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Abstract. Behavioral profiles have been proposed as a behavioral abstraction of dynamic systems, specifically
in the context of business process modeling. A behavioral profile can be seen as a complete graph over a
set of task labels, where each edge is annotated with one relation from a given set of binary behavioral
relations. Since their introduction, behavioral profiles were argued to provide a convenient way for comparing
pairs of process models with respect to their behavior or computing behavioral similarity between process
models. Still, as of today, there is little understanding of the expressive power of behavioral profiles. Via
counter-examples, several authors have shown that behavioral profiles over various sets of behavioral relations
cannot distinguish certain systems up to trace equivalence, even for restricted classes of systems represented
as safe workflow nets. This paper studies the expressive power of behavioral profiles from two angles. Firstly,
the paper investigates the expressive power of behavioral profiles and systems captured as acyclic workflow
nets. It is shown that for unlabeled acyclic workflow net systems, behavioral profiles over a simple set of
behavioral relations are expressive up to configuration equivalence. When systems are labeled, this result does
not hold for any of several previously proposed sets of behavioral relations. Secondly, the paper compares
the expressive power of behavioral profiles and regular languages. It is shown that for any set of behavioral
relations, behavioral profiles are strictly less expressive than regular languages, entailing that behavioral
profiles cannot be used to decide trace equivalence of finite automata and thus Petri nets.

1. Introduction

Behavioral profiles [20, 25] are behavioral abstractions of process models that have been widely applied in the
context of behavioral comparison, similarity search, and compliance checking [22, 8, 20, 21, 23]. In a nutshell,
a behavioral profile of a process model is a complete graph over the set of task labels of the model in which
edges are labeled by binary behavioral relations, e.g., causality or conflict. Alternatively, a behavioral profile
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Fig. 1. A net system (a) and its classic behavioral profile (b).

can be seen as a square matrix where rows and columns represent task labels and each cell is labeled by a
binary behavioral relation.

For example, Fig. 1 shows a process model captured as a Petri net system along with the matrix-based
representation of its behavioral profile defined over the three binary behavioral relations proposed in [20]: (i)
strict order “↦” between two task labels denotes that one task label always occurs before the other task
label in computations of the model, (ii) exclusiveness “+” signifies that two given task labels never occur
together in computations of the model, and (iii) interleaving “9” indicates that a given pair of task labels is
neither in the strict order, nor in the inverse strict order, nor in the exclusiveness relation (the task labels may
occur in any order in computations of the model). In an extended version of behavioral profiles [24, 25], a
fourth behavioral relation of co-occurrence “≫” is introduced, stressing the fact that the notion of behavioral
profile is independent of a specific set of relations. Two task labels are co-occurring, if every computation of
the model that contains the first label also contains the second label. The introduction of the co-occurrence
relation in behavioral profiles allows capturing optionality and causality on task labels [25]. Hereinafter,
behavioral profiles defined over the behavioral relations proposed in [20] and [25] are referred to as classic
and causal behavioral profiles, respectively.

It has been suggested that the problem of behavioral comparison of process models can be reduced to
comparison of their behavioral profiles [8]. Given that nodes of every behavioral profile have distinct task
labels (no duplicates allowed), the comparison trivially reduces to matrix equality checking, provided that
the rows and columns of both matrices follow the same order on task labels. This property gives a convenient
basis for computing behavioral similarity between pairs of process models. However, as of today, the expressive
power of behavioral profiles is not well understood [21]. Counter-examples have been put forward showing
that two process models with identical behavioral profiles (defined over the three behavioral relations listed
above) may be not trace equivalent [5], i.e., may define different sets of computations.

This paper studies the expressive power of behavioral profiles defined over different repertoires of behavioral
relations. The paper shows that two systems captured as acyclic unlabeled workflow nets that have identical
behavioral profiles over a repertoire of only two behavioral relations are configuration equivalent [18]. However,
this result no longer holds for labeled systems, even for behavioral profiles defined over behavioral relations
introduced in [20, 25] or a wider array of behavioral relations proposed in [11]. Having put into evidence
the limitations of behavioral profiles for acyclic workflow nets under configuration equivalence, the paper
then studies the expressive power of behavioral profiles over a weaker notion of equivalence namely trace
equivalence, or language equivalence. The paper shows that behavioral profiles are “lossy” for the class of
regular net systems, i.e., Petri net systems that recognize regular languages. In other words, two such systems
may recognize different (regular) languages, yet have identical behavioral profiles. Importantly, this result
holds regardless of over which finite repertoire of behavioral relations (and of which arity) these behavioral
profiles are defined.

This paper is a revised and extended version of our previous work reported in [3]. The main additional
result included in this paper is concerned with the comparison of the expressive powers of behavioral profiles
and regular net systems. In addition, this paper proposes a new definition of a behavioral profile that
conveniently abstracts from the repertoire of behavioral relations and their arity.

The rest of the paper is structured as follows. Section 2 states preliminary notions that are used in
subsequent discussions. Section 3 proposes a new definition of a behavioral profile that generalizes all the
existing similar definitions. Section 4 studies the expressive power of behavioral profiles for the class of
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workflow net systems—a special class of Petri net systems that is widely used to encode business processes [16];
this section focuses on acyclic systems under the notion of configuration equivalence. Section 5 investigates
the expressive power of behavioral profiles for a larger class of regular net systems under trace equivalence.
Finally, Section 6 summarizes the contributions and outlines directions for future work.

2. Preliminaries

This section introduces Petri nets in general and two specific classes of nets, namely workflow nets, which is a
class of nets that are traditionally used to model business processes, and flow nets, which is a class of nets
that is used in this paper to analyze the expressive power of behavioral profiles. The section also introduces
an alternative model of concurrency, called flow event structure, which is used in the subsequent discussions
to establish a formal link between behavioral profiles and flow nets.

2.1. Petri nets

A Petri net is a mathematical formalism for the description of concurrent systems [9].

Definition 2.1 (Petri net).
A (labeled) Petri net, or a net, is a 5-tuple N ∶= (P,T,F,Λ, λ), where P is a finite set of places, T is a finite set
of transitions, F ⊆(P ×T )∪ (T ×P ) is the flow relation, Λ is a set of labels (P ,T , and Λ are pairwise disjoint),
and λ ∶ T→Λ ∪ {τ} is a function that maps transitions of N to labels, where τ is a special label, τ /∈Λ. ⌟

Places and transitions are conjointly referred to as nodes of the net. We write ●y ∶= {x ∈ P ∪ T ∣(x, y) ∈ F}
and y● ∶= {z ∈ P ∪ T ∣(y, z) ∈ F} to denote the preset and postset of a node y ∈ P ∪ T , respectively.

Transitions of Petri nets are used to encode actions/tasks. It is often convenient to distinguish between
observable and silent transitions to denote tasks that have a well-defined meaning in the problem domain and
tasks that have no domain interpretation, respectively. If λ(t) = τ , where t ∈ T , then t is said to be silent ;
otherwise t is said to be observable. In the special case when λ is injective and its image does not contain τ ,
i.e., all transitions are observable and ‘wear’ distinct labels, the net is referred to as unlabeled.

One can define the execution semantics of Petri nets in terms of markings.

Definition 2.2 (Marking).
A marking of a net N ∶=(P,T,F,Λ, λ) is a function M ∶P → ◆0 that maps places of N to natural numbers. ⌟

For a place p ∈ P , we say that marking M puts M(p) tokens at p. By abuse of notation, if a marking M
puts one token at a place p ∈ P and no tokens elsewhere then we denote the marking by [p]. A transition
t ∈ T is enabled in a marking M of N , denoted by (N,M)[t⟩, iff every input place of t contains at least one
token, i.e., ∀p ∈ ●t ∶M(p) > 0. If a transition t ∈ T is enabled in a marking M of N , then t can occur, which
leads to a fresh marking M ′ of N , where M ′(p) =M(p) − 1 if p ∈ ●t ∖ t●, M ′(p) =M(p) + 1 if p ∈ t ● ∖ ● t, and
M ′(p) =M(p) otherwise. By (N,M)[t⟩(N,M ′), we denote the fact that an occurrence of transition t leads
from marking M to marking M ′ of N .

