference pricing method for simple products, which do not have path-
dependent features nor have exhogeneous or firm-related events. When these last features
are present, despite its worse performance, Monte Carlo methods are usually preferred since
they are flexible enough to be customized to cope with these particularities.

As was seen in Section 2.3, Convertible Bond contracts are very heterogeneous in practice,
tailored for specific needs of the issuer, with unusual and specific clauses being fairly com-
mon. For all this, because of its flexibility and extensibility, we will focus primarily on Monte
Carlo methods throughout this work, comparing with tree methods whenever possible.

7Because of its simulation nature, with each path independent from the others and reproducing a possible
realization in the market, and because obtained results are more easily traced back into their path inputs, it
may be argued that Monte Carlo methods are easier to understand than tree ones.

Chapter 4

Convertible Bond Modelling and
Pricing

In this chapter, we will cover modelling and pricing of Convertible Bonds in a constructive
manner.

In Section 4.1, we will review some of the pricing issues exposed in Section 2.3 and discuss
models found in current literature, discussing the pros and cons of each approach. Finally,
we will present the chosen approach for this work.

In Sections 4.2, 4.3, 4.4 and 4.5, beginning from a more simple product and simplified model
towards more complex products and models, we discuss each setting, implementing and
analyzing it.

4.1 Convertible Bond Modelling Review

In this section, we shall briefly review some Convert Bond modelling and pricing approaches
found in the literature, contextualizing this work among these approaches.

From a modelling point of view, 2 main families of Convertible Bond models have appeared:
firm value-based models and stock price-based models. Firm value-based models seek
to map investor and issuer exercise decision structure using current firm value as its state
variable. Although in theory these models are very rich and may account for several firm-
related events (such as credit risk defaults, mergers, stock dilution, etc), in practice they are
very difficult to implement. This is mainly due to the fact that firm-value is a variable not
directly observable in the market, hard to estimate and model.

Stock price-based models, on the other hand, model exercise decision structure using the
stock price as its state variable. Here stock price may be thought as an observable proxy
for the firm value, since it is generally assumed that it reflects all information available in the

31

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 32

market and that any changes to firm value are immediately reflected in it1. Therefore, firm-
related events should be, indirectly, reflected in stock price value and these models should
theoretically encompass all cases firm-value based models excel in. In practice, many jump-
like firm-related events, specially credit-risk default events, are not well captured by classical
stock-based models, such as those in spirit of Black-Scholes. To cope with such events,
these models are often augmented with jump processes, making pricing task much more
complex and rendering closed-form formulas practically non-existent.

Historically, one of the first works to deal with Convertible Bond pricing was [IJ77]. Its author
Ingersoll proposed a firm value-based model, using classical contingent claim’s approach
and arbitrage arguments to derive a closed-form formula for some special cases. Later,
Lewis ([Lew91]) and Bühler-Koziol ([BK02]) extended this approach for more complex cases
and firm’s capital structures. However, presented formulas remained constrained to very
special cases and ignored important and often found Convertible Bond features, such as
early exercise and path-dependent ones.

In [BS77], Brennan-Schwartz presented a firm value-based model and a finite-difference
method for pricing Convertible Bonds. Later, in their seminal paper [BS80], through a sen-
sitivity analysis, these authors investigated which factors impacted the Convertible Bond’s
price the most. Contrary to one would naturally expect, they concluded that the stochasticity
of interest rate and stock volatility do not heavily impact the final price and may as well be
neglected without introducing large errors on price estimation. Rather, stochasticity of stock
price and credit risk were the factors which influenced the most.

Stock price-based models were first introduced by McConnel-Schwartz in [MS86], where
authors used a simplified model with a finite difference method for pricing the Liquid Yield
Option Note (LYON) security, a then-innovative zero-coupon callable puttable Convertible
Bond.

Later works focused on using numerical methods (lattice- and Monte Carlo-based) for coping
with early-exercise features and including credit risk in used models. Noteworthy works
along these lines include those published byGoldmann Sachs ([Sac94]), Ho-Pfeffer ([HP96]),
Tsiveriotis-Fernandes ([TF98]), Ayache et al ([AFV03]), Takahashi et al ([TKN01]), Ammann
et al ([AKW03]) and Milanov-Kounchev ([MK12]).

For an excelent, more in-depth and thorough review on modelling and pricing approaches
found in literature, refer to [Zad10].

This work may be classified as a Black-Scholes stock price-based model work using Monte
Carlo methods as its pricing method. It is mostly inspired by the work of Ammann et al in
[AKW08]. Unlike that work, however, we do not use a two-stage simulation with parametric
representation of early exercise decisions in the spirit of [Gar03]. Instead, we use backward
induction methods such as those proposed by Longstaff-Schwartz ([LS01]) and Potters et
al ([PBS01]). In this sense, it is much more akin to [WK05], except in current work bonds
are considered to be riskless and interest rate is not stochastic, but rather constant and
deterministic. Some improvements on backward induction’s regression procedure proposed

1This is the strong form of the so-called Efficient Market Hypothesis. It is a bold simplifying hypothesis,
heavily criticised but very commonly assumed in financial models.

33 4.2. SETTING 1: NON-CALLABLE NON-PUTTABLE EUROPEAN CONVERTIBLE BOND

by Bouchard-Warin ([WB12]) are also discussed and implemented.

4.2 Setting 1: Non-callable Non-puttable European Con-
vertible Bond

In this first setting, we start with a non-callable non-puttable european Convertible Bond (i.e.
whose conversionmay only take place at maturity). Although this kind of product is too simple
and not much realistic, in the sense that it is very rare to be found in the market, as we shall
se later on, it is simple enough to obtain a closed-form solution and draw some preliminary
conclusions about Convertible Bonds.

For modelling this kind of product, we choose a stock price-based model (see Section 4.1)
- as we believe it to be more intuitive for the layman to grasp - using a plain Black-Scholes
stochastic market model (see Section 3.1).

For simplification, we assume only the asset’s stock price is stochastic in nature, fixing both
interest rate and stock price’s volatility as deterministic and constant. This simplification
allows us to stick to a simpler implementation (which may be extended to treat the general
case) and does not introduce large errors on computation of a Convertible Bond price, as
confirmed by the sensitivity analysis provided in the seminal article [BS80].

Although credit risk is stated as a main influencing factor on Convertible Bond price in the
sensitivity analysis provided in [BS80], throughout this work, also for implementation simpli-
cation, we consider the Convertible Bond to be credit-riskless, pointing out later in Section
4.6 how the provided methods may be extended to cope with this credit-risky.

As in Black-Scholesmarket model, let S(t) be the asset’s stock price, with σ being its constant
volatility, and r the deterministic and constant risk-free interest rate. The stock is assumed to
pay a continuous dividend yield q on its price. It’s also assumed that the market is complete
and the only source of uncertainty comes from stochasticity of the asset’s stock price. Hence,
as seen in Section 3.1, S(t) follows the SDE 3.1.1

{
dS(t) = S(t)((r − q)dt+ σdWQ(t))

S(0) = S0

It should be noted that, throughout this work, all pricing computation and analysis is done
assuming data is provided under risk-neutral measure Q. Although, as stated in Section
3.3.4, LSMCmethod does not cope well with historical data, HMCmethod does so ([PBS01],
[BP04]). Thus it can be used for pricing with historical data, remaining only calibration issues
to be discussed, which will be done in Section 4.6.

Let CB(t) be the Convertible Bond’s fair price, B(t) be the value of its corresponding straight
bond, n(t) be the conversion ratio at time t. Let κ be the redemption ratio at time t = T

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 34

(maturity) and N the nominal value.

Suppose initially that the underlying straight bond is a zero-coupon bond (i.e. it does not pay
any coupons along its lifetime). As the Convertible Bond in current setting is an european
one, only at time t = T the investor may choose to convert it. Thus, its fair price is given at
time t = 0 by:

CB∗ = CB(0) = EQ(e−r(T−0)max(n(T)S(T), B(T))|F0)

= e−rTEQ(max(n(T)S(T), B(T))︸ ︷︷ ︸
(i)

)

But we may rearrange the term inside (i) as:

max(n(T)S(T), B(T)) = B(T) +max(n(T)S(T)−B(T), 0)

= B(T) + n(T)max(S(T)− B(T)

n(T)
, 0)

Hence, CB∗ then becomes:

CB∗ = e−rTEQ(B(T) + n(T)max(S(T)− B(T)

n(T)
, 0))

As we are considering r to be deterministic and constant, B(T) is also deterministic and
hence Ft-mensurable. Thus:

CB∗ = e−rTB(T) + n(T) e−rTEQ(max(S(T)− B(T)

n(T)
, 0))︸ ︷︷ ︸

(ii)

But (ii) may also be regarded as the price of a call option with strike price K =
B(T)

n(T)
. Thus,

applying Black-Scholes Formula for the call option price (3.1.4), we then arrive at the following
Black formula for the Convertible Bond price2:

2In a setting where the straight bond value is considered to stochastic (e.g. because of a term structuremodel
for the interest rate), one could still use Margrabe Formula, a more general version of Black-Scholes Formula
which accounts for options on the exchange of two stochastic quantities. In this case, the two quantities to be
exchanged would be B(T) and n(T)S(T). As we are considering deterministic and constant risk-free interest
rates throughout this work, we shall not dwelve into Margrabe Formula’s use. See [Zad10] and [AKW01] for a
brief discusssion on this topic.

35 4.2. SETTING 1: NON-CALLABLE NON-PUTTABLE EUROPEAN CONVERTIBLE BOND

CB∗ = e−rTB(T) + n(T)

(
S0e

−qTΦ(d1)−
B(T)

N(T)
e−rTΦ(d2)

)
⇒

⇒ CB∗ = e−rTB(T) + n(T)S0e
−qTΦ(d1)−B(T)e−rTΦ(d2) (4.2.1)

with

d1 =
1

σ
√
T

(
log(

N(T)S0

B(T)
) + ((r − q) +

σ2

2
)T

)
d2 = d1 − σ

√
T

Φ(x) =

∫ x

−∞
e−

1
2
z2dz

Equation 4.2.1 gives us a closed-form formula for the Convertible Bond price in current set-
ting, describing it as a sum of a straight bond component and embedded call option compo-
nent3.

What remains now is only to define how its corresponding straight bond value is evaluated,
as well as the treatment of coupon payments. Throughout this work, the following valuation
convention is followed:

1. At time t = T , the straight bond’s value is given by:

B(T) = κN

where κN is the redemption value earned at time t = T .

2. At each time where a coupon payment is applicable (even at time t = T), its value
C(t) is added unconditionally to the value of the Convertible Bond at that point. By
unconditionally, it is meant that apart fromwhat exercise action takes place, the investor
does receive the coupon available at that date. Or putting it another way, the investor
does not need to give up current (and any other previous) coupon in order to do exercise
the Convertible Bond.

In current setting, item 2 might not seem to impact much, because conversion, the only
exercise action available at this setting, may only take place at time t = T , so that each other
coupon is always earned and its discounted values may be summed asunder. But in more
general settings, such as 4.3 and 4.4, we shall see that this coupon cash-flow influences
directly the Convertible Bond price and exercise frontier.

Explicitly incorporating coupon payments at Equation 4.2.1, it then becomes:

3Because of this components idea, this model is sometimes called ”Component Model” ([Zad10])

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 36

CB∗ =
∑

τ∈Ωcoupon

e−rτC(τ) + e−rTB(T) + n(T)S0e
−qTΦ(d1)−B(T)e−rTΦ(d2) ⇒

⇒ CB∗ =
∑

τ∈Ωcoupon

e−rτC(τ) + e−rTκN + n(T)S0e
−qTΦ(d1)− e−rTκNΦ(d2) ⇒

⇒ CB∗ =
∑

τ∈Ωcoupon

e−rτC(τ) + n(T)S0e
−qTΦ(d1) + e−rTκN(1− Φ(d2)) (4.2.2)

where Ωcoupon is the set of coupon payment dates.

From Equation 4.2.2 we can draw some interesting conclusions on the asymptotic behavior
of the Convertible Bond price CB∗ with respect to the initial stock price S0:

If S0 → ∞, then we have:

S0 → ∞ ⇒ log(
N(T)S0

B(T)
) → ∞ ⇒{

d1 → ∞
d2 → ∞

⇒

{
Φ(d1) ≈ 1

Φ(d2) ≈ 1
⇒

⇒ CB∗ ≈
∑

τ∈Ωcoupon

e−rτC(τ) + n(T)S0e
−qT

This means that, if initial stock price is sufficiently high, than the investor will almost surely
convert the Convertible Bond and thus its value becomes just the parity value (possibly ad-
justed by continuous dividend yield) plus coupon values.

If S0 → 0+, then we have:

S0 → 0+ ⇒ log(
N(T)S0

B(T)
) → −∞ ⇒{

d1 → −∞
d2 → −∞

⇒

{
Φ(d1) ≈ 0

Φ(d2) ≈ 0
⇒

⇒ CB∗ ≈
∑

τ∈Ωcoupon

e−rτC(τ) + e−rTκN

This means that, if initial stock price is sufficiently low, than the investor will almost surely
not convert the Convertible Bond and thus its value becomes just the discounted redemption
value (possibly adjusted by continuous dividend yield) plus coupon values, i.e., what one
would expect to receive from the corresponding straight bond.

37 4.2. SETTING 1: NON-CALLABLE NON-PUTTABLE EUROPEAN CONVERTIBLE BOND

Figure 4.1: Non-callable non-puttable european Convertible Bond price with respect to stock price.
Source: [Zad10]

These asymptotic values reflect what we would intuitively expect from investor exercise be-
havior in these situations.

Plotting Convertible Bond Price along the entire stock price spectrum in current setting leads
us ([Zad10]) to Figure 4.14:

Based on which region stock price falls, market classifies the Convertible Bond as Junk, Out
of the Money, At the Money, In the Money and Discount Convertible Bond (see [Zad10]
for more details).

Next, we move on to numerical methods. Although it would not strictly be necessary, as
in this setting we have a closed-form formula for the Convertible Bond price, we implement
Tree and Monte Carlo numerical methods in order to provide a foundation for implementa-
tion of forthcoming settings. We then cross-validate this initial implementation with the exact
values from Black formula in Equation 4.2.2, adjusting the Tree and Monte Carlo parameters
to achieve a reasonable precision level. Later on, whenwe include american and complex
exercises and when no closed-form formula is available, we shall cross-validate Monte Carlo
results with Tree ones, as Tree methods are largely popular and widely used in market in-
dustry for Convertible Bonds and hence could be take as a reasonable benchmark.

For the Monte Carlo method, each stock price path is evaluated according to Equation 3.1.1.
We compute paths for both Euler-Maruyama and Milstein scheme. At time t = T , the Con-

4It is interesting to note that firm value-basedmodels also lead to similar graphswhen confronting Convertible
Bond Price and stock price spectrum (see [BS77]).

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 38

vertible Bond’s payoff is calculated as its intrinsic value according to Table 4.1 (a simplified
version of the one from [AKW08]). Then, the price is calculated as a mean of discounted
realized intrinsic values, according to Monte Carlo method (see 3.3.1).

Payoff Condition Time Restriction Action
n(T)S(T) if n(T)S(T) ≥ κN if t = T Conversion

κN if n(T)S(T) < κN if t = T Redemption

Table 4.1: Exercise actions and respective payoffs in Setting 1

For the Tree method, a regular CRR tree is implemented. As with the Monte Carlo method,
at time t = T the payoff is evaluated as the intrinsic value according to Table 4.1 and the
Convertible Bond price is calculated in a recursive manner defined in the Tree method (see
3.2).

Example 4.2.1. Consider the following Convertible Bond base example (a simplified version
of one proposed in [AKW08]):

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date -
Coupon frequency -
Coupon ratio -
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: 2 years (european-styled)

Conversion restrictions: -
Conversion ratio: 1
Conversion ratio adjustment clauses: -

Call provisions - (non-callable)
Put provisions - (non-puttable)

Table 4.2: Non-callable non-puttable european Convertible Bond

Consider also the following market scenario for the stock price and interest rate:

r = 0.05

S0 = 100

σ = 0.4

q = 0.1

In Table 4.3 we summarize results found for this example, as well as references prices, for
comparison.

39 4.2. SETTING 1: NON-CALLABLE NON-PUTTABLE EUROPEAN CONVERTIBLE BOND

Reference Prices
Straight Bond 90.48374
Black Formula 105.6615

Numerical Results

Method Price
Absolute Relative Error
(w.r.t Black Formula)

Confidence Interval
(α = 5%)

Tree
(100 time steps) 105.6129 0.04593137% -
Monte Carlo / Euler
(1000 paths / 100 time steps) 103.9161 1.651834% [101.5143, 106.3179]
Monte Carlo / Milstein
(1000 paths / 100 time steps) 103.7889 1.772279 % [101.4055, 106.1722]
Monte Carlo / Euler
(5000 paths / 100 time steps) 105.8127 0.1431244% [104.7224, 106.9030]
Monte Carlo / Milstein
(5000 paths / 100 time steps) 105.7839 0.1158365% [104.6895, 106.8782]
Monte Carlo / Euler
(10000 paths / 100 time steps) 105.7155 0.05112382% [104.9414, 106.4896]
Monte Carlo / Milstein
(10000 paths / 100 time steps) 105.7248 0.05990253% [104.9479, 106.5017]
Monte Carlo / Euler
(25000 paths / 100 time steps) 105.7023 0.03860627% [105.2138, 106.1907]
Monte Carlo / Milstein
(25000 paths / 100 time steps) 105.6968 0.03339507% [105.2058, 106.1877]
Monte Carlo / Euler
(50000 paths / 100 time steps) 105.575 0.08184681% [105.2298, 105.9202]
Monte Carlo / Milstein
(50000 paths / 100 time steps) 105.5594 0.09660883% [105.2128, 105.9060]
Monte Carlo / Euler
(100000 paths / 100 time steps) 105.6663 0.004568832% [105.4214, 105.9112]
Monte Carlo / Milstein
(100000 paths / 100 time steps) 105.6385 0.02170367% [105.3930, 105.8841]

Table 4.3: Results for Example 4.2.1

First thing to notice from Table 4.3 is that the price given by the Black Formula is greater
than the one from the equivalent straight bond. This agrees with what we would expect: a
Convertible Bond gives more options to the investor than a straight bond. Moreover, its value
is, at every time, almost surely greater than the one attained from the straight bond.

Next, analyzing the obtained results, we see that with just 100 time steps the Tree method
gives us a pretty good price result, agreeing with Black Formula’s value, with absolute relative
error of 0.04593137% < 1%. Thus, we shall stick ourselves to just 100 time steps, as it attains
a reasonably good precision level without increasing too much the computational burden.
For simplicity, we chose to maintain the same number of time steps for both Tree and Monte
Carlo methods.

Monte Carlo methods with Euler-Maruyama and Milstein discretizations both also give pretty
good price results, agreeing with Black Formula’s value. With just 1000 paths, an absolute
relative error of order 1% is attained in both Euler/Mistein schemes. Increasing the number
of steps to 5000 paths, an error of order 0.1% < 1% is attained. Increasing the number of
steps to 10000 and further, errors of order 0.01% < 1% are attained, pairing with the ones
achieved with Tree method.

From both error and confidence intervals analysis of Example 4.2.1 we are led to believe

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 40

Figure 4.2: Variance/Confidence Interval analysis of the influence of number of Monte Carlo paths
on Example 4.2.1 Convertible Bond price.

that we ought to use 10000 paths, as any greater number of paths increases too much the
computational burden5 without given a much better precision level.

