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Abstract

Human motion analysis is currently receiving increasing attention from computer

vision researchers. This interest is motivated by applications over a wide spec-

trum of topics. For example, segmenting the parts of the human body in an

image, tracking the movement of joints over an image sequence, and recovering

the underlying 3D body structure are particularly useful for analysis of athletic

performance, as well as medical diagnostics. The capability to automatically

monitor human activities using computers in security-sensitive areas such as air-

ports, border crossings, and building lobbies is of great interest to the police

and military. With the development of digital libraries, the ability to automati-

cally interpret video sequences will save tremendous human e↵ort in sorting and

retrieving images or video sequences using content-based queries. Other applica-

tions include building man-machine user interfaces and video conferencing.

The research trend in the field of action recognition has recently led to more

robust techniques, which to some extent are applicable for action recognition in

complex scenes. Action recognition in complex scenes is an extremely di�cult

task due to challenges such as background clutter, camera motion, occlusions

and illumination variations. To address these challenges, several methods, like

tree-based template matching, tensor canonical correlation, prototype based ac-

tion matching, incremental discriminant analysis of canonical correlation, latent

pose estimation and a generalised Hough transform were proposed. Most of these
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methods are very complex and require preprocessing, like segmentation, tree data

structure building, target tracking, background subtraction or the fitting of a hu-

man body model. On the other hand, recently, spatio-temporal features have

gained popularity because of their state-of-the-art performance with reduced or

even no preprocessing. These methods apply interest point detectors and lo-

cal descriptors to characterize and encode the video data, and thereby perform

action classification. In this PhD program, local feature based action representa-

tion, recognition and classification algorithms are explored due to their superior

state-of-the art performance under complex environmental settings with lower

preprocessing, compared to other approaches.

Even though local feature-based methods have been researched by several re-

searchers for more than a decade, these systems still have several limitations

and far-from-real time implementations. The performance of local-feature based

systems depends on three major areas: (1) Accurate Representation of video

sequences as a set of feature vectors (Feature Extraction), (2) Reducing the di-

mensionality of the feature points to create compact representation of the video

(Feature Representation), (3) Train the classifier to classify new video sequences

(Classification). This thesis has investigated the above three major areas of a local

feature-based action-recognition pipeline and has proposed several improvements

to the overall system accuracy.

In order to address the shortcomings of the action recognition pipeline, first base-

line system using the bag of visual words with SVM framework has been imple-

mented. Several state-of-the-art spatio-temporal features, such as HOG, HOF

and HOG3D features, have been extracted and tested against popular bench-

mark datasets. A comprehensive evaluation of state-of-the-art descriptors has

been undertaken with a wide range of code book sizes.

In order to address the video representation problem, an e�cient feature represen-
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tation method, semi-binary features based on BRISK (Binary Robust Invariant

Scalable Keypoints) descriptor, has been proposed. Because of the binary nature

of this feature it provides compact representation while maximizing the overall

classification performance on several benchmark datasets.

In order to provide e�cient and compact feature representation, several popular

machine learning techniques have been explored and three new representation

techniques have been incorporated based on class-specific dictionaries. It has

been found that class-specific dictionaries consistently perform well and three

new machine learning techniques, such as Multiple instance dictionary learning,

Class-specific simplex LDA (css-LDA) and class-specific sparse codes, have been

incorporated to the action recognition domain. These representation methods

have improved the overall performance of popular local feature descriptors.

Finally, to address the classification phase of the action recognition pipeline, a

binary-tree SVM has been proposed. The proposed binary-tree SVM achieves

comparable state-of-the-art performance with a significantly reduced computa-

tional complexity and can be easily scalable to large datasets.

Though the techniques proposed in this thesis achieve promising results compared

to the state-of-the-art, further research e↵ort is required to achieve comparable

performance in more challenging environments that are encountered in practice.

The limitations of the proposed techniques are discussed, together with possible

future extensions.
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Chapter 1

Introduction

Human activity recognition is an important area of computer vision research to-

day. The goal of human activity recognition is to automatically analyse ongoing

activities from an unknown video (i.e. a sequence of image frames). In a simple

case where a video is segmented to contain only one execution of a human activ-

ity, the objective of the system is to correctly classify the video into its activity

category. In a more general case, the continuous recognition of human activi-

ties must be performed by detecting starting and ending times of all occurring

activities from an input video.

The ability to recognise complex human activities from videos enables the con-

struction of several important applications. Automated surveillance systems in

public places like airports and subway stations require detection of abnormal and

suspicious activities, as opposed to normal activities. For instance, an airport

surveillance system must be able to automatically recognize suspicious activi-

ties like “a person leaving a bag” or “a person placing his/her bag in a trash

bin”. Recognition of human activities also enables the real-time monitoring of

patients, children, and elderly persons. The construction of gesture-based human
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computer interfaces and vision-based intelligent environments becomes possible

with an activity recognition system as well.

There are various types of human activities. Depending on their complexity,

they can be conceptually categorized into four di↵erent levels: gestures, actions,

interactions, and group activities [3]. Gestures are elementary movements of

a persons body part, and are the atomic components describing the meaningful

motion of a person. “Stretching an arm” and “raising a leg” are good examples of

gestures. Actions are single-person activities that may be composed of multiple

gestures organized temporally, such as “walking”, “waving”, and “punching”.

Interactions are human activities that involve two or more persons and/or objects.

For example, “two persons fighting” is an interaction between two humans and “a

person stealing a suitcase from another” is a human-object interaction involving

two humans and one object. Finally, group activities are the activities performed

by conceptual groups composed of multiple persons and/or objects: “A group

of persons marching,” “a group having a meeting,” and “two groups fighting”

are typical examples. In this research, the main focus is given to improve the

recognition accuracy of single human activities from real-time video sequences.

Nowadays, more and more people record their daily activities using digital cam-

eras, and this brings the enrichment of video content on the internet, and also

causes the problems of categorizing the existing video, and classifying new videos

according to the action classes present. Categorizing these videos is a time-

consuming task if it is done manually, and recognizing certain actions from scenes

of interest in real movies is impossible to accomplish through manual e↵ort. For

these reasons, the area of human action recognition has attracted considerable

attention. Existing approaches aimed at solving this problem have focused on a

pattern recognition system, which is trained using feature descriptors extracted

from the training videos, and enables the computer to identify the actions in
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new videos automatically. The objective of this thesis is to present several novel

approaches in feature extraction, representation and classification to improve the

popular, widely used, local feature-based action-recognition system (Bag-of-visual

words with SVM Framework).

1.1 Research Motivation

The development of computer vision has encouraged the occurrence of di↵erent

novel recognition methods in both 2D images and 3D video sequences. Although

it is still challenging to recognize a specific object from a dataset of images due

to viewpoint change, illumination, partial occlusions, and intra-class di↵erence

and so forth, many successful methods have been proposed. But for the video

recognition problem, the current methods still need improvement, especially for

realistic movies which have wide variations in people’s posture and clothes, dy-

namic background, and partial occlusions. Intuitively, a straightforward way is

comparing an unknown video with the training samples by computing correla-

tion between the whole videos. This approach makes good use of geometrical

consistency, but it is not feasible when dealing with camera motions, zooming,

intra-class di↵erences and non-stationary backgrounds.

In fact, action recognition has become one of the hottest research areas in com-

puter vision and impressive progress has been made in this direction. However,

progress is primarily limited to a controlled experimental environment, which may

lead to di�culties when we move to recognising and analysing actions in more

realistic scenarios. To understand the possible di�culties, let us first examine

some assumptions which have been made in traditional action recognition (i.e.

controlled environment):
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1. Preprocessing Assumption: For a computer vision problem, choosing

appropriate visual features and representation is the first step to solving the

problem. In most cases, the feature extraction requires some preprocessing

steps. In action recognition, this preprocessing step can be the detection

and tracking of body parts or a moving person, or the segmentation of the

region of interest. However, if these preprocessing steps fail, the methods

based on them will breakdown.

2. Data Assumption: Most action recognition systems are based on sta-

tistical machine learning methods, which learn a classifier from a set of

training data. In the usual case, su�cient labelled training data is assumed

to be available. However, when the labelled training data is insu�cient or

unavailable or the data can only be obtained from more complex settings,

say, from an ambiguously annotated dataset, the system structure of the

training process will need to be changed accordingly.

3. Model Assumption: To mathematically model an action, we often make

the assumption that an action can be viewed as an equivalent simplified

vision/machine learning problem. For example, if an action is represented

by a set of silhouettes, an underlying assumption is that an action can be

characterized by the temporal evolution of 2D shapes. If we model an action

by a bag of local features, we assume that an action can be characterized

by the orderless local spatial temporal patterns. Of course, the assumption

does not always hold in many applications.

In practical action recognition problems, one or more aforementioned assumptions

will not hold. Let us consider the following examples: when we try to classify

action in the presence of a dynamic background, the foreground segmentation or

reliable bounding box detection and tracking is often not available; when we try

to retrieve an action in video, to detect an unusual action, or to discover action
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categories from a set of videos, the assumption that su�cient labelled training

data is available does not hold. Most daily actions are more complex than simple

body movements e.g. boxing, hand waving. The interaction between object,

environment and many other cues is often as important as the motion patterns.

So the common assumption that action is equivalent to body movement is not

enough for modelling more complex actions.

To conquer these deficiencies, a lot of researchers focus on part-based approaches

for which only the ‘interesting’ parts of the video are analyzed, rather than the

whole video. These ‘parts’ can be trajectories or flow vectors of corners, profiles

generated from silhouettes and spatial temporal interest points. Although part

based approaches are promising they are still su↵ered due to background clutter

and motion which prevents from accurate detection and tracking of interesting

parts. Meanwhile recently proposed local feature based approaches extract inter-

esting points based on the motion information present in the videos, which makes

them more robust to background motion, clutter, viewpoint changes compared

to other approaches. Moreover, this research is particularly interested in the case

when an action is represented by a set of local spatial-temporal features due to

following reasons:

1. As will be seen in the literature review, this representation is more robust

to pose and view variance.

2. This representation can impose a relaxed requirement on the bounding box

detection and tracking (and can even work without it).

3. It is more flexible to model the local interactions between multiple features

by using a local spatial-temporal feature-based representation.

Although local feature based approaches are promising due to many advantages,
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still the recognition rate is constrained due to the ine�cient and unreliable de-

scription and classification methods. The aim of this PhD research program is

to address three major shortfalls such as lack of spatio-temporal relationship,

scalability and computational complexity by proposing several novel and e↵ec-

tive description and classification methods. The contributions made in this thesis

will make the application of local feature based methods to be more scalable and

computationally e↵ective.

1.2 Research Objective and Scope

This thesis considers recognizing simple human activities from video sequences

recorded under di↵erent environmental conditions varying from a fixed, clean

background to complex, cluttered and moving backgrounds. A wide range of

human activities have been investigated in this research from single person ac-

tivities such as running, walking, jogging etc. to complex activities such as fight

with person, get out of car, hugging etc.

A number of methods have been proposed over the past 30 years in action recog-

nition research. Earlier approaches were focused on the appearance, and heavily

related to the entire silhouette extraction and modelling the action as a sequence

of changes over time using Hidden Markov Models (HMM). More recent research

has focused primarily on model-free approaches such as bag-of-words. The de-

tails of these methods are described in Chapter 2. A local spatio-temporal based

action recognition system typically consists of the fundamental tasks as shown in

Figure 1.1.

In this thesis, due to its simplicity and superior performance, a local feature based

action recognition system is incorporated as a baseline and several novel feature
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Figure 1.1: The Spatio-temporal Action recognition framework.

extraction, representation and classification techniques have been proposed to

improve the overall performance. The proposed approaches are primarily evalu-

ated with datasets specifically designed for human action recognition. In order

to provide a fair comparison, the proposed methods have been investigated with

popular features and datasets, in order to enable the easy benchmarking of the

proposed techniques with past and future developments. Even though these tech-

niques have been developed primarily for human action recognition, they are not

limited to this domain and can be extended to other video- based computer vision

applications as well. This thesis has used several challenging, publicly available

datasets designed for human action recognition, which are still very challenging

in the field and highlight the ample ongoing room for improvement.

1.3 Thesis structure

The remaining chapters of the thesis are organized as follows:

• Chapter 2 provides an overall review of the literature. In this chapter, 30

years of evolution of human action recognition is briefly presented. This

section provides an introduction to di↵erent approaches, di↵erent features
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extraction, representation and classification techniques used by researchers

over the last three decades. In addition, a comprehensive review of popu-

lar, challenging datasets and their evaluation metrics is also presented. A

detailed review of a popular, local feature-based action recognition system

is also presented, which is the main focus of this thesis and justification for

the selection also presented.

• Chapter 3 presents a detailed overview of Bag-of-feature based action

recognition systems and their development over time with a comprehen-

sive evaluation of how di↵erent stages in the pipeline a↵ect performance.

Popular local feature detectors and descriptors are presented with di↵erent

classification schemes. In addition, parameters are optimized for di↵erent

datasets in such a way as to improve the performance significantly with

the existing features. This chapter will provide guidance to researchers

to make decisions regarding di↵erent encoding approaches, codebook sizes,

kernel matrices and spatio-temporal pyramids.

• Chapter 4 introduces a new binary detector/descriptor, BRISK, to e�-

ciently represent the video. In this chapter, the binary BRISK detector

is extended into video domain to detect interest points followed by a new

algorithm to select potential spatio-temporal points based on their signif-

icance. Then BRISK + MBH (Motion Boundary Histogram) descriptor

is used to encode the detected key points. This proposed feature detec-

tor and descriptor combination is not only e�cient but also demonstrates

comparative performance in benchmark datasets.

• Chapter 5 presents another spatio-temporal feature representation based

on Multiple Instance Learning (MIL) techniques. MIL has gained pop-

ularity amongst machine learning researchers and in this chapter several

MIL techniques such as ‘miSVM + kmeans’, Max-margin Multiple instance

Dictionary learning (MMDL) and Max-margin Multiple instance cluster-
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ing (M3IC) are introduced to create e↵ective feature representation. Ex-

perimental results are presented to demonstrate the e↵ectiveness of this

representation.

• Chapter 6 presents a new feature representation technique based on Su-

pervised Latent Dirichlet Allocation (LDA) techniques such as S-LDA and

MedLDA. Also this chapter presents another e�cient LDA technique, css-

LDA, where topics are discovered class-by-class basic rather than a single

topic simplex for the entire dataset. It is shown from the experiments that

this representation is far more e�cient than original unsupervised LDA and

Bag-of-feature representation. A detailed evaluation is also presented with

di↵erent LDA approaches in this chapter.

• Chapter 7 investigates several sparse representation techniques and pro-

poses a novel appearance and motion specific dictionary to encode features

as a sparse coe�cient vector. This separate motion and appearance dictio-

nary significantly improves the performance compared to a single sparse-

dictionary build for the entire dataset.

• Chapter 8 addresses the classification problem by proposing a binary tree

SVM to address the shortcomings of multi-class SVMs in activity recogni-

tion. This chapter also presents a new method of constructing a binary tree

using Gaussian Mixture Models (GMM), where activities are repeatedly

allocated to sub-nodes until every newly created node contains only one

activity. Then, for each internal node a separate SVM is learned to classify

activities. This approach reduces the training time and increases the speed

of testing compared to popular the ’one-against-the-rest’ multi-class SVM

classifier.

• Chapter 9 summarizes and concludes the thesis, highlights the achieve-

ments, addresses the limitations, and points to future research directions.
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1.4 Original Contributions

This thesis has contributed several advances to the field of local feature-based

activity recognition, by addressing several challenges. The popular, state-of-the

art local feature based activity recognition system was built and the following

novel techniques have been proposed to improve the overall performance of the

system. The framework of the Bag-of-feature based SVM classification system is

detailed in Chapter 3.

1. A comprehensive evaluation on several popular local feature detectors and

descriptors is carried out with three challenging datasets. In this eval-

uation, several encoding techniques, codebook sizes and di↵erent kernel

learning techniques have been investigated and optimized techniques have

been proposed. This provides a guide for researchers to choose appropriate

techniques based on the complexity of the dataset.

2. A novel semi-supervised binary feature is introduced to e�ciently represent

videos for the purpose of activity classification. In this proposed framework,

first, the BRISK feature detector is applied on a frame-by-frame basis to

detect interest points, then the detected key points are compared against

consecutive frames for significant motion. Amongst the detected points,

only the points with significant motion are retained. Then the retained

key points are encoded with the BRISK descriptor in the spatial domain

and Motion Boundary Histogram in the temporal domain. This descriptor

is not only lightweight but also has lower memory requirements because

of the binary nature of the BRISK descriptor, allowing the possibility of

applications using hand-held devices or for other resource-constrained and

real-time applications.

3. Two new, supervised LDA variants, MedLDA and css-LDA are introduced
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in a local feature-based action recognition system to e�ciently represent

videos. MedLDA extends LDA to learn discriminative topics by employing

a max-margin technique within the probabilistic framework. On the other

hand, css-LDA introduces the supervision at the feature level and enables

class specific topic simplexes and class-specific topic distributions to capture

much richer intra-class information, which provides more discrimination to

the representation compared to a single set of topics for the entire data set.

4. A novel feature representation technique based on Multiple Instance Learn-

ing (MIL) is proposed for the local feature-based action recognition frame-

work. In this proposed approach, the k-means clustering is replaced with

three MIL based feature representation techniques such as ‘mi-SVM + k-

means’, M3IC and MMDL. The proposed three representations provide

highly discriminative feature representation compared to bag-of-features

and significantly improve the classification accuracy. Unlike the k-means

approach where k-means is applied in the entire feature set, in ‘mi-SVM

+ k-means’ approach the k-means is applied only on the positive features

identified by SVM. In addition, dictionaries are built on a class-by-class

basis in ‘mi-SVM + k-means’ and MMDL approaches as opposed to a sin-

gle shared dictionary across the dataset. In the M3IC approach, the MIL

technique is used during code-book generation.

5. A new sparse representation based on class-specific appearance and motion

over-complete dictionary is proposed to encode video features for discrim-

inative classification. In this approach, separate dictionaries are built for

appearance and motion vectors and then a block-structured dictionary is

constructed to encode features as a sparse linear combination of a block-

structured dictionary. This approach is shown to be e↵ective, compared to

shared and class-specific dictionaries. In addition, separate appearance and

motion dictionaries explore di↵erent statistical characteristics captured by
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appearance and motion features. It is also shown that as we go further into

detail designing the sparse dictionary, the discriminative ability increases.

6. A Binary-Tree SVM is proposed to boost the speed of the classification stage

in the local feature-based action recognition pipeline mentioned earlier. In

this approach, training samples are assigned to the root node of the tree

and a GMM is used to separate the training samples into two clusters, and

the activities belonging to each cluster are assigned to the left and right

sub-nodes respectively. In the training phase, it requires only N � 1 SVMs

to be trained for an N class problem; the amount of time required for

training also reduces as the tree is traversed downwards as the number of

classes (and amount of data) at each node is reduced. When performing

classification, the proposed approach requires only log2N SVMs to predict

the sample due to the binary nature of the decision tree.
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Chapter 2

Literature Review

2.1 Introduction

This section reviews the state-of-the-art methods for action recognition in real-

istic, uncontrolled video data. To this end, we structure the existing works into

three categories:

• Human model-based methods (Section 2.2) employ a full 3D (or 2D)

model of human body parts, and action recognition is done using informa-

tion on body part positioning as well as movements.

• Holistic methods (Section 2.3) use knowledge about the localization of

humans in video and consequently learn an action model that captures

characteristic, global body movements without any notion of body parts.

• Local feature methods (Section 2.4.1) are entirely based on descriptors

of local regions in a video; no prior knowledge about human positioning nor

any of its limbs/body parts is given.
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Surveys on generic action and activity recognition, as well as motion analysis and

body tracking, include Aggarwal et al. [3], Weinland et al. [101], Poppe et al.

[74], Moeslund et al. [68], Moeslund and Granum [67], Gavrila [27] and Aggarwal

and Cai [2]. Furthermore, Hu et al. [35] present a survey for video surveillance,

and Turaga et al. [90] review the state-of-the-art for high level activity analysis.

Most relevant in our context are the surveys by Aggarwal et al. [3], Weinland

et al. [101] and Poppe et al. [74], which focus on the recognition of actions

and action primitives, which are closely related to this research in human action

recognition.

2.2 Human model-based methods

Human model-based methods recognize actions by employing information such as

body part positions and movements. A significant amount of research is devoted

to action recognition using trajectories of joint positions, body parts, or landmark

points on the human body, with or without a prior model of human kinematics,

e.g., [Ali et al. [5], Parameswaran and Chellappa [71], Yilmaz and Shah [109]].

The localization of body parts in movies has been investigated by Ramanan et

al. [76] and Ferrari et al. [24]. However, the detection of body parts is a di�cult

problem in itself, and existing approaches, especially for the case of realistic and

less constrained video data, remain limited in their applicability. Some recent

approaches that are able to provide more robust results [1], use strong prior

knowledge by assuming particular motion patterns in order to improve tracking

of body parts. However, this also limits their application to action recognition.
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2.3 Holistic methods

Holistic methods do not require the localization of body parts. Instead, global

body structure and dynamics are used to represent human actions. Polana and

Nelson [73] referred to this approach as “getting your man without finding his

body part”. The key idea is that, given a region of interest centred on the human

body, global dynamics are discriminative enough to characterize human actions.

Compared to approaches that explicitly use a kinematic model or information

about body parts, holistic representations are much simpler, since they only model

global motion and appearance information. Therefore their computation is, in

general, more e�cient as well as robust. This aspect is especially important for

realistic videos in which background clutter, camera ego-motion and occlusion

render the localization of body parts particularly di�cult.

In general, holistic approaches can be divided into two categories.

• The first category employs shape masks or silhouette information, stemming

from background subtraction or di↵erence images, to represent actions.

• The second category is mainly based on shape and optical flow information.

2.3.1 Shape mask and silhouette based methods

Several approaches for action recognition use human shape masks and silhouette

information to represent the human body and its dynamics.

Bobick and Davis [12] use shape masks from di↵erence images to detect human

actions. As action representation, the authors employ so-called motion energy

images (MEI) and motion history images (MHI), as illustrated in Figure 2.1.
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Figure 2.1: motion history images (MHI) and motion energy images (MEI) [12].
This can be viewed as a weighted projection of a 3-D XYT volume into 2-D XY
Dimension

Figure 2.2: Space-time volumes for action recognition based on silhouette infor-
mation [9]

More precisely, MEIs are binary masks that indicate regions of motion, and MHIs

weight these regions according to the point in time when they occurred (the more

recent, the higher the weight). This approach is the first to introduce the idea of

temporal templates for action recognition.

Sullivan and Carlsson [89] detect tennis forehand strokes by matching a set of

hand-drawn key postures, together with annotated body joint positions, to edge

information in a video sequence. Positions of joints are then tracked between the

key frames using silhouette information of the tennis player. This approach allows

the positions of body parts to be inferred, which can be applied to animation.

An action model, based on space-time shapes from silhouette information, is

introduced by Blank et al. [9]and Gorelick et al. [28]. Silhouette information is

computed using background subtraction. Figure 2.2 illustrates some examples of
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space-time shapes. The authors use the Poisson equation to extract features such

as local saliency, action dynamics, shape structure and orientation. Sequences of

10 frames length are then described by a high-dimensional feature vector. During

classification, these sequences are matched in a sliding window fashion to space-

time shapes in test sequences.

Another work that uses space-time shapes of humans, is proposed by Yilmaz and

Shah [110]. Spatio-temporal shapes are obtained from contour information using

background subtraction, similar to Blank et al. [9]. For a robust representation,

actions are then represented by sets of characteristic points (such as saddle, val-

ley, ridge, peak, pit points) on the surface of the shape. In order to recognize

actions, the authors propose to match spatio-temporal shapes by computing a

homography using point-to-point correspondences.

Weinland and Boyer [100] introduce an orderless representation for action recog-

nition using a set of silhouette exemplars. Action sequences are represented as

vectors of minimum distance between silhouettes in the set of exemplars and in

the sequence. Final classification is done using Bayes classifier with Gaussians

to model action classes. In addition to silhouette information, the authors also

employ the Chamfer distance measure to match silhouette exemplars directly to

edge information in test sequences.

Foreground shape masks based on motion information in chunks of video data

are employed by Zhang et al. [115], as shown in Figure 2.3 . A Motion Con-

text descriptor is computed over consistent regions of motion by using a polar

grid. Each cell in the grid is described with a histogram over quantized SIFT

[53] features. The final descriptor for a sequence is a sum over all chunk descrip-

tors. For classification, support vector machines (SVM) and di↵erent models for

probabilistic latent semantic analysis (PLSA) are employed.
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Figure 2.3: Motion Context descriptor for the actions hand waving and jogging:
motion images are computed over groups of images; the Motion Context descrip-
tor is computed over consistent regions of motion [115]

Silhouettes are also a popular representation for surveillance applications [35].

Since cameras are in general static, background subtraction techniques can be

employed to compute silhouette information. In order to cope with more chal-

lenging video data and camera motion, Ramasso et al. [77] employ a human

tracker and camera motion estimation to compute shape information.

Another way to match space-time shape models to cluttered image data with

heterogeneous background is demonstrated by Ke et al. [38]. The authors over

segment video sequences using colour information. Volumetric and optical flow

features are then matched to action templates in the form of space-time shapes.

Silhouettes provide strong cues for action recognition. Nevertheless, they are

di�cult to compute in the presence of clutter and camera motion. Furthermore,

they only describe the outer contours of a person and thus lack discriminative

power for actions that include self-occlusions.

