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Abstract 
This research consisted of developing a vision based multirotor aircraft that could be 

used in the security industry.  A second-hand aircraft was purchased and modified. 

The aircraft made use of a Pixhawk flight controller and a Odroid XU4 companion 

computer, which resulted in the computer injecting commands into the flight controller. 

Robot Operating System was installed and used on the companion computer to 

integrate the vision system and the aircraft.  The vision system was designed to help 

develop a landing system where the aircraft would land on an ArUco marker.  The 

vision system also allowed the aircraft to detect and follow humans.  A Software in the 

Loop (SITL) was run alongside Gazebo, allowing the developed landing system and 

the human detecting system to be simulated and tested.  The developed landing 

system was implemented on the aircraft, where the developed landing system was 

tested and compared to the aircraft’s current GPS based landing system.  The 

developed landing system obtained a better overall accuracy , while also taking longer 

to land the aircraft compared to the GPS based landing system.  There were also 

numerous manual and autonomous test flights implemented on the aircraft. 
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Chapter 1: Introduction 
In today’s modern era, there has been an increase in the number of people flying 

aircraft.  Specifically, there has been an increase in the number of people flying drones.  

A drone, which can be formally classified as an unmanned aerial vehicle (UAV), is a 

multirotor aircraft that is lifted and propelled using multiple rotors (Parker, 2018).  A 

drone does not have a pilot sitting inside it, which means it is operated either by 

software or a remote pilot (Parker, 2018).  This type of aircraft varies in multiples sizes, 

depending on the number of motors and legs that are attached and installed onto the 

centre frame of the aircraft.  Some examples are a tricopter (3 legs & motors), 

quadcopter (four legs & motors) and a hexacopter (6 legs & motors). 

 

To this day, there is still uncertainty whether a drone can be classified as a UAV. This 

is due to the fact that a UAV generally refers to any military aircraft that operates 

without a pilot and can be reused (Parker, 2018).  Throughout this research, the terms 

UAV and multirotor aircraft will be used. 

 

The development of multirotor aircraft has significantly helped humans accomplish 

tasks that never seemed achievable before.  Some examples are: use in military 

operations for combat and reconnaissance purposes (Quadcopter Arena, 2017); use 

by law enforcement agencies in search and rescue operations (Quadcopter Arena, 

2017); great research opportunities for universities (e.g. robotics, flight control and 

real-life systems) (Quadcopter Arena, 2017); and use for recreational purposes, such 

as flying as a hobby or competitive racing (Quadcopter Arena, 2017).  Another big 

userbase of multirotor aircrafts are photographers who shoot photos and videos from 

difficult positions, resulting in their content looking stunning and memorable. 

Companies such as DJI have developed such aircraft which contain a three-axis 

gimbal attached beneath the frame of the aircraft.  A GoPro is even attached to these 

gimbals to capture the moment.  A gimbal is regarded as a mechanism that keeps an 

instrument (e.g. camera) at a set orientation on an aircraft or ship.  This will reduce the 

shakiness of the video footage captured. (UAV Systems International, 2018). This 

development of attaching a camera to a multirotor aircraft has increased the scope of 

research in many different fields. 

  



 2 

1.1 Significance of Research 
In 2017, the Institute for Economics and Peace (IEP) conducted a study rating the 

level of peace for a number of countries around the world.  This study was called the 

Global Peace Index, where it was performed in the year 2017.  The Institute rated 

South Africa to be the 123rd most peaceful country in the world, out of a total of 163 

countries and districts that were measured (Business Tech, 2017).  This indicates that 

South Africa is one of the most unsafe countries in the world. The document also 

revealed the high crime rate in our country, where violent crime and homicide were 

both rated 5 out of 5 (Institute for Economics & Peace, 2017). 

 

These levels of violence and insecurity have a massive impact on the country’s 

economy.  The IEP measured the cost of violence in South Africa at 22.3% of GDP, 

which is the equivalent of R1.92 trillion (Business Tech, 2017).   

 

For a number of years, South Africa has been heavily affected by crime.  Despite the 

development of technology in today’s world, the country still seems to suffer from high 

crime statistics.  This is probably due to the increase in unemployment in the country.  

The South African Police Service (SAPS) annually collects and releases the national 

crime statistics for a given year.  Appendix 1.1 reflects the extent of crime taking place 

between the years of 2018 and 2019. 

 

These statistics reveal that South Africa is in need of finding a new way to reduce 

crime in the country.  To help with this, the idea is to perform research that would 

consist of developing an aircraft that could in the future help reduce the overall crime 

rate in the country. 

 

1.2 Aim 
The aim of this research is to add to the development of an autonomous multirotor 

aircraft that could be used in the security industry by making use of a vision system. 

The aim includes using the vision system to help with the landing system of the aircraft 

as well as guide and direct the aircraft to new positional coordinates based on 

detecting human interaction.  
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1.3 Objectives 
The objectives of this dissertation consist of the following: 

1. The performance of a literature review that could help understand the following 

main topics: 

a. Open source flight controllers 

b. ROS 

c. Object detection, object recognition and object tracking 

d. Fiducial markers 

2. The development of a vison based multirotor aircraft for use in the security 

industry 

a. Establishing a hardware architecture to define the interaction between 

all the components used, whilst still allowing the system to be compact 

and modular. 

b. Establishing a software architecture to define all the software used as 

well as to demonstrate how all the programs developed will interact with 

one another.  

3. The development of an autonomous multirotor aircraft 

a. The development of a multirotor aircraft can be demonstrated. 

b. The aircraft can perform a fully autonomous mission, where the flight 

route is predefined. 

c. The aircraft can perform a fully autonomous mission, where new 

coordinates for the flight route can be injected into the flight controller by 

other methods.  This injection of new coordinates can take place during 

flight. 

4. The development of a vision system 

a. Develop an algorithm that can be used to identify a marker to help guide 

the aircraft during its landing phase. 

b. Develop an algorithm that can be used to identify human interaction as 

well as produce a new positional coordinate for the aircraft to fly towards. 

 

1.4 Delimitation 
Due to vast number of subsystems in this research, all being integrated into a single 

system, there were a few limitations that occurred within the integrated subsystems: 
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• Due to the limited funding available, superior components would not be able to 

be purchased. Their performances would limit the accuracy and reliability of the 

system. 

• Due to the small space available on the aircraft, the components used would 

need to be relatively small (e.g. the onboard computer). This would limit the 

processing ability of the system.  

• The testing of the system is heavily dependent on the weather, limiting when 

the system can be tested. 

• The testing of the system is limited to the aircraft’s battery capacity.  

 

1.5 Hypothesis 
A software and hardware architecture and a supporting digital simulation environment 

can be designed to construct a vision based multirotor aircraft for the security industry, 

where the focus will be on developing an alternative landing system and human 

detection system. 

 

1.6 Dissertation Outline 
This dissertation will consist of the following chapters: 

1. Chapter 1: Introduction 

This chapter will provide an introduction to this research, where the aim, 

objectives, significance, delimitation, research hypothesis, research 

contributions and publications will all be discussed. 

2. Chapter 2: Background Research and Literature Review 

This chapter will consist of multiple sections that will bring relevant background 

to this research. 

3. Chapter 3: System Architecture 

This chapter will discuss the components used, the designed components that 

were developed and finally the hardware and software architecture. 

4. Chapter 4: Vision System 

This chapter will describe the vision system that was established to help with 

the landing system as well as for detecting humans. 

5. Chapter 5: Integrated System 
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This chapter will discuss how ROS is used to integrate the system as well as 

explain how the vision system and the aircraft is integrated with ROS, allowing 

for a complete system. 

6. Chapter 6: Simulation 

This chapter will discuss all the simulations that were performed in testing the 

landing system and the human detection system. 

7. Chapter 7: Testing and Discussion 

This chapter will discuss the test flights that were performed.  These test flights 

will consist of: 

• A manual test flight. 

• An autonomous test flight performing a mission. 

• An autonomous test flight where a mission is injected into the flight 

controller by a separate system. 

• An autonomous test flight using ROS. 

• The aircraft autonomously landing using ROS. 

The chapter will include a data analysis on the ROS developed landing system, 

where the GPS landing system will be compared to the ROS developed landing 

system.  A discussion will be performed for all the sections, including the human 

detection system. Improvements to the system will also be mentioned. 

8. Chapter 8: Conclusion 

This chapter will conclude the dissertation, suggesting whether the hypothesis, 

aim and objectives were achieved; future development to the system; and 

whether the research made any significant contribution to the field of 

engineering. 

 

1.7 Research Contributions 
After completing this research, the following research contributions will be obtained: 

• The development of a vision system that can be used to detect ArUco markers 

and detect objects within a video frame. 

• The development of a multirotor aircraft that can be flown manually or be used 

to perform autonomous missions. 

• The development of a landing system that makes use of a vision system to land 

an aircraft on an ArUco marker, providing a more accurate system than the 
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GPS based landing system as well as a cheaper alternative system to using a 

RTK system. 

• The development of a human detection system that makes use of a vision 

system to command an aircraft to reposition and re-orientate itself to follow a 

moving person. 

• A vision system and multirotor aircraft that is integrated using ROS. 

 

1.8 Publications 
A conference paper, called “Autonomous Landing of a Multirotor Aircraft on a Docking 

Station”, was written together with Jacques du Preez, a fellow Mechatronics student, 

pursuing a Master of Engineering. The paper was submitted and accepted for the 

RobMech conference, which took place in Cape Town in January 2020.  Jacques 

attended the conference, where he presented a poster, demonstrating the work of both 

writers. 

 

1.9 Potential Applications 
One potential application for the developed system would be to use it as part of a 

security surveillance system.  For instance, if a home alarm system were to be 

triggered by an unwanted intruder, a signal could be sent to the developed system, 

requesting the multirotor aircraft to fly autonomously to the specific location.  Once the 

aircraft arrived at the house concerned, it would then survey the property, searching 

for any intruders by making use of the onboard vision system.  If an intruder were to 

be detected, the aircraft would send a signal to the security company’s control room, 

requesting permission to follow him/her.  If the necessary consent were received, the 

aircraft would use its vision system to follow the intruder.  The vision system would 

constantly instruct the aircraft to adjust its position and orientation to centre the intruder 

in the middle of the video feed of the vision system, as well as to keep the aircraft a 

fixed distance away from him/her.  When the aircraft is not being used, it could make 

use of a docking station to charge the batteries of the aircraft as well as to protect the 

aircraft from any harmful weather.  

 

The above idea was presented to Atlas Security, a security company based in Port 

Elizabeth, South Africa.  
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1.10 Conclusion 
 This chapter provided an overall introduction to the research, where the research was 

defined to be the development of a vision based multirotor aircraft that can be used in 

the security industry.  The aim of the research was provided along with a list of 

objectives to be achieved.  The significance of the research was discussed, shedding 

light on the current crime rates in South Africa.  The delimitation and the hypothesis 

for the research were also discussed.  A layout for the dissertation was provided, 

mentioning what will be discussed in each chapter. The research contributions were 

outlined as well as mentioning the publication of a conference paper. The following 

chapter, which is the background research and literature review, will discuss all the 

relevant background material that was utilised throughout the research. 
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Chapter 2: Background Research and Literature Review 
The background research and literature review for this research will be approached in 

the following manner:  Firstly, the components required to fly a multirotor aircraft will 

be discussed; secondly, topics that are related to the aircraft will be researched, such 

as an Arduino, Pixhawk flight controllers, autopilot software, ground control stations, 

MAVLink, ROS, Euler angles and quaternions, Darknet: YOLO and fiducial markers; 

thirdly, the crime rates in South Africa will be investigated; and finally the current 

implemented security solutions consisting of multirotor aircraft will be discussed. 

 

2.1 Multirotor Aircraft Components 
The main components that are commonly found on a multirotor aircraft as well as a 

basic description of the component can be seen below (Kadamatt, 2017): 

1. Frame: It is the body of the aircraft.  It is responsible for holding all the 

components of the aircraft. 

2. Brushless Motors and Propellers: The brushless motors and propellers work 

together to produce the thrust for the aircraft. 

3. Electronic Speed Controllers (ESC): They are responsible for controlling the 

rate at which the brushless motors spin depending on the pulse width 

modulation (PWM) that each ESC has received from the flight controller. 

4. Flight Controller: It is the “brains” of the aircraft, where it is constantly making 

necessary calculations and producing PWM signals for the ESCs to control the 

motors. 

5. Transmitter and Receiver: They are used to control the aircraft.  A pilot will 

make use of the transmitter to fly the aircraft, whereas the receiver will receive 

the command performed on the transmitter and pass it through to the flight 

controller. 

6. Battery: This is used to provide power to the aircraft. 

 

2.2 Arduino 
An Arduino is an open source physical computing platform used for creating interactive 

objects that can stand alone or collaborate with software on a computer. Arduino was 

designed for artists, designers and others who want to incorporate physical computing 
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into their designs, without first having to become electrical engineers (Banzi & Shiloh, 

2014). 

 

The Arduino boards are able to read inputs (e.g. light on a sensor, pressing a button) 

and turn it into an output (e.g. activating a motor, turning on an LED) (Banzi & Shiloh, 

2014).  It is possible to instruct the Arduino board by sending a set of instructions to 

the microcontroller that is fixed on the board.  This is done by using software, known 

as the Integrated Development Environment (IDE), which is freely available off the 

Arduino website.  The language, used in the IDE to program the microcontroller, 

consists of a set of C/C++ functions (Arduino, 2017).   

 

There are a number of different versions of the Arduino boards available (e.g. Due, 

Mega, Micro, Uno, etc.) (Sparkfun, 2015).  Each model has its own specifications, with 

different voltage inputs, different microcontrollers, etc.  

 

An example of an Arduino board may be seen in Figure 2.1. 

 

 
Figure 2.1: An Arduino Uno board (Sparkfun, 2015) 

 

2.3 Pixhawk Flight Controller 
Pixhawk is an independent open-hardware project that aims to provide the standard 

for readily-available, high-quality and low-cost autopilot hardware designs, which can 
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be used in the academic, hobby and developer communities (Pixhawk, 2019).  The 

Pixhawk project was first started at ETH Zurich as both an open-source hardware and 

software project to create a flight controller (LambDrive, 2016).  In the first designs, 

the Pixhawk started out as two separate boards, one called the PX4FMUv1 and the 

other called PX4IOv1.  The PX4FMUv1 was the flight measurement unit (FMU) and 

the PX4IOv1 was the inputs and outputs.  Eventually, these two boards were 

combined into one, which was called the Pixhawk 1 (LambDrive, 2016).  The Pixhawk 

1 can be found in Figure 2.2.  

 

 
Figure 2.2: Pixhawk 1 flight controller (PX4, 2019b) 

 

At the time, 3D Robotics was chosen as the prominent manufacturer.  However, since 

it is an open-hardware project, the schematics and PCB design files are freely 

available for anyone to use, modify and manufacture themselves.  Hence, there are 

many clone Pixhawk flight controllers available to be purchased from Chinese 

websites.  The beauty of its being open-source is that it has allowed for many projects 

to be developed as well as be freely available to incorporate into other projects.  The 

Pixhawk does not just have to be used as a flight controller, but has the ability to be 

used within a ground based project.  An example of where a Pixhawk can be used on 

a ground based project is where the board is used on a four-wheeled rover, enabling 

it to travel along a terrain. 
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2.4 Autopilot Software 
The autopilot software is the software that is installed onto the Pixhawk.  Since the 

Pixhawk is an open-source project, its purpose is to be used with an open-source 

autopilot software.  There are a number of open-source autopilot software available, 

however two of the main ones are ArduPilot (APM) and PX4. 

 

2.4.1 ArduPilot 
ArduPilot, often referred to as APM, is one of the most advanced, full featured and 

reliable open-source autopilot software available.  It has been developed for over 5 

years by a team of professional engineers and computer scientists.  The software is 

capable of controlling a numerous vehicles, such as: 

1. Airplanes 

2. Multirotors 

3. Helicopters 

4. Boats 

5. Submarines 

New software for aircraft, such as quad-planes and compound helicopters, are 

currently being developed.  The software has been installed on over 1 000 000 

vehicles world-wide due to the software being one of the most tested and proven 

autopilot software available (ArduPilot, 2016). 

 

2.4.2 PX4 
PX4 is an open-source flight control software that has been designed for drones and 

other unmanned vehicles.  The project provides a flexible set of tools for drone 

developers to share technologies that create tailored solutions for specific drone 

applications.  The software was developed alongside the original Pixhawk project at 

ETH Zurich.  Today, the project consists of more than 300 global contributors and is 

used by some of the world’s most-innovative companies across a wide range of drone 

industry applications (PX4, 2018).  

 

2.5 Ground Control Station 
A ground control station (GCS) is generally referring to a software application, which 

utilizes a ground-based computer, that is able to communicate with a UAV using a 
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wireless telemetry.  The GCS is able to display real-time data of the UAV’s 

performance, position and orientation, which includes displaying typical instruments 

that you would likely find in a real aeroplane.  The GCS is also able to perform other 

necessary tasks, (e.g. setting up a mission for an aircraft, sending the aircraft on a 

mission, etc.) (ArduPilot, 2019).  Depending on which GCS software is being used, 

some offer the ability to load the aircraft’s firmware onto its flight controller, as well as 

set up the aircraft so that it may be correctly used for flying. 

 

Due to the vast number of open-source onboard software for UAVs, this has led to a 

number of open-source GCS software available on the internet.  Some examples are: 

• MAVProxy 

• Mission Planner 

• QGroundControl (QGC)  

 

The GCS that will be used for this research will be QGroundControl due to its ease of 

use as well as support for multiple types of UAVs.  The software is available on multiple 

platforms, which are:  

• Windows 

• macOS X 

• Linux 

• Android 

• iOS 

This will allow for the aircraft to be quickly and easily adjusted on portable devices 

(e.g. cell phone, tablet, etc.) when testing is being performed on an open field.  

 

Most GCS communicate with a UAV using MAVLink protocol.  More information on 

this can be found in section 2.6. 

 

2.6 MAVLink 
Micro Air Vehicle Link, which is commonly referred to as MAVLink, is a lightweight 

messaging protocol used for communicating with small unmanned vehicles (MAVLink, 

2019).  MAVLink, which was first released in early 2009 by Lorenz Meier, is a reliable 

communication protocol as it provides methods for detecting packet drops as well as 
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a well-established ITU X.25 checksum used for packet corruption detection (MAVLink, 

2019). 

 

MAVLink consists of two versions, where MAVLink v1.0 contains a minimum of 8 bytes 

per packet sent (including start sign and packet drop detection) and MAVLink v2.0 

containing 11 bytes, allowing for a more extensible protocol.  MAVLink v1.0 can 

support up to 255 vehicles all running concurrently, where each vehicle will be 

assigned a vehicle ID (ranging from 1 to 255).  

 

A packet transmitted via MAVLink v1.0 can be described by referring to Figure 2.3.  

 

 
 

Figure 2.3: MAVLink v1.0 packet representation (Koubaa, et al., 2015) 

 

The following table explains what each byte represents in the packet.  This byte 

information was obtained from MAVLink (MAVLink, 2019). 
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Table 2.1: Description of each byte in MAVLink v1.0 protocol (MAVLink, 2019) 

Byte Index Content Explanation 
0 Packet start marker Protocol-specific start-of-text (STX) 

marker used to indicate the beginning 

of a new packet. 

1 Payload length Indicates the length of the following 

payload section. 

2 Packet sequence number Used to detect any packet loss.  

3 System ID Represents the ID of the vehicle that 

is receiving the message.  

4 Component ID Represents the ID of the component 

that is sending the message. 

5 Message ID Represents the ID of the message 

type in the payload. 

6 to (n+6) Payload data The message data. This depends on 

the message type (i.e. Message ID). 

(n+7) to (n+8) Checksum Used to verify that the sender and 

receiver have perfectly understood a 

message. 

 

MAVLink is built for hybrid networks to send high-rate data streams from data sources 

(commonly UAVs) to data sinks (commonly ground stations).  This hybrid design 

pattern consists of a topic mode (publish-subscribe) and point-to-point mode. The topic 

mode is used to save bandwidth by sending a protocol, but will not emit a target system 

and component ID.  A typical example of a command being used over this protocol 

would be to change a flight mode (e.g. position hold, acro, etc.).  The point-to-point 

mode uses the target ID and target system when sending the message.  Generally, 

when these fields are used, it guarantees delivery of the message.  An example of 

when this protocol is used is when missions, parameters or commands are being sent 

to the aircraft (MAVLink, 2019).  
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2.7 Robot Operating System 
When it comes to developing software for robots, it can often be quite challenging, 

particularly as the scale and scope of robotics continue to grow.  Often, robots can 

have a wide variety of hardware, which often leads to a struggle of reusing code that 

was previously developed for other hardware.  It can also be quite daunting if new 

code needs to be developed for these robots from scratch due to the code needing to 

contain a deep stack starting from driver-level software. (Quigley, et al., n.d.).  To help 

with these challenges, Robot Operating System was developed. 

 

Robot Operating System (ROS) Is a flexible framework that is used for writing and 

developing robot software.  ROS consists of a collection of tools, libraries and 

conventions that aim at simplifying a task of creating complex and robust robot 

behaviour across a wide variety of robotic platforms (ROS, 2019a).  One of the benefits 

of ROS is that the software is open-source.  This allows for many people to use the 

framework, develop code and libraries and share it amongst the ROS community.  An 

example of a package that is available to be used with ROS is MAVROS.  This 

package is used to convert the ROS commands that are developed into commands 

that can be used on the MAVLink protocol, which will result in sending commands to 

a potential UAV.  

 

Table 2.2 is a list of terms commonly used when using ROS.  These terms will be 

commonly used throughout this research. 
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Table 2.2: Terms frequently used when using ROS 

Term Description of the term 
Nodes It is an executable that uses ROS to communicate with other 

ROS nodes (ROS, 2019b). 

Messages A ROS data type used when subscribing or publishing to a 

topic (ROS, 2019b). 

Topics Nodes can either publish messages to a topic or subscribe 

to a topic to receive messages (ROS, 2019b). 

Publisher A message that is published to a topic for other Nodes to 

access. 

Subscriber A topic that is subscribed to, where a message is able to be 

received from other nodes. 

Service Server Allows for two way transport of messages, where the server 

will receive a request, perform a task and send a reply. 

Service Client Allows for two way transport of messages, where the client 

requests a message and waits for a reply. 

Workspace It is the directory (folder) where all packages can be created 

or modified. 

Package It is the software (files) that is used or developed within ROS 

for a project. 

Launch File A file that will open all the nodes specified in the file as well 

as assign parameters certain values where required. 

 

2.8 Euler Angles & Quaternions  
Euler angles and quaternions are both used to represent a body’s rotation or 

orientation.  However, their methods of representing rotations are different.  Euler 

angles are able to represent a 3D orientation of an object by using a combination of 

three rotations about different axes (CHRobotics, 2019a).  These rotations all take 

place on a fixed coordinate frame. 

 

Quaternions are also able to represent a 3D orientation of an object.  However, they 

use a combination of a real number (scalar number) and complex numbers (imaginary 

numbers).  The scalar part is represented by ‘w’ and the imaginary part is represented 
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by ‘x’, ’y’ and ‘z’ (AnimMotion, 2019), resulting in a four dimensional vector [w, x, y, z] 

or [x, y, z, w].   

 

Euler angles are easier to interpret than quaternions.   However, the benefits of using 

quaternions are as follows: 

1. Quaternions are not affected by gimbal lock whereas Euler angles can be 

affected.  Gimbal lock is when a degree of freedom is lost due to two of the 

axes rotating around the same axis and aligning themselves (AnimMotion, 

2019).  

2. There is less computational processing required, due to quaternions only 

needing to be represented by a four element vector while Euler angles have a 

3x3 matrix representation.  Quaternions also require less memory space in 

comparison to Euler angles (AnimMotion, 2019). 

Because of the gimbal lock, quaternions are preferred to be used in ROS to describe 

the orientation of an object. 

 

2.9 Attitude of an Aircraft 
The attitude (orientation) of an aircraft can be manipulated about the aircraft’s current 

frame by making use of three types of rotation. These are: 

1. roll (rotation about the x axis)  

2. pitch (rotation about the y axis) 

3. yaw (rotation about the z axis) 

 

A representation of these rotations can be found in Figure 2.4.  

 



 18 

 
Figure 2.4: Rotations about the aircraft’s current frame (CHRobotics, 2019b) 

 

2.10 Vision 
This section will be separated into two categories: 

• Object detection, recognition & tracking 

• Darknet & YOLO 

 

2.10.1 Object detection, recognition and tracking 
Object detection refers to detecting the presence of a particular object in a given frame, 

where the object in the frame is unknown (Howse, et al., 2016; Shipitko, 2017).  

 

Object recognition is the process of identifying an object in a given frame (Howse, et 

al., 2016).  For example, an object recognition system would be able to detect that a 

person and a dog can be found in a particular frame. 

 

Object tracking is the extraction of the motion of an object from a sequence of images 

estimating its trajectory (IGI Global, 2019). 