A net system is a Petri net together with its initial marking.

Definition 2.3 (Net system).
A net system is a pair S ∶= (N,M), where N is a net and M is the initial marking of N . ⌟

By ❙, we denote the universe of net systems. Net systems have a well-established graphical notation.
In this notation, places and transitions are visualized as circles and rectangles, respectively. If a tran-
sition is silent, then the corresponding rectangle is drawn empty. If a transition t ∈ T is observable,
then the corresponding rectangle contains label λ(t) within its boundaries. Every pair of nodes (x, y)
in the flow relation is depicted as a directed arc that leads from x to y. Finally, the initial marking
is visualized by drawing black dots inside places, i.e., for every place p ∈ P , M(p) black dots (tokens)
are placed inside the circle that represents p. For example, Fig. 1(a) shows a net system that can be
formalized as a pair (N,M), N ∶= (P,T,F,Λ, λ), where P ∶= {p1, p2, p3, p4, p5, p6}, T ∶= {t1, t2, t3, t4, t5},
F ∶= {(p1, t1), (t1, p2), (t1, p3), (p2, t2), (p2, t5), (p3, t3), (t2, p4), (t5, p4), (t3, p5), (p4, t4), (p5, t4), (t4, p6)}, Λ ∶=
{a,b,c,d,e}, λ ∶= {(t1,a), (t2,b), (t3,c), (t4,d), (t5,e)}, and M ∶= {(p1,1), (p2,0), (p3,0), (p4,0), (p5,0), (p6,0)}.
Note that the net in Fig. 1(a) can be referred to as unlabeled, as its transitions ‘wear’ distinct labels.
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Fig. 2. WF-net systems.

Let A be a set of elements. Then, by σ ∶= ⟨a1, a2, . . . , an⟩ ∈ A
∗, n ∈ ◆0, we denote a sequence of length n

over A, where ai ∈ A, i ∈ [1..n]. The empty sequence, i.e., the sequence without elements, is denoted by ⟨⟩.

Definition 2.4 (Occurrence sequence, execution).
Let S ∶= (N,M0), N ∶= (P,T,F,Λ, λ), be a net system.
○ A sequence of transitions σ ∶= ⟨t1, t2, . . . , tn⟩ ∈ T

∗ is an occurrence sequence in S iff σ is empty or there
exists a sequence of markings ⟨M0,M1, . . . ,Mn⟩, such that for every position i ∈ [1..n] in σ it holds that
(N,Mi−1)[ti⟩(N,Mi); in the latter case we say that σ leads from M0 to Mn and denote this fact by
(N,M0)[σ⟩(N,Mn).

○ A marking M is reachable in S, denoted by M ∈ [S⟩, iff M =M0 or there exists an occurrence sequence σ
in S that leads from M0 to M .

○ A marking M of N is terminal iff for every transition t ∈ T it holds that t is not enabled in M .
○ An occurrence sequence σ in S that leads to a terminal marking is called an execution of S. ⌟

For example, ⟨t1, t5⟩ and ⟨t1, t3, t2, t4⟩ are two occurrence sequences in net system S1 from Fig. 1(a), whereas
the latter sequence is also an execution of S1. Given a net system S, by Ω(S) and Θ(S) we denote the set of
all occurrence sequences in S and the set of all executions of S, respectively.

2.1.1. Workflow nets

Workflow nets, or WF-nets, is a class of Petri nets that is widely used in the context of business process
modeling [15]. Every WF-net has a dedicated source place, a dedicated sink place, and every its transition is
on a directed path from the source to the sink.

Definition 2.5 (WF-net, WF-net system).
A Petri net N ∶= (P,T,F,Λ, λ) is a workflow net, or a WF-net, iff N has a dedicated source place i ∈ P , with
●i = ∅, N has a dedicated sink place o ∈ P , with o● = ∅, and the short-circuit net N∗ ∶= (P,T ∪ {t∗}, F ∪
{(o, t∗), (t∗, i)}) of N is strongly connected, where t∗ ∉ T is a fresh transition. A workflow system, or a
WF-net system, is a pair (N,Mi), where N is a WF-net with the source place i and Mi = [i]. ⌟

Commonly adopted criteria for correctness of WF-net systems are soundness and safeness [16]. A sound
WF-net system guarantees that every execution ends with one token in the sink place and no tokens elsewhere.

Definition 2.6 (Liveness, boundedness, safeness, soundness).
Let S ∶= (N,M), N ∶= (P,T,F,Λ, λ), be a net system.
○ S is live iff for every reachable marking M ′ ∈ [S⟩ and for every transition t ∈ T there exist a marking
M ′′ ∈ [(N,M ′)⟩ such that (N,M ′′)[t⟩.

○ A marking M ′ of N is n-bounded, n ∈ ◆0, iff for every place p ∈ P it holds that M ′(p) ≤ n. S is said to be
bounded iff there exists a number n ∈ ◆0, such that all reachable markings in S are n-bounded.

○ S is safe if all its reachable markings are 1-bounded. Note that one can identify a 1-safe marking M ′ of N
as the set of places {p ∈ P ∣M ′(p) = 1}.

A WF-net system (N,Mi) is sound iff the net system (N∗,Mi), where N∗ is the short-circuit net of N , is
live and bounded. ⌟

Figs. 1(a), 2(a), and 2(b) show WF-net systems. For example, the system in Fig. 1(a) has one dedicated
source place p1, one dedicated sink place p6, and every its node is on a directed path from p1 to p6. The
systems in Figs. 1(a), 2(a) are safe and sound, whereas the system in Fig. 2(b) is 2-bounded and not sound.



On the Expressive Power of Behavioral Profiles 5

2.1.2. Flow nets

Flow nets are a special class of Petri nets, which have the property that their partial order semantics can
be given in terms of occurrence sequences [4]. Flow nets impose two semantic restrictions. Firstly, flow net
systems are semantically acyclic. Intuitively, this means that a token cannot be put at a place which is in the
preset of a transition that has already fired. Thus, every place cannot be marked more than once during an
execution of a flow net system and all transitions in any occurrence sequence are distinct. For example, net
system S2 in Fig. 2(a) is not a flow net system since it violates the aforementioned restriction. Specifically,
place p4 is marked three times during execution ⟨t1, t2, t3, t4⟩, as transitions t2 and t3 put a token back at p4.

In the context of flow net systems, the notion of a causal dependency between transitions can be defined
w.r.t. places. In particular, a transition tj causally depends on a transition ti if (i) there exists a place p
between them, and (ii) whenever both ti and tj occur in an occurrence sequence, then ti is the only transition
that puts a token at p; p is said to be a strong postcondition of ti. The notion of a causal dependency between
transitions leads to the second semantic restriction of flow nets, which states that whenever there is a place
between a pair of transitions, then there is also a strong postcondition between them. Fig. 2(b) shows an
example of a net system that violates the second restriction since there is no strong postcondition, neither
between t2 and t4, nor between t3 and t4. Hence, whenever both t2 and t3 occur, it is not possible to know
which of them precedes the occurrence of transition t4, thus the causal dependency between them cannot be
determined. It is easy to check that net system S1 in Fig. 1(a) is a flow net system, as it satisfies both stated
requirements. Before presenting the definition of flow net systems, we formally define the notion of a strong
postcondition to complement the above informal description.