To support this conclusions and exempt our analysis from sample bias, we conduct a more
broad variance/confidence interval analysis on Example 4.2.1: for each number of sample
paths to be analyzed (1000, 5000, 10000, 25000, 50000, 100000 paths), we execute 500 Monte
Carlo simulations for Convertible Bond in Example 4.2.1 and average its resulting price, ab-
solute relative error and confidence interval. For simplicity, we use only Euler discretization
scheme, as empirical observations show that Milstein values do not diverge much from Eu-
ler’s. The result is plotted in Figure 4.2. The range bars mark confidence intervals attained
for each number of paths. Color gradient indicates relative error level. The Black Formula’s
reference price is denoted by the dashed line.

We see that, as we originally thought, 10000 paths gives us a good relative error level (∼ 0.2%)
and confidence interval with reasonably small computational burden, whilst greater numbers

5Although a really not much noticeable problem in current setting, in forthcoming settings, where backward
induction techniques are used, greater numbers of paths drastically increase the processing time, from seconds
to minutes or even hours in non-optimized codes. For real world usage scenarios, it is thus desireable to
minimize the number of paths whenever possible.

41 4.2. SETTING 1: NON-CALLABLE NON-PUTTABLE EUROPEAN CONVERTIBLE BOND

of paths do not improve much on these but do overly increase the computational burden. So,
from now on, we shall stick to 10000 paths in all our Monte Carlo simulations.

Finally, through empirical analysis, we take a look to what happens to the Convertible Bond
price if we change its indenture, by increasing the redemption ratio, the conversion ratio or
adding coupon payments.

Example 4.2.2. Consider the following Convertible Bond, modified from Example 4.2.1:

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date -
Coupon frequency -
Coupon ratio -
Redemption ratio 110%

Convertible Bond features/terms
Conversion provisions Conversion dates: 2 years (european-styled)

Conversion restrictions: -
Conversion ratio: 1
Conversion ratio adjustment clauses: -

Call provisions - (non-callable)
Put provisions - (non-puttable)

Table 4.4: Example 4.2.1 Convertible Bond with increased redemption ratio

Consider also the following market scenario for the stock price and interest rate:

r = 0.05

S0 = 100

σ = 0.4

q = 0.1

We get the results summarized in Table 4.5.

Reference Prices
Straight Bond 99.53212
Black Formula 112.0584

Numerical Results

Method Price
Absolute Relative Error
(w.r.t Black Formula)

Confidence Interval
(α = 5%)

Tree 112.0598 0.00128591% -
Monte Carlo / Euler 112.3238 0.2367987% [111.5997, 113.0478]
Monte Carlo / Milstein 112.3062 0.2211207% [111.5799, 113.0325]

Table 4.5: Results for Example 4.2.2. All methods used 100 time steps. For Monte Carlo
simulations, 10000 paths were used.

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 42

Comparing obtained price with the one from Example 4.2.1, we observe a greater value
(112.0584 > 105.6615). This agrees with what we would expect from Equation 4.2.2, i.e. the
Convertible Bond price rises with increasing redemption ratio.

Example 4.2.3. Consider the following Convertible Bond, modified from Example 4.2.1:

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date -
Coupon frequency -
Coupon ratio -
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: 2 years (european-styled)

Conversion restrictions: -
Conversion ratio: 1.5
Conversion ratio adjustment clauses: -

Call provisions - (non-callable)
Put provisions - (non-puttable)

Table 4.6: Example 4.2.1 Convertible Bond with increased conversion ratio

Consider also the following market scenario for the stock price and interest rate:

r = 0.05

S0 = 100

σ = 0.4

q = 0.1

We get the results summarized in Table 4.7.

Reference Prices
Straight Bond 90.48374
Black Formula 133.6573

Numerical Results

Method Price
Absolute Relative Error
(w.r.t Black Formula)

Confidence Interval
(α = 5%)

Tree 133.6891 0.02378404% -
Monte Carlo / Euler 133.1709 0.3639102% [131.7358, 134.6061]
Monte Carlo / Milstein 133.079 0.4326661% [131.6423, 134.5158]

Table 4.7: Results for Example 4.2.3. All methods used 100 time steps. For Monte Carlo
simulations, 10000 paths were used.

Comparing obtained price with the one from Example 4.2.1, we observe a greater value

43 4.2. SETTING 1: NON-CALLABLE NON-PUTTABLE EUROPEAN CONVERTIBLE BOND

(133.6573 > 105.6615). This agrees with what we would expect from Equation 4.2.2, i.e. the
Convertible Bond price rises with increasing conversion ratio.

Example 4.2.4. Consider the following Convertible Bond, modified from Example 4.2.1:

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date 0.5 years
Coupon frequency 0.5 years
Coupon ratio 5%
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: 2 years (european-styled)

Conversion restrictions: -
Conversion ratio: 1
Conversion ratio adjustment clauses: -

Call provisions - (non-callable)
Put provisions - (non-puttable)

Table 4.8: Example 4.2.1 Convertible Bond with coupon payments

Consider also the following market scenario for the stock price and interest rate:

r = 0.05

S0 = 100

σ = 0.4

q = 0.1

We get the results summarized in Table 4.9.

Reference Prices
Straight Bond 109.2793
Black Formula 124.4571

Numerical Results

Method Price
Absolute Relative Error
(w.r.t Black Formula)

Confidence Interval
(α = 5%)

Tree 124.4085 0.03899478% -
Monte Carlo / Euler 124.3811 0.06107139% [123.6005, 125.1616]
Monte Carlo / Milstein 124.3776 0.06387747% [123.5934, 125.1617]

Table 4.9: Results for Example 4.2.4. All methods used 100 time steps. For Monte Carlo
simulations, 10000 paths were used.

Comparing obtained price with the one from Example 4.2.1, we observe a greater value
(124.4571 > 105.6615). This agrees with what we would expect from Equation 4.2.2, i.e. the
Convertible Bond price rises with introduction of coupon payments.

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 44

Although forthcoming settings diverge substantially from current one, many of its underlying
assumptions do not hold and Equation 4.2.2 simply may not be used, in practice most of the
above stated empirical conclusions still apply to them.

Summary of Results and Conclusions

• A Black-Scholes-like closed-form formula is presented for the non-callable non-puttable
european Convertible Bond;

• For the given closed-form formula, we inspected the price’s asymptotic behavior with
respect to initial stock price. We have found that obtained asymptotic expressions for
the price is in consonance with what one would intuitively expect as well as with well
known graphs of price with respect to initial stock price, such as that in Figure 4.1;

• We have found that 100 time steps are sufficiently to give a very accurate estimated
price with Tree method, resulting in less than 1% of relative error (with respect to the
value given by the closed-form formula. To ease the comparison, we fixed the number
of time steps as 100 for both Tree and Monte Carlo methods;

• Through a variance/confidence interval analysis, we have found that for 100 time steps
10000 paths were sufficient to give a pretty accurate estimated price, with the best com-
promise between smaller relative error, narrower confidence interval and not so great
computational cost;

• Finally, starting with a base european Convertible Bond example and walking into some
of its variants, we examined what would happen with the Convertible Bond price. At-
tained results were in consonance with the previously given closed-form formula.

4.3 Setting 2: Non-callable Non-puttable American Con-
vertible Bond

Next, we move on to a more complex but much similar product: a non-callable non-puttable
american Convertible Bond (i.e. whose conversion may take place at any time between
issuance and maturity). This product is much more commonly found in market than the
previous one from Setting 1.

For modelling this product, we follow the same approach used in Setting 1: we choose a
stock price-based model, with only the asset’s stock price as stochastic, and deterministic
and constant interest rate, stock volatility and continuous dividend yield. Market is assumed
to be complete and S(t) is such that it follows SDE 3.1.1. For simplification, we also consider
the Convertible Bond to be credit-riskless.

Since we now have an american-styled conversion, the closed-form formula 4.2.2 cannot

45 4.3. SETTING 2: NON-CALLABLE NON-PUTTABLE AMERICAN CONVERTIBLE BOND

be used anymore to price this Convertible Bond. In fact, closed-form formulae for pricing
instruments with american exercise are very hard to find and not even guaranteed to exist
in the general case. Therefore, from this setting on, we shall resort to numerical pricing
methods.

In this work, we are focusing in Monte Carlo methods, as we believe them to be superior in
terms of flexibility and extensibility, important features to deal with rich and complex set of
features a Convertible Bond may present. For benchmarking this methods though, we shall
compare its results to the corresponding Tree method implementation.

The Tree method in current setting is implemented much like in Setting 1, with a CRR tree,
except that at every node the corresponding intrinsic value is calculated as the maximum
of discounted average value of succeeding nodes and the payoff that would be obtained at
that time. Payoff is calculated according to Table 4.10 (another simplified version of the one
in [AKW08]), where Ωconv is the set of time where conversion is allowed (in current setting,
Ωconv = [0, T], since conversion is american-styled; in more general settings, conversion may
follow any discrete structure) and V ′(t) = EQ(CB(τ ∗)|Ft) is the continuation value (i.e. the
value the investor is expected to receive if instrument is not exercised immediately, but rather
held for one more time period and later exercised at an optimal time τ ∗ > t).

Payoff Condition Time Restriction Action
n(t)S(t) if n(t)S(t) ≥ V ′(t) if t ∈ Ωconv Conversion

κN if n(t)S(t) < κN if t = T Redemption

V ′(t) Otherwise Continuation

Table 4.10: Exercise actions and respective payoffs in Setting 2

In terms of time steps, we follow the same reasoning exposed in Setting 1, i.e. Nt = 100 time
steps, for both Tree and Monte Carlo methods. To solve lack of resolution issues in exercise
boundaries evaluation (a topic we shall discuss further on), we expand the number of steps
in Tree method to Nt = 1000 time steps, whilst constraining the exercise time steps to the
same original 100 time steps, to keep Monte Carlo results comparable.

To cope with american exercises, we implement Monte Carlo methods with backward induc-
tion techniques. Both LSMC (Section 3.3.3) and HMC (Section 3.3.4) methods are imple-
mented. For each one, both Euler-Maruyama and Milstein discretization schemes are used.
Using the same rationale from Setting 1, we stick with NMC = 10000 Monte Carlo paths. In
both these Monte Carlo methods, payoff is also calculated according to Table 4.10.

With respect to which family of basis functions to use in LSMC and HMC methods, imple-
mentation was made such as to support (weighted and non-weighted) Laguerre, Legendre,
Chebyshev (of 1st, 2nd, 3nd type), (physicists’) Hermite, Gegenbauer and Jacobi polyno-
mials, with dimensions M ≥ 2. Interestingly, our empirical results indicate that, given a
fixed scenario of Convertible Bond setting and number of Monte Carlo paths and time steps,
each of the cited non-weighted polynomial basis produce exactly the same results, being
completely equivalent. In contrast, their weighted counterparts seem to produce very poor

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 46

results. Hence, to standardize our simulation procedures and make results more compara-
ble, we shall along this work stick only to (physicists’) Hermite polynomials, giving then some
insight to what happens with results when we vary the dimension of the basis.

To alleviate numerical errors in regression procedure in both LSMC and HMC methods, we
also make use of the following modifications:

Use QR decomposition to solve least-squares problem in regression procedure

As seen in Sections 3.3.3 and 3.3.4, the core of both LSMC and HMC lies in regression
procedure, which itself relies in an optimization problem that can be reduced to a least-
squares problem of the form:

α = argmin
α∈Rn

∥Aα−B∥2

Since more efficient optimization techniques are available to solve quadratic optimization
problems, there is no need to use more general convex optimization techniques. In [WB12],
authors digress about pros and cons of some of the former techniques: linear system solving
using Cholesky decomposition, QR decomposition and SVD decomposition. Since the QR
decomposition technique provides a good balance between roundoff errors resilience, mem-
ory requirements and computational efficiency, we shall stick to it to implement regression in
LSMC and HMC methods along this work.

Modify stock price path’s generation procedure to use an array of initial stock price
values instead of just one single value

Because in Monte Carlo methods all stock price paths are usually generated from a single
starting point S = S0, as the backward induction algorithm proceeds in its backward manner,
farther from maturity t = T , near initial time t = 0, paths begin to collapse and little informa-
tion becomes available, leading to response terms almost equal across all paths. Not only
rendering poor regression results, this often leads to ill-conditioned or singular linear systems
near initial time t = 0, causing the QR decompostion (and hence all regression procedure)
to fail.

To tackle this problem, the idea is to generate stock price paths using an array of initial stock
price values instead of just one single value. Let S∗

0 be the original stock price initial value.
We artificially create an array of stock price initial values in the neighborhood of S∗

0 . Let S0

now denote the set of stock price initial values. For each value in S0, we sample NMC Monte
Carlo paths with Nt time steps, forming an array of multi-originated paths. Then we procede
with usual LSMC/HMC algorithm, evaluating the regression at each time step with the full
array, not only those paths originating in S∗

0 . Finally, the final price is evaluated as the mean
of found intrinsic values at time t = 0, but now conditioned to sigma-algebra generated by

47 4.3. SETTING 2: NON-CALLABLE NON-PUTTABLE AMERICAN CONVERTIBLE BOND

{S0 = S∗
0} (i.e. the mean of found intrinsic values at time t = 0 for paths that started at

S0 = S∗
0).

For providing a balanced, symmetric array of stock price initial values, we choose parameters
in a such way that the number of S0 values that are greater than S∗

0 (the upper band of S0)
is equal to the number of values that are smaller than S∗

0 (the lower band of S0). Let ∆S0 be
the distance value from S∗

0 to both maximum value in the upper band and minimum value in
the lower band. Let the number of values in upper band and lower band both be NS0. Thus,
the whole array includes 2NS0 + 1 values. Then, we have:

S0max = S∗
0 +∆S0

S0min
= S∗

0 −∆S0

δS0 =
S0max − S0min

2NS0

=
(S∗

0 +∆S0)− (S∗
0 −∆S0)

2NS0

⇒

δS0 =
2∆S0

2NS0

=
∆S0

NS0

S0 = {S0min
, S0min

+ δS0 , S0min
+ 2δS0 , · · · ,

S∗
0 − δS0 , S

∗
0 , S

∗
0 + δS0 , · · · , S0max − 2δS0 , S0max − δS0 , S0max} ⇒

⇒ S0 = {S∗
0 −NS0δS0 , S

∗
0 − (NS0 − 1)δS0 , · · · ,

S∗
0 − δS0 , S

∗
0 , S

∗
0 + δS0 , · · · , S∗

0 + (NS0 − 1)δS0 , S
∗
0 +NS0δS0}

In our empirical tests, we have found a good guess for ∆S0 = 0.8S∗
0 .

Since the number of paths from other values in S0 contribute to rise of regressions’ computa-
tional cost but not to the accuracy of the Monte Carlo estimator (only those paths starting at
S0 = S∗

0 will be taken into account to form the Monte Carlo estimator), it is useful to break the
initial simmetry and allow the number of Monte Carlo paths starting at S∗

0 to be greater than
those starting at other values in S0. Let NMCband

denote the number of paths attributed to
each initial value in upper and lower bands of S0 and NMC now denote the number of paths
attributed to initial value S∗

0 . The effective number of Monte Carlo paths now increase from
NMC to NMC + 2NS0NMCband

.

We have found, in our empirical tests for this setting, that parameters NS0 = 100, NMC =
10000, NMCband

= 10 provide a good balance between computational cost, good regression
results and precision level of Monte Carlo estimators.

Next, before stepping into an example of Convertible Bond in this setting, we shall inves-
tigate another natural question: what is the relationship between the price of the american
Convertible Bond and its european counterpart?

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 48

A formal proof is out of the scope of this work, but we try to give here some intuitive reasoning
to what happens. Let CBE(t) and CBA(t) be the price of the non-callable non-puttable euro-
pean Convertible Bond and american Convertible Bond, respectively. Then, as the american
one gives the investor the extra possibility to exercise it at earlier times and at each time its
intrinsic value is the maximum of the corresponding european value and a, possibly greater,
payoff, one would naturally expect that:

CBA(t) ≥ CBE(t) (4.3.1)

Therefore, Inequality 4.3.1 provides a lower bound estimator for the american Convertible
Bond price and may be used as a simple sanity check for pricing method implementations in
current setting. We shall see later on, that attained results in fact respect that inequality.

Example 4.3.1. Consider the following Convertible Bond example (another simplified version
of one proposed in [AKW08]), listed in Table 4.11.

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date -
Coupon frequency -
Coupon ratio -
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: 0-2 years (american-styled)

Conversion restrictions: -
Conversion ratio: 1
Conversion ratio adjustment clauses: -

Call provisions - (non-callable)
Put provisions - (non-puttable)

Table 4.11: Non-callable non-puttable american Convertible Bond

Consider also the following market scenario for the stock price and interest rate:

r = 0.05

S0 = 100

σ = 0.4

q = 0.1

For this example, we get the results summarized in Table 4.12. Tree method used 1000
time steps, with exercise time steps constrained to the same 100 time steps used by Monte
Carlo methods. For Monte Carlo simulations, 201 values in stock price mesh were used, with
10000 paths for the original (central) stock price initial value and 10 for each of the others.

49 4.3. SETTING 2: NON-CALLABLE NON-PUTTABLE AMERICAN CONVERTIBLE BOND

For both LSMC and HMC methods, a Hermite polynomial basis with dimension M = 4 is
used.

Reference Prices
Straight Bond 90.48374
Black Formula
(European Convertible Bond) 105.6615
Tree
(1000 time steps) 109.1298

Numerical Results

Method Price
Absolute Relative Error
(w.r.t Tree)

Confidence Interval
(α = 5%)

LSMC / Euler / Hermite M=5 111.3244 2.011036% [110.5088, 112.1400]
LSMC / Milstein / Hermite M=5 111.2122 1.908247% [110.3960, 112.0284]
HMC / Euler / Hermite M=5 111.0183 1.730531% [110.2009, 111.8356]
HMC / Milstein / Hermite M=5 110.908 1.629442% [110.0970, 111.7189]

Table 4.12: Results for Example 4.3.1.

First thing to notice from results in Table 4.12 are in consonance with Inequality 4.3.1, indi-
cating attained results to be quite reasonable.

Also, from results in Table 4.12 we see that HMC algorithm yielded slightly better results
than LSMC, with smaller errors and also narrower confidence interval. This indicates that
the hedge functions used in HMC, approximated as the derivative of the price basis functions
(see 3.3.4), are correctly capturing the optimal hedging strategy for this Convertible Bond,
yielding finally a better price than LSMC did. Simulations using Milstein discretization also
gave slightly better results than their counterpart using Euler-Maruyama discretization, as
expected.

Interestingly, we also notice from Table 4.12 that, although attained relative errors for LSMC
and HMC methods are reasonably low (around), they are quite large when compared to
those attained for regular Monte Carlo method in Setting 1 (around). Empirically investigat-
ing which parameters drive this trend, it was found that this is indeed a numerical issue and
the high stock volatility (σ) used in Example 4.3.1 was its cause. Although in theory high
volatility should not have a big impact on backward induction methods such as LSMC and
HMC, high volatility scenarios cause big fluctuations on stock price from a time step to an-
other, generating wildly-behaved (i.e. that change too quickly) stock price paths, leading to
poorer regression results compared to those attained with more mildly-behaved stock price
paths originated in low volatility scenarios. Since accuracy of backward induction methods
relies critically on good estimation of continuation values to correctly capture exercise de-
cision structure and these continuation values are themselves inferred from the regression
procedure, poorer regression results at each time step leads to estimation errors that are
cascaded as the algorithm walks backwardly, finally leading to a greater relative error with
respect to Tree method than that attained regular Monte Carlo. Thus, it is observed that
relative error in LSMC and HMC methods rises as volatility increases. These findings are in
consonance to those made in vanilla american options settings ([Jia09]), indicating this to be
not an issue related to a Convertible Bond setting, but rather a drawback of LSMC and HMC
methods themselves.