2.3.2 Optical flow and shape-based methods

Human-centric approaches based on optical flow and generic shape information

form another sub-class of holistic methods. As one of the first works in this direc-

tion, Polana and Nelson [73] proposed a human tracking framework along with an

action representation using spatio-temporal grids of optical flow magnitudes. The

action descriptor is computed for periodic motion patterns. By matching against
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Figure 2.4: Motion descriptor using optical flow: (a) Original image, (b) Optical
flow, (c)Separating the x and y components of optical flow vectors, (d) Half-wave
rectification and smoothing of each component [21]

reference motion templates of known periodic actions (e.g., walking, running,

swimming) the final action can be determined.

In another approach purely based on optical flow, Efros et al. [21] track soccer

players in videos and compute a descriptor on the stabilized tracks using blurred

optical flow. Their descriptor separates x and y flow as well as positive and

negative components into four di↵erent channels, as shown in Figure 2.4. For

classification, a test sequence is frame-wise aligned to a database of stored, an-

notated actions. Further experiments include tennis and ballet sequences as well

as synthetic experiments.

The same human-centric representation based on optical flow and human tracks

for action recognition is employed by Fathi and Mori [22]. As a classification

framework, the authors use a two-layered AdaBoost variant. In the first step,

intermediate features are learned by selecting discriminative pixel flow values in

small spatio-temporal blocks. The final classifier is then learned from all previ-

ously aggregated intermediate features.

Rodriguez et al. [81] propose an approach using flow features in a template

matching framework. Spatio-temporal regularity flow information is used as the

feature. Regularity flow shows improvement over optical flow since it globally

minimizes the overall sum of gradients in the sequence. Rodriguez et al. [81]

learns cuboid templates by aligning training samples via correlation. For classifi-
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cation, test sequences are correlated with the learned template via a generalized

Fourier transform that allows for vectorial values. Results are demonstrated on

the KTH dataset, for facial expressions, as well as on custom movie and sports

actions.

To localize humans performing actions such as sit down, stand up, grab cup

and close laptop, Ke et al. [37] use a forward feature selection framework and

learn a classifier based on optical flow features. Spatio-temporal Haar features on

optical flow components are e�ciently computed using an integral video structure.

During learning, a discriminative set of features are greedily chosen to optimally

classify actions which are represented as spatio-temporal cuboidal regions. For

classification, the authors perform a sliding window approach and classify each

position as containing a particular action or not.

A method purely based on shape information is presented by Lu and Little [54]. In

their experiments, Lu and Little track soccer or ice-hockey players and represent

each frame by a descriptor using histograms of oriented gradients. They then

employ principal component analysis (PCA) to reduce dimensionality. An HMM

with a few states models actions such as running/skating left, right etc.

Hybrid representations combine optical flow with appearance information.

Schindler and van Gool [85] use optical flow information and Gabor filter re-

sponses in a human-centric framework. For each frame, both types of information

are weighted and concatenated. PCA over all pixel values is applied to learn the

most discriminative feature information. Majority voting yields a final class label

for a full sequence in multi-class experiments. Evaluations are carried out on the

KTH and Weizmann dataset.

Human centric approaches require a method for localizing humans, therefore they

rely intrinsically on the quality of human detections. To cope with imperfect
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localizations from weakly labelled training data and an automatic human tracker,

Hu et al. [34] introduce an approach based on multiple instance learning. In

the neighbourhood around an annotated action or a human detection, a bag of

possible action localization hypotheses is generated. An initial classifier is learned

on all positive and negative instances. Iteratively, instances in bags are relabelled

using the previously learned classifier and the classifier is retrained on the new

data. Hu et al. [34] apply a simulated annealing strategy to ensure convergence.

Feature types that are used are histograms of oriented gradients, foreground

segmentation, and motion history images [12]. Results are presented on simple

actions in crowded sequences as well as in more challenging data recorded in a

shopping mall.

Even though holistic approaches have been shown to be suitable for action recog-

nition in more realistic video data, certain points are important to note. Holis-

tic representations are in general not invariant to camera view direction. This

needs to be accounted for, either by learning di↵erent models for particular views

(frontal, lateral, rear), or by providing a su�ciently large amount of training data.

Additionally, humans can appear at di↵erent scales (distant view, close-up view)

such that certain parts of the body might not be visible in the image. However,

human localizations reduce the computational complexity of detecting actions in

time substantially.

2.4 Local feature methods

Local image and video features have been successfully used in many action recog-

nition applications such as object recognition, scene recognition and activity

recognition. Local space-time features capture characteristic shape and motion

information for a local region in video. They provide a relatively independent
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representation of events with respect to their spatio-temporal shifts and scales as

well as background clutter and multiple motions in the scene. These features are

usually extracted directly from video and therefore avoid possible dependencies

on other tasks such as motion segmentation and human detection.

In the following, we first discuss existing space-time feature detectors and feature

descriptors. Methods based on feature trajectories are presented separately, since

their conception di↵ers from space-time point detectors. Finally, methods for

localizing actions in videos are discussed.

2.4.1 Feature detectors

Feature detectors usually select characteristic spatio-temporal locations and

scales in videos by maximizing specific saliency functions. Laptev [43] proposed

a feature detector based on a spatio-temporal extension of the Harris cornerness

criterion [31]. The cornerness criterion is based on the eigenvalues of a spatio-

temporal second-moment matrix at each video point. Local maxima indicate

points of interest. The authors note the importance of using separate spatial and

temporal scale values since spatial and temporal extent of events are, in general,

independent. Results of detecting Harris interest points in an outdoor image

sequence of a person walking is illustrated in Figure 2.5.

Dollar et al. [19] argue that in certain cases, true spatio-temporal corner points

(according to the Harris criterion) are relatively rare, while enough characteristic

motion is still present in other regions. Therefore, they design their interest

point detector to yield denser coverage in videos. Their method employs spatial

Gaussian kernels and temporal Gabor filters. As with Harris 3D, local maxima

give final interesting positions.



2.4 Local feature methods 25

Figure 2.5: Spatio-temporal interest points from the motion of the legs of a
walking person; (left) 3D plot of a leg pattern and the detected local interest
points; (right) interest points overlaid on single frames in the original sequence
[43]
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A space-time extension of a salient region detector using entropy, is introduced by

Oikonomopoulos et al. [70]. Entropy is computed in a cylindrical neighbourhood

around a given space-time position for the temporal derivative of a video sequence.

To obtain a sparse representation and more stable interest points, local maxima

are thresholded and clustered.

The Hessian3D detector is proposed by Willems et al. [103] as a spatio-temporal

extension of the Hessian saliency measure applied for blob detection in images [8].

The authors aim at a rather dense, scale-invariant, and computationally e�cient

interest point detector. Their detector measures saliency using the determinant of

the 3D Hessian matrix. An integral video structure allows a speed up of compu-

tations by approximating derivatives with box-filter operations. A non-maximum

suppression algorithm selects joint extrema over space, time and di↵erent scales.

Most feature detectors determine the saliency of a point with respect to its local

neighbourhood. Wong and Cipolla [104] suggest determining salient features by

considering global information. For this, video sequences are represented as a

dynamic texture with a latent representation and a dynamic generation model.

This not only allows motion to be synthesised, but also allows the identification

of important regions in motion. The dynamic model is approximated as a linear

transformation. A sub-space representation is computed via non-negative matrix

factorization.

2.4.2 Feature descriptors

Feature descriptors capture shape and motion information in a local neighbour-

hood surrounding interest points. Among the first works on local descriptors

for videos, Laptev and Lindeberg [44] develop and compare di↵erent descriptor

types: single- and multi-scale higher-order derivatives (local jets), histograms of
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optical flow, and histograms of spatio-temporal gradients. Histograms for opti-

cal flow and gradient components are computed for each cell of a M ⇥ M ⇥ M

grid layout describing the local neighbourhood of an interest point. A di↵erent

variant describes the surrounding of a given position by applying PCA to concate-

nated optical flow or gradient components of each pixel. The resulting descriptor

uses the dimensions with the most significant eigenvalues. In their experiments,

Laptev and Lindeberg [44] report best results for descriptors based on histograms

of optical flow and spatio-temporal gradients.

In a similar work, Dollar et al. [19] evaluates di↵erent local space-time descrip-

tors based on brightness, gradient, and optical flow information. They investigate

di↵erent descriptor variants: simple concatenation of pixel values, a grid of local

histograms, and a single global histogram. Finally, PCA reduces the dimensional-

ity of each descriptor variant. Overall, concatenated gradient information yields

the best performance.

Histograms of oriented spatial gradients (HOG) and Histograms of optical flow

(HOF) descriptors are introduced by Laptev et al. [45]. To characterize local

motion and appearance, the authors combine HOG and HOF in a late fusion

approach. The histograms are accumulated in the space-time neighbourhood of

detected interest points. Each local region is subdivided into a N ⇥ N ⇥ N grid

of cells; for each cell, 4-bin HOG histogram and a 5-bin HOF histogram are

computed. The normalized cell histograms are concatenated into the final HOG

and HOF descriptors.

An extension of the SIFT descriptor [53] to 3D was proposed by Scovanner et

al. [87]. For a set of randomly sampled positions, spatio-temporal gradients are

computed in the local neighbourhood of each position. Each pixel in the neigh-

bourhood is weighted by a Gaussian centred on the given position and votes into

an M ⇥ M ⇥ M grid of histograms of oriented gradients. For orientation quan-
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Figure 2.6: Feature trajectories by detecting and tracking spatial interest points.
Trajectories are quantized to a library of trajections which are used for action
classification [61]

tization, the authors represent gradients in spherical coordinates �, '; that are

divided into an 8⇥ 4 histogram. To be rotation-invariant, the axis corresponding

to � = ' = 0 is aligned with the dominant orientation of the local neighbourhood.

Willems et al. [103] propose the extended SURF (ESURF) descriptor, which

extends the image SURF descriptor [7] to videos. Like in previous approaches,

the authors divide 3D patches into a grid of local M ⇥ M ⇥ M histograms. Each

cell is represented by a vector of weighted sums of uniformly sampled responses

of Haar-wavelets along the three axes.

2.4.3 Feature Trajectories

Feature trajectories are based on spatial interest points tracked in time-as opposed

to spatio-temporal interest points. Trajectory shapes encode information about

local motion patterns and can thus be directly used as a local feature. Messing

et al. [64] represent feature trajectories of varying length as sequences of log-

polar quantized velocities. Activities are modelled using a generative mixture of

Markov chain models.
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In a di↵erent approach, Matikainen et al. [61] employ feature trajectories of a

fixed length in a bag-of-features framework for action classification, as shown in

Figure 2.6. Trajectories of a video are clustered together, and for each cluster

centre, an a�ne transformation matrix is computed. In addition to displacement

vectors, the final trajectory descriptor contains elements of the a�ne transforma-

tion matrix for its assigned cluster centre.

2.4.4 Voting based action localization

Combined with a voting scheme, local features can also be employed to spatially

and temporally localize actions in videos. For instance, Niebles et al. [69] perform

a latent topic discovery and model the posterior probability of each quantized

feature for a given action class. In order to localize actions, features are spatially

clustered in each frame using k-means.

Mikolajczyk and Hirofumi [66] propose a voting approach to localize objects that

perform a particular action. The authors use a forest of tree classifiers for fast

feature quantization. The GLOH image descriptor [65], together with its dom-

inant motion orientation, is used as local descriptor type. Features in motion

cast initial hypotheses for position and scale of objects performing an action.

Maxima in the voting space indicate detections, and static features refine their

initial localization. For the final pose estimation, the object’s global orientation

is computed from the orientation of voting features.

In order to localize actions in YouTube video sequences, Liu et al. [51] propose

an approach based on pruning local features. First, spatio-temporal features

are detected and their mean position over a range of neighbouring frames is

computed. Features that are too far away from the center position are pruned.

Second, static features are computed over all frames. By applying the Page Rank
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algorithm over a graph for feature matches in a video sequence, the authors are

able to identify discriminative features. For this, similar background features are

assumed to be less frequently visible than foreground features. Finally, static and

motion features are combined with an AdaBoost classifier. Action localization

is carried out with a temporal sliding window over spatio-temporal candidate

regions, defined by the centre and the second moments of motion as well as static

features.

Willems et al. [102] model actions as space-time cubes. They localize drinking

actions in movies by casting localization hypotheses for the strongest visual code-

book entries of an action. Weak hypotheses are pruned, and a non-linear �2 SVM

evaluates the BoF representations of remaining ones. Local maxima in the voting

space indicated the final action positions.

A related approach by Yuan et al. [112] employs the branch-and-bounds algo-

rithm to localize actions in video sequences. Actions are, again, represented as

cuboid volumes. The volumes themselves are scored based on mutual information

and a Gaussian kernel for density estimation. For a more e�cient density esti-

mation, the authors introduce an approximated nearest neighbour search based

on local sensitive hashing. Experimental results are shown for the KTH and the

CMU actions dataset.

2.4.5 Summary

A key advantage of local features-based approaches is their flexibility with respect

to the type of video data. They can be applied to videos for which the localization

of humans or their body parts is not feasible. More recent works demonstrate

their successful application to real world video data, such as Hollywood movies

and YouTube video sequences (Laptev et al. [45], Mikolajczyk and Hirofumi [66],
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Marszalek et al. [60], Liu et al. [51], Kovashka et al. [41], Le et al. [48]).

Even though local feature-based methods are promising, they are still far behind

for real world application. In this thesis several features, representations and

classification methods are investigated and several techniques to improve the

overall classification accuracy are proposed.

2.5 Datasets

This section presents most popular action recognition datasets that are being

used to benchmark state-of-the art action recognition algorithms. Subsections

2.5.1 and 2.5.2 describe the KTH and Weizmann actions dataset, respectively.

Both datasets have been used extensively in research, however both represent only

a set of rather artificial actions with a homogeneous background. Additionally,

the Weizmann dataset is about one order of magnitude smaller than KTH. The

UCF sports dataset (Subsection 2.5.4) is a collection of TV sport events. It

o↵ers a large variety of action classes while being limited in its size. The most

challenging and extensive datasets that have been published in the literature are

the YouTube and Hollywood2 datasets, which are presented in Subsections 2.5.5

and 2.5.3. They o↵er an extensive amount of video sequences in realistic setups:

YouTube videos and Hollywood movies, respectively.

2.5.1 KTH Actions Dataset

The KTH actions dataset has been introduced by Schuldt et al. [86]1.The KTH

Human actions dataset contains six action classes: jogging, running, walking,

1Available at http://www.nada.kth.se/cvap/actions/



32 2.5 Datasets

Figure 2.7: Sample Frames from the KTH Human actions dataset [86]. Box-
ing (first column), handclapping (second column), handwaving (third column),
jogging (fourth column), running (fifth column), walking (sixth column)

boxing, waving and clapping (see Figure 2.7). These actions are performed by 25

di↵erent actors under four di↵erent scenarios: outdoors, outdoors with zooming,

outdoors with di↵erent clothing and indoors. There is considerable variation in

the performance, duration and view point. The background is almost static with

only slight camera movement. KTH contains 600 action videos and we divide the

samples into a test set containing nine subjects (2, 3, 5, 6, 7, 8, 9, 10 and 22), with

the remaining 16 subjects assigned for training as proposed in [86]. Evaluation

on this dataset is done via multi-class classification. Classification performance

is evaluated as average accuracy over all classes.
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Figure 2.8: Sample frames from the Weizmann actions dataset [9]
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2.5.2 Weizmann Actions Dataset

The Weizmann dataset introduced by Blank et al. [9]2 contains 90 videos sep-

arated into 10 actions: walk, gallop-sideways, run, jump, bend, one-hand-wave,

two-hands-wave, jumping-jack, skip and jump-in-place (see Figure 2.8); each per-

formed by nine di↵erent persons. The videos were taken with a static background

and fixed viewpoint. This dataset is relatively small compared to KTH and Holly-

wood2. Blank et al. [9] advocate to test using leave-one-out cross-fold validation,

i.e., testing is performed for one sequence at a time while training is executed on

all remaining sequences. Performance is given in terms of average accuracy (error

rate).

2.5.3 Hollywood Actions Dataset

There are two versions of the Hollywood actions dataset: Hollywood1 [45] and

Hollywood2 [60]. To avoid exhaustive manual annotation of several hundreds of

hours of movie data, the authors use, in both cases, movie scripts that provide

textual description of the movie content, such as scenes, characters, transcribed

dialogues, and human actions. In a first step, scripts are aligned to movie sub-

titles, since they usually come without time information. In a second step, clas-

sifiers are trained on a bag-of-words representation of the scene description for

di↵erent action classes. Several features are used: bag-of-words over single words,

over adjacent pairs of words, as well as over pairs of words in a small neighbour-

hood. This allows the trained system to cope with significant variations in the

text and to retrieve action samples. The authors manually ensure the visual in-

tegrity of annotations in the train and test set and additionally provide a noisy

training set.

2Available at http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html
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Figure 2.9: Sample frames from the Hollywood2 action dataset [60]
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The first version, Hollywood3 , has been published by Laptev et al. [45]. It

contains eight di↵erent action classes: answering the phone, getting out of the

car, hand shaking, hugging, kissing, sitting down, sitting up, and standing up.

Action samples have been collected from, in total, 32 di↵erent Hollywood movies.

The full dataset contains 663 video samples, divided into a clean training set (219

sequences) and a clean test set (211 sequences), where training and test sequences

were obtained from di↵erent movies. The additional noisy training set consists

of 233 sequences.

Hollywood2 is the extended version introduced by Marszalek et al. [60]4. In

total, it consists of samples from 69 di↵erent Hollywood movies. The initial eight

action classes were extended by adding four additional ones: driving car, eating,

fighting, and running. Action samples for all classes are illustrated in Figure 2.9.

In total, there are 2517 action samples split into a manually cleaned training set

(823 sequences) and a test set (884 sequences). The noisy training set contains

810 sequences. Train and test sequences are obtained from di↵erent movies.

2.5.4 UCF sports actions Dataset

The UCF sport actions dataset [81]5 contains ten di↵erent types of human ac-

tions: swinging, diving, kicking (a ball), weight-lifting, horse-riding, running,

skateboarding, swinging (at the high bar), golf swinging and walking (see Figure

2.10). The dataset consists of 150 video samples, which show a large intra-class

variability. The performance criterion for the multi-class task is the average ac-

curacy over all classes. The original setup employs leave-one-out for testing.

3Available at http://www.irisa.fr/vista/actions/
4Available at http://www.irisa.fr/vista/actions/hollywood2
5Available at http://www.cs.ucf.edu/vision/public html/
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Figure 2.10: Sample frames from UCF sports action datasets [81]
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Figure 2.11: Sample frames from the YouTube action dataset [51]

2.5.5 Youtube Actions Dataset

The YouTube dataset has been introduced by Liu et al. [51]6 and contains 11 ac-

tion categories: basketball shooting, biking/cycling, diving, golf swinging, horse

back riding, soccer juggling, swinging, tennis swinging, trampoline jumping, vol-

leyball spiking, and walking with a dog (see Figure 2.11). This dataset is chal-

lenging due to large variations in camera motion, object appearance and pose,

object scale, viewpoint, cluttered background, illumination conditions etc. The

dataset contains a total of 1600 sequences. In the original setting, the evaluation

is carried out using cross validation for a set of 25 folds that is defined by the

authors. Average accuracy over all classes is used as the performance measure.

6Available at http://www.cs.ucf.edu/̃liujg/YouTube Action dataset.html
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2.6 Chapter summary

This chapter presented di↵erent techniques that have been used by researchers

to tackle the action recognition problem over the past three decades. Initially,

algorithms were developed with the focus of recognizing single human activities

in a clean background. Success in recognizing single human activities led them

to explore single human activities with complex and cluttered backgrounds and

furthermore, the possibility of recognizing group activities in a cluttered and

complex background. To provide a common benchmark to evaluate proposed

algorithms, di↵erent datasets have been proposed with varying complexity with

di↵erent evaluation criteria based on the size of the datasets.

Although di↵erent techniques have been used by researchers, the local features

based action recognition methods are shown to be not only e�cient but also

provides state-of-the art results compared to other complex approaches, and re-

quires lower computational resources. In this research project local feature based

methods have been chosen because of their attractiveness to potential real world

applications in resource constrained environments. Even though Bag-of-feature

based approach to human action recognition is attractive, there are still sev-

eral drawbacks such as they failed to capture spatio-temporal relationships which

provides major glue about the activities that are closely related spatially and

temporally. This problem is tackled in several chapters by incorporating class-

specific information into discovered local features. Chapter 5 presents mi-SVM

approach, chapter 6 presents css-LDA approach and Chapter 7 presents class-

specific sparse codes to capture class-specific information into learned features

to boost the performance. Computational complexity of local features is further

improved by proposing BRISK+MBH approach in Chapter 4, which significantly

reduces computational and storage requirements. A Binary-tree SVM approach

has been proposed to scale local feature based approach to hundreds of activities
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in Chapter 8. In summary, this thesis addresses three major shortfalls such as

scalability, computational e�ciency and lack of spatio-temporal feature relation-

ships in the following chapters. Next chapter presents performance evaluation of

several state-of-the art descriptors and optimizes the codebook size and kernel

matrices for di↵erent datasets.



Chapter 3

Comprehensive Evaluation of

Local Feature Descriptors

This chapter presents the baseline local spatio-temporal-based action recognition

framework followed by comprehensive evaluation of several state-of-the-art local

feature descriptors. Bag-of-features based action representation followed by SVM

classification is the popular method used in low level action recognition literature

to compare and benchmark several feature detectors, descriptors, representation

and classification algorithms. In this thesis, this framework has been adapted as a

baseline to evaluate proposed feature description and representation algorithms.

The following chapter is organised as follows: The first part of this chapter will

focus on the baseline action recognition framework and processing steps involved.

Next, the popular feature detectors and descriptors are described and the e↵ect

of di↵erent pre-processing steps with three di↵erent datasets recorded in di↵er-

ent environmental settings are evaluated. Finally this chapter presents a dif-

ferential optical flow descriptor, which improves the performance under moving

backgrounds.
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Figure 3.1: Flowchart of the Bag-of-feature based algorithm.
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3.1 Human Action Recognition Framework

The whole recognition process can be divided into two phases: the training phase

and the testing phase. During the training phase, as per the flow chart shown

in Figure 3.1, the interest points as well as the cuboids surrounding them are

extracted by some interest point detector from the training sequences, and then

the descriptors of each sequence are generated by the structural distribution of

interest points or the appearance information embedded in each cuboid. Descrip-

tors from all training sequences are gathered together for further clustering by

K-means, which uses Euclidean distance as the clustering metric. The cluster

centres are represented as the video words and they constitute the codebook.

Each feature descriptor is assigned to a unique video word based on the distance

between the descriptor and cluster centres. The codebook membership of each

feature descriptor is utilized to create a model representing the characteristics of

each class of the training sequences.

During the testing phase, the same steps are followed to extract interest points,

build descriptors and assign codebook membership as those done during the

training phase. Then, Support Vector Machine (SVM) and K-Nearest Neigh-

bor (KNN) classifiers are adopted to classify each testing sequence to the most

probable action type according to the model built in the training phase, and

the correctly classified sequences against all sequences give the final recognition

accuracy.

3.1.1 Feature detectors

Interest points from a video sequence are localized not only along the spatial

dimensions x and y but also the temporal dimension t. Currently there are three
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types of detection approaches: static features based on edges and limb shapes,

dynamic features based on optical flow measurements and spatio-temporal fea-

tures obtained from local video patches. In the experiments of this research,

the third type interest point detectors were used. Even though several spatio-

temporal descriptors have been proposed and used in the literature, Harris3D

detector consistently generates robust, view invariant and salient interest points

under challenging environmental settings. Hence in this comprehensive study,

the Harris3D detector was adopted to study the performance of di↵erent local

descriptors under di↵erent experimental settings.

Harris3D

The Harris3D detector is an extension of the Harris corner detector [31] proposed

by Laptev et al. [43]. A spatio-temporal second-moment matrix at each video

point is computed,
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0

BBB@

L2
x

L
x

L
y

L
x

L
t

L
x

L
y

L2
y

L
y

L
t

L
x

L
t

L
y

L
t

L2
t

1

CCCA
, (3.1)

using independent spatial and temporal scale values, � and ⌧ ; a separable Gaus-

sian smoothing function, G; and space-time gradients, rL. The Harris corner

function for the spatio-temporal domain is defined by combining the determinant

and the trace of µ as follows,

H = det(µ) � ktrace3(µ), H > 0. (3.2)
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The final locations of interest points are given by the local maxima of Equa-

tion (3.2). Following [46], the points are extracted at multiple scales based on

a regular sampling of the scale parameters, � and ⌧ . The original implemen-

tation available on-line 1 and standard parameter settings of k = 0.0005, �2 =

4, 8, 16, 32, 64, 128, ⌧ 2 = 24 with a detection threshold of 10�9 has been used to

extract spatio-temporal interest points.

3.1.2 Feature Descriptors

A cuboid (spatial temporal video patch) is extracted around each interest point

and it contains spatio-temporally windowed pixel values. The size of the cuboid

is determined in such a way to provide good performance for a given database.

The information contained in each cuboid is utilized to form a representative

descriptor and moreover to build the action training model. The locality of

cuboids facilitates the feature extraction, which means preprocessing steps are

not needed, such as foreground subtraction and figure tracking and alignment

etc. Relying on each individual cuboid, we can obtain the appearance information

from the cuboid itself as well as structural information from the distribution of

all cuboids (interest points).

Feature descriptors are calculated for video patches centred at (x, y, t) for each

interest point, (x, y, t, �, ⌧). Spatial size, �
x

(�),�
y

(�) , is a function of � and

the temporal length, �
t

(⌧), is a function of ⌧ (see Figure 3.2).

1http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
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Figure 3.2: Spatio-Temporal Feature Descriptor

HOG/HOF

HOG/HOF descriptors were proposed by Laptev et al. [46]. The Histogram of

Oriented Gradient (HOG) descriptors are used to describe appearance informa-

tion and Histogram of Optical Flow (HOF) descriptors are used to describe local

motion information present in the detected patches. The histograms are created

by accumulating space-time neighborhoods of detected interest points, where the

region is given by a cuboid of the size �
x

(�) = �
y

(�) = 18� and �
t

(⌧) = 8⌧ .