 

2.10.2 Darknet and YOLO 
Darknet is an open-source neural network framework that was written in C and CUDA 

(Redmon, 2013).  The framework supports both Central Processing Unit (CPU) and 

Graphics Processing Unit (GPU) computation, meaning that the processing of the 

neural network can be performed either on the computer’s main processor or by using 
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the graphics card.  You Only Look Once (YOLO) is a real-time objection detection 

system that was developed using the Darknet framework (Redmon, 2013). Most object 

detection systems use some sort of classifier in its detection process, whereas YOLO 

has more of a regression approach.  The way YOLO works is by applying the neural 

network to a full image.  The neural network will divide the image into regions and will 

predict bounding boxes and probabilities for each region.  The bounding boxes are 

then weighted, based on the predicted probabilities that were determined (Redmon, 

2013).  The detection on the image is performed in one run of the algorithm, hence 

the name You Only Look Once.  An example of the detection software being performed 

on an image can be referred to in Figure 2.5. 

 

 
Figure 2.5: YOLO being used to detect multiple objects within a frame 

 

The latest version available is YOLO version 3.  This version has multiple models 

available to be used.  These models vary, depending on what system the neural 

network is running on.  For instance, there is model called Tiny YOLO available, which 

allows for the model to be run on low processing devices, such as a cell phone or a 

tiny computer (e.g. NVIDIA Jetson TX2).  The current models available have been 

trained to identify 80 objects/classes, where it’s based on the Common Objects in 

Context (COCO) dataset.  However, the neural network can be trained to detect an 
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object of your choice.  A list of 80 objects that are currently identifiable based on the 

COCO dataset can be found in Appendix 2.1. 

 

2.11 Fiducial Markers 
Many computer vision applications, robot navigation and augmented reality often 

require pose estimation (position and orientation estimation) within their applications. 

Pose estimation is based on finding correspondences between points in the real 

environment and their 2D image projection.  To help with this, a fiducial marker can be 

used, which is a binary square marker that provides enough correspondence to obtain 

a camera pose.   Their inner binary codification makes them specially robust, which 

helps with the possibility of applying error detection and correction techniques 

(OpenCV, 2019).  

 

Some examples of fiducial markers can be seen in Figure 2.6. 

 

 
Figure 2.6: Examples of fiducial markers (Mostashiri & Dhupia, 2018) 

 

One of most common types of fiducial markers used is the ArUco marker.  It is a 

synthetic square marker that consists of a wide black boarder and an inner binary 

matrix which represents the marker’s identifier (ID).  The black border helps with faster 

detection within the image captured (OpenCV, 2019).  

 

There are a number of dictionaries available for ArUco markers, all depending on the 

size of the internal matrix.  This size of the matrix determines the number of bits for 
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the marker.  For instance, if a marker has an internal matrix of 4x4, the marker will 

have a size of 16 bits.  Within a specific dictionary, no two markers will look the same.  

For example, if a dictionary of 5x5 is used, the marker with an ID of 1 will look different 

to a marker that has an ID of 2.  

 

2.12 Current Implemented Solutions 
The following are current implemented solutions available or currently being 

developed solutions, where unmanned aerial vehicles are being used in surveillance 

systems. 

 

2.12.1 The Sunflower System 
The Sunflower System is a system that is currently being developed by Sunflower 

Labs.  They claim their system will be able to sense and deter unwanted visitors before 

they reach your door.  The system can be referred to in Figure 2.7.  The system 

consists of three key components, which are the sunflowers, the bee and the hive 

(Sunflower Labs Inc., 2019). 

• Sunflowers – These are sensors that are placed around the property which also 

help with lighting up the area.  They are used to alert the user of unusual activity.  

The sensors are able to identify people, animals and cars. 

• The Bee – This is an autonomous UAV that flies around the property.  It has a 

camera to capture and live stream precisely everything that is currently 

happening at the time.  The bee, which is normally guided by the sunflowers’ 

sensors, can also be directed to specific locations on the property.  

• The Hive – This is a self-charging, weatherproof home for the bee.  Since the 

system has the sensors within the sunflowers, the bee isn’t required to offer 

constant camera surveillance.  When the bee isn’t flying around, it will be 

docked safely within the hive, protecting the bee from the weather.  The 

system’s computer is also placed within the hive. 
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Figure 2.7: The Sunflower System (Sunflower Labs Inc., 2019) 

 

2.12.2 Nightingale Security 
Nightingale Security have developed their own surveillance system where they make 

use of a multirotor aircraft.  Their fully autonomous system is able to fly patrols during 

the day and night as well as in the rain and snow (Nightingale Security, 2019). The 

aircraft is referred to as Blackbird, which has been named after the historic SR-71 

Blackbird of the United States Air Force (Nightingale Security, 2019).  This aircraft has 

a maximum flight time of 33 minutes and can be fully recharged within 45 minutes.  

The aircraft is able to perform scheduled autonomous patrols around a property, 

respond to any alarms that have been triggered as well as even perform a manual 

flight mission in the event of a crisis occurring.  During flight time, a live video feed is 

transmitted to view what the aircraft is seeing.  In one of the videos on their website, 

Nightingale Security demonstrates the aircraft’s ability to detect human activity.  When 

the aircraft is not being deployed, it lands and charges within a base station.  The base 

station, which has a rugged, weatherproof design, contains networked computers that 

share critical flight information from the aircraft (Nightingale Security, 2019). The 

system can be found in Figure 2.8, where the aircraft is currently positioned on the 

docking station. 
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Figure 2.8: Nightingale Security system (ISC West, 2019) 

 

Nightingale Security’s system has been approved by the Federal Aviation 

Administration (FAA) in the United States of America for performing night time and 

multi-drone operations (Nightingale Security, 2019).  They offer a monthly or annual 

subscription model, where customers don’t need to purchase or maintain any 

equipment. 

 

2.13 Conclusion 
This chapter shed light on a number of topics that will be used in this research.  Due 

to the nature of the research topic, the equipment and software that was researched 

was fairly new technology, resulting in minimal information being available in journal 

papers.  The information included in this chapter was therefore primarily obtained from 

websites.  The typical components that can be found on a multirotor aircraft were 

discussed.  Hardware, such as the Arduino and the Pixhawk, were introduced and 

their purposes explained.  Software, such as the autopilot software and the ground 

control station software, were explained.  Other topics, such as Darknet’s YOLO, 

fiducial markers, Euler angles, quaternions and the attitude of an aircraft were also 

explained.  The significance of using ROS was discussed.  Current solutions were 

mentioned, showing how a complete system should be implemented.  Finally, the 

crime statistics for South Africa were revealed, stressing the importance of developing 
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a system to help reduce the overall crime in the country.  The next chapter is the 

System Architecture, which will discuss the entire design of the system. 
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Chapter 3: System Architecture 
This chapter will be divided into three sections.  The first will give a basic overview of 

the dynamics of the aircraft; the hardware architecture of the research will be 

discussed in the second; and the software architecture in the third.  The second section 

will include comments on the numerous changes that were implemented. The 

configuration of the hardware will also be discussed. The third section will make 

mention of all the software that was used throughout the system. 

 

One of the keys aspects for this research was to keep costs to the minimum.  Since 

the research was still in the developmental stage at the time of writing, there were 

likely to be a number of crashes occurring during the testing phase.  If a crash were to 

occur and some of the components were to break, the replacement components would 

need to be inexpensive. 

 

3.1 Multirotor Aircraft Dynamics 
In order for a multirotor aircraft to fly, it needs to overcome and oversee three crucial 

factors: drag, thrust and lift (Kadamatt, 2017).  Other factors which have an effect on 

the way in which it flies are hovering, increasing and decreasing in altitude and 

movement along its yaw, pitch & roll axes. 

 

3.1.1 Drag 
The word ‘drag’ is essentially a mechanical force that opposes the motion of any object 

through a fluid (Kadamatt, 2017).  Since the motors of a multirotor aircraft pass through 

air, it is called ‘aerodynamic drag’ (as opposed to the word, ‘hydrodynamic drag’ used 

to represent objects passing through water) (Kadamatt, 2017). 

 

This aerodynamic drag on the rotors is generated due to the difference in velocity 

between the rotors and the air around them (Kadamatt, 2017).  The drag force is only 

applied to the multirotor aircraft when it is in motion (either in a vertical, horizontal or 

rotational direction).  The drag force can be seen in Figure 3.1 & Figure 3.3. 
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In order for a multirotor aircraft to rise off the ground and fly, it will have to overcome 

the drag force as well as the overall weight of the aircraft (Kadamatt, 2017).  This may 

be overcome, depending on the thrust generated by the motors. 

 

 
Figure 3.1: Forces acting on a multirotor aircraft 

 

3.1.2 Thrust 
Thrust stands for the force generated by the propellers that are attached to the motors.  

The thrust force is used to overcome the drag force generated, as well as the overall 

weight of the multirotor aircraft.  The thrust force generated is not the main force 

responsible for the rising of the multirotor aircraft.  The lift force is responsible for this. 

(How Things Fly, 2005).  The thrust is the force which allows the motors to travel 

through the air, overcoming the resistance caused by the drag.  The thrust force may 

be seen in Figure 3.1. 

 

3.1.3 Lift  
The lift of the multirotor aircraft is the force that works against the weight of the aircraft, 

when being lifted into the air.  The following are responsible for the lift on a wing (on 

the propeller): 
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1. Newton’s Third Law of Motion – For every action, there must be an equal and 

opposite reaction.  This force will generate lift at the bottom of the wing because 

the mass of the air is pushed downwards and backwards (Kadamatt, 2017). 

2. Bernoulli’s – The pressure difference between the air at the top and the bottom 

of a wing, due to the Coanda Effect, will generate a lift towards the lower 

pressure, which is present at the top (Kadamatt, 2017).  This theorem is still 

being tested to date.  The effect can be seen in Figure 3.2. 

 
Figure 3.2: Coanda Effect (Aviation History, 2015) 

  

The propellers attached to the rotors will generate the lift force, using similar principles 

as those mentioned above (which is pushing air downwards as well as the difference 

in the air pressure).  In order for the aircraft to rise, be able to hover and more 

importantly, fly, the lift force must be greater than the weight of the aircraft.  The lift 

force can be seen in Figure 3.3. 

 

 
Figure 3.3: The forces applied to an aircraft (NASA, 2015) 
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3.1.4 Flying  
The way in which a multirotor aircraft works is based on how the brushless motors 

work.  The rotational part of the motor is referred to as the rotor.  As specified earlier, 

a multirotor aircraft is a helicopter that consists of numerous motors that work together 

to make the helicopter fly in certain directions.  The following description will be based 

on a hexacopter aircraft, which is a multirotor aircraft that contains six arms and six 

motors.  The way in which these six motors work depends on the direction in which 

the motors are spinning.  Each of the six motors will be attached to each of the six 

ends of the arms that are attached to the frame.  Three of the motors will spin in a 

clockwise direction (CW), while the other three will spin in a counter clockwise direction 

(CCW) (Allen, 2014).  By doing so, any tendency of the motors to cause the aircraft to 

spin in the air uncontrollably, due to the torque generated by the motors, will be 

cancelled out.  All clockwise motors are positioned in a triangle shape, while the 

counter clockwise motors are also positioned in a triangle shape.  Figure 3.4 below 

demonstrates motors 1, 3 and 6 spinning in a clockwise direction while motors 2, 4 

and 5 are spinning in a counter clockwise direction. 

 

 
Figure 3.4: Direction of rotation for the brushless motors (ArduPilot, 2019) 

 

At each of the motors, a torque is generated, which is in the same direction that its 

specific rotor is turning.  The direction in which each of these rotors rotates will 

counteract this generated torque.  The net torque will therefore equal zero (Kadamatt, 

2017).  This is the basis on how a multirotor aircraft is able to fly. 
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3.1.5 Hovering 
For a multirotor aircraft to hover in mid-air at a fixed position, the following needs to 

take place (Kadamatt, 2017): 

1. All the motors need to rotate at the same speed (calculated in revolutions per 

minute - RPM). 

2. The rotational speed of the motors needs to be sufficient, allowing the multirotor 

aircraft to generate enough lift to counteract its own weight.  

3. The torques created by each of the motors, which act against the frame of the 

multirotor aircraft, need to be cancelled out or else the aircraft will want to yaw 

in a specific direction.  

 

3.1.6 Increasing and Decreasing Altitude 
In order for a multirotor aircraft to gain altitude, all of the rotors are required to increase 

their rotational speed simultaneously.  Conversely, for a decrease in altitude, the 

motors should decrease their rotational speed simultaneously.  This increasing and 

decreasing in altitude is achieved by using the throttle & elevator control sticks on the 

transmitter (refer to the transmitter in section 3.2.6) (Kadamatt, 2017).  

 

3.2 Hardware Architecture 
This section will describe all the components that were used and installed throughout 

the research as well as the final hardware architecture. 

 

3.2.1 DJI vs Self-developed Aircraft 
There were two possible approaches in deciding what type of aircraft would be used. 

The first approach was to use a DJI Phantom 4 Advanced aircraft, where onboard 

software could be developed for the aircraft via DJI’s Software Development Kit (SDK).  

The second approach was to develop an aircraft from scratch.  There are advantages 

and disadvantages to both approaches.  The advantages and disadvantages for 

selecting the DJI Phantom 4 Advanced can be found in Table 3.1 and the advantages 

and disadvantages for developing an aircraft can be found in Table 3.2. 
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Table 3.1: Advantages and disadvantages of using a DJI Phantom 4 Advanced 

Advantages Disadvantages 

Top of the range off-the-shelf aircraft. Expensive to purchase. 

Already has a functional vision system. Replacement parts are expensive. 

Attachments can be added to the aircraft 

(e.g. FLIR thermal camera). 

Not much physical space available to 

add additional hardware. 

Has a flight mode available to follow a 

moving object (where the object needs to 

be selected via DJI’s mobile app). 

Only the SDK is available. Cannot run 

any choice of software on the aircraft. 

DJI’s SDK is available.  

 

Table 3.2: Advantages and disadvantages of developing an aircraft 

Advantages Disadvantages 
Completely customizable. Not a ready off-the-shelf aircraft that can 

operate straight away. 

A Pixhawk flight controller can be used. Many test runs will be required to get the 

aircraft running efficiently. 

Multiple components can be added to the 

aircraft (e.g. companion computer, 

camera, ultrasonic sensor, LIDAR, etc.).  

 

Components are inexpensive compared 

to DJI’s components. 

 

Can lead to future development projects 

(e.g. developing a docking / charging 

station for the aircraft). 

 

 

It was decided that developing an aircraft would be the preferred choice, mostly due 

to the aircraft being completely customizable.  At the time of deciding, a second-hand 

hexacopter was offered and purchased from the advisor, Mr Paul Mooney. This 

decision was made due the aircraft already having numerous components pre-

installed from a previous project he worked on.  It was also easily available and allowed 

for immediate hands on the aircraft.  The aircraft was a hexacopter, as opposed to a 

traditional quadcopter.  This means that if a motor or ESC were to fail, the aircraft 
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would still have five motors running, which would allow for the aircraft to still fly partially 

and be allowed to land safely. 

 

The purchased second-hand aircraft came with the following components: 

1. Frame & extra legs 

2. Six brushless motors  

3. Six propellers 

4. Six electronic speed controllers 

 
Before discussing the components, it must be noted that in order to use ROS with the 

aircraft, a number of components were required to be added to the aircraft.  They were: 

1. Companion computer 

2. USB Hub 

3. 5V Regulator 

4. Camera 

5. Wi-Fi Module 

6. FTDI Cable 

More information on these components will be discussed later in the chapter. 

 

3.2.2 Frame 
The frame of the second-hand hexacopter aircraft was a generic DJI F550 Flame 

Wheel.  An example of this frame can be found in Figure 3.5.  This frame contained 

six arms, which means that the aircraft would make use of six motors and six electronic 

speed controllers (ESC) to provide the thrust required by the aircraft.  The frame also 

consisted of a power distribution board (PDB), which allowed for the electronic speed 

controllers to be connected to the battery.  Extra attachments that were included in the 

purchase of this frame were four legs, which provided the aircraft with extra height off 

the ground as well as allowed the aircraft to have extra attachments beneath its 

fuselage.  
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Figure 3.5: DJI F550 Flame Wheel (Build Your Own Drone, 2019) 

 

3.2.3 Flight Controller 
There were numerous changes made to the flight controller, the reasons for which will 

be discussed below.  It must be noted that only Pixhawk flight controllers were used 

throughout this research because: 

• A Pixhawk flight controller is an autopilot flight controller, which meant that it 

could perform autonomous flights. 

• The flight controller is open source, which meant that any open source 

firmware (e.g. ArduPilot, PX4, etc.) could be uploaded onto the board. 

• Components could easily be plugged into the flight controller, allowing for 

disconnecting and attaching of new components to the board with ease. 

• The flight controller is one of the most popular flight controllers in use, meaning 

that there was a lot of information available to developers. 

 

3.2.3.1 Generic Pixhawk 1 

A second-hand generic Pixhawk 1 was first used and installed.  This flight controller 

was used due to its being available locally, allowing for immediate testing.  However, 

it was replaced after two weeks into the research.  A general idea of what the generic 

Pixhawk resembles can be seen in Figure 2.2. 
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3.2.3.2 Generic Pixhawk 2.4.6 

Since the aircraft was able to fly successfully with the generic Pixhawk 1, the next step 

was to transform the multirotor aircraft into an autonomous aircraft.  In order to give 

effect to this, a few hardware changes needed to be implemented.  A generic Pixhawk 

2.4.6 kit was purchased from China to help with transforming the aircraft. This kit 

included a GPS module, GPS stand and telemetry.  The flight controller that was 

currently on the aircraft was replaced with the generic Pixhawk 2.4.6 flight controller 

so that the new components (e.g. GPS module) could be used on the aircraft to make 

the system autonomous.  This flight controller can be seen in Figure 3.6. 

 

 
Figure 3.6: Generic Pixhawk 2.4.6 (Banggood, 2019) 

 

3.2.3.3 Pixhawk 2 Cube 

When it came to implementing and using ROS with the aircraft, a MAVROS specialist 

from Russia suggested in changing the firmware of the aircraft from APM to PX4 as it 

would allow for easier integration with the aircraft and ROS.  However, there was an 

issue with the PX4 firmware running on the generic Pixhawk.  To resolve this issue, 

the generic Pixhawk was replaced with a Pixhawk 2 Cube.  This new flight controller, 

which can be referred to in Figure 3.7(a), was a big improvement on the previous 

Pixhawk.  This was because the new flight controller had a vibration isolation for two 

of its inertial measurement units (IMU’s) and had a third fixed IMU as a backup, which 

would all result in the aircraft having a smoother and less jarring flight.  A benefit of 
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this Pixhawk was that it was capable of using real-time kinematic (RTK) positioning to 

help with accurate positioning.  However, this equipment was rather expensive, so the 

standard Here+ GPS module (refer to Figure 3.7(b)), that came with purchasing the 

flight controller, was installed alongside a power module to power the Pixhawk.  

 

  
Figure 3.7: (a) Pixhawk 2 Cube (GetFPV, 2019) (b) Here+ GPS module (Heli 

Engadin, 2019) 

 

3.2.3.4 Original Pixhawk 1 

During testing of the Pixhawk Cube, a problem occurred which prevented the flight 

controller from arming.  Arming refers to the aircraft passing all its safety checks and 

allowing the brushless motors to spin at an idle speed, where the aircraft won’t take-

off.  All aircraft need to be armed first before commencing their flights.  The problem 

was that the magnetometer kept giving inconsistent values to the Pixhawk.  After 

conducting some research on the internet, it was discovered that the reason for this 

was that the Here+ GPS module contained two GPS boards within the module, where 

the one was placed 180º from the other GPS board.  This meant that the one GPS 

board was facing towards the tail of the aircraft.  The discrepancy caused an issue 

with the PX4 firmware, resulting in the magnetometer being inconsistent. It must be 

noted that this problem does not occur with the ArduPilot firmware. 

 

As a result, the flight controller needed to be replaced with an original Pixhawk 1 flight 

controller, which was manufactured by 3DR.  This flight controller was chosen due to 
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its being locally available as it belonged to a colleague.  It resulted in a quick and 

efficient solution.  The Pixhawk can be seen in Figure 2.2. 

 

3.2.4 Electronic Speed Controller 
The Electronic Speed Controllers (ESCs) that were included with the second-hand 

aircraft were Afro-ESC 30A with SimonK firmware installed on them.  The ESC can be 

referred to in Figure 3.8.  SimonK firmware, (which was developed by Simon Kirby),  

was beneficial for use on multirotor aircrafts due to its helping the ESCs offer a faster 

response than your typical ESCs, resulting in the brushless motors reacting quicker to 

changes in the throttle. 

 

 
Figure 3.8: Afro-ESC 30A ESC (RC Groups, 2013) 

 

3.2.5 Brushless Motor & Propellers 
The motors that came with the second-hand aircraft were Prop Drive 28-26s 1000Kv 

brushless motors, which can be referred to in Figure 3.9(a).  The Kv refers to the 

constant velocity of the motor, which is measured by the number of revolutions per 

minute that a motor turns when one volt is applied with no load attached to the motor 

(Reid, 2016).  That means that if a three cell 11.1V LiPo was attached to the motor 

with no load, the motor would spin at 11 100 rpm (1000 x 11.1).  

 

The brand of propellers received were APC and the size of the propellers were 10 x 

4.7 inches (refer to Figure 3.9(b)).  The size means the diameter of the propeller was 

10 inches and the pitch of the blade was 4.7 inches.  
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Figure 3.9: (a) Prop Drive brushless motor (HobbyKing, 2019) (b) APC 10 x 4.7 

inches propeller (Hobby-Miracle, 2019) 

 

3.2.6 Transmitter & Receiver 
In order to fly and control the aircraft manually, a transmitter and receiver needed to 

be used.  The transmitter is a remote controller that the pilot holds and uses to direct 

the aircraft.  The receiver would need to be installed onto the aircraft to receive the 

commands from the pilot.  The type of transmitter that was used in this case was a 

FrSky 2.4Ghz ACCST Taranis Q X7.  The receiver that was attached to the aircraft’s 

fuselage was a FrSky 2.4Ghz ACCST X8R.  The transmitter and receiver can be found 

in Figure 3.10. 

 

 
Figure 3.10: (a) FrSky Taranis Q X7 transmitter (GetFPV, 2019) (b) FrSky X8R 

receiver (PorcupineRC, 2019) 
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3.2.7 Battery 
To power the motors, ESCs, Pixhawk, receiver and other components on the aircraft, 

a Lithium Polymer (LiPo) battery was required.  Two identical Gens ace 3300mAh 

11.1V 25C 3S1P batteries were purchased, where they were connected in parallel, to 

provide an overall capacity of 6600mAh.  The battery can be seen in Figure 3.11. 

 

 
Figure 3.11: Gens ace 3300mAh LiPo battery (Unmanned Tech, 2019) 

 

3.2.8 Flight Controller’s Extra Components 
Included in the Pixhawk 2.4.6 kit that was purchased (as mentioned in section 3.2.3.2) 

was a GPS module, GPS stand and a 433Mhz telemetry, where all three components 

were installed onto the aircraft.  Inside the GPS module was a NEO-M8N GPS and a 

magnetometer.  The GPS module, GPS stand and the 433Mhz telemetry can be 

referred to in Figure 3.12. 

 

 
Figure 3.12: (a) GPS Module and GPS Stand (Amazon, 2019) (b) 433Mhz telemetry 

(Readytosky, 2019) 
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However, when the flight controller was switched to the genuine Pixhawk 1, the 

aircraft’s current GPS module and 433MHz telemetry were swopped out for the GPS 

module and 915MHz telemetry that came along with the genuine Pixhawk 1. 

 

3.2.9 Gimbal 
To install a camera onto the aircraft, a gimbal was required to help stabilize the video 

footage.  This is done by allowing the camera to keep facing its desired direction and 

allowing the aircraft to move and twist around.  The gimbal that was purchased was a 

Tarot ZYX T-3D V 3-axis gimbal, which was designed to carry a GoPro Hero 5 camera.  

The reason for purchasing this gimbal, which can be referred to in Figure 3.13, was 

due to there being a GoPro camera available in the laboratory at the time of testing 

the aircraft.  However, the end goal was actually to use the gimbal to carry another 

type of small camera that would be connected to a potential companion computer 

(refer to section 3.2.11).  

 
Figure 3.13: Tarot ZYX T-3D V gimbal (Tarot, 2017) 

 

While experimenting with some of the settings on the software for the gimbal, the 

gimbal controller module overheated and caused the module to become faulty.  The 

expected cause of the overheating was that the USB port of the laptop that the gimbal 

was plugged into was a unique USB port that allowed any device to charge from the 

port while the laptop was powered off.  Unfortunately, a replacement module was not 

available to be purchased on its own, so a new gimbal had to be purchased.  This time 

round, a different version gimbal was purchased, which was a Tarot T4-3D.  This 

gimbal was designed for a GoPro Hero 3, Hero 3+ and Hero 4 camera, whereas the 
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former gimbal was only designed for a GoPro Hero 5. This gimbal can be seen in 

Figure 3.14. 

 

 
Figure 3.14: Tarot T4-3D Gimbal 

 

3.2.10 Companion Computer 
A companion computer was used on the aircraft to send and receive information to 

and from the flight controller.  It was decided that an Odroid XU4 companion computer, 

which can be referred to in Figure 3.15(a), would be chosen because: 

• It was small enough to fit onto the aircraft. 

• The purchasing cost for a computer, computer case, power brick and eMMC 

module was below R2 000. 

• It had a low power consumption. 

• It allowed for Linux Ubuntu to be installed onto the computer. 

