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Pulmonary Nodule Classification Based on
Heterogeneous Features Learning

Chao Tong, Baoyu Liang, Qiang Su, Mengbo Yu, Jiexuan Hu, Ali Kashif Bashir, and Zhigao Zheng,

Abstract—Pulmonary cancer is one of the most dangerous
cancers with the a high incidence and mortality. An early
accurate diagnosis and treatment of pulmonary cancer can
observably increase the survival rates, where computer-aided
diagnosis systems can largely improve the efficiency of radiol-
ogists. In this paper, we propose a deep automated lung nodule
diagnosis system based on three-dimensional convolutional neural
network (3D-CNN) and support vector machine (SVM) with
multiple kernel learning (MKL) algorithms. The system not only
explores the computed tomography (CT) scans, but also the
clinical information of patients like age, smoking history and
cancer history. To extract deeper image features, a 34-layers
3D Residual Network (3D-ResNet) is employed. Heterogeneous
features including the extracted image features and the clinical
data are learned with MKL. The experimental results prove the
effectiveness of the proposed image feature extractor and the
combination of heterogeneous features in the task of lung nodule
diagnosis.

Index Terms—Pulmonary nodule classification, lung cancer,
heterogeneous features, multiple kernel learning.

I. INTRODUCTION

PULMONARY cancer is one of the most dangerous can-
cers with the a high incidence and mortality. It causes

1.8 million deaths around the world [1]. A rising trend in
incidence can still be observed in most countries. The early
manifestations of lung cancer are generally pulmonary nodules
(0-30 mm). The nodules develop into tumors of different
sizes (2-50 mm) later. In advanced stage, pulmonary cancer
shows different manifestations which brings great difficulties
to treatment. Therefore, an early diagnosis and treatment of
pulmonary cancer can observably increase the survival rates.
In the early diagnosis of pulmonary cancer, lung computed
tomography (CT) scanning plays a significant role. It can
eliminate the overlap between the anterior and posterior tissues
and show the normal anatomical structure and pathological
manifestation in the cross section, providing great auxiliary
effects for the diagnosis of pulmonary nodules with little risk.

To identify the malignancy of pulmonary nodules, radiol-
ogists have to interpret a huge amount of CT images and
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make quick decisions, which brings about heavy burden [2].
Despite their efforts, the diagnosis results are often constrained
by subjectivity. The results vary significantly among different
interpreters. To help increase the diagnosis rate, several pul-
monary nodule malignancy diagnosis models have been pro-
posed, including the famous Mayo Clinic model [3] and other
models [4]–[6]. These methods take features of pulmonary
nodules obtained from CT images as well as information
of patients including age, smoking history and other facts
to identify the malignancy of nodules. They are validated
as effective pulmonary nodule diagnosis methods [7] and is
widely used in manual lung cancer diagnosis. Nevertheless,
none of these methods saves labor.

As a result, a considerable amount of Computer-Aided
Diagnosis (CAD) systems have been developed to help ra-
diologists increase the speed and accuracy of lung nodule
diagnosis. CAD systems are categorized into detection systems
(CADe) and diagnostic systems (CADx) [2], where detection
systems are designed to find pulmonary nodules in CT images
and diagnostic systems are to identify whether one detected
nodule is benign or malignant.

Many researchers have utilized morphologic characteristics
of pulmonary nodules to diagnose their malignancy. Kostis
et al. [8] developed several methods for nodule growth rate
estimation in order to identify the malignancy of lung nodules.
Kido et al. [9] calculated fractal dimensions which reflect
the characteristics of the lung-nodule interfaces, to distinguish
bronchogenic carcinomas from benign pulmonary nodules.
Way et al. [10] designed a CADx system which is capable
of extracting morphologic features including volume, surface
area, perimeter, maximum diameter, HU values and gray-level
features including the average, variance, skewness and kurtosis
of the gray-level histogram. Among these low-level features,
the most important ones are selected with F-statistics [11] for
further classification.

In recent years, deep learning, benefiting from the easy
access and huge amount of data, has achieved tremendous
success in traditional fields as data handling, computer vision,
natural language processing. Recent advances in deep learning
have facilitated investigation of the application of this tech-
nique on diagnosis tasks, especially lung nodule malignancy
classification.