Each cuboid region is subdivided into an n
x

⇥ n
y

⇥ n
t

grid of cells. For each

cell, a 4-bin HOG histogram (4 directions) and a 5-bin HOF histogram (4

directions and an additional bin for no motion) are calculated. Cell histograms

are normalised and combined into a HOG/HOF descriptor. This section presents

detailed experiments carried out on the HOG, HOF and combined HOG/HOF

descriptors with di↵erent preprocessing techniques . Experiments use the default

grid parameters n
x

= 3, n
y

= 3, n
t

= 2 suggested by the authors [45] to provide

fair and comprehensive evaluation and the impact of di↵erent preprocessing steps

involved in the local feature-based action recognition framework. This results

in a 72-element HOG descriptor (3 ⇥ 3 ⇥ 2 ⇥ 4), a 90-element HOF descriptor

(3 ⇥ 3 ⇥ 2 ⇥ 5) and a 162-element HOG/HOF descriptor.
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HOG3D

The HOG3D descriptor was developed by Klaser et al. [39]. It is an extension

of the SIFT [53] descriptor to videos. Gradients are computed using an integral

video representation. Regular polyhedrons are used to uniformly quantize the

orientation of spatio-temporal gradients. Therefore it encapsulates both shape

and motion information in a single descriptor. The 3-D patch detected by the

Harris3D detector is divided into n
x

⇥ n
y

⇥ n
t

cells. Histograms are calculated

and normalised for each cell separately and concatenated into a single descriptor.

The recommended parameter settings [39] were used to compute the features to

provide comparative performance evaluation.

For the KTH and Weizmaan datasets, the optimized parameter settings for con-

trolled datasets with static background were used. The descriptor size is set to

�
x

(�) = 16�,�
y

(�) = 16�,�
t

(⌧) = 4⌧ . Spatial and temporal cells are set to

n
x

= 4, n
y

= 4 and n
t

= 4, and an icosahedron with half orientation is used for

quantizing orientations, which results in a dimensionality of 1000.

For the Hollywood2 dataset, the parameters recommended for videos with

cluttered backgrounds, camera motion and complex motion patterns have been

used to encode the video into a feature vector. The descriptor size is set to

�
x

(�) = 14�,�
y

(�) = 24�,�
t

(⌧) = 12⌧ . Spatial and temporal cells are set to

n
x

= 2, n
y

= 2 and n
t

= 5, and spherical coordinates for half orientation with

five spatial and three temporal bins are used for orientation quantization, which

results in a descriptor with a dimensionality of 300.
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3.1.3 Bag of features representation

A popular representation, based on local features, is the bag-of-features (BoF)

model. It originates from document retrieval applications where orderless meth-

ods are a popular choice for representing textual data. The bag-of-words model

describes text documents as frequency distributions over words and has been

applied extensively in this domain.

Schuldt et al. [86], Dollar et al. [19], Niebles et al. [69] proposed the first

extensions to action recognition. For the BoF representation in videos, feature

detectors determine a set of salient positions present in the video sequences.

Feature descriptors compute a vector representation for the local neighbourhood

of a given position. The visual vocabulary (or codebook) is then computed by

applying a clustering algorithm (e.g., k-means) on feature descriptors obtained

from training sequences; each cluster is referred to as a visual word. Descriptors

are quantized by assignment to their closest visual word, and video sequences are

represented as a histogram of visual word occurrences. Finally a non-linear SVM

with �2 kernel is a popular classifier that is used throughout di↵erent works,

e.g., Schuldt et al. [86], Dollar et al. [19], Laptev et al. [45], Willems et al.

[103], Le et al. [48] to benchmark di↵erent feature descriptors. Such histogram

representations have the ability to capture global statistics about the type of

descriptors that are present in the video sequence.

3.1.4 Classification Techniques

Histograms of extracted features are classified for action recognition using the

discriminative SVM classifier with di↵erent kernel matrices presented in the fol-

lowing section:
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Support Vector Machines (SVM) based classification

Support Vector Machines are based on the concept of decision planes that define

decision boundaries. A decision plane is one that separates between a set of

objects having di↵erent class memberships. The idea behind SVMs is to make

use of a mapping function � that transforms data in input space to data in feature

space in such a way as to render a problem linearly separable. The SVM then

automatically discovers the optimal separating hyper plane (which, when mapped

back into input space via �, can be a complex decision surface) as shown in Figure

3.3.

Figure 3.3: Max-margin hyperplane derived from the training of two class SVM
[88]
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3.2 Experimental results

Related Work

Most of the aforementioned features are evaluated with di↵erent experimental

settings using a single data set. From the reported results it is di�cult to predict

which descriptor performs best for a given dataset. However, evaluations such

as [88, 97] have sought to overcome this problem and provide a fair evaluation

of various detectors and descriptors. Wang et al. [97] comprehensively evaluate

the performance of di↵erent feature detectors and descriptors under a common

framework in a wide range of datasets with varying complexity. Experiments

were carried out with a bag-of-features representation and an SVM recognition

framework. However [97] imposes restrictions on the evaluation, such as using a

maximum of 100,000 features to learn cluster centroids, and setting the codebook

size to 4,000 for all features and databases. Julian et al. [88] proposed a way

of evaluating the repeatability of detectors and robustness of descriptors. They

evaluated detector performance using repeatability measurements in 3D similar to

[103]. For the descriptors they proposed a principled classification pipeline, where

every video undergoes eight types of transformations known as challenges, and

original video is used as ground truth to observe the extent to which the features

change under the challenges. While this evaluation provides valuable insights

into the feature detectors and the classification accuracy of individual descriptors

under di↵erent image alterations, it does not address how well a set of given

feature descriptors performs for action recognition under di↵erent environmental

settings.

In order to address the above mentioned gaps in the action recognition literature,

this chapter presents a comprehensive study of popular local feature descrip-

tors under di↵erent experimental settings with di↵erent datasets recorded under
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complex environments. This chapter investigates the e↵ect of the recognition

performance with the various pre-processing steps listed below:

• Section 3.2.1 presents an evaluation of a wide range of code book sizes and

their influence in the performance of a local feature-based action recognition

system in KTH, Hollywood2, and Youtube datasets.

• Section 3.2.2 presents and evaluates di↵erent state-of-the-art encoding

methods and proposes alternative methods that outperform the popular,

baseline k-means clustering methods in KTH, Hollywood2, and Youtube

datses.

• Section 3.2.3 presents an evaluation of popular kernel methods in conjunc-

tion with the SVM classifier

In the local feature-based action recognition framework, first interest points are

located using a popular Haris3D detector. Then local spatio-temporal features are

calculated around the neighbourhoods of detected interest points using the feature

descriptors followed by the popular bag-of-visual words to represent each video as

a histogram of visual words. Finally, a non-linear Support Vector Machine with

di↵erent kernels is used for classification.

3.2.1 Evaluation of the impact of di↵erent code book sizes

Bag-of-video words Representation

In this section, a popular Bag-of-feature representation has been used to evaluate

how various codebook sizes influence the action recognition performance. First,
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the K-means clustering algorithm is used to generate the vocabulary/ Bag-of-

Visual-Words (BOVW). Then, all the descriptors calculated from the training

examples are used to generate di↵erent sets of vocabularies with di↵erent sizes

such as 1000, 1500, 2000, 2500, 3000, 3500 and 4000 followed by each video, which

is represented by a histogram of visual word occurrences. In these experiments,

each video is represented by seven di↵erent histograms with di↵erent vocabulary

sizes. To improve the results further, k-means has been initialized 4-times to

obtain the best results.

Evaluation Framework

The baseline non-linear support vector machine (SVM) with a �2 kernel [97] has

been used as a classification framework to compare the e↵ect of di↵erent codebook

sizes. First the �2 kernel matrix is calculated for each generated histogram of

features,

K(H
i

, H
j

) = exp
�� 1

A
D(H

i

, H
j

)
�
, (3.3)

where H
i

and H
j

are the histograms of word occurrences and D(·) is the �2

distance defined by,

D(H
i

, H
j

) =
1

2

X

k

(H
i

(k) � H
j

(k))2

H
i

(k) + H
j

(k)
, (3.4)

and A is the average distance between all training examples,

A =
1

N2

NX

i=1

NX

j=1

D(H
i

, H
j

). (3.5)
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A ‘one against the rest’ approach for multi-class classification is used and the

class with highest score is chosen.

The experimental results for various datasets (Section 2.5) with di↵erent descrip-

tor/vocabulary combinations are presented in the following subsections. The

results reported in various works with di↵erent experimental settings can’t be

directly compared with the results obtained by this framework, however results

reported in [97] are comparable with this work.

KTH Dataset

The KTH dataset is one of the most popular benchmark datasets for evaluating

action recognition algorithms and is described in Section 2.5.1. The results are

presented in Table 7.1. Experimental results demonstrate that the HOF descrip-

tor performed well compared with other descriptors. This can be explained by

the fact that as KTH contains actions with a static background, HOF is able

to reliably and accurately capture the motion information, while the appear-

ance information captured by HOG is of little use in describing actions. The

popular baseline system, where the codebook size is set to 4000, was found to

perform well across a wide range of datasets. In contrast to that, in this sec-

tion the experiments have been carried out with wide range of vocabulary sizes

and achieved a 3% improvement for HOF with codebook size of 1500. It is noted

that the more compact HOF features achieve optimal performance with a smaller

codebook compared to the HOG/HOF and HOG. It is also worth noting that,

the HOG/HOF features cannot match HOF alone, suggesting that for situations

where the subject is well isolated from the background with su�cient training

samples, HOF is a better descriptor than the HOG/HOF combination, which

adds more noise to the feature space and reduces the overall performance.
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Vocabulary Size HOG HOF HOG/HOF HOG3D

1000 82.6% 94.6% 92.7% 90.5%
1500 82.6% 95.0% 92.8% 90.8%
2000 82.7% 94.9% 92.9% 92.3%
2500 82.6% 93.6% 93.6% 92.7%
3000 82.6% 93.4% 93.3% 92.6%
3500 81.9% 93.4% 93.1% 92.4%
4000 81.9% 93.5% 92.9% 92.1%

Table 3.1: Average Accuracy for di↵erent descriptor/codebook combination on
KTH Dataset

Weizmann Dataset

The results for the Weizmann dataset is presented in Table 3.2. Based on the ex-

perimental results, the HOG/HOF descriptor provides highest accuracy of 91.75%

with codebook size of 2500, which is nearly 6% higher compared to the baseline

system. Next to HOG/HOF, HOF and HOG3D achieve good performance with

90.25% and 90.15% accuracy respectively. Except for HOG3D, all the other de-

scriptors achieve best results with a code book size of 2500. This dataset contains

small duration clips with a single action sequence, therefore HOF alone is unable

to capture the complete representation of the action, even though the database is

recorded with a static background. When the HOF descriptor is augmented with

the HOG descriptor, the richer representation is able to improve performance.

This suggests that when training data is limited, textural information is of value.

Hollywood2 Dataset

Evaluation results for the Hollywood2 actions dataset is presented in Table 3.3.

Features have been extracted from the full spatial videos to maximize the ef-

fectiveness of the descriptor. As expected, the combined HOG/HOF descriptor

produces the best results. The improvement of 1.2% was obtained with the
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Vocabulary Size HOG HOF HOG/HOF HOG3D

1000 82.6% 87.5% 90.8% 88.2%

1500 83.1% 87.9% 90.4% 88.0%

2000 85.2% 90.1% 91.4% 89.2%

2500 85.6% 90.2% 91.7% 89.3%

3000 85.6% 89.5% 91.2% 89.3%

3500 85.5% 89.2% 91.5% 90.1%

4000 85.5% 89.1% 91.6% 89.7%

Table 3.2: Average Accuracy for di↵erent descriptor/codebook combination on
Weizmann Dataset

HOG/HOF descriptor for codebook size of 4000. HOG3D and HOF descriptors

have acheived 1.1% and 1.3% improvement respectively over the baseline system.

Since Hollywood2 movie clips are rich in context information, the HOG/HOF de-

scriptor performed well as it captures the complete spatio-temporal information

present in the videos. In addition to that, Table 3.3 presents the average precision

(AP) of every action class in Hollywood2. It is clear from the experimental re-

sults that 10 out of 12 action classes show improved performance compared to the

baseline [97]. Next to the HOG/HOF descriptor, HOG3D and HOF descriptors

perform well in this dataset.

Precision-recall plots for di↵erent HOG/HOF codebook sizes for a subset of ac-

tions are presented in Figure 3.4. It can be seen that for the four selected ac-

tions, consistent and significant performance trends are observed, suggesting that

codebook size has a consistent impact across all activities within the database.

Further, the extent to which the size of a codebook can be reduced without sig-

nificant drop in performance was also observed. From the experimental results

presented in Table 3.3, it was noted that the codebook size of HOF, HOG/HOF

and HOG3D features can be reduced up to 10 fold times with only 6-8% perfor-

mance degradation, while performance with HOG features degrades by 10-12%.

This suggests that both HOF and HOG/HOF can be used in situations where
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Action class Wang et al. [97] Our method

AnswerPhone 20.1% 20.0%

DriveCar 85.4% 86.9%

FightPerson 68.9% 70.7%

GetOutCar 32.4% 34.2%

Kiss 48.6% 49.9%

Run 68.6% 70.2%

Eat 61.1% 63.5%

SitDown 56.3% 58.1%

SitUp 19.5% 22.3%

StandUp 52.9% 51.1%

HandShake 18.5% 20.5%

HugPerson 35.3% 38.1%

mAP 47.4% 48.8%

Table 3.3: Average Precision(AP) per action class for the Hollywood2 dataset
compared against the baseline [97]

system speed is crucial, without significantly compromising system performance.

Vocabulary Size HOG HOF HOG/HOF HOG3D

150 27.1% 35.2% 37.2% 38.1%

250 27.3% 37.6% 40.2% 39.2%

500 31.2% 38.8% 41.4% 40.8%

750 32.5% 40.1% 43.5% 41.5%

1000 34.1% 42.9% 44.7% 42.7%

1500 34.1% 43.4% 45.2% 44.2%

2000 36.2% 43.7% 46.5% 44.9%

2500 38.5% 44.6% 47.2% 45.8%

3000 40.5% 45.2% 47.8% 46.1%

3500 40.3% 45.2% 48.4% 46.9%

4000 40.1% 44.6% 48.8% 46.9%

Table 3.4: Mean Average Precision(mAP) for di↵erent descriptor/codebook com-
bination on Hollywood2 Dataset
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Figure 3.4: Precision-Recall plots for di↵erent HOG/HOF codebook sizes on the
Hollywood2 actions dataset

Summary

In this section, the e↵ect of codebook sizes has been thoroughly explored with

three popular benchmark datasets used for the task of human action recognition.

Also, it was found that performance improvement of up to 6% can be achieved

by carefully tuning the codebook sizes for di↵erent datasets. Also, experimen-

tal results suggest that there can be up to 3 � 4% deviation in the performance

depending on the selected codebook size. Therefore, careful consideration of the

codebook size is critical in achieving optimal performance. Smaller codebooks can
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still achieve good recognition performance with slight performance degradation,

which is greatly useful in real time recognition systems where the smaller code

book sizes are able to increase the recognition speed without severely compromis-

ing the actual performance. It was also found that the HOF descriptor augmented

with HOG, performs well in a wide range of environmental settings and provides

best results with standard bag of feature representation and SVM classification.

HOG features consistently perform poorly, suggesting that motion information

is vital and that while appearance can aid classification (i.e. HOG/HOF and

HOG3D), appearance alone is insu�cient.

3.2.2 Evaluation of feature encoding methods

In this section, three popular encoding schemes such as Vector Quantization

(VQ), Sparse Coding (SC) and Locality Constrained Linear Coding (LLC) have

been investigated. These encoding schemes have been extensively evaluated over

di↵erent codebook sizes with di↵erent descriptors.

The K-means clustering algorithm is used to generate the vocabulary from a

set of local feature descriptors i.e. X = [x1, x2, ..., xn

] 2 RD⇥N . The K-means

algorithm tries to allocate the features to a set of k clusters based on their eu-

clidean distances. The features are partitioned into k clusters with the centres of

B = [b1, b2, ..., bn

] 2 RD⇥K . The feature vector x
m

is assigned to the cluster k,

then o
mk

= 1 and o
mj

= 0 for j 6= k. The k-means algorithm uses the following

objective function:

argmin
omk,µk

NX

m=1

KX

k=1

o
mk

k x
m

� b
k

k2, (3.6)
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Vector Quantization (VQ)

In the feature encoding phase, D-dimensional feature descriptors, i.e. X =

[x1, x2, ..., xn

] 2 RD⇥N , extracted from videos are mapped to a codebook B =

[b1, b2, ...bM

] 2 RD⇥M , of length M. Though several coding methods exist in lit-

erature, vector quantization (VQ) is the most popular method used in action

recognition. VQ solves the following least square fitting problem:

argmin
c

NX

i=1

k x
i

� Bc
i

k2, (3.7)

s.t. k c
i

k
l

0= 1, k c
i

k
l

1 = 1, c
i

⌫ 0, 8i,

where C = [c1, c2.., cN

] is the set of codes for a video. Since this method only finds

a single nearest neighbour, it generates large quantization errors. In addition, VQ

ignores the relationship between di↵erent bases and needs expensive non-linear

kernel projections to improve the recognition accuracy.

Sparse Coding (SC)

To improve the quantization error and obtain a non-linear representation, sparse

coding [108] was proposed for object recognition. Unlike vector quantization, the

sparse coding represents a feature vector x
n

as a sparse linear combination of

basis vector. The sparse representation is obtained by solving the following the

l1-norm optimization problem.

argmin
c

NX

i=1

k x
i

� Bc
i

k2 + �k c
i

k
l

1 . (3.8)
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In the SC approach, the sparsity regularization term allows the learned repre-

sentation to capture salient patterns of local descriptors and achieve much lower

quantization error compared to VQ.

Locality-constrained Linear Coding (LLC)

LLC [99] was initially introduced for image classification. In the LLC coding, the

sparsity term has been replaced with the locality term that captures the proximity

of the features with respect to the cluster centres more accurately compared to

SC. i.e. the cluster centres far away from the local feature x
n

is assigned with

lower weights, while more weight is given to the closest codebook elements. The

coe�cients are obtained by solving the following optimization problem,

argmin
c

NX

i=1

k x
i

� Bc
i

k2 + �k d
i

� c
i

k2. (3.9)

The � represents element wise multiplication, and d
i

is the locality adaptor that

gives di↵erent freedom for each basis vector proportional to its similarity to the

input vector, x
i

. Compared to VQ, SC and LLC minimize the quantization error

by representing an input with multiple elements from the codebook. Furthermore,

LLC captures locality information and correlation between similar descriptors.

Experiments & Discussion

The k-means clustering algorithm has been used to generate the codebook, and

di↵erent encoding methods were used to assign each feature to the codebook

elements. In the experiments, HOG/HOF features have been used to investigate
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the impact of di↵erent encoding methods as they perform well across all datasets

with di↵erent environmental settings.

• Vector Quantization (VQ): This is the baseline method popularly used

among vision researchers to tackle several recognition problems such as ob-

ject recognition, scene recognition, activity recognition etc. The final repre-

sentation has been obtained by sum-pooling followed by l1-normalization.

• Sparse Coding (SC): In sparse coding the default parameter � = 0.15 was

chosen to maintain modest sparsity while minimizing the loss. The final rep-

resentation was obtained using max-pooling followed by l2-normalization.

• Locality constrained Linear Coding (LLC): In the LLC coding the

max-pooling followed by l2- normalization was used to create the final rep-

resentation.

The experimental framework detailed in Section 3.2.1 has been used to study

di↵erent encoding methods. The experiments have been carried across di↵erent

codebook sizes such as 1000, 1500, 2000, 2500, 3000, 3500 and 4000.

Figure 3.5 shows how classification accuracy is varying with di↵erent encoding

schemes in KTH and Weizmann datasets. Experimental results demonstrate

that compared to VQ, the LLC and SC performs well in both datasets and the

best results were obtained using SC across all the codebook sizes. SC and LLC

outperform the VQ by up to 4% with HOG/HOF descriptors.

The experimental results obtained in the Hollywood2 dataset is presented in

Figure 3.6. Similar to KTH and Weizmann datasets, the VQ performs poorly

compared to SC and LLC encoding methods. The SC and LLC outperform

the baseline VQ by up to 6%. Unlike the KTH and Weizmann datasets, which
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Figure 3.5: Average classification accuracy of di↵erent encoding methods applied
on KTH and Weizmann Datasets with HOG/HOF descriptor. (b) KTH Dataset,
(b) Weizmann Dataset.

were recorded in static environments, the best performance in the Hollywood2

dataset was obtained with LLC encoding. This demonstrates the fact that the

locality information helps more compared to sparsity in complex environments to

represent videos, and the performance improves with the size of the codebook.

From the experiments carried out on three di↵erent datasets it was observed

that VQ consistently yields poor performance. This is due to hard vector as-

signment, where a single feature is assigned to a single codebook element and

ignores any relationships between other codebook elements and fails to capture

the relationships. On the other hand, in sparse coding the sparsity has produced

more discriminative representation, hence the improved performance. Locality

constrained linear coding explores the underlying spatio-temporal structure and

assigns the features to multiple local codebook elements. It was also noted from

the experiments that the sparsity helps to boost the performance in static envi-

ronments (i.e. KTH & Weizmann) while the locality plays an important role in

improving the recognition performance of complex datasets such as Hollywood2.
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Figure 3.6: Mean Average Precision (mAP) obtained on Hollywood2 dataset with
HOG/HOF descriptor and di↵erent encoding methods.

3.2.3 Evaluation of di↵erent kernel methods

Kernel Methods are a new class of method used in pattern analysis, which can

be operated on very general types of features and can detect very general types

of relationships. The basic idea behind the kernel method is to transform the low

dimensional feature space into higher dimensional space to explore more hidden

statistical characteristics. This method also provides a natural way to merge and

integrate di↵erent types of features.

Kernel methods have a modular framework in which the features are processed

into a kernel matrix where the features can be of the same type or various types.

In the next step, a variety of kernel algorithms such as Support Vector Machines

(SVM), Principal Component Analysis (PCA), Spectral Clustering and Fisher

Discriminant Analysis (FDA) can be used to analyse the transformed feature

space, using the information contained in the kernel matrix.

For an input feature vector x kernel methods are used to transform the features
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into a higher-dimensional vector space in such a way as to find linear relationships

in that space, which are not clear in the original low dimensional feature space.

Based on the appropriate selection of the feature space, the relationships can be

simplified and easily observed, as shown in Figure 3.7.

Figure 3.7: Demonstration of a kernel mapping from a input to an non-linear
feature space [99].

For models that are based on a fixed non-linear feature space mapping �(x), the

kernel function is given by the following equation,

k(x, x0) = �(xT )�(x0), (3.10)

A kernel is a symmetric function of its arguments and k(x, x0) = k(x0, x). The

simplest kernel function is obtained by the identity mapping of the feature space

�(x) = x in which case k(x, x0) = xT x0 , which is a linear kernel. In the SVM

classification algorithm, where the input vector enters as a scalar/inner product

of a feature space, it allows us to replace the scalar product with the choice of

a kernel function. This replacement improves the linear separation compared to

the original feature space. This technique is known as ‘kernel substitution’ or the

‘kernel trick’.

Given a training set of instance-label pairs (x
i

, y
i

), i = 1, ..., T where x
i

2 Rn and
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y
i

2 {1, �1}, di↵erent types of kernels, as listed below, can be used to map the

data for SVM classification:

• Linear: K(x
i

, x
j

) = xT

i

x
j

.

• Polynomial: K(x
i

, x
j

) = (�xT

i

+ r)d, � > 0.

• Radial Basis Function (RBF) : K(x
i

, x
j

) = exp(�� kx
i

� x
j

k2), � > 0.

• Sigmoid: K(x
i

, x
j

) = tanh(�xT

i

x
j

+ r).

• �2: K(H
i

, H
j

) = exp
�� 1

A

D(H
i

, H
j

)
�
.

where �, r, and d are kernel parameters. The RBF and �2 is by far the most

popular choice of kernel type used in Support Vector Machines. This is mainly

because of their localized and finite responses across the entire range of the real

x-axis.

The performance of the SVM 2 classifier heavily depends on the ability of the

kernel method used. In this section, four di↵erent kernel classifiers, i.e., linear,

Polinomial, RBF and �2 have been studied with the di↵erent codebook sizes over

four descriptor combinations.

Experimental Results

The similar framework mentioned in Section 3.2.1 with di↵erent kernel matrices

has been used to investigate the impact of di↵erent kernel matrices. Figure 3.8

shows the experimental results on the KTH dataset. From the results, it can be

clearly observed that the �2 kernel consistently performs well in all descriptors

2Available at https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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across all the codebook sizes followed by RBF kernel. At the same time, the

quadratic kernel degrades the overall accuracy by 10% to 15%.
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Figure 3.8: Classification Accuracy of di↵erent kernels for di↵erent descriptors
with KTH Dataset (a) HOG Descriptor, (b) HOF Descriptor, (c) HOG/HOF
Descriptor and (d) HOG3D Descriptor.