• It allowed for peripherals (e.g. webcam, Wi-Fi module, etc.) to be plugged into 

the computer. 

To store the operating system and the files for the computer, the Odroid had two 

options available.  The choice was between using either a Micro SD card or an eMMC 

module.  It was decided that a 32gb eMMC module would be used as it had faster 

read and write speeds compared to the micro SD card.  A chart demonstrating the 

difference in speeds between a Micro SD class 10 card, a Micro SD UHS-1 card and 

an eMMC 5.0 module can be referred to in Figure 3.15(b).  As mentioned, a case for 

the Odroid was also purchased. 
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Figure 3.15: (a) Odroid XU4 (Hardkernel, 2019a) (b) Comparing the read and write 

speeds (Hardkernel, 2019b) 

 

3.2.11 Camera 
A camera was required to be used for the vision system.  Since this research was still 

in its developmental stage, it was decided that a low cost Logitech C920 HD webcam 

would be used instead of a more industry standard camera.  The camera, which can 

be referred to in Figure 3.16, had the capability of filming footage in 1080p (full HD) at 

30 frames per second (FPS).  Multispectral cameras and FLIR thermal cameras were 

considered for use for this research.  However, it was regarded as an unnecessary 

expense.  A big advantage of using a webcam was that it allowed for the digital video 

feed to be used by the companion computer via one of the computer’s USB ports. 

 

 
Figure 3.16: Logitech C920 webcam (Logitech, 2019) 
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3.2.12 Extra Components 
A USB hub was required to be installed onto the aircraft.  This was due to there being 

a shortage of USB ports available on the Odroid, when a keyboard and mouse were 

also plugged into the Odroid.  In addition, when plugging in the USB ports, it was found 

that the Odroid was not providing enough power to the peripherals. Therefore, the 

USB hub would need to have an external power source to help provide enough power 

to the peripherals.  The USB hub that was eventually installed onto the aircraft was a 

Unitek USB3.0 4-Port Hub.  This hub can be referred to in Figure 3.17.  

 

 
Figure 3.17: Unitek USB3.0 4-Port Hub (Unitek, 2019) 

 

In order to connect the Odroid and the USB hub to the LiPo batteries, the LiPo’s 

maximum peak 12.6V (4.2V per cell) needed to be stepped down to the necessary 5V 

required by the devices.  A Hobbywing Universal Battery Elimination Circuit (UBEC) 

5V at 8A (with a maximum of 15A) was purchased and connected to the LiPo batteries.  

The UBEC, which can be seen in Figure 3.18, is in essence a voltage regulator. 

 

 
Figure 3.18: Hobbywing UBEC 8A (Hobbywing, 2015) 



 42 

A Wi-Fi module and an FTDI cable were also purchased.  The Wi-Fi module was 

connected to one of the USB ports on the USB hub that was connected to the 

companion computer.  This Wi-Fi module was used to connect the Odroid computer 

to a network, which was established to connect the Odroid computer to a ground 

station computer.  The Wi-Fi module was a standard Wi-Fi N module.  The Future 

Technology Devices International (FTDI) cable is a USB to Serial converter, which 

was used to connect the companion computer to the flight controller.  The serial side 

of the FTDI cable was cut off and a new end was soldered onto the wires so that the 

cable could be compatible with the Pixhawk flight controller.  The FTDI cable and Wi-

Fi module can be found in Figure 3.19. 

 

 
Figure 3.19: FTDI cable (left) and Wi-Fi module (right) 

 

An additional component that was used, but not placed onto the aircraft, was a D-Link 

DSL-2750U modem router.  This router had the capabilities of using a 3G/4G modem 

to connect the network to the internet. (However, this feature was not used). For this 

research, the router was used to establish a network so that the companion computer 

could communicate with the ground station computer. Since the router would be 

placed outside during testing, it needed to be modified so that it could be powered 

from an external power supply and not from a typical wall outlet.  The modification 

consisted of soldering two wires onto the router’s board, while the other end of the 

wires were soldered to an XT60 connecter so that a 3 cell LiPo battery could power 

the device.  This modification can be seen in Figure 3.20. 
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Figure 3.20: Modified D-Link DSL-2750U modem router 

 

3.2.13 Additional Modifications 
A carbon rod was attached to the aircraft with two polystyrene balls placed on either 

end.  This was attached to help the pilot determine the current direction of the aircraft 

during flight.  Each ball was coloured differently to distinguish between the nose (front) 

and the tail (back) of the aircraft.  The red and blue polystyrene ball with tinfoil wrapped 

around it was attached to the nose of the aircraft and the green polystyrene ball was 

attached to the tail.  This setup can be referred to in Figure 3.21. 

 

 
Figure 3.21: Polystyrene balls used to help with the direction of the aircraft.  
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However, after flying the aircraft, It was decided that the front polystyrene ball at the 

nose of the aircraft was no longer necessary and so the rod was cut in half.  Only the 

half at the tail end was kept.  An extra piece of carbon rod was placed between the 

two arms at the tail to secure the rod to the aircraft.  This modification can be found in 

Figure 3.22. 

 

 
Figure 3.22: Modification of keeping the tail polystyrene ball and supporting the rod 

 

3.2.14 Designed Components 
The following parts were designed in Autodesk Inventor, where they were made via a 

3D printer and tested on the aircraft.  

 

3.2.14.1 Gimbal Attachment v1 

Two identical parts needed to be designed in order to attach the Tarot ZYX T-3D V 

gimbal (the first gimbal used) to the aircraft.  Each part would need to allow for the 

gimbal to be hung from it by means of a rod, cut to size.  The part itself would also 

need to be able to hang from the bottom plate of the aircraft’s fuselage.   

 

The bottom plate of the fuselage contained numerous holes, which were used to push 

the parts through and suspend each one with its own bolt.  The designed part can be 

viewed in Figure 3.23. 
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Figure 3.23: Part designed to attach the gimbal to the bottom plate of the aircraft’s 

fuselage 

 

The designed parts were fully functional.  However, there were two concerns.  The 

first was that there was too big a space between the bottom plate of the aircraft and 

the gimbal.  The second was that, since the part was hanging from the aircraft, it 

allowed for extra movement of the gimbal, which could affect the stability of the gimbal.  

This meant that the part would need to be redesigned at a later stage. However, for 

the time being, the parts were sufficient and fulfilled their purpose. The CAD drawing 

of the part can be found in Appendix 3.1. 

 

3.2.14.2 Gimbal Attachment v2 

When the Tarot ZYX T-3D V was replaced with the Tarot T4-3D, a new part needed 

to be designed to attach the new gimbal to the bottom plate of the fuselage.  This was 

due to the new gimbal having slightly different dimensions to the previous gimbal.  With 

the new part came a new design, where instead of letting the designed part hang from 

the fuselage, the part would rather be fastened to the bottom plate, only allowing the 

gimbal to be hung.  This would prevent the previous issues from occurring.  The new 

designed gimbal attachment can be found in Figure 3.24.  Once again, two identical 

parts were required to be printed. The CAD drawing of the part can be found in 

Appendix 3.2. 

Placed between the holes 

in the bottom plate of the 

fuselage, where the part 

would hang via a bolt. 

A rod is placed through the 

holes, where the gimbal would 

be attached to the rod. 
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Figure 3.24: New part designed to attach the gimbal to the aircraft’s bottom plate. 

 

3.2.14.3 Leg Extension 

When the first gimbal and the two parts were attached to the aircraft, another issue 

occurred.  The four legs that were currently attached to the aircraft were not long 

enough to prevent the gimbal from touching the ground.  To fix this, another part was 

developed that allowed the legs to be extended.  This part, which was also 3D printed, 

can be referred to in Figure 3.25.  The part was designed to be hollow at the top, which 

allowed for a portion of the bottom of the original leg to be placed within the part.  The 

part was also designed to follow the curve of the leg.  Since there were four legs on 

the aircraft, this meant that four parts were required to be printed.  These legs were 

still used with the second gimbal. The CAD drawing of the leg extension can be found 

in Appendix 3.3. 

 

 
Figure 3.25: Part designed to extend the legs on the aircraft. 
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3.2.14.4 GPS Case 

During one of the test flights (which consisted of the Pixhawk 2.4.6 flight controller, the 

first gimbal and the extension legs), the aircraft tipped over and crashed, resulting in 

the case of the GPS module as well as the wiring of the GPS module being damaged.  

To resolve this issue, a new GPS case needed to be designed.  The designed case 

had a similar design to the original GPS case.  The case consisted of two parts, where 

the top part had a concave shape and the bottom part had a cylindrical shape.  Both 

parts had a cube shape hollowed out to allow for the GPS module to have a snug fit 

within the case.  Since the GPS module needed to be positioned in a similar orientation 

to the flight controller, the outside of the concave part had an arrow designed on it to 

show the direction in which the GPS case needed to be positioned.  The inside of the 

concave part had tiny legs designed along the border of the hollowed shape to allow 

the GPS module to be placed on the legs.  A cylindrical hole was also designed on the 

side of both parts to allow room for the cable to pass through.  These parts, which can 

be seen in Figure 3.26, were also 3D printed. The CAD drawing for the top and the 

base of the GPS case can be referred to in Appendix 3.4. 

 

 
Figure 3.26: (a) GPS case designed in CAD (b) GPS case opened 

 

3.2.14.5 Webcam Case 

A part was designed to attach the webcam to the Tarot T4-3D gimbal.  This part 

contained two cubes.  The first cube was used to fill the space in the gimbal where the 

GoPro normally would have been mounted.  The second cube was hollowed out to 

house the webcam, where it also contained a lid to secure the webcam inside the part.  

The part had a cylindrical hole cut out to allow the lens of the webcam to be outside of 

the part.  To save time, Mr Martin Corlett, a colleague who worked in the same 

laboratory, was approached to design the part.  It appears in Figure 3.27. The CAD 

drawing for the parts can be seen in Appendix 3.5. 
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Figure 3.27: (a) the front of the webcam case (b) the back of the webcam case, 

which is fastened to the Tarot T4-3D gimbal 

 

3.2.15 Final Hardware Components 
Table 3.3 includes a list of components, as well as the quantity that were used, for the 

final design of the aircraft. 

 

Table 3.3: List of components that can be found on the final design of the aircraft 

Component Name of component Quantity 
Frame DJI F550 Flame Wheel 1 

Flight Controller Original Pixhawk 1 1 

ESC Afro-ESC 30A with SimonK firmware 6 

Brushless Motor Prop Drive 28-26s 1000Kv 6 

Power Module 3DR power module 1 

Receiver FrSky X8R 1 

Telemetry 3DR 915MHz telemetry 1 

Gimbal Tarot T4-3D 1 

Companion Computer Odroid XU4 1 

USB Hub Unitek USB3.0 4-Port Hub 1 

Camera Logitech C920 HD webcam 1 

Voltage Regulator Hobbywing UBEC 8A 1 

Wi-Fi Module Wi-Fi N Module 1 

FTDI Cable - 1 



 49 

Table 3.4 shows all other necessary components that were used, but were not placed 

onto the aircraft. 

  

Table 3.4: List of other components not directly used on the aircraft 

Component Name of component Quantity 
Transmitter FrSky Taranis Q X7 1 

Router D-Link DSL-2750U modem 1 

Ground Station Computer Acer Predator 17 inch laptop & 

MacBook Pro 15 inch laptop 

1 

 

3.2.16 Final Aircraft Hardware Architecture 
A block diagram for the final hardware architecture of the aircraft can be found in 

Figure 3.28.  Please take note of the direction of the arrows as some of the 

components have a bidirectional (as in two-way) data transfer between them.  The 

black arrows represent the data transfer between the components and the red arrows 

represent the power being provided straight to the components from the LiPo batteries. 

 

 
Figure 3.28: Block diagram for the final hardware architecture of the aircraft 
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3.2.17 Pixhawk Configuration 
There are a number of peripherals connected to the Pixhawk flight controller.  To help 

explain the setup, the table below shows the devices that were connected to their 

specific pinout on the Pixhawk.  The schematic and pinout for the Pixhawk can be 

found in Appendix 3.6. 

 

Table 3.5: Peripherals connected to the Pixhawk 

Device Pixhawk Pinout 
Telemetry (915 MHz) TELEM 1 

FTDI (Companion Computer) TELEM 2 

GPS Module (GPS + Compass) GPS & I2C  

Power Module POWER 

Receiver RCIN 

ESCs (x6) MAIN OUT 1 – MAIN OUT 6 

Gimbal (pitch and yaw axes) AUX OUT 1 & AUX OUT 2 

 

The connections between the telemetry, FTDI, GPS module and power module with 

their respective Pixhawk pinouts can be found in Figure 3.29.  
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Figure 3.29: Peripherals connected to the Pixhawk  

 

Referring to Figure 3.29, it can be noted that the FTDI cable contained colour coded 

cables within the cable.  The colour of each wire and the pin it is connected to can be 

seen in Table 3.6.  Referring to Figure 3.29, in can also be noted that the red cable 

was disconnected (as in not attached to the pin). 

 

Table 3.6: Colour code of the wiring of the FTDI cable and their pinouts 

Colour Pinout 
Red VCC 

White TX 

Green RX 

Blue CTS 

Yellow RTS 

Black GND 
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The connections between the receiver, the six ESCs and the gimbal with their 

respective pinouts can be found in Figure 3.30. The design for Figure 3.29 and Figure 

3.30 was based off a similar design developed by Mr James Sewell (Sewell, 2019). 

 

 
Figure 3.30: Receiver, gimbal and six ESCs connected to the Pixhawk 

 

3.3 Software Architecture 
This section will describe all the software programs that were used throughout the 

research as well as discuss the firmware that was used on the flight controller. 

 

3.3.1 Autopilot Software 
As discussed in section 2.4, an autopilot software needs to be installed onto the 

Pixhawk flight controller.  Initially, when deciding which firmware would be used for 

this research, the main focus was to use the most stable software currently available. 

At the start of the research, the most commonly used software available was the one 

developed by ArduPilot, of which there are different versions available.  The specific 

one that was used and installed onto the Pixhawk was the ArduCopter firmware as 

this firmware is specifically designed for multirotor aircrafts.  Since there are stable 
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and beta versions of ArduCopter available, only the latest stable versions were ever 

uploaded onto the Pixhawk. 

 

However, when the decision was made to use ROS for this research project, the 

Pixhawk’s firmware needed to be switched to a more ROS compatible firmware.  The 

decision was made to switch to PX4 firmware, where the most stable version was 

always used.  Even though ArduPilot was compatible with ROS, there were still a few 

limitations to the way the firmware was integrable with ROS. 

 

3.3.2 Ground Control Station Software 
As discussed in section 2.5, the ground control station (GCS) is the software that is 

installed onto a ground-based computer, used to communicate with a UAV.  It was 

decided that QGroundControl would be used as the main GCS software for this 

research as it is supports both ArduPilot and PX4 firmware.  

 

Before the aircraft could be taken for a test flight, the following needed to be set up via 

QGroundControl to use ArduCopter on the aircraft: 

• Uploading the ArduCopter firmware onto the Pixhawk. 

• Calibrating the Pixhawk’s compass. 

• Calibrating the Pixhawk’s gyroscope. 

• Calibrating the Pixhawk’s accelerometer. 

• Calibrating the Pixhawk’s level horizon. 

• Calibrating the transmitter and assigning its channels to the Pixhawk 

(e.g. channel 6 on the transmitter will arm the aircraft).  

• Selecting which flight modes to be available for use by the aircraft. 

 

The above were also needed to be set up for the Pixhawk when running PX4 firmware.  

The following additional steps were required for setup: 

• Maximum voltage per battery cell. 

• Minimum voltage per battery cell. 

 

ArduPilot and PX4 offer numerous flight modes to be used on a multirotor aircraft. 

However, only 6 were selected for use with the ArduPilot firmware and 7 were selected 
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for use with the PX4 firmware.  Table 3.7 and Table 3.8 show the flight modes that 

were selected for each firmware, as well as a description of the flight mode. 

 

Table 3.7: Description of the flight modes used on the aircraft while using ArduPilot 

firmware (ArduPilot, 2019) 

Flight mode Description of flight mode 
Acro Holds its attitude, but has no self-levelling. 

Stabilize Self-levels itself along the roll and pitch axis. 

PosHold Holds it altitude and position by using the GPS. However, 

it has manual roll and pitch when the transmitter sticks 

are not centred. 

Loiter Holds its altitude and position by using the GPS. 

Auto Performs a pre-defined autonomous mission. 

RTL (return to land) Returns and lands at the take-off location. 

 

Table 3.8: Description of the flight modes used on the aircraft while using PX4 

firmware (PX4, 2019c) 

Flight Mode Description of flight mode 
Acro Holds its attitude, but has no self-levelling. 

Stabilized Self-levels itself along the roll and pitch axis. 

Position Holds it altitude and position by using the GPS. 

However, it has manual roll and pitch when the 

transmitter sticks are not centred. 

Mission Executes a pre-defined mission/flight plan. 

Return Aircraft ascends to a safe height and returns to its home 

position, where it will land. 

Land Lands at the current location. 

Offboard Obeys a position, velocity or attitude setpoint provided 

over MAVLink (often from a companion computer). 

 

Other GCS software that was used to some extent were Mission Planner and 

MavProxy.  Mission Planner is a GCS software similar to QGroundControl.  However, 

the software is limited to only ArduPilot.  Also, the graphical user interface (GUI) of the 
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software is not as user friendly as QGroundControl.  MavProxy is a command line 

ground control station.  However it was barely used due to its having a limited GUI 

interface. 

 

3.3.3 PX4 Parameters 
There were numerous parameters that needed to be adjusted in order to allow the 

aircraft to perform autonomous landing by making use of the companion computer. 

The parameters that were adjusted on the PX4 firmware on the flight controller can be 

referred to in Appendix 3.7. 

 

3.3.4 Companion Computer Software 
The following operating system and software were installed and used on the 

companion computer. 

 

3.3.4.1 Operating System 

As discussed in section 3.2.10, an eMMC was purchased as the storage device for 

the Odroid XU4.  There were two choices between which operating system could be 

used on the Odroid.  They were Android and Linux.  The decision was made to opt for 

Linux as ROS only works on Linux.  The version of Linux that came on the eMMC was 

Ubuntu Mate, which is a less processor demanding operating system than the original 

Linux Ubuntu.  On the arrival of the computer and the eMMC, the operating system 

was immediately upgraded to the latest version available, which at the time was 

Ubuntu Mate 16.04.3-4.14.  This was done by downloading the latest image file (.iso 

file) from Hardkernel’s website.  The image was flashed to the eMMC module by using 

Etcher software. 

 

3.3.4.2 ROS 

Once the operating system was installed, robot operating system (ROS) was installed 

onto the Odroid.  The ROS version that was installed and used throughout the 

research was ROS Kinetic.  The installation was followed based on the installation 

guide available on the ROS website.  In order to use ROS, a workspace was needed 

to be created to store all the packages, scripts of code and launch files that would be 

used.  For this research project, the workspace that was developed was called 
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hexaircraft_ws and the package where all the scripts were developed in was called 

hexaircraft. 

 

3.3.4.3 Terminator 

When it came to developing the code, the fact that the terminals that were used were 

scattered around the computer screen, was frustrating.  To rectify this, a program 

called Terminator was installed.  This helped group the terminals neatly as well as 

provide for a layout to be set up, allowing for multiple terminals to be opened and 

perform a unique task, all via the execution of one command in a terminal.  This helped 

save a lot of time when having to restart and open the terminals when developing the 

code.  An example of Terminator being used as well as its layout can be found in 

Figure 3.31. 

 

 
Figure 3.31 Terminator used to group terminals 

 

3.3.5 Tarot Gimbal Software 
Both Tarot gimbals that were used offer software available to allow parameters to be 

adjusted and calibrations to be made on the gimbal.  Figure 3.32 shows a screenshot 
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of the software that was used, where the parameters that were set for the gimbal can 

be seen. 

 

 
Figure 3.32: Tarot Gimbal Software 

 

3.3.6 Virtual Machine Software 
In order to write scripts and develop code for the companion computer to use, it was 

decided that the code would first be developed, either on a laptop or PC, then 

transferred across to the companion computer.  This would allow for the code to be 

tested on a simulator before testing it on the actual aircraft (refer to chapter 6 to see 

more information on the simulation).  To be able to write the code on the laptop (which 

was a Windows operating system laptop), a virtual machine was used to run Linux 

Ubuntu in parallel with the Windows operating system, allowing for both systems on 

the laptop to be used simultaneously.  The only downside is that a virtual machine is 

not granted as much processing power as compared to the Windows system.  The 

virtual machine software that was used was Oracle VirtualBox, which was downloaded 

for free from their website.  An extension pack was also downloaded off their website, 

which supported extra features such as having support for USB 2.0 and USB 3.0 

devices. 
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The virtual machine was also used to run ROS on the ground station computer to send 

commands through to the companion computer when a task needed to be performed.  

This was done by using the network that was established by the D-Link router. 

 

3.3.7 Virtual Network Computing Software 
Initially during testing of the actual aircraft on the field, a computer monitor, HDMI 

cable, keyboard and a mouse had to be taken to the field to set up the computer as 

well as to run all the necessary programs and scripts to use ROS alongside the aircraft.  

This become a tedious process as well as energy consuming (having to run back and 

forth between the aircraft and the ground station computer) to get the complete system 

up and running.  To solve this problem, a VNC system was setup over the network.  

Virtual network computing (VNC) is a graphical desktop sharing system that allows a 

person to control the desktop interface of one computer from another computer or 

mobile device remotely (Raspberry Pi, 2017).  The computer that is required to be 

remotely controlled needs to be running a VNC server whilst the computer that is going 

to be used to control the other computer remotely needs to be running a VNC viewer.  

Therefore, a VNC server needed to be set up on the companion computer and a VNC 

viewer needed to be set up on the ground station computer (as in the laptop).  The 

software installed on the companion computer was called X11VNC Server and the 

software installed on the ground station computer was VNC Viewer.  The VNC Viewer 

that was used in this research can be found in Figure 3.33. 

 

 
Figure 3.33: VNC Viewer running on a MacBook Pro laptop 
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3.4 Conclusion 
In this chapter, the dynamics of the aircraft were explained and the components used 

for the research and the integration of the hardware discussed.  The setup of the flight 

controller was explained, shedding light on how the flight controller was connected to 

its peripherals as well as how the software was set up.  Other software that was used 

throughout the research was discussed, emphasising its relevance.  The next chapter, 

Vision System, will discuss the importance of the system and how it was established.  
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Chapter 4: Vision System 
From the beginning of this research, it became evident that the most important part of 

this research would be the vision system.  This chapter will be divided into three 

sections.  The first will discuss the reason for using Robot Operating System (ROS) 

for the vision system; the second will deal with the use of the vision system to help 

land the aircraft; and finally the third will explain how the vision system is used for 

human detection. 

 

4.1 Using Robot Operating System 
One of the main factors that needed to be addressed was how the vision system would 

be developed due to the numerous software and programming libraries available on 

the internet.  However, there were two approaches that stood out from the rest.  The 

first approach was to integrate OpenCV libraries into the vision system and then 

command the aircraft to move to a new position via MAVLink.  The second approach, 

which was suggested by Prof. Riaan Stopforth, was to use ROS to integrate the whole 

system, where the vision system would be developed within the system. 

 

The following tables show the advantages and disadvantages to both approaches. 

 

Table 4.1: Using OpenCV for the vision system 

Advantages Disadvantages 
OpenCV is open source (free to use). OpenCV is complicated to use. 

OpenCV is fast due to it predominantly 

written in C/C++ . 

Not a seamless integration with the 

aircraft. 

OpenCV library has over 2500 

optimized algorithms available to help 

with practically any vision detection 

scenario (OpenCV, 2019). 

 

Has a community of 47 000 people to 

help with issues (OpenCV, 2019). 
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Table 4.2: Using ROS to develop the entire system 

Advantages Disadvantages 
ROS is open source (free to use). ROS is initially complicated to use.  

Allows for the complete system to be 

integrated seamlessly (including the 

aircraft). 

The only official supported languages are 

Python, C++ and Lisp (with Java and Lua 

currently being experimented). 

Has over 3000 packages available to 

be used within a project (e.g. OpenCV 

can be used within ROS) (ROS, 

2019c). 

 

ROS provides great tutorials on its 

website to learn to use the system. 

 

Great community available to help with 

solving issues. 

 

 

The decision was made to use ROS for this research mainly due to the seamless 

integration between all the major components of the system.  

 

As discussed in section 3.3.4.2, the version of ROS used for this research was ROS 

Kinetic.  Table 4.3 contains a list of the main ROS packages that were used in the 

ROS build, the author of the package as well as a description of the package. 
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Table 4.3: ROS packages used in the build 

ROS Package Author Description of the Package 
mavros Vladimir Ermakov Communication driver for 

various autopilots with MAVLink 

communication protocol. Used 

to translate code developed in 

ROS into MAVLink commands 

for the aircraft to understand 

and follow (ROS, 2018c). 

aruco_ros Rafael Muñoz Salinas, 

Bence Magyar 

Provides real-time marker 

based 3D pose estimation using 

ArUco markers (ROS, 2014). 

darknet_ros Marko Bjelonic Real-time object detection 

system (ROS, 2018a). 

usb_cam Benjamin Pitzer ROS driver for V4L USB 

cameras (ROS, 2016a). 

camera_calibration James Bowman, Patrick 

Mihelich 

Allows for the calibration of 

monocular or stereo cameras 

using a checkerboard 

calibration target (ROS, 2017). 

rqt Dirk Thomas, Dorian 

Scholz, Aaron Blasdel 

Framework for GUI 

development for ROS (ROS, 

2016b). 

video_stream_opencv Sammy Pfeiffer Contains a node to publish a 

video stream (e.g. from a pre-

recorded file) (ROS, 2018b). 

