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Abstract 
In the context of increasing threats to the sensitive marine ecosystem by toxic metals, 
this study investigated the metal build-up on impervious surfaces specific to commercial 
seaports. The knowledge generated in this study will contribute to managing toxic metal 
pollution of the marine ecosystem. The study found that inter-modal operations and 
main access roadway had the highest loads followed by container storage and vehicle 
marshalling sites, while the quay line and short term storage areas had the lowest. 
Additionally, it was found that Cr, Al, Pb, Cu and Zn were predominantly attached to 
solids, while significant amount of Cu, Pb and Zn were found as nutrient complexes. As 
such, treatment options based on solids retention can be effective for some metal 
species, while ineffective for other species. Furthermore, Cu and Zn are more likely to 
become bioavailable in seawater due to their strong association with nutrients. 
Mathematical models to replicate the metal build-up process were also developed using 
experimental design approach and partial least square regression. The models for Cr and 
Pb were found to be reliable, while those for Al, Zn and Cu were relatively less reliable, 
but could be employed for preliminary investigations.  
 
Keywords: Marine ecosystem; Water quality modelling; Experimental Design; 
Stormwater pollutant processes; Stormwater quality  
 
 
1. Introduction 
The marine environment is a sensitive ecosystem that is home to a range of fauna and 
flora. Several studies have confirmed that marine ecosystems around the world are 
under serious threat due to pollution generated by various anthropogenic activities (Gao 
and Chen, 2012; Kucuksezgin et al., 2011). In particular, the presence of metals, which 
are toxic and persistent, can cause adverse impacts on the health of fauna and flora in 
the marine environment (Owen and Sandhu, 2000). Metals are contributed to the marine 
environment by diverse sources including the surrounding urban areas and seaports. 
 
Anthropogenic activities associated with urban areas such as increased traffic activities 
can contribute a significant amount of metals to urban impervious surfaces, which are 
eventually transported to the marine environment by stormwater runoff. The 
characteristics of metal build-up on urban surfaces, particularly impervious surfaces 
along with the mathematical replication of the build-up process has been extensively 
investigated in research literature (for example Egodawatta et al., 2013; Gunawardena et 
al., 2014), contributing to the development of effective strategies to control metal 
contributions from urban areas to the aquatic environment.  
 
However, only limited studies have investigated metal build-up on impervious surfaces 
specific to a commercial seaport (Goonetilleke et al., 2009), where a range of intense 
anthropogenic activities which are unique to this type of infrastructure such as container 
handling and heavy vehicle traffic activities occur. The limited knowledge currently 
available is a significant constraint to the design of effective management and treatment 
strategies to mitigate metal pollution originating from commercial seaports. 
 
The primary aims of the study presented in this paper were to: (1) characterise the metal 
build-up on the impervious surfaces specific to a commercial port; (2) investigate the 
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relationships of metals with other pollutants such as solids, organic carbon and 
nutrients, which influence metal behaviour in the build-up process and thereby provide 
essential knowledge for the design of effective treatment strategies; and (3) develop 
mathematical models to replicate the metal build-up process on impervious surfaces that 
are typical to a commercial port. The outcomes of the study can be extended to other 
commercial ports since the land uses investigated are typical to any commercial port. 
 
2. Materials and methods 
The study was conducted at the Port of Brisbane, Australia located adjacent to the 
Moreton Bay Marine Park, which has a high ecological and conservation value. The 
marine ecosystem consists of over 150 ha of mangroves, large seagrass areas, variety of 
fish species and resident and migratory shorebirds. The surrounding areas have 
experienced high urban growth, and coupled with a booming economy and intensive 
agricultural and tourist activities. These in turn have resulted in an increase in 
anthropogenic activities such as increased cargo handling at the Port (Goonetilleke et 
al., 2009). 
 