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 50

Unfortunately, since in real world scenarios stock volatility is not a controlled parameter of
the model but rather calibrated from market data, this volatility effect poses a serious issue
for general use of LSMC and HMC methods to price Convertible Bonds. To alleviate this
problem, one needs to improve regression. To try to achieve this goal, we then make use
of the following technique proposed by Bouchard and Warin in article [WB12]: instead of, at
each time step, doing just one regression encompassing all paths, stock price data is sorted
and partitioned into Nreg intervals, with a regression executed separately for each of those
stock price intervals. Using Nreg = 1 in Bouchard’s regression is completely equivalent to
use the regular regression procedure.

Although individual empirical results shows Bouchard’s regression technique does lower the
attained relative errors, relative errors results vary strongly with used number of regression
intervals Nreg and polynomial basis’ dimension M6, as well as with volatility itself. To better
visualize this volatility effect on relative errors and analyze if there is an optimal choice of the
pair of parameters Nreg andM , the following study is conducted7: for each of 50 simulations
(each with different random number samples) of NMC = 10000 paths and Nt = 100 time
steps, the evolution of relative error to Tree method with respect to several σ (0.05, 0.1, 0.2,
0.3, 0.4, 0.5) is tracked for each combination for several M (2, 3, 4, 5) and several numbers
of regression intervals Nreg (1, 2, 5, 10, 50). Finally, results are then arranged horizontally by
M and vertically by Nreg. This study is conducted for both LSMC and HMC methods, with
results respectively summarized in Figures 4.3 and 4.4. Only results for Euler-Maruyama
discretization are shown, since we have found Milstein ones to be quite similar.

Analyzing Figures 4.3 and 4.4, we reach the following conclusions:

• The aforementioned volatility effect on relative error is easily confirmed: the relative
error consistently rises as volatility increases;

• With respect to the evolution of relative error with regression intervals, a consistent
behaviour for both LSMC and HMC methods is displayed: increasing the number of
regression intervals a little (e.g. Nreg = 2, 5) result, on average, in smaller relative
errors when compared to regular regression procedure. Nevertheless, increasing too
much the number of regression intervals (e.g. Nreg = 10, 50) result, on average, in
relative errors even larger than regular regression procedure;

• With respect to the evolution of relative error with basis’ dimension, a consistent be-
haviour is also displayed: increasing the basis’ dimension results, on average, in larger
relative errors;

• The optimal choice of parameters is M = 3 and Nreg = 2 for both LSMC and HMC
methods. For this choice, in both methods relative errors are constrained, on average,
to impressively low levels (less than 1%), similar to those attained with regular Monte

6As said previously, our empirical results indicate that all non-weighted polynomial basis yield the same
estimated Convertible Bond price, so exactly which family of polynomial basis’ functions is employed should
be irrelevant here. Nevertheless, as said, throught this work we used Hermite polynomial basis.

7The study presented here is highly dependent and restricted to the provided example of Convertible Bond in
current Setting. Yet, it was very computational intensive, demanding many hours, days of processing. Because
of this, a more broad, generalized study on current Setting is outside the scope of this work.

51 4.3. SETTING 2: NON-CALLABLE NON-PUTTABLE AMERICAN CONVERTIBLE BOND

Carlo, even in scenarios with high volatility (σ = 0.4, 0.5).

Therefore, when using LSMC and HMC methods, one must always take into account this
volatility effect on the attained relative error. In general, use Bouchard’s regression technique
helps to reduce impact of high volatility on attained prices and errors. However, the best
choice of parameters of (polynomial) basis’ dimension and number of regression intervals
is not obvious and highly depends upon the setting and its decision structure, demanding a
study like the one presented here. Since this type study is very computational intensive and
demands several hours, days of processing, it may not always be possible to execute it. For
current Setting (non-callable non-puttable american Convertible Bond), however, we believe
that the combination M = 3 and Nreg = 2 provides a reasonable starting point.

Next, we examine another natural question: what is the shape of the optimal exercise bound-
ary. The optimal exercise boundary (or simply exercise boundary) is the set of stock price
values that separates an exercise region from a non-exercise region. An important detail to
notice is that, depending on the exercise action, the exercise region may be lower bounded
or upper bounded by the exercise boundary. For the case of voluntary conversion, for greater
stock price values the investor will choose to convert the Convertible Bond. Hence, exercise
region for conversion must be lower bounded. Using the same analysis, we also conclude
that exercise region for redemption must be upper bounded. These conclusions are sum-
marized in Table 4.13.

Action Type of Boundary Region
Conversion Lower bounded
Redemption Upper bounded

Table 4.13: Boundary regions in Setting 2

In Figure 4.5, we present the exercise boundary graph obtained for Tree method initially with
100 steps. Notice how at each level the boundary bounces up and down between successive
values. This is due to a lack of resolution experienced with Tree method: because of the low
number of time steps used, near the real exercise value we have two different tree nodes with
a large gap between them, making the attained boundary bounce up and down in the graph.
This effect, may be relieved using a technique presented in [AKW08]: whilst restricting the
exercises to the same 100 time steps, we then rise the number of time steps in the tree to 1000
time steps. The resulting exercise boundary graph is presented in Figure 4.6. We see that
the bounce effect on the boundary vanishes, being replaced by a smoother boundary.

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 52

Figure
4.3:Influence

ofvolatility
on

relative
errorforLS

M
C
in
S
etting

2

53 4.3. SETTING 2: NON-CALLABLE NON-PUTTABLE AMERICAN CONVERTIBLE BOND

Fi
gu
re
4.
4:

In
flu
en
ce

of
vo
la
til
ity

on
re
la
tiv
e
er
ro
rf
or
H
M
C
in
S
et
tin
g
2

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 54

Next, we compare the exercise boundary obtained with Tree method with those obtained with
LSMC/HMC algorithms. We have found boundaries to be quite chaotic and varying wildly
with the combination of basis’ dimension and number of regression intervals used. Figures
4.7 and 4.8 present results obtained for LSMC and HMC algorithms, arranged horizontally
by basis’ dimension and vertically by number of regression intervals. Only results for Euler-
Maruyama discretization are shown, since we have found Milstein ones to be quite similar.
Since all (non-weighted) polynomial basis8 yielded the same exercise boundaries for each
combination of basis’dimension and number of regression intervals used, all boundaries were
estimated using a (physicists’) Hermite basis.

As wemay see from Figures 4.8 and 4.8, LSMC and HMC exercise boundary results are very
poor in comparison to corresponding Tree results, similar to what was found in other works,
such as [BHM13]. The reason behind this problem is prettymuch the same of price estimation
error: at each time step, due to numerical issues in regression, continuation values are not
correctly estimated. Since these values are critical to correctly exercise decision structure,
the exercise boundary is poorly captured. Since numerical errors are cascaded backwards
because of the backward induction algorithm, as we walk farther from maturity boundary
estimation gets even worse.

Unfortunately, we also see from Figures 4.7 and 4.8, that, unlike the price case, no combina-
tion of basis’ dimension and number of regression intervals in any of the 2 methods, LSMC
and HMC, yield a good exercise boundary, reasonably alike to the one given by the Tree
method. This indicates another drawback of these backward induction methods: in general,
LSMC and HMC methods may not, at least in the form presented and used in this work, be
appropriate for finding exercise boundaries of Convertible Bonds. In their place, it is advised
to use Tree methods (that as we shall see later on, give reliable results) and PDE methods,
formulating the pricing problem analytically as a free boundary problem and possibly solving
it numerically (see [BN04], [BNV06])9.

8Since we have found that, as with prices, their weighted versions also produce worse results in terms of
boundaries, we only present here boundary results for their non-weighted counterparts.

9This latter approach is classically regarded as the best choice for finding exercise boundaries. Unfor-
tunately, it may not always be used with Convertible Bonds, because already cited highly heteregenous and
sometimes path dependent features make it very difficult to formulate the corresponding free boundary problem
analytically as a PDE.

55 4.3. SETTING 2: NON-CALLABLE NON-PUTTABLE AMERICAN CONVERTIBLE BOND

Figure 4.5: Exercise boundary obtained for Example 4.3.1 using Tree method
and 100 time steps

Figure 4.6: Exercise boundary obtained for Example 4.3.1 using Tree method
and 1000 time steps

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 56

Figure
4.7:B

oundaries
obtained

w
ith

LS
M
C
forE

xam
ple

4.3.1

57 4.3. SETTING 2: NON-CALLABLE NON-PUTTABLE AMERICAN CONVERTIBLE BOND

Fi
gu
re
4.
8:

B
ou
nd
ar
ie
s
ob
ta
in
ed

w
ith

H
M
C
fo
rE

xa
m
pl
e
4.
3.
1

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 58

Summary of Results and Conclusions

• We have showed how to price a non-callable non-puttable american Convertible Bond
using both LSMC and HMC methods. 2 modifications (use QR decomposition to solve
the least-squares problem in regression procedure; use an array of initial stock prices
instead of just one single value) were discussed and incorporated in these methods;

• We have stated and given an intuitive reasoning an an inequality relating prices of
a non-callable non-puttable american Convertible Bond and its european counterpart
(4.3.1). This inequality gives a lower bound for the price of the american Convertible
Bond, as well as serving as a sanity check for testing numerical methods;

• Through an example of american Convertible Bond, we have showed that both LSMC
and HMC yield fairly good price estimates, with HMC yielding slightly better results,
but nothing remarkable. Also, simulations using Milstein discretization yielded slightly
better results than those using Euler-Maruyama, but also nothing remarkable;

• Empirically investigating results attained in given example of american Convertible
Bond, we have identified that its high volatility was impacting negatively on LSMC
and HMC results, with errors around 1%. Through a volatility study on given example,
we have sucessfully proven that relative error consistently rises as volatility increases.
Based on empirical findings, we have reasoned about the cause of this volatility effect,
relating it to numerical problems in regression procedure. Since this effect was also
observed in contexts of vanilla american options, there is evidence to believe this to be
a major drawback of LSMC and HMC methods themselves;

• To alleviate this volatility effect, we suggest to employ Bouchard’s regression technique
to, instead of executing just one single regression, partition stock price data into several
intervals and execute a separate regression for each of these intervals. We have found
that, for this Setting, increasing a little the number of regression intervals (Nreg = 2, 5)
result, in average, in smaller relative errors than those attained with regular regression
procedure. On the other hand, increasing too much the number of regression intervals
(Nreg = 10, 50) result in much larger relative errors;

• For the given example in this Setting, through the executed volatility study we have
successfully found the combination basis’ dimensionM = 3 and number of regression
intervals Nreg = 2 to be the optimal choice o parameters in the sense of stabilizing and
restricting relative error, in average, at lower levels (< 1%), even in scenarios of high
volatility. This is result is highly dependent on the specific example of Convertible Bond,
but we believe this combination to be a reasonable starting point for other examples of
american Convertible Bond of this Setting;

• Finally, through a exercise boundary study of given example, we have found that LSMC
and HMC methods do yield very poor boundaries when compared to those yielded by
the Tree method, sporting yet another major drawback of these methods. Based on
empirical findings, we have reasoned about the cause of this issue, also relating it to
numerical problems in regression procedure.

59 4.4. SETTING 3: CALLABLE PUTTABLE AMERICAN CONVERTIBLE BOND

4.4 Setting 3: Callable Puttable AmericanConvertible Bond

Next, we move on to a even more complex product: a callable and/or puttable american
Convertible Bond, a more general class of instruments commonly found in the market. This
setting is inherently more complex than the previous because, contrary to what happened
in them, there are now 2 actors, the issuer and the investor, with conflicting interests (the
investor seeks to maximize its own gains, the issuer seeks exactly the opposite), interacting
to determine what payoff is attributed to the instrument.

For modelling this product, we follow the same approach used in both Settings 1 and 2:
we choose a stock price-based model, with only the asset’s stock price as stochastic, and
deterministic and constant interest rate, stock volatility and continuous dividend yield. Market
is assumed to be complete and S(t) is such that it follows SDE 3.1.1. For simplification, we
also consider the Convertible Bond to be credit-riskless.

Following what was done in Setting 2, we do the pricing using both LSMC and HMC meth-
ods, with both Euler-Maruyama and Milstein discretization. All modifications to backward
induction methods presented in Setting 2 are also applied. Obtained results are compared
with those obtained with Tree method, which as regarded as our benchmark. Tree method
is implemented in the same manner as in setting 1 and 2, using a CRR tree.

The payoff at each time is calculated according to Table 4.14 (the same as listed in [AKW08]),
where Ωconv is the set of time where conversion is allowed (in current setting, Ωconv = [0, T],
since conversion is american-styled; in more general settings, conversion may follow any
discrete structure), Ωcall and Ωput are respectively the set of time where call and put exer-
cises are allowed (both may follow any discrete structure), C(t) and P (t) are respectively
the agreed strike prices for call and put exercise (normally constant, but could also be time-
dependent)10 and V ′(t) = EQ(CB(τ ∗)|Ft) is the continuation value. Since we now have two
types of conversion (voluntary and forced), we explicitly distinguish them in the payoff table.

A natural question that arises, similar to that examined from Setting 2, is: what is the rela-
tionship between the price of the non-callable non-puttable american Convertible Bond and
its pure-callable (i.e. callable but non-puttable) and pure-puttable (puttable but non-callable)
counterparts?

Again, a formal proof is out of the scope of this work, and we try to give here only some intu-
itive reasoning to what happens. Let CBA(t), CBc

A(t), CBp
A(t) be the price of the non-callable

non-puttable american Convertible Bond and its pure-callable and pure-puttable counter-
parts, respectively. As a call feature gives the issuer the possibility of ending the contract
before maturity, effectively removing possibility of later conversion or redemption by the in-

10As is usual in stochastic models in Finance, we also require all stochastic processes {n(t)}t∈[0,T],
{C(t)}t∈[0,T], {P (t)}t∈[0,T] to be adapted processes w.r.t the filter {Ft}t∈[0,T] = {σ(WQ(t)}t∈[0,T]. In other
words, we require all Convertible Bond’s indenture terms to depend only on past stock information, not on
future ones.

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 60

Payoff Condition Time Restriction Action
n(t)S(t) if n(t)S(t) > V ′(t) if t ∈ Ωconv Voluntary Conversion

and P (t) ≤ n(t)S(t) if t ∈ Ωput ∩ Ωconv

P (t) if P (t) > V ′(t) if t ∈ Ωput Put
and n(t)S(t) < P (t) if t ∈ Ωput ∩ Ωconv

C(t) if V ′(t) > C(t) if t ∈ Ωcall Call
and C(t) ≥ n(t)S(t) if t ∈ Ωcall ∩ Ωconv

n(t)S(t) if V ′(t) > C(t) and C(t) < n(t)S(t) if t ∈ Ωcall ∩ Ωconv Forced Conversion

κN if n(t)S(t) < κN if t = T Redemption

V ′(t) Otherwise Continuation

Table 4.14: Exercise actions and respective payoffs in Setting 3

vestor, one would naturally expect that:

CBc
A(t) ≤ CBA(t) (4.4.1)

On the other hand, as a put feature gives the investor the possibility of ending the contract be-
fore maturity, possibly yielding a greater value than that achieved with conversion or holding
the bond until redemption, one would also naturally expect that:

CBp
A(t) ≥ CBA(t) (4.4.2)

Combining Inequalities 4.4.1 and 4.4.2 yields

CBc
A(t) ≤ CBA(t) ≤ CBp

A(t) (4.4.3)

Therefore, Inequality 4.4.3 may be used as a simple sanity check for pricing method imple-
mentations in current setting. We shall see later on, that attained results in fact respect that
inequality.

With respect to the callable and puttable american Convertible Bond price, besides Inequality
4.4.3 assuring that its price is bounded by its non-callable and non-puttable counterparts’
prices, not much can be really said: its exact price depends on what are the strike prices
of call and put features, whether these features are in fact exercised11 and the interaction
between investor and issuer, resulting in a feature being dominant over the other, pulling
price upwards or downwards with respect to the price of its non-callable and non-puttable
counterpart.

11If call strike price is too high, this feature will simply not be exercised. Conversely, if put strike price is too
low, it will also not be exercised. These effects can be empirically observed both in obtained price and exercise
boundaries.

61 4.4. SETTING 3: CALLABLE PUTTABLE AMERICAN CONVERTIBLE BOND

Consider the following Convertible Bond examples:

Example 4.4.1. Pure-puttable american Convertible Bond example (a pure-puttable version
from the one proposed in [AKW08]), listed in Table 4.15.

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date -
Coupon frequency -
Coupon ratio -
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: 0-2 years (american-styled)

Conversion restrictions: -
Conversion ratio: 1
Conversion ratio adjustment clauses: -

Call provisions - (non-callable)
Put provisions Strike price: 98

Put dates: 0-2 years (american styled)

Table 4.15: Pure-puttable american Convertible Bond

Example 4.4.2. Pure-callable american Convertible Bond example (a pure-callable version
from the one proposed in [AKW08]), listed in Table 4.16.

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date -
Coupon frequency -
Coupon ratio -
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: 0-2 years (american-styled)

Conversion restrictions: -
Conversion ratio: 1
Conversion ratio adjustment clauses: -

Call provisions Strike price: 110
Call dates: 0-2 years (american-styled)
Hard call clause: -
Soft call clause: -
Call notice period: -

Put provisions - (non-puttable)

Table 4.16: Pure-callable american Convertible Bond

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 62

Example 4.4.3. Callable puttable american Convertible Bond example (the same proposed
in [AKW08]), listed in Table 4.17.

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date -
Coupon frequency -
Coupon ratio -
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: 0-2 years (american-styled)

Conversion restrictions: -
Conversion ratio: 1
Conversion ratio adjustment clauses: -

Call provisions Strike price: 110
Call dates: 0-2 years (american-styled)
Hard call clause: -
Soft call clause: -
Call notice period: -

Put provisions Strike price: 98
Put dates: 0-2 years (american styled)

Table 4.17: Callable puttable american Convertible Bond

Consider also the following market scenario for the stock price and interest rate:

r = 0.05

S0 = 100

σ = 0.4

q = 0.1

As with Setting 2, empirical results indicate that the aforementioned volatility effect also af-
fects the price of Convertible Bond in this Setting: relative error consistently rises as volatility
increases. We notice that the pure-puttable case (Example 4.4.1) behaves much like the
non-callable non-puttable one (Example 4.3.1. This is fairly reasonable, since in both non-
callable non-puttable and pure-puttable cases, the exercise decision structures are strikingly
similar: the only actor involved is the investor, seeking to maximize its own gains. Therefore,
the volatility effect impacts both cases in a very similar way, with the choice of parameters
basis’ dimension M = 3 and Nreg = 2, optimal in Setting 2, also yielding excellent results for
both LSMC and HMC methods (relative error, in average, < 1%).