 

4.2 Camera Calibration 
In order to use a camera in ROS, the first step to perform is to calibrate the camera. 

As discussed in section 3.2.11, the Logitech C920 webcam was purchased to be used 

on the aircraft.  Therefore, the webcam was used in ROS.  A camera calibration guide, 

developed by Robotics with ROS, was followed to help with this calibration process 

(Robotics with ROS, 2017). 
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The first step was to disable the autofocus of the camera.  This was to prevent the 

camera from auto adjusting itself during the calibration process as well as when the 

camera was being used for the vision system.  This was done by installing software 

on Ubuntu called uvcdynctrl and disabling the autofocus within the software. 

 

The second step was to run the usb_cam package to connect the webcam to ROS. 

The camera in ROS was called: 

 /usb_cam 

The video feed in ROS was published to the topic: 

/usb_cam/image_raw 

To view the video feed, the program rqt was used, which was a GUI development for 

ROS.  

 

 
Figure 4.1: Camera calibration being performed using the checkerboard (Shipitko, 

2017) 

 

To perform the calibration, the ROS package camera_calibration was used, where a 

checkerboard calibration target was shown to the camera.  The checkerboard used 

can be found in Appendix 4.1. The checkerboard contained black and white squares, 

where the camera would measure the distance between the inner corners of the 

squares.  An example of this calibration being implemented can be seen in Figure 4.1. 

The size of the checkerboard was 8x6 (which means the number of inner corners was 
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8x6) and the size of each square was 25.7 mm.  The checkerboard was printed on an 

A4 sheet of paper.  The checkerboard was then: 

1. Moved in front of the camera in a vertical and horizontal position. 

2. Moved closer and further away from the camera. 

3. Tilted (skewed) in different directions towards the camera. 

 

Once the calibration was complete, the calibration data was saved in a .YAML file and 

placed in the ROS directory on the computer, where it could be used by any ROS 

package that wishes to use the calibration data. 

 

4.3 ArUco Marker Detection 
One of the main objectives for this research was to develop a vision system to help 

with the landing of the multirotor aircraft.  It was decided that fiducial markers, 

specifically ArUco markers, would be used to be detected by the vision system.  This 

was decided because the ArUco marker was able to provide a positional and 

orientational estimation (pose estimation) based on where the ArUco marker was 

positioned in relation to the camera.  This would help the aircraft to align itself with the 

marker and then land on the marker, resulting in a potential accurate landing system. 

 

To use ArUco markers with this system and specifically in ROS, the package 

aruco_ros was used (where the original ArUco dictionary was used within the 

package). This package was downloaded from the GitHub page assigned for 

aruco_ros. The package works by taking the topic (image:=/usb_cam/image_raw) 

published by the usb_cam package and then perform a check for any ArUco markers 

that have the same ID as the ID that had been pre-set by the aruco_ros package. For 

example, if an ID of 5 had been set in the aruco_ros package, the package would only 

search in the video feed for an ArUco marker that had an ID of 5. For this entire 

research, an ArUco marker with an ID of 7 was used.  This specific marker can be 

seen in Figure 4.2.  The aruco_ros package was run by using the launch file available 

in its package. 
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Figure 4.2: ArUco marker with an ID of 7 

 

If the aruco_ros had detected the marker with the same ID as the one requested, the 

package had a topic that it would publish to, where the detected marker as well as the 

marker’s axes (x, y and z) were shown in the video feed.  The video feed (which was 

viewed using the rqt package) for this published topic was called: 

 /aruco_single/result 

The positional and orientational estimation from the marker was published to a 

separate topic, called: 

 /aruco_single/pose 

This topic could be broken into two sections (with a total of 7 values outputted to the 

topic): 

1. Positional estimation: in the form of a co-ordinate 

• X co-ordinate 

• Y co-ordinate 

• Z co-ordinate 

2. Orientational estimation: in the form of a quaternion 

• W – scalar number 

• X – imaginary number 

• Y – imaginary number 

• Z – imaginary number 
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This topic was available to be used and integrated into a node that could be self-

developed.  A node called determinepose.cpp was developed, where this topic was 

subscribed to (more information on this in section 5.1.3.1).  

 

4.4 Human Detection 
This section will be broken into four sections: 

1. Discussing the use of the Darknet: YOLO package with ROS. 

2. Calculating the ground distance between the aircraft and the detected person. 

3. Calculating the angle to centre the person in the frame. 

4. Calculating the new coordinates for the aircraft to fly towards. 

 

4.4.1 Using Darknet: YOLO with ROS 
 As discussed in section 2.10.2, Darknet’s YOLO is an open source neural network 

used for object detection.  A ROS package called darknet_ros was developed, which 

allows YOLO to be integrated into a ROS project.  As discussed in section 2.10.2, 

YOLO, based on the COCO dataset, is able to detect 80 objects, where one of the 

objects that it is able to detect is a person.  This package was downloaded from the 

GitHub page that is assigned for darknet_ros.  It must be noted that the Odroid XU4 

companion computer was not capable of running Darknet’s YOLO due to the 

insufficient processing power available.  As a result, all the human detection aspects 

of this research were performed in a simulation on a desktop computer (more 

information on this in section 6.3).   

 

In order to use the darknet_ros package, the first step was to choose which version of 

YOLO would be used for the vision system.  The version of YOLO used for this 

package was tiny YOLO version 3 (referred to as YOLOv3-tiny).  In order to use this 

version, the following two files were downloaded from Darknet YOLO’s website: 

1. yolov3-tiny-voc.cfg (the file stores the configuration for the neural network) 

2. yolov3-tiny.weights (the file contains the trained weights for the neural network) 

Another file, yolov3.yaml, was duplicated and renamed to yolov3-tiny.yaml (this file 

contains the objects/classes that can be detected as well as the detection probability 

threshold). 
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In order to use the Logitech C920 webcam to detect objects using darknet_ros, a file 

in the package needed to be amended.  The ros.yaml file was configured to use the 

topic that would be published by the usb_cam package.  This topic was called: 

/usb_cam/image_raw 

 

If a pre-recorded video file was wanted to be run through darknet_ros instead of using 

a webcam, the above topic would need to be replaced with the topic (being published) 

that contained the pre-recorded file.  In order to do this, a package called 

video_stream_opencv was used.  This package was used when performing the testing 

for human detection (refer to section 6.3).  The topic that was published by this 

package, containing the pre-recorded video file, was: 

 /videofile/image_raw 

 

Once the launch file had been run, the video feed was searched for any possible 

objects.  If the ROS package detected a possible object, it would give a probability that 

the detected object was correct.  If the probability of the correct type of object detected 

was higher than the probability threshold that was set in the yolov3-tiny.yaml file, 

information based on the object would be published to a topic called: 

 /darknet_ros/bounding_boxes 

A bounding box would also appear around the detected object in the video feed (where 

this was published to a separate topic). An example of a bounding box around a 

detected object can be seen in Figure 4.3. 
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Figure 4.3: Person detected on a field, where a bounding box was estimated 

 

 The following information was published to the /darknet_ros/bounding_boxes topic,  if 

an object was detected: 

1. Class 

2. Probability 

3. Xmax 

4. Xmin 

5. Ymax 

6. Ymin 

 

The bounding box was based on the resolution of the video feed, where it gave the 

position at a specific pixel.  For example, if a video feed had a resolution of 1920x1080 

(Full HD), the maximum Xmax value possible would be 1920 and the maximum Ymax 

value possible would be 1080.  All bounding boxes were based on the origin being in 

top left corner of the screen. 

  

The topic containing the bounding box information was available to be used and 

integrated into a node that could be self-developed. A node called boxinfo.cpp was 

developed, where this topic was subscribed to (more information on this in section 

5.2.2.2).  



 69 

4.4.2 Calculating the ground distance 
If the idea is to develop a multirotor aircraft that can detect and follow a person, some 

necessary calculations will be required.  One of the first calculations is to calculate the 

ground distance that the aircraft is away from the person. 

 

Below is an example, where the aircraft is at an altitude of 10 metres and the person’s 

bounding box (detected by darknet_ros) has a Ymax of 380 pixels . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Diagram demonstrating the frame seen by the camera 

 

The red dotted line represents the frame that is seen by the camera.  The green box 

represents the bounding box that formed around the person, determined by using 

darknet_ros.  The reason that the green box appears to be floating is because it 

resembles the person not being exactly at the bottom of the frame but actually standing 

at some distance away from the camera, resulting in the person being higher up in the 

frame.  The webcam will be set at 45º by adjusting the angle of the gimbal that is 

holding the camera.  The orange dotted line resembles the altitude that the aircraft is 

above the ground.  For demonstration purposes, the altitude will be set at 10 metres. 
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To perform the calculations, the camera’s field of view was required.  The webcam 

had the following specifications (Logitech Apps, 2019): 

Diagonal field of view (FOV) = 78º 

Horizontal FOV = 70.42º 

Vertical FOV = 43.3º 

Focal length = 3.67mm 

The resolution of the video feed was set at 640 x 480 pixels.  This was because the 

Odroid XU4 companion computer struggled to handle the video processing of the 

camera’s capable 1920 x 1080 (Full HD) resolution.  However, the actual test was only 

performed on the simulation and not on the Odroid. 

 

The ground distance calculation will be broken into two sections: 

1. Calculating the distance of the aircraft from the bottom of the video frame. 

2. Calculating the distance of the person within the video frame. 

 

4.4.2.1 Calculating the distance of the aircraft from the bottom of the video frame 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Angle between the aircraft and the bottom of the camera’s field of view 
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∅ = 180° − 90° − 23.35°  

∅ = 66.65°  

 

Β = tan(𝛽) × 10  

Β = tan(23.35°) × 10  

Β = 4.32	metres  

 

4.4.2.2 Calculating the distance of the person within the video frame 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Angle between the aircraft and the top of the camera’s field of view 

 

𝛿 = 45° + !"."°
%

  

𝛿 = 66.65°  

 

Τ = tan(𝛽) × 10  

Τ = tan(66.65°) × 10  

Τ = 23.16	metres  
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Figure 4.7: Angles within the cameras field of view 

 

𝛼 = 180° − ∅  

𝛼 = 180° − 66.65°  

𝛼 = 113.35°  

 

𝜃 = 180° − 113.35° − 43.3°  

𝜃 = 23.35°	  

 

 

 

 

 

 

 

Figure 4.8: Triangle formed within the camera’s field of view 

 

Η = &'()&*&	,-./)0'1	2)(-13
456(8)

 (4.1) 

Η = !:;
456(%"."<°)

  

Η = 1211.06 ≅ 1211	𝑝𝑖𝑥𝑒𝑙𝑠  

 

To determine the distance with respect to only the video frame, the Ymax from the 

bounding box of the person needs to be used. 
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𝑃𝑖𝑥𝑒𝑙𝑠	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑏𝑜𝑡𝑡𝑜𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑓𝑟𝑎𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙	𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠 − 𝑌𝑚𝑎𝑥 (4.2) 

𝑃𝑖𝑥𝑒𝑙𝑠	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑏𝑜𝑡𝑡𝑜𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑓𝑟𝑎𝑚𝑒 = 480 − 380  

𝑃𝑖𝑥𝑒𝑙𝑠	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑏𝑜𝑡𝑡𝑜𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑓𝑟𝑎𝑚𝑒 = 100	𝑝𝑖𝑥𝑒𝑙𝑠  

 

The distance of the person in the frame can be calculated by using linearization.  This 

is done by comparing the size of the two triangles, seen in Figure 4.9  

 

 

 

 

 

 

Figure 4.9: Same triangle as in figure . 

 

 

 

 

 

 

 

 

 

Figure 4.10: Smaller triangle formed underneath the bounding box of the person 
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By linearization: 
%<%.";
=%==.;>

= (
(?@A)

 (4.4) 

𝑥 = %<%."
=%==.;>

× (23.16 − 4.32)  

𝑥 = 3.92	𝑚𝑒𝑡𝑟𝑒𝑠  

 

Therefore, the total ground distance between the aircraft and the person is: 

𝑡𝑜𝑡𝑎𝑙	𝑔𝑟𝑜𝑢𝑛𝑑	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑥 + Β (4.5) 

𝑡𝑜𝑡𝑎𝑙	𝑔𝑟𝑜𝑢𝑛𝑑	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 3.92 + 4.32  

𝑡𝑜𝑡𝑎𝑙	𝑔𝑟𝑜𝑢𝑛𝑑	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 8.24	𝑚𝑒𝑡𝑟𝑒𝑠  

 

It must be noted that the aircraft should only move forward by the calculated distance 

of the person in the video frame (in the case of the above example, 3.92 metres). This 

is because you do not want the aircraft to fly to the exact point where the person is 

positioned or else the person will no longer be in the video feed.  Therefore, throughout 

the rest of this dissertation, the ground distance will refer to the calculated distance of 

the person in the video frame. 

 

The abovementioned calculations will be implemented into a script to be used by the 

vision system.  With regard to the script that will be developed, the altitude and the 

vertical resolution will need to be stored in separate variables, allowing them to be 

adjusted easily, if need be.  

 

4.4.3 Centre a person in the frame 
Figure 4.11 shows a top view of an aircraft, where it has detected a person and 

calculated the bounding box for the person.  The idea is to calculate the angle the 

aircraft needs to rotate by making use of the bounding box, the horizontal resolution 

of the video feed and the horizontal field of view of the camera.  

 

With regards to the bounding box, the midpoint will be used. This can be calculated 

by: 

 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔	𝑏𝑜𝑥	 = B&'(CB&)D
%

 (4.6) 
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Figure 4.11: Top view of the aircraft detecting a person  

 

To determine whether the aircraft needs to rotate left or right: 

 𝑅𝑜𝑡𝑎𝑡𝑒 = /E/'1	FE.)GED/'1	2)(-13
%

−𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔	𝑏𝑜𝑥 (4.7)  

If 𝑅𝑜𝑡𝑎𝑡𝑒 is negative, the aircraft must rotate right and if its positive or equal to zero, 

the aircraft must rotate left. 

 

Therefore, the angle to rotate the aircraft has two formulas depending on the direction 

the aircraft needs to rotate: 

 

1. Aircraft needs to rotate right: 

𝐴𝑛𝑔𝑙𝑒	𝑡𝑜	𝑟𝑜𝑡𝑎𝑡𝑒	𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡	𝑟𝑖𝑔ℎ𝑡 = HE.)GED/'1	IJK
%

×
!"#$%!"&'

(
)*+&,*'-#.	012*.3-&*'

(

  

                          = HE.)GED/'1	IJK
%

× B&'(CB&)D
HE.)GED/'1	L-3E1*/)ED

 (4.8)  

2. Aircraft needs to rotate left: 

𝐴𝑛𝑔𝑙𝑒	𝑡𝑜	𝑟𝑜𝑡𝑎𝑡𝑒	𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡	𝑙𝑒𝑓𝑡 = HE.)GED/'1	IJK
%

×
)*+&,*'-#.	012*.3-&*'

( @(!"#$%!"&')
(

)*+&,*'-#.	012*.3-&*'
(

  

                              = HE.)GED/'1	IJK
%

× HE.)GED/'1	L-3E1*/)ED@(B&'(CB&)D)
HE.)GED/'1	L-3E1*/)ED

 (4.9)  

 

Equation 4.8 and Equation 4.9 will be applied to a script to perform the calculation. 

 

𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥 

𝑡𝑜𝑡𝑎𝑙	ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠
2  

𝛼
2 

Bounding box  

Aircraft  



 76 

4.4.4 Developing coordinates for the aircraft using the calculated ground 
distance and calculated angle 
The idea was to develop a method that could calculate a coordinate for the aircraft to 

fly to, based on the bounding box that was formed using the darknet_ros package.  

 

To calculate the new potential coordinate, the following will need to take place: 

1. Use the calculated ground distance. 

2. Use the calculated angle that the aircraft needs to rotate towards, as well as 

the angle that the aircraft is rotated by at the time of the calculation (in other 

words, the direction that the aircraft is facing). 

3. The new coordinate will be calculated based on a cartesian coordinate system, 

where the aircraft’s home position and current position will be used. 

 

Before continuing with the calculation, the aircraft’s frame of reference needs to be 

discussed.  The aircraft’s frame of reference has been established by PX4.  PX4 uses 

a FRD (X Forward, Y Right and Z Down) for the local body frame and NED (X North, 

Y East and Z Down) for the local world frame.  However, the ROS frame is different to 

the PX4 frame.  Table 4.4 explains what frame is used for ROS and PX4 and Figure 

4.12 demonstrates the frames used for ROS and PX4. 

 

Table 4.4: Frame of reference for ROS and PX4 

Frame ROS PX4 
Body FLU (X Forward, Y Left and Z 

Up) 

FRD (X Forward, Y Right and Z 

Down) 

World ENU (X East, Y North and Z 

Up) 

NED (X North, Y East and Z 

Down) 
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Figure 4.12: Frame of reference for ROS and PX4, where North East Down (NED) 

on the left and East North Up (ENU) on the right (PX4, 2019h) 

 

The following is an example of how the new co-ordinate would be calculated if the new 

co-ordinate formed in the first quadrant relative to the aircraft.  For this example, the 

aircraft is currently at the co-ordinate (-2:5).  A distance of 17 metres will be used as 

the calculated ground distance for the example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Example to demonstrate how the co-ordinate is calculated 
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Figure 4.14: Angles around the aircraft used to calculate the new co-ordinate 

 

The angle 𝛼 is the angle that the aircraft is facing after it has rotated to centre the 

person in the middle of the frame.  This angle can be determined by reading the 

quaternion from the aircraft, then converting the quaternion to an Euler angle to obtain 

the rotated angle about its z axis.  

 

For now, 𝛼 will be approximated at 70º for demonstration purposes. 

𝜃 = 90° − 𝛼  

𝜃 = 90° − 70°  

𝜃 = 20°  

  

Thus, T and K can be calculated: 

Τ = 17 × cos(20°)  

Τ = 15.97	𝑚𝑒𝑡𝑟𝑒𝑠  

	

Κ = 17 × sin(20°)	  

Κ = 5.82	𝑚𝑒𝑡𝑟𝑒𝑠  
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Therefore, the y and x co-ordinates are as follows: 

𝑦 = 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡	𝑦	𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 − Τ (4.10) 

𝑦 = 2 − 15.97  

𝑦 = −13.97  

 

𝑥 = 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡	𝑥	𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 + Κ (4.11) 

𝑥 = 5 + 5.82  

𝑥 = 10.82  

 

This example was used to illustrate the principles that will apply.  However, as 

mentioned, this example was based on the new co-ordinate being in the first quadrant 

(refer to Figure 4.14).  Since there are four quadrants (based around the aircraft) that 

the new co-ordinate could be positioned at, the principles above would need to be 

adapted accordingly when developing the script to move the aircraft using ROS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Quadrants around the aircraft 
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4.5 Conclusion 
To conclude this chapter, the reasoning behind using ROS to integrate the whole 

system (including the vision system) was mentioned.  The ROS packages used 

throughout the research were discussed in detail.  A camera calibration was performed 

for the Logitech C920 webcam.  The vision system for the landing of the aircraft and 

the vision system for the human detection system were discussed. Calculations for 

both the landing system and the human detection system were performed.  The next 

chapter, Integrated System, discusses how the vision system was integrated with the 

aircraft by using ROS. 
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Chapter 5: Integrated System 
The following chapter will explain how the entire system is integrated.  Since ROS was 

used in the system, this chapter will mainly expand upon how ROS was used to 

integrate the system.  Certain sections of code from the scripts that were developed 

and used in the system will be discussed in detail.  The landing system and the human 

detection system will be discussed, where all the necessary calculations will be set out 

in detail.  Flow charts will be included for the landing system and the human detection 

system. Finally, a user requirements specification for this system will be discussed. 

 

5.1 The Landing System 
This section will discuss why the landing system was developed, provide a basic 

overview of how the system works, as well as discuss the design of the system in 

detail, explaining all the scripts that were developed for the system.  A flow chart will 

also be used to show how the system works. 

 

5.1.1 Reasoning behind developing the landing system  
Before discussing how the landing system was developed, the reasoning behind 

developing the system needs to be explained.  Currently, the Pixhawk flight controller 

has the ability to be flown autonomously by making use of the GPS module mounted 

onto the aircraft.  This GPS module would also be used to land the system 

autonomously.  However, the GPS module, which contained a Neo-M8N GPS (as well 

as a compass) module, had the following statistics that were obtained from its 

datasheet (u-blox, 2015): 

• Horizontal accuracy: 2.5 metres (autonomous) 

• Heading accuracy: 0.3 degrees 

This horizontal accuracy would not be sufficient if the aircraft was required to land in 

an accurate position (e.g. if a charging docking station is developed for the aircraft, 

where the docking station has a top plate of 1.5 x 1.5 mitres).  

 

There were other methods available at the time to help with the precision landing of 

an aircraft. These methods were: 

1. Real Time Kinematic (RTK) GPS: A more advanced GPS system that attempts 

to eliminate the possible errors by making use of a second GPS receiver 



 82 

positioned at the ground control station.  The system is able to obtain 

centimetre-level accuracy (PX4, 2019d). 

2. IR-Lock Sensor: This is a sensor (that is installed onto the bottom of the aircraft) 

that detects a MarkOne beacon that is positioned at the specified landing spot.  

The system claims to obtain a precision landing of roughly 10cm (PX4, 2019e). 

However, using one of these systems would result in additional expenditure in respect 

of the aircraft.  Since a camera was already going to be installed onto the aircraft that 

would be used for human detection, the idea was to integrate a landing system into 

the entire system, making use of the camera. 

 

5.1.2 Basic overview of the landing system 
Before going into detail, a basic overview of the landing system is provided as follows: 

1. The aircraft’s flight mode is switched to Offboard mode via a node. 

2. The aircraft will arm itself, take off and become airborne. 

3. A node is run to inform ROS that the landing system is to commence. 

4. The vision system will search for the ArUco marker positioned on the ground. 

5. The system will reposition the aircraft over the ArUco marker, where the aircraft 

will hover directly above the marker. 

6. Once the aircraft is above the ArUco marker, a timer will start, warning the 

ground control station that the aircraft is about to be rotated. 

7. The system will begin to rotate the aircraft to align the aircraft with the 

orientation of the ArUco marker. The system will have a couple of seconds to 

rotate the aircraft. 

8. After the time has elapsed, the system will cause the aircraft to descend, 

constantly keeping it positioned over the marker.  If the aircraft drifts out of a 

horizontal tolerance range that has been set, the system will stop the aircraft 

from descending and force it to be repositioned directly above the marker. 

9. The system will land the aircraft on top of the ArUco marker, where the aircraft 

will be automatically disarmed. 
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5.1.3 Design 
There were two projects that assisted the development of the landing system: 

1. PX4 had an offboard example available on their website, where a multirotor 

aircraft was able to take off and hover at an altitude of two metres.  This project 

provided a platform to start from, where new code could be developed and 

implemented (PX4, 2019f). 

2. Aerial Robotics had developed code where a multirotor aircraft was able to take 

off, detect an ArUco marker and hover above a ArUco marker, all being run in 

Gazebo simulation software.  They also made use of PX4’s offboard example.  

Aerial Robotics’ ROS package could be found on their GitHub page (Aerial 

Robotics, 2019).  This package helped demonstrate how an aircraft could be 

moved, based on detecting an ArUco marker.  

 

These were the following nine ROS nodes that were developed for the landing system 

(where the nodes were written in C++ language): 

1. determinepose.cpp: It’s purpose is to determine the co-ordinates that the 

aircraft needs to fly towards.  This is the script that performs all the necessary 

calculations to align the aircraft with the ArUco marker and land on the marker 

autonomously.  

2. flyaircraft.cpp: Its main purpose is to communicate commands to and from the 

aircraft via MAVROS. 

3. talker_autoland.cpp: It’s purpose is to choose how the aircraft should be flown. 

4. talker_coordinates.cpp: It allows the aircraft to be manually repositioned. 

5. talker_descent.cpp: It changes the descending velocity of the aircraft.  

6. talker_velocity.cpp: It changes the horizontal velocity of the aircraft. 

7. talker_flightmode.cpp: It chooses the flight mode for the aircraft. 

8. talker_quat.cpp: It allows the aircraft to be manually rotated by using a 

quaternion. 

9. listener_status.cpp: This is the script used to receive all the commands that 

have been executed on the aircraft. 
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5.1.3.1 determinepose.cpp 

The script was also used by the human detection system (more information on this in 

section 5.2.2.1).  The following table is a list of subscribed topics (topics that provide 

information) that were contained in the node to be used in the landing system: 

 

Table 5.1: The topics subscribed to in the determinepose.cpp node 

Topic Description of the topic 
CoordinatesFromUser Coordinates received from the 

talker_coordinates.cpp script. 

QuatFromUser Yaw the aircraft by sending a quaternion from the 

talker_quat.cpp script. 

VelocityFromUser Horizontal velocity received from the 

talker_velocity.cpp script. 

