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Abstract—There is an increased interest in the use of Unmanned 

Aerial Vehicles for load transportation from environmental 

remote sensing to construction and parcel delivery. One of the 

main challenges is accurate control of the load position and 

trajectory. This paper presents an assessment of real flight trials 

for the control of an autonomous multi-rotor with a suspended 

slung load using only visual feedback to determine the load 

position. This method uses an onboard camera to take 

advantage of a common visual marker detection algorithm to 

robustly detect the load location. The load position is calculated 

using an onboard processor, and transmitted over a wireless 

network to a ground station integrating MATLAB/SIMULINK 

and Robotic Operating System (ROS) and a Model Predictive 

Controller (MPC) to control both the load and the UAV. To 

evaluate the system performance, the position of the load 

determined by the visual detection system in real flight is 

compared with data received by a motion tracking system. The 

multi-rotor position tracking performance is also analyzed by 

conducting flight trials using perfect load position data and data 

obtained only from the visual system. Results show very 

accurate estimation of the load position (~5% Offset) using only 

the visual system and demonstrate that the need for an external 

motion tracking system is not needed for this task. 
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1. INTRODUCTION 

Civilian Unmanned Aerial Vehicle Systems (UAS), 

especially small multirotors, offer a multitude of possible 

applications from automation in farming to load 

transportation and many more [1] [2] [3] [4]. For this reason 

there is an increased interest in industry and research. In 

particular, the combination of a multirotor UAV with a 

suspended slung load [5] represents a system of great benefit. 

Due to its simplicity such a system can be assembled quickly 

and offers the possibility to pick up and deliver very fast and 

access areas where it would be an immense effort with 

conventional methods. Furthermore a suspended load can 

protect the load from the wash of the propellers due to its 
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distance to them. This is an advantage in both outdoor use, 

e.g. precise pest spraying in agriculture, moving material in 

construction or parcel and book delivery, and indoor use. 

A common problem in controlling such a system is the 

detection of the loads or rather the objects position. Many 

approaches work with a motion tracking system [6] [7]. This 

might be beneficial in research for control algorithms, 

however, this cannot be applied in real world applications. 

Since the system, especially the load, is meant to be simple, 

neither extra sensors nor other electronics should be attached 

to the load. Hence, the use of a camera in combination with 

an object or marker detection algorithm seems likely. Thus 

almost any kind of load can be used and the load is detached 

of a motion tracking system and ready for real world 

applications. 

For this purpose, the contributions of this paper are: 

1. Design of an operational and fast system 

architecture with the necessary network between 

different models. 

2. Implementation of an onboard marker detection 

algorithm. 

3. Flight test and evaluation of the effect of the visual 

feedback on the system and evaluation of the 

precision of the visual detection. 

This paper is structured as follows: Section two provides an 

overview over the system dynamics and the Model Predictive 

Control in general. The system architecture and the visual 

load detection is presented in section 3 and 4 respectively. 

The flight test and results are outlined in section 5 followed 

by a discussion and conclusion in section 6. 

 

2. SYSTEM DYNAMICS AND MODEL PREDICTIVE 

CONTROL  

2.1 Coordinate Systems 

In order to model the system dynamics the coupled system is 

presented in two different coordinate systems. The inertial 

frame of reference is the geographical coordinate system and 

the body fixed frame of reference is the coordinate system of 

the UAV with the z-axis pointing downwards. Both earth 

rotation and curvature are neglected. 

Figure 1 illustrates the coordinate systems used.  The inertial 

frame of reference 𝐼 =  {𝐱𝑰, 𝐲𝑰, 𝐳𝑰} is related to the body fixed 

frame of reference 𝐹 =  {𝐱𝑭, 𝐲𝑭, 𝐳𝑭}, by the translation 

matrix 𝐓(𝑟) and the transformation matrix 𝐑: 

(2.1) 

 

where 𝐑i are the sub sequential rotations by the roll angle 𝜙, 

pitch angle 𝜃 and yaw angle 𝜓, which are represented in the 

attitude vector of the UAV 𝝓 = (𝜙, 𝜃, 𝜓). 

