HR-MAS NMR Spectroscopy Shows Regional Metabolite Variation in Bovine Articular Cartilage

Tandin Phuntsho & Mark Wellard

Queensland University of Technology Brisbane Australia

Articular Cartilage

Thin Layer of hyaline cartilage
Physiologically isolated
Functions as a friction free shock absorber.

Load plays an important role

HR-MAS NMR Spectroscopy

- Solution state NMR is not suited for solids
 - Exhibit broad NMR signals due to anisotropic interactions (dipolar coupling, chemical shift anisotropy (CSA), and quadrupolar interactions)
- all anisotropic interactions in solids have a orientation component that scales as $(3\cos^2\theta 1)$.
- sample is spun at the "magic angle" ($\theta = 54.7$ degree) w.r.t external magnetic field to minimise interactions
- Hybrid between solid state and classical solution state NMR

Principal Component Analysis

- Most commonly used metabolomic analytical method
 - linear combination of original data describing the variation in the samples
- Dimension reduction technique
 - defines relationship within samples (Scores plots)
 - defines relationship between variables (loading Plots)

Research Article

Received: 21 March 2011,

Revised: 19 May 2011,

Accepted: 06 June 2011,

Published online in Wiley Online Library: 18 August 2011

(wileyonlinelibrary.com) DOI: 10.1002/nbm.1769

High-resolution magic angle spinning NMR spectroscopy of human osteoarthritic cartilage

Keerthi Shet^{a,†}, Sarmad M. Siddiqui^{a,†}, Hikari Yoshihara^a, John Kurhanewicz^a, Michael Ries^b and Xiaojuan Li^a*

Longitudinal Profiling of Articular Cartilage Degradation in Osteoarthritis by High-Resolution Magic Angle Spinning ¹H NMR Spectroscopy: Experimental Study in the Meniscectomized Guinea Pig Model

Michele Borel,^{*,†} Philippe Pastoureau,[‡] Janine Papon,[†] Jean Claude Madelmont,[†] Nicole Moins,[†] Jean Maublant,[†] and Elisabeth Miot-Noirault[†]

AIM

Determine differences in metabolic profile between load bearing and non-load bearing region of the articular cartilage

Cartilage Preparation

- Bovine knee joints acquired from local abattoir
- ~ 15 mg of tissue removed from the desired locations.
- Tissue placed in 4mm HR-MAS insert containing D₂O-PBS (20μL, pH 7.4)
- Total of 32 samples from four joints

(Joint-Articulating Surface Motion, Kenton R. Kaufman, Kai-Nan An in Biomedical Engineering Fundamentals, CRC Press 2006)

~15 mg of tissue

Femur	
FLA1	loaded region 1
FLA2	loaded region 2
FUA1	unloaded region 1
FUA2	unloaded region 2

Tibia

TLA1	loaded region 1
TLA2	loaded region 2
TUA1	unloaded region 1
TUA2	unloaded region 2

HR-MAS Spectra

Acquisition

- 9.4T Bruker Avance III spectrometer equipped with 4mm HR-MAS probe operating at 400MHz for ¹H, D₂O for field frequency lock
- Sample spun at 4KHz;
- 1D-NOESY pulse sequence with water pre-saturation to minimize broad base line components arising from macro molecules
 - Parameters : 32k data points, spectral width 6kHz, total scans 512, acquisition time
 2.5s, relaxation delay 2s: total measurement time 40 min.

HR-MAS Spectra

Processing

- Baseline corrected using polynomial function in Topspin.
- Referenced to strong (*N*-acetyl group) signal at 2.04 ppm.
- Spectra overlaid to check for consistency of baseline and peak alignment using Amix.
- Spectra divided into 'buckets' of 0.04 ppm
- Region between 4.7 ppm and 5.2 ppm (residual water signal) excluded.

Multivariate Analysis

- An unsupervised Principal component analysis was performed using with Pareto scaling applied to the data (AMIX software, Bruker).
- The confidence level was set at 95%

- Integral values of peaks defined by the first three PCs tabulated
- Two-tailed, paired sample Students t test (significance level $\alpha = 0.05$)

Results and Discussion

(a) The influence plot:
shows that there are no
samples falling beyond
the projected space of
95% CI

(b) The variance plot shows the percentage of contribution to the variance by each PC.

(c) scores plot : shows the relationship between samples with Hotellings test 80% CI. The unloaded sample clustering shows a wider distribution compared to the loaded samples.

(d) loadings plot: the buckets responsible for the variance PC1 and PC2 are distributed orthogonally.

Metabolite Identification

Identifying buckets associated with principle components

- AMIX SBASE metabolite database
- Previously published literature
- Human Metabolome Database

Representative 1D-NOESY spectra with corresponding labeled metabolite peaks

Lactate/threonine

Tibia loaded cf unloaded **p = 0.003.

N-Acetyl group

N-acetyl group:

Femur and tibia loaded cf unloaded *p = 0.001, **p = 0.04.

Phosphocholine

Femur loaded cf unloaded *p = 0.0025.

Conclusion

HR-MAS NMR spectroscopy can detect significant differences between the metabolite profiles of load bearing and non-load bearing regions of healthy bovine articular cartilage

Thank You