DescentFromUser Descending velocity received from the 

talker_descent.cpp script. 

AutolandFromUser How the aircraft should be flown, which is received 

from the talker_autoland.cpp script. 

FlightmodeFromUser Flight mode received from talker_flightmode.cpp 

script. 

mavros/state Receives the current state from the aircraft via 

MAVROS (e.g. whether the aircraft is armed or 

not). 

mavros/imu/data Receives the aircraft’s IMU data via MAVROS in 

the form of a quaternion. 

mavros/local_position/pose Receives the aircraft’s local position and 

orientation via MAVROS. 

aruco_single/pose Receives the ArUco marker’s position and 

orientation relative to the aircraft’s current position 

and orientation. 

mavros/global_position/rel_alt Receives the aircraft’s current relative altitude, via 

MAVROS, from where the aircraft was armed. 
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The following table is a list of published topics (publishing topics for the other nodes 

to use) that were contained in the node to be used by the landing system. 

 

Table 5.2: The topics published to in the determinepose.cpp node 

Topic Description of the topic 
aircraftpose_pub Publishes the determined position and orientation 

for the aircraft. 

StatusFromAircraft Publishes all the current commands that are taking 

place (e.g. when the aircraft is about to rotate). 

 

In order for the aircraft to reposition itself above the ArUco marker, the following took 

place:  

1. The positional information of the marker was used.  Since the marker’s frame 

of reference was different to the aircraft’s frame of reference, the marker’s 

positional information had to be converted in order for the aircraft to use it 

correctly.  This is due to PX4’s FRD frame (as discussed in section 4.4.4). The 

coordinate conversions implemented were: 

• aircraft’s x coordinate = - (ArUco marker’s y coordinate) 

• aircraft’s y coordinate = - (ArUco marker’s x coordinate) 

• aircraft’s z coordinate = - (ArUco marker’s z coordinate) 

These coordinates were stored in a 1 x 3 matrix. 

2. To stabilise the aircraft above the ArUco marker, the above calculated co-

ordinates had to be multiplied by the aircraft’s IMU.  The IMU data, which was 

initially in the form of a quaternion, was converted into a rotational matrix (3 x 3 

matrix) to be able to be multiplied to the co-ordinates matrix.  This multiplication 

forms a 1 x 3 matrix, representing how far away the aircraft is from the ArUco 

marker in form of an x, y and z coordinate value. 

3. The aircraft’s current local position was added to the newly calculated x, y and 

z values.  This step was crucial as it would allow the ArUco marker to be placed 

anywhere, irrespective of where the aircraft was armed.  This will even allow 

the aircraft to follow the ArUco marker if it was mounted onto a moving object. 
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In order to rotate the aircraft so that it could properly aligned with the ArUco marker, 

the following took place: 

• The aircraft first needed to be hovering above the ArUco marker.  A tolerance 

was developed, allowing the aircraft to rotate even if the aircraft was not directly 

above the marker.  This tolerance value was scaled, meaning that if the aircraft 

was further away from the marker, the tolerance range was greater and if the 

aircraft was closer to the marker, the tolerance range was smaller. 

• Since the ArUco markers’ frame of reference was different to the aircraft’s frame 

of reference, the marker’s orientation (as in quaternion) needed to be converted 

for the aircraft to use.  To visualise the marker’s quaternion and see what its 

respective Euler angles were, an online quaternion simulator was used.  

Screenshots from the online simulator can be found in Appendix 5.14.  By using 

the simulator, a conversion method was determined by trial and error.  The 

following was deduced: 

1) Convert the quaternion to Euler angles. 

2) Subtract the z axis component of the Euler angle by 180 degrees. 

3) Invert the y axis component of the Euler angle. 

 

For example, if the aircraft needed to rotate clockwise by an acute angle 

(smaller than 90 degrees) and the above three steps were followed, the 

outcome that would appear on the quaternion simulator can be found in 

Appendix 5.14. 

 

However, a new method was discovered to convert the quaternion to be used 

by the aircraft, which can be found in Appendix 5.1 under the method called 

ConvertArucoQuaternion.  This new method, which was also developed by trial 

and error, consisted of re-arranging the quaternion’s components.  The code 

developed for this re-arranging was designed to work only if the quaternion’s 

components consisted of: 

1. Both the x and y being a negative value. 

2. Both the x and z being a negative value. 
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If the quaternion’s components did not comply with the above two provisos, the 

quaternion was still able to be used.  The four components just needed to be 

inverted, if the components looked as follows:  

• Both the w and y being a negative value. 

• Both the w and z being a negative value. 

 

The following four tables show the re-arrangements of the components, 

depending on the angle by which the aircraft needed to be rotated.  Only the w 

and y component values were used in the rearranging.  For example, referring 

to Table 5.3, the new quaternion’s z will equal the previous inverted w 

component. 

 

Table 5.3: Quaternion formed if the aircraft needs to rotate clockwise (0° < 𝜃 ≤ 90°) 

New Quaternion Components Consists of previous Quaternion 
components 

w y 

x y 

y -w 

z -w 

 

Table 5.4: Quaternion formed if the aircraft needs to rotate clockwise (90° < 𝜃 <

180°) 

New Quaternion Components Consists of previous Quaternion 
components 

w y 

x y 

y -w 

z -w 
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Table 5.5: Quaternion formed if the aircraft needs to rotate counter clockwise (90° <

𝜃 ≤ 180°) 

New Quaternion Components Consists of previous Quaternion 
components 

w y 

x y 

y -w 

z -w 

 

Table 5.6: Quaternion formed if the aircraft needs to rotate counter clockwise (0° ≤

𝜃 ≤ 90°) 

New Quaternion Components Consists of previous Quaternion 
components 

w -y 

x -y 

y w 

z w 

 

Referring to the above tables, it can be noted that Table 5.3, Table 5.4 and 

Table 5.5 all had the same conversion, while Table 5.6‘s conversion was 

different.  

 

• This newly formed quaternion (referred to as the new ArUco quaternion) 

needed to be used by the aircraft.  However, the aircraft currently had an 

orientation at the time of converting the ArUco marker’s quaternion. Therefore, 

to use this new ArUco quaternion, it needed to be multiplied to the aircraft’s 

current quaternion. 

 

In order to perform quaternion multiplication, it must be noted that quaternion 

multiplication is not commutative, meaning:  

𝑎 × 𝑏 ≠ 𝑏 × 𝑎	 

Therefore, to perform the correct multiplication between the aircraft and the new 

ArUco quaternion, the ordering was as follows: 
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𝑓𝑖𝑛𝑎𝑙	𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛	 = 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡′𝑠	𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛	 × 	𝑛𝑒𝑤	𝐴𝑟𝑈𝑐𝑜	𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 

 

Figure 5.1 shows a screenshot of code obtained from website Euclidean Space, 

which was used to implement the quaternion multiplication.  The x, y, z and w 

would form the final quaternion, where q1 would be the aircraft’s quaternion 

and q2 would be the new ArUco quaternion. 

 

 
Figure 5.1: Code used to implement the quaternion multiplication (Euclidean Space, 

2017) 

 

This final quaternion would be published to the ROS topic aircraftpose_pub, 

where it would eventually be uploaded to the aircraft by using the flyaircraft.cpp 

node.  This final quaternion is what would be used to align the orientation of the 

aircraft with the ArUco marker’s orientation correctly. 

 

The important methods to take note of in the determinepose.cpp script are: 

• MoveAircraft 

• ConvertArucoQuaternion 

• QuaternionMultiply 

• RotateAircraft 

• RepositionAircraft 

 

There were many other tasks that were implemented in the determinepose.cpp script.  

Many of these tasks included the human detection system, which is discussed in 

section 5.2.2.1.  One of them was receiving the horizontal and descent velocity from 

talker_velocity.cpp and talker_descent.cpp and publishing them to the aircraft by 

making use of MAVROS’ ParamSet and ParamPush.  ParamSet and ParamPush are 

features that allow for practically any parameter on the Pixhawk to be adjusted from a 

script. 
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It must be noted that, when the aircraft was descending towards the markers and had 

reached one meter above the marker, the developed system caused the aircraft to 

switch from Offboard flight mode to Land flight mode, where it would descend directly 

without adjusting its horizontal position.  This was decided upon for two reasons: 

1. The marker would become too big to be detected by the vision system, 

resulting in the ArUco marker not being completely in the video feed. 

2. It would force the aircraft to disarm itself once landed. 

 

5.1.3.2 flyaircraft.cpp 

As discussed, the flyaircraft.cpp (which can be referred to in Appendix 5.2) node’s 

main purpose was to communicate to the aircraft via MAVROS. Some of these 

commands consisted of: 

a. Allowing the aircraft to arm and take off. 

b. Telling the aircraft where to re-position itself by sending positional and 

orientational information. 

c. Instructing the aircraft to change its flight mode. 

The node would receive information with regard to position and orientation from the 

determinepose.cpp node and communicate this to the aircraft.  The topics that are 

subscribed to within the node can be referred to in Table 5.7. 

 

Table 5.7: The topics subscribed to in the flyaircraft.cpp node 

Topic Description of the topic 
FlightmodeFromUser Flight mode received from talker_flightmode.cpp 

script. 

mavros/state Receives the current state from the aircraft via 

MAVROS (e.g. whether the aircraft is armed or 

not). 

mavros/global_position/rel_alt Receives the aircraft’s current relative altitude, via 

MAVROS, from where the aircraft was armed. 

determinedaircraftpose Receives the determine positional and 

orientational information calculated in 

determinepose.cpp node. 
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Table 5.8 displays the published topics that were contained in the flyaircraft.cpp node 

to be used by the landing system. 

 

Table 5.8: The topics published to in the flyaircraft.cpp node 

Topic Description of the topic 
local_pos_pub Publishes the determined position and orientation 

to the aircraft via MAVROS. 

 

5.1.3.3 talker_autoland.cpp 

This node asks the user to choose how the aircraft should be flown while in offboard 

mode.  The choices were: 

• manual: the aircraft would be able to move to a set point based on the co-

ordinate and co-ordinate value it received in the talker_coordinates.cpp node. 

• hover: the aircraft will reposition itself directly above the ArUco marker and 

hover (as in maintain its altitude). 

• land: the aircraft will perform its autonomous landing sequence. 

• rotate: the aircraft will rotate based on a quaternion it has received via the 

talker_quat.cpp node. 

• follow: the aircraft will rotate and reposition itself based on the position of the 

person detected (this is used for the human detection system). 

 

This node would publish one topic called AutoLandFromUser, where it would contain 

one of the above offboard flight modes chosen by the user. This node can be referred 

to in Appendix 5.3. 

 

5.1.3.4 talker_coordinates.cpp 

This node, which can be found in Appendix 5.4, was used to control the aircraft 

manually while the aircraft was in offboard flight mode.  The node would publish one 

topic called CoordinatesFromUser, which contained the axis the aircraft needed to 

travel along and the co-ordinate to which it should fly, based on the input from the 

user.   
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Some examples are: 

• z 3 

• x -2 

• y 5 

Only one axis and one coordinate can be published at a time. 

 

5.1.3.5 talker_descent.cpp 

The node, which can be referred to in Appendix 5.5, was used to allow the user to 

control the descending velocity of the aircraft.  This node would publish one topic called 

DescentFromUser, where it would send the velocity (in metres per second) decided 

upon by the user (e.g. 1.5).  The purpose of the node was to be able to control the 

descending velocity of the aircraft, depending on the speed of the wind on the day of 

testing the landing system. 

 

5.1.3.6 talker_velocity.cpp 

This node was used to allow the user to choose the horizontal velocity of the aircraft. 

The node would publish one topic called VelocityFromUser, where it would send the 

velocity (in metres per second) chosen by the user (e.g. 5.0).  This node was also 

developed to be able to control the horizontal velocity of the aircraft, depending on the 

wind conditions on the day of testing the landing system. The node can be seen in 

Appendix 5.6. 

 

5.1.3.7 talker_flightmode.cpp 

This node, which can be referred to Appendix 5.7, was used to choose the flight mode 

for the Pixhawk flight controller.  The flight modes that the node allowed were: 

• Offboard 

• Stabilized 

The node would publish to one topic called FlightModeFromUser, where it would 

contain one of the two flight modes above.  The landing system would not run until the 

flight mode of the aircraft had been switch into Offboard mode. 
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5.1.3.8 talker_quat.cpp 

This node was used to rotate the aircraft by a quaternion when the manual mode was 

selected in talker_autoland.cpp node.  The node allowed a user to enter the quaternion 

in the form (w x y z).  The node would publish one topic called QuatFromUser, were it 

would publish the quaternion that was inserted. This node can be found in Appendix 

5.8. 

 

5.1.3.9 listener_status.cpp 

This node, which can be seen in Appendix 5.9, was used to listen to the current 

commands being performed or status of the aircraft throughout the entire system.  The 

node had one subscriber called StatusFromAircraft, where it would wait to receive any 

information with regards to the system and then output the information to the node.  

This node was developed for the purpose of using the node on a ground station 

computer. 

 

5.1.4 Landing System Flow Chart 
A flow chart was developed for the landing system.  This can be referred to in Appendix 

5.15. 

 

5.2 Human Detection System 
This section will provide a basic overview of the human detection system as well as 

the design of the system in detail, discussing the scripts that were developed for this 

system.  A flow chart of the system is also available. 

 

Before getting started, it must be pointed out that the roll, pitch and yaw angles of an 

aircraft are not the same as the Euler angles of the orientation of the aircraft.  Euler 

angles represent the rotation of an object based on a fixed coordinate frame while the 

roll, pitch and yaw angles represent the rotation of an object based on the current 

coordinate frame.  However, for the purposes of this section, the aircraft will only be 

rotated about its z axis (namely, only one axis).  This means, with respect to the Euler 

angle, that the rotation about the z axis can be used to yaw the aircraft by the same 

angle. 
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For the rest of section 5.2, with regards to the Euler angle, the rotation about the z axis 

will be denoted by y . 

 

5.2.1 Basic overview of the human detection system 
A basic guideline as to how the human detection system works follows: 

1. The aircraft’s flight mode is switched to Offboard mode via a node. 

2. The aircraft will arm itself, take off and become airborne. 

3. The aircraft is sent to an altitude of ten metres. 

4. A node is run where a command to follow the aircraft is sent, informing ROS to 

implement the human detection system.  

5. A human is detected, providing the bounding box around the person. 

6. A node is run to calculate the ground distance between the aircraft and the 

person as well as the angle required to rotate the aircraft so that the person is 

in the centre of the screen. 

7. A timer will start, where the aircraft will have five seconds to rotate by using the 

angle determined. 

8. Once the timer has finished, coordinates for the aircraft will be determined 

based on the previously determined ground distance. 

9. The aircraft will fly towards the coordinates. 

 

The above steps explain how the aircraft will be able to follow a person. 

 

5.2.2 Design 
This system made use of the same nine nodes that were developed for the landing 

system.  However, extra code was added to the node determinepose.cpp to allow the 

aircraft to follow a person.  This modification of code will be discussed in section 

5.2.2.1. 

 

There were four new nodes that were developed to be used by this system (where two 

were written in C++ language and two were written in Python language), namely: 

1. boxinfo.cpp: This C++ script was used to read the bounding box information 

and determine the ground distance and angle to rotate the aircraft. 
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2. boundingboxmove.cpp: This C++ script was used to develop coordinates for 

the aircraft to fly towards, based on the ground distance and the angle of the 

aircraft. 

3. EulerToQuat.py: This Python script was used to convert Euler angles to a 

quaternion 

4. QuatToEuler.py: This Python script was used to convert a quaternion to Euler 

angles. 

 

The reason for developing the two python scripts was due to the libraries available in 

Python being better at converting between Euler angles and quaternions, as opposed 

to C++. 

 

The following design attributes must be noted: 

• This system was designed so that the aircraft would maintain its altitude while 

following a person.  

• This system was designed so that only the bounding box information regarding 

a person was able to be used.  This means that only a person would be followed 

and not, for example, a dog.  However, the video feed will still show a bounding 

box around all detected objects. 

 

5.2.2.1 determinepose.cpp 

As previously discussed, this script was also used in the human detection system. 

There was another topic that was subscribed to in the script.  This topic, which can be 

seen in Table 5.9, will receive the x and y coordinates that the aircraft will need to 

travel towards.  

 

Table 5.9: The extra topic subscribed to in the determinepose.cpp node 

Topic Description of the topic 
MultipleCoordinates x and y coordinates received from 

boundingboxmove.cpp. 

 

The extra method that was developed in the script, which was to be used for the human 

detection system, was called FollowPerson.  This method, which can be referred to in 
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Appendix 5.1, was responsible for arranging when the aircraft needed to rotate to 

centre the person in the video frame and when the aircraft should travel towards the 

coordinates.  It made use of a timer, where the aircraft had five seconds to rotate 

during this time.  It also made use of the angle determined in the node boxinfo.cpp to 

determine by how much and in what direction the aircraft needed to rotate.  After the 

time had elapsed, co-ordinates were received from the boundingboxmove.cpp node 

and then sent to the aircraft by making use of the flyaircraft.cpp node. 

 

5.2.2.2 boxinfo.cpp 

This node was used for implementing the calculations and formulas determined in 

sections 4.4.2 and 4.4.3.  It was responsible for using the darknet_ros package to 

collect the bounding box information, determine the angle to rotate the aircraft by, as 

well as determine the ground distance.  The node, which can be found in Appendix 

5.10, would first determine whether the detected object was a person or not.  If it were 

a person, the angle and ground distance would be calculated by using the bounding 

box information. 

  

The topic that this node was subscribed can be seen in Table 5.10.  Table 5.11 lists 

all the published topics in the node. 

 

Table 5.10: The topic subscribed to in the boxinfo.cpp node 

Topic Description of the topic 
darknet_ros/bounding_boxes The bounding box information of all the detected 

objects in the video frame by using darknet_ros.  

 

Table 5.11: The topics published to in the boxinfo.cpp node 

Topic Description of the topic 
AngleFromBoundingBox The calculated angle and direction that the aircraft 

must rotate towards in order to centre the person in 

the middle of the video frame. 

DistanceFromBoundingBox The calculated ground distance that the aircraft is 

away from the detected person. 
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5.2.2.3 boundingboxmove.cpp 

This node, which can be referred to in Appendix 5.11, was designed to implement the 

calculations determined in section 4.4.4. The node would calculate coordinates for the 

aircraft to fly towards based on: 

1. The direction the aircraft was facing. 

2. The aircraft’s current position. 

3. The aircraft’s home position. 

4. The ground distance that was previously calculated. 

The aircraft would obtain the direction of the aircraft from the QuatToEuler.py node.  

 

The topics that the node was subscribed to can be seen in Table 5.12. 

 

Table 5.12: The topics subscribed to in the boundingboxmove.cpp node 

Topic Description of the topic 
DistanceFromBoundingBox This is the ground distance that was calculated in 

boxinfo.cpp. 

AngleForLinearMovement The angle that the aircraft is currently facing 

obtained from QuatToEuler.py. 

 

The node only had one publisher topic, which can be referred to in Table 5.13. 

 

Table 5.13: The topic published to in the boundingboxmove.cpp node 

Topic Description of the topic 
MultipleCoordinates This will publish the x and y coordinate that the 

aircraft needs to fly towards. 

 

5.2.2.4 EulerToQuat.py 

This node, which can be found in Appendix 5.12, was responsible for converting the 

angle (as in the angle determined to rotate the aircraft to centre the person in the video 

feed) to a quaternion for the aircraft to use.  A Python library called pyquaternion was 

used to help with this conversion.  The library was able to take Euler angles and 

convert them into a quaternion.  The y value (rotation about the z axis) of the Euler 

angle was the angle obtained and the rotations about the x axis and y axis were both 
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set to zero as the aircraft was only required to yaw. These Euler angles were then 

converted to a quaternion and then sent to the main determinepose.cpp node. 

The topics subscribed and published to can be referred to in Table 5.14 & Table 5.15.  

 

Table 5.14: The topic subscribed to in the EulerToQuat.py node 

Topic Description of the topic 
AngleFromBoundingBox The angle and direction that the aircraft must rotate 

towards, which is obtained from boxinfo.cpp node. 

 

Table 5.15: The topic published to in the EulerToQuat.py node 

Topic Description of the topic 
QuatFromUser The converted quaternion which was used in the 

determinepose.cpp node. 

 

5.2.2.5 QuatToEuler.py 

This Python node, which can be seen in Appendix 5.13, was responsible for converting 

quaternions into Euler angles.  The library that was used to help with this conversion 

was the euler_from_quaternion library.  The quaternion that was received was the 

quaternion that was formed by the aircraft’s local pose.  Only the y rotation was 

extracted from the Euler angle, which was eventually sent to the 

boundingboxmove.cpp node to be used.  

 

The topics subscribed and published to can be seen in Table 5.16 and Table 5.17. 

 

Table 5.16: The topic subscribed to in the QuatToEuler.py node 

Topic Description of the topic 
mavros/local_position/pose The position and orientation of the aircraft obtained 

via MAVROS. 

 

Table 5.17: The topic published to in the QuatToEuler.py node 

Topic Description of the topic 
AngleForLinearMovement The aircraft’s current y rotation, which was used by 

the boundingboxmove.cpp node. 
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5.2.3 Human detection system flow chart 
A flow chart was developed for the human detection system.  This can be referred to 

in Appendix 5.16.  

 

5.3 User Requirements Specification 
The user requirements specification (URS) for this system are: 

• The aircraft will be able to fly manually and autonomously. 

• The vision system will detect an ArUco marker. 

• The vision system will detect a human and be able to distinguish it from 

other objects. 

• The aircraft and the vision system will be integrated with Robot 

Operating System (ROS). 

• The aircraft may land on an ArUco marker autonomously. 

• Using the developed landing system may result in the aircraft landing 

more accurately compared to when the aircraft makes use of the stand 

GPS based landing system. 

• Using the human detection system may result in the aircraft’s position 

and orientation being manipulated, allowing the detected human to be 

centred in the middle of the video feed.  

 

5.4 Conclusion 
In this chapter, the entire system was discussed, based on how ROS was used to 

integrate the system.  The nodes and published and subscribed topics for both the 

landing system and the human detection system were discussed in detail.  Flow charts 

for both the landing system and the human detection system were presented. The next 

chapter, Simulation, will discuss how the landing system and the human detection 

system were simulated using Gazebo.  
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Chapter 6: Simulation 
The purpose of this chapter is to discuss the simulation of the landing system and the 

human detection system that was performed.  The setup of the simulation will be 

discussed and the benefits to using such simulation. 

 

6.1 Setup of the Simulation 
To help with the testing phase of the system, it was decided that the system would be 

tested on a simulator.  Research was performed in the type of simulation software 

available for use.  The software that was chosen for this research was Gazebo, which 

is an open-source 3D simulation environment for autonomous robots.  Gazebo is 

useful for testing object-avoidance and computer vision systems (PX4, 2019g). Since 

Gazebo is open-source, it has been integrated into ROS’ main installation by 

developers. 

 

There are multiple benefits to testing the system in Gazebo first before performing real 

life testing of the system. Some of these benefits are: 

• A system can quickly be developed and tested on the simulation. 

• A simulation allows for code developed to be tested thoroughly before testing it 

on the simulation.  This will heavily reduce the number of crashes that could 

occur on the actual system, thus reducing the cost of having to purchase 

replacement parts. 

• Parts of a system can be individually tested in Gazebo (e.g. the camera system 

on detecting ArUco markers can be tested). 

• It allows systems that incorporate Artificial Intelligence (AI) to train their neural 

networks on the simulation. 

 

To use the model with ROS, a Software in the Loop (SITL) simulation environment 

had to be set up.  A model would need to be created for use in the simulation software.  

A model is an object that is manipulated in the simulation.  In the case of this research, 

it would be an aircraft.  Developers from the PX4 team had developed a SITL 

simulation environment to be used for testing.  The developers had made multiple 

models to be used in Gazebo.  One of models that they had developed was a 

quadcopter, referred to in Figure 6.1, which makes use of  PX4’s firmware. 
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Figure 6.1: Quadcopter model developed by PX4 for Gazebo 

 

One aspect that was missing from this model in Gazebo was a camera.  A guide was 

developed by Aerial Robotics, where they demonstrate how to adapt the model to add 

a cube underneath the fuselage (Aerial Robotics, 2018).  This cube was configured to 

act as a camera.  

 

It must be noted that the simulations were performed on a desktop PC that contained 

an Intel i7 processor and an AMD Radeon graphics card.  This was done because the 

desktop PC was able to provide more processing power than the two laptops that were 

used throughout this research.  However, it came with a disadvantage because the 

darknet_ros package was designed to work on a Nvidia graphics card. This meant that 

all the human detection video processing was performed on the computer’s processor 

and not on the graphics card. The result was that the frames per second (FPS) were 

constantly under 1 FPS. 

 

Another point to note is that the simulation was only used to observe how the aircraft 

would react to the developed algorithms.  No actual data would be collected from the 

simulation. 
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6.2 Landing System Simulation 
To test the landing system in Gazebo, an ArUco marker model needed to be added to 

the Gazebo environment (referred to as the world).  A few ArUco markers for Gazebo 

had previously been developed by Jose Luis Sanchez Lopez, which he had available 

for use on his GitHub page (Lopez, 2016).  Aerial Robotics provided a guide on how 

to add one of his developed markers into Gazebo (Aerial Robotics, 2018). 