Figure 3.9 presents average accuracy on Weizmann dataset and Figure 3.10

presents the average precision on Hollywood2 dataset with various kernel ma-

trices. Similar to the KTH dataset �2 kernel produces better performance across
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all the codebook sizes followed by RBF kernel. In the mean-time, the choice

of the kernel method can vary the overall performance by 2% to 10%. Results

for the �2 and RBF kernel are comparable and they are good choice for di↵er-

ent codebook sizes with di↵erent datasets recorded under di↵erent environmental

conditions while quadratic kernel reduces the overall performance by 10%.
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Figure 3.9: Classification Accuracy of di↵erent kernels for di↵erent descrip-
tors with Weizmann Dataset (a) HOG Descriptor, (b) HOF Descriptor, (c)
HOG/HOF Descriptor and (d) HOG3D Descriptor.
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Figure 3.10: Classification Accuracy of di↵erent kernels for di↵erent descrip-
tors with Hollywood2 Dataset (a) HOG Descriptor, (b) HOF Descriptor, (c)
HOG/HOF Descriptor and (d) HOG3D Descriptor.

3.3 Chapter summary

This chapter presents a comprehensive study of popular, state-of-the art lo-

cal feature descriptors under di↵erent experimental settings with three di↵erent

datasets. The evaluation presents how di↵erent codebook sizes, encoding meth-
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ods and various kernel matrices influence the overall classification accuracy, and

several conclusions have been drawn based on the results. This study also pro-

vides a detailed understanding of how di↵erent pre-processing stages can influence

the local feature-based action recognition system. This chapter also presents the

most e↵ective way to choose di↵erent codebooks, encoding and kernel matrices

to achieve the best performance for real-world application. KTH, Weizmann and

Hollywood2 datasets, the VQ performs poorly compared to SC and LLC encod-

ing methods. The SC and LLC outperform the baseline VQ by up to 6%. In the

Kernal evaluation �2 kernel consistently performs well in all descriptors across

all the codebook sizes followed by RBF kernel. At the same time, the quadratic

kernel degrades the overall accuracy by 10% to 15%.

In this study it was also noted that, proper kernel and encoding methods can

significantly contribute to the overall performance improvement of 5-10%. The

following chapter presents an e�cient semi-binary feature descriptor that can be

used as an alternative to the local features with significantly reduced computa-

tional requirements.





Chapter 4

Semi-Binary Based Video

Features for Activity

Representation

4.1 Introduction

This chapter addresses the problem of e�cient and compact representation of

videos by proposing a semi binary-based feature detector-descriptor based on

the BRISK detector, which can detect and represent videos with significantly

reduced computational requirements, while achieving comparable performance

to the state-of-the-art spatio-temporal feature descriptors. This proposed feature

detector/descriptor can be used not only in action recognition but also in di↵erent

video-based applications such as motion analysis, anomalous event analysis, video

retrieval etc.
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4.1.1 The Problem & Motivation

E�cient and e↵ective feature detection and representation plays a crucial role

in local feature-based action recognition systems. Although local features have

became increasingly popular for representing videos because of their simplicity,

e�ciency and their state-of-the-art performance with low computational com-

plexity, still they are not applicable for real-time applications due to significant

computational requirements. Furthermore, rapid increases in the uptake of mo-

bile devices has increased the demand for algorithms that can run with reduced

memory and computational requirements.

Due to the increasing power in consumer electronic devices such as phones and

tablets, as well these devices being equipped with cameras, there is a growing

interest in being able to process videos on the devices themselves. However,

the high computational and memory requirements of such approaches mean they

are poorly suited to mobile applications. To address these issues, recently sev-

eral binary string-based descriptors have been proposed in the context of object

recognition [4, 49, 83]. Inspired by their performance with significantly reduced

computational requirements, a semi-binary-based feature detector/descriptor for

the local feature-based action recognition system is proposed.

4.1.2 Overview of proposed approach

The proposed framework is shown in Figure 4.1. First, the Binary Robust In-

variant Scalable Keypoints (BRISK) feature detector is applied on a frame-by-

frame basis to detect interest points, then the detected key points are compared

against consecutive frames for significant motion. Amongst the detected points

only the points with significant motion are retained. Then the retained key
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points are encoded with the BRISK descriptor in the spatial domain and Motion

Boundary Histogram (MBH) in the temporal domain. This descriptor is not only

lightweight but also has lower memory requirements because of the binary nature

of the BRISK descriptor, allowing the possibility of applications using hand held

devices.

The proposed detector-descriptor performance has been comprehensively eval-

uated in the context of action classification with a standard, popular bag-of-

features with SVM framework. Experiments have been carried out on two popular

datasets with varying complexity and yield comparable performance with other

descriptors with reduced computational complexity. The proposed descriptor has

the potential for real time recognition in resource constrained environments.

Figure 4.1: Proposed Framework for local feature extraction, which consists of
key point detection, motion estimation followed by appearance and motion de-
scription.

The reminder of this chapter is organized as follows: Section 4.2 reviews related

works that have been performed in the feature detection and descriptor space.

Section 4.3 provides details of the proposed descriptor. Experimental results for

various datasets are presented in Section 4.4. Finally, Section 4.5 concludes the

chapter.
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4.2 Related work

There are numerous feature detectors that have been proposed in the literature

[20, 43, 70, 103, 104] to extract regions of interest, and the detail description is

presented in Section 2.4.1.

Descriptors are used to code appearance and motion information from the re-

gion of selected interest points using image gradients and optical flow. Several

descriptors have been proposed in the past [40, 43, 87, 103]. Detail description of

these approaches is presented in Section 2.4.2. Williams et al. [103] extends the

SURF descriptor to video, by representing each cell as a vector of weighted sums

of uniformly sampled responses to Haar-wavelets along the three axes. However

the descriptors proposed in [87, 103] have been directly extended from 2D to

the temporal domain (i.e. 3D), and they treat both spatial and temporal do-

mains in a similar manner. Therefore, these representations fail to accurately

capture temporal information, which has dissimilar characteristics to 2D spatial

information.

Recently in object recognition the focus has been given to detecting and rep-

resenting key points quickly with low computational and memory requirements,

more suitable for real-time applications. Several feature detectors [49, 56, 82]

have been proposed to process the images almost in real time. FAST [82] im-

poses hard real-time constraints to achieve state-of-the art results while AGAST

[56] improves the performance by extending the FAST detector. The recently

proposed BRISK [49] is a multi-scale AGAST, where the Features from Acceler-

ated Segment Test (FAST) score is used as a saliency measure to search maxima

in scale space. The increasing focus on high quality, computationally e�cient

performance has also yielded several binary string features for image encoding

[4, 14, 49, 83]. BRIEF [14], created using simple image intensity comparisons
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at random pixel locations, that yields a description consisting of binary strings.

Rublee et al. proposed Oriented fast and Rotated BRIEF (ORB) [83], by making

BRIEF more invariant to scale and rotation changes as well as robust to noise.

BRISK [49] uses a specific sampling pattern to build a descriptor invariant to

rotation and scale. Alexandre et al. proposed Fast Retina Keypoint (FREAK)

[4], where a binary string is computed e�ciently by comparing image intensities

over a retinal sampling pattern.

In this chapter, inspired by the above fast and e�cient detectors and descriptors,

an extension of the BRISK descriptor to videos has been proposed in the context

of activity recognition.

The BRISK detector has been chosen as it is a high-quality, fast-key point de-

tector. Similar to the above mentioned descriptors for videos, which detect key

points at multi-scale and with invariance to transformation, BRISK achieves these

with dramatically reduced computational cost. In this proposed method, more

emphasis has been given to make the algorithm as simple as possible to mini-

mize computational complexity while retaining the classification performance. In

order to handle the spatial and temporal domain separately, the BRISK descrip-

tor is used to encode the appearance information while the Motion Boundary

Histogram (MBH) [17] is used to encode the motion information. Unlike other

optical flow based methods, MBH features remove the camera motion and repre-

sent only the actual motion present. Experimental results are presented using the

standardized evaluation framework (bag-of-words with SVM), and performance

on benchmark datasets KTH [86] and Hollywood2 [60] demonstrate comparable

performance with other state-of-the-art approaches with much greater e�ciency.

The details of the proposed method are presented in the following section.
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4.3 Proposed method

As shown in Figure 4.1, the proposed method consists of four steps. In the first

step, BRISK is employed on a frame-by-frame basis to detect interest points.

Figure 4.1 shows the extracted interest points in a frame. Then a sparse optical

flow algorithm [55] is applied to detect the motion of all detected key points at the

current frame, t, w.r.t. frame t+W . Points which exhibit motion are considered

as candidate spatio-temporal points for video description. In the third step,

appearance information of the points is extracted using the BRISK descriptor

and the motion component is extracted using the MBH descriptor. Lastly, the

final spatio-temporal feature is created by combining the appearance and motion

features.

4.3.1 Interest Point Detection

In the proposed framework, interest points are detected based only on the appear-

ance information in each frame of a video sequence. Interest points are extracted

from each frame by applying the BRISK detector, which is an order of magni-

tude faster than other algorithms. The BRISK detector detects the location and

scale of each key point in the continuous domain via quadratic function fitting.

Furthermore, it detects the actual scale of a key point in a continuous scale-

space. The scale-space pyramid consists of n octaves c
i

; and n intra-octaves d
i

;

these are formed by down sampling the original frame (i.e. c0). Intra octaves

are positioned between two adjacent octaves (c
i

and c
i+1) as shown in the Figure

4.2. Potential interest points are detected by applying a FAST 9-16 detector in

each octave and intra-octave separately. Points having the highest score amongst

eight neighbouring FAST scores in the same layer and a lower score in the layer

above and below are considered as potential interest points. Each interest point
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P
t

= (x
t

, y
t

) detected in the tth frame has its own spatial size, �
x

and �
y

. The

detected keypoints in KTH and Hollywood2 datasets are shown in the Figures

4.3 and 4.4 respectively. These datasets have been chosen to demonstrate the

e↵ectiveness of the descriptor in both static and complex environments.

1). The first intra-octave d0 is obtained by downsampling
the original image c0 by a factor of 1.5, while the rest of
the intra-octave layers are derived by successive halfsam-
pling. Therefore, if t denotes scale then t(ci) = 2i and
t(di) = 2i · 1.5.

It is important to note here that both FAST and AGAST
provide different alternatives of mask shapes for keypoint
detection. In BRISK, we mostly use the 9-16 mask, which
essentially requires at least 9 consecutive pixels in the 16-
pixel circle to either be sufficiently brighter or darker than
the central pixel for the FAST criterion to be fulfilled.

Initially, the FAST 9-16 detector is applied on each oc-
tave and intra-octave separately using the same threshold T
to identify potential regions of interest. Next, the points be-
longing to these regions are subjected to a non-maxima sup-
pression in scale-space: firstly, the point in question needs
to fulfill the maximum condition with respect to its 8 neigh-
boring FAST scores s in the same layer. The score s is
defined as the maximum threshold still considering an im-
age point a corner. Secondly, the scores in the layer above
and below will need to be lower as well. We check inside
equally sized square patches: the side-length is chosen to be
2 pixels in the layer with the suspected maximum. Since the
neighboring layers (and therefore its FAST scores) are rep-
resented with a different discretization, some interpolation
is applied at the boundaries of the patch. Figure 1 depicts
an example of this sampling and the maxima search.

The detection of maxima across the scale axis at octave
c0 is a special case: in order to obtain the FAST scores for
a virtual intra-octave d�1 below c0, we apply the FAST 5-8
mask on c0. However, the scores in patch of d�1 are in this
case not required to be lower than the score of the examined
point in octave c0.

Considering image saliency as a continuous quantity not
only across the image but also along the scale dimension,
we perform a sub-pixel and continuous scale refinement for
each detected maximum. In order to limit complexity of the
refinement process, we first fit a 2D quadratic function in
the least-squares sense to each of the three scores-patches
(as obtained in the layer of the keypoint, the one above, and
the one below) resulting in three sub-pixel refined saliency
maxima. In order to avoid resampling, we consider a 3 by
3 score patch on each layer. Next, these refined scores are
used to fit a 1D parabola along the scale axis yielding the
final score estimate and scale estimate at its maximum. As a
final step, we re-interpolate the image coordinates between
the patches in the layers next to the determined scale. An
example of the BRISK detection in two images of the Boat
sequence (defined in Section 4) is shown up-close in Figure
2.

octave c
i

FAST score s

log ( ) : scale2 t t

i

i+1

i-1

interpolated position

intra-octave d
i-1

octave c
i+1

octave c
i-1

intra-octave d
i

Figure 1. Scale-space interest point detection: a keypoint (i.e. saliency
maximum) is identified at octave ci by analyzing the 8 neighboring
saliency scores in ci as well as in the corresponding scores-patches in
the immediately-neighboring layers above and below. In all three layers
of interest, the local saliency maximum is sub-pixel refined before a 1D
parabola is fitted along the scale-axis to determine the true scale of the
keypoint. The location of the keypoint is then also re-interpolated between
the patch maxima closest to the determined scale.

(a) Boat image 1 (b) Boat image 2
Figure 2. Close-up of a BRISK detection example on images 1 and 2 of
the Boat sequence exhibiting small zoom and in-plane rotation. The size
of the circles denote the scale of the detected keypoints while the radials
denote their orientation. For clarity, the detection threshold is set here to a
stricter value than in the typical setup, yielding slightly lower repeatability.

3.2. Keypoint Description
Given a set of keypoints (consisting of sub-pixel refined

image locations and associated floating-point scale values),
the BRISK descriptor is composed as a binary string by con-
catenating the results of simple brightness comparison tests.
This idea has been demonstrated in [4] to be very efficient,
however here we employ it in a far more qualitative man-
ner. In BRISK, we identify the characteristic direction of
each keypoint to allow for orientation-normalized descrip-
tors and hence achieve rotation invariance which is key to
general robustness. Also, we carefully select the brightness
comparisons with the focus on maximizing descriptiveness.

Figure 4.2: Brisk Interest point detector [49]; a keypoint is detected by analyzing
the saliency scores in c

i

and the layers above and below.

4.3.2 Motion Estimation

The points that were detected by considering spatial domain characteristics may

contain points that do not possess significant motion. These points are not re-

quired to represent videos e↵ectively and hence reduce the discriminatory power

of the descriptor. To choose the best candidate points for describing video from

amongst those detected by BRISK, and to improve e�ciency, a sparse optical

flow algorithm [55] has been applied.
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Figure 4.3: Key points detected by BRISK detector on sample frames from
KTH dataset are shown in the first row. The second row shows the candidate
key points for description and the last row shows the eliminated points due to
insignificant motion. Sample actions are Hand clapping (first column), Boxing
(second column), Waiving (third column)

.

Optical flow has been calculated between the points detected in the current frame

F
t

and the next frame F
t+W

, where W is the temporal window size between the

current frame and next frame against which optical flow is compared. i.e. the

next frame is W frames away from the current frame. The selection of W is

paramount to detect and describe the cuboid. Values of W that are too small

will result in very little motion being detected and most key points being removed.

On the other hand, too large a W will cause the frames to be too far apart and

will fail to capture actions with small temporal duration when the frame rate is

too low. Though this parameter has to be tuned for various databases based on

the type of actions present, in Section 4.4, a detailed analysis on how the window

size is a↵ecting the overall performance is presented with KTH and Hollywood2
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datasets.

Local coherent motion around the key point (described by the spatial size, �
x

⇥
�

y

) detected by BRISK is analysed to determine if it is in motion. Key points

which are in motion (as determined by the optical flow) are used as feature points

about which to extract appearance and motion information. In order to account

for temporal information in the key points and to extract motion information, a

cuboid is formed by setting temporal size, �
t

= W .

Figure 4.4: Sample Frames from Hollywood2 human actions dataset are shown
in the first row, key points detected by BRISK are shown in the second row. The
third row shows the candidate key points for description and the final row shows
the eliminated points due to insignificant motion. Sample actions are Eat (first
column), Run (second column), Kiss (third column), Getoutcar(fourth column)
and Answerphone (fifth column)

.
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4.3.3 Appearance Modelling

For each interest point P
t

= (x
t

, y
t

,�
x

,�
y

,�
t

), the BRISK descriptor is applied

to e�ciently capture the appearance information. BRISK is calculated as a binary

string and consists of the results of a binary comparison. When computing the

descriptor, the neighbourhood of the key point is sampled in a pattern similar to

the DAISY descriptor to achieve restricted memory and processing requirements

while focusing on maximizing descriptiveness. Then the sampled pattern is ro-

tated around the key point and an intensity comparison is done between point

pairs to form a bit string descriptor. The BRISK descriptor yields a 512 length

bit vector around each detected key point to represent the video e�ciently.

4.3.4 Motion Modelling

To capture motion information surrounding the interest point, the current frame

and the subsequent W frames are considered. Optical flow-based methods are

widely used to encode the motion information in a spatio-temporal video feature

representation. While optical flow is a popular method used to represent motion,

the calculated motion between two adjacent frames includes constant camera

and background motion in addition to the actual motion relating to the action

being performed. To alleviate this problem, the Motion Boundary Histogram

(MBH) has been used, where the optical flow is resolved into horizontal and

vertical components, i.e. Iw = (Ix, Iy); then gradient magnitude and direction is

calculated on the two flow components separately. In this way, constant camera

and background motion is removed (the gradient of a constant is 0) and only the

foreground motion is retained.

Each cuboid is subdivided into a (n
x

= 3, n
y

= 3, n
t

= 2) grid of cuboids. A
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normalized 4 bin histogram is calculated for each cell resulting in a 72 dimension

(3 ⇥ 3 ⇥ 2 ⇥ 4) feature for each component (i.e. x and y).

The final spatio-temporal descriptor is formed by concatenating1 the above

appearance and motion descriptors. The appearance representation based on

BRISK consists of a 512 dimensional binary string vector and the motion rep-

resentation consists of a 144 dimensional fixed point vector; resulting in a 656

dimensional semi-binary feature vector for each key point.

4.4 Experimental Results and Discussion

Our proposed method has been extensively tested with a popular, widely used

local feature-based action recognition system detailed in Section 3.2.1. This

pipeline consists of feature detection and extraction, then vector quantization

with K-means followed by classification with an SVM using a �2 kernel as shown

in Figure 3.1. In this framework the first step is replaced with the proposed

key point detection and description, keeping the remaining parts the same. The

experiments have been carried out with two popular benchmark datasets with

varying complexity.

4.4.1 KTH Dataset

The Figure 4.6 shows how the classification performance of the KTH dataset

varies with di↵erent temporal window sizes (W ) used to detect the relative motion

between two frame sequences. From the Figure 4.6 it can be observed that the

1First the interest points were detected followed by spatial encoding and motion encoding.
These encoded features and joined together (simple matrix concatenation) to provide complete
representation.
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Approach Average Accuracy

Schüldt et al. [86] 71.72%
Dollar et al. [20] 81.17%
Niebles et al. [69] 81.50%
Our Method 91.2%

Laptev et al. [45] 91.8%
Liu et al. [51] 93.8%

Wang et al. [94] 94.2%
Le et al. [48] 93.9%

Table 4.1: Comparison of recognition accuracy on the KTH Dataset using dif-
ferent approaches. Approaches used in [69], [94], [48] are not fallen into spatio-
temporal descriptors.

maximum classification performance in KTH is obtained when the window size

W = 5. Therefore, for the remaining experiments in KTH datasets, the window

size is set to 5. The lower temporal window size eliminates most of the interest

points due to lack of relative motion and reduces the overall performance. In

the meantime the higher temporal window size ignores significant motion present

between two consecutive frames and fails to capture fine temporal movements.
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Figure 4.5: The comparison between the classification performance and di↵erent
temporal window sizes (W ) in KTH and Hollywood2 Datasets.

Comparisons with other state-of-the-art methods are presented in Table 4.1.

The proposed method achieves almost comparable performance with other local
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Figure 4.6: The recognition accuracy of three descriptors BRISK, MBH,
BRISK+MBH with BRISK key point detector in KTH dataset.

feature-based methods with significantly reduced computational requirements.

Figure 4.6 shows the classification accuracy of the six di↵erent action classes

within KTH with di↵erent combinations of descriptors. The BRISK+MBH com-

bination performs well across all classes compared to BRISK or MBH only. This

demonstrates that both motion and appearance are important to distinguish be-

tween actions.

The motion descriptor (MBH) performs well in actions such as running, jogging

and walking compared to BRISK. This can be explained by the fact that these

three actions are almost same in the spatial domain, but occur at di↵erent speeds

in the temporal domain, hence MBH captures the variation well while BRISK

alone confuses these action categories. On the other hand, the appearance feature

performs well in hand clapping, hand waving and boxing where a significant

amount of contextual information is present and is well captured by the BRISK

descriptor (see Figure 4.6).

Interestingly, it was noted that the BRISK only descriptor performs well in almost

all action classes, which allows for a further reduction in computational and

memory requirements. As mentioned earlier, BRISK is a binary string descriptor
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with the dimension of 512, and only requires 64 Bytes of memory for each key

point. Also it was noted that, because of the static background in KTH, almost all

BRISK detected key points are placed around the person (see Figure 4.3) where

significant motion is present, which eliminates the need for motion estimation. i.e.

few points are eliminated due to the lack of motion. In addition, when building

the codebook using k-means, the hamming distance can be used to obtain the

histogram of visual words rather than costly Euclidean distance. This further

reduces the computational complexity. The confusion matrix of the KTH dataset

is presented in the Table 4.7.

Walking Boxing Running Jogging Waiving Clapping
Walking 0.96 0.00 0.01 0.03 0.00 0.00
Boxing 0.00 0.94 0.00 0.00 0.04 0.02
Running 0.00 0.00 0.85 0.08 0.07 0.00
Jogging 0.09 0.00 0.05 0.86 0.00 0.00
Waiving 0.00 0.04 0.00 0.00 0.92 0.04
Clapping 0.00 0.05 0.00 0.00 0.02 0.93

�1

Figure 4.7: The confusion matrix of the KTH dataset with BRISK detector and
BRISK+MBH descriptor, the temporal window size is set to W = 5.

4.4.2 Hollywood2

The e↵ect of di↵erent temporal window sizes has been investigated with Holly-

wood2 dataset (see Figure 4.5) to optimize the window size for best classification

performance. The experimental results show that the optimum results are ob-

tained when the temporal window size is set to 7. This value is higher compared to

the KTH dataset because of higher frame rate and lower relative motion between

the adjacent frames.

As shown in Table 4.3, BRISK+MBH detector-descriptor combination performs

well compared with the other local statio-temporal feature based approaches.
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Figure 4.8: Recognition accuracy for di↵erent classes on the KTH dataset: Figure
(left) shows the performance with three di↵erent descriptors BRISK, MBH and
BRISK+MBH, Figure (right) shows the performance of the BRISK detector with
BRISK+MBH descriptor against Harris3D detector with HOG+HOF descriptor

Approach mean AP

Our Method 44.3%
Laptev et al. [45] 45.2%
Le et al. [48] 53.3%

Wang et al. [94] 58.2%

Table 4.2: Comparison of recognition accuracy on theHollywood2Dataset using
di↵erent approaches. Approaches used in [94], [48] are not fallen into spatio-
temporal descriptors.

Still, the Harris3D with HOG-HOF performs slightly better compared to BRISK

detector with the BRISK-MBH descriptor. This is due to the nature of Harris3D,

which explores both spatial and temporal content when detecting a point, while

the BRISK detector detects the points based only on the spatial context. Though

there is a slight performance compromise against Harris3D, the BRISK detector

detects points far more e�ciently than Harris3D.

Table 4.3 compares the performance of the proposed BRISK+MBH features to

the popular HOG+HOF features. The BRISK+MBH descriptor outperforms the

HOG-HOF combination on both Harris3D and BRISK keypoints. On the other
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Dataset
Harris3D BRISK

HOG+HOF BRISK+MBH HOG+HOF BRISK+MBH
KTH 91.8 92.3 88.3 91.15

Hollywood2 45.2 47.2 42.1 44.3

Table 4.3: Performance comparison between the popular HOG+HOF and
BRISK+MBH descriptor with the Harris3D and the BRISK keypoints. Aver-
age accuracy is reported on the KTH dataset and mean average precision is
reported on the Hollywood2 Dataset.

hand, Harris3D outperforms the BRISK detector at the expense of computational

complexity.

The confusion matrix of the Hollywood2 dataset is presented in the Table 4.9.

Significant confusion has been observed among two class subsets such as {Hand
shake, Hug person, Kiss} and { Sit down, Sit up, Stand up}. In the first set

of actions involved with two people, only a small spatial scale di↵erentiates the

activities and the descriptor fails to capture more discriminative information to

improve the performance. The second set of actions can only be di↵erentiated by

the temporal order in which the action takes place. Most of the confusion occurs

due to the Bag-of-feature representation where the temporal order in which the

action takes place is usually ignored.

Answer'phone Drive'car Eat Fight'person Get'out'car Hand'shake Hug'person Kiss Run Sit'down Sit'up Stand'up
Answer'phone 0.19 0.08 0.14 0.02 0.01 0.05 0.07 0.09 0.07 0.10 0.09 0.09
Drive'car 0.00 0.82 0.00 0.03 0.10 0.00 0.05 0.00 0.00 0.00 0.00 0.00
Eat 0.10 0.00 0.64 0.07 0.00 0.02 0.06 0.02 0.03 0.04 0.02
Fight'person 0.00 0.00 0.01 0.57 0.00 0.04 0.22 0.12 0.02 0.00 0.02 0.00
Get'out'car 0.07 0.31 0.01 0.05 0.42 0.03 0.01 0.02 0.04 0.00 0.02 0.02
Hand'shake 0.00 0.03 0.02 0.13 0.03 0.12 0.14 0.21 0.15 0.07 0.08 0.02
Hug'person 0.03 0.00 0.00 0.13 0.00 0.15 0.32 0.32 0.02 0.01 0.00 0.02
Kiss 0.00 0.00 0.00 0.12 0.00 0.14 0.23 0.48 0.02 0.00 0.01 0.00
Run 0.02 0.03 0.00 0.02 0.08 0.00 0.00 0.04 0.62 0.06 0.07 0.06
Sit'down 0.00 0.00 0.02 0.00 0.00 0.04 0.01 0.02 0.01 0.48 0.23 0.19
Sit'up 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.03 0.01 0.39 0.19 0.32
Stand'up 0.00 0.00 0.00 0.02 0.00 0.03 0.01 0.02 0.00 0.23 0.21 0.48

�1

Figure 4.9: The confusion matrix of the Hollywood2 dataset with BRISK detector
and BRISK+MBH descriptor, the temporal window size is set to W = 7.
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4.4.3 Computational complexity

The main aim of this descriptor is to achieve computational e�ciency while re-

taining a reasonable level of performance. To experimentally evaluate the com-

putational complexity of this feature detector and descriptor, 100 randomly se-

lected video clips from the KTH and Hollywood2 dataset have been used. Each

video in KTH has 100 frames on average with the frame size of 160 ⇥ 120, while

Hollywood2 has a frame size of 528 ⇥ 224 pixels and consists of 350 frames on

average. The average time to detect features within the frame, perform motion

estimation and extract appearance and motion descriptions are presented in Ta-

ble 4.4. Timings are reported on a PC with a core i7, 3.40 GHz processor running

the Windows 7 operating system (32bit) with a single core for processing. Our

proposed implementation uses an unoptimized C++ code, and authors’ origi-

nal STIP implementation 2 was used to calculate computational complexity for

STIP method. One of the most compelling motivations for the use of binary de-

scriptors is their e�ciency and compactness. If they are stored as floating-point

values, the storage savings of binary features are even more significant. Even if

the real value parameterization descriptors are stored in a quantised form they

still requires at least a byte per dimension to store without losing much precision.