Hua et al. [12] proposed two models which use a deep
belief network (DBN) and a convolution neural network
(CNN), respectively, for nodule classification. These two mod-
els are compared with two conventional methods with feature
computing steps. The experimental results have proved the
advantage of using deep learning methods in lung nodule
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diagnosis. Kumar et al. [13] introduced a CADx system using
deep features extracted from a Stacked AutoEncoder (SAE)
for nodule classification. The proposed system achieved an
overall accuracy of 75.01% with a sensitivity of 83.35%.
StochasticNet radiomic sequencers were leveraged by Shafiee
et al. [14] which consist of three stochastically-formed con-
volutional layers and achieved an accuracy of 84.49% with a
sensitivity of 91.07% and a specificity of 75.98%. Sun et al.
[15] implemented three deep learning methods, CNN, DBN
and stacked denoising autoencoder (SDAE) for nodule clas-
sification. They compared the results of these three methods
with a traditional CADx system which is made up of a scheme
with 28 manually designed features and a support vector
machine (SVM). The accuracies of CNN, DBN and SDAE
methods are 79.76%, 81.19% and 79.29%. Murillo et al. [16]
introduced the Structural Co-occurrence Matrix technique for
feature extraction and different classifiers including multilayer
perceptron, SVM and k-nearest neighbors for classification.

Based on CNN, many researchers have noticed the variety
of nodule sizes and morphologies and proposed methods
with multi-scale features. Shen et al. [17] proposed a multi-
scale CNN (MCNN) method which utilizes multi-scale nodule
patches to learn a set of class-specific features. The proposed
method was evaluated on the dataset of Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-
IDRI) and achieved an accuracy of 86.84%. Later in 2017,
they [18] extended their methods from MCNN to multi-crop
CNN (MCCNN). MCCNN applies a new strategy based multi-
pooling strategy. It was evaluated with 880 benign nodules
and 495 malignant nodules from LIDC-IDRI and achieved an
accuracy of 87.14%. Juan et al. [19] proposed a multi-level
convolutional neural network for ternary nodule classification
and achieved 84.81% accuracy without hand-craft preprocess-
ing algorithm.

In addition to the deep features extracted by deep learning
methods, there are still several work on the combination of
deep features and traditional morphologic features of lung
nodules. Kim et al. [20] combined deep learned represen-
tations extracted using an SDAE with 76 raw hand-crafted
imaging features and constructed a linear SVM for nodule
classification. The result shows its superiority over methods
using only the original raw features. Xie et al. [21] fused
texture, shape and deep model-learned information at decision
level for nodule classification.

In both CADe systems [22], [23] and CADx systems, the
utilization of three-dimensional CNNs (3D-CNN) is still in an
early stage. Hussein et al. [24] proposed a 3D-CNN based
approach for rich feature representation of lung nodules. Liu
et al. [25] presented a 3D-CNN for nodule classification and
explored the classifier ensembles of 3D-CNN and traditional
machine learning models. Kuang et al. [26] proposed a 3D
multi-view CNN for nodule classification in which a 3D
Inception network is utilized.

Studies over the past years has provided important informa-
tion and experience on automatic lung nodule diagnosis with
CT images. While some research has found the positive effects
of the combination of deep features extracted by deep learning
methods and the morphologic features of pulmonary nodules

in CT images, there have been few empirical investigations
into the combination of image features and other features of a
patient. These features, including age, smoking history, cancer
history and other information, provide considerable reference
value in clinical diagnosis of lung nodules. In addition, as CT
scans are naturally 3D and the 3D contexts provide abundant
information for nodule diagnosis, two-dimensional convolu-
tional neural networks (2D-CNN) can cause dimensional loss
and thus fail to fully use the 3D context information. Although
several 3D-CNN methods have been proposed to deal with the
volumetric representation provided by CT scans, the structure
can still go deeper.