2.2 Multirotor and Load dynamics control 

Neglecting the low-level controller dynamics due to the fact 

that they are reacting quasi-instantaneously [7], the equations 

of motion for the high-level control of the multirotor UAV 

and the equations of motion of the load [8] result in the state 

vector of the coupled system 

(2.20) 

 

where r is the position vector of the UAV, v is the velocity of 

the UAV, 𝑥𝐿and 𝑦𝐿 are the x and y position of the load in the 

inertial frame of reference, 𝑢𝐿 and 𝑣𝐿 are the velocity of the 

load in x and y direction in the inertial frame of reference, 

taking into account that the z component of the load position 

can be derived from the kinematic constraint 

 

(2.21) 

 

where l is the length of the cord with which the load is 

attached to the UAV plus the distance from the top of the load 

to the center of the load. 

The control vector is given by 

 

(2.22) 

 

where 𝜔 are the attitude rates of the UAV and 𝑓𝑇 is the 

collective thrust of the multirotor motors. 

2.3 Model Predictive Control (MPC) 

MPC is based on solving an open-loop control problem 

online. With the implemented model of the system dynamics 

and the actual measurement, the behavior of the system can 

be predicted over a certain time-horizon 𝑇𝑃 . An input 

sequence 𝐮̅ over a control horizon 𝑇𝐶 is obtained by 

minimizing a quadratic cost function 𝐽(⋅). The bar symbol 

denotes a controller internal variable. It is assumed that at 

least one new sensor update is available within the prediction 

step size 𝛿. Therefore only the first element of the input 

sequence is implemented. 

The basic mathematical formulation presented in this 

subsection is based on [9] and the principle of MPC, which is 

𝐑 = [𝐑x(𝜙)𝐑y(𝜃)𝐑z(𝜓)]
𝑻

,

||𝐫 − 𝐫𝐿||2 = 𝑙 ,

𝐮 = (𝜔, 𝑓𝑇),

𝐱 = (𝐫, 𝐯, 𝝓, 𝑥𝐿 , 𝑦𝐿 , 𝑢𝐿 , 𝑣𝐿) ,
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Figure 1. Coordinate Systems and Position Vectors 
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illustrated in Figure 2, and the translation to discrete state and 

input vectors is from [10], [5]. 

The time-discrete system to be controlled is described by a 

nonlinear set of difference equations 

 

 (2.30) 

 

where the index 𝑘 ∈  ℕ0 denotes the state control input of the 

system at the kth sampling instant. The nonlinear system is 

linearized in the context of this paper. Both the control vector 

u and the state vector x are constrained by predefined 

constant vectors. 

 

(2.31) 

 

with 

 

(2.32) 

 

where m denotes the dimension of the input vector u  and n 

denotes the dimension of the state vector x. In the context of 

this paper the constraints for x and u are given by the UAV 

and the flight area. The control law is represented by the 

discrete finite horizon open-loop optimal control problem of 

finding an input sequence 𝐮̅ that minimizes a quadratic cost 

function 

(2.33) 

 

This leads to  

 

(2.34) 

 

with,  

 

 

(2.35) 

 

 

where the index 𝑗 ∈ ℕ0 denotes the jth prediction instant for 

the kth sampling instant of the internal state vector 𝐱̅ or input 

vector 𝐮̅. The number of steps of the prediction horizon 

is 𝑁 = 𝑇𝑃  / 𝛿, and 𝑀 = 𝑇𝐶  / 𝛿 is the number of steps in the 

control horizon. 

The basic sequence of an MPC instance works as follows: 

 Read the current state vector of the system by 

either measuring or estimating 

 Solve the optimal control problem (2.31) to obtain 

an optimal input sequence 

 Implement the first element of the computed 

sequence 

 Continue by repeating 

The basic MPC control loop is illustrated in Figure 3. 

 

3. SYSTEM ARCHITECTURE  

The complete system exhibits two major parts. One of them 

is the groundstation and the other is the UAV and its onboard 

equipment. Figure 4 illustrates the general layout of the 

system. 