Overall, binary descriptors reduce storage requirements significantly. Appearance

and motion features can be calculated simultaneously, once the motion estimation

phase is done.

The computational complexity comparison between the proposed approach

(BRISK+ MBH) with the popular spatio-temporal interest points (STIP) in Hol-

lywood2 dataset is presented in Table 4.6.

The features are extracted at the speed of 6.96 frames/second using BRISK-MBH,

2http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
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Proposed Method STIP Method
KTH Hollywood2 KTH Hollywood2

Feature detection (ms) 4.57 18.43 14.28 41.05
Motion estimation (ms) 2.31 25.60 - -

Apperance description (ms) 62.30 74.60 140.32 220.40
Motion description (ms) 72.30 103.00 160.30 270.50

Table 4.4: Time spent on di↵erent stages of our proposed feature detection and
description method against the STIP method. Processing time is calculated on
randomly selected 100 samples from each datasets without parallel processing.

Proposed Method STIP

Feature detection O(kn2) O(kn3)
Motion estimation O(kn) -

Apperance description O(kn) O(kn2)
Motion description O(kn2) O(k2n2)

Table 4.5: Algorithmic complexity of our proposed method against the STIP
method during feature detection and description. Spatial size of the cuboid is
assumed to be n ⇥ n and temporal size is k.

which is nearly four times higher compared to STIP with nearly seven times more

features per frame compared to STIP.

Algorithmic complexity

Table 4.5 compares algorithmic complexity in di↵erent stages of feature detection

and description for cuboids with spatial size of n⇥n and temporal size of k. Our

proposed method yields overall computational complexity of O(kn2) < O(n3),

where k < n and k, n > 0. (i.e. temporal size of the cuboid is always smaller

than the spatial size). In the mean time STIP method yields the overall com-

plexity of O(kn3) < O(n4), where k < n and k, n > 0. It is clear that the

STIP is more computationally intensive compared to our method as the size of

the cuboid increases.
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Frames/second Features/frame

STIP [45] 1.7 24.3
BRISK+MBH 6.96 183.5

Table 4.6: Computational complexity comparison of STIP and BRISK+MBH
descriptor on Hollywood2.

4.5 Summary

In this chapter, a semi-binary video descriptor in the context of activity recogni-

tion has been presented. The proposed approach consists of four phases: BRISK

feature detection, motion estimation, appearance and motion modelling. The pro-

posed e�cient video representation demonstrates comparable performance in two

popular, widely used datasets with significantly reduced computational require-

ments. While most of the video descriptors are restricted to academic research

due to their complexity, this descriptor demonstrates a potential for real world

applications due to the greatly reduced computational requirements compared to

other popular spatio-temporal interest point techniques. This descriptor is not

only limited to human activity recognition, but can also be used in applications

such as on-demand video retrieval, where computational complexity is a main

priority.





Chapter 5

Multiple Instance Dictionary

Learning for Activity

Representation

5.1 Introduction

This chapter investigates several multiple instance learning techniques and

presents an e↵ective feature representation method for a local feature-based ac-

tion recognition framework. E�cient and e↵ective feature representation plays

a crucial role, not only in activity recognition, but also in a wide range of ap-

plications such as motion analysis, tracking, 3D scene understanding etc. While

spatio-temporal features are popular for analysing videos and have achieved state-

of-the-art performance with low computational requirements, their performance

is still limited for real world applications due to a lack of contextual information

and models not being tailored to specific activities.
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Traditional classification tasks consider entire image/video as a single entity and

completely ignore the important semantic meanings arising from its constituent

regions. They can be considered as single-instance single-label (SISL) problems

where each example is assumed to have a single instance associated with a single

label. On the other hand, Multiple instance learning is a newly proposed frame-

work, where each example is associated with multiple instances and one or more

labels. Several applications, such as image classification, protein synthesis, text

classification, etc. have already explored the applicability of multiple instance

learning in di↵erent machine learning problems such as classification, clustering

and regression and demonstrated better performance. Multiple instance learning

provides flexibility to formulate complex, real-world problems with di↵erent tech-

niques such as Multiple-instance multi-label learning (MIML), Multiple-instance

single-label learning (MISL) and Single-instance single-label learning (SISL) ap-

proaches. Under this framework, an image can be partitioned into several patches

and represented with separate instances and each entity can be associated with

multiple class labels. For example an image containing ‘car’ and ‘cloud’ can be

partitioned into two separate instances with two separate class labels such as car

and cloud and in the same-way, a document may contain several sections and

can be treated as separate instances and associated with di↵erent topics such as

fiction, non-fiction, comedy, etc.

In this chapter, we focus on Multiple-instance learning or multiple-instance single-

label (MISL) learning, because this technique learn a separate dictionary for

each action class and improve the dis-criminality between classes. MISL was

initially proposed by Dietterich et al. [18] to predict drug activities. Let � = Rd

denote the instances space and learn the MISL function: f
MISL

: 2� ! {+1, �1}
from a set of training examples {(X

i

, y
i

)  i  N}, where X
i

✓ � is a set

of instances {xi

1, x
i

2, x
i

3, . . . , x
i

ni
} and y

i

2 {+1, �1} is the label of X
i

. Several

multiple-instance learning algorithms have been explored and successfully applied
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in object recognition and image retrieval applications [15, 59, 63, 113, 114]. This

chapter investigates several state-of-the-art, multiple instance learning algorithms

(i.e. MISL learning techniques have been explored because this thesis focusses on

improving the classification performance of single actions from complex videos,

therefore each video is associated with a single label) to e↵ectively cluster and

encode the local features to boost the overall classification performance.

On the other hand MIML learns the function: f
MIML

= 2� ! 2Y from a set of ex-

amples {(X
i

, Y
i

)  i  N} where X
i

✓ � is a bag of instances {xi

1, x
i

2, x
i

3, . . . , x
i

n

}
and Y = {1, 2, 3, . . . , P}, Y

i

✓ Y is a set of labels {yi

1, y
i

2, y
i

3, . . . , y
i

l

} corresponds

to X
i

. Number of instances in X
i

is n
i

and number of labels in Y
i

is l
i

. MIML

framework has been applied in multi-label learning frameworks [63, 84]. Sin-

gle instance multi-label learning (SIML) or multi-label learning learns a function

F
SIML

: � ! 2Y from a set of training samples {(x
i

, Y
i

)  i  N}, where x
i

2 �

is an instance and Y
i

✓ Y is a set of labels {yi

1, y
i

2, y
i

3, . . . , y
i

l

} corresponds to x
i

.

SIML techniques have been widely used to categorize images and text documents

[13, 26, 91].

5.2 Motivation and proposed Approach

Even though local feature based systems produce superior classification perfor-

mance in the context of activity recognition, the underlying bag-of-features-based

representation to consolidate the local features imposes several drawbacks. This

framework fails to capture underlying spatial and temporal relationships. Fur-

thermore, a simple bag-of-features fails to incorporate the relationship between

action categories. This is due to the clustering phase, where the method considers

the entire feature space as a whole to build the vocabulary: i.e. one dictionary is

built for all activity classes, which leads to an inappropriate feature allocation.
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Also, clustering approaches su↵er from initialization and inappropriate allocation

of clusters to action categories (i.e. some unique features corresponding to a given

activity may not have their own cluster, and instead are allocated to a di↵erent

cluster, which predominantly contains features from di↵erent activities). The use

of Vector Quantization (VQ) and the Euclidean distance is used to assign each

feature to one element in the codebook, leading to large quantization errors and

ignoring the relationship between di↵erent bases.

In this chapter, to address the above mentioned challenges to some extent, we pro-

pose a new activity representation framework based on di↵erent multiple instance

learning techniques. As shown in Figure 5.1, Multiple instance learning technique

replaces the popular k-means clustering in local action recognition framework.

The following three multiple instance techniques have been investigated and pro-

posed for local feature-based action recognition systems.

• mi-SVM + K-means Approach: Similar to [98], instead of learning a

single codebook for all action classes using K-means, we learn a separate

codebook for each activity class using Multiple Instance SVM (mi-SVM)

and k-means clustering. In this approach, we treat multiple instance learn-

ing and mixture modelling as two separate steps. Given a set of training

videos, dense histogram of oriented gradients (HOG) and histogram of opti-

cal flow (HOF) features are extracted. Then, one activity class is treated as

positive and all the features (instances) from the target activity are assigned

to a set of positive bags, and the rest of the classes are treated as negative

and their features (instances) are assigned to negative bags. Then SVM is

computed on positive and negative bags to identify the positive features in

the positive bags, as shown in Figure 5.2. Finally K-means is used to cluster

the positive instances. This process is repeated for each action class and

a unique codebook is generated for each activity class. In contrast to VQ
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Figure 5.1: Schematic diagram of the popular bag-of-feature representation (Left)
and our proposed feature representation (Right) in the context of activity recog-
nition.

based feature encoding, locality constrained linear coding (LLC) is used to

represent each input feature with multiple elements of the codebook. Fi-

nally, spatio-temporal pyramid pooling is used to capture the contextual

information. This feature representation method demonstrates significant

performance improvement over the popular bag-of-features method in two

popular datasets.

• Max Margin Dictionary Learning (MMDL) Approach: This ap-

proach is similar to the above mentioned approach, but instead of separately

performing multiple instance learning and mixture modelling, two steps are

carried out simultaneously [98]. This representation produces best results

compared to ‘mi-SVM + K-means’ and bag-of-features representation.

• Max Margin Multiple Instance Clustering (M3IC) Approach:
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y = +1

y = -1

Figure 5.2: Illustration of mi-SVM to separate the instances in positive bags.
A video (bag) is represented as a collection of features (instances), the bag is
labelled positive if at least one of the instances (red) in the bag is positive and
the bag is regarded negative if all instances (blue) are negative. mi-SVM aims to
find the positive instances in the positive bags by maximizing the margin between
positive and negative instances (the black ellipse denotes instances identified as
positive by mi-SVM). Then, k-means is used to cluster the positive instances.

M3IC was proposed by Zhang et al. [117] to clustering images. The M3IC

approach has been incorporated to replace k-means clustering and to a

create a new compact video representation suitable for classification. This

representation demonstrates superior performance compared to k-means al-

gorithms but lower performance compared to class-specific dictionaries built

with ‘miSVM + K-means’ and ‘MMDL’ approaches.

The remainder of this chapter is organized as follows: Section 5.3 reviews re-

lated representation and encoding techniques. Section 5.4 provides details of the

multiple instance learning techniques. Experimental framework and results for

various datasets with di↵erent representation techniques are presented in Section

5.5. Finally, Section 5.6 summarises the chapter.
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5.3 Related work

Several improved representation methods have been proposed in literature to im-

prove local feature-based action recognition accuracy. Kovashka et al. [41] learnt

class-specific distance functions that form the most informative configurations

rather than dictate a particular scaling of the spatial and temporal dimensions.

Zhang et al. [118] used sparse coding to quantize the features and a spatio-

temporal pyramid is used to represent an action. Recent advances in machine

learning approaches using multiple instance learning resulted in several advanced

clustering algorithms. M3MIL proposed by Zhang et al. [119] and M3IC pro-

posed by Zhang et al. [117] try to maximize the bag-level margin, while Xinggang

et al. [98] proposed a method to maximize the instance level margin with multi-

ple instance learning constraints. In this chapter, three state-of-the art clustering

algorithms [98, 117] were developed based on multiple instance learning for local

feature-based human action recognition and demonstrate significantly improved

performance compared to the baseline.

For a given codebook, each feature is encoded with a single codebook element

or multiple elements (i.e. distribution) and the final video representation is ob-

tained by combining all the encoded feature vectors. Vector Quantization (VQ) is

popularly used to encode the features into codebook elements. Yang et al. [108]

proposed sparse coding (SC) instead of VQ to obtain non-linear codes. To im-

prove the locality compared to the sparsity for successful non-linear codes, Local

Coordinate Coding (LCC) was proposed by Yu et al. [111]. Locality-constrained

linear coding (LLC) proposed by Jinjun et al. [99] is a fast implementation of

LCC that adopts sparse coding (SC) and projects each descriptor into its local-

coordinate system. This representation is highly robust and discriminative com-

pared to vector quantization. In our proposed framework, we incorporate LLC

to encode features into the generated library. Finally, spatio-temporal pyramid
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pooling is applied to capture the informative spatio-temporal statistics.

5.4 Proposed method

As shown in Figure (5.1), the proposed method consists of four steps. In the first

step, each video is densely sampled at di↵erent scales and each patch is described

using HOG and HOF descriptors. In the second step, several multiple instance

learning (see Figure 5.2) techniques have been investigated to learn robust, highly

discriminative dictionaries (Dictionaries are learned separately for each action

classes in miSVM + kmeans and MMDL approaches and the common dictionary

is learned using M3IC approach). Afterwards, LLC is used to encode each feature

vector as a combination of multiple elements in the codebook, which achieves a

better representation than Vector Quantization (VQ) because it captures the

correlation between descriptors. Then, a spatio-temporal pyramid is used to pool

multiple codes from each sub region. Finally, histograms from each subregion are

concatenated to form the final descriptor for classification.

5.4.1 Feature Extraction

Dense sampling is used to extract video blocks at regular positions and di↵erent

scales in space and time. The HOG descriptor encodes the appearance, while

the HOF descriptor describes the local motion in the sampled patches. The

histograms are created by accumulating space-time neighbourhoods of interest

points. Each cuboid region is subdivided into an n
x

⇥ n
y

⇥ n
t

grid of cells. For

each cell, a 4-bin HOG histogram (four directions) and a 5-bin HOF histogram

(four directions and an additional bin for no motion) are calculated. Cell his-

tograms are normalised and combined into a HOG/HOF descriptor. The original



5.4 Proposed method 99

implementation available on-line1 and standard parameter settings are used.

5.4.2 Multiple Instance Dictionary Learning

In MIL based dictionary learning, each video is considered as a bag and features

generated from the video are treated as instances corresponding to that bag. In

the MIL problem, given a set of bags X = {X1, X2, ..., Xn

}, each bag contains a

set of instances X
i

= {x
i1, xi2..., ximi}, where m

i

is the total number of instances

in this bag. Each instance corresponds to a d-dimensional feature vector extracted

from a video, x
ij

2 Rd⇥1. Each instance is associated with a instance level label

y
ij

2 {0, 1} ; and the bag is associated with a bag level label, Y
i

2 {0, 1}. The

basic assumption of MIL, is that a bag is positive if at least one of the instances

in that bag is positive (the true positive instance inside a positive bag is referred

to as the “witness” or the “key”). On the other hand, the bag is considered

negative if all instances inside the bag are negative. The MIL assumption can be

summarized as follows,

Y
i

=

8
><

>:

1 if 9j s.t y
ij

= 1,

0 if 8j s.t y
ij

= 0.
(5.1)

Hence the key challenge in MIL is to cope with the ambiguity of not knowing

which of the features in a positive bag are the actual positive features that indicate

the presence of the target event. For example, the KTH dataset [86] consists of

six action categories. If the ‘running’ class is treated as the positive class then

all other actions are deemed negative, despite other events such as ‘walking’ and

‘jogging’ potentially having features in common with ‘running’. The goal of MIL

1http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
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is to find the actual positive features present in the positive bags for each action

category separately.

Given the positive and negative bags, mi-SVM [6] is used to learn actual positive

instances inside the positive bags, hence eliminate common instances present in

multiple classes. Then we compute k-means on the positive instances identified

by mi-SVM to generate a codebook for a particular action class. This process is

repeated for all activity classes to generate a unique dictionary for each action

class. This approach is referred to as ‘mi-SVM + kmeans’ in experiments.

5.4.3 M3IC Approach

Most of the clustering methods try to find a clustering solution via single instance

clustering, while the same problems can be better solved as a MIL problem.

For an example in a given action video only a portion of the video contains a

particular activity while most of the region may be irrelevant for the activity. In

the multiple instance clustering (MIC) approach, each video is treated as a bag

and each instance in this bag represents di↵erent regions in the video. The MIC

approach helps to partition those bags automatically and has been successfully

applied in text clustering and drug clustering applications.

In the M3IC approach, the dataset is partitioned into k clusters, in such a way

that each cluster represents di↵erent characteristics and is distinct from each

other. Each cluster has its own weight vector w
p

. f
i

represents the cluster as-

signment for bag X
i

. Rather than running an SVM on all possible clusters like

in a Max-margin clustering (MMC) [106] approach, in the M3IC approach bags

are clustered using several large margin classifiers that maximize margins on bags

and bag margin associated with the bag X
i

defined as follows,
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max
j2Xi

(w|
u

⇤
ij
X

ij

� w|
v

⇤
ij
X

ij

), (5.2)

where u⇤
ij

= argmax
p

(w|
p

X
ij

) and v⇤
ij

= argmax
p 6=u

⇤
ij
(w|

p

X
ij

). i.e. most discrim-

inative instance determines the bag margin and the M3IC learning approach is

formulated as follows:

min
w1,w2,w3,...,wk,⇠i�0

1

2

kX

p=1

k w
p

k2 +
C

n

nX

i=1

⇠
i

(5.3)

s.t. i = 1, . . . , n,

max
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(w|
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X

ij

� w|
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ij
X

ij

) � 1 � ⇠
i

8p, q 2 {1, 2, 3, . . . , k}

�l 
nX
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X

j2Xi

I
ij

w|
p

X
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�
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X

j2Xi
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w|
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X
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Where

I
ij

⇤ =

8
>>>>><

>>>>>:

1 ifj⇤ = argmax
j2Xi

(w|
u

⇤
ij
X

ij

� w|
v

⇤
ij
X

ij

)

0 Otherwise

parameter l is used to control the cluster balance to avoid trivially optimal

solutions. The bag X
i

can be assigned to a specific cluster based on f
i

=

argmax
p

I
ij

w|
p

X
ij

. However the optimization problem in 5.4 is di�cult to solve

due to two constraints. In the first constraint i.e. max
j2Xi(w

|
u

⇤
ij
X

ij

�w|
v

⇤
ij
X

ij

) �
1 � ⇠

i

, the convexity of w|
v

⇤
ij
X

ij

is unknown and the second constraint becomes

non convex due to the indication function I
ij

. These constraints are relaxed and

M3IC � MBM [117] is used to solve the resulting optimization problem.
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5.4.4 MMDL Approach

In the MMDL approach [98], max-margin classifier is learned to classify all fea-

tures into di↵erent clusters and learned classifiers (G-codes) are used as the video

representation for classification. MMDL uses multi-class SVM to maximize the

margins between di↵erent clusters. Each cluster is associated with a linear clas-

sifier f(x) = w|x. In MMDL the latent variable z
ij

2 {0, 1, 2, . . . , K} is assigned

to each instance and z
ij

= k 2 {1, . . . , K} if instance x
ij

is in the kth positive

cluster; otherwise z
ij

= 0, x
ij

is in negative cluster. Moreover, a weighting ma-

trix W = [w0,w1,w2, . . . ,wK

],w
k

2 Rd⇥1 is defined as linear classifiers, where

w
k

represents the kth cluster model and w0 denotes the negative cluster model.

Finally the instance (i.e. feature vector) x
ij

is assigned to the latent variable z
ij

using the following formula,

z
ij

= argmax
k

w|
k

x
ij

. (5.4)

The objective function is defined as follows,

min
W,zij

KX

k=0

kw
k

k2 + �
X

ij

max(0, 1 +w|
rij

x
ij

� w|
zij

x
ij

) (5.5)

s.t. if Y
i

= 1,
X

j

z
ij

> 0, and if Y
i

= 0, z
ij

= 0,

where r
ij

= argmax
k2{0,...,K},k 6=zij

w|
k

x
ij

. In Equation 5.6, the term
P

K

k=0 kw
k

k2

is used for margin regularization and second term is multi-class hinge-loss. Pa-

rameter � controls the significance of the second term relative to the first term.

The objective function 5.6 is a non-convex optimization problem and becomes

convex if the latent information of the instances in the positive bags and number
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of positive instances in each of the positive bags are known. Since we don’t have

both pieces of information, the optimization problem becomes harder to solve.

Interested readers are referred to Xinggang et al. [98] for more details about

optimization.

5.4.5 LLC Feature Encoding

In the feature encoding phase, D-dimensional feature descriptors, i.e. X =

[x1, x2, ..., xn

] 2 RD⇥N , extracted from videos, are mapped to a codebook

B = [b1, b2, ...bM

] 2 RD⇥M , of length M. Though several coding methods ex-

ist in literature vector quantization (VQ) is the most popular method used in

action recognition. VQ solves the following least square fitting problem,

argmin
c

NX

i=1

k x
i

� Bc
i

k2, (5.6)

s.t. k c
i

k
l

0= 1, k c
i

k
l

1 = 1, c
i

⌫ 0, 8i,

where C = [c1, c2.., cN

] is the set of codes for a video. Since this method only

finds a single nearest neighbour it generates large quantization errors. In addi-

tion, VQ ignores the relationship between di↵erent bases and we need expensive

non-linear kernel projections to improve the recognition accuracy. To improve

the quantization errors and to obtain a non-linear representation, Sparse coding

Spatial Pyramid Matching (ScSPM) [108] was proposed. In scSPM, the coding

problem becomes a standard sparse coding (SC) problem,

argmin
c

NX

i=1

k x
i

� Bc
i

k2 + �k c
i

k
l

1 . (5.7)
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In the SC approach, the sparsity regularization term allows the learned repre-

sentation to capture salient patterns of local descriptors and achieve much lower

quantization error compared to VQ. In this framework, Locality-constrained Lin-

ear Coding (LLC) is adopted, which treats locality as more important than spar-

sity as locality leads to sparsity. The LLC optimization goal is as follows,

argmin
c

NX

i=1

k x
i

� Bc
i

k2 + �k d
i

� c
i

k2. (5.8)

The second term represents element-wise multiplication, and d
i

is the locality

adaptor that gives di↵erent freedom for each basis vector proportional to its

similarity to the input vector, x
i

. Compared to VQ, SC and LLC minimize the

quantization error by representing an input with multiple elements from the code-

book. Furthermore, LLC captures locality information and correlation between

similar descriptors.

5.4.6 Spatio-Temporal Pooling

We adapt the spatial pyramid matching (SPM) [47] approach for spatio-temporal

pooling, which considers temporal information in conjunction with spatial loca-

tions to encode the spatio-temporal relationship. The spatio-temporal pyramid

partitions a video into 3D grids in space and time, and calculates the weighted

sum of codes in each sub region. The video is partitioned into increasingly finer

sub-regions, and computes histograms of local features for each sub region. We

use 2l ⇥ 2l ⇥ l sub regions, where l = 0, 1, 2. The video is first viewed as a whole,

then, in the second level it is segmented into four sub regions spatially without

any temporal segmentation. In the third level, each part in the previous level is

partitioned into four sub-regions spatially and two sub-regions temporally.
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The final descriptor is formed by concatenating all histograms from each sub-

region.

5.5 Experiments and Results

In experiments, each video is densely sampled into 3D patches with di↵erent

scales of 18 ⇥ 18 ⇥ 9, 36 ⇥ 36 ⇥ 12 and 48 ⇥ 48 ⇥ 15. Spatial and temporal

sampling is done with 30% overlap. For each sampled cuboid, HOG and HOF

features are extracted, as described in Section (5.4.1). We compare three proposed

feature representations based on multiple instance learning with the popular bag-

of-feature based representation.

Finally the classification is done with a non-linear support vector machine with

a �2 kernel as shown in Figure 3.1,

K(H
i

, H
j

) = exp
�� 1

↵
D(H

i

, H
j

)
�
, (5.9)

where H
i

and H
j

are the histograms of word occurrences, D(·) is the �2 distance

defined by,

D(H
i

, H
j

) =
1

2

X

k

(H
i

(k) � H
j

(k))2

H
i

(k) + H
j

(k)
, (5.10)

and ↵ is the average distance between all training examples.

A ‘one against the rest’ approach is used and the class with the highest score is

selected.

Experiments were carried out with two popular benchmark datasets with varying
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Approach Average Accuracy

M3IC Approach 89.3%

MMDL Approach 93.7%

mi-SVM + k-means Approach 92.83%

Wang et al. [96] 86.10%

Laptev et al. [45] 91.8%

Xiaojing et al. [118] 92.59%

Niebles et al. [69] 81.50%

Table 5.1: Comparison of recognition accuracy on the KTH Dataset using dif-
ferent approaches. Di↵erent feature descriptors were used in [118] and [69].

complexity: KTH and Hollywood2. KTH is selected to demonstrate the e↵ec-

tiveness in the static environment and Hollywood2 is selected to demonstrate the

e↵ectiveness in the complex environment. The KTH [86] dataset was recorded

in a well-controlled environment with a single person performing the action with

a clean background, and on average each video lasts for 20 seconds. The Hol-

lywood2 [60] dataset consists of actions taken from movies, where complicating

factors such as complex scenes with a moving background, illumination changes,

multiple actors and camera motion are present.