Definition 2.7 (Strong postcondition, cf. [4]).
A place p ∈ P of a net system S ∶=(N,M), N ∶=(P,T,F,Λ, λ), is a strong postcondition of a transition t ∈ T
iff p ∈ t●, and for every occurrence sequence σ ∶= ⟨t1, . . . , tn⟩ ∈ Ω(S), n ∈ ◆, in which t occurs, i.e., t = tj , for
some j ∈ [1..n], only t can mark p, i.e., M(p) +∑1≤j≤n ∣ tj● ∩{p} ∣ = 1. ⌟

Finally, a flow net system is defined as follows.

Definition 2.8 (Flow net, flow net system, cf. [4]).
A net system S ∶= (N,M), N ∶= (P,T,F,Λ, λ), is a flow net system and N is a flow net iff for every occurrence
sequence σ ∶= ⟨t1, . . . , tn⟩ ∈ Ω(S), n ∈ ◆, and for every i, j ∈ [1..n], such that i < j, it holds that:
1. a place p ∈P is in the preset of at most one transition of σ, i.e., ●ti ∩ ●tj =∅, and
2. if ti● ∩ ●tj ≠ ∅ then there exists p ∈ ti● ∩ ●tj , such that p is a strong postcondition of ti. ⌟

An alternative way to define the execution semantics of a net system is using the notion of a configuration. The
main difference between occurrence sequences and configurations is that the former are used to describe the
interleaving semantics, whereas the latter capture the partial order semantics of the system. A configuration
of a net system is a multiset of its transitions. A configuration induces the state during the execution of the
system which is reached after occurrences of all the instances of transitions in the configuration; note that in
general a transition can occur more than once in an execution of a net system. However, configurations of
flow net systems are sets because of their semantically acyclic nature [4]. This fact is captured below.

Definition 2.9 (Flow net configuration).
A configuration of a flow net system S ∶= (N,M), N ∶= (P,T,F,Λ, λ), is a set C ⊆ T of transitions for which
there exists an occurrence sequence σ ∶= ⟨t1, . . . , tn⟩ ∈ Ω(S), n ∈ ◆0, tj ∈ T , j ∈ [1..n], that consists of the
transitions in C, i.e., it holds that C = {t1, . . . , tn}. ⌟

We will denote the set of all configurations of a flow net system S by Conf (S).
For example, Figs. 3(a) and 3(c) show a flow net system and its configurations ordered by set inclusion,

respectively. Configurations can be used to define a well-known notion of behavioral equivalence in the
spectrum of true concurrency, called configuration equivalence [18].1 Intuitively, two flow net systems are
configuration equivalent if they have the same configurations. Next, we give a formal form to this intuition.

Definition 2.10 (Configuration equivalence of flow net systems).
Let S ∶= (N,M), N ∶= (P,T,F,Λ, λ), and S′ ∶= (N ′,M ′), N ′ ∶= (P ′, T ′, F ′,Λ′, λ′), be flow net systems. By
S ≲conf S

′, we denote the fact that for every configuration C of S there exists a configuration C ′ of S′ such

1 The authors of [18] use the term pomset-trace equivalence
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Fig. 3. Flow net systems and their configurations ordered by set inclusion.

that there exists a bijection β ∶ C → C ′ for which it holds that λ(t) = λ′(β(t)), t ∈ C. Flow net systems S and
S′ are configuration equivalent, denoted by S ≈conf S

′, iff S ≲conf S
′ and S′ ≲conf S. ⌟

Note that flow net systems S4 and S5 shown in Fig. 3(a) and Fig. 3(b), respectively, are configuration
equivalent, as Fig. 3(c) also shows all the configurations of S5.

2.2. Flow Event Structures

A Flow Event Structure (FES) describes the behavior of a concurrent system, e.g., a net system, by means of
events (occurrences of tasks) and two binary behavioral relations on events.

Definition 2.11 (Labeled flow event structure).
A (labeled) flow event structure (FES) is a 5-tuple ❋ ∶= (E,#,❰,Λ, λ), where E is a set of events, # ⊆ E×E is
the conflict relation,❰ ⊆ E×E is the flow relation (# and❰ are symmetric and irreflexive, respectively), Λ is a
set of labels, and λ ∶ E→Λ∪{τ} is a function that maps events of ❋ to labels, where τ is a special label, τ ∉Λ. ⌟

Again, if λ(e) = τ , where e ∈ E, then e is said to be silent ; otherwise e is observable.
Intuitively, the flow relation specifies possible immediate precedence of events, i.e., if two events e and e′

are in the flow relation (e❰ e′), then event e can potentially occur before e′. The conflict relation represents
mutual exclusion of events, i.e., two events e and e′ in the conflict relation (e#e′) cannot occur together.

Similar to configurations of flow net systems, one can talk about configurations of FESs.

Definition 2.12 (FES configuration).
A configuration of a FES ❋ ∶= (E,#,❰,Λ, λ) is a set of events C ⊆ E that is conflict free, i.e., ∀ e, e′ ∈ C ∶
¬(e#e′), has no flow cycles, i.e., the transitive closure of the restriction of ❰ to C is a partial order, and for
all events e′ ∈C and e/∈C such that e❰e′, it holds that there is an event e′′ ∈C such that e#e′′ and e′′❰e′. ⌟

We will denote the set of all configurations of a FES ❋ by Conf (❋).
The notion of configuration equivalence, presented above for flow net systems, can be lifted to flow event

structures as follows.

Definition 2.13 (Configuration equivalence of flow event structures).
Let ❋ ∶= (E,#,❰,Λ, λ) and ❋′ ∶= (E′,#′,❰′,Λ′, λ′) be flow event structures. By ❋ ≲conf ❋

′, we denote the
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Fig. 4. FES E(S4) of the WF-flow net system in Fig. 3(a)

fact that for every configuration C of ❋ there exists a configuration C ′ of ❋′ such that there exists a bijection
β ∶ C → C ′ for which it holds that λ(e) = λ′(β(e)), e ∈ C. Flow event structures ❋ and ❋′ are configuration
equivalent, denoted by ❋ ≈conf ❋

′, iff ❋ ≲conf ❋
′ and ❋′ ≲conf ❋. ⌟

Fig. 4 shows the FES representing the same set of configurations as the net system S4 in Fig. 3(a); the
configurations are shown in Fig. 3(c). In this graphical notation, the letters represent events, the double-headed
arrows denote the flow relation and the annotated dotted lines denote the conflict relation. Observe that for
every transition in S4 there is an event with the same label in the FES, and for every place between a pair of
transitions there is a flow relation between the corresponding events.

3. Behavioral Profiles

This section contributes to the theory of behavioral profiles [20, 25]. A behavioral profile gives an alternative
(declarative) characterization of a dynamic system. A behavioral profile of a system is a collection of behavioral
constraints (relations) on its action/task labels that the system must obey in its computations. In the sequel,
we propose a definition of a behavioral profile that can be seen as a generalization of all the existing (to
the best of our knowledge) similar definitions. We also demonstrate how the notion of a classic behavioral
profile [20] can be captured using the new formalism.

By ✄, we denote the universe of labels. Let S ∶= (N,M), N ∶= (P,T,F,Λ, λ), be a net system. Then,
labels(S) ∶= image(λ), where image(λ) is the image of the entire domain T of λ.

Definition 3.1 (Behavioral predicates and relations).
An (n-ary) behavioral predicate, n ∈ ◆, is a set of pairs π ⊆ {(S,R) ∈ ❙ × (✄n)∣R ∈ (labels(S))n}. An (n-ary)
behavioral relation, n ∈ ◆, of a net system S ∈ ❙ induced by an n-ary behavioral predicate π, denoted by
R[S,π], is the set {R ∈ ✄n ∣(S,R) ∈ π}. ⌟

An example of a behavioral predicate is a weak order predicate proposed in [20].