Callable cases (pure-callable and callable puttable - Examples 4.4.2 and 4.4.3, respectively)
present however a much distinct exercise decision structures: as previously said, 2 actors
with conflict interests are now involved, the investor and the issuer, interacting to determine
the attributed payoff. In high volatility scenarios (σ = 0.4, 0.5), both LSMC and HMCmethods
are not able to correctly capture call features in this complex decision structure. By not cap-
turing call features, the estimated price is driven towards to their non-callable counterpart’s

63 4.4. SETTING 3: CALLABLE PUTTABLE AMERICAN CONVERTIBLE BOND

price, leading to a large relative error. This results in a much more intense volatility effect
occurring in these cases. In Figures 4.9 and 4.10, are summarized the results for a volatility
study, in spirit of the one done in Setting 2, executed for the callable puttable case. Results
for the pure-callable case are very similar and are thus supressed.

From Figures 4.9 and 4.10, for both LSMC and HMCmethods no combination of parameters
is able to stabilize and restrict relative errors to levels below 1%. However, for LSMC method
combination of parameters M = 5 and Nreg = 50 constitutes an optimal choice, stabilizing
errors between 1 and 2%. On the other hand, for HMCmethod no combination of parameters
is able to stabilize errors. Rather, for all combinations, relative error keeps consistently rising
as volatility increases. This indicates HMC method to be much more sensible to volatility
effect than LSMC.

In Tables 4.18, 4.19 and 4.20, illustrate results attained with LSMC and HMC methods for
Examples 4.4.1, 4.4.2 and 4.4.3 respectively. In all cases, the following parameters were
used: Tree method used 1000 time steps, with exercise time steps constrained to the same
100 time steps used by Monte Carlo methods. For Monte Carlo simulations, 201 values in
stock price mesh were used, with 10000 paths for the original (central) stock price initial value
and 10 for each of the others. For Example 4.4.1, the optimal combination of parameters
M = 3 and Nreg = 2 was used. For Examples 4.4.2 and 4.4.3, a combination of parameters
M = 5 and Nreg = 50 was used.

First thing to notice from results in Tables 4.18, 4.19 and 4.20 are in consonance with In-
equality 4.4.3, indicating attained results to be quite reasonable.

From results in Table 4.18 we see that in the pure-puttable case HMC algorithm yielded
slightly better results than LSMC, with smaller errors and narrower confidence intervals.
From Tables 4.19 and 4.20, however, we see that in both callable cases (pure-callable and
callable puttable) HMC algorithm yielded remarkably worse results than LSMC, with larger
errors and wider confidence intervals. This indicates that although hedge functions used in
HMC are correctly capturing the optimal hedging strategy for the pure-puttable Convertible
Bond, yielding a better price than LSMC did, this was not the case with callable cases. In
these latter cases, HMC did not correctly capture optimal hedging strategy, yielding a worse
price. For these cases, LSMC yielded not only better results, but also quite good ones,
around 1%. This in consonance to our findings in the volatility study, confirming HMC to
be more sensible to volatility effect than LSMC is. In all cases, simulations with Milstein
discretization gave slightly better results than their Euler-Maruyama counterparts, as ex-
pected.

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 64

Figure
4.9:Influence

ofvolatility
on

relative
errorforLS

M
C
forE

xam
ple

4.4.3
in
S
etting

3

65 4.4. SETTING 3: CALLABLE PUTTABLE AMERICAN CONVERTIBLE BOND

Fi
gu
re
4.
10
:I
nf
lu
en
ce

of
vo
la
til
ity

on
re
la
tiv
e
er
ro
rf
or
H
M
C
fo
rE

xa
m
pl
e
4.
4.
3
in
S
et
tin
g
3

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 66

Reference Prices
Straight Bond 90.48374
Black Formula
(European Convertible Bond) 105.6615
Tree
(1000 time steps) 110.0798

Numerical Results

Method Price
Absolute Relative Error
(w.r.t Tree)

Confidence Interval
(α = 5%)

LSMC / Euler / Hermite M=3 111.1231 0.9477812% [110.3050, 111.9412]
LSMC / Milstein / Hermite M=3 110.833 0.6841812% [110.0104, 111.6555]
HMC / Euler / Hermite M=3 110.7936 0.6484659% [109.9778, 111.6095]
HMC / Milstein / Hermite M=3 110.6945 0.5584301% [109.8706, 111.5184]

Table 4.18: Results for Example 4.4.1.

Reference Prices
Straight Bond 90.48374
Black Formula
(European Convertible Bond) 105.6615
Tree
(1000 time steps) 105.8801

Numerical Results

Method Price
Absolute Relative Error
(w.r.t Tree)

Confidence Interval
(α = 5%)

LSMC / Euler / Hermite M=5 104.6371 1.173985% [104.5022, 104.7720]
LSMC / Milstein / Hermite M=5 104.6798 1.133631% [104.5415, 104.8181]
HMC / Euler / Hermite M=5 103.125 2.60207% [102.9657, 103.2844]
HMC / Milstein / Hermite M=5 103.1265 2.600639% [102.9664, 103.2867]

Table 4.19: Results for Example 4.4.2.

Next, we examine the shape of the optimal exercise boundary for the callable puttable case
(Example 4.4.3). In Table 4.21, we list the criteria used to determine which values compose
the exercise boundary for each exercise action, i.e. if a boundary of a given exercise action
is an upper bounded region or lower bounded region. .

In Figure 4.11, we present the exercise boundary graph obtained for Tree method with 1000
steps.

Regarding exercise boundary in a callable puttable american Convertible Bond setting, one
would naturally expect the following to hold:

• The put boundary should be found below the conversion boundary, since, when the

67 4.4. SETTING 3: CALLABLE PUTTABLE AMERICAN CONVERTIBLE BOND

Reference Prices
Straight Bond 90.48374
Black Formula
(European Convertible Bond) 105.6615
Tree
(1000 time steps) 106.5198

Numerical Results

Method Price
Absolute Relative Error
(w.r.t Tree)

Confidence Interval
(α = 5%)

LSMC / Euler / Hermite M=5 104.7858 1.627845% [104.6685, 104.9031]
LSMC / Milstein / Hermite M=5 105.0619 1.368667% [104.9537, 105.1701]
HMC / Euler / Hermite M=5 103.6802 2.665783% [103.5499, 103.8105]
HMC / Milstein / Hermite M=5 103.7686 2.582799% [103.6378, 103.8994]

Table 4.20: Results for Example 4.4.3.

Action Type of Boundary Region
Voluntary Conversion Lower bounded

Put Upper bounded
Call Upper bounded

Forced Conversion Lower bounded
Redemption Upper bounded

Table 4.21: Boundary regions in Setting 3

stock price is sufficiently low, the investor would exercise the put rather than convert
the bond;

• The call boundary should be found below the conversion boundary, since, when the
stock price is sufficiently high, the issuer would rather exercise the call rather than let
the investor hold the bond for one more period;

• The forced conversion should be found below the voluntary conversion, since, when
the stock price is really high, the investor would convert the bond first rather than being
forced into conversion by a call exercised by the issuer.

It is easy to notice that the found boundary indeed is consistent with all of above boundary
rationale. It is also practically identical (except for separate representation of forced and vol-
untary conversion) to the one found in [AKW08], the original article that presented Example
4.4.3, indicating it to be seemingly correct.

As with Setting 2, both LSMC and HMC methods produce very poor boundary estimates,
regardless of the chosen combination of parameters M and Nreg.

Summary of Results and Conclusions

• We have showed how to price a callable puttable american Convertible Bond using
both LSMC and HMC methods, including its pure-puttable and pure-callable variants.
Both modifications introduced in Setting 2 were also used in this Setting;

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 68

Figure 4.11: Exercise boundary obtained for Example 4.4.3 using Tree method and 1000 time steps

• We have stated and given an intuitive reasoning an an inequality relating prices of a
pure-puttable, pure-callable and callable puttable american Convertible Bonds and its
non-callable non-puttable counterpart (4.4.3). This inequality gives a bounds for the
price of the these Convertible Bond, as well as serving as a sanity check for testing
numerical methods;

• Through empirical investigation, we have found prices in this Setting to be also affected
by the volatility effect mentioned in Setting 2. The pure-puttable case behaves much
like the non-callable non-puttable one, from Setting 2. This is attributed to the their
exercise decision structures being very similar, since only the investor is involved in
determining the instrument’s payoff. We have also found that combination of parame-
ters M = 3 and Nreg = 2 also yields excelent results for this bond for both LSMC and
HMC methods;

• We have found pure-callable and callable puttable cases to suffer from a much more
intense volatility effect. This is attributed to their exercise decision structure being much
distinct than pure-callable and non-callable non-puttable ones, since now both investor
and issuer, each with conflicting interests, interact to determine the instrument’s payoff.
A volatily study indicate that HMC method is much more sensible to the volatility effect
than LSMC. No combination of parametersM and Nreg was deemed optimal for HMC,
in the sense of stabilizing and restricting the relative error at low levels. For LSMC,
however, combinationM = 5 and Nreg = 50 was able to stabilize relative error at levels
between 1 and 2%;

69 4.5. SETTING 4: PATH-DEPENDENT CALLABLE PUTTABLE AMERICAN CONVERTIBLE BOND

• Through examples of callable puttable american Convertible Bond and its pure-puttable
and pure-callable variants, we have showed that simulations using Milstein discretiza-
tion yielded slightly better results than those using Euler-Maruyama, but nothing re-
markable. For the pure-puttable case, LSMC and HMC both yielded good results, with
HMC yielding slightly better ones. For pure-callable and callable puttable cases, how-
ever, HMC yielded remarkably worse results than LSMC, confirming its greater sensi-
bility to volatility effect;

• Finally, we have found that, as in Setting 2, LSMC and HMC methods do yield very
poor boundaries when compared to those yielded by the Tree method.

4.5 Setting 4: Path-dependent Callable Puttable American
Convertible Bond

Next, we move on to the most general product we shall deal with in this work: a callable
and/or puttable american Convertible Bond with path-dependent features.

For modelling this product, we follow the same approach used in both Settings 1, 2 and 3:
we choose a stock price-based model, with only the asset’s stock price as stochastic, and
deterministic and constant interest rate, stock volatility and continuous dividend yield. Market
is assumed to be complete and S(t) is such that it follows SDE 3.1.1. For simplification, we
also consider the Convertible Bond to be credit-riskless.

Following what was done in Settings 2 and 3, we do the pricing using both LSMC and HMC
methods, with both Euler-Maruyama and Milstein discretization. All modifications to back-
ward induction methods presented in Setting 2 are also applied. Since we now have path-
dependent features and these would be difficult to evaluate using Tree method, we only
evaluate prices with LSMC and HMC methods, not comparing to those attained with Tree
method.

Although many types of path-dependent features are possible to be found in a Convertible
Bond’s indenture, these are usually of 2 types: path-dependent strike price/ratio and path-
dependent exercise restriction. Although implementation was made flexible and generic to
allow modelling and pricing of any example of these 2 types in all of available exercise types
(conversion, call and put), we shall present and discuss along this Setting only with the 2
most commonly found features (see Section 2.2): a reset clause (a type of conversion ratio
adjustment clause) and soft call clause (a restriction clause on call exercise).

Payoff at each time is calculated according to Table 4.22. This table is much similar to Table
4.14, presented in Setting 3, except all ratios/strike prices n(t), C(t) and P (t) may now also
be path-dependent and sets Ωconv, Ωcall and Ωput now embody all restrictions for conversion,
call and put, respectively, including those dependent on stock price path. As in Setting 3,
all, we require all stochastic processes {n(t)}t∈[0,T], {C(t)}t∈[0,T], {P (t)}t∈[0,T] to be adapted
processes w.r.t the filter {Ft}t∈[0,T] = {σ(WQ(t)}t∈[0,T].

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 70

Payoff Condition Restriction Action
n(t)S(t) if n(t)S(t) > V ′(t) if (t, {S(u)}u∈[0,t]) ∈ Ωconv Voluntary Conversion

and P (t) ≤ n(t)S(t) if (t, {S(u)}u∈[0,t]) ∈ Ωput ∩ Ωconv

P (t) if P (t) > V ′(t) if (t, {S(u)}u∈[0,t]) ∈ Ωput Put
and n(t)S(t) < P (t) if (t, {S(u)}u∈[0,t]) ∈ Ωput ∩ Ωconv

C(t) if V ′(t) > C(t) if (t, {S(u)}u∈[0,t]) ∈ Ωcall Call
and C(t) ≥ n(t)S(t) if (t, {S(u)}u∈[0,t]) ∈ Ωcall ∩ Ωconv

n(t)S(t) if V ′(t) > C(t) and C(t) < n(t)S(t) if (t, {S(u)}u∈[0,t]) ∈ Ωcall ∩ Ωconv Forced Conversion

κN if n(t)S(t) < κN if t = T Redemption

V ′(t) Otherwise Continuation

Table 4.22: Exercise actions and respective payoffs in Setting 4

Example 4.5.1. Consider the following path-dependent callable puttable american Convert-
ible Bond example (based on the one proposed in [AKW08]), listed in Table 4.23.

Regular bond features/terms
Maturity 2 years
Face value 100
First coupon date -
Coupon frequency -
Coupon ratio -
Redemption ratio 100%

Convertible Bond features/terms
Conversion provisions Conversion dates: 0-2 years (american-styled)

Conversion restrictions: -
Conversion ratio: 1 (initially)
Conversion ratio adjustment clauses: (Reset clause)Whenever
the mean of the last 20 days’ stock prices is greater than 130% of initial
stock price, conversion ratio is set to 0.8. Otherwise, it is set to 1

Call provisions Strike price: 110
Call dates: 0-2 years (american-styled)
Hard call clause: -
Soft call clause: Call may only take place at a given time if mean
of the last 20 days’ stock price is greater than 110% of initial
stock price
Call notice period: -

Put provisions Strike price: 98
Put dates: 0-2 years (american styled)

Table 4.23: Path-dependent callable puttable american Convertible Bond

Consider also the following market scenario for the stock price and interest rate:

71 4.5. SETTING 4: PATH-DEPENDENT CALLABLE PUTTABLE AMERICAN CONVERTIBLE BOND

r = 0.05

S0 = 100

σ = 0.4

q = 0.1

The above specified Convertible Bond present both a reset clause and a soft call clause. Both
are triggered if, at a given time step, the mean of the last 20 days’ stock price is greater than
a certain level (130% for reset clause, 110% for soft call clause). For pricing this Convertible
Bond using Monte Carlo methods, stock price paths are simulated as usual. Then, at each
time step, for each path we evaluate if the above stated clauses are triggered or not, altering
related parameters and/or enabling respective parameters. The rest of backward induction
algorithms proceed as usual, taking into account the (possibly modified) exercise parameters
when computing effective payoff.

In Table 4.24 are shown attained price results with LSMC and HMC methods for above ex-
ample. In all Monte Carlo simulations, 201 values in stock price mesh were used, with 10000
paths for the original (central) stock price initial value and 10 for each of the others. For both
LSMC and HMC methods, following what was found for the callable puttable case in Setting
3, the combination of parameters M = 5 and Nreg = 50 was used. Since we have path-
dependent features defined on a daily basis, to avoid approximation errors due to a coarser
discretization, 252T = 252x2 = 504 time steps are used, so that each time step corresponds
to a day.

Reference Prices
Straight Bond 90.48374
Black Formula
(European Convertible Bond) 105.6615

Numerical Results

Method Price
Confidence Interval
(α = 5%)

LSMC / Euler / Hermite M=5 111.8555 [111.6100, 112.1011]
LSMC / Milstein / Hermite M=5 111.9981 [111.7534, 112.2429]
HMC / Euler / Hermite M=5 109.6866 [109.4096, 109.9637]
HMC / Milstein / Hermite M=5 109.6723 [109.3951, 109.9494]

Table 4.24: Results for Example 4.5.1.

From Table 4.24, We see that both LSMC and HMC methods were able to estimate a price
for the path-dependent callable puttable american Convertible Bond from Example 4.5.1.
However, it can as well be seen that prices attained with HMC differ reasonably from those
attained with LSMC (around 2% of discrepancy). This may probably be credited to afore-
mentioned volatility effect, since from our empirical analysis in Setting 3 we know that HMC
is much more sensible to it. As with previous settings, prices attained using Milstein dis-
cretization were not much different from Euler ones (< 1% of discrepancy).

Finally, following the empirical analysis developed along previous settings, we are inclined

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 72

to accept the price attained with LSMC/Euler method (111.8555) as a fairly good approximate
on the true instrument’s price.

Summary of Results and Conclusions

• Through an example, we have showed how to price a path-dependent callable put-
table american Convertible Bond using both LSMC and HMCmethods. We have seen,
however, that HMC methods tend to produce fairly different prices, probably due to it
being much more sensible to aforementioned volatility effect. As with previous settings,
prices attained using Milstein discretization were not much different from Euler ones;

• Following the empirical analysis developed along previous settings, we are inclined
accept the price attained with LSMC/Euler method as a fairly good approximate on the
true instrument’s price.

4.6 Calibration Issues and Possible Extensions

In this section, we examine calibration issues related to the proposed model for pricing the
Convertible Bond. Also, we explore some extensions/additions that are possible to be made
on top of provided pricing framework.

Calibration Issues

Convertible Bonds are non-standardized, very heterogenous and often unique instruments
(Section 2.3). Due to these properties, Convertible Bond are generally not sold in exchanges,
making them non-liquid instruments, sold in over-the-counter (OTC) trades. Hence, there is
generally a lack of price information about these instruments, even for Convertible Bonds
from the same firm, making it very difficult for an investor to price it by similarity with other
convertibles.

For pricing OTC instruments, what is typically done is to use some model, feeding it with pa-
rameters such that the corresponding prices given by the model for more liquid instruments,
such as vanilla options, match their practiced prices in the market. The model is said to be
calibrated with market data, in the sense that it is in consonance with price values found in the
real market. From this point on, one proceeds with using closed-form formulas (if available)
or numerical methods for calculating the price of the OTC instrument.

In the context of this work, the Convertible Bond is modeled after a Black-Scholes model
(see Section 3.1), with r, σ, S0, q deterministic and constant. Whilst S0 and q are observable
and well known features from the stock price, r and σ may in reality not be constant or

73 4.6. CALIBRATION ISSUES AND POSSIBLE EXTENSIONS

even deterministic. Next, we propose some straightforward methods for calibrating these
parameters.

The seminal article [BS80] states that the interest rate does not heavily influence the Con-
vertible Bond final price. Therefore, it is sufficient to estimate a constant and deterministic r.
This can be done by selecting a zero-coupon (government) bond with same maturity as the
Convertible Bond, observe its practiced value in themarket and, considering amodel with de-
terministic and constant interest rate, determining which r value would give the zero-coupon
bond the same value as the one practiced in the market.

Once r is determined, we only need to define σ. If vanilla call and/or put options from the
same firm as the issuer of the Convertible Bond are available, one may calculate, using
classical Black-Scholes closed-form formula, which constant and deterministic σ gives the
same price as those practiced in the market. If vanilla options are not available, one may
still find a reasonable value for σ by fitting heteroskedasticity econometric models, such as
GARCH, to observed stock price’s time series.