In this work, we develop a deep automated CADx system
based on 3D-CNN and support vector machine (SVM) with
multiple kernel learning (MKL) algorithm to manage hetero-
geneous features. Not only are the lung nodule CT scans
processed in this system, but also some other heterogeneous
information of patients like age, smoking history and other
features. Experiments are conducted on a private data set
whose images and patient information are collected from a
hospital. As the data amount in the private data set is not
adequate, we use the strategy of transfer learning, firstly pre-
training the 3D-CNN model with CT images from the LIDC-
IDRI data set and then finetuning the pretrained model with
the private data set.

Our main contributions are as follows:
(1) To make fully use of the spatial information of CT scans

and to adequately extract deep features, a 3D-ResNet is used
for automatic lung nodule binary classification (benign and
malignant). The strategy of transfer learning is employed to
solve the problem of insufficient data in the private data set.
Our model for image feature extraction is pretrained with the
famous LIDC-IDRI data set and finetuned to be adjusted to
the private data set.

(2) Heterogeneous features including deep features extracted
from images and patient information are combined to form a
fused description of the object. To the best of our knowledge,
this is the first study to introduce into the CADx system the
clinical priori knowledge about the impacts of different kinds
of information other than morphologic features on nodule
diagnosis.

(3) To learn from the heterogeneous features, an SVM with
MKL is proposed for nodule classification which is able to
learn an optimal linear combination of basis kernel to deal with
the heterogeneous features with different notions of similarity.

(4) The experimental results can prove the effectiveness of
the combination of heterogeneous features in the task of lung
nodule diagnosis.

II. METHODS

IN this section, we present the proposed automated pul-
monary nodule diagnosis system based on 3D-CNN and

MKL algorithm that combines the heterogeneous features
from CT images and the related information of patients
including age, smoking history, cancer history in five years,
hypertension, heart disease, diabetes, tuberculosis, hepatitis
and drinking thistory.
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TABLE I
ARCHITECTURE OF THE CHAIN-LIKE 3D-CNN MODEL.

Module Kernel Input Output

3D Convolution 3× 3× 3 40× 40× 20× 1 38× 38× 18× 32
3D Convolution 3× 3× 3 38× 38× 18× 32 36× 36× 16× 32

Max Pooling 2× 2× 1 36× 36× 16× 32 18× 18× 16× 32
3D Convolution 3× 3× 3 18× 18× 16× 32 16× 16× 14× 64
3D Convolution 3× 3× 3 16× 16× 14× 64 14× 14× 12× 64

Max Pooling 2× 2× 2 14× 14× 12× 64 7× 7× 6× 64
3D Convolution 3× 3× 3 7× 7× 6× 64 5× 5× 4× 128
3D Convolution 3× 3× 3 5× 5× 4× 128 3× 3× 2× 128

Max Pooling 2× 2× 2 3× 3× 2× 128 1× 1× 1× 128
FC \ 128 512
FC \ 512 512
FC \ 512 2

Softmax \ 2 2

A. Three-dimensional Convolutional Neural Networks

3D-CNNs are feed-forward neural networks that are used
to extract different levels of features of the input image.
Compared to 2D-CNNs, 3D-CNNs, whose channels are 3D
feature volumes instead of 2D feature maps, are capable of
extracting features in a cubic manner and preserving the spatial
information of the inputs. CNNs are typically made up of
convolutional, activation, pooling and fully-connected layers.
These layers are trained in an end-to-end mode to extract
features and to make predictions.

3D Convolutional Layers. A 3D convolutional layer pro-
vides the 3D convolutional function that extracts the 3D
feature volumes using multiple convolution kernels K with
a shape of Cout×Cin×Dk×Hk×Wk, where Cin and Cout

refers to the number of input channels and output channels
(or the amount of kernels), Dk denotes the depth of one
kernel while Hk and Wk the height and width of one kernel,
respectively. Given an input x with size B×Cin×D×H×W ,
where B denotes the batch size, C is the number of channels,
D represents the depth of the feature volume, and H and W
are the height and wdith of the feature volume, respectively.
The output of the 3D convolutional can be computed as (1):

yi,j = bi +

Cin∑
k=1

Kj,k ? xi,k, (1)

where ? denotes the 3D cross-correlation operator, b is the
bias, i represents the i-th sample among B samples and j
is the j-th channel among Cout channels. The size of output
y should be B × Cout × Dout × Hout ×Wout. Dout, Hout

and Wout are determined according to the parameters in the
cross-correlation operator and the kernel size.