3.1 Groundstation 

The groundstation is an off board computer which runs three 

separate models in parallel computing in 

MATLAB/SIMULINK. These models are the sensor, the 

controller (e.g. MPC and state estimator) and the radio.  

The sensor’s function is to receive the attitude and position 

of the UAV. It is delivered by the motion tracking system 

“VICON” [11]. The VICON system also determines the 

attitude and position of the load to provide a comparison with 

the camera load detection. The camera load detection data is 

transmitted via WIFI to the Sensor. Both, the state of the 

UAV as well as the state of the load is forwarded to the 

controller model. 

The controller model incorporates the MPC algorithm 

(Section 2) and receives the current states (𝐫, 𝐯, 𝑥𝐿 , 𝑦𝐿 , 𝑢𝐿 , 𝑣𝐿) 

of both UAV and load. It produces the command 𝐮 =
(𝜔, 𝑓𝑇), (roll, pitch, yaw and collective thrust) to control the 

UAV and load states with respect to a given reference 

trajectory. These commands are forwarded to the radio 

model. 

The Radio model maps the given commands to PWM values 

and transmits them to the platform via a serial-wireless 

min
𝐮̅

𝐽 (𝐱𝑘, 𝐱̅, 𝐮̅; 𝑇𝐶 , 𝑇𝑃),

𝐮 ∈  𝒰, ∀𝑘, 
𝐱 ∈  𝒳, ∀𝑘, 

𝒰 ∶= {𝐮 ∈  ℝ𝑚 |𝐮𝑚𝑖𝑛 ≤  𝐮 ≤  𝐮𝑚𝑎𝑥}, 
𝒳 ∶= {𝐱 ∈  ℝ𝑚 |𝐱𝑚𝑖𝑛 ≤  𝐱 ≤  𝐱𝑚𝑎𝑥}, 

𝐱̅𝑗+1
 = 𝐟(𝐱̅𝑘

 , 𝐮̅𝑗
 ), 𝐱̅0

 =  𝐱̅𝑘
 ,

,

𝐮̅𝑗
 = {

∈  𝒰, 𝑁 ≤ 𝑀 
𝐮̅𝑀 , 𝑁 > 𝑀

, 

𝐱𝑘+1 = 𝐟(𝐱𝑘, 𝐮𝑘),

𝐱̅𝑗
 ∈   𝒳, 

Figure 2. Principle of MPC [10] 

Figure 3. Basic MPC control loop [9] 
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interface. All models are running in parallel at an average 

frequency of 175 Hz. However, the slowest part of the control 

loop, which is the onboard receiver, is running at 25 Hz. For 

this reason, the Controller model is also coupled with a state 

estimator. 

The state estimator and latency compensator, as can be seen 

in Figure 3, receives the measured data of the current state of 

UAV and load and the control vector u. It also knows the 

average system latency with N sampling steps. The estimator 

works as introduced in [7], [12]. At time step 𝑡𝑘 the measured 

state is 𝐱𝑘 and the command is 𝐮𝑘. The estimate of the state 

𝑡𝑘 taking measurements up to the time step 𝑡𝑗 into account is 

represented by 𝐱̂𝑗
𝑘. With a current time step 𝑡𝑘 the estimated 

state is 𝐱̂𝑘
𝑘+𝑁. In order to predict the state, the current 

measurement and the previous estimate are weighted to 

obtain a new estimate 

 (3.10) 

where I is the identity matrix and C is a diagonal matrix, 

where its elements 𝐂𝑖𝑖 ∈ [0,1] are the relative weights of the 

predicted state. Afterwards, the N most recent commands 

are recursively applied to the nonlinear system dynamics 

(3.11) 

From j=k to j=k+N-1. Based on the predicted state 𝐱̂𝑘
𝑘+𝑁, 

the controller computes the next command  𝐮𝑘 which 

arrives at the UAV when its true state is 𝐱𝑘+𝑁
 . 