Possible Extensions

Stochastic Volatility Models

Throughout this work, in the proposed model we have assumed a constant and deterministic
stock volatility. Although the seminal article [BS80] states that stock volatility does not heav-
ily influence the Convertible Bond final price, a possible extension to the presented Monte
Carlo pricing framework could be to consider a model where the volatility is not constant
and deterministic but stochastic. More precisely, instead of having the stock price dynamics
follow SDE 3.1.1, it would follow an SDE system of the form

dS(t) = S(t)(rdt+

√
ν(t)dWQ

1 (t))

dν(t) = α(S, t)dt+ β(S, t)dWQ
2 (t)

S(0) = S0

ν(0) = ν0

(4.6.1)

where WQ
1 (t) and WQ

2 (t) are correlated Brownian Motions such that ⟨dW
Q
1 (t), dW2Q(t)⟩ = ρ,

with ρ > 0 a constant, and α(S, t) and β(S, t) are such that ν(t) > 0 a.s..

A simple and very popular stochastic volatility model that could be used is the mean reverting
model proposed by Heston et al [Hes93]. In Heston model, the SDE System 4.6.1 takes
the form

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 74

dS(t) = S(t)(rdt+

√
ν(t)dWQ

1 (t))

dν(t) = υ(θ − ν(t))dt+ ξ
√
ν(t)dWQ

2 (t)

S(0) = S0

ν(0) = ν0

(4.6.2)

where υ, θ and ξ are constants. If 2υθ > ξ2, then we have ν(t) > 0 a.s.. θ is the long-term
variance; υ is the mean revertion rate, i.e., the rate at which ν(t) reverts to the long-term
variance; and ξ is the volatility of the volatility (vol of the vol).

Incorporating SDE System 4.6.2 into the presented Monte Carlo pricing framework should be
fairly straightforward: one would only need to alter the procedure that generates the stock
price paths in such a way that they now obey this SDE system. This can be easily done
by discretizing both SDEs in SDE System 4.6.2 using the same discretization scheme (e.g.
Euler-Maruyama or Milstein schemes), and evaluating at each time t the stock volatility ν(t)
and then feeding it in the other equation to calculate S(t).

Stochastic Interest Rate Models

As with stochastic volatility, seminal article [BS80] also states that interest rates do not heav-
ily influence the Convertible Bond final price. Thus, we have also assumed in our proposed
model a constant and deterministic interest rate. However, one may be interested in ex-
tending the provided pricing framework to a setting where the interest rate follows a given
term structure. Although non-constant but deterministic interest rates are also possible to be
used, it is more common to consider interest rates that follow an stochastic model.

In general, we would have the stock price dynamics follow a SDE System of the form

dS(t) = S(t)(r(t)dt+ σdWQ

1 (t))

dr(t) = λ(r, t)dt+ ζ(r, t)dWQ
2 (t)

S(0) = S0

r(0) = r0

(4.6.3)

where WQ
1 (t) and WQ

2 (t) are independent Brownian Motions and λ(S, t) and ζ(S, t) are such
that r(t) > 0 a.s..

A simple and popular stochastic interest rate model that could be used is the mean reverting
model proposed by Cox, Ross and Ingersoll [CJR85]. TheCox-Ross-Ingersoll (CIR) model
is essentially analogous to Heston stochastic volatility model. In CIR model, the SDE system
4.6.3 takes the form

75 4.6. CALIBRATION ISSUES AND POSSIBLE EXTENSIONS

dS(t) = S(t)(r(t)dt+ σdWQ

1 (t))

dr(t) = a(b− r)dt+ ζ
√
r(t)dWQ

2 (t)

S(0) = S0

r(0) = r0

(4.6.4)

where a, b and ζ are constants. If 2ab > ζ2, then we have r(t) > 0 a.s.. b is the long-term
interest rate mean level; a is themean revertion rate, i.e., the rate at which r(t) reverts to
the long-term interest rate mean level; and ζ is the volatility of the interest rate.

As with Heston stochastic volatility model, incorporating SDE System 4.6.4 into the pre-
sentedMonte Carlo pricing framework should also be fairly straightforward: one should adapt
the procedure that generates the stock price paths in such a way that they now obey this
SDE system. This must also be done by discretizing each of its SDEs using a discretization
scheme and evaluating at each time t the interest rate r(t) and feeding it in the other equation
to calculate S(t).

It should also be noted that, unlike with stochastic volatility, in this case the interest rate paths
must also be retained because they are used along backward induction process to discount
each value at each time t using its current interest rate r(t). This, however, should also be
pretty straightforward.

Credit-Risky Models

Throughout this work, we have assume a credit-riskless model for our Convertible Bond. We
know from the seminal article [BS80] that credit risk does heavily influence the Convertible
Bond price. Thus, a very natural extension one shall consider is to include credit risk in our
proposed model.

Modelling credit risk involves investigating default events, i.e. events where the issuer does
not pay some coupon or principal in full or in due time. Although clearly not the only cause for
defaults, the most common one and which has been the object of many research of last few
years is that of bankruptcy, when the issuer cannot meet its debt obligations anymore12.
Thus, many credit risk modelling choose to abstract away other causes and focus only in
modelling default events due to bankruptcy.

When a default event takes place, both parts of the Convertible Bond are affected: the bond
part, because the firm will not honor future coupons and principal13, and also the stock part,
because the stock value of the firm also falls, possibly becoming worthless (i.e. S = 0) .
Thus, one need to model how frequently this default events occur and what happens to both
bond and stock parts of the Convertible Bond.

12Bankruptcy does not necessarily imply insolvency. The latter one is the financial lack of liquidity to repay
its debts, whereas the former is a legal status of not being able to honor its debts, imposed by some court. For
sake of simplicity, in this work when using the word bankruptcy we assume a insolvency state.

13Although the firm will not honor any future coupons and principal, the identure however may specify that

CHAPTER 4. CONVERTIBLE BOND MODELLING AND PRICING 76

There are 2main types of approaches when it comes to default event modelling: exhogenous
default and endogenous default.

An exhogenous default model sees a default event as an exhogeneous event that hap-
pens outside the pricing model, trying to model its probability and effects. It then seeks to
incorporate this default event treatment into the model by means of including a spread s into
the discounting factor of the bond payments. If a firm has higher risk of default, the spread
increases and with it also the discounting factor, rendering a less valued Convertible Bond.
If a firm has no risk of default at all, the model reduces to the one presented in this work.
The credit spread itself may be calibrated externally with historical data of defaults of that
firm (if available) or by similarity with other firms of similar size and within the same industry
sector.

This exhogenous model is very simplistic and, although the credit spread may be used to
discount also the payoff part, it does not account for the possibility of the stock price falling
in value.

In contrast, an endogenous default model seek to incorporate the probability and effects of
default explicitly in the pricingmodel. There have been presentedmany approaches to do this
(for instance, see [TF98], [TKN01], [AFV03], [BW03] and [MK12]). One that fits well a Monte
Carlo pricing method is to incorporate defaults explicitly in the SDE modelling, through jump-
diffusion processes. Jump-diffusion processes are a more complex topic and are outside
the scope of this work, to be subject of study and implementation in a future work. For an
example of jump-diffusion approach in credit-risky models, refer to [MK12].

For a good review on credit-risky models for Convertible Bonds, refer to [Zad10].

in case of default the investor is assured to recover a certain fraction of the underlying bond value. This is
specified in terms of a recovery ratio (sometimes called recovery factor) and is generally operationalized by
means of insurances or guarantees contracted by the issuer and presented at the time of issuance.

Chapter 5

Conclusion

In this work, we have presented the concept of Convertible Bonds and its related features and
terms, discussing its pricing problem and related issues. Using a stock value-based model
and Monte Carlo methods, we have successfully demonstrated, in a constructive manner,
how to model and price Convertible Bonds, starting from a simple, non-callable non-puttable
european setting, towards a more complex, callable puttable american setting.

We believe have succesfully demonstrated how to use both LSMC andHMCmethods to cope
with american exercise features, highlighting their high flexibility, which allows them to also
cope with more rich features, such as path-dependent ones. Whenever possible, to bench-
mark these methods we have compared their estimated price with equivalent ones from (bi-
nomial) Tree method, exhamining attained relative errors. From given Convertible Bond ex-
amples, we have founded HMC method to give marginally better results than LSMC method,
not justifying its use. Likewise, we have found Milstein discretization to yield slightly better
results than Euler-Maruyama discretization ones, not justitying the use of the former.

Another important contribution of this work is that, whilst demonstrating the use of LSMC and
HMC methods, through empirical analysis we have incidentally also uncovered 2 important
drawbacks of these methods: high sensibility of estimated prices to stock volatility scenarios
and poor estimation of exercise boundaries. We have found that use of Bouchard’s tech-
nique of executing several regressions instead of just one, each over a partition of stock
price data available at that time step, has helped alleviate this volatility effect problem. For
given examples, we have executed a volatility study, indicating optimal choice of parame-
ters basis’ dimension and number of regression intervals in the sense of minimizing relative
errors. Although found optimal choices are highly dependent on given example, we believe
they provide a reasonable starting point for other Convertible Bond instances from the same
setting.

From a more practical perspective, another important contribution of this work is a concrete,
clear and ready-to-use code implementation of LSMC and HMC pricing methods. It was built
from the ground up in a parametrizable way, in such a way it can be easily adapted to cope
with more rich Convertible Bond settings, such as those including time and path-dependent
features. The provided pricing framework may also be easily adapted to price a range of

77

CHAPTER 5. CONCLUSION 78

other instruments, from simple, vanilla instruments to more exotic derivatives.

We believe to have accomplished all its proposed goals, demonstrating, in a constructive
way, the applicability, strengths and drawbacks of LSMC and HMC backward induction meth-
ods for pricing Convertible Bonds. As many questions risen along this work fell outside its
scope, we leave the following suggestions for future works:

• Provide a formal proof of bounds for Convertible Bond prices presented in Sections 4.3
and 4.4;

• Investigate further and provide a formal mathematical description of presented volatility
effect on prices and relative errors found for LSMC and HMC methods;

• Execute broader and systematic studies on best choices of simulation parameters
across general examples of Convertible Bonds for proposed settings.

• Investigate further reasons behind the presented phenomenon of poor estimation of
boundary exercises by LSMC and HMC methods, providing modifications of their algo-
rithms such as to enable its use for boundary estimation;

• Provide modifications of LSMC and HMC algorithms to make them faster to compute
and more precise, so as to enable execution of broader and more general simulation
parameter studies.

Appendix A

Implementation

In this chapter, we present the implementation approach, discussing some of the implemen-
tation issues found and related implementation decisions.

In Section A.1, the choice of platform/programming language for this work implementation is
discussed.

In Section A.2, the implementation approach itself is presented, with its issues presented
and discussed as they arise.

Finally, in Section A.3, we make a final remark about the provided implementation.

A.1 Choice of Platform/Programming Language

In Finance field, there are some platforms/programming laguanges that have been more
popular for implementing mathematical finance code: Microsoft Excel/VBA [Exc], MATLAB
[MAT] and R [R C13]. Of course more general programming languages, like C, C++, Python,
Ruby can be used, but as one of our main goals is to provide a clear and more ready-
to-use implementation code (see Section 1.2), we restricted our platform analysis to the
former.

For the implementation of this work, the chosen platform/programming language was R. The
rationale behind this decision is presented below.

1. For this work, we needed good vector/matrix manipulation syntax, as well as numer-
ical computation and pseudo-random number generation routines. Both 3 have nu-
merical computation and pseudo-random number generation routines available, but
Excel/VBA’s are somewhat very limited, when compared to MATLAB and R. Also, Ex-
cel/VBA, because of its Visual Basic inheritance, presents a clumsy vector syntax and
lacks full matrix operation support, whilst both MATLAB and R have both good vector/-

79

APPENDIX A. IMPLEMENTATION 80

matrix support 1. Hence, Excel/VBA was discarded;

2. Both MATLAB and R have a well stablished user base, with plenty example code, tuto-
rials and libraries available. MATLAB would have been a more natural choice, as it has
been more heavily used in industry. But whilst a great platform, MATLAB is a propri-
etary product with many separately sold toolboxes, requiring licenses for commercial
use. On the other hand, R is completely free and open source. As we did not want to
impose any cost burden to use this work code right away, MATLAB was discarded;

3. Also, being an open source platform/programming language, R has more bindings to
other programming languages, specially C, C++, Ruby, Python, Java, which makes it
easier to integrate with other systems and products.

It must be kept in mind that the following arguments reflect the vision of the author at the
time of this work writing and thus may sound kind of opinionated. Every platform has its own
strengths and weaknesses. The reader is thus encouraged to first look well into the problem
and available facilities they have, to only them choose the more suited platform.

The R version used in this work was 3.0.2, the up-to-date version as of the time of this work
writing. The R libraries used will be presented as needed in the next section, when the code
is thoroughly discussed.

Before stepping into implementation itself, it must be noted that it is not in the scope of
this work to explain basic programming concepts nor R syntax. If one needs to learn pro-
gramming concepts and R programming language, the excellent books [Cot13], [Tee11] and
[Iac09] are advised.

A.2 Implementation Approach

Although in Chapter 4, we discuss 4 settings and for each one the implementation was done
in separate files, as latter settings extend the former ones and implementation structure was
pretty much the same in terms of file, for the sake of conciseness, we present and discuss
here only the implementation of the Setting 4 (4.5). Implementations related to Tree method
and evaluation of exercise boundaries are also ommited, since we do not use them on Setting
4. A reader, however, should find no difficulty to implement these things.

The implementation approach was to have a main script file (CB_price.r), which include
auxiliary R’s files to deal with specific portions of the implementation, such as bond-related
functions (bond.r), payoff-related functions (payoff.r), SDE simulation (sde.r) and back-
ward induction Monte Carlo methods (backward_induction.r).

1In fact, R has also a rather awkward syntax when it comes to matrix/vector operations. It is not uncommon
for a specific command line, such as multiplying a matrix by a vector column-wise, to not throw an error, but to
work in an unexpected way. In general, one should always be careful with this type of operation and backtest
them.

81 A.2. IMPLEMENTATION APPROACH

A note about performance

Before stepping into the implementation itself, a disclaimer about performance: the goal of
this work was to provide a concise, clear, flexible, extensible and ready-to-use implemen-
tation. The work focused on LSMC and HMC algorithms. To make algorithms perfectly
intelligible, clear code was preferred over obscure one. Thus, use of cryptic constructs, R’s
arcane features and C code for heavy lifting work were firmly avoided, at expense of perfor-
mance.

At some point, however, performance was so poor that the provided implementation was
unusable in real world scenarios, taking around 40 to 60 mins of processing to fully compute
LSMC/Euler, LSMC/Milstein, HMC/Euler and HMC/Milstein prices in Settings 2 and 3, with
100 time steps and 14000Monte Carlo paths. Optimizations then had to be made to ensure a
better performance, but these were handpicked as to not compromise code clearness. Ex-
amples of such optimizations included functions’ simplication, substitution of calls of heavy
functions for equivalent but lighter ones, caching of heavily used data structures and values
and pre-allocating matrix and vectors whenever possible. Ultimately, the most CPU inten-
sive functions were precompiled into byte code and its compiled version was used along
the main script. All these optimizations helped to attain a dramatically better performance,
with implementation taking now around 5 minutes in Setting 3 and 7 minutes in Setting 4 to
complete all price computation for the same number of time steps and Monte Carlo paths2.

A.2.1 Main code: CB_price.r

1 # Author: Leandro Loriato (llrt at impa.br)
2 #
3 # Calculates the price of a Convertible Bond in setting 3, in which we have:
4 # − Complex product (callable, puttable, american−style conversion)
5 # − Simplified model (only asset is stochastic, do not consider credit risk issues)
6 #
7

8 library(compiler)
9

10 # import auxiliary functions
11 source(’bond.r’)
12 source(’payoff.r’)
13 source(’sde.r’)
14 source(’backward_induction.r’)
15 source(’boundary.r’)
16

17

18 # general parameters
19 t0 = 0 # initial time
20 T = 2 # final time
21 N.t = 100 #252*2 # number of discretization steps in time
22 dt = (T−t0)/N.t # calculates time discretization step

2All above stated processing times were measured using a 2011 Early Macbook Pro hardware with a 2.3
GHz Intel Core i5 processor and 8 GB 1333 MHz DDR3 RAM.

APPENDIX A. IMPLEMENTATION 82

23

24

25 # bond model
26 r = 0.05 # assuming deterministic risk−free interest rate
27 bond.principal = 100 # bond’s principal
28 bond.redemption.ratio = 1 # ratio at which principal is redempted at maturity
29

30 bond.coupon.frequency = 0.5 # frequency on which coupons are paid (assuming equally spaced coupons)
31 bond.coupon.dates = seq(t0 + bond.coupon.frequency, T, by=bond.coupon.frequency) # coupon dates,

starting from payment period
32 # immediately after t0 to, and including, T
33 bond.coupon.rate = 0 # coupon rate to be paid on bond’s principal (assuming equally valued coupons and

pre−fixed rate)
34 # combine coupon parameters into one data structure
35 bond.coupon = list(frequency=bond.coupon.frequency, dates=bond.coupon.dates, rate=bond.coupon.rate)
36

37 # number of stocks a convertible bond’s may be exchanged for
38 bond.conversion.ratio = function(t, S.vector){
39 # if mean of stock prices of the last 20 last days (including current one) is greater
40 # than 130% of initial stock price, then conversion ratio is reset to 0.8
41 n = length(S.vector)
42 mean.S = mean(S.vector[max(1, n−19):n])
43

44 if(mean.S > 1.3*S0){
45 conversion.ratio = 0.8 # sets conversion ratio to 0.8
46 } else{
47 conversion.ratio = 1 # sets conversion ratio to 1
48 }
49

50 invisible(conversion.ratio)
51 }
52 bond.conversion.dates = seq(t0, T, by=dt) # assuming american−style (conversion possible at each time)
53 bond.conversion.restriction = function(t, S.vector){ # embodies restrictions, beside those time−related,
54 # that must be met for conversion action
55 # to be allowed (can be modified to encompass other types of
56 # restrictions, e.g. of Contingent Convertible Bonds)
57 invisible(TRUE) # no conversion restriction
58 }
59

60 # combine coupon parameters into one data structure
61 bond.conversion = list(ratio=bond.conversion.ratio, dates=bond.conversion.dates, restriction=bond.

conversion.restriction)
62

63 # call optionality:
64 # issuer may choose to end contract before maturity, forcing the investor the option to exchange the

convertible
65 # bond for given strike price or to convert it (if current time is one of conversion dates)
66 bond.call.present = TRUE # whether a call optionality is present or not
67 bond.call.strike = function(t, S.vector){ # call’s strike price
68 call.strike = 110 # assuming constant over time
69

70 invisible(call.strike)
71 }
72 bond.call.dates = seq(t0, T, by=dt) # dates where call optionality may take place
73 bond.call.restriction = function(t, S.vector){ # embodies restrictions, beside those time−related,
74 # that must be met for call action to be allowed
75 # (can be modified to encompass other types of restrictions)
76

83 A.2. IMPLEMENTATION APPROACH

77 # if mean of stock prices of the last 20 days (including current one) is greater
78 # than 110% of initial stock price, then call exercise is allowed
79 n = length(S.vector)
80 mean.S = mean(S.vector[max(1, n−19):n])
81

82 if(mean.S > 1.1*S0){
83 ret = TRUE # call exercise is allowed
84 } else{
85 ret = FALSE # call exercise is not allowed
86 }
87

88 invisible(ret)
89 }
90 # combine call parameters into one data structure
91 bond.call = list(present=bond.call.present, strike=bond.call.strike, dates=bond.call.dates, restriction=bond.call