Non-linear Activation Layers. To increase the non-linearity
of 3D-CNN, after a 3D-CNN layer follows a non-linear
activation layer. In this paper, the rectified linear unit (ReLU)
is adopted, which can be expressed as (2):

z = max(0,y), (2)

where y denotes the output of the previous 3D-CNN layer and
z is the output of the activation layer.

3D Pooling Layers. A 3D max-pooling layer follows the
activation layer to improve the robustness of extracted features

Fig. 1. A residual block.

and to cope with nodule images that are not aligned well. The
operation of 3D max-pooling layer can be defined as (3):

ui,j,d′,h′,w′ = max{zi,j,d,h,w : d′ ≤ d < d′ + p,

h′ ≤ h < h′ + p, w′ ≤ w < w′ + p},
(3)

where p denotes the pooling size, the meaning of i, j are the
same as in (1), d, h, w represent the 3D position of the input
and d′, h′, w′ represent the 3D position of the output.

Fully-Connected Layers. A fully-connected layer is com-
posed of neurons each of which is connected with all neurons
in the previous layer. It is generally followed by a softmax
classifier to make predictions.

B. CNN Architecture

Huge amounts of CNN architectures have been proposed
for feature extraction. The structure of traditional CNNs, such
as LeNet [27], Alexnet [28] and VGGNet [29], are chain-like,
which means that the computational blocks in these structures
form a simple chain. [26] In this section, we introduce a chain-
like 3D-CNN model which takes the input shape width ×
height × depth × channel of 40 × 40 × 20 × 1 for feature
extraction. Its architecture is shown in TABLE I.

Besides, it is well-known that the deeper CNN architectures
are capable of extracting higher levels of image features. How-
ever, as these chain-like networks go deeper, a degradation
problem appears. [30] Several works have used some tradi-
tional 3D-CNN architectures for lung nodule classification,
which indicates that their architectures cannot be so deep. In
this paper, we explore a 34-layer 3D residual net (ResNet) [31]
for feature extraction of pulmonary nodules. The 3D-ResNet
model is composed of 3D residual blocks. A 3D residual
block contains several convolutional layers and a shortcut
connection. After the convolution operations, the input and the
output of a 3D residual block are connected with a shortcut
connection skipping the layers in the block to realize an
identity mapping. In other words, through the connection, the
input signal and the output signal of the convolutional layers
are summed at the tail of the residual block. The structure of
a residual block is shown in Fig 1, where 3D-Conv represents
a 3D convolutional layers with the kernel size of 3 × 3 × 3.
In this paper, we use a 34-layer 3D-ResNet consisting of 4
residual blocks whose 3D convolutional layer numbers are
3, 4, 6, 3, respectively. To make a prediction, the neuron
number of the last fully-connected layer is set to two. The
detailed structure of the proposed 34-layer 3D-ResNet module
is shown in Fig 2. In Fig 2, 3D-Conv means a 3D convolutional
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Fig. 2. The 34-layer 3D-ResNet.

layer, whose parameters include kernel size, channels, stride
and padding. The pooling layers following the convolutional
leyers are set with the kernel size, stride and padding. The
parameters in Residual Block are the convolutional layers in
the bolck and the channel size, respectively. FC represents a
fully-connected layer that has two neurons in the network to
predict the malignancy of nodules.

C. Classifier with Multiple Kernel Learning

The 3D-ResNet estimates the malignancy of lung nodules
barely by CT images, paying no attention to the influence
of other relevant heterogeneous information. For instance, in
Mayo Clinic model [3], the probability of nodule malignancy
p is comupted as follows:

p =
ex

1 + ex
, (4)

where

x = −6.8272 + (0.0391× age) + (0.7917× smoke)
+ (1.338× cancer) + (0.1274× diameter)
+ (1.0407× spiculation) + (0.7838× location).