5.5.1 KTH

Table 5.1 shows comparison of recognition accuracy on the KTH Dataset using

di↵erent approaches. Figure 5.3 shows the confusion matrix obtained with di↵er-

ent representations on the KTH dataset with dense HOG+HOF descriptors. In

the k-means approach, similar to [45, 96], 100,000 random training features are

chosen and the code book learnt with the number of clusters set to k = 4000.

Then vector quantization is used to assign each feature to its closest codeword

followed by a histogram of visual word representation. From the confusion matri-

ces, it is obvious that MIL based representations clearly outperform the baseline
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Running Boxing Walking Jogging Waiving Clapping
Running 0.76 0.00 0.18 0.06 0.00 0.00
Boxing 0.00 0.91 0.00 0.00 0.03 0.06
Walking 0.02 0.00 0.94 0.04 0.00 0.00
Jogging 0.09 0.00 0.08 0.83 0.00 0.00
Waiving 0.00 0.02 0.00 0.00 0.86 0.12
Clapping 0.00 0.07 0.00 0.00 0.02 0.91

(a) K-means Algorithm

Running Boxing Walking Jogging Waiving Clapping
Running 0.82 0.00 0.14 0.04 0.00 0.00
Boxing 0.00 0.98 0.00 0.00 0.00 0.02
Walking 0.00 0.00 1.00 0.00 0.00 0.00
Jogging 0.05 0.00 0.04 0.91 0.00 0.00
Waiving 0.00 0.00 0.00 0.00 0.94 0.06
Clapping 0.00 0.08 0.00 0.00 0.00 0.92

(b) miSVM + K-means Algorithm

Running Boxing Walking Jogging Waiving Clapping
Running 0.82 0.00 0.15 0.03 0.00 0.00
Boxing 0.00 0.92 0.00 0.00 0.02 0.06
Walking 0.02 0.00 0.94 0.04 0.00 0.00
Jogging 0.06 0.00 0.08 0.86 0.00 0.00
Waiving 0.00 0.01 0.00 0.00 0.89 0.10
Clapping 0.00 0.05 0.00 0.00 0.02 0.93

(c) M3IC Algorithm

Running Boxing Walking Jogging Waiving Clapping
Running 0.85 0.00 0.11 0.04 0.00 0.00
Boxing 0.00 0.97 0.00 0.00 0.00 0.03
Walking 0.00 0.00 0.99 0.01 0.00 0.00
Jogging 0.02 0.00 0.04 0.94 0.00 0.00
Waiving 0.00 0.00 0.00 0.00 0.94 0.06
Clapping 0.00 0.07 0.00 0.00 0.00 0.93

(d) MMDL Algorithm

Figure 5.3: Average classification accuracy of di↵erent feature representation
methods applied on KTH Datasets with Dense HOG/HOF descriptor.

Approach mean AP

M3IC Approach 47.4%

MMDL Approach 52.3%

mi-SVM + k-means Approach 51.8%

Wang et al. [96] 47.4%

Laptev et al. [45] 45.2%

Le et al. [48] 53.3%

Wang et al. [94] 58.2%

Table 5.2: Comparison of mean Average Precision (mAP) on the Hollywood2
Dataset using di↵erent approaches. Di↵erent feature descriptors were used in
[94], [48]

in all action categories and improve the overall accuracy, which indicates the

importance of e�cient feature representation in addition to the actual feature

itself.
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Figure 5.4: Performance comparison of several Multiple instance learning (MIL)
techniques against the k-means clustering approach with varying codebook sizes
in Hollywood2 dataset.

5.5.2 Hollywood2

The Hollywood2 dataset is presented in Section 2.5.3. Mean Average Precision

over all classes (mAP) is reported as a performance measure [60]. As shown in

Table 5.2, our proposed MIL based feature representations outperform the base-

line k-means in Hollywood2 dataset with dense HOG+HOF descriptors. Similar

to the KTH dataset, class-specific codebooks generated by ‘MMDL’ and ‘mi-SVM

+ k-means’ achieved superior performance compared to a single codebook gener-

ated by M3IC and k-means algorithms. Other methods [48, 94] proposed di↵erent

feature descriptors such as hierarchical spatio-temporal features and dense trajec-

tories to improve the classification performance, where the actual features itself

contribute towards the performance improvement in contrast to the improvement

from advanced feature representation.

Figure 5.4 demonstrates the e�ciency of our proposed representations in a more

complex dataset, Hollywood2. Similar to KTH, all codebooks in the bag-of-

features representation are outperformed by our representations, which also allows

us to represent each activity with a smaller codebook size. Peak performance is
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obtained in ‘mi-SVM + k-means’ and ‘MMDL’ with a codebook size of 720 (i.e.

12 action classes, 60-codes per class) and M3IC consistently outperforms across

all codebook sizes.

5.6 Summary

In this chapter, another new feature representation framework based on Multiple

instance learning technique is presented. Three popular MIL techniques have been

investigated and they outperform the popular bag-of-features based method to

represent videos in local feature-based activity recognition systems. Experimental

results validate the e↵ectiveness of the feature representation. This demonstrates

that a multiple instance dictionary learning method can serve as a potential

replacement for the popular bag-of-features method and it helps to further boost

the performance of the state-of-the art descriptors. In the mean-time, class-

specific codebooks generated by ‘mi-SVM + k-means’ and ‘MMDL’ approaches

not only provide compact, discriminative representation but also achieve memory

e�ciency. In the MIL learning approach, since each code word in the codebook is

represented as a linear-classifier, it involves only a dot product operation to encode

patch level features. This time is almost negligible with modern computers with

lots of GPU power. MIL representation not only generates compact codebook

but also captures rich semantic information from the patch level features.





Chapter 6

LDA Based Local Feature

Representation

6.1 Introduction

Most of the vision-based human action systems consist of three basic phases: 1)

Encode the appearance and motion information from the videos as a set of fea-

tures, 2) Reduce the dimensionality of the extracted features while retaining the

discriminative power, 3) Classify using either generative or discriminative meth-

ods. Probabilistic generative models consider the activity as a sequence of states

while discriminative methods ignore the order of features during classification.

The classification performance of the local feature-based action recognition sys-

tems not only depend on the e↵ective video features but also depend on converting

the features appropriate for classification. The popular Bag-of-visual words model

su↵ers from various challenges, such as assignment of each feature descriptor to

a single dictionary element, which is inadequate to capture the relationship with

other dictionary elements.
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This chapter addresses the problem of e�ciently representing the extracted fea-

tures for classification to improve the overall performance. Latent Dirichlet Allo-

cation (LDA) has recently gained popularity to project a large amount of docu-

ments into a lower dimensional space spanned by a set of topics, which capture the

semantic characteristics of the document. For a given dictionary of words, LDA

models uses soft-assignment to assign each feature descriptor to many dictionary

elements by a mixture probability over words as opposed to hard assignment.

This representation is appropriate because of the following reasons:

• When a new test video is presented with a new set of features it would be

e↵ectively modelled with a mixture of words rather than finding a single

closest dictionary element.

• Assignment of a feature to a single descriptor leads to higher quantization

errors compared to a probabilistic mixture of dictionary elements. This

representation not only improves the e�cacy of the representation but also

contributes towards the performance improvement.

Several LDA models have been investigated to e�ciently capture the spatio-

temporal relationships and to improve the overall classification performance. In

this piece of work, the focus has been given to replace ‘vector quantization fol-

lowed by sum-pooling’ in the bag-of-words framework with the latent topic vector

obtained from di↵erent LDA Models.

6.1.1 Motivation & Proposed Approach

Latent Dirichlet Allocation (LDA) was introduced by Blei et al. [11] and recently

gained popularity to classify collections of documents and images into a low di-

mensional space spanned by a set of topics, which capture the semantic aspects of
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the documents. Each document is represented as a mixture of topics, known as a

topic vector, which is modelled as a latent Dirichlet random variable and provides

a low dimensional representation for tasks such as classification, summarization

and clustering.

The generative process in the LDA assigns a number of topics, where each docu-

ment is sampled from a mixture of topics, and defined by some unique multinomial

probability over the words in the dictionary. When fitting a corpus of documents

with the LDA model, the topics which are discovered often reveal insightful in-

formation about the relations and shared structure between documents.

Similar to LDA, Probabilistic latent semantic indexing (pLSI) was introduced

by Ho↵man et al. [32] and models each word in a document as a sample from a

mixture model, and mixture components are random variables that can be viewed

as topics. The pLSI approach su↵ers from a number of problems, such as the

model parameters increasing with the number of training samples and creating

over fitting problems and di�culty in assigning probability to a document out

of the training sample set. On the other hand in LDA, the k-topic LDA model

doesn’t grow with the number of training samples and is not prone to overfitting

problems.

In addition to several advantages of LDA over other topic models, recently several

works in image and text classification demonstrated that incorporating a super-

vised approach to the feature representation improves the discriminative power

and overall classification accuracy. Several max-margin-based techniques such as

max-margin dictionary learning [98, 117, 119] and supervised LDA techniques

[62, 75, 79, 120] have significantly improved the classification accuracy in im-

age and text classification. Unsupervised LDA models disconnect topic discovery

from the classification task, hence yield poor results compared to the baseline

Bag-of-words framework. On the other hand, supervised LDA techniques learn
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the topic structure by considering the class labels and improve the recognition

accuracy significantly. This motivates us to investigate several supervised LDA

techniques for the local feature-based action recognition system.

In this work, several supervised topic models have been explored and two genera-

tive supervised topic models, maximum entropy discrimination LDA (MedLDA)

and class-specific simplex LDA (css-LDA), have been proposed as an alternative

for activity representation, incorporating valuable class label information during

topic discovery and representation. The first representation is based on MedLDA

[120], a supervised LDA model incorporating both the max-margin principle and

maximum likelihood function over the data to generate a more discriminative

latent topic representation. The second representation is based on css-LDA [79],

which learns multiple class-specific topic simplexes rather than a single set of top-

ics for the entire dataset by introducing supervision at the feature level. MedLDA

maximizes likelihood and within class margins using max-margin techniques and

yields a sparse highly discriminative topic structure; while in css-LDA, separate

class specific topics are learned instead of a common set of topics across the entire

dataset.

Simultaneously learning the optimal dictionary and topics is a non-convex opti-

mization problem. Therefore, in this proposed approach, a dictionary was learned

using k-means and the descriptors have been appropriately modelled using a mix-

ture of discovered topics. The dictionary learning has been done prior to LDA

modelling and each dictionary consists of a mixture of feature vectors. Each

video is represented as a topic proportion vector, i.e. it can be comparable to

a histogram of topics. Finally a discriminative classifier, SVM, is applied on

the learned topic proportion vector. The e�ciency of the above two representa-

tion techniques has been demonstrated through the experiments carried out in

two popular datasets. Experimental results demonstrate that both topic repre-
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sentations significantly improve the overall classification accuracy in challenging

datasets compared to the baseline bag-of-features and unsupervised LDA repre-

sentation.

The reminder of this chapter is organized as follows: Section 6.2 presents several

LDA models and their applications. Section 6.4 provides details of several

LDA-based representations. Section 6.5 explains the experimental framework

used in the experiments. Experimental results for various datasets are presented

in the 6.6. Finally, Section 6.7 concludes the chapter.

6.2 LDA variations and Applications

Though LDA was originally developed as an unsupervised model which ignores

class label information during topic discovery, since then several supervised LDA

models have been proposed to incorporate class label information to discover

more relevant and discriminative topics.

Supervised LDA (sLDA) was introduced by Blei et al. [62] and maximizes the

joint likelihood of both the training data and the label information. DiscLDA

[42] maximizes the conditional likelihood of the label information given the docu-

ments. Several other models that incorporate class label information at di↵erent

stages of LDA exist, such as classLDA [23] for scene classification; labelled LDA

[75] for credit attribution in multi-labelled corpora; correspondence LDA [10] for

image annotation; and multi-class sLDA [93] for image classification.

Several LDA variants have been explored in the action classification domain as

well. Niebles et al. [69] applied unsupervised pLSA and LDA to represent spatio-

temporal words as intermediate topics for action classification. Wang et al. in-
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troduced semi-LDA [95], as a semi-supervised way to represent human action in

videos. This work is di↵erent from the above two approaches in two ways: (1)

This chapter explores several supervised latent topic models to the application

of human action recognition with discriminative classifiers rather than genera-

tive classifier models, because with larger datasets, discriminative classifiers yield

stronger performance over generative classifiers. (2) Unlike other methods where

the number of topics are set to the number of classes, in this work experiments

have been carried out with a wide range of topic sizes to optimize the topic

structure for a given feature and dataset.

In this work, after a comprehensive set of investigations, two recent, supervised

LDA variants, MedLDA and css-LDA, are proposed for e�cient video repre-

sentation for the purpose of action classification. Recent work in [92, 98] shows

improved recognition performance by incorporating max-margin dictionary learn-

ing. Inspired by these results, this chapter introduces another max-margin based

LDA technique, MedLDA. MedLDA extends LDA to learn discriminative topics

by employing a max-margin technique within the probabilistic framework. On

the other hand, css-LDA [79] introduces the supervision at the feature level and

enables class specific topic simplexes and class-specific topic distributions to cap-

ture much richer intra- class information, which provides more discrimination

within the representation than a single set of topics for the entire data set.

6.3 Introduction to LDA

Latent Dirichlet Allocation (LDA) is an unsupervised, hierarchical Bayesian

model and was initially proposed by Blei et al. [11] for text processing and has

been successfully extended to several computer vision applications. This section

presents a brief overview of the LDA model presented by Blei et al. In this model,
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a corpus is considered to be a collection of documents, whereas each document is

a collection of words. The following terms have been defined in the LDA model:

• A word is defined as an element from a vocabulary indexed by {1, . . . , V }.
i.e. a word is represented as a unit basis vector with a single non-zero

element.

• A document is a sequence of N words represented by w =

(w1, w2, w3, . . . , wN

), w
n

is the nth words in the document.

• A corpus is a collection of M documents represented by D =

{w1,w2,w3, . . . ,wM

}
LATENT DIRICHLET ALLOCATION

β

α z wθ N
M

zθ

φγ

N M

Figure 5: (Left) Graphical model representation of LDA. (Right) Graphical model representation
of the variational distribution used to approximate the posterior in LDA.

5.1 Inference

The key inferential problem that we need to solve in order to use LDA is that of computing the
posterior distribution of the hidden variables given a document:

p(θ,z |w,α,β) =
p(θ,z,w |α,β)
p(w |α,β)

.

Unfortunately, this distribution is intractable to compute in general. Indeed, to normalize the distri-
bution we marginalize over the hidden variables and write Eq. (3) in terms of the model parameters:

p(w |α,β) =
Γ(∑iαi)

∏iΓ(αi)

Z  k

∏
i=1

θαi�1i

! 
N

∏
n=1

k

∑
i=1

V

∏
j=1

(θiβi j)w
j
n

!
dθ,

a function which is intractable due to the coupling between θ and β in the summation over latent
topics (Dickey, 1983). Dickey shows that this function is an expectation under a particular extension
to the Dirichlet distribution which can be represented with special hypergeometric functions. It has
been used in a Bayesian context for censored discrete data to represent the posterior on θ which, in
that setting, is a random parameter (Dickey et al., 1987).

Although the posterior distribution is intractable for exact inference, a wide variety of approxi-
mate inference algorithms can be considered for LDA, including Laplace approximation, variational
approximation, and Markov chain Monte Carlo (Jordan, 1999). In this section we describe a simple
convexity-based variational algorithm for inference in LDA, and discuss some of the alternatives in
Section 8.

5.2 Variational inference

The basic idea of convexity-based variational inference is to make use of Jensen’s inequality to ob-
tain an adjustable lower bound on the log likelihood (Jordan et al., 1999). Essentially, one considers
a family of lower bounds, indexed by a set of variational parameters. The variational parameters
are chosen by an optimization procedure that attempts to find the tightest possible lower bound.

A simple way to obtain a tractable family of lower bounds is to consider simple modifications
of the original graphical model in which some of the edges and nodes are removed. Consider in
particular the LDA model shown in Figure 5 (left). The problematic coupling between θ and β

1003

Figure 6.1: (Left) Graphical representation of LDA. (Right) Graphical model
representation of the variational distribution used to approximate the posterior
in LDA. [11]

In the LDA model, documents are modelled as a mixture of discovered latent

topics and each topic is characterised by a multinomial distribution of words from

a vocabulary. The graphical representation of the unsupervised model is given in

Figure 6.1. The following generative process is used to model the documents.

1. Choose N ⇠ Poisson(⇠).

2. Choose ✓ ⇠ Dir(↵).

3. For each of the words w
n

:
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(a) Choose a topic z
n

⇠ Multinomial(✓).

(b) choose a word w
n

⇠ p(w
n

|z
n

, �), a multinomial probability condi-

tioned on the topic z
nGraphical models (Aside)

· · ·

Y

X1 X2 X
N

X
n

Y

N

�

• Nodes are random variables
• Edges denote possible dependence
• Observed variables are shaded
• Plates denote replicated structure

D. Blei Modeling Science 11 / 53

Figure 6.2: Graphical model representation and plate representation

Several assumptions have been made to simplify the basic LDA model. The

following are the main assumptions used in the LDA models:

• The dimensionality of the topic variable z i.e. the dimensionality k of the

Dirichlet distribution is known and fixed.

• The word probabilities are represented by K ⇥ V matrix � where �
ij

=

p(wj = 1|zi = 1) assumed to be fixed and to be calculated.

• The LDA assumes the ex-changeability property in Bayes networks. Fig-

ure 6.2 shows the graph representation of a single layer Bayes network.

The nodes are random variables, where the observed variables are shaded;

the edges represent possible dependence; and a plate indicates replicated

structure. The property of ex-changeability is also termed “conditional in-

dependence”, indicating that with the condition of the variable of the parent

node, the variables of the child nodes are independent and given by

P (X1, X2, X3, . . . , XN

|Y ) =
NY

n=1

p(X
i

|Y ). (6.1)
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In Figure 6.2, Y represents the document and X represents the words. Under the

condition of the same document, the words are independent of each other. This

ex-changeability in graphical models is referred to as the “bag of words” assump-

tion in language processing. The “bag of words”, is popularly used terminology

in computer vision applications derived from text processing applications.

The plate notation of the LDA model is shown in the Figure 6.1, where M is the

number of documents; N is the number of words in a document; K is the number

of topics; w represents the words; � is a matrix which stores the word probabilities

and z is the topic assigned for each word; ↵ is the Dirichlet parameter and ✓ is the

per document topic distribution, which is drawn from the Dirichlet distribution

with parameter ↵. A k dimensional Dirichlet variable ✓ takes the values in k � 1

simplex with the following probability density function,

p(✓|↵) =
�
⇣P

K

i=1 ↵
i

⌘

Q
k

i=1 �(↵i

)
✓↵1�1
1 . . . ✓↵k�1

k

, (6.2)

where ↵ is a k vector with components ↵
i

> 0, and the �(x) is a Gamma func-

tion. The Dirichlet distribution is used to model the topic distribution because

the Dirichlet distribution is the conjugate prior to the multinomial distribution

to model word distribution of a topic, and providing convenience to the Bayes

inference process. The ↵ parameter is used to control the shape of the distri-

bution, when the ↵
i

is set to a constant the distribution becomes a symmetric

Dirichlet distribution. Given a set of parameters ↵ and �, the joint distribution

of the topic mixture ✓, a set of N topics z, and a set of N words w is given by,

p(✓, z,w|↵, �) = p(✓|↵)
NY

n=1

p(z
n

|✓)p(w
n

|z
n

, �). (6.3)
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The following marginal distribution is obtained by integrating over ✓ and sum-

ming over z,

p(w|↵, �) =

Z
p(✓|↵)

 
NY

n=1

X

zn

p(z
n

|✓)p(w
n

|z
n

, �)

!
d✓

d

. (6.4)

Finally, the probability of a corpus is obtained by taking the product of the

marginal probabilities of individual documents,

p(D|↵, �) =
MY

d=1

Z
p(✓

d

|↵)
 

NdY

n=1

X

zdn

p(z
dn

|✓
d

)p(w
dn

|z
dn

, �)

!
d✓

d

. (6.5)

6.3.1 Inference and parameter Estimation

The only observable variable in the LDA model shown in Figure 6.1 is w. In the

learning phase, the Expectation Maximization (EM) algorithm is used to train

the parameters ↵ and �. In the EM algorithm, the parameters ↵ and � are

initialized and then the following steps are performed:

• Based on ↵ and �, maximized the posterior distribution of the hidden vari-

able p(✓, z|w, ↵, �);

• Update ↵ and � based on p(✓, z|w, ↵, �).

The key following inference problem needs to be solved to compute the posterior

distribution of the hidden variable,

p(✓, z|w, ↵, �) =
p(✓, z,w|↵, �)

p(w↵, �)
. (6.6)
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The above distribution is intractable for exact inference and several approximate

inference algorithms such as variational approximation, Markov chain Monte

Carlo (MCMC) and Laplace approximation have been used. In this chapter

similar to Blei et al. [11], Variational inference is used to infer the posterior dis-

tribution of latent variables { ✓
d

, z
d

} by maximizing the marginal likelihood of

p(w|↵, �). The family (See Figure 6.1) is characterised by the following varia-

tional distribution:

q(✓, z|�, �) = q(✓|�)
NY

n=1

q(z
n

|�
n

), (6.7)

where variational parameters are � and ✓. The following optimization procedure

generates the parameters (�⇤, �⇤) which are function of w.

(�⇤, �⇤) = argmin
�,�

D(q(✓, z|�, �)kp(✓, z|w, ↵, �)). (6.8)

More details can be found in [11].

6.4 Proposed Feature Representation Frame-

work

The proposed method consists of four sections. In the first step, each video is

densely sampled and HOG and MBH features have been extracted to capture

both appearance and motion information. Then, extracted features are mod-

elled into context aware topics using two supervised topic models: MedLDA and

css-LDA. The discovered topics are treated as bases to represent each video in
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the dataset as a low dimensional topic proportion vector. (i.e. In Bag-of-words

representation the histogram of words is replaced with topic proportion vector ✓

in our framework). Finally, classification is done with a linear SVM classifier.

6.4.1 Feature extraction

Local features are extracted to represent each video. The appearance information

is captured using Histogram Oriented Gradients (HOG) and the motion informa-

tion is captured using the Motion Boundary Histogram (MBH). Each video is

sampled using dense trajectories [94] 1, with default parameters.

For appearance, the HOG descriptor is calculated along the trajectory and the

cuboid region is subdivided into a 2 ⇥ 2 ⇥ 3 grid of cells. For each cell, an 8-bin

HOG histogram is calculated and normalised into a HOG descriptor. The robust

optical flow based MBH [94] descriptor is used to capture the motion information

along the trajectories.

6.4.2 Latent Dirichlet Allocation for videos

In this section, a brief review of LDA model in the context of video representation

is presented. Videos are treated as a random variable X, spanned by a feature

space � of visual measurements. In our case, the feature space is defined by both

HOG and MBH features. Each video is represented as a set of N feature vectors

V = {x1, x2, ..., xN

}, x
n

2 �. Then the feature space is quantized into high

dimensional n bins, defined by a set of cluster centroids, C = {c1, c2, ...cn

} i.e.

the vocabulary. Finally each feature x
n

is mapped to the closest centroid and each

video in the dataset is represented as a set of words, V = {w1, w2..., wN

}, w
n

2 C,

1Code publicly available at http://lear.inrialpes.fr/people/wang/densetrajectories
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where w
n

is the bin (visual word) containing the feature x
n

.

θ wz nα β

d

d zα β

η d

θd zα

η

β
C

(a) (c)(b)

Figure 6.3: Graphical representation of LDA Models. (a) unsupervised LDA
Model (b) MedLDA Model (c) css-LDA Model

Words in the LDA model are the same as the set of centroids or vocabulary, and

each feature vector can be spanned by the vocabulary. Each video is treated

as a document with N words and is denoted by w = (w1, w2...wn

), where w
n

is the nth word in the sequence. A corpus is the entire dataset consisting of M

documents denoted by D = {w1, w2..., wM}. In LDA each topic is represented

as a multinomial distribution over the vocabulary and each video is represented

as a random mixture over the latent topics. LDA representation is shown in

Figure 6.3. The parameters ↵ and � remain the same for the entire dataset. The

variable ✓
d

is a video-level parameter representing video specific topic distribution,

sampled once per video. The variable per word topic distribution z
dn

and the nth

word in the dth document w
dn

are word/feature level parameters sampled once

for each feature.

The following generative process is applied by LDA for each video w in a corpus

D.

1. Choose N ⇠ Poisson(⇠).

2. Choose ✓ ⇠ Dir(↵).

3. For each of the words w
dn

:

(a) Choose a topic z
dn

⇠ Multinomial(✓). z
dn

2 T = {1, 2, ..., K}
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(b) choose a word w
dn

⇠ p(w
dn

|z
dn

, �), a probability conditioned on the

topic z
dn

Document level topic distribution ✓
d

has been used as the low dimensional rep-

resentation of a video in experiments.