.restriction)
92

93

94 # put optionality:
95 # investor may choose to end contract before maturity, forcing the issuer to buy the convertible bond for

given
96 # strike price
97 bond.put.present = TRUE # whether a put optionality is present or not
98 bond.put.strike = function(t, S.vector){ # put’s strike price
99 put.strike = 98 # assuming constant over time
100 invisible(put.strike)
101 }
102 bond.put.dates = seq(t0, T, by=dt) # dates where put optionality may take place
103 bond.put.restriction = function(t, S.vector){ # embodies restrictions, beside those time−related,
104 # that must be met for put action to be allowed
105 # (can be modified to encompass other types of restrictions, e.g. of
106 # Contingent Convertible Bonds)
107 invisible(TRUE)
108 }
109 # combine put parameters into one data structure
110 bond.put = list(present=bond.put.present, strike=bond.put.strike, dates=bond.put.dates, restriction=bond.put.

restriction)
111

112

113 # creates a data structure to contain all relevant bond parameters
114 bond.params = list(principal=bond.principal, redemption.ratio=bond.redemption.ratio,
115 coupon=bond.coupon, conversion=bond.conversion,
116 call=bond.call, put=bond.put)
117

118

119 # config about which prices, given by each method, to calculate
120 calculate.LSMC.euler = TRUE # whether to calculate price given by LSMC/Euler or not
121 calculate.LSMC.milstein = TRUE # whether to calculate price given by LSMC/Milstein or not
122 calculate.LSMC = list(euler=calculate.LSMC.euler,
123 milstein=calculate.LSMC.milstein)
124 calculate.HMC.euler = TRUE # whether to calculate price given by HMC/Euler or not
125 calculate.HMC.milstein = TRUE # whether to calculate price given by HMC/Milstein or not
126 calculate.HMC = list(euler=calculate.HMC.euler,
127 milstein=calculate.HMC.milstein)
128 # creates a data structure to contain all relevant graph config about which prices to calculate
129 calculate = list(LSMC=calculate.LSMC,
130 HMC=calculate.HMC)
131

APPENDIX A. IMPLEMENTATION 84

132 # stock model
133 S0 = 100 # initial value for S
134 q = 0.1 # continuous dividend yield
135 # SDE of form dX(t) = drift(t, X) dt + sigma(t, X) dW(t)
136 .drift = (r−q) # stock drift equals the risk−free interest rate in risk−neutral measure
137 drift = expression(.drift*x) # expression for the drift
138 .sigma = 0.4 # stock volatility
139 sigma = expression(.sigma*x) # expression for the sigma
140

141

142 # Monte Carlo parameters
143 S0.delta = 0.8*S0 # distance of original S0 to maximum/minimum value in the array
144 S0.max = S0 + S0.delta # maximum S0 value in initial stock price’s array
145 S0.min = S0 − S0.delta # minimum S0 value in initial stock price’s array
146 N.S0.band = 100 # number of values in each band of the array
147 N.S0 = 2*N.S0.band # number of values in the whole array (excluding the central value, i.e. original one)
148 d.S0 = (S0.delta)/N.S0.band # stock price step in the array
149 S0.array = seq(S0.min, S0.max, by=d.S0) # initial stock price’s array
150 S0.array.without.central = S0.array[−(N.S0.band+1)] # initial stock price’s array without central value
151

152 N.MC.central = 10000 # number of Monte Carlo simulations for original initial stock price value
153 N.MC.band = 10 # number of Monte Carlo simulations for rest of initial stock price’s array
154

155 price.fun.LSMC = basis(type=”hermite”, M=5) # LSMC’s basis functions for instrument price
156 price.fun.HMC = basis(type=”hermite”, M=5) # HMC’s basis functions for instrument price
157

158

159 # generating paths
160 Z = matrix(rnorm(N.t*(N.MC.central + N.MC.band*N.S0)), ncol=(N.MC.central + N.MC.band*N.S0), nrow=N.t)

generates N(0,1) samples
161

162 if(any(calculate$LSMC$euler, calculateHMCeuler)){ # simulate Euler−Maruyama paths only if its
163 # corresponding prices are to be calculated
164 # simulates the solution for the given SDE using Euler−Maruyama method
165

166 S.euler = matrix(ncol=(N.MC.central + N.MC.band*N.S0), nrow=(N.t+1)) # pre−allocates matrix for S
167

168 for(.S0 in S0.array.without.central){ # for each value in the initial stock price’s array, except the original one
169 # generates N.MC.band stock price paths
170 j = which(S0.array.without.central==.S0) # obtain index of current stock price in array without central
171 indexes = ((j−1)*N.MC.band+1):(min(j*N.MC.band, N.MC.band*N.S0))
172 S.euler[,indexes] = SDE.solve(t0=t0, T=T, X0=.S0, N.t=N.t, drift=drift, sigma=sigma, method=”euler”, Z=Z[,

indexes])
173 }
174

175 # finally, for the original initial stock price, generates N.MC.central stock price paths
176 indexes = (N.MC.band*N.S0+1):(N.MC.central + N.MC.band*N.S0)
177 S.euler[,indexes] = SDE.solve(t0=t0, T=T, X0=S0, N.t=N.t, drift=drift, sigma=sigma, method=”euler”, Z=Z[,

indexes])
178 }
179

180 if(any(calculate$LSMC$milstein, calculateHMCmilstein)){ # simulate Milstein paths only if its
181 # corresponding prices are to be calculated
182 # simulates the solution for the given SDE using Milstein method
183

184 S.milstein = matrix(ncol=(N.MC.central + N.MC.band*N.S0), nrow=(N.t+1)) # pre−allocates matrix for S
185

186 for(.S0 in S0.array.without.central){ # for each value in the initial stock price’s array, except the original one

85 A.2. IMPLEMENTATION APPROACH

187 # generates N.MC.band stock price paths
188 j = which(S0.array.without.central==.S0) # obtain index of current stock price in array without central
189 indexes = ((j−1)*N.MC.band+1):(min(j*N.MC.band, N.MC.band*N.S0))
190 S.milstein[,indexes] = SDE.solve(t0=t0, T=T, X0=.S0, N.t=N.t, drift=drift, sigma=sigma, method=”milstein”,

Z=Z[,indexes])
191 }
192

193 # finally, for the original initial stock price, generates N.MC.central stock price paths
194 indexes = (N.MC.band*N.S0+1):(N.MC.central + N.MC.band*N.S0)
195 S.milstein[,indexes] = SDE.solve(t0=t0, T=T, X0=S0, N.t=N.t, drift=drift, sigma=sigma, method=”milstein”, Z

=Z[,indexes])
196 }
197

198 # bond price at time T
199 bond.T = bond.value.T(bond.params, r)
200

201

202 # pricing
203 # pricing with LSMC algorithm
204 if(calculate$LSMC$euler){ # calculate LSMC/Euler price only if it is to be calculated
205 ret.LSMC.euler = price.MC(S=S.euler, S0=S0, r=r, q=q, t0=t0, T=T, N.t=N.t, N.MC=(N.MC.central + N.MC.

band*N.S0),
206 backward.induction.method=”LSMC”, price.fun=price.fun.LSMC, bond.params=bond.

params,
207 regression.method=”bouchard”, regression.intervals=50)
208 price.LSMC.euler = ret.LSMC.euler$MC
209 exercise.LSMC.euler = ret.LSMC.euler$exercise
210 }
211

212 if(calculate$LSMC$milstein){ # calculate LSMC/Milstein price only if it is to be calculated
213 ret.LSMC.milstein = price.MC(S=S.milstein, S0=S0, r=r, q=q, t0=t0, T=T, N.t=N.t, N.MC=(N.MC.central + N.

MC.band*N.S0),
214 backward.induction.method=”LSMC”, price.fun=price.fun.LSMC, bond.params=bond.

params,
215 regression.method=”bouchard”, regression.intervals=50)
216 price.LSMC.milstein = ret.LSMC.milstein$MC
217 exercise.LSMC.milstein = ret.LSMC.milstein$exercise
218 }
219

220 # pricing with HMC algorithm
221 if(calculateHMCeuler){ # calculate HMC/Euler price only if it is to be calculated
222 ret.HMC.euler = price.MC(S=S.euler, S0=S0, r=r, q=q, t0=t0, T=T, N.t=N.t, N.MC=(N.MC.central + N.MC.

band*N.S0),
223 backward.induction.method=”HMC”, price.fun=price.fun.HMC, bond.params=bond.params,
224 regression.method=”bouchard”, regression.intervals=50)
225 price.HMC.euler = ret.HMC.euler$MC
226 exercise.HMC.euler = ret.HMC.euler$exercise
227 }
228 if(calculateHMCmilstein){ # calculate HMC/Milstein price only if it is to be calculated
229 ret.HMC.milstein = price.MC(S=S.milstein, S0=S0, r=r, q=q, t0=t0, T=T, N.t=N.t, N.MC=(N.MC.central + N.

MC.band*N.S0),
230 backward.induction.method=”HMC”, price.fun=price.fun.HMC, bond.params=bond.params

,
231 regression.method=”bouchard”, regression.intervals=50)
232 price.HMC.milstein = ret.HMC.milstein$MC
233 exercise.HMC.milstein = ret.HMC.milstein$exercise
234 }
235

APPENDIX A. IMPLEMENTATION 86

236

237 # Black’s formula pricing
238 price.black_ = price.black(r=r, q=q, t=0, T=T, S=S0, sigma=.sigma, bond.params=bond.params)
239

240

241 # combine obtained prices into one data structure
242 price.LSMC_ = list()
243 if(calculate$LSMC$euler){ # adds LSMC/Euler price to structure if it was to be computed
244 price.LSMC_$euler = price.LSMC.euler$value
245 }
246 if(calculate$LSMC$milstein){ # adds LSMC/Milstein price to structure if it was to be computed
247 price.LSMC_$milstein = price.LSMC.milstein$value
248 }
249

250 price.HMC_ = list()
251 if(calculateHMCeuler){ # adds HMC/Euler price to structure if it was to be computed
252 price.HMC_$euler = price.HMC.euler$value
253 }
254 if(calculateHMCmilstein){ # adds HMC/Milstein price to structure if it was to be computed
255 price.HMC_$milstein = price.HMC.milstein$value
256 }
257

258 price = list(black=price.black_, LSMC=price.LSMC_, HMC=price.HMC_)

Listing A.1: CB_price.r

This is the main script file. In lines 8 − 16, the relevant auxiliary functions, declared in other
files, are imported. The compiler library is also imported to provide functions for precom-
pilation of CPU intensive functions.

In lines 18−23, some general, time-related parameters such as maturity and number of time
steps are configured.

In lines 25−111, the bondmodel is configured. Special attention was taken tomake themodel
as parametrizable as possible: interest rate, bond’s principal, redemption ratio, coupons’
rate, frequency and payment dates, conversion ratio and dates, call and put strike price and
dates can be configured. Dates are configured as vectors to provide high flexibility and allow
for discrete exercise time structure. Also, conversion, call and put ratio/strike price values
and restrictions were implemented as functions so as to allow for time- and path-dependent
variants of these features. Finally, all bond parameters are combined into one data structure
for convenience.

In lines 119−131, some parameters are created to allow the user to inform for which methods,
LSMC/Euler, LSMC/Milstein, HMC/Euler and HMC/Milstein, prices must be calculated.

In lines 132 − 140, the stock model is configured. Initial stock price, stock’s continuous divi-
dend yield and volatility can be configured.

In lines 142 − 156, Monte Carlo parameters, such as the number of paths, may be config-
ured. Implementation was made so as to allow the use of an array of several initial stock
prices, with possibly different numbers of paths to be generated for original initial stock price
and the others. Finally, different basis functions may be configured for LSMC and HMC

87 A.2. IMPLEMENTATION APPROACH

methods.

In lines 159 − 197, the standard normal samples are generated and Monte Carlo paths for
both Euler and Milstein discretizations are then simulated.

Finally, in lines 198−258, pricing itself is done for LSMC/Euler, LSMC/Milstein, HMC/Euler and
HMC/Milstein. Actual price calculation is done only for methods for which user configured to
be done. Implementation wasmade to allow regression use of regular (monolithic) regression
or Bouchard’s regression, with parametrizable number of regression intervals. Finally, a
reference price for the European Convertible Bond is calculated using Black formula.

A.2.2 Bond-related Functions: bond.r

1 # Author: Leandro Loriato (llrt at impa.br)
2 #
3 # Auxiliary functions to calculate the value of a bond at a given time
4

5

6 discounted.coupon = function(bond.params, t, r){
7 payments = c() # initialize vector of made payments as empty
8

9 for (t_ in bond.params$coupon$dates){
10 # adds discounted value of accrued coupons to payments vector
11 payments = c(payments, exp(−r*(t_−t)) * bond.params$coupon$rate * bond.params$principal)
12 }
13

14 value = sum(payments)
15 invisible(value)
16 }
17

18 # calculates the redemption value of a bond, given relevant parameters
19 redemption = function(bond.params, r){
20 # redemeed value is the principal times the redemption ratio
21 value = bond.params$principal * bond.params$redemption.ratio
22 invisible(value)
23 }
24 # for performance, pre−compile CPU intensive function
25 redemption = cmpfun(redemption)
26

27 # calculates the value of a bond at time T, given relevant parameters
28 bond.value.T = function(bond.params, r){
29 # value of the bond at time T is the redemption value
30 value = redemption(bond.params, r)
31

32 invisible(value)
33 }

Listing A.2: bond.r

In this file, bond-related functions such as bond’s discounted coupons and redemption value
are presented.

APPENDIX A. IMPLEMENTATION 88

A.2.3 Payoff-related Functions: payoff.r

1 # Author: Leandro Loriato (llrt at impa.br)
2 #
3 # Auxiliary functions to calculate the payoff of a Convertible Bond given the relevant parameters
4

5

6 # legend of exercise possibilities
7 exercise.legend = c(”continuation”=0,
8 ”voluntary_conversion”=1,
9 ”put”=2,
10 ”call”=3,
11 ”forced_conversion”=4,
12 ”redemption”=5)
13

14 # given a time step, computes its exercise time restriction bitmap,
15 # evaluating which exercise actions’ time restrictions are met
16 exercise.time.bitmap = function(t, bond.params){
17 ret = list()
18 ret$conversion = FALSE
19 ret$put = FALSE
20 ret$call = FALSE
21 ret$redemption = FALSE
22

23 # conversion
24 if(t %in% bond.params$conversion$dates){
25 ret$conversion = TRUE
26 }
27 # put
28 if(bond.paramsputpresent && t %in% bond.paramsputdates){
29 ret$put = TRUE
30 }
31 # call
32 if(bond.params$call$present && t %in% bond.params$call$dates){
33 ret$call = TRUE
34 }
35 # redemption
36 if(t==T){
37 ret$redemption = TRUE
38 }
39

40 invisible(ret)
41 }
42 # for performance, pre−compile CPU intensive function
43 exercise.time.bitmap = cmpfun(exercise.time.bitmap)
44

45

46 # calculates a payoff value for the convertible bond at a time, given a stock price,
47 # a reference value and other relevant parameters
48 payoff = function(t, S.vector, r, continuation.value, exercise.time.bitmap, bond.params){
49

50 # initialize auxiliary variables
51 S = tail(S.vector, n=1)
52 action = ’continuation’
53 conversion.value = bond.params$conversion$ratio(t, S.vector) * S
54 call.value = bond.params$call$strike(t, S.vector)
55 put.value = bond.paramsputstrike(t, S.vector)
56 redemption.value = redemption(bond.params, r)

89 A.2. IMPLEMENTATION APPROACH

57

58 if(bond.params$conversion$restriction(t, S.vector) && exercise.time.bitmap$conversion && conversion.
value > continuation.value){

59 if(bond.paramsputrestriction(t, S.vector) && exercise.time.bitmap$put && put.value > conversion.value)
{

60 action = ’put’
61 } else{
62 action = ’voluntary_conversion’
63 }
64 } else if(bond.paramsputrestriction(t, S.vector) && exercise.time.bitmap$put && put.value > continuation.

value){
65 action = ’put’
66 } else if(bond.params$call$restriction(t, S.vector) && exercise.time.bitmap$call && continuation.value > call.

value){
67 if(exercise.time.bitmap$conversion && conversion.value > call.value){
68 action = ’forced_conversion’
69 } else{
70 action = ’call’
71 }
72 } else if(exercise.time.bitmap$redemption && redemption.value > conversion.value){
73 action = ’redemption’
74 }
75

76

77 # based on which action takes place, evaluates corresponding payoff
78 switch(action,
79 ’voluntary_conversion’ = { # voluntary conversion takes place
80 value = conversion.value
81 },
82 ’put’={ # put exercise takes place
83 value = put.value
84 },
85 ’call’={ # call exercise takes place
86 value = call.value
87 },
88 ’forced_conversion’={ # forced conversion takes place
89 value = conversion.value
90 },
91 ’redemption’={ # redemption takes place
92 value = redemption.value
93 },
94 ’continuation’={ # none of other actions take place, investor holds convertible bond for one more period
95 value = continuation.value
96 }
97)
98

99 action = exercise.legend[[action]]
100

101 ret = list(value=value, action=action)
102 invisible(ret)
103 }
104 # for performance, pre−compile CPU intensive function
105 payoff = cmpfun(payoff)

Listing A.3: payoff.r

In this file, payoff and exercise related functions are presented. In lines 46−105 is presented

APPENDIX A. IMPLEMENTATION 90

the payoff function. This is the core of the Convertible Bond’s logic and would be the place
to alter when implementing new and creative exercise features.

In lines 7− 13, exercise legend is presented. For performance, internally each exercise type
is represented as a number. For convenience, though, this legend can be used to associate
intelligible exercise name with its numeric code.

In lines 14− 43, the exercise.time.bitmap function is presented. This function was cre-
ated solely for performance optimization reasons: by profiling payoff function, it was verified
that a lot of time was spent verifying if the given date (time step) was a member of each
exercise date set, i.e. if a given exercise type could take place at the given date. Due to this
being implemented using the relatively slow %in% operator and it being checked at each
payoff function call (e.g., for each combination time step/Monte Carlo path), overall perfor-
mance was very poor. To amend this, all membership checks of a given time step was done
only once for each time step, at the very begining of backward induction iteration, yielding
a consolidated data structure - the exercise bitmap (implemented as a list, for clearness) -
containing flags that inform for which exercise type if, from an exercise dates’ perspective, it
could take place at the given time step.