Six study sites encompassing different land use activities specific to a commercial 
seaport were selected at the Port of Brisbane (Fig. 1). The sites included a vehicle 
marshalling area (site 1), a container storage facility (site 2), a container terminal (site 
3), a quay line (site 4), an inter-modal operations area (site 5) and the main access 
roadway (site 6). The pollutant build-up samples were collected from 2.0 m × 1.5 m 
plot areas from the impervious surfaces of the selected study sites using a wet and dry 
vacuuming system. A detailed discussion on the build-up sampling protocol adopted 
can be found in Herngren et al. (2006). The samples were collected after a minimum of 
seven antecedent dry days as the total build-up asymptotes to an approximately constant 
value after this period of time (Egodowatta, 2007). The samples collected from the 
impervious surfaces were wet-sieved into different size fractions of <0.75 μm, 0.75-75 
μm, 75-150 μm, 150-300 μm and >300 μm as the particle size plays a critical role in the 
adsorption of metals by particulates (Gunawardana et al., 2014).  
 

 

Fig. 1: Location of study sites 
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The study investigated total suspended solids (TSS), total organic carbon (TOC), total 
nitrogen (TN), total phosphorous (TP), aluminium (Al), lead (Pb), cadmium (Cd), 
chromium (Cr), copper (Cu), arsenic (As), nickel (Ni), zinc (Zn) and mercury (Hg), 
which are common pollutants found in the environment (Gunawardena et al., 2013). 
The following methods were used for the laboratory analyses of pollutants: (1) TSS – 
2540D and 2540C (APHA, 2005); (2) TOC – 5310C (APHA, 2005); (3) TN – 4500F 
and 4500B (APHA, 2005); (4) TP – 4500P (APHA, 2005); (5) Al, Pb, Cd, Cr, Cu, As, 
Ni and Zn – USEPA 200.7 (USEPA 2001) and 6010B (USEPA 1996); and (6) Hg – 
USEPA 7470A (USEPA 1994) and 3112B (APHA, 2005). The data analyses were 
performed using univariate and multivariate data analysis techniques. Mutlivariate 
analyses such as principal component analysis (PCA) and partial least squares 
regression (PLS) were conducted using MATLAB (Mathworks, 2013). 
 
3.  Results and Discussion 
3.1 Metal build-up  
The Hg load in the build-up was below the detection limit, while As, Cd and Ni loads 
were relatively very low. Consequently, these were excluded from further analysis. The 
average loads of other pollutants across the six study sites for the different particle size 
fractions are presented in Table 1(a) along with the corresponding standard deviation. 
As evident from Table 1(a), the pollutants were primarily present as fine particles <150 
μm. The coarse particle fraction, i.e. >150 μm, was also present in significant amount. 
The predominant presence of finer particles is of concern since conventional sediment 
reduction approaches for stormwater treatment may not be effective in trapping finer 
particles.  
 
In general, total solids load was found to be the highest followed by the total organic 
carbon load. Among metals, Al load was significantly higher than the rest. This can be 
attributed to the fact that Al is a major component in geogenic materials (Singh and 
Gilkes, 1992), and hence abundantly present in the environment. Though Zn, Cu, Pb 
and Cr are primarily contributed by the wear of vehicle components (Gunawardena et 
al., 2014), the Zn load was significantly higher than those of Pb, Cu and Cr, suggesting 
the presence of additional Zn sources such as container surfaces and roofs present at the 
study sites. However, their bioavailability is dependent on their association with other 
pollutants such as solids, organic carbon and nutrients as discussed in Section 3.2. 
 
Table 1(b) gives the specific pollutant load in the total particulate build-up at the six 
study sites. Among the sites investigated in this study, sites 5 and 6 had relatively higher 
pollutant loads compared to the rest. Site 5 is the site of inter-modal operations and has 
inter-locking pavers, which can trap a relatively higher amount of pollutants in-between 
the pavers. On the other hand, site 6 is a roadway surrounded by unpaved areas and is 
used by heavy trucks. Consequently, a high amount of pollutants could have been 
contributed by geogenic sources and traffic activities. In contrast, sites 3 and 4 had the 
lowest amount of pollutants. Site 4 is the quay line, which has a smooth concrete 
pavement. Though appreciable traffic activities occur at site 4, its proximity to the shore 
could have resulted in the removal of a significant amount of pollutants from the 
smooth concrete surface by wind. Similarly, site 3 is used as a short term storage area, 
which could have limited the opportunity for the accumulation of a significant amount 
of pollutants. Sites 1 and 2, which are used for container storage and vehicle 
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marshalling, respectively, had moderate amount of pollutants. It is worthy of note that 
similar trends were observed for other particle fractions investigated. Consequently, it is 
important that frequent street sweeping measures need to be undertaken in areas that 
were identified to have accumulated high pollutant loads, in order to reduce the 
pollutant contribution to the marine ecosystem. 
 