6.4.3 Supervised LDA (SLDA) and MedLDA Approach

Unsupervised LDA doesn’t consider the class label information of the videos and

supervised LDA models introduce a response variable, y, to each document as

shown in Figure 6.3. Both label information and document content influence

the topic learning in SLDA and MedLDA, whereas LDA uses the likelihood of

document contents w. MedLDA is an extension of the SLDAmodel, and generates

discriminative topics by directly optimizing both margin-based loss function and

likelihood-based objective; while SLDA are only trained to optimize the likelihood

objective. The following generative process is used in both SLDA and MedLDA

approaches :

1. Choose a topic mixing proportion vector ✓
d

from a Dirichlet distribution

with a parameter ↵ : ✓
d

|↵ ⇠ Dir(↵)

2. For each word w
dn

in the document:

(a) Choose a topic assignment z
dn

: z
dn

|✓
d

⇠ Multi(✓
d

), z
n

2 T =

{1, 2, ..., K}
(b) Choose a word instance w

dn

: w
dn

|z
dn

, � ⇠ Multi(�
zdn).

3. Choose a response variable y
d

: y
d

|z1:N , ⌘, �2 ⇠ N (⌘>z̄, �2); where z̄ =

1
Nd

P
Nd
n=1 zdn and the response parameters ⌘ and �2.
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The joint distribution of the SLDA is given by the following:

p(y, w|↵, �, ⌘, �2) =
Q

D

d=1 p(✓
d

|↵)
⇣Q

N

n=1 p(z
n

|✓)p(w
n

|z
n

, �)
⌘

p(y
d

|⌘>z̄, �2) (6.9)

In sLDA the unknown constants ↵, �1:K , ⌘ and �2 are estimated by maximizing

the joint likelihood p(y, D|↵, �, ⌘, �2), y is the label of all videos in D. Similar

to LDA detailed above, maximizing the joint likelihood is intractable and SLDA

maximizes its lower bound. For a given video w1:N and its response variable y it

can be described as the following:

logp(w, y|↵, �, ⌘, �2) � D(q) = E[logp(✓, z, ⌘, y,w] + H (q)) (6.10)

Variational distribution q(✓, z|�, �) is used to approximate the posterior distribu-

tion p(✓, z|↵, �, �2,w). The expectation E in Equation 6.10 is derived from the

variational distribution q(✓, z|�, �). More details about inference and parameter

estimation in SLDA can be found in Blei et al. [62].

Recently, max-margin based techniques have gained popularity and have been

incorporated into the MedLDA topic learning process. MedLDA integrates the

max-margin prediction models with the hierarchical Bayesian topic models to

learn latent topic representations, which are more discriminative and suitable

for classification tasks. i.e. MedLDA employs maximum-likelihood learning and

max-margin learning jointly to discover topics.

MedLDA uses a similar generative process like SLDA to infer the latent variables

✓
d

and z
dn

. Unlike SLDA, which draws the label y from the normal distribution,

MedLDA learns the label information given the topic assignment z = {z1, z2..., zn

}
through the latent linear discriminant function below:
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F (y, z, ⌘) = ⌘>
y

z̄, (6.11)

where z̄ = 1
N

P
n

z
n

; ⌘
y

is a class-specific k-dimensional parameter vector associ-

ated with class y. Then the latent topics are discovered through the optimization

problem, which combines both max-margin learning and maximum-likelihood es-

timation. More details on optimization can be found in [120].

6.4.4 css-LDA Approach

Unlike other supervised topic models, css-LDA is a mixture of LDA models that

learns a separate topic simplex for each class separately. Topic discovery is done

under class supervision and enables it to capture more complex intra class struc-

ture and a separate set of topics for each class, which increases the intra class

discriminatory power in the topic based representation framework. Other topic

model variants use a common topic simplex for the entire dataset and fail to

capture the inter and intra class variations. The graphical model representation

is shown in the Figure 6.3. The following generative process is similar to LDA,

but instead it learns separate topics for each class:

1. Choose ✓ ⇠ Dir(↵).

2. Choose a class label y ⇠ P
Y

(y; ⌘), y
i

2 Y = {1, 2, ..., C}

3. For each of the words w
dn

:

(a) Choose a topic z
dn

⇠ Multinomial(✓), z
dn

2 T = {1, 2, ..., K}
(b) choose a word w

dn

from p(w
dn

|z
dn

, �), a probability conditioned on

the topic z
n
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where P
Y

() is a categorical distribution over the class labels y with the parameter

⌘ and other parameters the same as LDA. The main di↵erence in css-LDA is that

the word topic distribution is defined by the class specific topics as opposed

to a common topic-simplex for all classes. Similar to standard LDA, posterior

inference is intractable and approximated variational EM is used to learn the

parameters ⌘, ↵ and �1:C
1:K .

6.5 Experimental setup

This section presents four di↵erent video representations that have been used in

our experiments to evaluate the e↵ectiveness of supervised topic models in local

feature-based activity recognition.

Baseline 1: Building histograms around the k-means cluster centres is a popular

method of representation and is being widely used in low level activity recognition

systems. This method provides a benchmark for evaluating new feature detectors,

descriptors, representations and classification algorithms [20, 45, 48, 94, 96]. This

framework comprises video feature extraction, vector quantization with K-means,

histogram of video feature representation followed by SVM classification.

In K-means clustering, the number of clusters are set to K and each feature is

assigned to the nearest cluster centroid based on their Euclidean distance. This

hard vector assignment allows each feature vector to be associated with a single

cluster. The final feature vector to represent a video is the histogram of cluster

assignments. The classification is done with a non-linear, multi-class SVM with

a linear kernel. This method is referred as k-means+SVM in experiments.

Baseline 2: In this method the unsupervised LDA is used to reduce the dimen-

sionality of the feature vector. The parameters of an LDA model are estimated
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Figure 6.4: Figure (left) shows the mean Average Precision (mAP) of Holly-
wood2 under 4 di↵erent experimental settings with varying number of topics,
Figure (right) shows the average accuracy of UCF50 dataset with di↵erent
number of topics under 4 di↵erent experimental settings

using all the training videos without the class label information. The LDA model

is learned with di↵erent set of topics (K) and the document specific topic distri-

bution (✓
d

) is used as a feature vector of the video to learn a multi-class SVM

classifier. Topic weights of the testing samples are used to classify the testing

samples and this method is referred to in experiments as LDA+SVM.

MedLDA Representation: In this representation, all training samples are used

to infer model parameters and the inferred topic proportion vector (✓
d

) is used

as the video representation to train and test the multi-class SVM classifier. This

method is referred to as MedLDA+SVM in the experiments.

css-LDA Representation: In css-LDA, the latent topical distribution is used as

a representation for each video. Each action class has a separate topic simplexes

and the concatenated topics are used as the final feature vector (C ⇥K elements)

to train and test the multi-class SVM classifier, and this method is referred to as

css-LDA+SVM.
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6.6 Experimental Results

This section presents experimental results on two popular challenging datasets:

Hollywood2 [60] and UCF50 [80]. These two datasets have been chosen because

they were collected from di↵erent sources with occlusion, viewpoint changes,

background clutter, moving background and illumination changes and include

a wide range of activity classes.

6.6.1 Hollywood2 Dataset

The Hollywood2 dataset is presented in section 2.5.3. Average precision (AP) for

each action classes is calculated and mean AP (mAP) over all classes is reported

as a performance measure.

The experimental results on Hollywood2 dataset are shown in Figure 6.4. From

the experimental results it can be clearly observed that MedLDA and css-LDA

based topic representation outperforms the popular, bag-of-features based rep-

resentation. Also, it can be noted that the unsupervised LDA performs poorly

across all topic structures. The experimental results demonstrates that peak mAP

of 59.7% is achieved by the css-LDA, which is 5.5% improvement over baseline

Bag-of-words representation. MedLDA also improves the baseline performance

by 2.6%. Though the css-LDA representation outperforms other methods, it

poorly performs with a lower number of topics compared to MedLDA. It can

be explained by the fact that css-LDA builds separate topic simplexes around

each class, and it requires a large amount of topics to capture intra and inter

class variations, while the MedLDA builds a single topic structure for the entire

dataset.
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Experimental setup mAP

k-means+SVM 54.2%

LDA+SVM 49.5%

MedLDA+SVM 56.8%

css-LDA+SVM 59.7%

Table 6.1: Mean Average Precision (mAP) on the Hollywood2 Dataset using
the four di↵erent experimental setups

6.6.2 UCF50 Dataset

The UCF50 dataset is presented in Section 2.5.4. The reported results used

leave-one-out cross validation and the average accuracy over all classes as the

performance measure.

The average accuracy in the UCF50 dataset with di↵erent topic representations

is shown in Figure 6.4. MedLDA performs well with a small number of topics

and css-LDA outperforms all the representations with a large number of topics.

Similar to Hollywood2, unsupervised LDA performance is poor across all the

topics. As shown in Table 6.2, the best average accuracy is achieved by the css-

LDA based representation, which achieves a 3.7% improvement over the baseline.

Experimental setup Average Accuracy

k-means+SVM 80.4%

LDA+SVM 76.8%

MedLDA+SVM 82.4%

css-LDA+SVM 84.1%

Table 6.2: Average Accuracy on the UCF50 Dataset using the four di↵erent
experimental setups

In both action datasets, unsupervised LDA performs poorly because the learned

topics fail to capture the underlying class structure. On the other hand, MedLDA

explicitly employs the label information during the topic discovery and uses an

e↵ective max-margin learning technique in addition to the likelihood-based prob-
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abilistic inference. Therefore these topics incorporate more semantic patterns to

boost the classification performance. Also it can be noted that MedLDA provides

a compact representation of a video without compromising performance, making

it ideal when a low dimensional representation is required. On the other hand,

even though css-LDA yields best performance, its computational complexity in-

creases with the number of action classes as it builds a separate topic simplex for

each activity classes.

Superior performance in both datasets was achieved in css-LDA representation

where a separate topic simplex for each activity class demands high dimensional

topics to e↵ectively capture both the intra and inter class variations. As the

dimension and complexity of css-LDA increases with the number of classes, it is

well suited for small numbers of classes with similar spatio-temporal relationships.

e.g . Sit Down and Stand Up. This provides an interesting direction to explore

with hierarchical tree-structures, where compact MedLDA can used in the top

part of the tree and css-LDA can be employed down the tree to separate closely

co-related activity classes.

6.6.3 KTH Dataset

Experimental setup Average Accuracy

k-means+SVM 91.8%

LDA+SVM 82.9%

MedLDA+SVM 85.4%

css-LDA+SVM 89.7%

Table 6.3: Average Accuracy on the KTH Dataset using the four di↵erent ex-
perimental setups

The KTH dataset is presented in Section 2.5.1. The average accuracy in the KTH

dataset with di↵erent topic representations is presented in Table 6.3.
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As opposed to dynamic datasets, in KTH dataset the topic representation failed

to capture enough variations in discovered topics, hence they yield poor per-

formance compared with the K-means algorithm. This is because this dataset

was recorded in static environments and the discovered topics are not well rep-

resenting the classes to provide enough discriminality for classification. Though

class-specific LDA models provide significant boost in performance compared to

unsupervised LDA models, they are not outperforming k-means. Topic models

employ unsupervised learning approach and they require large amounts of data to

discover discriminative topics, therefore static datasets such as KTH and Weiz-

mann are not suitable for topic based approaches because of their limited number

of classes and learning samples.

6.7 Chapter summary

In this chapter, several LDA models have been investigated and two supervised

topic model-based feature representations are proposed for the local feature-based

activity recognition framework. Both MedLDA and css-LDA models provide

latent discriminative representations and demonstrate superior performance in

two challenging datasets compared to the baseline bag-of-words approach. These

supervised topic-based representations are not only compact, but also e↵ectively

capture both intra and inter class variations.

From the experiments it was found that MedLDA provides highly e�cient, dis-

criminative and sparse topical representation compared to supervised LDA mod-

els. The topic proportion vector ✓ inferred for each video using MedLDA provides

robust, significantly improved accuracy of classifying videos compared to the ✓

resulted from the unsupervised and supervised LDA approaches. MedLDA with

variational inference yields e�cient topic representation with comparable compu-
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tational complexity to unsupervised LDA and significantly lower than supervised

approaches. Since MedLDA already employs a max-margin function during topic

inference, the second stage max-margin SVM classifier in the MedLDA+SVM

framework contributes only a slight improvement in the classification perfor-

mance. High dimensional topic distributions yield good performance compared

to a lower amount of topics because of more semantic information encapsulated

inside a large amount of topics. In terms of computational complexity, k-means

with SVM classifiers are faster compared to topic models. MedLDA’s time com-

plexity is comparable to the LDA+SVM model while css-LDA+SVM is very

expensive due to multiple topic discovery based on the number of activity classes

present in a dataset.

The introduced topic representations provide an alternative to the “histogram of

features” and can be considered as a potential baseline to benchmark new local

feature detectors and descriptors.





Chapter 7

Representing activities using

class-specific sparse codes

7.1 Introduction

In the popular bag-of-words representation, each feature is assigned to a single

codebook element, produces large quantization errors and reduces the overall per-

formance. To address this issue, another e�cient feature representation technique

based on sparse coding is proposed.

Sparse representation has gained much attention among researchers to success-

fully analyse a large class of signals such as audio, image, video etc. Sparse

representation enables us to represent a signal as a linear combination of a small

number of basis functions. Unlike other conventional basis functions, sparse rep-

resentation uses over complete basis (i.e. The dimensionality of basis vectors is

greater than the dimensionality of the input vector) to represent a signal. This

over complete representation facilitates the capture of important information of



136 7.1 Introduction

a signal with only a small portion of basis vectors. This compact, sparse repre-

sentation is not only very useful in data compression in telecommunication and

data communication networks but also in classification, where sparsity of the sig-

nal significantly improves the classification performance compared to the dense

counterpart.

Finding an over-complete basis vector creates an under determined system of

linear equations x = Da, where the dictionary matrix D 2 Rn⇥m, (n < m) and

has an infinite number of solutions. The sparsest solution, a 2 Rn will contain

k (k ⌧ n) non-zero elements. Even though this problem is NP hard, several

advanced methods have been developed using greedy algorithms and linear pro-

gramming to solve this problem. Unlike other methods such as wavelets, curvelets,

etc., where a pre-defined basis is used, in sparse-based representation the dictio-

nary D is learnt from the actual signal itself. This allows the flexibility to learn

di↵erent dictionaries depending on the signal distribution and to capture the inter

and intra class structures present in the signal as well as better data fit compared

with the o↵-the-shelf dictionaries. In addition to that, the learned dictionaries

are more discriminative and compact compared to pre-defined dictionaries.

In this work, the e↵ectiveness of sparse-representation to create an over complete

dictionary to encode video patches in the context of activity recognition is inves-

tigated. Recently proposed sparse representation methods have been shown to

e↵ectively represent features as a linear combination of an over complete dictio-

nary by minimizing the reconstruction error. In contrast to most of the sparse

representation methods, which focus on Sparse-Reconstruction based Classifica-

tion (SRC), this work focuses on a discriminative classification using an SVM

by constructing class-specific sparse codes for motion and appearance separately.

Experimental results demonstrate that separate motion and appearance specific

sparse coe�cients provide most e↵ective and discriminative representation for
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each class, compared to shared and class-specific sparse representations.

In recent years, sparse representation has been extensively used in a wide range

of computer vision applications, such as image de-noising, image restoration,

texture classification, face recognition, object recognition and action recognition

[30, 57, 72, 78, 105]. Although sparse representation mainly focuses on learning an

over complete dictionary to represent the signal, with only a few elements from the

dictionary to minimize the reconstruction error, recently several approaches have

been proposed in object recognition that not only minimize the reconstruction

error, but also to improve the discriminative power of the sparse coe�cients to

improve the overall classification performance. Ramirez et al. [78] incorporate

an incoherence promoting term to make the dictionaries for di↵erent classes as

independent as possible. Mairal et al. [58] proposes to simultaneously learn a

classifier by embedding a logistic loss function. Discriminative K-SVD [116] and

label consistent K-SVD [36] focused on improving the discriminatory power of

the sparse codes with a good representation.

Several sparse representation methods have been extended to solve the action

classification problem. Zhu et al. [121] introduced sparse representation to clas-

sify actions with a shared dictionary with single scale max-pooling and linear

SVM classifier. Guha et al. [29] explored shared, class-specific and concate-

nated dictionaries with di↵erent reconstruction error-based classification. Sparse

Reconstruction-based Classification (SRC) with di↵erent features has been ex-

plored in [30, 50, 52]. SRC with L1 and L2 regularization (SR�L12) was proposed

by Gao et al. [25].

Amongst several variations of sparse coding methods proposed for action recog-

nition, the method of this research di↵ers in two ways:

1. Unlike other methods, where a single dictionary for a class is built, in
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this approach, separate dictionaries are built for motion and appearance

features.

2. In this work, the focus is on discriminative classification and demonstrat-

ing better results compared to the SRC method. Also, a comprehensive

evaluation has been carried out with a di↵erent set of sparse representation

techniques, such as SRC, shared-dictionary, class-specific dictionary and

proposed appearance and motion specific dictionary.

In the proposed method, first, dense Histogram of Gradient (HOG) features and

Motion Boundary Histogram (MBH) [94] features are extracted at di↵erent scales.

Then, we learn a separate over complete dictionary for appearance and motion

vectors is learnt to approximately represent them as a weighted sum of sparse

coe�cients. These appearance and motion sparse coe�cient vectors from several

classes are concatenated and pooled to represent each video uniquely. Finally a

linear SVM classifier is used for classification.

The rest of this chapter is organized as follows. Section 7.2 provides an overview

of the sparse representation framework. A shared dictionary learning approach

is presented in Section 7.2.1 and the class-specific dictionary learning approach

is presented in Section 7.2.2. Our proposed approach is presented in detail in

Section 7.2.3. Details of the experiments carried out on the KTH and UCF

dataset is presented in Section 7.3. Finally, Section 7.4 concludes this chapter.
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7.2 Dictionary Learning and Sparse Represen-

tation

In sparse coding, data samples are modelled linearly asX ⇡ DA. Sparse coding is

popularly used to represent a signal as a linear combination of an over complete

basis where a few elements of the dictionary are used to represent the signal.

Sparse representation is defined as follows: for a given signal x 2 Rn and a

dictionaryD 2 Rn⇥k, (k > n), the sparse representation of the signal x is obtained

as the solution to the following optimization problem,

a⇤ = argmin
a

kak0, s.t.
1

2
kDa � xk2

2  ✏, (7.1)

where kak0 is the l0 norm of the coe�cient vector, which counts the number of

non-zero entries, and a 2 Rk are the approximation weights i.e. minimizing the

number of non-zero elements present in the coe�cient vector. Minimizing the l0

norm is an NP-hard problem and greedy algorithms don’t guarantee an optimal

solution. Under the assumptions on the sparsity of the signal and the structure of

the dictionary D there exists � > 0 such that the l0 pseudo-norm can be replaced

with an l1 norm and the following optimization problem can be solved instead,

a⇤ = argmin
a

1

2
kDa � xk2

2 + �kak1, (7.2)

where the parameter � is used to establish balance between the sparsity and

reconstruction error. The above optimization problem becomes convex and can

be solved easily using modern convex optimization techniques. The Equation 7.2

is known as LASSO. The l1 norm induces the sparse solution for the code vector
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a. Sparse modelling is done via an alternative minimization technique, where first

D is fixed and obtain the sparse code A = [a1, a2, . . . , an

] 2 Rk⇥n, then by fixing

A and minimizing with respect to D. Both of these sub-optimization problems

are convex and the process is continued until the local minimum is obtained,

(D⇤,A⇤) = argmin
a

1

2
kDA � Xk2

2 + �
nX

i=1

ka
i

k1, (7.3)

The generated dictionary is shared across all the action classes and the corre-

sponding sparse representation for each feature vector is obtained by minimizing

the l1 norm.

7.2.1 Shared dictionary Approach

In this representation a single shared dictionaryD is learned using all the training

samples. This approach is computationally e�cient during training and testing

phases compared to class-specific approaches, because only a single dictionary

is required for the entire dataset regardless of the number of activities present

in the dataset. However, on the other hand, it is not as discriminative as class-

specific dictionaries. For a given set of features X extracted from a dataset, the A

represents the corresponding sparse coe�cients obtained from the dictionary D.

Finally, the video representation is obtained by calculating the sparse-coe�cient

histogram over the set of features representing the video. Take the ith video having

a set of r features and their corresponding sparse representation A
i

= {a
k

}r

k=1.

Then the sparse coe�cient histogram h
i

is defined as follows,

h
i

=
1

r

rX

k=1

a
k

. (7.4)
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These histograms of coe�cient representation of training video samples are used

to train the multi-class SVM classifier.

7.2.2 Class-specific dictionary learning

In this framework, for a dataset consisting of C action classes, C dictionaries

({D1, D2, D3, . . . , DC

}) are learned, one for each class. Unlike a shared dictionary,

the computational complexity of this representation increases with the number

of action classes. On the other hand, the dictionary learned for a given class is

e�cient for representing activities for this class and less e�cient for representing

activities from di↵erent class (i.e. the sparse representation obtained via the

dictionary corresponding to that class has low reconstruction error and is more

sparse compared to the representation obtained via a di↵erent dictionary).

Let Xj = [xj

1,x
j

2, . . . ,x
j

nj
] the n

j

features extracted from the jth action class and

the dictionary corresponding to the jth action class Dj 2 Rm⇥kj is obtained by

solving the following optimization problem,

D⇤
j

= arg min
(Dj

,Aj)�0

1

2
kDjAj � Xjk2

2 + �

njX

i=1

kjX

i=1

aj

i

. (7.5)

A separate class specific dictionary is learnt for all C action classes. Then all

the class-specific dictionaries are combined to form a block-structured dictionary

D = [D1,D2,D3, . . . ,DC ] 2 Rm⇥k, where k =
P

C

j=1 k
j

. Then, each feature

vector is represented as a linear combination of the block-structured dictionary,

A⇤ = argmin
A>0

1

2
kDA � Xk2

2 + �
nX

i=1

kjX

j=1

aj

i

, (7.6)
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where A = [a1, a2, a3, . . . , an

] 2 Rk⇥n, a
i

= [a1
i

, a2
i

, . . . , akC
i

]| 2 Rk. This struc-

tured dictionary approach allows each feature to share di↵erent class-specific dic-

tionaries and e↵ectively capture the statistical characteristics compared to a sin-

gle, shared dictionary approach.

7.2.3 Appearance & Motion specific Dictionary Learning

This proposed approach is similar to the above mentioned class-specific sparse

codes but rather than learning a single sparse dictionary for each class this

research goes granular to learn separate dictionary for appearance and motion

features as they capture di↵erent statistics of the video to further discriminate

between di↵erent actions.

In the proposed method, the appearance vector XA = [x1, ..., xm] 2 RnA⇥mA ,

where n
A

is the dimension of the appearance vector extracted from a given class

and m
A

is the number of the appearance vectors. XA is sparsely represented by

minimizing the following equation:

min
DA,CA

kXA � DACAk2
2 + �|CA|1 (7.7)

where, class-specific appearance dictionary DA 2 RnA⇥dA with the size of the

dictionary d
A

and corresponding sparse coe�cients CA 2 RdA⇥mA . Appearance

vector xi can be approximated as xi ⇡ DAci

A

. i.e. ci

A

is the sparse coe�cient

vector corresponding to the appearance feature vector xi.

Similar to the appearance encoding, motion vector YM = [y1, ..., ym] 2 RnM⇥mM ,

where n
M

is the dimension of the motion vector extracted from a given class and

m
M

is the number of the motion vectors and is sparsely represented by minimizing
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the following equation:

min
DM,CM

kXM � DMCMk2
2 + �|CM|1 (7.8)

where class-specific motion dictionary DM 2 RnM⇥dM with the size of the dictio-

nary d
M

and the corresponding sparse coe�cients CM 2 RdM⇥mM . Motion vector

yi can be approximated as yi ⇡ DMci

M

. i.e. ci

M

is the sparse coe�cient vector

corresponding to the motion feature vector yi.

The class-specific dictionary is given by the concatenation of motion (ci

M

) and

appearance (ci

A

) sparse coe�cient vectors. Then the block-structured dictionary

is constructed by combining all the class-specific appearance and motion dic-

tionaries ( i.e. similar to class-specific dictionary in Section 7.2.2). Then the

final representation of an interest point (I i) is given by the linear combination of

block-structured dictionaries.

7.3 Experiments and Results

A comprehensive set of experiments have been carried out with di↵erent sparse-

representation approaches to validate the proposed method. Two popular action

recognition datasets with varying complexity: KTH [86] dataset is used to demon-

strate the e↵ectiveness of sparse representation in simple environmental settings

and UCF sports [80] dataset is used to demonstrate the e↵ectiveness in com-

plex and cluttered environments. The following experimental set-up is used to

evaluate di↵erent sparse representations.

Sparse Representation-based Classification (SRC): The SRC method [72,
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107] assigns each feature to the action class based on the reconstruction error:

R(x,D) = kx � Dak2
2, where x 2 Rn is the feature vector, D is the dictionary

and the sparse code vector, a 2 Rk, is calculated from Equation 7.2. For a K class

classification problem, each class i has a dictionary Di and a code ai is calculated

for each dictionary. Finally the feature vector x is assigned to the class i⇤ which

minimizes the reconstruction error R:

i⇤ = argmin
i

R(x, Di) (7.9)

Shared dictionary with an SVM classifier: A single shared dictionary D

is learned to sparsely encode each feature vector, followed by spatio-temporal

pooling and a linear SVM classifier is applied for classification.

Class-specific dictionary with SVM classifier: We learnt C separate

dictionaries {D1,D2, ...,DC

} for each class, followed by spatio-temporal pooling

and linear SVM classification.

In feature extraction, we densely sample each video and extract Histogram Ori-

ented Gradients (HOG) and Motion Boundary Histogram (MBH) features to

represent each video. For each cell, an 8-bin HOG histogram is calculated and

normalised into a HOG descriptor. The robust optical flow based MBH [94] de-

scriptor is used to capture the motion information present in the spatio-temporal

volume.