A.2.4 SDE Simulation: sde.r

1 # Author: Leandro Loriato (llrt at impa.br)
2 #
3 # Auxiliary functions to simulate the path of the solution of a given SDE
4 #
5 # SDE.solve function based on sde.sim function from Stefano Iacus’s Simulation and Inference for Stochastic
6 # Differential Equations book (section 2.4, page 69)
7

8

9 # auxiliary function that simulates the solution using Euler−Maruyama discretization method
10 SDE.solve.euler = function(t0, T, N.t, X0, drift_, sigma_, Z){
11 t = seq(t0, T, length=(N.t+1)) # spans the time range
12 dt = (T−t0)/N.t # calculates time discretization step
13 sqrt.dt = sqrt(dt) # for saving computation, pre−computes sqrt(dt)
14

15 X = matrix(ncol=ncol(Z), nrow=(N.t+1)) # pre−allocates a matrix with N.t+1 rows for X
16 X[1,] = X0 # first X value is X0
17

18 for(i in 2:(N.t+1)){
19 drift__ = drift_(t[i−1], X[i−1,])
20 sigma__ = sigma_(t[i−1], X[i−1,])
21 X[i,] = X[i−1,] + drift__*dt + sigma__*sqrt.dt*Z[i−1,]
22 }
23

24 invisible(X)
25 }
26 # for performance, pre−compile CPU intensive function
27 SDE.solve.euler = cmpfun(SDE.solve.euler)
28

29 # auxiliary function that simulates the solution using Milstein discretization method
30 SDE.solve.milstein = function(t0, T, N.t, X0, drift_, sigma_, sigma.x_, Z){
31 t = seq(t0, T, length=(N.t+1)) # spans the time range

91 A.2. IMPLEMENTATION APPROACH

32 dt = (T−t0)/N.t # calculates time discretization step
33 sqrt.dt = sqrt(dt) # for saving computation, pre−computes sqrt(dt)
34

35 X = matrix(ncol=ncol(Z), nrow=(N.t+1)) # pre−allocates a matrix with N.t+1 rows for X
36 X[1,] = X0 # first X value is X0
37

38 for(i in 2:(N.t+1)){
39 drift__ = drift_(t[i−1], X[i−1,])
40 sigma__ = sigma_(t[i−1], X[i−1,])
41 sigma.x__ = sigma.x_(t[i−1], X[i−1,])
42

43 X[i,] = X[i−1,] + drift__*dt +
44 sigma__*sqrt.dt*Z[i−1,] +
45 (1/2)*sigma__*sigma.x__*(dt*Z[i−1,]^2 − dt)
46 }
47

48 invisible(X)
49 }
50 # for performance, pre−compile CPU intensive function
51 SDE.solve.milstein = cmpfun(SDE.solve.milstein)
52

53 # main function that, for an SDE of form dX(t) = drift(t, X) dt + sigma(t, X) dW(t), simulates its solution
54 SDE.solve = function(t0=0, T=1, X0=1, N.t=100, drift, sigma, method=c(”euler”, ”milstein”), Z){
55

56 if(missing(method)){ # if not provided, use Euler−Maruyama method
57 method = ”euler”
58 } else{ # if provided, use chosen method
59 method = match.arg(method)
60 }
61

62 # evaluates given drift, sigma and sigma.x expressions into functions
63 drift_ = function(t, x){eval(drift)} # drift function
64 sigma_ = function(t, x){eval(sigma)} # sigma function
65

66 if(method==”milstein”){ # if Milstein method is chosen, sigma.x should have been provided
67 sigma.x = D(sigma, ”x”) # derivative of sigma with respect to X
68 sigma.x_ = function(t, x){eval(sigma.x)} # sigma.x function
69 }
70

71 # generates a sample path from SDE solution’s X with chosen method
72 if(method == ”euler”){
73 X = SDE.solve.euler(t0, T, N.t, X0, drift_, sigma_, Z)
74 } else if(method == ”milstein”){
75 X = SDE.solve.milstein(t0, T, N.t, X0, drift_, sigma_, sigma.x_, Z)
76 }
77

78 invisible(X)
79 }
80 # for performance, pre−compile CPU intensive function
81 SDE.solve = cmpfun(SDE.solve)

Listing A.4: sde.r

In this file, SDE simulation functions are presented. These functions were based on the ones
provided in Section 2.4, Page 69 of [Iac09]. The main function is SDE.solve, presented in
lines 53 − 81. It delegates discretization procedure to specific, lower level functions, which
implement different discretization methods. Only Euler and Milstein discretizations are im-

APPENDIX A. IMPLEMENTATION 92

plemented, but others may also be implemented by providing a specific function and altering
SDE.solve function to use it and expose this option to caller.

A.2.5 Backward InductionMonteCarloMethods: backward_induction.r

1 # Author: Leandro Loriato (llrt at impa.br)
2 #
3 # Auxiliary functions to calculate a convertible bond’s price using Monte Carlo method with
4 # backward induction techniques: Least−Squared Monte Carlo (LSMC) e Hedged Monte Carlo (HMC)
5

6 library(orthopolynom)
7

8 # given relevant parameters, calculates the convertible bond price via Black formula
9 price.black = function(r, q, t, T, S, sigma, bond.params){
10 bond = bond.value.T(bond.params, r)
11

12 d1 = function(t, s, bond, sigma){1/(sigma * sqrt(T−t)) * (log((bond.params$conversion$ratio((T−t), s) * s)/
bond) + ((r − q) + (sigma^2)/2) * (T−t))}

13 d2 = function(t, s, bond, sigma){d1(t, s, bond, sigma) − sigma*sqrt(T−t)}
14

15 price = discounted.coupon(bond.params, t, r) +
16 exp(−r*(T−t))*bond +
17 bond.params$conversion$ratio((T−t), S) * S * exp(−q*(T−t)) * pnorm(d1(t, S, bond, sigma)) −
18 bond * exp(−r*(T−t)) * pnorm(d2(t, S, bond, sigma))
19 invisible(price)
20 }
21

22 # given relevant parameters, calculates the delta hedge from Black formula
23 delta.hedge.black = function(r, q, t, T, S, sigma, bond.params){
24 bond = bond.value.T(bond.params, r)
25

26 d1 = function(t, s, bond, sigma){1/(sigma * sqrt(T−t)) * (log((bond.params$conversion$ratio((T−t), s) * s)/
bond) + ((r − q) + (sigma^2)/2) * (T−t))}

27

28 price = bond.params$conversion$ratio((T−t), S) * exp(−q*(T−t)) * pnorm(d1(t, S, bond, sigma))
29 invisible(price)
30 }
31

32 # function that evaluates desired basis functions and its derivatives
33 basis = function(
34 type=c(”laguerre”, ”chebyshev_1”, ”chebyshev_2”, ”chebyshev_3”, ”hermite”, ”legendre”,
35 ”w_laguerre”, ”w_chebyshev_1”, ”w_chebyshev_2”, ”w_chebyshev_3”, ”w_hermite”, ”w_legendre”,
36 ”black”),
37 M=4, ...){
38

39 if(missing(type)){ # if not provided, use Laguerre Polynomials
40 type = ”laguerre”
41 } else{ # if provided, use chosen type
42 type = match.arg(type)
43 }
44

45 # auxiliary function that, given a recurrences list for desired polynom,
46 # evaluates the polynom functions and its derivative functions
47 polynom.fun = function(recurrences){
48 polynom = orthogonal.polynomials(recurrences)

93 A.2. IMPLEMENTATION APPROACH

49 fun = polynomial.functions(polynom)
50

51 polynom.x = polynomial.derivatives(polynom)
52 fun.x = polynomial.functions(polynom.x)
53

54 invisible(list(fun=fun, fun.x=fun.x))
55 }
56

57 # auxiliary function that, given a recurrences list for desired polynom and its
58 # respective weight expression, evaluates the weighted polynom functions and its
59 # derivative functions
60 weighted.polynom.fun = function(recurrences, weight){
61 weight.fun = function(x){eval(weight)}
62

63 weight.x = D(weight, ”x”)
64 weight.x.fun = function(x){eval(weight.x)}
65

66 gen.fun = function(f){
67 force(f)
68 function(x){weight.fun(x)*f(x)}
69 }
70

71 gen.fun.x = function(f, f.x){
72 force(f)
73 force(f.x)
74 function(x){weight.fun(x)*f.x(x) + weight.x.fun(x)*f(x)}
75 }
76

77 polynom = orthogonal.polynomials(recurrences)
78 polynom.fun = polynomial.functions(polynom)
79 fun = list()
80 for(i in 1:length(polynom.fun)){
81 fun[[i]] = gen.fun(f=polynom.fun[[i]])
82 }
83

84 polynom.x = polynomial.derivatives(polynom)
85 polynom.x.fun = polynomial.functions(polynom.x)
86 fun.x = list()
87 for(i in 1:length(polynom.x.fun)){
88 fun.x[[i]] = gen.fun.x(f=polynom.fun[[i]], f.x=polynom.x.fun[[i]])
89 }
90

91 invisible(list(fun=fun, fun.x=fun.x))
92 }
93

94 # for specified basis, evaluate its functions and derivative functions list
95 switch(type,
96 ”laguerre”={ # Laguerre Polynomials
97 recurrences = laguerre.recurrences(n=(M−1), normalized=TRUE)
98

99 ret.fun = polynom.fun(recurrences)
100 fun = ret.fun$fun
101 fun.x = ret.fun$fun.x
102 },
103 ”w_laguerre”={ # Weighted Laguerre Polynomials
104 recurrences = laguerre.recurrences(n=(M−1), normalized=TRUE)
105 weight = expression(exp(−x))
106

APPENDIX A. IMPLEMENTATION 94

107 ret.weighted = weighted.polynom.fun(recurrences, weight)
108 fun = ret.weighted$fun
109 fun.x = ret.weighted$fun.x
110 },
111 ”chebyshev_1”={ # 1st Kind Chebyshev Polynomials
112 recurrences = chebyshev.t.recurrences(n=(M−1), normalized=TRUE)
113

114 ret.fun = polynom.fun(recurrences)
115 fun = ret.fun$fun
116 fun.x = ret.fun$fun.x
117 },
118 ”w_chebyshev_1”={ # Weighted 1st Kind Chebyshev Polynomials
119 recurrences = chebyshev.t.recurrences(n=(M−1), normalized=TRUE)
120 weight = expression(1/sqrt(1−(x^2)/4))
121

122 ret.weighted = weighted.polynom.fun(recurrences, weight)
123 fun = ret.weighted$fun
124 fun.x = ret.weighted$fun.x
125 },
126 ”chebyshev_2”={ # 2nd Kind Chebyshev Polynomials
127 recurrences = chebyshev.s.recurrences(n=(M−1), normalized=TRUE)
128

129 ret.fun = polynom.fun(recurrences)
130 fun = ret.fun$fun
131 fun.x = ret.fun$fun.x
132 },
133 ”w_chebyshev_2”={ # Weighted 2nd Kind Chebyshev Polynomials
134 recurrences = chebyshev.s.recurrences(n=(M−1), normalized=TRUE)
135 weight = expression(1/sqrt(1−(x^2)/4))
136

137 ret.weighted = weighted.polynom.fun(recurrences, weight)
138 fun = ret.weighted$fun
139 fun.x = ret.weighted$fun.x
140 },
141 ”chebyshev_3”={ # 3rd Kind Chebyshev Polynomials
142 recurrences = chebyshev.c.recurrences(n=(M−1), normalized=TRUE)
143

144 ret.fun = polynom.fun(recurrences)
145 fun = ret.fun$fun
146 fun.x = ret.fun$fun.x
147 },
148 ”w_chebyshev_3”={ # Weighted 3rd Kind Chebyshev Polynomials
149 recurrences = chebyshev.c.recurrences(n=(M−1), normalized=TRUE)
150 weight = expression(1/sqrt(1−x^2))
151

152 ret.weighted = weighted.polynom.fun(recurrences, weight)
153 fun = ret.weighted$fun
154 fun.x = ret.weighted$fun.x
155 },
156 ”hermite”={ # Hermite Polynomials
157 recurrences = hermite.h.recurrences(n=(M−1), normalized=TRUE)
158

159 ret.fun = polynom.fun(recurrences)
160 fun = ret.fun$fun
161 fun.x = ret.fun$fun.x
162 },
163 ”w_hermite”={ # Weighted Hermite Polynomials
164 recurrences = hermite.h.recurrences(n=(M−1), normalized=TRUE)

95 A.2. IMPLEMENTATION APPROACH

165 weight = expression(exp(−x^2))
166

167 ret.weighted = weighted.polynom.fun(recurrences, weight)
168 fun = ret.weighted$fun
169 fun.x = ret.weighted$fun.x
170 },
171 ”legendre”={ # Legendre Polynomials
172 recurrences = legendre.recurrences(n=(M−1), normalized=TRUE)
173

174 ret.fun = polynom.fun(recurrences)
175 fun = ret.fun$fun
176 fun.x = ret.fun$fun.x
177 },
178 ”w_legendre”={ # Weighted Legendre Polynomials
179 recurrences = legendre.recurrences(n=(M−1), normalized=TRUE)
180 weight = expression(1)
181

182 ret.weighted = weighted.polynom.fun(recurrences, weight)
183 fun = ret.weighted$fun
184 fun.x = ret.weighted$fun.x
185 },
186 ”black”={ # Black Basis
187 bond.T = bond.value.T(bond.params, r)
188

189 fun = list()
190 fun[[1]] = function(x){1 + x * 0}
191 fun[[2]] = function(x){x − exp(−r*T)*bond.T/bond.params$conversion$ratio(T, x)}
192 fun[[3]] = function(x){price.black(x, r=r, q=q, t=0, T=T, sigma=.sigma, bond.params=bond.params)}
193

194 fun.x = list()
195 fun.x[[1]] = function(x){0 + x * 0}
196 fun.x[[2]] = function(x){1 + x * 0}
197 fun.x[[3]] = function(x){delta.hedge.black(x, r=r, q=q, t=0, T=T, sigma=.sigma, bond.params)}
198 }
199)
200

201 ret = list(type=type, M=M, fun=fun, fun.x=fun.x)
202 invisible(ret)
203 }
204

205

206 # generate a function that, given an evaluted basis function, calculates its value given an input vector X
207 funval = function(X){
208 invisible(function(fun.eval){fun.eval(X)})
209 }
210

211

212 # sanitize a exercise matrix, leaving for each path only the entry that effected the
213 # exercise
214 clean.exercise = function(exercise, N.t){
215 cleaned.exercise = matrix(exercise, nrow=nrow(exercise), ncol=ncol(exercise))
216 stopping.time = rep(1, ncol(exercise))
217

218 for(i in 1:ncol(exercise)){
219 for(j in 1:N.t){
220 if(cleaned.exercise[[j,i]] > 0){ # some exercise action was taken at current time
221 stopping.time[[i]] = j
222 cleaned.exercise[(j+1):(N.t+1),i] = 0 # as instrument already suffered an exercise action,

APPENDIX A. IMPLEMENTATION 96

223 # every other future exercise action does not take place
224 break
225 }
226 }
227 }
228

229 invisible(list(cleaned.exercise=cleaned.exercise, stopping.time=stopping.time))
230 }
231 # for performance, pre−compile CPU intensive function
232 clean.exercise = cmpfun(clean.exercise)
233

234

235 # utilitary function for packing results from a Monte Carlo simulation into an appropriate object
236 as.montecarlo = function(C, S, S0, method, alpha=0.05){
237 .S = S[1,] # initial stock price values
238 indexes = which(.S==S0) # which column indexes correspond to stock price starting at S0 at time t=t0
239 filtered.C = C[,indexes] # matrix of paths of price starting at S0 at time t=t0
240

241 value = mean(filtered.C[1,]) # fair price at time t=t0
242 sigma = sd(filtered.C[1,]) # standard deviation of price at time t=t0
243

244 M = length(filtered.C[1,])
245 Z.alpha = qnorm(alpha/2, lower.tail=F)
246 confidence.interval = c(value−Z.alpha*sigma/sqrt(M), value+Z.alpha*sigma/sqrt(M))
247

248 MC = (list(C=filtered.C, method=method, value=value, sigma=sigma, alpha=alpha, confidence.interval=
confidence.interval))

249 class(MC) = ”montecarlo”
250 return(MC)
251 }
252 # for performance, pre−compile CPU intensive function
253 as.montecarlo = cmpfun(as.montecarlo)
254

255

256 # utilitary functions for summarizing relevant data from a montecarlo object
257 summary.montecarlo = function(MC){
258 s = list(value=MC$value, sigma=MC$sigma, confidence.interval=MC$confidence.interval)
259 class(s) = ”summary.montecarlo”
260 return(s)
261 }
262 setGeneric(”summary.montecarlo”)
263

264 print.summary.montecarlo = function(s){
265 print(paste(”value: ”, s$value))
266 print(paste(”sigma: ”, s$sigma))
267 print(”confidence interval: ”)
268 print(s$confidence.interval)
269 }
270 setGeneric(”print.summary.montecarlo”)
271

272

273

274 # auxiliary function that evaluates regression args for LSMC method
275 regression.args.LSMC = function(S, C, j, rho, Ca.val){
276 # evaluate regression args for LSMC method
277 y = rho * C[j+1,]
278 x = Ca.val
279

97 A.2. IMPLEMENTATION APPROACH

280 ret = list(x=x, y=y)
281

282 invisible(ret)
283 }
284 # for performance, pre−compile CPU intensive function
285 regression.args.LSMC = cmpfun(regression.args.LSMC)
286

287

288 # auxiliary function that evaluates regression args for HMC method
289 regression.args.HMC = function(S, C, j, rho, Ca.val, Fa.val){
290 # evaluate regression args for HMC method
291 y = rho * C[j+1,]
292 x = Ca.val + Fa.val * (rho*S[j+1,] − S[j,])
293

294 ret = list(x=x, y=y)
295

296 invisible(ret)
297 }
298 # for performance, pre−compile CPU intensive function
299 regression.args.HMC = cmpfun(regression.args.HMC)
300

301 # auxiliary function that solves regression using regular method,
302 # then calculating projected expected value according to regression
303 regression.regular = function(x, y, Ca.val){
304 # in regular method, least squares fit is solved using QR on
305 # whole sample
306 alpha = solve(qr(x, LAPACK=TRUE), y)
307

308 # calculate expected value
309 exp.val = tcrossprod(Ca.val, t(alpha)) # Ca.val %*% alpha
310 invisible(exp.val)
311 }
312 # for performance, pre−compile CPU intensive function
313 regression.regular = cmpfun(regression.regular)
314

315 # auxiliary function that solves regression using Bouchard’s method,
316 # then calculating projected expected value according to regression
317 regression.bouchard = function(x, y, S, regression.intervals, Ca.val){
318 # in Bouchard’s method, least squares fit is solved using several QR,
319 # each on a partition of the sample
320

321 exp.val = vector(mode=”numeric”, length=length(y))
322

323 .df.regression = data.frame(S=S, indexes=1:length(y))
324 .df.regression = .df.regression[order(.df.regression$S),]
325

326 interval.length = length(y)/regression.intervals
327

328 for(k in 1:regression.intervals){ # for each regression interval
329 # evaluate indexes corresponding to current interval
330 interval.indexes = ((k−1)*interval.length+1):(min(k*interval.length, interval.length*regression.intervals))
331 # evaluates corresponding original indexes
332 original.indexes = .df.regression$indexes[interval.indexes]
333

334 # extract partitioned x and y based on interval indexes
335 .y = y[original.indexes]
336 .x = x[original.indexes,]
337

APPENDIX A. IMPLEMENTATION 98

338 # solve regression for partitioned x and y
339 alpha = solve(qr(.x, LAPACK=TRUE), .y)
340

341 # calculate expected value
342 exp.val[original.indexes] = tcrossprod(Ca.val[original.indexes,], t(alpha)) # Ca.val %*% alpha
343 }
344

345 invisible(exp.val)
346 }
347 # for performance, pre−compile CPU intensive function
348 regression.bouchard = cmpfun(regression.bouchard)
349

350

351 # main function that, given relevant parameters, calculates the american contingent claim price via Monte
Carlo

352 price.MC = function(S, S0, r, q, t0, T, N.t, N.MC,
353 backward.induction.method=c(”LSMC”, ”HMC”), price.fun, bond.params,
354 regression.method=c(”regular”, ”bouchard”), regression.intervals){
355