Table 1: (a) Average pollutant loads for different particle sizes across the study 
sites (Average ± Standard deviation) and (b) Pollutant loads in total particulate 
sample  
(a) 
Size (μm) aAl aCr aCu aZn aPb aTP aTN aTOC bTS 

< 150 339±433 2.7±3.1 6.9±5.8 99±111 4.8±4.4 36±65 128±203 296±119 22±21 
150-300 78±99 0.6±0.6 1.8±1.4 43±45 1.8±1.6 7±15 23±19 64±62 6±5 

> 300 50±77 0.5±0.6 2.3±3.4 76±142 1.3±2.2 15±34 34±56 82±103 4±7 
Total 

particulate 257±223 2.3±2.0 5.4±4.7 128±127 5.1±4.1 52±62 102±113 246±196 26±22 
(b) 

Site aAl aCr aCu aZn aPb aTP aTN aTOC bTS 
1 78 0.25 1.1 17 0.47 51 78 56 8.9 
2 232 2.8 4.7 102 7.5 11 51 249 17 
3 14 0.11 0.26 7.1 0.32 0.00 3.7 25 1.2 
4 30 0.18 2.5 9.3 0.25 3.5 8.5 60 2.4 
5 648 5.7 6.0 206 8.1 28 93 471 66 
6 541 4.7 18 424 14 219 380 614 61 

Notes:  
a – unit is mg/3m2; b - unit is g/3m2 (3m2 was the size of the sampling area) 
Site identification: 1 – Vehicle marshalling area, 2 – Container storage facility, 3 – Container terminal, 4 
– Quay line; 5 – Inter-modal operation area; 6 – Roadway. 
 
3.2 Relationships of metals with other pollutants in build-up 
Principal Component Analysis (PCA) was used to investigate the relationships of metal 
ions with other pollutants in build-up since this knowledge is essential for 
understanding the potential bioavailability of metal ions. PCA projects the objects and 
variables of a data matrix on the orthogonal principal components (PCs) in order to 
extract valuable information (Mostert et al., 2010). The first PC explains the highest 
variance in the data, while the rest is explained by the subsequent PCs in decreasing 
order. In general, the projection of objects and variables on the first two PCs are plotted 
as biplots, which facilitate the visual observation of patterns and relationships between 
objects and variables leading to increased understanding of a complex data set. An acute 
angle between the loading vectors in the biplot suggests that the corresponding variables 
have a strong positive correlation, while an obtuse angle indicates a negative 
correlation. The variables are independent if the related vectors are orthogonal. 
 
The data matrix used in this study is presented in Table S1 in the Supplementary 
Information. It consisted of pollutant build-up loads for the different particle sizes. 
Since the outliers present in a data matrix can significantly affect the reliability and 
accuracy of the analysis outcomes, the outliers in the data matrix were identified using 
the box-whisker plots presented in Fig. 2. Consequently, samples 5a, 6a and 6b had 
outlier values for one or more pollutants. These outliers are attributed to sampling 
and/or testing errors or abnormal conditions prevailing during the sampling period and 
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were excluded from further analysis.  
 

 

Fig. 2: Box-whisker plots for metals, nutrients, solids and organic carbon 

The outlier-free data set was subjected to PCA to investigate the inter-relationships 
between the objects and variables. The data matrix consisted of the pollutant loads 
(variables) in the build-up for different particle sizes collected from the six port specific 
land uses (objects). The data matrix (25 objects and 9 variables) was first normalised (z-
transformed) as a pre-treatment measure and then subjected to PCA. The resulting PCA 
biplot (Fig. 3) explains 78% of the total variance of the original data suggesting that the 
outcomes derived from PCA is reliable. 
 