2.2 Unmanned Aerial Vehicle (UAV) platform 

There are four main components onboard the unmanned 

aerial vehicle. The quadrotor frame (with battery and rotors), 

the load, a RaspberryPi with downward facing camera 

module, and a low-level attitude controller (set of PID 

controllers). 

The attitude controller receives commands from the radio 

model and calculates the required change in rotor speed to 

map the commands into actions. The load is attached to the 

UAV frame with a thin cord of a given length. It has two 

degrees of freedom. A marker is attached on top of the load, 

such that the marker can be seen by the downward facing 

camera (Figure 4). This camera is connected to the 

RaspberryPi where the marker tracking algorithm is running 

and calculating the position of the load. This position is 

transmitted to the groundstation via a wireless network and 

received by the sensor model.  

 

4. LOAD DETECTION  

The ROS node “ar_sys” [13] is running on the RaspberryPi 

and is used to keep track of the marker on the load, and 

calculate its position. “ar_sys” uses the “openCV” library 

[14] in combination with the “ArUco” [15] library to provide 

an algorithm for robust marker detection and tracking. Every 

“ArUco” marker has its own ID. It can be chosen from 1024 

different IDs. Since it could be difficult to detect a single 

marker, because of poor light conditions and other issues, 

“ArUco” allows to use marker boards. A board of four 

Figure 4. System Architecture 

 

𝐱̂𝑘
𝑗+1

= 𝐟(𝐱̂𝑘
𝑗

, 𝐮̂𝑗−𝑁
 ),

𝐱̂𝑘
𝑘 = 𝐂𝐱̂𝑘−1

𝑘 + (𝐈 − 𝐂)𝐱𝑘,
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“ArUco” markers arranged in a square (as can be seen in 

Figure 5) combined with a low camera resolution (320x240), 

ensures fast image processing and enables frequent load 

position updates. The side length of the marker used in the 

context of this paper is 11cm.  

The position of the center of the marker board, calculated by 

using standard photo-geometric procedures, is published in 

the ROS network at 25fps in body fixed frame coordinates 

(𝐫𝐿,𝐹 = (𝑥𝐿,𝐹 , 𝑦𝐿,𝐹 , 𝑧𝐿,𝐹)
𝑇

 ). The field of view of the camera is 

~54° horizontal and ~41° vertical [16]. It is assumed that the 

load is always in the field of view of the camera. This is a 

reasonable assumption considering the length of the slung 

load and the speed of the UAV. 

The groundstation software which includes the sensor model 

and the RaspberryPi are connected to the ROS network. With 

the new “Robotics System Toolbox” [17] of MATLAB, ROS 

topics such as the published load position can be subscribed 

directly within SIMULINK. This makes the connection 

between the detected load position and the controller 

straightforward. Now, the sensor model has the position  𝐫  in 

the inertial frame and attitude  𝝓  of the UAV as well as the 

position of the load in the body fixed frame 𝐫𝑳,𝐹. With the 

attitude vector of the UAV 𝝓  the load position can be 

transferred to the controller model in inertial frame 

coordinates by 

(4.1) 

where R is the transformation matrix given in (2.1) 

depending on 𝝓 . As described in (2.20) only 𝑥𝐿 and 𝑦𝐿  of 𝐫𝐿 

are necessary for the controller and must be returned. 

Furthermore the velocity of the load in 𝑢𝐿 and 𝑣𝐿 can be 

calculated with the derivative 𝐫𝐿̇ ,  whereat the minimal time 

step is Δ𝑡 = 25 𝐻𝑧. Hence all relevant data of the load part 

of the state vector is available to process the control 

algorithm.    

 

5. FLIGHT TESTS 
Three flight tests were conducted at the flight area of the 

Australian Research Centre for Aerospace Automation 

(ARCAA) (Figure 6). The purpose of the flight tests is to 

demonstrate the accuracy and robustness of the visual object 

detection compared to load tracking using the VICON motion 

tracking system. The test area is provided with daylight as 

well as artificial light. In all three flight tests the reference 

trajectory is a planar figure eight.  