Definition 3.2 (Weak order [20]).
The weak order behavioral predicate is the set of pairs ≺ ∶= {(S, (α,β)) ∈ ❙×(✄2) ∣α,β ∈ labels(S) ∧ (∃σ ∈
Ω(S)∃ i, j ∈ [1..∣σ∣] ∶ i<j ∧ λ(σi)=α ∧ λ(σj)=β)}. ⌟

Clearly, ≺ is a behavioral predicate. A repertoire of behavioral predicates Π is a finite non-empty set of
behavioral predicates. Finally, a behavioral profile of a system induced by a repertoire of behavioral predicates
is defined by behavioral relations of the system induced by these predicates.

Definition 3.3 (Behavioral profile).
A behavioral profile of a net system S ∈ ❙ induced by a repertoire of behavioral predicates Π, denoted by
❘[S,Π], is a function that maps every behavioral predicate π ∈ Π to its behavioral relation of S induced by π,
i.e., ❘[S,Π] ∶= {(π,R[S,π])∣π ∈ Π}. ⌟

In this light, the classic behavioral profile can be defined as follows.

Definition 3.4 (Classic behavioral profile [20]).
The classic behavioral profile of a net system S ∈ ❙, denoted by ❇Pc(S), is the behavioral profile of S induced
by the repertoire of behavioral predicates Π ∶= {↤,↦,+,9}, i.e., ❇Pc(S) ∶= ❘[S,Π], where:
○ ↤ ∶= {(S, (α,β)) ∈ ❙×(✄2)∣(S, (α,β)) ∈ ≺ ∧ (S, (β,α)) /∈ ≺},
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○ ↦ ∶= {(S, (α,β)) ∈ ❙×(✄2)∣(S, (α,β)) /∈ ≺ ∧ (S, (β,α)) ∈ ≺},
○ + ∶= {(S, (α,β)) ∈ ❙×(✄2)∣(S, (α,β)) /∈ ≺ ∧ (S, (β,α)) /∈ ≺}, and
○ 9 ∶= {(S, (α,β)) ∈ ❙×(✄2)∣(S, (α,β)) ∈ ≺ ∧ (S, (β,α)) ∈ ≺}. ⌟

For example, the classic behavioral profile of the Petri net system S in Fig. 1(a) is given by ❇Pc(S) ∶=
{(↤,{(b,a), (c,a), (d,a), (d,b), (d,c), (d,e), (e,a)}), (↦,{(a,b), (a,c), (a,d), (a,e), (b,d), (c,d), (e,d)}),
(+,{(a,a), (b,b), (b,e), (c,c), (d,d), (e,b), (e,e)}), (9,{(b,c), (c,b), (c,e), (e,c)})}.

Definition 3.5 (Basic repertoire of behavioral predicates).
A repertoire of n-ary behavioral predicates Π, n ∈ ◆, is basic iff for every net system S ∈ ❙ it holds that:
○ for every two distinct behavioral predicates π1, π2 ∈ Π, R[S,π1] and R[S,π2] are disjoint, and
○ ⋃π∈ΠR[S,π] = (labels(S))

n. ⌟

The repertoire of binary behavioral predicates Π ∶= {↤,↦,+,9}, refer to Definition 3.4, is basic [20].
As pointed out in the Introduction, a behavioral profile of a net system induced by a basic repertoire of

behavioral predicates can be visualized as a square matrix where rows and columns represent task labels and
each cell is labeled by the respective behavioral relation. Recall that Fig. 1(b) encodes the classic behavioral
profile of the net system in Fig. 1(a).

4. Behavioral Profiles and Equivalence Preservation

The section starts with the definition of the equivalence preservation property on repertoires of behavioral
predicates. This property is used in Section 4.2 to study the expressive power of classic behavioral profiles
w.r.t. configuration equivalence of WF-flow net systems. A WF-flow net is a flow net that can be used to
define a sound WF-net system, e.g., the two WF-nets in Fig. 3 are WF-flow nets. Finally, Section 4.3 collects
and discusses limitations of behavioral profiles.

4.1. Equivalence preserving repertoires of behavioral predicates

It is well-accepted that the expressive power of a modeling language for capturing dynamic systems should
be defined with respect to a notion of (behavioral) equivalence. In the context of dynamic systems, there
are several such notions, which are broadly classified into two categories: equivalences that are based on the
interleaving semantics and those based on the true concurrency semantics, cf. [17, 18, 19, 12] for details.

Given that behavioral profiles do not have execution semantics per se, when studying their expressive
power, one cannot directly reuse existing equivalences. To this end, we introduce the notion of equivalence
preservation, which is a property on a repertoire of behavioral predicates.

Definition 4.1 (Equivalence preserving repertoire of behavioral predicates).
Let ❙′ ⊆ ❙ be a class of net systems and let ≈ be an equivalence relation on ❙′. A repertoire of behavioral
predicates Π preserves ≈ on ❙′ iff for all S,S′ ∈ ❙′ it holds that:

❘[S,Π] = ❘[S′,Π] ⇔ S ≈ S′.
⌟

Intuitively, a repertoire of behavioral predicates preserves an equivalence on a class of net systems iff equivalent
systems imply equal behavioral profiles of these systems induced by the behavioral predicates, and vice versa.

4.2. Behavioral profiles and WF-flow nets

In [4], the author shows that FESs correspond to the family of flow net systems. Specifically, it is always
possible to compute a FES of a given flow net system, where configurations of the FES can be derived from
occurrence sequences in the system. Next, we show how to construct a FES of a WF-flow net system.

Definition 4.2 (FES of a WF-flow net system).
The FES of a WF-flow net system S ∶= (N,M) ∈ ❙, N ∶= (P,T,F,Λ, λ), denoted by E(S), is the FES
(T,#,❰,Λ, λ), where for every t, t′ ∈ T it holds that:
○ t#t′⇔def ∀C ∈ Conf (S) ∶ {t, t′} /⊆ C, and
○ t❰ t′⇔def ¬(t#t′) ∧ t● ∩ ●t′ ≠ ∅. ⌟
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Fig. 5. FES E(S5) of the WF-flow net system in Fig. 3(b).

Furthermore, occurrence sequences in a flow net system induce configurations of the corresponding FES, and
vice versa. The following proposition restates one result from [4] for the set of unlabeled WF-flow net systems.

Proposition 4.3 (Configurations of flow net systems and FESs, cf. [4]).
If ❋ ∶= E(S) is a FES of an unlabeled WF-flow net system S, then it holds that Conf (S) = Conf (❋). ⌟

A direct consequence of Proposition 4.3 is that two configuration equivalent WF-flow net systems induce
configuration equivalent FESs. This is captured in the following corollary.

Corollary 4.4 (FES, WF-flow nets and configuration equivalence).
If ❋ ∶= E(S) and ❋′ ∶= E(S′), where S and S′ are unlabeled WF-flow net systems, then it holds that:

S ≈conf S
′ ⇔ ❋ ≈conf ❋

′.
⌟

The relation between the two formalisms, i.e., FESs and WF-flow net systems, demonstrates that the behavior
of a WF-flow net system can be encoded using two binary relations. These relations can be employed to
induce a new type of behavioral profiles.

Definition 4.5 (FES behavioral profile).
Let ❙∗ ⊂ ❙ be the set of all unlabeled WF-flow net systems and let S ∈ ❙∗, where S ∶= (N,M) and N ∶=

(P,T,F,Λ, λ). The FES behavioral profile of S, denoted by ❇Pfes(S), is the behavioral profile induced by the

repertoire of behavioral predicates Π ∶= {#,❰}, i.e., ❇Pfes(S) ∶= ❘[S,Π], where:
○ # ∶={(S, (α,β))∈❙∗× (✄2)∣∃ t1, t2 ∈ T ∀C ∈Conf (S) ∶ ({t1, t2} /⊆ C ∧ λ(t1) = α ∧ λ(t2) = β)},
○ ❰ ∶={(S, (α,β))∈❙∗×(✄2)∣∃ t1, t2 ∈ T ∃C ∈Conf (S) ∶({t1, t2} ⊆ C ∧ t1● ∩ ●t2 ≠ ∅∧λ(t1)=α∧λ(t2)=β)}. ⌟

The notion of a configuration of a FES can be applied directly over the ❇Pfes , such that any conclusion (w.r.t.

behavior) derived from the ❇Pfes(S) holds in the corresponding unlabeled WF-flow net system S. Note that

❇P
fes is not a basic repertoire of behavioral predicates since there can be pairs of labels (events in the FES)

neither in flow nor in conflict relation, i.e., ⋃π∈{#,❰}R[S,π] ≠ (labels(S))
2. Indeed, the flow relations of two

configuration equivalent unlabeled WF-flow net systems can be different. This fact will be made obvious after
the following proposition, which shows that all the places, except for the source and sink place, in a WF-flow
net system are strong postconditions of some transitions and thus induce flow relations.