The parameter � in the optimization function 7.2 controls the sparsity of the

the sparse coe�cient vector while minimizing the reconstruction error. The pa-

rameter � is set to 10% in all experimental settings, which yields better results.

Randomly selected HOG and MBH features are used from each class to generate
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Experimental setup Average accuracy (%)

SRC 86%

Shared Dictionary + SVM 92%

Class Dictionary + SVM 94.5%

Proposed method 96.8%

Table 7.1: Average Accuracy on the KTH Dataset using the four di↵erent ex-
perimental setups

the appearance and motion specific dictionaries. Once the shared, class-specific

and appearance and motion specific dictionaries are learnt, each feature vector is

mapped to the sparse coe�cient vector via l1 minimization.

7.3.1 KTH Dataset

The KTH dataset is presented in Section 2.5.1. The same experimental setting

proposed by Schuldt et al. [86] is used. Table 7.1 shows the average accuracy

obtained with four di↵erent sparse representations. The proposed sparse repre-

sentation outperforms the class-specific dictionary by 2.3%. Confusion matrices

for class-specific representation and the proposed method is shown in Table 7.1.

The proposed representation not only performs well across all the classes but also

reduces the confusion among closely related classes by increasing the discrimina-

tory power.

Running Boxing Walking Jogging Waiving Clapping
Running 0.91 0.00 0.02 0.07 0.00 0.00
Boxing 0.00 0.96 0.00 0.00 0.00 0.04
Walking 0.00 0.00 0.97 0.03 0.00 0.00
Jogging 0.03 0.00 0.04 0.93 0.00 0.00
Waiving 0.00 0.00 0.00 0.00 0.95 0.05
Clapping 0.00 0.03 0.00 0.00 0.02 0.95

(a) Class-specific sparse dictionary

Running Boxing Walking Jogging Waiving Clapping
Running 0.92 0.00 0.00 0.08 0.00 0.00
Boxing 0.00 0.98 0.00 0.00 0.00 0.02
Walking 0.00 0.00 1.00 0.00 0.00 0.00
Jogging 0.02 0.00 0.05 0.93 0.00 0.00
Waiving 0.00 0.00 0.00 0.00 1.00 0.00
Clapping 0.00 0.00 0.00 0.00 0.02 0.98

(b) Appearance & Motion specific dictionary

Figure 7.1: Confusion matrices for the KTH dataset with di↵erent sparse rep-
resentations. (a) Class-specific sparse dictionary and (b) Appearance & Motion
specific sparse dictionary.
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Experimental setup Average accuracy (%)

SRC 84%

Shared Dictionary + SVM 87%

Class Dictionary + SVM 89 %

Proposed method 92.3%

Table 7.2: Average Accuracy on theUCF-SportsDataset using the four di↵erent
experimental setups

7.3.2 UCF Sports Dataset

The UCF-Sports dataset is presented in Section 2.5.4. The Leave-one-out cross

validation and average accuracy is reported in Table 7.2.

The overall classification rate of 92.3% is obtained, which is 3.3% higher compared

to the class-specific dictionary. Confusion matrices for class-specific sparse codes

and the proposed method are shown in Figure 7.2.

Driving Golf Swinging Kicking Lifting Horse riding Running Skating Swinging Walking
Driving 0.97 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

Golf Swinging 0.00 0.93 0.03 0.00 0.00 0.00 0.00 0.04 0.00
Kicking 0.03 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.07
Lifting 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.10

Horse riding 0.00 0.00 0.00 0.00 0.82 0.00 0.06 0.00 0.12
Running 0.00 0.00 0.00 0.00 0.00 0.82 0.05 0.00 0.13
Skating 0.00 0.00 0.12 0.00 0.00 0.00 0.88 0.00 0.00

Swinging 0.00 0.05 0.08 0.00 0.00 0.00 0.00 0.87 0.00
Walking 0.00 0.05 0.00 0.00 0.00 0.10 0.00 0.00 0.85

(a) Class-specific sparse dictionary

Driving Golf Swinging Kicking Lifting Horse riding Running Skating Swinging Walking
Driving 0.99 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Golf Swinging 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.04
Kicking 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.04 0.02
Lifting 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.04

Horse riding 0.00 0.00 0.00 0.00 0.85 0.00 0.07 0.00 0.08
Running 0.00 0.00 0.02 0.00 0.00 0.88 0.00 0.00 0.10
Skating 0.00 0.00 0.03 0.00 0.00 0.00 0.94 0.00 0.03

Swinging 0.00 0.05 0.02 0.00 0.00 0.00 0.00 0.93 0.00
Walking 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.90

(b) Appearance & Motion specific dictionary

Figure 7.2: Confusion matrices for the UCF dataset with di↵erent sparse rep-
resentations. (a) using Class-specific sparse dictionary and (b) Appearance &
Motion specific sparse dictionary.
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Experimental results in two datasets demonstrate that class-specific dictionaries

provide a better, sparse and discriminative representation for their own class

compared to a shared dictionary approach. Further, the shared nature of the

class-specific appearance and motion dictionaries allow other classes to e↵ectively

capture common spatio-temporal elements present in their action sequences. For

example, some atoms in the motion dictionary built for the running class can be

used to represent temporal elements of the walking or jogging class and atoms

in the appearance dictionary built for the boxing class can be used to represent

some spatial elements in the boxing class. This rich dictionary structure allows the

focus on and capturing of minor spatio-temporal elements, which are important

to di↵erentiate between two closely related classes.

Improvement in performance is obtained without adding any additional term

in the optimization function. Availability of parallel processing hardware will

allow the building of appearance and motion specific dictionaries simultaneously.

Therefore the computational requirement is almost the same as building a class-

specific dictionary with combined motion and appearance features.

7.4 Summary

In this chapter, several sparse representation approaches in local feature based

activity recognition have been investigated and an e�cient way of constructing

sparse dictionary for representing activities for discriminative action classification

has been presented. A comprehensive set of experiments have been carried out

and the experimental results on two popular datasets demonstrated; building

separate appearance and motion specific dictionaries for each class significantly

improves the classification performance compared to a shared dictionary and

class-specific dictionary. It is also an interesting observation that as the research
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went further granular in designing the over-complete dictionary (i.e. from shared

to class-specific to appearance & motion specific) the discriminative ability of the

feature representation increased. In addition to that, this proposed representation

adds more discriminative power to the video representation and can be extended

to di↵erent video based applications.



Chapter 8

Binary-Tree SVM for

Representing Activities

8.1 Introduction

This chapter presents an e↵ective classification structure to improve the discrim-

inative activity classification based on Support Vector Machines (SVM). SVMs

are popularly used because of their simplicity and e�ciency; however the com-

mon multi-class SVM approaches applied su↵er from limitations, including having

easily confused classes and being computationally ine�cient.

As mentioned in earlier chapters, e�cient and e↵ective video representation and

classification plays an important role in recognizing human activities from video

sequences. This chapter addresses the classification problem by proposing a bi-

nary tree SVM to address the shortcomings of multi-class SVMs in activity recog-

nition. This chapter also presents a new method of constructing a binary tree

using Gaussian Mixture Models (GMM), where activities are repeatedly allocated
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to sub-nodes until every newly created node contains only one activity. Then, for

each internal node a separate SVM is learned to classify activities, which signifi-

cantly reduces the training time and increases the speed of testing compared to

popular the ’one-against-the-rest’ multi-class SVM classifier. Experiments carried

out on the challenging and complex Hollywood2 dataset demonstrate comparable

performance over the baseline bag-of-features method.

Local feature-based methods incorporate the Bag-of-visual-words (BoV) represen-

tation to consolidate the local features for the purpose of action classification. In

local feature-based action recognition, classification is done with SVM classifiers,

often in combination with a �2 kernel. Although support vector machines were

originally developed for binary classification problems, two main variations of

multi class SVM classifiers [33] are popularly used in the context of action recog-

nition: ‘one-against-rest’ and ‘one-against-one’. The ‘one-against-rest’ method

is a popularly used multi-class classifier for action recognition and requires N

classifiers for a N class classification problem. In the training phase, a partic-

ular class is considered as positive and the remaining N � 1 classes are treated

as negative. Since all SVMs are trained with all the training samples, this con-

sumes more computational resources and reduces the performance due to a large

amount of negative samples. In the testing phase, all N SVMs are required to

predict the sample data point. On the other hand, a ‘one-against-one’ approach

requires N(N � 1)/2 SVM classifiers, each trained with a pair of classes. While

this improves performance compared to a ‘one-against-rest’ approach, it still re-

quires N(N � 1)/2 binary decisions to predict the test sample based on majority

voting.

This chapter addresses the above mentioned problems in multi-class SVMs by

using a binary-tree SVM [16]. In the first stage, to convert the problem into

a binary decision tree, Gaussian Mixture Model (GMM) clustering is used. At
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the beginning, all the training samples are assigned to the root node of the tree

and a GMM is used to separate the training samples into two clusters, and the

activities belonging to each cluster are assigned to the left and right sub-nodes

respectively. The GMM is continuously applied at sub-nodes to further split the

activities into pairs, until every newly created node contains only one class. In

the second stage, SVM training, each internal node in trained with a SVM to

make a binary decision. In the training phase, it requires only N � 1 SVMs to

be trained for an N class problem; and the amount of time required for training

also reduces as the tree is traversed downwards as the number of classes (and

amount of data) at each node is reduced. When performing classification, the

proposed approach requires only log2N SVMs to predict the sample due to the

binary nature of the decision tree.

The reminder of the chapter is organized as follows: Section 8.2 describes

the feature extraction and representation. Section 8.3 provides details of the

proposed classification method. Experimental results for the popular Hollywood2

dataset is presented in Section 8.4. Finally, Section 8.5 concludes the paper.

8.2 Video representation

In this section, the feature extraction and feature encoding scheme used in ex-

periments is described.
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8.2.1 Feature extraction

The video is encoded using low level, local features incorporating static appear-

ance and motion information. The Histogram Oriented Gradients (HOG) de-

scriptor is used to encode the appearance information and the Motion Boundary

Histogram (MBH) is used to capture motion information. Instead of using a

dense space-time cuboid, video is sampled using dense trajectories [94], with de-

fault parameters. Trajectories of length 15 frames are extracted on a dense grid

with 5-pixel spacing.

For appearance, the HOG descriptor is calculated along the trajectory and the

cuboid region is subdivided into a 2 ⇥ 2 ⇥ 3 grid of cells. For each cell, an 8-bin

HOG histogram is calculated and normalised into a HOG descriptor. Motion

information is captured using the MBH [94] along the trajectories.

8.2.2 Feature encoding

Once the two local features are extracted, the popular, standard bag-of-visual-

words (BoV) approach for representation is used to make fair comparison with

other methods. This approach requires the construction of a visual vocabulary

and the K-means algorithm was used, with the number of clusters set to k = 4000,

to generate the required vocabulary, which has been a popular choice amongst

researchers. Then, each video feature is assigned to the closest cluster based

on the Euclidean distance, and is represented by a histogram of visual word

occurrences over a video sub-volume defined by a dense trajectory.
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Answer the phone, driving car, eating, 
fighting, getting out of car, hand shake,
hugging, kissing, running, sitting down, 

sitting up, standing up

Driving car, fighting, getting out of 
car, kissing, running

Answer the phone, eating, hand shake,
hugging, sitting down, sitting up, 

standing up

Getting out of car, 
kissing

Driving car, fighting, 
running

Getting out of 
car

Kissing Driving car Fighting, 
running

RunningFighting

Answer the phone, sitting 
down, sitting up, standing 

up, eating

Hands shake, hugging

Hugging Hand shake Answer the 
phone, eating

Sitting down, 
sitting up, 

standing up

Answer the phone Eating

Figure 8.1: Binary tree structure for support vector machine classification in the
Hollywood2 dataset.

8.3 Binary Tree Construction with GMM

The organization of the binary decision tree is vital, as errors have the potential

to propagate down the tree. A GMM clustering algorithm is used to convert the

multi-class problem into a binary decision tree. In this work, the overlapping of

classes is avoided to make the classification framework as simple as possible.

GMMs are considered to be a soft clustering approach, which uses the EM algo-

rithm to assign features to mixture components, based on their posterior prob-

abilities, p(k|x). But unlike the k-means, which performs a hard assignment

of features to a cluster, GMM considers the shape of the distribution as well.

A GMM is a generative model to describe the distribution of feature space as

follows:
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p(x; ✓) =
KX

k=1

⇡
k

N (x;µ
k

,⌃
k

), (8.1)

where K is the number of mixtures, model parameters are ✓ =

{⇡1, µ1,⌃1, . . . , ⇡k

, µ
k

,⌃
k

} and N (x;µ
k

,⌃
k

) is a D-dimensional Gaussian dis-

tribution. Given a set of features X = {x1, . . . , xM

}, the EM algorithm is

used to learn the optimal parameters through maximum likelihood, lnp(X; ✓) =

⌃
m

lnp(x
m

; ✓).

Initially, all activity samples are allocated to the root node and the GMM algo-

rithm is applied to split the activities into two clusters, where majority voting is

used to assign the classes to appropriate clusters. After step one, two sub-nodes

denoted as N
L

and N
R

are created, each containing a portion of action classes

from its parent. The process is illustrated in Figure 8.1. In Figure 8.1, at the

first level five activities are allocated to the left node (N
L

) and the remaining

seven activities are allocated to the right node (N
R

). This clustering procedure

continues recursively at sub-nodes, N
L

and N
R

, until every newly created node

contains only one class.

8.3.1 SVM classification

After the binary tree is constructed, a separate SVM is trained for each node,

except leaf nodes. For an N class problem it requires N � 1 SVMs. Also, as

we go down the tree, its computational complexity reduces and discriminatory

power increases as a result of each node comparing fewer and fewer classes. In

the testing stage, due to the binary nature of the tree, only half of the SVMs are

employed in the decision making instead of all SVMs as in other multi-class SVM

methods.
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Level Error (%)
K-means GMM

Root 1.7 1.2

Level 1
L11 6.2 5.4
L12 11.9 4.8

Level 2

L21 4.2 3.4
L22 7.4 7.8
L23 8.9 6.4
L24 22.6 4.1

Level 3
L31 15.2 10.4
L32 7.4 8.2
L33 26.3 5.2

Level 4 L41 7.9 5.3

Table 8.1: The clustering results for constructing the Binary Tree (see Figure
8.1). The error represents the percentage of misclassified feature vectors in each
node. The root node consists of all activities, the L11 node consists of {Driving
car, fighting, getting out of car, kissing, running}, L12 consists of {Answer the
phone, eating, hand shake, hugging, sitting down, sitting up, standing up} and
so on.

8.4 Experimental results

The Hollywood2 dataset is used to validate our proposed classification method.

This dataset has been chosen because of its complexity and the activities are

related closely in the spatial and temporal domains. For the clustering, k-means

(hard clustering algorithm) and Gaussian Mixture Model (GMM) are used. Table

8.1 shows the clustering results. We find that GMM clustering demonstrates best

clustering with minimal overlapping of classes and organizes the tree such a way

that the classes are easy to di↵erentiate first, and complexity increases down the

tree.

Table 8.2 compares the results of the proposed method against the state-of-the-

art method [94], where they combined HOG, HOF and MBH features using the

multi-channel approach and use ‘one-against-rest’ multi-class classification. The

proposed Binary-Tree SVM method not only achieves comparable performance,
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Action class Wang et al. [94] Our method

AnswerPhone 32.6% 30.5%

DriveCar 88.0% 87.4%

FightPerson 81.4% 80.1%

GetOutCar 52.7% 51.3%

Kiss 65.8% 66.4%

Run 82.1% 83.2%

Eat 65.2% 67.2%

SitDown 62.5% 63.8%

SitUp 20.0% 21.3%

StandUp 65.2% 67.2%

HandShake 29.6% 27.6%

HugPerson 54.2% 52.3%

mAP 58.3% 58.2%

Table 8.2: Average Precision(AP) per action class for the Hollywood2 dataset
compared against [94]

but also significantly reduces the computational complexity in testing to log2N ,

as opposed to N in other methods.

In addition, it can be noted that activities are separated into spatial and temporal

events along the tree and more complex activities, such as sitting down and sitting

up, are pushed down the tree (see Figure 8.1). This enables the SVM to easily

classify activities which are similar in nature spatially or temporally, compared to

the ‘one-against-other’ approach where one activity is classified against all other

activities. Also, this tree structure potentially allows di↵erent sets of features to

be used at each internal node to further improve performance.

Binary-tree based approach is well suited for complex datasets with large number

of classes and training samples as the number of training samples reduces when

traverse down the tree. Static datasets such as KTH dataset is limited to 6

di↵erent classes, each contains 100 di↵erent samples, this limits the number of

samples available to train/learn the SVM model, hence the learned SVM failed
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to di↵erentiate di↵erent classes.

8.5 Conclusion

This chapter presented a new e�cient classification approach for Bag-of-feature

based activity recognition. In the proposed binary tree SVM approach, first GMM

clustering is used to construct a binary decision tree; after which a separate SVM

is trained for each node of the tree. This approach is not only e�cient, but also

useful in classifying a large amount of activities, which are otherwise di�cult to

distinguish spatially and temporally. Also this allows di↵erent sets of features to

be used for di↵erent activities within a given dataset, which is particularly useful

when the dataset contains a large amount of activity classes.

As digital information is exploding day by day, this presents a huge amount of

data for researchers to carry out experiments. The classification method pre-

sented in this chapter is e↵ective for larger datasets containing a larger amount

of activity classes, because it significantly reduces the training and testing time as

the number of activities decreases along the tree. Also, this method can be further

explored to design optimal features to use at each node, based on the activities

observed at that node. In this way, further improvement in the classification

accuracy can be achieved.





Chapter 9

Conclusions and Future

Directions

9.1 Introduction

This chapter presents a summary of the work presented in this thesis and the con-

clusions drawn from it. Even though several activity recognition frameworks exist

in literature, local feature-based systems are very popular due to their simplicity

and their superior performance. In this thesis, local feature-based action recog-

nition has been extensively studied and several advances have been proposed.

The summary follows the three main research themes and areas of contribution

identified in Chapter 1: (1) providing a comprehensive evaluation of the local

feature-based action recognition system (2) improving the system performance

by developing new, e�cient spatio-temporal features (3) developing new feature

representation and classification techniques to improve the overall recognition

performance. Possible future research directions that could be pursued as a nat-

ural extensions of this work are also pointed out.
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9.2 Conclusions

Below is the Summary of the contributions in this thesis:

1. Chapter 3 provides an comprehensive investigation of several popular lo-

cal feature descriptors with challenging datasets. In recent times, several

features, representations and classification methods have been proposed,

but these methods were evaluated with di↵erent experimental settings and

are di�cult to compare with other methods. In this work, this problem has

been addressed with a comprehensive evaluation of the popular local feature

descriptors under a common framework. In addition, several elements in

the pipeline such as impact of code book sizes, encoding methods and ker-

nel matrices were also extensively studied and several advanced techniques

have been proposed to improve performance. In this chapter it was found

that di↵erent stages in the pipeline play a significant role and the perfor-

mance of the raw features can be increased by 3-7 % by properly choosing

appropriate techniques in the pipeline.

2. Chapter 4 proposes a novel video detector/descriptor based on the BRISK

descriptor. In this proposed approach, the binary feature detector BRISK

is applied to detect the key points on a frame-by-frame basis followed by a

sparse optical flow algorithm to choose potential candidate points. Finally,

appearance information of these points are encoded with BRISK descriptor

and motion information is encoded with MBH descriptor. Experimental

results demonstrate that this final descriptor is not only computationally

e�cient but also provide comparable performance to other state-of-the art

descriptors. Even though this descriptor has been evaluated on activity

datasets, this can be extended to other video-based applications as well.

3. Chapter 5 presents a novel feature representation method based on Multi-
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ple Instance learning (MIL) for activity representation. In this work, three

MIL techniques such as ‘mi-SVM + k-means’, ‘M3IC’ and MMDL are

introduced to create codebooks and to encode features for discriminative

activity recognition. These representations are shown to be more discrim-

inative compared to bag-of-words representation; from the experiments it

was also found that the MMDL approach produces more discriminative

codebooks compared to mi-SVM + k-means and M3IC approach, at the

expense of computational complexity.

• mi-SVM + k-means Approach: In this approach, features corre-

sponding to a particular activity class is treated as positive and all the

features are assigned to a set of positive bags, and the rest of the classes

are treated as negative and their features are assigned to negative bags.

Then SVM is learned on positive and negative bags to identify the pos-

itive features in the positive bags followed by the K-means algorithm to

cluster the positive instances. In this approach, codebooks are learned

per class basic as opposed to a single class learned using bag-of-words

approach and are shown to be more e↵ective.

• M3IC Approach: In this approach, the K-means clustering algo-

rithm has been replaced and a single dictionary is built using MIL

techniques. This approach produces an e�cient, compact representa-

tion as the codebook size doesn’t grow with the number of activity

classes.

• MMDL Approach: In this approach, class-specific dictionaries are

learned, but instead of separately performing multiple instance learn-

ing and mixture modelling as two steps in ’mi-SVM + kmeans’ both

steps are carried out simultaneously. This approach demonstrates best

performance amongst the three proposed MIL approaches in two pop-

ular activity recognition datasets.
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4. Chapter 6 presents two novel supervised LDA variants to convert raw ap-

pearance and motion features more suitable for classification. In contrast

to unsupervised LDA, where topics are discovered without the knowledge

of the label information, supervised LDA variants discover more informa-

tive and discriminative topics by incorporating label information. In the

proposed approach the histogram of features are replaced with the topic

proportion vector of a particular video. The following two proposed repre-

sentations are found to be e↵ective and significantly improve the recognition

accuracy.

• MedLDA Approach: In this approach, MedLDA learns discrimi-

native topics by employing a max-margin technique within the prob-

abilistic framework. MedLDA provides highly e�cient, discriminative

and sparse topical representation compared to other supervised LDA

models. The topic proportion vector inferred for each video using

MedLDA provides robust, significantly improved accuracy of classify-

ing videos compared to unsupervised and supervised LDA approaches.

MedLDA with variational inference yields e�cient topic representation

with comparable computational complexity to unsupervised LDA and

significantly lower than supervised approaches.

• css-LDA Approach: In this approach the supervision is introduced

at the feature level and enables class specific topic simplexes to capture

much richer intra-class information and provides a single set of topics

for the entire data set. As the dimension and complexity of css-LDA

increases with the number of classes, it is well suited for small numbers

of classes with similar spatio-temporal relationships. In the meantime,

MedLDAs time complexity is comparable to the LDA+SVM model

while css-LDA+SVM is very expensive due to multiple topic discovery

based on the number of activity classes present in a dataset.



9.3 Future work 163

5. Chapter 7 presents a novel sparse-representation technique representing

activities. Class-specific appearance and motion dictionaries are proposed

to encode raw features into a sparse coe�cient vector suitable for discrim-

inative SVM classification. This proposed representation is shown to be

e↵ective by evaluating against other sparse representation techniques such

as shared and class-specific dictionary approaches. In addition, the suitabil-

ity of a shared and class-specific dictionary in discriminative classification

is also extensively investigated.

6. Chapter 8 presents a binary-tree SVM, which is highly scalable to wild

datasets containing complex activities. This approach also reduces the

training and testing time by building a binary-tree while providing the

flexibility to design customized features at every leaf node separately.

9.3 Future work

In this section, several di↵erent directions for potential future work that can

be extended from this thesis are presented and potential directions suggested

that can be pursued in video-based human activity recognition. In this research

program, a local feature-based activity recognition system has been extensively

studied and several features and advanced machine learning techniques have been

proposed. We propose further investigations in the following areas to improve the

performance further.

• Feature fusion using multiple camera inputs: In this thesis we inves-

tigated the activities that contain single view information at a given point

in time. This information is not enough to capture spatio-temporal rela-

tionships. On the other hand, a multiple view of video footage allows us to
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capture more granular details of the activity. In addition, the availability

of cheap 3D recording devices such as Kinect also allows us to capture 3D

information and further research can be done with 3D key point detectors

and descriptors in addition to 2D detector/descriptors. In this thesis, the

research has not been undertaken because of lack of 3D datasets and we

believe the 3D keypoint detector/descriptor will be the potential future di-

rection to further explore local features. Also, multiple camera networks

also provide more information to fuse features to obtain rich and discrimi-

native representation.

• Explore temporal sequences: In this research, most of the focus has

been given to improve representation by incorporating spatio-temporal re-

lationships. This thesis has presented three di↵erent representation tech-

niques to e↵ectively capture the spatio-temporal relationships. However the

temporal order of the features is not explicitly explored due to lack of infor-

mation present in the feature space. Future research can be carried out such

a way to find methods to incorporate temporal order of the spatio-temporal

features, which is an integral part of an action sequence.

• Big Data Analysis: The current performance obtained in activity recog-

nition does not satisfy the demand from real world applications. This is due

to two major reasons, such as lack of performance in real world settings and

lack of a fully annotated database containing a significant amount of activ-

ities.

Even though various datasets such as Hollywood2 and UCF50, can be seen

as real world activities, they have a limited amount of training samples

and fail to capture a wide range of activities. The advances in virtual

reality platforms allow simulation of a large amount of activities under

di↵erent conditions and we believe that in the future, computer graphics

and computer vision techniques can be combined to generate large amount
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of actions in real world situations. These datasets with fully developed

evaluation protocols, will enable e↵ective algorithms to be developed to

recognize human activities, with a level of accuracy required for real world

deployment.

• Combine local features with high level representations: Even

though local features are popular among researchers, they are reductive;

and rich visual temporal-spatial structures (such as those associated with

golf-swinging) can be hardly characterized by one single class label and

would be better represented by considering multiple high-level semantic

concepts such as action attributes and part-based models describing the

action, to enable the construction of more descriptive models for human

activity. This research study leads to the belief that the proposed advanced

representations in this thesis can be explored further with high level repre-

sentations to improve recognition performance.
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