According to Fig. 3, samples from sites 5 and 6 generally have positive scores on PC1, 
while sites 3 and 4 have negative scores. This is in agreement with the pattern observed 
in the original data (Section 3.1), where the sites 5 and 6 had the highest pollutant loads 
and the sites 3 and 4 had the lowest loads. Therefore, PC1 discriminates the samples 
based on the level of pollution. In contrast, on PC2, most sampling sites are close to the 
origin suggesting that PC2 has less influence in discriminating the samples. There is no 
clear clustering of the samples based on the particle size fractions suggesting that the 
site specific characteristics play a significant role in the characteristics of pollutant 
build-up on the port impervious surfaces, compared to the influence of particle size. 
 
The relationships between metals and other pollutants such as TSS, TOC and nutrients 
were investigated using the PCA biplot since these pollutants can adsorb and/or form 
complexes with metals (Weber et al., 1991). Consequently, they can influence metal 
characteristics such as mobility and bioavailability. In Fig. 3, the investigated metals 
have a strong positive correlation with TSS since the angles between their vectors are 
acute. This suggests that Cr, Al, Pb, Cu and Zn were predominantly attached to solids. 
Solids can desorb the metal ions depending on the characteristics of solids and media 
such as stormwater or sea water. Additionally, a treatment system to retain solids can be 
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effective in reducing Cr, Al, Pb, Cu and Zn loads. 
 

 

 

Fig. 3: PCA biplot 

Similarly, Cu and Zn have a strong positive correlation with TN and TP, while Pb has a 
relatively weaker correlation. This can be attributed to the tendency of Cu and Zn to 
form stable complexes with ligands containing nitrogen and phosphorous (Ghasemi et 
al., 2013; Uchimiya et al., 2011). Since nutrient complexes are generally soluble or can 
be converted to soluble forms, there is a high potential that Cu and Zn can become 
bioavailable. Meanwhile, Cr and Al vectors are perpendicular to nutrient vectors 
suggesting Cr and Al loads are independent of nutrient loads. Therefore, it can be 
hypothesised that significant amount of Cr and Al were not present as nutrient 
complexes.  
 
TOC vector has a negative correlation with Zn, Cu and Pb vectors and no correlation 
with Cr and Al vectors. This suggests that more favourable binding sites for metal ions 
were present in nutrients and TSS compared to TOC. Gunawardana et al. (2015) also 
suggested that solids such as clay forming minerals can out-compete TOC in forming 
complexes. Furthermore, the TOC vector has a strong negative correlation with nutrient 
vectors suggesting that nutrients are predominantly present in inorganic form (Wu et al., 
2007).  
 
3.3 Mathematical replication of metal loads 
Mathematical replication of the build-up process was undertaken to enable the accurate 
prediction of metal loads present on impervious surfaces and to model stormwater 
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quality. Such capabilities are essential for creating effective measures to mitigate the 
potential degradation of the marine ecosystem from pollutants transported by 
stormwater runoff. The models developed can be extended to other commercial ports 
since they incorporate land uses that are typical to any commercial port.  
 
In this study, partial least squares regression (PLS) was employed to formulate the 
mathematical replication of the metal build-up process on impervious surfaces at the 
port. PLS is a multivariate regression technique that is used to simultaneously extract 
the underlying factors in both the independent and dependent variables. Consequently, it 
is a sophisticated extension of the conventional multiple linear regression (Ruiz et al., 
2008). The calibration data matrix for PLS was selected using experimental design 
techniques. 
 
3.3.1 Experimental design 
Experimental design techniques facilitate strategic planning and execution of controlled 
experiments, where the independent variables or factors are varied systematically at 
different levels to investigate their influence on a response or predictor variable 
(Brereton, 2003). As such, experimental design techniques are useful in mathematically 
replicating a process such as the pollution build-up process. In this study, TSS, TN, TP 
and TOC loads were considered as the independent variables to replicate the build-up 
process as they are associated with the metal loads in build-up as discussed in Section 
3.2. However, the strong correlation between TN, TP and TOC loads as evident from 
Fig. 3 can result in collinearity problem, which can lead to poor precision in the 
estimation of regression coefficients (Park et al., 2014). Therefore, TOC load was 
selected as the representative variable for TN and TP loads. Consequently, the 
independent variables were reduced to TSS and TOC loads. The metal loads were taken 
as the dependent variables. 
 