Proposition 4.6 (Strong postconditions and WF-flow net systems).
Let S ∶= (N,M), N ∶= (P,T,F,Λ, λ), be a WF-flow net system and let σ ∶= ⟨t1, . . . , tn⟩ ∈ Θ(S), n ∈ ◆, be an
execution of S. A place p ∈ ti● ∩ ●tj is a strong postcondition of ti, where 1 ≤ i, j ≤ n. ⌟

The proof of Proposition 4.6 follows immediately from Definition 2.8.
Consider unlabeled WF-flow net systems S4 and S5 in Fig. 3(a) and Fig. 3(b), respectively. Fig. 4 and

Fig. 5 show FESs of S4 and S5, respectively. The two FESs are clearly not isomorphic since E(S4) has a
flow relation between a and e that is not present in E(S5), while E(S5) has a flow relation between b and
f that is not present in E(S4). Yet, they encode the same set of configurations (those shown in Fig. 3(c)).
The differences in the flow relations between the FESs of S4 and S5 are translated into differences in the ❰
relations of ❇Pfes(S4) and ❇P

fes(S5). Hence, the repertoire of behavioral predicates {❰,#} does not preserve
configuration equivalence for the class of unlabeled WF-flow net systems.

We now turn our attention to the behavioral predicates of classic behavioral profiles and show that
preserve configuration equivalence on unlabeled WF-flow net systems. We start by defining the structural
strict order relation between a pair of transitions in an unlabeled WF-flow net system.
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Definition 4.7 (Structural strict order).
Let S ∶= (N,M), N ∶= (P,T,F,Λ, λ), be a net system. The structural strict order behavioral predicate is the
set of pairs ↠ ∶= {(S, (α,β)) ∈ ↦∣∃σ ∈Ω(S)∃ i, j ∈ [1..∣σ∣] ∶ λ(σi)=α ∧ λ(σj)=β ∧ σi● ∩ ● σj ≠ ∅}, where ↦ is
defined in Definition 3.4. ⌟

Intuitively, two task labels are in structural strict order relation if the transitions ‘wearing’ these labels have
a place between them and one occurs before the other in all the occurrence sequences.

Definition 4.8 (Classic FES behavioral profile).
The classic FES behavioral profile of a net system S ∈ ❙, denoted by ❇Pc

fes(S), is the behavioral profile of S
induced by the repertoire of behavioral predicates Π ∶= {↠,⊕}, ⊕ ∶= {(S, (α,β)) ∈ +∣α,β ∈ labels(S) ∧ α ≠ β},
where ↠ and + are defined in Definition 4.7 and Definition 3.4, respectively, i.e., ❇Pc

fes(S) ∶= ❘[S,Π]. ⌟

The next proposition shows that given an unlabeled WF-flow net system S, it holds that ❇Pfes(S) = ❇Pc
fes(S),

if we assume the correspondence between ⊕ and # and between ↠ and ❰.

Proposition 4.9 (❇Pfes and ❇P
c
fes).

Let S be an unlabeled WF-flow net system. Then, it holds that ❇Pfes(S) = ❇Pc
fes(S), where ❇P

fes(S) ∶=
❘[S,{#,❰}] and ❇Pc

fes(S) ∶= ❘[S,{↠,⊕}], i.e., for any two labels α,β ∈ labels(S) it holds that:
○ (S, (α,β)) ∈# ⇔ (S, (α,β)) ∈ ⊕, and
○ (S, (α,β)) ∈ ❰ ⇔ (S, (α,β)) ∈↠ . ⌟

Proof. Without loss of generality, and since S is unlabeled, assume t, t′ ∈ T are the only transitions with
labels α and β, respectively, i.e., λ(t) = α and λ(t′) = β. Consider the following cases.
1. (S, (α,β)) ∈ ⊕ ⇔ (S, (α,β)) ∈#.

(⇒) By the definition of ⊕, we know that α ≠ β, which implies t ≠ t′, and (S, (α,β)) ∈ +. Additionally, by
the definition of + (Def. 3.4) in ❇Pc, we have that (S, (α,β)) /∈ ≺ ∧ (S, (β,α)) /∈ ≺. Given that α and β
are not in weak order ≺, there is no sequence where both t and t′ occur, i.e., ∄σ ∈Ω(S)∃ i, j ∈ [1..∣σ∣] ∶ i<
j ∧ ((σi = t ∧ σj = t′) ∨ (σi = t′ ∧ σj = t))), see Definition 3.2. Therefore, there is no configuration C in the
WF-flow net system (Def.2.9) with transitions ti, tj ∈ C ∶ ti = t ∧ tj = t

′, and so t#t′, which leads to the
desired results: (S, (λ(t), λ(t′))) = (S, (α,β)) ∈#.
(⇐) The inverse case clearly follows from Definition 4.2. I.e., t, t′ ∈ T ∶ t#t′⇔∀C ∈ Conf (S) ∶ {t, t′} /⊆ C,
thus there is no σ ∈Ω(S) ∶ ∃ i, j ∈ [1..∣σ∣] ∶ i<j∧((σi = t∧σj = t′)∨(σi = t′∧σj = t)). Hence, (S, (λ(t), λ(t′))) =
(S, (α,β)) ∈ +. Finally, given that t ≠ t′, it also holds that (S, (λ(t), λ(t′))) = (S, (α,β)) ∈ ⊕ as desired.

2. (S, (α,β)) ∈↠ ⇔ (S, (α,β)) ∈❰.
(⇒) According to the definition of structural strict order ↠, Definition 4.7, ∃σ ∈Ω(S)∃ i, j ∈ [1..∣σ∣] ∶ σi=
t∧σj =t

′∧t●∩●t′ ≠ ∅. Given that t●∩●t′ ≠ ∅, by Proposition 4.6, ∃p ∈ t●∩●t′ which is a strong postcondition

of t. Thus, by Definition 4.2, we have that t❰ t′ in E(S) and (S, (λ(t), λ(t′))) = (S, (α,β)) ∈❰ in ❇Pfes(S),
as required.
(⇐) Suppose (S, (α,β)) ∈❰ in ❇Pfes(S), but (S, (α,β)) ∉↠. By Definition 4.2, given that (S, (α,β)) ∈❰
then t●∩●t′ ≠ ∅ and (S, (α,β)) ∉ #. Note that if (S, (α,β)) ∉↠ then (S, (α,β)) ∉↦, see Definition 4.7, and
since (S, (α,β)) ∉ # then (S, (α,β)) ∉ ⊕ – see previous case. Furthermore, given that the classic behavioral
profile is basic, it holds that (S, (β,α)) ∈≺, such that (S, (α,β)) ∈←[ or (S, (α,β)) ∈ 9. Hence, there is at
least an occurrence sequence where t′ occurs before t, i.e., σ ∈ Ω(S)∃i, j ∈ [1 . . . ∣σ∣] ∶ j < i ∧ σj = t′ ∧ σi = t.
Moreover, there is a strong postcondition p of t (see Proposition 4.6) between t and t′ since (S, (α,β)) ∈❰.
However, p ∈ ●t′ and p can be only marked by t, thus if (S, (β,α)) ∈≺ then ∃k ∈ [1 . . . ∣σ∣] ∶ k < j ∧ σk = t.
The last contradicts the fact that S is a WF-flow net system, because σ would have 2 occurrences of t
and, by Definition 2.7, p cannot be marked more than once by the transitions of any occurrence sequence
σ ∈ Ω(S). Therefore, if (S, (α,β)) ∈❰ then (S, (α,β)) ∈↠ and it concludes the proof. ◾

Thus, one can derive the configurations of S from ❇P
c
fes(S). In what follows, we prove that {↤,↦,+,9}

preserves configuration equivalence on the class of unlabeled WF-flow net systems.