 

For the simulation, an ArUco marker with an ID of 7 was used, which had dimensions 

of 500 x 500 mm.  An example of what the setup resembled can be found in Figure 

6.2.  

 

 
Figure 6.2: The Gazebo setup for the landing system. 

 

To perform the simulation, the packages to be used (e.g. aruco_ros, MAVROS, etc.) 

and the package containing all the self-developed nodes were required to be run.  The 

terminals that were used to run each of the respective packages or nodes for the 

landing system can be found in Appendix 6.1.  The terminals were all grouped by 

making use of the Terminator application for Linux (as discussed in section 3.3.4.3). 

To allow the aircraft to take off, the word “offboard” was entered into the 

talker_flightmode.cpp node, which switched the aircraft to offboard mode.  The aircraft 

armed automatically and the aircraft became airborne.  In a separate window, the 

video feed of the camera could be seen.  Figure 6.3 resembles the aircraft that has 

taken off and the window on the right shows the video feed. 
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Figure 6.3: The aircraft has taken off, where the window on the right shows the 

camera feed. 

 

In order to use the landing system, the vision system was required to be able to detect 

the marker clearly, meaning the whole square shape of the marker needed to be 

present in the video feed.  If a marker was detected, the marker’s x, y and z axes 

became present.  The colour coding of the axes were as follows: 

• X axis: red 

• Y axis: green 

• Z axis: blue 

 

In Figure 6.3, the window shows the ArUco marker that was detected, where the ArUco 

marker was positioned on the ground.  In order for the aircraft to rotate so that it aligned 

itself correctly with the ArUco marker, the aircraft would need to rotate clockwise by 

an angle smaller than 90º so that the y axis (green arrow) in the window pointed 

vertically upwards.  Figure 6.4 shows the camera feed of when the aircraft had rotated 

to align itself with the marker correctly.  As discussed in section 5.1.3.1, there are four 

scenarios in which the aircraft would rotate, namely: 

1. Rotate clockwise by an angle smaller than or equal to 90º. 

2. Rotate clockwise by an angle greater than 90º and smaller than 180º. 

3. Rotate counter-clockwise by an angle smaller than or equal to 90º. 

4. Rotate counter-clockwise by an angle greater than 90º and smaller than or 

equal to 180º. 
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Figure 6.5 shows a window of the camera feed for cases 1 and 2, while Figure 6.6 

shows the camera feed for cases 3 and 4.  

 

 
Figure 6.4: Camera feed on when the aircraft had correctly aligned itself with the 

ArUco marker 

 

  
Figure 6.5: (a) Case 1 (b) Case 2 
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Figure 6.6: (a) Case 3 (b) Case 4 

 

For illustration purposes, case 2 will be used.  Once the aircraft was airborne and had 

detected the ArUco marker, the system was allowed to land.  This was done by 

inserting the word, “land” into the talker_autoland.cpp node.  An example of this 

landing process for case 2 can be found in Appendix 6.3. 

 

A node tree was developed for all the nodes that were used to test the landing system 

in Gazebo. The nodes tree, which can be referred to in Appendix 6.4, shows the 

communication between all the nodes used. Video footage of the simulation was 

recorded for all four cases. The videos for each case, which were uploaded to 

YouTube, can be found at : 

• Case 1: https://youtu.be/mdYK1TQIlvM 

• Case 2: https://youtu.be/ES7XcSzqHwE 

• Case 3: https://youtu.be/frJMAQSdxZw 

• Case 4: https://youtu.be/HRgFgTyTseI 

These videos can only be accessed via the links as the videos have been set to be 

unlisted to the general public. 
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6.3 Human Detection System Simulation 
To perform a simulation for the human detection system, the same setup was used 

that was developed for the landing system.  However, there were an additional six 

nodes that were executed.  These additional nodes can be found in Appendix 6.2.  The 

simulation consisted of running a pre-recorded video of a person walking on a field. 

This was done by using the video_stream_opencv package, where it would be given 

the file directory of a video or package and output the footage of picture to a specific 

topic.  The video that was recorded for the simulation was done by using a DJI 

Phantom 4 Advanced in 1920x1080 resolution (Full HD), where the camera angle of 

the aircraft was set at 45º.  The video (as in the published topic) can be referred to in 

Figure 6.7(a).  This topic was then used by the darknet_ros package.  This means that 

for the simulation, the bounding box, that was formed using the darknet_ros package, 

will fall within the follow criteria: 

• The Xmax value will not be bigger than 1920. 

• The Xmin value will not be smaller than 1. 

• The Ymax value will not be bigger than 1080. 

• The Ymin value will not be smaller than 1. 

Figure 6.7(b) shows the bounding box that was determined for the video that was 

published. 

 

 
Figure 6.7: (a) Video of a person walking that was published by the 

video_stream_opencv package (b) bounding box that was formed using the 

darknet_ros package 
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It must be noted that both pictures were captured at the exact time.  However, the 

position of the person in both figures is not the same.  This is due to the low FPS that 

was discussed in section 6.1.  The final setup for the human detection system can be 

found in Figure 6.8. 

 

 
Figure 6.8: The Gazebo setup for the human detection system 

 

For this simulation, the aircraft was first switched to Offboard mode, where it would 

arm automatically and then take off to an altitude of two metres (designed for the 

landing system).  However, the human detection system was designed to work at an 

altitude of ten metres.  This meant that the aircraft was first manually adjusted to an 

altitude of ten metres by using the talker_coordinates.cpp node.  Once the aircraft was 

in position, the aircraft was told to follow the person via the talker_autoland.cpp node.  

The human detection system would then execute, allowing the aircraft to rotate, based 

on the angle that was determined, as well as allow the aircraft to reposition itself 

according to the desired calculated co-ordinates.  

 

There were instances in which the aircraft would rotate: 

1. The bounding box that was determined is to the left of the midpoint of the 

screen. 

2. The bounding box that was determined is to the right of the midpoint of the 

screen. 
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Case 1 would result in the aircraft yawing in a counter clockwise direction, whereafter 

it would reposition itself according to the calculated co-ordinates.  Case 2 would result 

in the aircraft yawing in a clockwise direction, whereafter it would reposition itself 

according to the calculated co-ordinates.  Refer to Figure 6.9 and Figure 6.10 to see 

an illustration of case 1 and Figure 6.11 and Figure 6.12 to see an illustration of case 

2.  The blue propellers of the aircraft are at the nose of the aircraft (as in the front of 

the aircraft). 

 

 
Figure 6.9: Case 1, where (a) is the orientation of the aircraft before the rotation and 

(b) is the orientation of the aircraft after the rotation 

 

 
Figure 6.10: Case 1, where (a) is the pose of the aircraft before the repositioning and 

(b) is the pose of the aircraft after the repositioning 
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Figure 6.11: Case 2, where (a) is the orientation of the aircraft before the rotation 

and (b) is the orientation of the aircraft after the rotation 

 

 
Figure 6.12: Case 2, where (a) is the pose of the aircraft before the repositioning and 

(b) is the pose of the aircraft after the repositioning 

 

A node tree was also developed for all the nodes that were used to test the human 

detection system in Gazebo. This nodes tree can be referred to in Appendix 6.5. Video 

footage of the simulation was recorded, where case 1 and case 2 were both executed. 

The video shows the aircraft changing its orientation as well as its position, first for 

case 1 and then for case 2. This video can be found at: https://youtu.be/5Sr8a3fw3kc. 
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6.4 Conclusion 
The setup and importance of the simulation were discussed.  The method of testing 

the landing system was explained, where figures were used to show the system 

operating successfully.  The method of testing the human detected system was also 

discussed, providing figures (including figures of the aircraft’s positional and 

orientational information).  The next chapter, Testing and Discussion, will discuss the 

testing that was performed as well as provide a data analysis on the landing system, 

comparing the GPS based landing system with the developed ArUco marker landing 

system. 
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Chapter 7: Testing and Discussion 
This chapter will discuss the numerous types of test flights that were physically 

performed on the multirotor aircraft.  A data analysis will be performed, where the 

aircraft’s current GPS system to land the aircraft will be compared with the developed 

landing system that makes use of the ArUco marker.  The human detection system 

will be discussed to explain the testing that was performed on the simulation computer.  

Finally, improvements to the system will be discussed. 

 

It must be noted that there was an issue with the PX4 firmware at the time of 

performing the test flights.  The issue consisted of the aircraft not disarming itself once 

the aircraft hand landed on the ground.  ROS specialists from FH Aachen, who also 

integrate ROS with multirotor aircrafts, were contacted about the issue.  They 

explained that they also encountered the same problem and that it was most likely a 

firmware issue.  This was reported to PX4.  However, no feedback had been received 

at the time of writing.  In the meantime, in order to perform the test flights, the aircraft 

had to be manually disarmed for all autonomous missions and landing (including the 

GPS based landing system and the developed ArUco marker landing system).  This 

manual disarming was performed by the pilot of the aircraft, Mr Paul Mooney, who was 

an advisor for the research.  It resulted in the aircraft not landing  at the exact point 

specified by the algorithms, resulting in an inaccuracy (+- 150 mm) for the landing 

system. 

 

All test flights were performed at Port Elizabeth Radio Flyers (PERF).  The aircraft 

flying at the location can be found in Figure 7.1.  The videos referred to in this chapter 

were recorded either on an Apple iPhone 10 smart phone, a DJI Phantom 4 Advanced 

drone or a DJI Mavic drone.  
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Figure 7.1: The multirotor aircraft flying at PERF 

 

7.1 Test Flights 
The test flights that were performed on the aircraft include: 

• A manual test flight. 

• An autonomous test flight performing a mission. 

• An autonomous test flight where a mission is injected into the flight controller 

by a separate system. 

• An autonomous test flight using ROS. 

• The aircraft autonomously landing using ROS. 

 

7.1.1 Manual Test Flight 
A manual test flight was performed, where the pilot was able to fly the aircraft by using 

the transmitter to control the aircraft.  To perform this test, the aircraft needed to be 

flown by the pilot.  For the test flight, the aircraft was flown in three flight modes, which 

were: 

1. Acro 

2. Stabilized 

3. Position 

 

For the test, the aircraft took off in Stablilized flight mode, where it was able to level 

itself unassisted.  After a few seconds, the aircraft was switched to Acro flight mode, 

Multirotor Aircraft 

Pilot & Ground  

Station Computer 
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which resulted in the pilot having to level the aircraft instead.  Finally the aircraft was 

switched to Position flight mode, where the aircraft was able to hold its position and 

altitude by using the GPS module that was mounted onto the aircraft.  The aircraft was 

eventually landed by using the same flight mode. 

 

A video of the manual flight test was recorded on an iPhone. The video consists of the 

pilot explaining how he is controlling the aircraft. This video can be found at:  

https://youtu.be/8vMhNxAXXFs. 

 

7.1.2 Autonomous test flight performing a mission 
A mission was performed by the aircraft, where the aircraft would take off, fly to a set 

of GPS coordinates specified on the ground station computer and land back at the 

point where the aircraft took off.  To perform this mission, the aircraft made use of the 

GPS module to direct the aircraft to the required GPS coordinates.  The mission that 

was setup on QGroundControl for the aircraft to perform can be found in Figure 7.2.  

 

 
Figure 7.2: The mission setup for PERF that was done on QGroundControl 

 

The aircraft would take off at point 1, fly towards point 2, then point 3 and so on until 

reaching point 6.  Point 7 was a command to return home along the quickest route 

possible and land at the take-off position.  The aircraft managed to perform the 

autonomous mission successfully.  The aircraft’s flight route that was performed could 
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be observed on QGroundControl, which is represented by a red line.  A screenshot of 

the above can be found in Figure 7.3.  From the Figure 7.3, it can be seen that the 

aircraft was slightly off the orange line between points 3 and 4 and points 5 and 6.  

Point 9 can be ignored as it was a land command inserted for safety reasons. 

 

 
Figure 7.3: The mission performed that was seen on QGroundControl. 

 

A video of the aircraft performing the mission was recorded by using the DJI Mavic 

drone, where it followed the flight executed by the multirotor aircraft. This video can 

be found at: https://youtu.be/0u_R5Ex_9bA. 

 

7.1.3 An autonomous test flight where a mission is injected into the flight 

controller by a separate system 
During the early stages of this research, it was suggested by the advisor Mr Paul 

Mooney that the possibility be investigated to develop a system or alternative method 

that could control the aircraft or execute a mission.  Research was performed in 

potentially developing a system that would make use of an Arduino. 

 

A system was eventually developed in collaboration with Mr James Sewell, a fellow 

Masters student who was also performing research in UAVs.  An example script 

developed by David Hasko, which was obtained off the internet, would send a PPM 

signal out of a 3.5 mm headphone jack that was attached to an Arduino (Hasko, 2016). 
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This system consisted of using an Arduino Mega, where the board would send a PPM 

signal through to the transmitter’s auxiliary port (which is the same type of port as a 

3.5 mm port).  Connected to the Arduino was a 3.5 mm headphone jack that plugged 

into the transmitter as well as three push buttons that were soldered to a Veroboard.  

The three buttons represented: 

• Button 1 soldered to a green wire: Changing the aircraft’s flight mode to Auto 

flight mode. 

• Button 2 soldered to a white wire: Changing the aircraft’s flight mode to Acro 

flight mode. 

• Button 3 soldered to a red wire: Changing the aircraft’s flight mode to Return 

To Land (RTL) flight mode. 

 

The code was edited to use the buttons only to adjust the PWM signal of one of the 

channels.  This meant that, if a button were pressed, the PWM signal connected to the 

respective channel would only change.  However, the script allowed for adjustments 

to be made on multiple channels.  Figure 7.4 reveals the setup of the Arduino with the 

3.5 mm headphone jack and the three push buttons. It must be noted that this system 

was tested when the aircraft was still using the ArduPilot firmware.  The test performed 

successfully.  However there was no video footage recorded to show the system 

working.  The edited Arduino script can be found in Appendix 7.1. 

 

 
Figure 7.4 The Arduino injection setup 
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7.1.4 An autonomous test flight using ROS 
This test investigated the possibility of injecting new waypoints into the flight controller 

by using ROS.  The setup for this test consisted of developing a ROS script called 

InsertWaypoints.cpp, which consisted of using the MAVROS package. This script can 

be viewed in Appendix 7.2. The idea behind the script came from a portion of code 

uploaded to a GitHub forum by a user named aykutkabaoglu (GitHub, 2017). For this 

test, the script consisted of a few GPS co-ordinates that were previously stored.  When 

the script was run, the GPS co-ordinates would be inserted into the flight controller.  

The GPS coordinates inserted could be seen in the MAVROS terminal on the ground 

station computer as well as on QGroundControl after performing the mission.  The test 

performed successfully.  However, it was never executed on a test flight.  The GPS 

co-ordinates inserted were three co-ordinates at the Nelson Mandela University fields.  

A screenshot of the MAVROS terminal receiving the new GPS coordinates can be 

found in Figure 7.5 where the three waypoints can be found at WP: Item #1 – WP: 

Item #3. 

 

 
Figure 7.5: MAVROS terminal showing three new waypoints injected into the flight 

controller 

 

7.1.5 The aircraft autonomously landing using ROS 
This test was performed on the aircraft after successfully testing the landing system 

on the simulation in Gazebo.  For this test, the ArUco marker was printed and fastened 

to a piece of hardboard using masking tape.  Originally, the size of the ArUco marker 

printed was 500 x 500 mm, the same size as the marker in the simulation.  However, 

after the first test flight, it became apparent that the marker was too big to be landed 
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on by the aircraft. However, the marker was still able to be detected from above when 

the aircraft had an altitude of roughly five metres.  To help with the landing, the ArUco 

marker was reprinted to a smaller size, which now had a size of 396 mm x 396 mm.  

The setup for the test can be found in Figure 7.6. 

 

 
Figure 7.6: The aircraft and the ArUco marker before take off 

 

To perform the test, the same scripts that were developed for the simulation were 

used.  However, a slight adjustment was made in order to test the system safety. The 

script flyaircraft.cpp was adjusted not to activate Offboard mode automatically when 

selected in the talker_flightmode.cpp node, but rather to wait for an input from the pilot.  

The Offboard flight mode was setup on the transmitter.  This allowed the pilot to exit 

Offboard flight mode whenever the aircraft was struggling to fly due to the wind or 

other factors affecting it.  For example, at the beginning of testing the Offboard flight 

mode, the aircraft was instructed to take off to an altitude of five metres.  However, 

since the GPS module had not connected to enough satellites in time, the GPS module 

was not ready to be used, resulting in the aircraft only using the onboard sensors such 

as IMU to hover the aircraft at the correct setpoint.  This resulted in the aircraft drifting 

sideways in one direction.  So, the pilot had to take over the flying of the aircraft and 

land it safely to enable the test to be restarted. 
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To demonstrate that the aircraft was able to detect the marker correctly, a person was 

told to hold the ArUco marker in his hands and walk a few steps on the grass. The 

aircraft was changed to “hover” in the talker_autoland.cpp node.  The aircraft 

successfully managed to keep hovering above the marker, regardless of where the 

person was standing.  A photo of this can be referred to in Figure 7.7.  

 

 
Figure 7.7: The multirotor aircraft hovering above the ArUco marker when a person 

held the marker 

 

After testing the aircraft’s hovering capabilities, it was decided to test whether the 

aircraft could execute the landing system successfully.  For this test, the aircraft was 

not told to rotate to align itself correctly with the ArUco marker.  Instead, the aircraft 

just repositioned itself above the marker and begin its descent to the ground.  Initially, 

when the script was developed, the aircraft was told to land by setting the z axis of the 
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coordinates to zero.  When it reached the last metre above the ground, the aircraft 

would stop repositioning itself above the marker and only descend towards the ground. 

 

When the “land” mode was executed in the talker_autoland.cpp node, the aircraft 

managed to reposition itself above the marker and descend towards to the ground 

successfully.  However, the aircraft reached a point roughly 300 mm above the marker, 

where it would stop descending and remain hovering above the marker (refer to Figure 

7.8(a)).  After a couple of seconds, the aircraft would disarm, resulting in the brushless 

motors shutting down and the aircraft dropping out of the air (refer to Figure 7.8(b)).  

The aircraft managed to disarm because the script contained code to disarm the 

aircraft when the altitude of the aircraft was zero for a certain period of time.  The 

expected issue was that the aircraft’s sensors predicted the aircraft was already on 

the ground.  To resolve this, the flyaircraft.cpp node was adjusted, where the aircraft 

would switch from Offboard flight mode to Land flight mode once the aircraft had 

dropped to an altitude of one metre (as shown in the flow chart in Appendix 5.15).  This 

adjustment managed to resolve the problem.  However, the aircraft still experienced 

the disarming issue as specified in the beginning of the chapter. 

 

 
Figure 7.8: (a) aircraft hovering above the marker (b) aircraft disarming, resulting in 

the aircraft dropping out of the air 

 

After adjusting the code to switch the aircraft to Land flight mode as well as adding in 

the code to rotate the aircraft correctly, the code was tested on the simulation (as 

discuss in section 6.3).  After successful testing on the simulation, the test was 
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performed on the aircraft at PERF, where it was successful.  Pictures from the test 

flight can be found in Appendix 7.3. 

 

Videos of the developed landing system and the GPS based landing system being 

executed were recorded using the DJI Mavic drone. The videos can be found at:  

• Developed landing system: https://youtu.be/7oPOAwui09k. 

• GPS based landing system: https://youtu.be/WQKi86ONiw4. 

 

After achieving a successful test result, the decision was made to compare the 

developed landing system to the aircraft’s current method of using the GPS module to 

land the system.  To perform the data analysis, a test was constructed where there 

would be ten landings performed for each landing method.  For each landing, the type 

of data recorded can be found in Table 7.1.  It must be noted that the timer was only 

started once the aircraft started its descent.  This means that the time taken to 

reposition the aircraft above the point where the aircraft was armed as well as the time 

taken to rotate the aircraft was not included. 

 

The following steps were implemented for testing each landing method: 

1. The aircraft would take off and reach an altitude of five metres, where it would 

hover. 

2. The aircraft would be horizontally repositioned between three and five metres 

away from the place where the aircraft needed to land.  The position chosen 

was different for each landing. 

3. The aircraft was instructed to land. 

4. The aircraft repositioned itself above the landing point, where it would orientate 

itself correctly. 

5. The timer was started once the aircraft began to descend. 

6. The timer was stopped once the aircraft touched the ground. 

7. The accuracy, bearing, time and heading of the aircraft were recorded. 

8. This process was implemented ten times to record ten landings. 
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Table 7.1: Type of data recorded for each landing 

Type of Data Recorded Units Description 
Accuracy Millimetres 

(mm) 

The distance from where the aircraft 

took armed to where the aircraft 

landed. 

Bearing o’clock The position where the aircraft landed 

from where the aircraft was armed. 

Time Seconds (s) The time taken from when the aircraft 

begins descending to when the 

aircraft touches the ground. 

Heading Degrees (º) The direction the aircraft was facing 

once it had landed. 

 

The initial heading of the aircraft was recorded before commencing the testing for the 

GPS enabled landing as well as for the developed landing system.  These initial 

headings can be found in Table 7.2. 

 

Table 7.2: The initial heading of the aircraft recorded before testing each landing 

method 

Landing Method Initial Heading 
GPS enabled landing 180º 

Developed ArUco marker landing system 179º 

 

Table 7.3 shows the data that was recorded for the aircraft landing via the GPS module 

and Table 7.4 shows the data that was recorded for aircraft landing via the developed 

landing system.  Figure 7.9 is a plot containing the accuracy for both landing systems 

and Figure 7.10 is a plot for the time taken to land the aircraft for each landing system. 
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Table 7.3: Data recorded for the landing of the aircraft by using the GPS module 

Landing Accuracy (mm) Bearing (o'clock) Time (s) Heading (º) 
1 990 9 8.9 185 

2 4570 10 11.5 175 

3 120 9 9.8 182 

4 1180 9 9.5 185 

5 1510 10 8.6 190 

6 700 9 10.5 178 

7 1150 4 8.5 184 

8 640 3 7.9 173 

9 940 3 9.6 176 

10 1520 4 10.7 186 

 

Table 7.4: Data recorded for the landing of the aircraft by using the developed 

landing system 

Landing Accuracy (mm) Bearing (o'clock) Time (s) Heading (º) 
1 40 9 34.4 158 

2 100 9 18.5 177 

3 80 8 20.7 193 

4 50 7 20.1 175 

5 240 3 23.4 180 

6 90 10 24.6 172 

7 110 10 20.9 187 

8 70 9 22.1 182 

9 130 4 20.8 188 

10 100 9 23 180 
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Figure 7.9 The plot for the accuracy of landing the aircraft for both landing systems 

 

 
Figure 7.10: The plot for the time taken to land the aircraft for both landing systems 
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Referring to Figure 7.9, it can clearly be seen that the developed landing system had 

a better accuracy than the GPS enabled landing system.  However, referring to Figure 

7.10, the developed landing system did generally take longer to land the aircraft 

compared to the GPS enabled system.  Since the purpose of developing a landing 

system was to improve on the accuracy of the overall landing of the aircraft, it can be 

said that the developed landing system outperformed the GPS enabled landing system 

in this regard.  

 

If, in a real life scenario, an autonomous docking station (that can autonomously 

charge an aircraft) were to be developed for the aircraft, the aircraft would need to land 

accurately on the platform of the docking station to allow for it to be charged 

autonomously.  For this reason, the accuracy of landing the aircraft would be more 

important than the time taken for it to land.  Further research and developments in 

reducing the time taken to land the aircraft would result in a greater efficiency of the 

landing system. 

 

7.2 Human Detection System 
This section will discuss the following: 

• Comparing Darknet’s YOLO version 3 to Darknet’s YOLO tiny version 3. 

• Differentiating between a human and another object. 

• Correcting the calculated distance. 

 

When it came to testing the human detection system, it soon became apparent that 

the processing power of the onboard Odroid XU4 computer would be insufficient to 

run Darknet’s YOLO.  Therefore, all testing of the human detection system was 

performed on the desktop computer, where it used the computer’s processor to 

perform Darknet’s necessary calculations (as stated in section 6.1).  A solution to the 

insufficient power of the onboard computer is discussed in section 7.3.   
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7.2.1 Comparing Darknet’s YOLO version 3 to Darknet’s YOLO Tiny Version 3 
Since there are multiple versions of Darknet’s YOLO available, a decision was made 

to compare the version 3 to the tiny version 3. The tiny version operates in the same 

way as the standard version.  However, the tiny version gives less accurate results 

compared to the standard version due to its using less processing power from the 

computer to detect objects. 

 

To compare the two versions, a test was performed where a pre-recorded video was 

published to a topic (by using the video_stream_opencv package) and both versions 

of Darknet’s YOLO run independently to detect any objects in the published topic. The 

results for the Darknet’s YOLO version 3 can be found in Figure 7.11 and the results 

for Darknet’s YOLO tiny version 3 can be found in Figure 7.12.  Both figures show: 

• The bounding box formed around the detected person. 

• The left terminal showing the frames per second (FPS) and the probability of 

the detected person. 

• The right terminal showing the bounding box information for the detected 

object. 