In this study, Taguchi L9 orthogonal array design (Table 2) was used for experimental 
design since this method requires a relatively reduced number of experiments compared 
to the conventional full factorial design (Zhou et al., 2000). In Taguchi L9 orthogonal 
array design, three levels need to be assigned for each independent variable. Unlike 
laboratory based experiments, assigning precise levels to variables is a challenging task 
in field experiments because of the difficulty in controlling the variability in the 
independent variables (Ogunkunle et al., in press). For example, three values for pH of 
water in a laboratory experiment can be easily set as 4, 6 and 8, while stormwater pH in 
the field can vary depending on the catchment characteristics.  
 
In the development of the prediction model for the volatile organic compounds on urban 
roads, in which the experimental design technique was used to select the calibration data 
matrix, Mahbub et al. (2011) randomly assigned the data points to ‘high’ and ‘low’ 
levels. In the present study, an alternative method is proposed for systematic allocation 
of levels in the experimental design for field based studies. 
 
In the proposed method, levels are assigned as a range rather than as a precise value. As 
such, a range up to 33rd percentile was assigned as the first level of a variable, 33rd to 
67th range was assigned as the second level and over 67th percentile was considered as 
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the third level. A detailed explanation of the calculation involved with this method is 
provided in the Supplementary Information.  
 
The ranges assigned for the first, second and third levels of TSS were 0.03 – 1.16, 1.17 
– 10.2 and 10.3 – 25.6 g/3m2, respectively. Similarly, 0.00 – 0.04, 0.05 – 0.08 and 0.09 
– 0.37 g/3m2 were used as the first, second and third levels of TOC, respectively. The 
resulting Taguchi design is given in Table 2. 
 
Table 2: Results of Taguchi orthogonal array design 
Taguchi Array 

 
Independent variable load 

(g/3m2) 
Dependent variable load (g/3m2) 

 
 TS TOC TSS TOC Al Cr Cu Zn Pb 

1 1 0.27 0.03 3.78 0.03 0.91 5.59 0.10 
1 2 0.65 0.05 6.11 0.06 0.65 5.03 0.28 
1 3 0.23 0.17 3.19 0.02 0.27 2.05 0.07 
2 1 1.36 0.02 33.54 0.53 0.95 20.12 0.60 
2 2 6.72 0.06 73.92 0.49 2.05 26.43 1.31 
2 3 2.76 0.37 0.00 0.04 0.33 1.66 0.00 
3 1 16.49 0.02 267.92 2.13 6.05 160.12 4.62 
3 2 18.41 0.06 441.73 2.76 3.50 86.50 3.68 
3 3 17.79 0.21 130.82 1.53 3.22 52.21 3.77 

 
3.4.2 Model development 
The data matrix developed using the Taguchi orthogonal array experimental design 
(Table 2) was subjected to PLS analysis to develop the mathematical replication of 
metal build-up. The mathematical models developed were validated using the Leave-
One-Out Cross-Validation (LOOCV) method. The corresponding MATLAB codes 
developed for LOOCV is presented in the Supplementary Information. The Relative 
Prediction Error (RPE), Standard Error of Cross Validation (SECV) and Cross-
Validated Coefficient of Determination (Q2) were used to investigate the validity of the 
equations and the corresponding formulae are given in the Supplementary Information. 
 
The outcomes of the analysis are presented in Table 3. The data variances explained by 
the mathematical models were over 75% indicating that the outcomes of PLS are 
reliable. The RPE values of 36% and 21% for Cr and Pb, respectively, are considered 
well within the error limits for complex natural systems as suggested by Egodawatta et 
al. (2013). Additionally, Cr and Pb had low SECV and high Q2 values, which suggest 
that the developed models can replicate the build-up of these metals and can also be 
used for quantitative prediction of loads in the build-up on port impervious surfaces. 
Furthermore, it can be concluded that Cr and Pb loads in pollutant build-up are strongly 
dependent on the TSS and TOC loads. 
 