Proposition 4.10 (Configuration equivalence and equality of ❇Pc).
Let S ∶= (N,M), N ∶= (P,T,F,Λ, λ), and S′ ∶= (N ′,M ′), N ′ ∶= (P ′, T ′, F ′,Λ, λ′), be two unlabeled WF-flow
net systems such that there exists a bijection γ ∶ T → T ′, λ(t) = λ′(γ(t)), t ∈ T . Then, it holds that:

❇P
c(S) = ❇Pc(S′) ⇔ S ≈conf S

′. ⌟
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Fig. 6. A net system (a) and its branching process (b).

Proof. (⇒) Firstly, let us show that if ❇Pc(S) = ❇Pc(S′) then S ≈conf S′.
Suppose that ❇Pc(S) = ❇Pc(S′), but ¬(S ≈conf S′). By Corollary 4.4, we have ¬(E(S) ≈conf E(S′)).

Furthermore, by Proposition 4.9, for any pair of transitions t, t′ ∈ T it holds: (S, (λ(t), λ(t′))) ∈ ⊕ ⇔ t#t′

and (S, (λ(t), λ(t′))) ∈↠ ⇔ t❰ t′, and analogously for any pair of transitions in T ′.
Assume a configuration C ⊆ T in E(S) and its mapping C ′ = {γ(t′) ∣ t′ ∈ C} in E(S′), such that C ′ is not

a configuration. By Definition 2.12, the configuration C of a FES (i) is conflict free, (ii) for all t′ ∈ C and
t ∉ C, s.t., t❰ t′ there exists an t′′ ∈ C s.t. t#t′′ ❰ t′, and (iii) has no flow cycles.

Therefore, we must consider the following cases:
(i) Conflict freeness. Since C is a configuration in E(S), then for any t, t′ ∈ C it holds ¬(t#t′) and, in

consequence, (S, (λ(t), λ(t′))) ∉ + by Proposition 4.9(1). Then, by the assumption on the equality of
the ❇Pc’s, ∃t1, t

′
1 ∈ C

′ ∶ γ(t) = t1 ∧ γ(t′) = t′1, such that (S, (λ(t1), λ(t
′
1))) ∉ + and thus ¬(t1#t′1). So,

C ′ is also conflict free if C is conflict free, and for every pair of t1, t
′
1 ∈ C

′ then (S, (λ(t), λ(t′))) ∈ 9,
(S, (λ(t), λ(t′))) ∈←[ or (S, (λ(t), λ(t′))) ∈↦.

(ii) For any t′′1 ∈ C ′ and t1 ∉ C ′, s.t., t1 ❰ t′′1 , there exists an t′1 ∈ C ′ ∶ t1#t′1 ❰ t′′1 . Suppose that there
is an event t1 ∉ C ′, such that ∃t′′1 ∈ C ′ ∶ t1 ❰ t′′1 and ∀t′1 ∈ C ′ ∶ ¬(t1#t′1). Given that t1 ❰ t′′1 , then
(S, (λ(t1), λ(t

′′
1))) ∈↦ (in fact, (S, (λ(t1), λ(t

′′
1))) ∈↠), and since ¬(t1#t′1) then (S, (λ(t1), λ(t

′
1))) ∉ +

for any t′1 ∈ C ′ by Proposition 4.9. Hence, by the equality of ❇Pc’s, ∃t ∈ T, t′′ ∈ C ∶ t ∉ C ∧ γ(t) =
t1 ∧ γ(t′′) = t′′1 ∧ (S, (λ(t), λ(t′′))) ∈↦, and for any t′ ∈ C it holds (S, (λ(t), λ(t′))) ∉ +. However,
the last contradicts the fact that C is a configuration in E(S), because t would necessarily be in C.
Henceforth, condition 2 also holds for C ′.

(iii) Free of flow cycles. The only case remaining, so that C ′ is not a configuration in E(S′), is when C ′

contains cycles, i.e., ❰∗C′ is not a partial order. This case simply cannot happen because WF-flow nets
are acyclic and any occurrence sequence contains at most one occurrence of each activity.

Therefore, if C is a configuration in E(S), then C ′ must also be a configuration in E(S′) .
(⇐) The opposite case, S ≈conf S′ ⇒ ❇P

c(S) = ❇Pc(S′), follows directly from the construction of the ❇Pc,
see Definition 3.4. ◾

Armed with the above, one can conclude that {↤,↦,+,9} is equivalence preserving on the class of unlabeled
WF-flow net systems. This fact is captured in the following Corollary.

Corollary 4.11 (Classic behavioral profiles and equivalence preservation).
The repertoire of behavioral predicates {↤,↦,+,9}, cf. Definition 3.4, preserves configuration equivalence,
cf. Definition 2.10, on the set of all unlabeled WF-flow net systems. ⌟

4.3. Discussion on the limitations of behavioral profiles

Fig. 6(a) shows net system S6 that demonstrates one limitation of classic behavioral profiles. Note that for
this net system, task labels b and e are in the interleaving relation, i.e., it holds that b9e. This, however, does
not capture the fact that in some configurations b always precedes e. In particular, in all the configurations
of S6 that contain transitions labeled with b, e, and f, it is always the case that b precedes e.

A solution to disambiguate this situation can be to reason not in terms of task labels, but in terms of
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Fig. 7. Two flow net systems that have equal causal behavioral profiles.

their occurrences. In this regard, alternative representations of net systems, e.g., by means of branching
processes [6], can result useful. However, the price to pay is that a branching process can contain several
instances of a single task that must be treated as different label instances in corresponding behavioral profiles.
Hence, representation of a behavioral profile as a matrix of size ∣Λ∣2 is no longer guaranteed. For example,
Fig. 6(b) shows the maximal branching process of net system S6 from Fig. 6(a). Note that this branching
process contains two occurrences of label e and two occurrences of label g.

Another approach to cope with lack of expressive power of classic behavioral profiles is to rely on other
repertoires of behavioral predicates, as proposed in [26]. This latter work studies causalities with different
look-aheads. The authors claim that the use of more behavioral predicates improves expressiveness of the
induced behavioral profiles. They show that 1-look-ahead causalities induce trace equivalence for a restricted
family of Petri nets. However, as it is shown below, repertoires of behavioral predicates used by causal
behavioral profile [25] and the 4C spectrum [11], which contain more behavioral predicates than the repertoire
used by classic behavioral profiles, do not preserve trace equivalence, even on acyclic net systems.

Proponents of classic behavioral profiles seek to provide a representation that only considers the distinct
labels of the observable tasks yet is equivalence preserving. When it comes to representing net systems, the
common approach is to ignore the silent transitions and to consider all the transitions with the same label as
the same action. This design choice, however, comes with a loss of accuracy. Acknowledging the limitations
of classic behavioral profiles, several extensions have been proposed, which incorporate other repertoires of
behavioral predicates. For example, causal behavioral profiles [25], in addition to the behavioral predicates of
classic behavioral profiles, include one additional behavioral predicate.