 

 
Figure 7.11: The detected person using Darknet’s YOLO version 3 
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Figure 7.12: The detected person using Darknet’s YOLO tiny version 3 

 

It can be seen in Figure 7.11 that the standard version 3 managed to detect a person 

with a probability of 91%, which is higher than the 70% obtained for the tiny version 3 

in Figure 7.12.  This means that the standard version 3 is able to detect objects better 

than the tiny version 3.  However, the 0.1 FPS in Figure 7.11 is lower than the 1.0 FPS 

obtained in Figure 7.12.  

 

From the above, it can be deduced that the standard version would take roughly ten 

times longer to detect an object compared to the tiny version (for example, the 

standard version would take roughly ten seconds to detect a human compared to the 

one second obtained from the tiny version).  For this reason, if the system were to be 

implemented on an onboard computer, the tiny version would definitely be the 

preferred choice.  However, you would not achieve the best detection results.  This 

can also be seen in Figure 7.13, where the tiny version incorrectly thought that the 

person in the video feed was a bird. 
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Figure 7.13: Darknet’s YOLO tiny version 3 incorrectly identified the person as a bird 

 

7.2.2 Differentiating Between a Human and Another Object 
If the complete system were to be implemented in a real-world scenario, the vision 

system would need to be able to differentiate between different moving objects and be 

programmed only to follow a person.  To prove that this was possible, a test was 

performed where a video was recorded of a person walking a dog on a field.  The pre-

recorded video was once again published to a topic by using the ROS 

video_stream_opencv package.  For this test, the standard YOLO version 3 was used.  

Referring to Figure 7.14, the two detected objects can be seen, where a 100% 

probability for each object was obtained. 

 

 
Figure 7.14: A person and a dog was detected by the vision system 

Identified the object as 

a bird with a probability 

of 32%. 
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7.2.3 Correcting the Calculated Distance  
During the simulation process for the human detection system, an error was detected 

in the calculating the distance the aircraft needed to travel towards the human.  

Originally, when the “follow” command was inserted in the talker_autoland.cpp node, 

the aircraft determined the ground distance in the beginning.  However, when the 

aircraft rotated to centre the person in the video frame, the Ymax of the bounding box 

of the person was reduced.  This resulted in the person being further away than 

originally anticipated.  

 

To demonstrate this, a person was told to stand still, walk a few steps horizontally to 

his left and then stand still, where the DJI drone would rotate itself to centre the person 

in the video frame.  Figure 7.15 shows the original position of the person, Figure 7.16 

is after the person had walked a few steps to their left and Figure 7.17 is a screenshot 

of the person once the aircraft had rotated itself to centre the person in the video frame.  

It must be noted that the standard YOLO version 3 was used to obtain a more accurate 

result. 

 

 
Figure 7.15: The bounding box information of the person in their original position 
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Figure 7.16: The bounding box information of the person after they had walked a few 

steps to their left 

 

 
Figure 7.17: The bounding box information of the person after the DJI had rotated to 

centre the person in the video frame 

 

 

 

Ymax: 561 

Ymax: 476 
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When comparing Figure 7.16 and Figure 7.17, it can be seen that Figure 7.17’s Ymax 

was smaller than that of Figure 7.16.  There were two potential solutions to resolve 

this problem:  

1. Redesign the algorithm for the human detection system only to calculate the 

ground distance once the aircraft had rotated. 

2. Develop an equation to insert into the algorithm to calculate the potential future 

Ymax (after the aircraft has rotated), depending on the current position of the 

bounding box.  This calculation would be added to the existing ground distance 

originally calculated, resulting in a slightly greater ground distance. 

 

Due to time constraints, it was decided to develop an equation.  To achieve this, the 

process followed was: 

1. The DJI was flown and hovered at an altitude of ten metres.  The DJI recorded 

a video of this entire process. 

2. A person was required to stand in the centre of the video frame.  This was 

regarded as the home position. 

3. The person walked five steps to his left and remained stationary. 

4. The aircraft rotated to centre the person in the video frame. 

5. The aircraft would then rotate back to its original position to face the home 

position. 

6. The process was repeated another four times where the person walked another 

five steps and the aircraft was rotated. 

7. The video was process through the standard Darknet YOLO version 3, where 

the bounding box values for each position were recorded.  

 

This entire process was repeated three times (resulting in three tests performed), 

where the Ymax value of the home position of the person was different each time. The 

three tests were recorded in Excel, which can be found in Appendix 7.4 . The numbers 

in the position column refer to when the person took a few steps horizontally and 

remained stationary.  The letters in the position column refer to when the aircraft had 

rotated to centre the person in the video frame.  This means that 1 correlates to A, 2 

correlates to B, etc..  For example, Figure 7.15 would be regarded as the home 

position, Figure 7.16 would be regarded as position 1 and Figure 7.17 would be 

regarded as position A. 
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When determining the equation for each test, the average for the x values were used 

for the positions containing numbers, meaning: 

 𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 	B&'(CB&)D
%

 (7.1)  

The Xaverage was calculated for all positions, which can be found in the tables in 

Appendix 7.4.  However only the Xaverage for the positions containing the numbers 

were used.  

 

To calculate an equation, the Xaverage was plotted on a graph alongside the 

difference between the Ymax of when the person had taken a few steps and remained 

stationary and the Ymax of the home position.  

 

For example, referring to the Test 1 table in Appendix 7.4, the Xaverage of position 1 

was calculated (1208) and the Ymax of the position A (577) was subtracted from the 

Ymax of the home position (581). This resulted in a coordinate of (1208 ; 4). 

 

Table 7.5, Table 7.6 and Table 7.7 were developed for the three tests.  Graphs were 

plotted, based on these three tables, which can be referred to in Figure 7.18, Figure 

7.19 & Figure 7.20.  A linear equation was developed for each graph.  These three 

equations were used in the algorithm to correct the ground distance.  

 

Table 7.5: Test 1 points calculated 

Position Xaverage Calculated Ymax Addition 
home 960 0 
1 1208 4 
2 1448 4 
3 1745.5 59 
4 1839 83 
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Figure 7.18: Graph plotted and equation developed for Test 1’s data 

 

Table 7.6: Test 2 points calculated 

Position Xaverage Calculated Ymax Addition 
home 960 0 
1 1325.5 94 
2 1579 175 
3 1861 294 

 

 
Figure 7.19: Graph plotted and equation developed for Test 2’s data 
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Table 7.7: Test 3 points calculated 

Position Xaverage Calculated Ymax Addition 
home 960 0 
1 1200.5 10 
2 1352.5 48 
3 1555.5 90 
4 1748 135 

 

 
Figure 7.20: Graph plotted and equation developed for Test 3’s data 
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This Xnewaverage would be inserted into one of the three equations developed. 

 

When determining which equation to use, a range was used based on the Ymax value.  

The ranges were: 

• If Ymax was smaller than 500 pixels (Ymax < 500), then test 3’s equation was 

used. 

• If Ymax was greater or equal to 500 pixels and Ymax was smaller than 750 

pixels (500 ≤ Ymax < 750), then test 1’s equation was used. 

• If Ymax was greater or equal to 750 pixels (Ymax ≥ 750), then test 2’s equation 

was used. 

 

Using one of these three equations does not replace the originally calculated ground 

distance, but is added to the originally calculated ground distance, resulting in a 

greater overall ground distance needed to be travelled by the aircraft. 

 

7.3 Improvements to the System 
Due to the system containing many components, there was bound to be a few of them 

that needed to be upgraded.  From the beginning of the research, the idea was to keep 

the overall project costs to a minimum.  That is why numerous second-hand 

components were used for the system.  The following improvements could be 

implemented on the aircraft: 

• Since the Odroid XU4 companion computer was not capable of being used for 

the human detection system, a more powerful computer is required.  The ideal 

solution to this problem is to use an Nvidia Jetson TX2 module attached to a 

carrier board.  This module is ideal because Darknet’s YOLO was developed 

on the CUDA framework, which works best with Nvidia graphics cards.  The 

purpose of the carrier board is to provide the module with IOs (inputs/outputs). 

This choice of computer will drastically improve on the FPS that was achieved 

in this research. 

• Due to the shortage of space on the fuselage, some of the peripherals and the 

companion computer had to be placed on their sides to fit all of the components 

onto the aircraft.  This resulted in some of the components not being tightly 
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fitted onto the aircraft.  To improve on this, the aircraft’s fuselage should be 

redesigned to house all the components in a neat, compact system. 

• The 6600 mAh capacity of the LiPo batteries were emptied between roughly 

five to seven minutes due to the batteries needing to power numerous 

components.  To avoid this, bigger batteries could be used or more added to 

the system, where they could be assigned to power specific components (e.g. 

one battery could power the companion computer and the peripherals 

connected to the computer). 

• If the system were to be used in a real-world scenario, the webcam would need 

to be replaced with a camera for industrial use.  Thermal cameras and 

multispectral cameras should be considered in this regard. 

 

7.4 Conclusion 
The numerous tests flights that were executed on the aircraft were discussed, as well 

as the various ways of flying the aircraft, albeit manually or autonomously.  In the 

chapter, other ways of controlling the aircraft, such as injecting new waypoints for the 

aircraft to fly towards by using ROS as well as using an Arduino to send the aircraft on 

a mission were mentioned.  The two landing systems of the aircraft were discussed 

and compared, highlighting the developed landing system outperforming the GPS 

enabled landing system.  Finally the human detection system was discussed, 

comparing Darknet’s YOLO version 3 to Darknet’s YOLO tiny version 3, revealing that 

the system was able to differentiate between a human and a dog as well as correct 

the calculated ground distance.  Improvements to the system were suggested, which 

could potentially allow the aircraft to be used in detecting and following humans.  The 

conclusion follows in the next chapter, which will conclude the entire research paper. 

  



 136 

Chapter 8: Conclusion 
The purpose of this chapter is to conclude the dissertation, highlighting the developed 

multirotor aircraft as well as the simulations and testing performed. The research 

contributions and the original hypothesis will be discussed. The chapter will also 

include recommendations for future research. 

 

8.1 Conclusion 
This dissertation demonstrated the vast development of multirotor aircraft in today’s 

era. One of the topics that was investigated was the latest crime statistics of South 

Africa, which revealed that a new method or device was required to help reduce the 

overall crime in the country. This lead to the development of this research. 

 

The focus was to provide the aircraft with another method of landing itself, which did 

not need to make use of the expensive RTK system that was currently available.  This 

lead to developing a vision system for the aircraft.  The vision system was used for the 

developed landing system as well as for the human detection system.  The vision 

system comprised a Logitech C920 webcam (which was mounted on a Tarot gimbal) 

that was connected to a Odroid XU4 companion computer running ROS.  The reason 

for ROS being used on the computer was to integrate the entire system, allowing the 

vision system to communicate with the aircraft, informing the aircraft to re-orientate 

and reposition itself based on what the vision system detected. 

 

The developed landing system consisted of detecting an ArUco marker placed on the 

ground.  When instructed to land, the aircraft repositioned itself above the marker, 

adjusted its orientation to align itself correctly with the marker and began its descent, 

eventually landing on the ArUco marker.  The human detection system consisted of 

detecting a human by making use of Darknet’s YOLO version 3 and Darknet’s YOLO 

tiny version 3. 

 

Both the landing system and the human detection system were developed by making 

use of a SITL simulation (otherwise known as a Software in the Loop simulation).  This 

SITL was run alongside Gazebo, allowing for a model in Gazebo to be manipulated 
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by making use of a ROS node. This enabled all the ROS nodes to be tested in Gazebo 

first, before testing them on the actual aircraft.  

 

After successfully testing the landing system in Gazebo, the system was implemented 

onto the actual aircraft, where physical testing took place.  After making adjustments 

in the algorithms to force the aircraft to touch the ground, the aircraft successfully 

managed to land.  However, the aircraft was never able to disarm due to an issue in 

the PX4 firmware.  The developed landing system was then compared to the aircraft’s 

GPS based landing system, where ten landings were performed using each system. 

The developed landing system obtained a better accuracy than the GPS enabled 

landing system.  However, the time taken to land the aircraft using the developed 

landing system took longer than the GPS enabled landing system. 

 

The human detection system was only tested in the simulation and not on the actual 

aircraft due to the Odroid XU4 companion computer providing insufficient processing 

power.  This limited the amount of testing possible for the system. 

 

There were numerous tests performed on the aircraft, showing that the aircraft was 

successfully able to be flown manually and autonomously.  The main reason that this 

was possible was due to the open-source Pixhawk flight controller running PX4 

firmware being used.  This choice in firmware allowed for the aircraft to able to be 

integrated with ROS.  The decision to use ROS for this research helped integrate the 

entire system with ease. 

 

There were a few limitations that were experienced when doing the research.  The first 

was that the aircraft was only flown in light wind conditions.  So, the results recorded 

for the GPS based landing system and the developed landing system do not reflect 

how the aircraft would perform in stronger wind conditions. The second limitation was 

that the human detection system was only tested on two humans and one dog.  This 

system should be tested further on a larger range of subjects, varying in size and 

height.  

 

Looking at the research contributions mentioned in section 1.7, all of the points 

mentioned were obtained.  A vision system was developed that could detect ArUco 
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markers and detect objects within the video frame.  A multirotor aircraft was developed 

that could be flown manually and autonomously.  The developed landing system was 

able to help improve on the accuracy when the aircraft landed.  However, this 

improvement in accuracy resulted in the aircraft taking longer to land.  If the developed 

landing system was improved by performing further research in this regard, the time 

taken to land the aircraft could be reduced substantially, resulting in a more efficient 

landing system. The developed human detection system was able to be used to 

manipulate the aircraft during flight.  However, this human detection system was not 

implemented on the aircraft due to the aircraft’s onboard computer not having sufficient 

processing power to execute the said detection system. This could easily be 

addressed by using a more powerful computer.  Therefore, further research should be 

performed in testing the human detection system on the aircraft.  Finally, the vision 

system and the aircraft were integrated by ROS.  This integration will assist other 

students in performing research in a similar field as the necessary foundation for their 

research has been laid. 

 

Referring to the original hypothesis a hardware and system architecture was designed 

and a digital simulation environment was used and implemented. An alternative 

landing system was successfully developed and tested on the actual aircraft. A human 

detection was successfully developed, however it was never tested on the actual 

aircraft. From these points, it can be said that a vision based multirotor aircraft can in 

fact be developed to be used in the security industry. 

 

8.2 Recommendations for Future Research 
During this research, a number of ideas came to mind where future research could be 

implemented: 

• Develop a docking station that could charge and protect the multirotor aircraft 

when not being used. 

• Design a waterproof fuselage so that the aircraft could house all the 

components into a neat compact system, allowing the multirotor aircraft to be 

flown in raining or windy conditions. 

• Develop a battery management system to improve on the flight time of the 

aircraft. 
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• Develop a communication system to allow the aircraft to be controlled and the 

video feed of the aircraft to be viewed from a control room. 

• Improve on the human detection system. 
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Appendices 
Appendix 1.1: South Africa’s Crime Statistics 
 

South Africa's Crime Statistics 
Crime Category 2018/2019 
Murder 21 022 
Sexual Offences 52 420 
Attempted Murder 18 980 
Assault with the intent to inflict grievous bodily harm 170 979 
Common assault 162 012 
Common robbery 51 765 
Robbery with aggravating circumstances 140 032 
Rape 41 583 
Sexual Assault 7 437 
Attempted Sexual Offences 2 146 
Contact Sexual Offences 1 254 
Carjacking 16 026 
Robbery at residential premises 22 431 
Robbery at non-residential premises 19 991 
Robbery of cash in transit 183 
Bank robbery 4 
Truck hijacking  1 182 
Arson 4 083 
Malicious damage to property 113 089 
Burglary at non-residential premises 71 224 
Burglary at residential premises 220 865 
Theft of motor vehicle and motorcycle 48 324 
Theft out of or from motor vehicle 125 076 
Commercial crime 83 823 
Shoplifting 60 167 
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Appendix 2.1: Darknet’s YOLO Dataset 
 

person elephant wine glass diningtable 

bicycle bear cup toilet 

car zebra fork tvmonitor 

motorbike giraffe knife laptop 

aeroplane backpack spoon mouse 

bus umbrella bowl remote 

train handbag banana keyboard 

truck tie apple cell phone 

boat suitcase sandwich microwave 

traffic light frisbee orange oven 

fire hydrant skis broccoli toaster 

stop sign snowboard carrot sink 

parking meter sports ball hot dog refrigerator 

bench kite pizza book 

bird baseball bat donut clock 

cat baseball glove cake vase 

dog skateboard chair scissors 

horse surfboard sofa teddy bear 
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Appendix 3.1: Gimbal Attachment v1 CAD Drawing 
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Appendix 3.2: Gimbal Attachment v2 CAD Drawing 
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Appendix 3.3: Leg Extension CAD Drawing 
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Appendix 3.4: GPS Case CAD Drawings 
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Appendix 3.5: Webcam CAD Drawings 
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Appendix 3.6: Pixhawk Schematic and Pinout 
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TELEM1 & TELEM2 Ports 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) TX (OUT) +3.3V 

3 (blk) RX (IN) +3.3V 

4 (blk) CTS (IN) +3.3V 

5 (blk) RTS (OUT) +3.3V 

6 (blk) GND GND 

   
   

GPS Port 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) TX (OUT) +3.3V 

3 (blk) RX (IN) +3.3V 

4 (blk) CAN2 TX +3.3V 

5 (blk) CAN2 RX +3.3V 

6 (blk) GND GND 

   
   

SERIAL 4/5 Port 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) TX (#4) +3.3V 

3 (blk) RX (#4) +3.3V 

4 (blk) TX (#5) +3.3V 

5 (blk) RX (#5) +3.3V 

6 (blk) GND GND 
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ADC 6.6V 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) ADC IN up to +6.6V 

3 (blk) GND GND 

   
   

ADC 3.3V 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) ADC IN up to +3.3V 

3 (blk) GND GND 

4 (blk) ADC IN up to +3.3V 

5 (blk) GND GND 

   
   

I2C 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) SCL +3.3 (pullups) 

3 (blk) SDA +3.3 (pullups) 

4 (blk) GND GND 

   
   

CAN 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) CAN_H +12V 

3 (blk) CAN_L +12V 

4 (blk) GND GND 
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SPI 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) SPI_EXT_SCK +3.3V 

3 (blk) SPI_EXT_MISO +3.3V 

4 (blk) SPI_EXT_MOSI +3.3V 

5 (blk) !GPIO_EXT +3.3V 

6 (blk) !SPI_EXT_NSS +3.3V 

7 (blk) GND GND 

   
   

POWER 
Pin Signal Volt 

1 

(red) VCC +5V 

2 (blk) VCC +5V 

3 (blk) CURRENT +3.3V 

4 (blk) VOLTAGE +3.3V 

5 (blk) GND GND 

6 (blk) GND GND 

   
   

SWITCH 
Pin Signal Volt 

1 

(red) VCC +3.3V 

2 (blk) !IO_LED_SAFETY GND 

3 (blk) SAFETY GND 
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Appendix 3.7: Pixhawk PX4 Parameters 
 

Parameter Parameter Value Parameter Parameter Value 

BAT_ADC_CHANNEL -1 MPC_LAND_ALT2 5 

BAT_A_PER_V 15.39103031 MPC_LAND_SPEED 0.600000024 

BAT_CAPACITY 6600 MPC_MANTHR_MIN 0.079999998 

BAT_CNT_V_CURR 0.000805664 MPC_MAN_TILT_MAX 35 

BAT_CNT_V_VOLT 0.000805664 MPC_MAN_Y_MAX 200 

BAT_CRIT_THR 0.07 MPC_POS_MODE 1 

BAT_EMERGEN_THR 0.050000001 MPC_SPOOLUP_TIME 5 

BAT_LOW_THR 0.150000006 MPC_THR_CURVE 0 

BAT_N_CELLS 3 MPC_THR_HOVER 0.600000024 

BAT_R_INTERNAL -1 MPC_THR_MAX 1 

BAT_SOURCE 0 MPC_THR_MIN 0.079999998 

BAT_V_CHARGED 4.184000015 MPC_TILTMAX_AIR 45 

BAT_V_DIV 10.17793941 MPC_TILTMAX_LND 12 

BAT_V_EMPTY 3 MPC_TKO_RAMP_T 0.400000006 

BAT_V_LOAD_DROP 0.5 MPC_TKO_SPEED 1.5 

BAT_V_OFFS_CURR 0 MPC_VELD_LP 5 

CAL_ACC0_EN 1 MPC_VEL_MANUAL 10 

CAL_ACC0_ID 1246218 MPC_XY_CRUISE 5 

CAL_ACC0_XOFF -0.067638397 MPC_XY_MAN_EXPO 0 

CAL_ACC0_XSCALE 0.991395772 MPC_XY_P 0.600000024 

CAL_ACC0_YOFF -0.072976589 MPC_XY_TRAJ_P 0.300000012 

CAL_ACC0_YSCALE 1.005786061 MPC_XY_VEL_D 0.01 

CAL_ACC0_ZOFF -0.245393276 MPC_XY_VEL_I 0.02 

CAL_ACC0_ZSCALE 0.994733572 MPC_XY_VEL_MAX 2 

CAL_ACC1_EN 1 MPC_XY_VEL_P 0.090000004 

CAL_ACC1_ID 1114634 MPC_YAWRAUTO_MAX 45 

CAL_ACC1_XOFF 3.092870712 MPC_YAW_EXPO 0 

CAL_ACC1_XSCALE 1.047754049 MPC_YAW_MODE 0 

CAL_ACC1_YOFF 3.552666187 MPC_Z_MAN_EXPO 0 

CAL_ACC1_YSCALE 1.000845194 MPC_Z_P 1 

CAL_ACC1_ZOFF 2.505486012 MPC_Z_TRAJ_P 0.300000012 

CAL_ACC1_ZSCALE 1.000477791 MPC_Z_VEL_D 0 

CAL_ACC_PRIME 1246218 MPC_Z_VEL_I 0.02 

CAL_AIR_CMODEL 0 MPC_Z_VEL_MAX_DN 0.5 

CAL_AIR_TUBED_MM 1.5 MPC_Z_VEL_MAX_UP 3 

CAL_AIR_TUBELEN 0.200000003 MPC_Z_VEL_P 0.200000003 

CAL_BARO_PRIME 0 NAV_ACC_RAD 2 

CAL_GYRO0_EN 1 NAV_AH_ALT 600 
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CAL_GYRO0_ID 2163722 NAV_AH_LAT -265847810 

CAL_GYRO0_XOFF 0.001806231 NAV_AH_LON 1518423250 

CAL_GYRO0_XSCALE 1 NAV_DLL_ACT 0 

CAL_GYRO0_YOFF 0.025406186 NAV_DLL_AH_T 120 

CAL_GYRO0_YSCALE 1 NAV_DLL_CHSK 0 

CAL_GYRO0_ZOFF -0.018975759 NAV_DLL_CH_ALT 600 

CAL_GYRO0_ZSCALE 1 NAV_DLL_CH_LAT -266072120 

CAL_GYRO1_EN 1 NAV_DLL_CH_LON 1518453890 

CAL_GYRO1_ID 2228490 NAV_DLL_CH_T 120 

CAL_GYRO1_XOFF 0.035897288 NAV_DLL_N 2 

CAL_GYRO1_XSCALE 1 NAV_FORCE_VT 1 

CAL_GYRO1_YOFF 0.03162903 NAV_FT_DST 8 

CAL_GYRO1_YSCALE 1 NAV_FT_FS 1 

CAL_GYRO1_ZOFF 0.029917274 NAV_FT_RS 0.5 

CAL_GYRO1_ZSCALE 1 NAV_FW_ALTL_RAD 5 

CAL_GYRO_PRIME 2163722 NAV_FW_ALT_RAD 10 

CAL_MAG0_EN 1 NAV_GPSF_LT 0 

CAL_MAG0_ID 73225 NAV_GPSF_P 0 

CAL_MAG0_ROT 0 NAV_GPSF_R 15 

CAL_MAG0_XOFF 0.080767058 NAV_GPSF_TR 0 

CAL_MAG0_XSCALE 1.071887374 NAV_LOITER_RAD 50 

CAL_MAG0_YOFF 0.015436961 NAV_MC_ALT_RAD 0.800000012 

CAL_MAG0_YSCALE 0.892002106 NAV_MIN_FT_HT 8 

CAL_MAG0_ZOFF -0.107885525 NAV_RCL_ACT 2 

CAL_MAG0_ZSCALE 1.059280038 NAV_RCL_LT 120 

CAL_MAG1_EN 1 NAV_TRAFF_AVOID 1 

CAL_MAG1_ID 131594 PLD_BTOUT 5 

CAL_MAG1_ROT -1 PLD_FAPPR_ALT 0.100000001 

CAL_MAG1_XOFF -0.157269895 PLD_HACC_RAD 0.200000003 

CAL_MAG1_XSCALE 1.047619462 PLD_MAX_SRCH 3 

CAL_MAG1_YOFF 0.27500093 PLD_SRCH_ALT 10 

CAL_MAG1_YSCALE 0.966791272 PLD_SRCH_TOUT 10 

CAL_MAG1_ZOFF -0.138879791 PWM_AUX_DIS1 -1 

CAL_MAG1_ZSCALE 0.998935401 PWM_AUX_DIS2 -1 

CAL_MAG2_ID 0 PWM_AUX_DIS3 -1 

CAL_MAG2_ROT -1 PWM_AUX_DIS4 -1 

CAL_MAG3_ID 0 PWM_AUX_DIS5 -1 

CAL_MAG3_ROT -1 PWM_AUX_DIS6 -1 

CAL_MAG_PRIME 73225 PWM_AUX_DIS7 -1 

CAL_MAG_SIDES 63 PWM_AUX_DIS8 -1 

CBRK_AIRSPD_CHK 0 PWM_AUX_DISARMED 1500 

CBRK_BUZZER 0 PWM_AUX_FAIL1 -1 
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CBRK_ENGINEFAIL 284953 PWM_AUX_FAIL2 -1 