Table 1. Flight Time 

Test # Flight time [s] 

1 22.5 

2 20 

3 20 

 

For comparison purposes the load position in the inertial 

frame is detected by the VICON system as well. In test one 

and two, the load position detected by the camera is used for 

the control algorithm, whereas in test three the load position 

detected by the VICON system is used. In Table 1 the flight 

time of each flight test is displayed. The z Position over time 

is calculated using (2.21) and a cord length l of 60 cm. The 

load is a box with 14 cm x 14 cm surface and a depth of 10 

cm. The quadrotor has a diagonal wheelbase of 450mm. 

Figure 7 to Figure 14 shows the result for the system using 

the visual feedback of the camera to control the load (Test #1 

and #2), Figure 15 to Figure 18 (Test #3) show the result 

when the system uses the VICON data for the location of the 

load. The solid blue line in each of these figures illustrates 

the load position detected by the camera, whilst the dashed 

red line illustrates the load position detected by the VICON 

system. Abrupt changes in the VICON load position are from 

a short failure in the object orientation in the VICON’s 

coordinate frame. The dashed-dotted black line illustrates the 

reference trajectory of the load.  

All figures (Figure 8 till Figure 18) show a good accuracy 

between the camera and the VICON detection of the load. It 

is also visible that the trajectory of the load in the x-plane 

(Figure 8, Figure 12 and Figure 16) is closer to the reference 

than in the y-plane (Figure 9, Figure 13 and Figure 17). This 

is due to the fact that for a planar figure 8 flight, there has to 

be one period in one plane and two periods in the second 

plane but both in the same time. The z-plane is the most 

accurate (Figure 10, Figure 14 and Figure 18) concerning the 

distance between the load position detected by the VICON 

system and the load position detected by the camera. 

𝐫𝐿 = 𝐫 + 𝐑𝐫𝐿,𝐹,

Figure 6. Still images of a flight test. Side view on the left 

hand side, bird’s eye view on the right hand side. 

Figure 5. In flight load detection. The image shows the 

detected load from the point of view of the UAV. 
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Figure 7. Flight test with load detection by camera in 

2D. (Test #1)

 

Figure 8. Flight test with load detection by camera. X 

position over time. (Test #1) 

 

Figure 9. Flight test with load detection by camera. Y 

position over time. (Test #1) 

 

Figure 10. Flight test with load detection by camera. Z 

position over time. (Test #1) 

 

Figure 11. Flight test with load detection by camera in 

2D. (Test #2) 

 

Figure 12. Flight test with load detection by camera. X 

position over time. (Test #2) 
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Figure 13. Flight test with load detection by camera. Y 

position over time. (Test #2) 

 

Figure 14. Flight test with load detection by camera. Z 

position over time. (Test #2) 

 

Figure 15. Flight test with load detection by VICON in 

2D. (Test #3) 

 

Figure 16. Flight test with load detection by VICON. X 

position over time. (Test #3) 

 

Figure 17. Flight test with load detection by VICON. Y 

position over time. (Test #3) 

 

Figure 18. Flight test with load detection by VICON. Z 

position over time. (Test #3) 
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Figure 19 illustrates the distance between the load position 

detected by the VICON system and the reference (REF-VIC) 

and the load position detected by the camera and the 

reference (REF-CAM) in the inertial frame of reference in 

mean (blue) and root mean squared (RMS) (red) values. It 

can be seen that the controlling with visual feedback has no 

noticeable influence compared to the controlling with the 

VICON data for the load position (comparison of Test #1 and 

#2 with Test #3)1.  

 
1 The table in the Appendix displays the separated data for x-, y-, and z- 

plane. 

However the distance between the load position detected by 

the VICON and the reference is a little bit smaller. In order 

to investigate this, the mean and RMS values between the 

load position detected by the VICON and the load position 

detected by the camera is considered. 

Figure 20 shows the mean offset values of all tests 

respectively (blue) and the mean offset of all test together 
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(red) in x and y. Figure 21 illustrates the mean (blue) and 

RMS (red) distance in x, y, z, in the inertial frame of reference 

(3D) as well as the standard deviation (StD).  

In Figure 20 it can be seen that the mean offset of all tests is 

almost equal to the mean offset of each test respectively. 