356 # sets backward induction method
357 if(missing(backward.induction.method)){ # if not provided, use LSMC method
358 backward.induction.method = ”LSMC”
359 } else{ # if provided, use chosen method
360 backward.induction.method = match.arg(backward.induction.method)
361 }
362

363 # sets regression method
364 if(missing(regression.method)){ # if not provided, use regular method
365 regression.method = ”regular”
366 } else{ # if provided, use chosen method
367 regression.method = match.arg(regression.method)
368

369 # if Bouchard’s regression method is chosen and number of regression intervals is not informed,
370 # sets it in such a way that each interval contains 200 values
371 if(regression.method==”bouchard” && missing(regression.intervals)){
372 regression.intervals = N.MC/200
373 }
374 }
375

376 dt = (T−t0)/N.t # calculates time discretization step
377 t = seq(t0, T, by=dt) # spans the time range
378

379 # pre−allocates a N.t+1 x N.MC matrix for C (contingent claim’s price at each time) and exercise
380 C = matrix(numeric(0), nrow=(N.t+1), ncol=N.MC)
381 exercise = matrix(numeric(0), nrow=(N.t+1), ncol=N.MC)
382

383 # bond value at time T
384 bond.T = bond.value.T(bond.params, r)
385

386 exercise.time.bitmap.ret = exercise.time.bitmap(T, bond.params) # computes exercise time restriction
bitmap

387

388 for(i in 1:N.MC){ # for each path, updates C and exercise values at time with index j
389 S.vector = S[1:(N.t+1), i]
390 payoff.ret = payoff(T, S.vector, r, bond.T, exercise.time.bitmap.ret, bond.params) # intrinsic value info at

time T
391 C[[N.t+1,i]] = payoff.ret$value # initializes C values at time T, as payoff at time T is known
392 exercise[[1+N.t,i]] = payoff.ret$action # evaluates exercise decision

99 A.2. IMPLEMENTATION APPROACH

393 }
394

395 # sets basis functions
396 Ca.fun = price.fun$fun # basis functions for contingent claim’s price
397 if(backward.induction.method==”HMC”){
398 Fa.fun = price.fun$fun.x # basis functions for hedge function for contingent claim’s price
399 }
400

401 rho = exp(−r*dt) # pre−computing exp(−r*dt) to save computation
402

403 # apply the chosen backward induction algorithm
404 for(j in N.t:1){
405 cat(”*”) # print ”*” character to give sense of computation progress
406

407 exercise.time.bitmap.ret = exercise.time.bitmap(t[[j]], bond.params) # computes exercise time restriction
bitmap

408

409 for(i in 1:N.MC){ # for each path, updates C and exercise values at time with index j
410 S.vector = S[1:j, i]
411 payoff.ret = payoff(t[[j]], S.vector, r, rho*C[[j+1,i]], exercise.time.bitmap.ret, bond.params)
412 C[[j,i]] = payoff.ret$value # initialize C value with intrinsic value
413 exercise[[j,i]] = payoff.ret$action # evaluates exercise decision
414 }
415

416 # evaluate regression args according to chosen backward induction method
417 if(backward.induction.method==”LSMC”){
418 # apply Ca functions over S values at time with index j
419 Ca.val = sapply(Ca.fun, funval(S[j,]))
420 # evaluate regression args
421 ret.regression.args = regression.args.LSMC(S, C, j, rho, Ca.val)
422 } else if(backward.induction.method==”HMC”){
423 # apply Ca and Fa functions over S values at time with index j
424 Ca.val = sapply(Ca.fun, funval(S[j,]))
425 Fa.val = sapply(Fa.fun, funval(S[j,]))
426 # evaluate regression args
427 ret.regression.args = regression.args.HMC(S, C, j, rho, Ca.val, Fa.val)
428 }
429 y = ret.regression.args$y
430 x = ret.regression.args$x
431

432 # solve least−squares fit using chosen regression method and
433 # calculate projected expected value at time with index j
434 if(regression.method==”regular”){ # regular regression method
435 exp.val = regression.regular(x, y, Ca.val)
436 } else if (regression.method==”bouchard”){ # Bouchard’s regression method
437 exp.val = regression.bouchard(x, y, S[j,], regression.intervals, Ca.val)
438 }
439

440

441 # for each component over time with index j:
442 # −> C if the value of C is greater than or equal the expected value calculated
443 # −> expected value if the value of C is less than the expected value calculated
444 for(i in 1:N.MC){
445 if(C[[j,i]] >= exp.val[[i]]){ # exercise takes place
446 #C[[j,i]] = C[[j,i]] # update value to current intrinsic value
447 } else{ # return next time’s discounted value
448 C[[j,i]] = rho*C[[j+1,i]] # update value to discounted value of time j+1
449 exercise[[j,i]] = exercise.legend[[”continuation”]] # update current exercise action to continuation

APPENDIX A. IMPLEMENTATION 100

450 }
451

452 # if current time is a coupon payment date, also add coupon to current value
453 if(t[[j]] %in% bond.params$coupon$dates){
454 C[[j,i]] = C[[j,i]] + bond.params$coupon$rate * bond.params$principal
455 }
456 }
457 }
458

459 # clean exercise matrix to retain only the first exercise action at each path, calculating its stopping time
460 ret.clean = clean.exercise(exercise, N.t)
461 stopping.time = ret.clean$stopping.time
462 exercise = ret.clean$cleaned.exercise
463

464 ret = list(MC=as.montecarlo(C, S, S0, method=backward.induction.method, alpha=0.05), exercise=exercise,
stopping.time=stopping.time)

465

466 invisible(ret)
467 }
468 price.MC = cmpfun(price.MC)

Listing A.5: backward_induction.r

In this file, backward induction related functions are presented. In lines 8 − 30 a function
implemented Black closed form formula for European Convertible Bond is presented, as well
as its delta-hedge related formula.

Next, in lines 32 − 203 is presented a function for calculating a list of basis functions given
a basis type and its dimension (M). Weighted and non-weighted Laguerre, 1st, 2nd and 3rd
order Chebyshev, Hermite and Legendre orthogonal polynomial basis are implemented. To
allow for use of arbitrary basis’ dimension, the orthopolynom library is used (imported in
line 6). By doing so, we also benefit from the fact that, for generating polynomial functions, the
orthopolynom library makes use of Horner’s method, a more numerically stable method
for calculating the value of a polynomial at a given point.

Weighted versions are not explicitly generated by orthopolynom library (although it does
provides each basis’ weight), so they are generated by hand, iterating through the non-
weighted counterparts’ list and generating functions that multiply the weight with the non-
weighted polynomial. These functions were not used along the examples in this work, due to
they yielding poorer results, but were kept as possible options, should they be used in other
contexts.

Although not explicitly discussed along this work (mainly due to it providing poorer results,
like the weighted versions), a Black basis function is also available for use. This is a 3-
dimensional basis of the form:

ϕ1(x) = 1

ϕ2(x) = x−K

ϕ3(x) = BS(x)

101 A.3. FINAL REMARK

where BS(x) is the Black closed-form formula for the european equivalent of the instrument
and K a strike price, in the sense of a call strike price. In this work, BS(x) is given by
Equation 4.2.2 and implemented in the function in the beginning of the file;K is implemented
as exp(−rT)B(T)/n(T), where B(T) and n(T) are, respectively, the straight bond value and
conversion ratio at time t = T .

To abstract away whichmethod was used for creating basis functions - using orthopolynom
or crafting by hand - a uniform data structure is created and return. For use with HMC
algorithm, for each basis function its derivative counterpart is also evaluated and returned.
Finally, basis function computation was implemented in an extensible way so as to make
easy to add other types of basis functions’, such as Fourier ones.

In lines 206 − 209 is presented a convenience function that, given a vector of points, return
another function which takes a function as argument and returns a vector of values yielded
by application of argument function to the given vector of points. This construct may seem
cryptic at first, but is very useful for applying the basis’ function over a vector of values using
R’s sapply vectorized function.

In lines 212−253 is presented a utilitary function for cleaning exercise data yielded by pricing
algorithms from exercise actions that did not take place at a given time step because other
exercise action took place earlier. Although not used in Setting 4, this function is useful for
sanitizing exercise data and prepare them for evaluating attained exercise boundary.

In lines 235 − 270 are utilitary functions for building from returned regression data a Monte
Carlo data model, so as to make it more easy to inspect Monte Carlo methods results.

Finally, in lines 274− 468 backward induction pricing methods themselves are implemented.
Main pricing procedure is implemented via function price.MC in lines 351 − 468. All com-
mon backward induction steps are factored into these functions with specific regression pro-
cedures delegated to more low level functions. Both LSMC and HMC algorithms are imple-
mented. Since they mainly differ in which regression arguments are effectively used, this
logic is factored into 2 functions, regression.args.LSMC and regression.args.HMC.
Regression itself is carried on by other 2 functions, one implementing regular, monolithic
regression procedure (regression.regular) and other implementing Bouchard’s regres-
sion procedure (regression.bouchard). For Bouchard’s regression procedure, care was
taken to allow an arbitrary number of regression intervals. Care should be taken, however,
to ensure each regression interval contains enough information for regression procedure to
converge.

A.3 Final Remark

To make provided implementation more ready-to-use, wherever possible we tried to factor
away common functionality and parameters, making it more concise and parametrizable.
However, since Convertible Bonds are very heterogenous and may present several creative
and path-dependent features (see Chapters 2 and 4), to correctly price them, one would

APPENDIX A. IMPLEMENTATION 102

probably need to adapt the given code. In this sense, we preferred not to overparametrize
the code, to maintain it highly flexible and extensible, easy to modify. We expect the user to
be able to clearly understand the premises behind the code, what every part does and how
they interact, and to bend the provided implementation to satisfy its own needs, maybe even
using it as a base framework for pricing other types of financial instruments.

Bibliography

[AFV03] Elie Ayache, Peter A. Forsyth, and Kenneth R. Vetzal. Valuation of convertible
bonds with credit risk. The Journal of Derivatives, 11(1):9–29, 2003.

[AG12] Credit Suisse AG. Convertible bonds: Fundamentals, asset allocation, solvency.
Technical report, 2012. https://www.credit-suisse.com/ch/fixed_income/doc/white_
paper_en.pdf accessed on 11/09/2013.

[AKW01] Manuel Ammann, Axel H. Kind, and Christian Wilde. The pricing of convertible
bonds. Technical report, Discussion Paper, University of St. Gallen, 2001.

[AKW03] Manuel Ammann, Axel Kind, and Christian Wilde. Are convertible bonds under-
priced? an analysis of the french market. Journal of Banking & Finance, 27(4):635–
653, 2003.

[AKW08] Manuel Ammann, Axel Kind, and Christian Wilde. Simulation-based pricing of
convertible bonds. Journal of Empirical Finance, 15(2):310–331, 2008.

[BHM13] Carole Bernard, Mary Hardy, and Anne MacKay. State-dependent fees for variable
annuity guarantees. Available at SSRN 2258199, 2013.

[BK02] Wolfgang Bühler and Christian Koziol. Valuation of convertible bonds with sequen-
tial conversion. Schmalenbach Business Review (sbr), 54(4), 2002.

[BN04] Ana Bermúdez and Maria R. Nogueiras. Numerical solution of two-factor models
for valuation of financial derivatives. Mathematical Models and Methods in Applied
Sciences, 14(02):295–327, 2004.

[BNV06] Alfredo Bermúdez, Maria R. Nogueiras, and Carlos Vázquez. Numerical solution
of variational inequalities for pricing asian options by higher order lagrange–galerkin
methods. Applied Numerical Mathematics, 56(10):1256–1270, 2006.

[BP04] Jean-Philippe Bouchaud and Marc Potters. Theory of Financial Risks: From Statis-
tical Physics to Risk Management. Cambridge University Press, 2 edition, 2004.

[BS73] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.
The journal of political economy, pages 637–654, 1973.

103

https://www.credit-suisse.com/ch/fixed_income/doc/white_paper_en.pdf
https://www.credit-suisse.com/ch/fixed_income/doc/white_paper_en.pdf

BIBLIOGRAPHY 104

[BS77] Michael J. Brennan and Eduardo S. Schwartz. Convertible bonds: valuation and
optimal strategies for call and conversion. Journal of Finance, 32(5):1699–1715,
1977.

[BS80] Michael J. Brennan and Eduardo S. Schwartz. Analyzing convertible bonds. Journal
of Financial and Quantitative Analysis, 15(04):907–929, 1980.

[BW03] Ana Bermudez and Nick Webber. An asset based model of defaultable convertible
bonds with endogenised recovery. Technical report, Working Paper, City University,
Cass Business School, London, 2003.

[CJR85] John C. Cox, Jonathan E. Ingersoll Jr, and Stephen A. Ross. A theory of the term
structure of interest rates. Econometrica: Journal of the Econometric Society, pages
385–407, 1985.

[CLP02] Emmanuelle Clément, Damien Lamberton, and Philip Protter. An analysis of a least
squares regression method for american option pricing. Finance and Stochastics,
6(4):449–471, 2002.

[Com11] McKinsey & Company. Mapping global capital markets 2011. Technical report,
2011. http://www.mckinsey.com/insights/global_capital_markets/mapping_global_
capital_markets_2011 accessed on 11/09/2013.

[Cot13] Richard Cotton. Learning R. O’Reilly, 2013.

[CRR79] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: A simplified
approach. Journal of financial Economics, 7(3):229–263, 1979.

[Exc] Microsoft excel. http://office.microsoft.com/pt-br/excel/. Accessed: 2013-12-02.

[Gar03] Diego García. Convergence and biases of monte carlo estimates of american option
prices using a parametric exercise rule. Journal of Economic Dynamics and Control,
27(10):1855–1879, 2003.

[Gla04] Paul Glasserman. Monte Carlo methods in financial engineering, volume 53.
Springer, 2004.

[GY04] Paul Glasserman and Bin Yu. Number of paths versus number of basis functions in
american option pricing. The Annals of Applied Probability, 14(4):2090–2119, 2004.

[Hes93] Steven L. Heston. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of financial studies, 6(2):327–
343, 1993.

[HP96] Thomas S. Y. Ho and David M. Pfeffer. Convertible bonds: model, value attribution,
and analytics. Financial Analysts Journal, pages 35–44, 1996.

[Hul09] John Hull. Options, Futures and Other Derivatives. Prentice Hall finance series.

http://www.mckinsey.com/insights/global_capital_markets/mapping_global_capital_markets_2011
http://www.mckinsey.com/insights/global_capital_markets/mapping_global_capital_markets_2011
http://office.microsoft.com/pt-br/excel/

105 BIBLIOGRAPHY

Pearson/Prentice Hall, 2009.

[Iac09] Stefano Maria Iacus. Simulation and Inference for Stochastic Differential Equations.
Springer, 2009.

[IFR] International financial reporting standards. http://www.ifrs.org/. Accessed: 2013-
11-09.

[IJ77] Jonathan E Ingersoll Jr. A contingent claim valuation of convertible securities. Jour-
nal of Financial Economics, 4(3):289–321, 1977.

[Jia09] Quiyi Jia. Pricing American Options using Monte Carlo Methods. PhD thesis, De-
partment of Mathematics, Uppsala University, 2009.

[KK01] Ralph Korn and Elke Korn. Option Pricing and Portfolio Optimization: Modern Meth-
ods of Financial Mathematics. Crm Proceedings & Lecture Notes. American Math-
ematical Society, 2001.

[KP11] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential
Equations. Stochastic Modelling and Applied Probability. Springer, 2011.

[Lew91] Craig M. Lewis. Convertible debt: Valuation and conversion in complex capital
structures. Journal of Banking & Finance, 15(3):665–682, 1991.

[LS01] Francis A. Longstaff and Eduardo S. Schwartz. Valuing american options by simu-
lation: A simple least-squares approach. Review of Financial Studies, pages 113–
147, 2001.

[MAT] MATLAB - the language of technical computing. http://www.mathworks.com/
products/matlab/. Accessed: 2013-12-02.

[Mer73] Robert C. Merton. Theory of rational option pricing. The Bell Journal of Economics
and Management Science, pages 141–183, 1973.

[MK12] Krasimir Milanov and Ognyan Kounchev. Binomial tree model for convertible bond
pricing within equity to credit risk framework. arXiv preprint arXiv:1206.1400, 2012.

[MR06] Marek Musiela and Marek Rutkowski. Martingale Methods in Financial Modelling.
Stochastic Modelling and Applied Probability. Springer, 2006.

[MS86] John McConnell and Eduardo S. Schwartz. Lyon taming. Journal of Finance,
41(3):561–576, 1986.

[PBS01] Marc Potters, Jean-Philippe Bouchaud, and Dragan Sestovic. Hedged Monte-
Carlo: Low variance derivative pricing with objective probabilities. Physica A: Sta-
tistical Mechanics and its Applications, 289(3-4):517–525, 2001.

[R C13] R Core Team. R: A language and environment for statistical computing. http://www.

http://www.ifrs.org/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.R-project.org/

BIBLIOGRAPHY 106

R-project.org/, 2013. Accessed: 2013-12-02.

[Sac94] Goldman Sachs. Valuing convertible bonds as derivatives. Quantitative strategies
research notes, 11:1–30, 1994.

[Shr04] Steven Shreve. Stochastic Calculus for Finance II: Continuous-Time Models.
Springer Finance. Springer, 2004.

[Tee11] Paul Teetor. R Cookbook. O’Reilly, 2011.

[TF98] Kostas Tsiveriotis and Chris Fernandes. Valuing convertible bonds with credit risk.
The Journal of Fixed Income, 8(2):95–102, 1998.

[TKN01] Akihiko Takahashi, Takao Kobayashi, and Naruhisa Nakagawa. Pricing convertible
bonds with default risk: a duffie-singleton approach. 2001.

[WB12] Xavier Warin and Bruno Bouchard. Monte-carlo valuation of american options: facts
and new algorithms to improve existing methods. Technical report, Paris Dauphine
University, 2012.

[WK05] Christian Wilde and Axel H. Kind. Pricing convertible bonds with monte carlo simu-
lation. Available at SSRN 676507, 2005.

[Zad10] Ariel Zadikov. Methods of Pricing Convertible Bonds. PhD thesis, University of Cape
Town, 2010.

http://www.R-project.org/
http://www.R-project.org/

	Introduction
	Motivation
	Goals and Structure of the Work

	Convertible Bond Concepts
	Basics
	Features/Terms
	Pricing Issues

	Pricing Methods
	Black-Scholes Model
	Tree Methods
	Main Idea
	Binomial Trees
	Other Tree Types

	Monte Carlo Methods
	Regular Monte Carlo
	Projection/Backward induction techniques
	Least-squared Monte Carlo (LSMC)
	Hedged Monte Carlo (HMC)

	Comparison of Pricing Methods

	Convertible Bond Modelling and Pricing
	Convertible Bond Modelling Review
	Setting 1: Non-callable Non-puttable European Convertible Bond
	Setting 2: Non-callable Non-puttable American Convertible Bond
	Setting 3: Callable Puttable American Convertible Bond
	Setting 4: Path-dependent Callable Puttable American Convertible Bond
	Calibration Issues and Possible Extensions

	Conclusion
	Implementation
	Choice of Platform/Programming Language
	Implementation Approach
	Main code: CB_price.r
	Bond-related Functions: bond.r
	Payoff-related Functions: payoff.r
	SDE Simulation: sde.r
	Backward Induction Monte Carlo Methods: backward_induction.r

	Final Remark