In contrast, the equations for Al and Zn have relatively higher RPE values. 
Additionally, SECV values for Al and Zn are very high along with very low Q2 
indicating that the replication of Al and Zn based on TSS and TOC loads are less 
reliable. This suggests that traffic and anthropogenic factors such as average daily 
traffic volume can play an important role in Al and Zn build-up in addition to the 
characteristics of TSS and TOC. Though Cu has a high RPE value, it has relatively 
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lower SECV and moderate Q2 values. Therefore, the model for Cu can be used in 
preliminary investigations. 
 
Table 3: PLS regression results 

Metal Regression parameters Error values Q2 
Variance 
Explained Constant TS TOC SECV RPE 

Al 24.3 16.2 -306.6 132 65 35 80 
Cr 0.18 0.12 -1.8 0.5 36 78 92 
Cu 1.0 0.21 -4.5 1.4 45 56 84 
Zn 16.5 5.3 -131.4 50 69 22 75 
Pb 0.26 0.22 -2.4 0.6 21 92 96 

 
4.  Conclusions 
The primary conclusions from the investigation of pollutant build-up on the impervious 
surfaces of a commercial seaport are: 
• The solids load in the build-up is the highest followed by organic carbon. Among 

metals, Al load is the highest followed by Zn load. Pb, Cu and Cr loads are 
moderate, while As, Cd, Ni and Hg are relatively very low. 

• The inter-modal operations site and the access roadway have relatively higher 
pollutant loads followed by the container storage and vehicle marshalling sites. The 
quay line and short term storage areas have the lowest pollutant loads. The observed 
trend in pollutant loads are attributed to a range of site-specific characteristics such 
as the type of impervious surfaces and the nature of the anthropogenic activities. 

• Cr, Al, Pb, Cu and Zn are predominantly attached to the solids and significant 
amount of Cu, Pb and Zn are found as nutrient complexes. Solids and nutrients out-
compete organic carbon in forming complexes with metal ions in the build-up. 

• Mathematical models developed to replicate the build-up process for Cr and Pb are 
more reliable because of the acceptable relative prediction errors, low standard error 
of cross-validation and high cross-validated coefficient of determination.  

• In contrast, the models for Al and Zn have high relative prediction errors, high 
standard error of cross-validation and low cross-validated coefficient of 
determination suggesting that these are relatively less reliable. This is attributed to 
the fact that Al and Zn build-up is governed by traffic factors such as average traffic 
volume rather than the solids and organic carbon present in the build-up. 

• The predictive model developed for Cu has a high relative prediction error. 
However, due to the fact that it has a relatively lower standard error of cross-
validation and high cross-validated coefficient of determination, suggests that the 
model can be useful in preliminary investigations. 
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Table S1: Data matrix used in the study after removing mercury, arsenic, 
cadmium and nickel (The loads are in mg/3m2 except for TSS, which is in g/3m2) 

aID Al Cr Cu Zn Pb TP TN TSS TOC 
1a 78 0.25 1.1 17 0.47 51 78 8.9 56 
2a 232 2.8 4.7 102 7.5 11 51 17 249 
2b 142 1.6 3.6 36 3.6 5.2 22 10 235 
2c 36 0.48 1.7 23 1.7 1.6 8.3 8.1 70 
2d 44 0.54 2.2 38 2.2 1.7 20 10 64 
2e 8.9 0.10 0.70 8.6 0.50 0.00 3.2 1.0 58 
3a 14 0.11 0.26 7.1 0.32 0.00 3.7 1.2 25 
3b 7.6 0.08 0.45 4.4 0.20 0.00 9.3 0.70 78 
3c 3.1 0.02 0.39 2.0 0.06 0.00 6.2 0.11 171 
3d 1.1 0.00 0.16 0.97 0.00 0.00 9.3 0.09 171 
3e 0.93 0.00 0.09 0.86 0.00 0.00 6.2 0.03 265 
4a 30 0.18 2.5 9.3 0.25 3.5 8.5 2.4 60 
4b 17 0.11 2.7 4.8 0.18 0.00 23 3.0 76 
4c 3.3 0.03 0.60 1.5 0.06 0.00 15 0.26 45 
4d 3.2 0.03 0.88 1.5 0.20 0.00 20 0.45 30 
4e 4.4 0.03 0.94 9.7 0.00 0.00 17 0.09 30 
5a 648 5.7 6.0 206 8.1 28 93 66 471 
5f 0.00 0.04 0.33 1.7 0.00 0.00 17 2.8 368 
5b 607 4.8 5.4 76 4.8 20 26 25 0.00 
5c 442 2.8 3.5 86 3.7 0.00 26 18 55 
5d 239 1.4 2.0 66 3.1 0.00 11 7.7 37 
5e 53 0.96 1.6 33 0.88 0.00 11 1.5 18 
6a 541 4.7 18 424 14 219 380 61 614 
6f 238 1.6 7.5 115 4.4 99 329 0.00 219 
6b 18 0.22 1.3 18 0.18 5.5 91 26 146 
6c 179 1.7 7.0 128 5.1 48 69 15 18 
6d 102 0.90 3.7 108 3.3 35 57 11 18 
6e 183 1.2 8.2 329 5.3 74 133 16 37 