(5)

In (5), age, smoke and cancer are three attributes related
to a patient to identify the age of the patient, whether he/she
smokes and whether he/she suffered from extrathoracic cancer
in the last five years. The other three variables are associated
with morphologic features of nodules. It can be concluded
that apart from the features that can be extracted from chest
radiological data, clinical data can also affect the classification
nodules.

In this paper, we consider the features of chest radiological
data , i.e., CT images, and the clinical data including age, the
history of extrathoracic cancer, smoking history, hypertension,
heart disease, diabetes, tuberculosism, hepatitis, drinking his-
tory. For each of the clinical data except age, we use 0 to
represent negative and 1 to positive. In order to combine the
heterogeneous features, the simplest way is to concatenate all
of them into a long vector. With the long vector, classifiers
such as SVM can be used to make a prediction. SVM is
a classical classification algorithm whose goal is to find an
optimal separating hyperplane setting samples from different
classes apart. SVM is a kernel-based statistical classifier
that can be applied to nonlinear problems and has a hign
generalization ability.

However, as the features are from different Hilbert space and
have distinct implications, to feed them directly to a classifier
is obviously inappropriate. Fortunately, the effectiveness of
MKL on improving the interpretability of decision function
has been validated by some research [32], [33].

Fig. 3. The overall structure of our system.

In MKL, different kernel functions are applied. The purpose
of kernel learning is to learn the kernel matrix Kr by optimiz-
ing an objective function that makes the agreement between
the kernel and data. [34] In kernel learning, linear kernel,
polynomial kernel and radial basis function (RBF, also called
Gaussian function) kernel are some of the most frequently
used kernels. Based on kernel learning, MKL methods use a
linear combination of various kernels other than a single one
for kernel-based methods, which can be expressed as follows:

K(x, z) =

R∑
r=1

βrK
′
r(x, z), βr ≥ 0. (6)

In this equation, Kr, r = 1, 2, . . . , R denotes the r-th kernel
used to map the r-th type of features. β is an optimal weight.

To deal with the heterogeneous features, we adopt RBF
kernel for the classification of image features and polynomial
kernel for those features extracted from the clinical data. The
function of RBF kernel is described as follows:

K(x, z) = exp(−‖x− z‖
2γ2

), (7)

where x, z are two input features and γ is a hyperparameter.
The function of polynomial kernel is defined as:

K(x, z) = (x · z + 1)p, (8)

where p is a hyperparameter. With these two kernels, we obtain
the combination of them by EasyMKL [34], which learns the
optimal weight β.

D. Overall Architecture

Fig 3 shows the overall architecture of our system. The CT
scans of nodules are fed to a ResNet-34 model for feature
extraction. We use the features before the last fully-connected
layer as image features. Along with the features extracted,
clinical data encoded with 0/1 labels, including age, smkoing
history and other features, are classified with a SVM that
employs MKL to estimate the malignancy of lung nodules,
where a polynomial kernel is used for clinical features and a
RBF kernel works for image features.

To train the parameters in the ResNet-34 model, we use the
strategy of transfer learning. The model is firstly trained with
the LIDC-IDRI data set that has more data than the private
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TABLE II
DISTRIBUTIONS OF THE CLINICAL DATA.

Attributes Number(out of 61)

Smoking history 14
Extrathoracic cancer history 2

Hypertension 15
Heart Disease 5

Diabetes 1
Tuberculosis 2

Hepatitis 1
Alcohol consumption habits 11

Fig. 4. Distribution of age.

data set but no clinical information. After obtaining the well-
trained parameters, it is finetuned with a private data set which
has fewer CT images but clinical data of patients.

III. EXPERIMENTS AND RESULTS

TO evaluate the performance of the proposed model and to
validate the effictiveness of the 3D-ResNet architecture

and the heterogeneous features fusion, a series experiments
are described in this section.