Definition 4.12 (Co-occurrence relation, cf. [25]).
The co-occurrence behavioral predicate is the set of pairs ≫ ∶= {(((P,T,F,Λ, λ),M), (α,β)) ∈ ❙×(✄2)∣α,β ∈
Λ ∧ (∀σ ∈Θ(((P,T,F,Λ, λ),M)) ∶ (∃ i ∈ [1..∣σ∣] ∶ λ(σi)=α)⇒ (∃ j ∈ [1..∣σ∣] ∶ λ(σj)=β)}. ⌟

Then, the causal behavioral profile of a net system is defined as follows.

Definition 4.13 (Causal behavioral profile, cf. [25]).

The causal behavioral profile of a net system S ∈ ❙, denoted by ❇Pcausal(S), is the behavioral profile of S

induced by the repertoire of behavioral predicates Π ∶= {↤,↦,+,9,≫}, i.e., ❇Pcausal(S) ∶= ❘[S,Π], where ≫
is the co-occurrence behavioral predicate, and the other behavioral predicates are defined in Definition 3.4. ⌟

Despite adding one additional behavioral predicate, causal behavioral profiles still fall short of preserving
configuration equivalence on the class of WF-flow net systems. Two flow net systems S7 and S8 in Fig. 7 are
not configuration equivalent. Interestingly, there is only one configuration that distinguishes the two systems,
namely {a,c}; note that we restrict configurations to observable transitions. However, their causal and, hence,

classic behavioral profiles are equal, i.e., ❇Pcausal(S7) = ❇P
causal(S8) and ❇Pc(S7) = ❇P

c(S8).
Another class of behavioral profiles can be induced by the behavioral predicates of the 4C spectrum [11]. The

4C spectrum defines a repertoire of eighteen behavioral predicates that capture such behavioral phenomena as
co-occurrence, conflict, causality, and concurrency. Due to the non-mutually-exclusive nature of the predicates,
two task labels of a system can be in several behavioral relations of the 4C spectrum at the same time,
i.e., the repertoire of behavioral predicates of the 4C spectrum is non-basic, cf. Definition 3.5.

Despite the large size of the repertoire of behavioral predicates of the 4C spectrum, this repertoire does
not preserve configuration equivalence on the class of WF-flow net systems. Indeed, the two WF-flow net
systems in Fig. 7 are not configuration equivalent but have equal behavioral profiles induced by the predicates
of the 4C spectrum; we refer the reader to [11] for the precise definition of the 4C spectrum. Fig. 8 shows two
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Fig. 8. Generalization of the net systems in Fig. 7.

constructions that generalize the net systems in Fig. 7. For any fixed value of n ∈ ◆, system S9 in Fig. 8(a)
comprises the set of configurations {{a,b1,b2, . . . ,bn,c}} ∪ {{a,bm,c} ∣ m ∈ [1 .. n]}. However, S9 has the
same representation as system S10 in Fig. 8(b) over the relations of the 4C spectrum. Note that system S9

encodes n + 1 configurations, whereas system S10 describes 2n configurations. Therefore, there exist two net
systems for which there is an exponential number of configurations that are indistinguishable when using the
representation based on the behavioral predicates of the 4C spectrum; specifically, 2n −n− 1 indistinguishable
configurations for systems in Fig. 8.

The above observations confirm that existing behavioral profiles are lossy behavioral representations of
net systems. Thus, if one relies on the existing behavioral profiles in the context of process model comparison,
then one must tolerate inaccurate diagnosis. To address this problem, one can either look for new and more
accurate behavioral profiles or, alternatively, explore behavior representations in terms of occurrences of
actions. However, the size of such latter representations can be larger than ∣Λ∣2.

5. Behavioral Profiles and Regular Languages

Under the notion of trace equivalence, a dynamic system is fully characterized by the language consisting of
all the strings that the system can recognize, where the symbols of the alphabet of this language represent
actions/tasks that the system can perform. Each string in this language describes a possible computation, or
instance, of the system, i.e., a sequence of actions that can be performed by the system.

Taking this viewpoint, this section examines the ability of behavioral profiles to discriminate net systems
that accept regular languages. We start by introducing notation related to formal languages, followed by a
definition of net systems that induce regular languages. Then, we show that there exist regular net systems
that cannot be distinguished by behavioral profiles, regardless of the specific set of predicates employed.

5.1. Strings and languages

An alphabet is any non-empty finite set. The elements of an alphabet are also called symbols. The following
are three examples of alphabets:

○ Σ1 ∶= {0,1}
○ Σ2 ∶= {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}
○ Σ3 ∶= {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}

A string over some alphabet is a finite sequence of symbols from that alphabet. The symbols of a string are
usually written next to one another. For example, q ∶= 101011, r ∶= 2b, and s ∶= ababahalamaha, are strings
over Σ1, Σ2, and Σ3, respectively; q can also be seen as a string over alphabet Σ2. If x is a string, the length
of x, denoted by ∣x∣, is the number of symbols that x contains, e.g., ∣q∣ = 6, ∣r∣ = 2, and ∣s∣ = 13. The string of
length zero is called the empty string and is denoted by ǫ.

If a string x over an alphabet Σ has length n, we can write x = x1x2 . . . xn, where each xi ∈ Σ, i ∈ [1..n].
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Given a string x over an alphabet Σ and a set X ⊆ Σ, by x∣X we denote x restricted to X, i.e., the string
obtained from x by deleting all symbols of x that are not members of X without changing the order of the
remaining symbols, e.g., ababahalamaha∣{a,b,h} = ababahaaaha.

The concatenation of a string x of length n and a string y of length m is the string obtained by appending
y to the end of x, as in x1 . . . xny1 . . . ym, denoted by x ○ y. We use the superscript notation xz, z ∈ ◆, to
denote the string obtained by concatenating x with itself z times. For example, x1 = x, y2 = yy, and 13 = 111.

Finally, a (formal) language over an alphabet Σ is a set of strings over Σ.

5.2. Regular languages and regular net systems

A regular language is a formal language that can be expressed using a regular expression (for the strict form
of regular expressions used in theoretical computer science [13]). Alternatively, a regular language can be
defined as a language recognized by a finite automaton as per Kleene’s theorem [27].

Definition 5.1 (Finite automaton).
A finite automaton is a 5-tuple (Q,Σ, δ, q0,K), where
○ Q is a finite non-empty set of states,
○ Σ is an alphabet,
○ δ ∶ Q × (Σ ∪ {τ})→ Q is the transition function, where τ is a special symbol, τ /∈ Σ,
○ q0 ∈ Q is the start state, and
○ K ⊆ Q is the set of accept states. ⌟

Next, we give a formal definition of a computation of a finite automaton.

Definition 5.2 (Computation).
A computation of a finite automaton (Q,Σ, δ, q0,K) is either the empty string ǫ or a string s ∶= s1s2 . . . sn,
n ∈ ◆, where every si is a member of Σ∪{τ}, i ∈ [1..n], and there exists a sequence of states q ∶= ⟨q0, q1, . . . , qn⟩,
where every qj is a member of the set of states Q, j ∈ [1..n], such that for every position k in s it holds that
δ(qk−1, sk) = qk. ⌟

We say that s leads to qn. By convention, the empty string always leads to the start state. A finite automaton
A ∶= (Q,Σ, δ, q0,K) accepts a sting s iff s is a computation of A that leads to an accept state q ∈K of A.

Definition 5.3 (Language of a finite automaton).
The language of a finite automaton A ∶= (Q,Σ, δ, q0,K) is denoted by L(A) and is the set of all strings that
A accepts restricted to Σ, i.e., L(A) ∶= {s ∈ Σ∗ ∣∃ r ∈ (Σ ∪ {τ})∗ ∶ (A accepts r) ∧ (s = r∣Σ)}. ⌟

We say that finite automaton A recognizes language L(A).
Let S ∶= (N,M), where N ∶= (P,T,F,Λ, λ), be a net system. Function λ can be lifted to a homomorphism

from T ∗ to Λ∗ in the canonical way as follows: λ(⟨⟩) ∶= ⟨⟩ and λ(σ ○ ⟨t⟩) ∶= λ(σ) ○ λ(t) for σ ∈ T ∗ and t ∈ T .
For a given net system (N,M) and a finite set of markings ▼ of N , the triple (N,M,▼) is a net system

with accept marking set. The set of all occurrence sequences in (N,M) that lead to some marking M ′ ∈ ▼
induce the language of the system.