Therefore, it can be concluded that the mean offset of all tests 

is an offset in the hardware itself which means an offset 

between the center of the load in the VICON frame and center 

of the load in the Camera frame. This leads to the conclusion 

that it is an issue of calibration and can be implemented in the 

sensor model. Knowing that, the distance values of Figure 21 

can be re-calculated considering the overall mean offset in x 

and y (Figure 20) between the load position detected by the 

VICON and the load position detected by the Camera to 

simulate a precise calibration. Adding these offset values to 

the load position detected by the camera, as it can be done in 

the sensor model, leads to the results shown in Figure 22. 

These results show that a precise calibration can improve the 

performance.  

The overall values of the precision of the camera load 

detection are displayed in Table 2. 

Table 2. Average Mean and RMS values of Test #1, #2 

and #3 between the load position detected by the VICON 

and the load position detected by the Camera 

    
x  

[cm] 

y  

[cm] 

z 

[cm] 

3D 

[cm] 

Results MEAN 4.19 3.27 0.38 5.7 

  RMS 4.68 3.81 0.5 6.2 

Results with MEAN 2.1 1.86 0.22 3.15 

simulated Offset  RMS 2.71 2.39 0.32 3.64 

 

It can be seen that with a precise calibration a precision of up 

to 3.15 cm can be reached with the visual detection system. 

With a cord length l of 60cm this means a deviation of the 

center of the suspended load of ~3° degrees based on the 

suspension point or ~5% in relation to the cord length.  

This result shows that the visual tracking method is very 

accurate. 

 

6. CONCLUSION  

This paper presented a new method to obtain the position of 

the load in a coupled system of UAV with suspended slung 

load. 

The comparison between the load detection with the camera 

and the detection with the VICON system shows, that a 

simple camera system could be used as an alternative for the 

motion tracking system. The tests revealed that the difference 

between the tracking methods lies in a reasonable area with 

insignificant effects on the controller and system behavior. 

These initial results suggest that the visual object detection 

system would be capable for both, indoor and outdoor use. In 

order to get fully independent from any motion tracking 

system data different approaches are possible. On the one 

hand, a fully visual predictive control approach can be 

implemented for indoor use [18], on the other hand a 

combination of the presented visual tracking method and the 

use of GPS/IMU to obtain the UAVs state can be developed 

for outdoor use. The latter is a subject of ongoing research. 
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APPENDIX 

Distance between the load position detected by the VICON or the load position detected by the camera and the reference in 3D. 

MEAN, RMS and StD. (All values are in cm). 

      MEAN RMS StD 

x-Axis Test #1 REF-VIC 13.16 16.3 9.62 

    REF-CAM 14.14 17.14 9.69 

  Test #2 REF-VIC 9.95 11.25 5.26 

    REF-CAM 11.91 13.23 5.75 

  Test #3 REF-VIC 9.29 11.08 6.03 

    REF-CAM 10.16 12.08 6.53 

y-Axis Test #1 REF-VIC 16.54 20.03 11.31 

    REF-CAM 17 20.79 11.96 

  Test #2 REF-VIC 17.27 18.94 7.79 

    REF-CAM 17.25 18.83 7.54 

  Test #3 REF-VIC 13.4 15.87 8.51 

    REF-CAM 13.38 15.56 7.95 

z-Axis Test #1 REF-VIC 9.82 16.37 13.11 

    REF-CAM 9.86 16.3 12.98 

  Test #2 REF-VIC 2.76 4.25 3.22 

    REF-CAM 2.9 4.35 3.24 

  Test #3 REF-VIC 11.92 25.95 23.05 

    REF-CAM 11.98 25.95 23.1 

3D Test #1 REF-VIC 27.32 30.58 13.74 

    REF-CAM 28.38 31.49 13.66 

  Test #2 REF-VIC 21.37 22.44 6.84 

    REF-CAM 22.58 23.42 6.21 

  Test #3 REF-VIC 26 32.37 19.29 

    REF-CAM 26.63 32.58 18.77 

 

 