A. Data Processing

Our experiments involove two data sets. The first one is
LIDC-IDRI data set which contains 1,018 lung cancer CT
cases annotated by 4 experienced radiologists. The other one
is a private data set obtained from a hospital. It contains 14415
CT images of 61 patients as well as their clinical information
including age, the history of extrathoracic cancer, smoking
history, hypertension, heart disease, diabetes, cerebrovascular
disease, tuberculosis, hepatitis and alcohol consumption habits.
The feature distributions are exhibited in Table II and Fig. 4.
In LIDC-IDRI, the malignancy levels are classified into 5

levels reflecting the degree of malignancy with 1 being benign
and 5 being malignant. In the experiments, we consider level
1 and 2 as benign nodules while 4 and 5 as malignant nodules.
Level 3 is ignored as the malignancy of nodules of this level
cannot be determined. As each of the nodules is annotated
by multiple radiologists, we take the mean malignancy level
of a nodule annotated by radiologists as the real label. In the
private dataset, lung nodules are directly labeled as 0 (benign
nodules) and 1 (malignant nodules).

TABLE III
ARCHITECTURE OF THE DNN MODEL.

Module Input Output

Input 28× 28× 1 784
FC 784 512
FC 512 256
FC 256 64
FC 64 2

Softmax 2 2

TABLE IV
ARCHITECTURE OF THE CNN MODEL.

Module Kernel Input Output

Convolution 5× 5 28× 28× 1 24× 24× 32
Max Pooling 2× 2 24× 24× 32 12× 12× 32
Convolution 5× 5 12× 12× 32 8× 8× 32
Max Pooling 2× 2 8× 8× 32 4× 4× 32

FC \ 4× 4× 32 512
FC \ 512 2

Softmax \ 2 2

To generate the 3D lung nodule crops, we resampled the
CT scans and cropped the nodules into volumes with a shape
of 40 × 40 × 20 according to the annotated locations of
each nodule. In LIDC-IDRI data set, we obtain 1181 benign
nodules and 420 malignant nodules after cropping. To balance
the amont between them, we rotate all malignant nodules
randomly and finally get 1181 benign nodules and 1260
malignant nodules. In the private data set, we obtain 228
malignant and 200 benign nodules.

For convenience of the comparative experiments, we also
generated the 2D crops of nodules in LIDC-IDRI according
to the annocations and obtained 3879 benign nodule crops and
3103 malignant nodule crops. All 2D nodule crops are resized
to 28× 28 according to the work of Song et al. [35]. The 2D
crops of benign and malignant nodules in the private data set
are 200 and 228, respectively, each of which is the center slice
of the corresponding 3D nodule volume.

For each of the clinical data except age, we use 0 to
represent negative and 1 to positive. In addition, the features
of age are normalized to [0, 1].

B. Evaluation Metrics

For measurement criterions, accuracy, sensitivity and speci-
ficity are employed. Accuracy measures the correctness of one
model, sensitivity measures the correctness of the positive

TABLE V
ARCHITECTURE OF THE SAE MODEL.

Module Input Output

Input 28× 28× 1 784
FC 784 256
FC 256 64
FC 64 2

Softmax 2 2
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TABLE VI
CLASSIFICATION RESULTS FOR CT SCANS

Methods LIDC-IDRI Private Data Set

Accuracy(%) Sensitivity(%) Specification(%) Accuracy(%) Sensitivity(%) Specification(%)

DNN 79.01 80.19 78.03 62.35 76.47 41.18
SAE 76.36 76.41 76.31 58.82 68.63 44.12
CNN 77.08 71.54 81.71 67.06 70.59 61.76

3D-CNN 91.29 91.01 91.40 84.70 86.05 83.33
ResNet-34 89.68 75.28 95.47 83.52 81.39 85.71

samples while specificity measures the correctness of the
negative samples. Thir defination are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

Sensitivity =
TP

TP + FN
, (10)

Specificity =
TN

TN + FP
, (11)

where TP is the number of malignant nodules being correctly
classified; TN is the number of benign nodules being correctly
classified; FP is is the number of benign nodules being
wrongly classified and FN is is the number of malignant
nodules being wrongly classified.

C. Results

We have implemented four models for comparison. Among
them, three models are from the work of Song et al. et
al. using three kinds of deep learning methods, CNN, SAE
and deep neural network (DNN) respectively for 2D nodule
classification. Their model configuration are shown in IV, V,
III, respectively. The other model is a conventional chain-like
3D-CNN, whose configuration is shown in I. The experiments
are organized as follows.