Note: a In the site ID, the number denotes the sites, while the small cap letter denotes the particle size; 1 – 
Vehicle marshalling area, 2 – Container storage facility, 3 – Container terminal, 4 – Quay line; 5 – Inter-
modal operation area; 6 – Roadway; a – total particulates, f - particle size < 0.75 μm, b – particle size 0.75 
– 75 μm, c - particle size 75 – 150 μm, d - particle size 150 – 300 μm, e - particle size > 300 μm. 
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Assigning levels to each variable in statistical design of field based experiments 
The following steps were followed in assigning levels for variables in a field 
experimental design: 
Step 01: Minimum, 33rd percentile, 67th percentile and maximum for TSS and TOC 
were calculated from the outlier free data matrix (Table S2). 
 
Table S2: Descriptive statistics for TSS and TOC 

Descriptive statistics TSS (g/3m2) TOC (g/3m2) 
Minimum 0.03 0.00 

33rd percentile 1.2 0.04 
67th percentile 10 0.08 

Maximum 26 0.37 
 

Step 02: Three level Taguchi design was used in this study. The three levels were 
determined based on Table S2 and are presented in Table S3. 
 
Table S3: TSS and TOC ranges assigned for levels 

Level Range TSS range TOC range 
1 Minimum – 33rd percentile 0.03 – 1.2 0.00 – 0.04 

2 slightly higher than 33rd percentile – 67th 
percentile 1.3 – 10 0.05 – 0.08 

3 slightly higher than 67th percentile - Maximum 11 – 26 0.09 – 0.37 
 

Step 03: Taguchi array corresponding to two factors with three levels were chosen and 
the data matrix was ordered according to the design as shown in Table S4. 
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Table S4: Ordering the data matrix according to Taguchi design (Similar colors 
indicate similar levels) 
 
Taguchi Array Experimental Data 
TSS TOC TS TOC Al Cr Cu Zn Pb 

1 1 0.45 0.03 3.2 0.03 0.88 1.5 0.20 
1 1 0.09 0.03 4.4 0.03 0.94 9.7 0.00 
1 2 1.0 0.06 8.9 0.10 0.70 8.6 0.50 
1 2 0.26 0.05 3.3 0.03 0.60 1.5 0.06 
1 3 0.70 0.08 7.6 0.08 0.45 4.4 0.20 
1 3 0.11 0.17 3.1 0.02 0.39 2.0 0.06 
1 3 0.09 0.17 1.1 0.00 0.16 0.97 0.00 
1 3 0.03 0.26 0.93 0.00 0.09 0.86 0.00 
2 1 1.2 0.02 14 0.11 0.26 7.1 0.32 
2 1 1.5 0.02 53 0.96 1.6 33 0.88 
2 2 2.4 0.06 30 0.18 2.5 9.3 0.25 
2 2 3.0 0.08 17 0.11 2.7 4.8 0.18 
2 2 8.1 0.07 36 0.48 1.7 23 1.7 
2 2 10 0.06 43 0.54 2.2 38 2.2 
2 2 8.9 0.06 78 0.25 1.1 17 0.47 
2 2 7.7 0.04 239 1.4 2.0 66 3.1 
2 3 2.8 0.37 0.00 0.04 0.33 1.7 0.00 
3 1 25 0.00 607 4.8 5.4 75 4.8 
3 1 15 0.02 179 1.7 7.0 128 5.1 
3 1 11 0.02 102 0.90 3.7 108 3.3 
3 1 16 0.04 183 1.2 8.2 329 5.3 
3 2 18 0.06 442 2.8 3.5 86 3.7 
3 3 17 0.25 232 2.8 4.7 102 7.5 
3 3 10 0.24 142 1.6 3.6 36 3.6 
3 3 26 0.15 18 0.22 1.3 18 0.18 

 

Step 04: The average of each experimental combination was calculated to develop the 
calibration matrix used for Partial Least Squares Regression as shown in Table S5 
(Same as Table 2 in the manuscript). 
 