Definition 5.4 (Language of a net system).
The language of a net system with accept marking set S ∶= (N,M,▼), N ∶= (P,T,F,Λ, λ), is denoted by L(S)
and is the set of strings {s ∈ Λ∗ ∣∃σ ∈ Ω((N,M)) ∶ λ(σ)∣Λ = s ∧ (∃M ′ ∈ ▼ ∶ (N,M)[σ⟩(N,M ′))}. ⌟

We say that S recognizes L(S). For every regular language there exists a system that recognizes this language.

Proposition 5.5 (Finite automata and net systems).
For every finite automaton A there exists a net system with accept marking set S that recognizes the language
of A, i.e., L(S) = L(A). ⌟

Indeed, given a finite automaton, one can obtain a system that recognizes the same language via a straight-
forward construction. Let A ∶= (Q,Σ, δ, q0,K) be a finite automaton. Then, the net system with accept
marking set S ∶= ((Q, δ,F,Σ, λ),M,▼), where F ∶= {(q, (q, x, q′)) ∈ Q × δ ∣ (q, x, q′) ∈ δ} ∪ {((q, x, q′), q′) ∈
δ ×Q∣(q, x, q′) ∈ δ}, λ ∶= {((q, x, q′), x) ∈ δ × (Σ ∪ {τ})∣(q, x, q′) ∈ δ}, M is the marking that puts one token
at place q0 ∈ Q and no tokens elsewhere, and for every k ∈K it holds that ▼ contains the marking that puts
one token at place k ∈ Q and no tokens elsewhere, recognizes the language of A, i.e., L(A) = L(S).

A regular net system is a net system that recognizes a regular language.
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Definition 5.6 (Regular net system).
A regular net system is a net system with accept marking set that recognizes a regular language. ⌟

Note that there exist net systems that are not bounded but recognize regular languages [14].

5.3. Behavioral profiles and regular net systems

By ❙reg , we denote the class of all regular net systems. It is well-known that the class of all net systems
properly contains the class of all regular net systems, i.e., it holds that ❙reg ⊂ ❙. It is also known that the
class of regular net systems properly contains the class of all bounded net systems [14].

Let Λ ⊆ ✄ be a set of labels. By ❙Λ, we denote the set of all net systems over labels in Λ, i.e., ❙Λ ∶= {S ∈
❙∣ labels(S) = Λ}. Finally, we introduce the main result of this section, which states that behavioral profiles
cannot distinguish between regular net systems with different languages.

Theorem 5.7 (Two regular net systems with distinct languages may have identical profiles).
For every repertoire of behavioral predicates Π there exist two regular net systems S1, S2 ∈ ❙reg such that:

❘[S1,Π] = ❘[S2,Π] ∧L(S1) ≠ L(S2). ⌟

Proof. Note that the set of all regular languages over an alphabet Σ is infinite. This follows from the following
two facts: (i) for every symbol a ∈ Σ it holds that language {a}, i.e., the language with exactly one string
composed of a single symbol a, is a regular language, and (ii) the class of regular languages is closed under
the concatenation operation [13]. Hence, the set {{an}∣n ∈ ◆}, where a ∈ Σ, i.e., the set that for every natural
number n ∈ ◆ contains the language composed of exactly one string that is a concatenation of string a with
itself n times, is, indeed, an infinite set of regular languages over Σ.

Furthermore, note that for every alphabet Σ and every repertoire of behavioral predicates Π, it holds that
the set of all behavioral profiles of net systems in ❙Σ induced by Π, i.e., {❘[S,Π]∣S ∈ ❙Σ}, is finite. This
follows immediately from the following two facts: (i) Π is finite, and (ii) there exist exactly 2∣Σ∣

n

distinct
behavioral relations of net systems in ❙Σ induced by n-ary behavioral predicates.

Let us assume that there exists a repertoire of behavioral predicates Π such that for every two regular net
systems S1, S2 ∈ ❙reg it holds that if ❘[S1,Π] = ❘[S2,Π] then L(S1) = L(S2). Let Σ be some alphabet and
let R be the equivalence relation on ❙reg∩ ❙

Σ such that S1R S2 iff ❘[S1,Π] = ❘[S2,Π], S1, S2 ∈ ❙reg ∩ ❙
Σ.

Note that the set of all equivalence classes of ❙reg ∩ ❙
Σ by R is finite, as the set {❘[S,Π]∣S ∈ ❙Σ} is finite.

Let f be a function that maps every regular language over Σ to its equivalence class of ❙reg ∩ ❙
Σ by R that

contains regular net systems that recognize this language; such an equivalence class always exists because
of Proposition 5.5 and the fact that one can always construct a net system with accept marking set that
recognizes the same language as a given finite automaton. Note that f is non-injective; recall that the set of
all regular languages over Σ is infinite. Then, there exist two distinct regular languages L1 and L2 over Σ
such that f(L1) = f(L2). Hence, there exist two regular net systems S1 and S2 such that ❘[S1,Π] = ❘[S2,Π]
and L(S1) ≠ L(S2). We have reached a contradiction. ◾

As a consequence of Theorem 5.7, one cannot rely on behavioral profiles – regardless of the specific set of
behavioral relations employed – as the basis for deciding whether two regular language systems, e.g., finite
automata [13] or regular net systems [14], recognize the same language, i.e., they are trace equivalent [5].

Corollary 5.8 (Regular net systems and equivalence preservation).
There exist no repertoire of behavioral predicates that preserves trace equivalence on ❙reg . ⌟

For example, the classic behavioral profiles of the two net systems in Figs. 9(a) and 9(b) are identical to the
one shown in Fig. 9(c). However, the languages of these net systems are different (assuming that the accept
marking set of each of the systems is composed of a single marking that puts one token in the only place in
the postset of the transition with label e).

6. Conclusion

In summary, this paper has shown that:
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Fig. 9. Two net systems (a) and (b), and their classic behavioral profile (c).

1. The repertoire of behavioral predicates used to induce classic behavioral profiles proposed in [20] preserves
configuration equivalence on the class of unlabeled WF-flow nets. This provides evidence that behavioral
profiles can be used to characterize the behavior of a restricted class of systems.

2. There exists no known repertoire of behavioral predicates that preserves some well-known notion of
behavioral equivalence on the class of acyclic labeled WF-net systems.

3. For any finite set of behavioral predicates, behavioral profiles induced by this set are strictly less expressive
than regular language systems, i.e., the set does not preserve trace equivalence on systems that recognize
regular languages.

These results leave open the question of possible trade-offs between expressiveness and convenience of use of
behavioral profiles. One assumption underpinning behavioral profiles is that the size of the matrix, when one
considers binary behavioral relations, is ∣Λ∣2 where Λ is a set of task labels. In contrast, other behavioral
representations, such as event structures [10], capture relations between label occurrences, which entails a
larger representation as the same label type may have multiple occurrences, to the benefit of expressiveness.

A possible trade-off between behavioral profiles and event structures would be to reduce the size of event
structures, for example via reduction rules, while retaining expressiveness. In separate work, we have proposed
a notion of canonically reduced event structures as a means to achieve this trade-off [1, 2]. However, the
extent to which reduction can be achieved for different classes of net systems is still an open question.

An interesting line of future research is the analysis of other existing behavioral relations, e.g., the relations
in [7] and [26], that can potentially offer more fine-grained insights into the expressiveness of behavioral
profiles. It would be particularly interesting to define behavioral predicates that preserve trace equivalence or
configuration equivalence (or any other well-known notion of behavioral equivalence) on a more substantial
family of net systems rather than unlabeled WF-flow net systems.
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