(1) Image feature extractor. In order to show the effective-
ness of the proposed image features extractor, the ResNet-34
model, together with the implemented models is validated on
the LIDC-IDRI data set and the private data set without using
the clinical data of patients.

All models are trained on the LIDC-IDRI firstly and fine-
tuned with the private data set. The training data and testing
data are splited into 4:1. The learning rate is initialized to
0.0001 and an optimizer of Adam is employed to adaptive
adjust the learning rate. The training is finished with 300
epoches under PyTorch framework. The loss function used in
these models is cross entropy.

TABLE VI presents the performance of classifiers using
different image feature extractors for nodule classification
with CT images. From this table, we can see that the 3D-
CNN model is more competitive than the other deep learning
methods with a higher accuracy of 91.29%, sensitivity of
91.01% and specification of 91.40% on LIDC-IDIR data set
and a higher accuracy of 84.70%, sensitivity of 83.33% and
specification of 86.65% on the private data set for nodule
classification.

TABLE VII
CLASSIFICATION RESULTS FOR HETEROGENEOUS FEATURES

Methods Accuracy(%) Sensitivity(%) Specification(%)

3D-CNN 84.70 86.05 83.33
3D-CNN+MKL 89.72 86.96 91.80

ResNet-34 83.52 81.39 85.71
ResNet-34+MKL 90.65 87.50 94.12

Surprisingly, the deeper network 3D ResNet-34 does not
achieve a better performance due to a lower sensitivity. We
suppose it is the classifier layers, a global average pooling
and a fully-connected layer that is not adequately non-linear
compared with the 3D-CNN model. This inspiration comes
from the results of the next experiment introduced below.

In addition, both of the two 3D networks outperform the 2D
models to a large extent, which validates that the 3D structures
are capable of utilizing the 3D nature of CT scans and lead
to better performances.

(2) Classifier with MKL. We test the influence of the het-
erogeneous feature learning by combining the image features
extracted by ResNet-34 and the chain-like 3D-CNN with the
clinical data of patients on the private dataset. We save the
output of the last layer before the fully-connected layer as the
input image features of the classifier. The hyper-parameters in
SVM and MKL are obtained through with grid search.

The classification results of the above methods are shown
in Table VII. The accuracy of ResNet-34 model with MKL
has reached 89.72% while the accuracy of ResNet-34 model
without heterogeneous features is 83.52%.

Note that while the ResNet-34 achieves an unsatisfactory
result in the classification using only CT scans compared
with the 3D-CNN model, in this experiment it achieves better
performance. As the mothods of 3DCNN+MKL and ResNet-
34+MKL share the same classifier and clinical data in this
experiment, it can be inferred that the features extracted by
ResNet-34 is more representative. It provides us with the
inspiration that the reason why ResNet-34 cannot outperform
the 3D-CNN model in the last experiment is probably because
of the different classifiers of the two models.

By comparing the results between those models using
heterogeneous features learning and the methods barely using
the image features, the significance of heterogeneous features
is proved.
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IV. CONCLUSION

In this paper, an efficient deep CADx system based on
3D-ResNet and MKL for pulmonary nodule classification is
proposed.To fully utilize the 3D nature of the CT scans and
to extract deep features, we use a 34-layer 3D-ResNet for
feature extraction. Not only the image features, but also the
clinical features of the patients are exploed in our work.
To effectively learn the heterogeneous featuers, we employ
a SVM suing MKL technique for nodule classification. The
experimental results can prove the improvements from the
fusion of heterogeneous features. As the clinical data in this
work are still insufficient and there exists some imbalance
problems, it lacks of sense to directly defer the importance of
each feature using data mining algorithms. However, mining
out the potential relationships between these features and
lung cancer may bring about new inspiration. In addition, the
pulmonary nodules are cropped directly from the labels and the
clinical features used in this work are artifitially extracted from
the medical records which cost labours. To improve the level
of automation and to promote the efficiency of radiologists,
it is worthy of realizing an overall nodule diagnosis system
including the modules of nodule detection, clinical feature
extraction and nodule classification in the future.
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