Table S5: Results of Taguchi orthogonal array design 

Taguchi Array Independent variable load Dependent variable load 
 TS TOC TSS TOC Al Cr Cu Zn Pb 

1 1 0.27 0.03 3.78 0.03 0.91 5.59 0.10 
1 2 0.65 0.05 6.11 0.06 0.65 5.03 0.28 
1 3 0.23 0.17 3.19 0.02 0.27 2.05 0.07 
2 1 1.36 0.02 33.54 0.53 0.95 20.12 0.60 
2 2 6.72 0.06 73.92 0.49 2.05 26.43 1.31 
2 3 2.76 0.37 0.00 0.04 0.33 1.66 0.00 
3 1 16.49 0.02 267.92 2.13 6.05 160.12 4.62 
3 2 18.41 0.06 441.73 2.76 3.50 86.50 3.68 
3 3 17.79 0.21 130.82 1.53 3.22 52.21 3.77 
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Formulae for error function and the Matlab codes used for PLS 

Error functions 

RPE = �∑�Ypredicted − Ymeasured�
2

∑ Ymeasured2 × 100% 

SECV =  �
∑�Ypredicted − Ymeasured�

2

N
 

Q2 = �1 −
∑�Ypredicted − Ymeasured�

2

∑(Y� − Ymeasured)2
� × 100% 

where N is the number of samples, Ypredicted is the metal loads predicted using the 
developed models, Ymeasured is the metal loads measured from the experimental data and 
Y� is the mean of Ymeasured. 
 

Matlab codes 
function [b,RPE,SECV,Q2,VARI] = CVPLS (x,y) 
%CVPLS returns Partial Least Squares regression coefficients (b) with %relative 
prediction error (RPE), standard error of cross-validation %(SECV) and cross-validated 
coefficient of determination (Q2). The %input y is the data matrix containing dependent 
variables and x is %the data matrix containing independent variables. 
 
[XL,YL,XS,YS,b,VARI] = plsregress(x,y); 
%Matlab built-in function that performs partial least squares %regression and returns 
the regression coefficients matrix, b. The %first element of matrix b is the constant 
followed by regression %coefficients. 
 
PredictMatrix = []; 
 
for n = 1:length(y) 
%Data matrix for model development, consists of all data points except one     
    TestIndex = n; 
    TrainIndex = setdiff(1:length(y),TestIndex); 
    X=x(TrainIndex,:); 
    Y=y(TrainIndex,:); 
    [XL1,YL1,XS1,YS1,b1,VARI1] = plsregress(X,Y);  
%Prediction of Y using regression coefficient for the one left out %sample       
    PredictedY = [1 x(TestIndex,:)]*b1;  
%Data matrix consisting of measured and predicted values 
    MeasuredVsPredict = [y(TestIndex,1), PredictedY];  
    PredictMatrix = [PredictMatrix; MeasuredVsPredict];  
end 

17 
 



 
[NSamples NVariables] = size(X); 
MeasuredY  = PredictMatrix(:,1); 
PredictedY = PredictMatrix(:,2); 
 
%Relative error of prediction 
RPE = 100*(sqrt (sumsqr (PredictedY-MeasuredY)/(sumsqr(MeasuredY)))); 
 
% Standard error of cross validation 
SECV = sqrt(NSamples/(NSamples-1))*sqrt(sumsqr(MeasuredY-
PredictedY)/NSamples); 
 
%Cross-validated R2 
Q2 = 100*(1-(sumsqr (PredictedY-MeasuredY)/sumsqr(MeasuredY-
mean(MeasuredY))));  
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