CBRK_FLIGHTTERM 121212 PWM_AUX_FAIL3 -1 

CBRK_GPSFAIL 0 PWM_AUX_FAIL4 -1 

CBRK_IO_SAFETY 22027 PWM_AUX_FAIL5 -1 

CBRK_RATE_CTRL 0 PWM_AUX_FAIL6 -1 

CBRK_SUPPLY_CHK 0 PWM_AUX_FAIL7 -1 

CBRK_USB_CHK 0 PWM_AUX_FAIL8 -1 

CBRK_VELPOSERR 0 PWM_AUX_MAX 2000 

COM_ARM_AUTH 256010 PWM_AUX_MAX1 -1 

COM_ARM_IMU_ACC 0.699999988 PWM_AUX_MAX2 -1 

COM_ARM_IMU_GYR 0.25 PWM_AUX_MAX3 -1 

COM_ARM_MAG 0.150000006 PWM_AUX_MAX4 -1 

COM_ARM_MIS_REQ 0 PWM_AUX_MAX5 -1 

COM_ARM_SWISBTN 0 PWM_AUX_MAX6 -1 

COM_ARM_WO_GPS 1 PWM_AUX_MAX7 -1 

COM_ASPD_FS_ACT 0 PWM_AUX_MAX8 -1 

COM_ASPD_FS_DLY 0 PWM_AUX_MIN 1000 

COM_ASPD_STALL 10 PWM_AUX_MIN1 -1 

COM_DISARM_LAND 0.100000001 PWM_AUX_MIN2 -1 

COM_DL_LOSS_T 10 PWM_AUX_MIN3 -1 

COM_EF_C2T 5 PWM_AUX_MIN4 -1 

COM_EF_THROT 0.5 PWM_AUX_MIN5 -1 

COM_EF_TIME 10 PWM_AUX_MIN6 -1 

COM_FLIGHT_UUID 108 PWM_AUX_MIN7 -1 

COM_FLTMODE1 6 PWM_AUX_MIN8 -1 

COM_FLTMODE2 8 PWM_AUX_REV1 0 

COM_FLTMODE3 2 PWM_AUX_REV2 0 

COM_FLTMODE4 3 PWM_AUX_REV3 0 

COM_FLTMODE5 11 PWM_AUX_REV4 0 

COM_FLTMODE6 5 PWM_AUX_REV5 0 

COM_HLDL_LOSS_T 120 PWM_AUX_REV6 0 

COM_HLDL_REG_T 0 PWM_AUX_TRIM1 0 

COM_HOME_H_T 5 PWM_AUX_TRIM2 0 

COM_HOME_V_T 10 PWM_AUX_TRIM3 0 

COM_LOW_BAT_ACT 0 PWM_AUX_TRIM4 0 

COM_OA_BOOT_T 100 PWM_AUX_TRIM5 0 

COM_OBL_ACT 0 PWM_AUX_TRIM6 0 

COM_OBL_RC_ACT 0 PWM_DISARMED 900 

COM_OBS_AVOID 0 PWM_MAIN_DIS1 -1 

COM_OF_LOSS_T 0 PWM_MAIN_DIS2 -1 

COM_POSCTL_NAVL 0 PWM_MAIN_DIS3 -1 

COM_POS_FS_DELAY 1 PWM_MAIN_DIS4 -1 
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COM_POS_FS_EPH 5 PWM_MAIN_DIS5 -1 

COM_POS_FS_EPV 10 PWM_MAIN_DIS6 -1 

COM_POS_FS_GAIN 10 PWM_MAIN_DIS7 -1 

COM_POS_FS_PROB 30 PWM_MAIN_DIS8 -1 

COM_RC_ARM_HYST 1000 PWM_MAIN_FAIL1 -1 

COM_RC_IN_MODE 0 PWM_MAIN_FAIL2 -1 

COM_RC_LOSS_T 0.5 PWM_MAIN_FAIL3 -1 

COM_RC_OVERRIDE 0 PWM_MAIN_FAIL4 -1 

COM_RC_STICK_OV 12 PWM_MAIN_FAIL5 -1 

COM_TAKEOFF_ACT 0 PWM_MAIN_FAIL6 -1 

COM_TAS_FS_INNOV 1 PWM_MAIN_FAIL7 -1 

COM_TAS_FS_INTEG -1 PWM_MAIN_FAIL8 -1 

COM_TAS_FS_T1 3 PWM_MAIN_MAX1 -1 

COM_TAS_FS_T2 100 PWM_MAIN_MAX2 -1 

COM_VEL_FS_EVH 1 PWM_MAIN_MAX3 -1 

EKF2_ABIAS_INIT 0.200000003 PWM_MAIN_MAX4 -1 

EKF2_ABL_ACCLIM 25 PWM_MAIN_MAX5 -1 

EKF2_ABL_GYRLIM 3 PWM_MAIN_MAX6 -1 

EKF2_ABL_LIM 0.400000006 PWM_MAIN_MAX7 -1 

EKF2_ABL_TAU 0.5 PWM_MAIN_MAX8 -1 

EKF2_ACC_B_NOISE 0.003 PWM_MAIN_MIN1 -1 

EKF2_ACC_NOISE 0.349999994 PWM_MAIN_MIN2 -1 

EKF2_AID_MASK 1 PWM_MAIN_MIN3 -1 

EKF2_ANGERR_INIT 0.100000001 PWM_MAIN_MIN4 -1 

EKF2_ARSP_THR 0 PWM_MAIN_MIN5 -1 

EKF2_ASPD_MAX 20 PWM_MAIN_MIN6 -1 

EKF2_ASP_DELAY 100 PWM_MAIN_MIN7 -1 

EKF2_AVEL_DELAY 5 PWM_MAIN_MIN8 -1 

EKF2_BARO_DELAY 0 PWM_MAIN_REV1 0 

EKF2_BARO_GATE 5 PWM_MAIN_REV2 0 

EKF2_BARO_NOISE 2 PWM_MAIN_REV3 0 

EKF2_BCOEF_X 25 PWM_MAIN_REV4 0 

EKF2_BCOEF_Y 25 PWM_MAIN_REV5 0 

EKF2_BETA_GATE 5 PWM_MAIN_REV6 0 

EKF2_BETA_NOISE 0.300000012 PWM_MAIN_REV7 0 

EKF2_DECL_TYPE 7 PWM_MAIN_REV8 0 

EKF2_DRAG_NOISE 2.5 PWM_MAIN_TRIM1 0 

EKF2_EAS_NOISE 1.399999976 PWM_MAIN_TRIM2 0 

EKF2_EVA_NOISE 0.050000001 PWM_MAIN_TRIM3 0 

EKF2_EVP_NOISE 0.050000001 PWM_MAIN_TRIM4 0 

EKF2_EV_DELAY 175 PWM_MAIN_TRIM5 0 

EKF2_EV_GATE 5 PWM_MAIN_TRIM6 0 
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EKF2_EV_POS_X 0 PWM_MAIN_TRIM7 0 

EKF2_EV_POS_Y 0 PWM_MAIN_TRIM8 0 

EKF2_EV_POS_Z 0 PWM_MAX 1950 

EKF2_FUSE_BETA 0 PWM_MIN 1075 

EKF2_GBIAS_INIT 0.100000001 PWM_RATE 400 

EKF2_GND_EFF_DZ 0 PWM_SBUS_MODE 0 

EKF2_GND_MAX_HGT 0.5 RC10_DZ 0 

EKF2_GPS_CHECK 245 RC10_MAX 2000 

EKF2_GPS_DELAY 110 RC10_MIN 1000 

EKF2_GPS_MASK 0 RC10_REV 1 

EKF2_GPS_POS_X 0 RC10_TRIM 1500 

EKF2_GPS_POS_Y 0 RC11_DZ 0 

EKF2_GPS_POS_Z 0 RC11_MAX 2000 

EKF2_GPS_P_GATE 5 RC11_MIN 1000 

EKF2_GPS_P_NOISE 0.5 RC11_REV 1 

EKF2_GPS_TAU 10 RC11_TRIM 1500 

EKF2_GPS_V_GATE 5 RC12_DZ 0 

EKF2_GPS_V_NOISE 0.5 RC12_MAX 2000 

EKF2_GYR_B_NOISE 0.001 RC12_MIN 1000 

EKF2_GYR_NOISE 0.015 RC12_REV 1 

EKF2_HDG_GATE 2.599999905 RC12_TRIM 1500 

EKF2_HEAD_NOISE 0.300000012 RC13_DZ 0 

EKF2_HGT_MODE 0 RC13_MAX 2000 

EKF2_IMU_POS_X 0 RC13_MIN 1000 

EKF2_IMU_POS_Y 0 RC13_REV 1 

EKF2_IMU_POS_Z 0 RC13_TRIM 1500 

EKF2_MAGBIAS_ID 73225 RC14_DZ 0 

EKF2_MAGBIAS_X 0.001802281 RC14_MAX 2000 

EKF2_MAGBIAS_Y -0.001675414 RC14_MIN 1000 

EKF2_MAGBIAS_Z -4.92853E-05 RC14_REV 1 

EKF2_MAGB_K 0.200000003 RC14_TRIM 1500 

EKF2_MAGB_VREF 2.5E-07 RC15_DZ 0 

EKF2_MAG_ACCLIM 0.5 RC15_MAX 2000 

EKF2_MAG_B_NOISE 1E-04 RC15_MIN 1000 

EKF2_MAG_DECL -23.14025879 RC15_REV 1 

EKF2_MAG_DELAY 0 RC15_TRIM 1500 

EKF2_MAG_E_NOISE 0.001 RC16_DZ 0 

EKF2_MAG_GATE 3 RC16_MAX 2000 

EKF2_MAG_NOISE 0.050000001 RC16_MIN 1000 

EKF2_MAG_TYPE 0 RC16_REV 1 

EKF2_MAG_YAWLIM 0.25 RC16_TRIM 1500 

EKF2_MIN_OBS_DT 20 RC17_DZ 0 
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EKF2_MIN_RNG 0.100000001 RC17_MAX 2000 

EKF2_MOVE_TEST 1 RC17_MIN 1000 

EKF2_NOAID_NOISE 10 RC17_REV 1 

EKF2_NOAID_TOUT 5000000 RC17_TRIM 1500 

EKF2_OF_DELAY 5 RC18_DZ 0 

EKF2_OF_GATE 3 RC18_MAX 2000 

EKF2_OF_N_MAX 0.5 RC18_MIN 1000 

EKF2_OF_N_MIN 0.150000006 RC18_REV 1 

EKF2_OF_POS_X 0 RC18_TRIM 1500 

EKF2_OF_POS_Y 0 RC1_DZ 10 

EKF2_OF_POS_Z 0 RC1_MAX 2003 

EKF2_OF_QMIN 1 RC1_MIN 982 

EKF2_PCOEF_XN 0 RC1_REV 1 

EKF2_PCOEF_XP 0 RC1_TRIM 982 

EKF2_PCOEF_YN 0 RC2_DZ 10 

EKF2_PCOEF_YP 0 RC2_MAX 2006 

EKF2_PCOEF_Z 0 RC2_MIN 982 

EKF2_REQ_EPH 3 RC2_REV 1 

EKF2_REQ_EPV 5 RC2_TRIM 1500 

EKF2_REQ_GDOP 2.5 RC3_DZ 10 

EKF2_REQ_HDRIFT 0.100000001 RC3_MAX 2006 

EKF2_REQ_NSATS 6 RC3_MIN 982 

EKF2_REQ_SACC 0.5 RC3_REV 1 

EKF2_REQ_VDRIFT 0.200000003 RC3_TRIM 1498 

EKF2_RNG_AID 0 RC4_DZ 10 

EKF2_RNG_A_HMAX 5 RC4_MAX 2006 

EKF2_RNG_A_IGATE 1 RC4_MIN 982 

EKF2_RNG_A_VMAX 1 RC4_REV 1 

EKF2_RNG_DELAY 5 RC4_TRIM 1501 

EKF2_RNG_GATE 5 RC5_DZ 10 

EKF2_RNG_NOISE 0.100000001 RC5_MAX 2006 

EKF2_RNG_PITCH 0 RC5_MIN 982 

EKF2_RNG_POS_X 0 RC5_REV 1 

EKF2_RNG_POS_Y 0 RC5_TRIM 1494 

EKF2_RNG_POS_Z 0 RC6_DZ 10 

EKF2_RNG_SFE 0.050000001 RC6_MAX 2006 

EKF2_TAS_GATE 3 RC6_MIN 982 

EKF2_TAU_POS 0.25 RC6_REV 1 

EKF2_TAU_VEL 0.25 RC6_TRIM 1494 

EKF2_TERR_GRAD 0.5 RC7_DZ 10 

EKF2_TERR_NOISE 5 RC7_MAX 2006 

EKF2_WIND_NOISE 0.100000001 RC7_MIN 982 
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EV_TSK_RC_LOSS 0 RC7_REV 1 

EV_TSK_STAT_DIS 0 RC7_TRIM 1494 

FD_FAIL_P 60 RC8_DZ 10 

FD_FAIL_R 60 RC8_MAX 2006 

FW_MAN_P_SC 1 RC8_MIN 982 

FW_MAN_R_SC 1 RC8_REV 1 

FW_MAN_Y_SC 1 RC8_TRIM 1494 

GF_ACTION 1 RC9_DZ 0 

GF_ALTMODE 0 RC9_MAX 2006 

GF_COUNT -1 RC9_MIN 982 

GF_MAX_HOR_DIST 0 RC9_REV 1 

GF_MAX_VER_DIST 0 RC9_TRIM 1494 

GF_SOURCE 0 RC_ACRO_TH 0.5 

GPS_1_CONFIG 201 RC_ARMSWITCH_TH 0.25 

GPS_2_CONFIG 0 RC_ASSIST_TH 0.25 

GPS_DUMP_COMM 0 RC_AUTO_TH 0.75 

GPS_UBX_DYNMODEL 7 RC_CHAN_CNT 18 

GPS_YAW_OFFSET 0 RC_FAILS_THR 0 

IMU_ACCEL_CUTOFF 30 RC_FLT_CUTOFF 10 

IMU_GYRO_CUTOFF 30 RC_FLT_SMP_RATE 50 

LED_RGB_MAXBRT 15 RC_GEAR_TH 0.25 

LNDMC_ALT_MAX -1 RC_KILLSWITCH_TH 0.25 

LNDMC_FFALL_THR 2 RC_LOITER_TH 0.5 

LNDMC_FFALL_TTRI 0.300000012 RC_MAN_TH 0.5 

LNDMC_LOW_T_THR 0.300000012 RC_MAP_ACRO_SW 0 

LNDMC_ROT_MAX 20 RC_MAP_ARM_SW 6 

LNDMC_XY_VEL_MAX 1.5 RC_MAP_AUX1 7 

LNDMC_Z_VEL_MAX 0.5 RC_MAP_AUX2 8 

LND_FLIGHT_T_HI 0 RC_MAP_AUX3 0 

LND_FLIGHT_T_LO -509819056 RC_MAP_AUX4 0 

MAV_0_CONFIG 101 RC_MAP_AUX5 0 

MAV_0_FORWARD 1 RC_MAP_AUX6 0 

MAV_0_MODE 0 RC_MAP_FAILSAFE 0 

MAV_0_RATE 1200 RC_MAP_FLAPS 0 

MAV_1_CONFIG 102 RC_MAP_FLTMODE 5 

MAV_1_FORWARD 1 RC_MAP_GEAR_SW 0 

MAV_1_MODE 2 RC_MAP_KILL_SW 0 

MAV_1_RATE 0 RC_MAP_LOITER_SW 0 

MAV_2_CONFIG 0 RC_MAP_MAN_SW 0 

MAV_BROADCAST 0 RC_MAP_MODE_SW 0 

MAV_COMP_ID 1 RC_MAP_OFFB_SW 9 

MAV_FWDEXTSP 1 RC_MAP_PARAM1 0 
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MAV_HASH_CHK_EN 1 RC_MAP_PARAM2 0 

MAV_HB_FORW_EN 1 RC_MAP_PARAM3 0 

MAV_ODOM_LP 0 RC_MAP_PITCH 3 

MAV_PROTO_VER 0 RC_MAP_POSCTL_SW 0 

MAV_RADIO_ID 0 RC_MAP_RATT_SW 0 

MAV_SYS_ID 1 RC_MAP_RETURN_SW 0 

MAV_TYPE 13 RC_MAP_ROLL 2 

MAV_USEHILGPS 0 RC_MAP_STAB_SW 0 

MC_ACRO_EXPO 0.689999998 RC_MAP_THROTTLE 1 

MC_ACRO_EXPO_Y 0.689999998 RC_MAP_TRANS_SW 0 

MC_ACRO_P_MAX 720 RC_MAP_YAW 4 

MC_ACRO_R_MAX 720 RC_OFFB_TH 0.5 

MC_ACRO_SUPEXPO 0.699999988 RC_POSCTL_TH 0.5 

MC_ACRO_SUPEXPOY 0.699999988 RC_RATT_TH 0.5 

MC_ACRO_Y_MAX 540 RC_RETURN_TH 0.5 

MC_AIRMODE 0 RC_RSSI_PWM_CHAN 0 

MC_BAT_SCALE_EN 1 RC_RSSI_PWM_MAX 1000 

MC_DTERM_CUTOFF 0 RC_RSSI_PWM_MIN 2000 

MC_PITCHRATE_D 0.003 RC_STAB_TH 0.5 

MC_PITCHRATE_FF 0 RC_TRANS_TH 0.25 

MC_PITCHRATE_I 0.200000003 RTL_DESCEND_ALT 5 

MC_PITCHRATE_MAX 220 RTL_LAND_DELAY 0 

MC_PITCHRATE_P 0.150000006 RTL_MIN_DIST 20 

MC_PITCH_P 6.5 RTL_RETURN_ALT 5 

MC_PR_INT_LIM 0.300000012 RTL_TYPE 0 

MC_RATT_TH 0.800000012 SDLOG_DIRS_MAX 0 

MC_ROLLRATE_D 0.003 SDLOG_MISSION 0 

MC_ROLLRATE_FF 0 SDLOG_MODE 0 

MC_ROLLRATE_I 0.200000003 SDLOG_PROFILE 3 

MC_ROLLRATE_MAX 220 SDLOG_UTC_OFFSET 0 

MC_ROLLRATE_P 0.150000006 SENS_BARO_QNH 1013.25 

MC_ROLL_P 6.5 SENS_BOARD_ROT 0 

MC_RR_INT_LIM 0.300000012 SENS_BOARD_X_OFF 0.021766607 

MC_TPA_BREAK_D 1 SENS_BOARD_Y_OFF 1.469085574 

MC_TPA_BREAK_I 1 SENS_BOARD_Z_OFF 0 

MC_TPA_BREAK_P 1 SENS_DPRES_ANSC 0 

MC_TPA_RATE_D 0 SENS_DPRES_OFF 0 

MC_TPA_RATE_I 0 SENS_EN_LL40LS 0 

MC_TPA_RATE_P 0 SENS_EN_THERMAL -1 

MC_YAWRATE_D 0 SENS_FLOW_MAXHGT 3 

MC_YAWRATE_FF 0 SENS_FLOW_MAXR 2.5 

MC_YAWRATE_I 0.100000001 SENS_FLOW_MINHGT 0.699999988 
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MC_YAWRATE_MAX 125 SENS_FLOW_ROT 6 

MC_YAWRATE_P 0.200000003 SER_GPS1_BAUD 0 

MC_YAW_P 2.799999952 SER_TEL1_BAUD 57600 

MC_YR_INT_LIM 0.300000012 SER_TEL2_BAUD 921600 

MIS_ALTMODE 1 SYS_AUTOCONFIG 0 

MIS_DIST_1WP 900 SYS_AUTOSTART 6001 

MIS_DIST_WPS 900 SYS_BL_UPDATE 0 

MIS_LTRMIN_ALT -1 SYS_CAL_ACCEL 0 

MIS_MNT_YAW_CTL 0 SYS_CAL_BARO 0 

MIS_TAKEOFF_ALT 2.5 SYS_CAL_GYRO 0 

MIS_TAKEOFF_REQ 0 SYS_CAL_TDEL 24 

MIS_YAW_ERR 12 SYS_CAL_TMAX 10 

MIS_YAW_TMT -1 SYS_CAL_TMIN 5 

MNT_MODE_IN -1 SYS_COMPANION 0 

MOT_ORDERING 0 SYS_FMU_TASK 0 

MOT_SLEW_MAX 0 SYS_HAS_BARO 1 

MPC_ACC_DOWN_MAX 10 SYS_HAS_MAG 1 

MPC_ACC_HOR 5 SYS_HITL 0 

MPC_ACC_HOR_ESTM 0.5 SYS_MC_EST_GROUP 2 

MPC_ACC_HOR_MAX 10 SYS_PARAM_VER 1 

MPC_ACC_UP_MAX 10 SYS_RESTART_TYPE 0 

MPC_ALT_MODE 0 SYS_STCK_EN 1 

MPC_AUTO_MODE 1 SYS_USE_IO 1 

MPC_COL_PREV_D -1 TC_A_ENABLE 0 

MPC_CRUISE_90 3 TC_B_ENABLE 0 

MPC_DEC_HOR_SLOW 5 TC_G_ENABLE 0 

MPC_HOLD_DZ 0.100000001 THR_MDL_FAC 0 

MPC_HOLD_MAX_XY 0.800000012 TRIM_PITCH 0 

MPC_HOLD_MAX_Z 0.600000024 TRIM_ROLL 0 

MPC_JERK_AUTO 8 TRIM_YAW 0 

MPC_JERK_MAX 20 VT_B_DEC_MSS 2 

MPC_JERK_MIN 8 VT_B_REV_DEL 0 

MPC_LAND_ALT1 10     
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Appendix 4.1: Checkerboard Used for Camera Calibration 
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Appendix 5.1: determinepose.cpp node 
 

//relevant libraries used in this node 
#include <ros/ros.h> 

#include <geometry_msgs/PoseStamped.h> 
#include <Eigen/Core> 
#include <mavros_msgs/CommandBool.h> 
#include <mavros_msgs/SetMode.h> 
#include <mavros_msgs/State.h> 

#include <std_msgs/String.h> 
#include <std_msgs/Float64MultiArray.h> 
#include <std_msgs/MultiArrayLayout.h> 
#include <std_msgs/MultiArrayDimension.h> 
#include <std_msgs/Float64.h> 

#include <tf/tf.h> 
#include <string> 
#include <sstream> 
#include <Eigen/Geometry> 
#include <sensor_msgs/Imu.h> 

#include <math.h> 
#include <mavros_msgs/ParamValue.h> 
#include <mavros_msgs/ParamSet.h> 
#include <mavros_msgs/ParamPush.h> 
#include <iostream> 

 
 
// this allows identifiers to be used 
using namespace std; 
using namespace Eigen; 
 
// declaring variables 
geometry_msgs::PoseStamped final_pose; 
geometry_msgs::PoseStamped local_pose; 
mavros_msgs::State current_state; 

mavros_msgs::ParamValue ValueOfParameter; 
mavros_msgs::ParamSet SetParameter; 
mavros_msgs::ParamPush PushParameter; 
 
Quaternionf LocalPoseQuat; 

Quaternionf IMUQuat; 
Quaternionf ArucoQuat; 
Quaternionf FinalRotation; 
Quaternionf NewArucoQuat; 
Quaternionf GeneralQuat; 

  
std_msgs::String CoordinatesMsg;  
std_msgs::String VelocityMsg; 
std_msgs::String DescentMsg; 
std_msgs::String AutolandMsg; 
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std_msgs::String FlightmodeMsg; 
std_msgs::String YawMsg; 
std_msgs::String QuatMsg; 

std_msgs::String MultipleCoordinatesMsg; 
 
std_msgs::Float64MultiArray DeterminedAircraftPoseMsg; // {orientation w, orientation x, 
orientation y, orientation z, position x, position y, position z} 
 

std_msgs::String StatusMsg; 
string CoordinatesTemp; 
string VelocityTemp; 
string AutolandTemp; 
string DescentTemp; 

string FlightmodeTemp; 
string YawTemp; 
string QuatTemp; 
string MultipleCoordinatesTemp; 
 

string sAxis = "z"; 
string sPos = "2"; 
string sVelocity = "1"; 
string sAutoland = "false"; 
string sDescent = "0.2"; 

string sFlightmode = ""; 
string sYaw = "0"; 
string sQuatX = "0"; 
string sQuatY = "0"; 
string sQuatZ = "0"; 

string sQuatW = "0"; 
string sFollowX = "0"; 
string sFollowY = "0"; 
 

float fVelocity = 1.5; 
float fDescent = 0.2; 
float fPos = 2; 
float AverageHomeZ = 0; 
//float CamRatioValue = 4.0; 

float CamRatioValue = 0.2; 
float HeightWithRatio = 0; 
float MarkerHeight = 0; 
float fYawDegrees = 0; 
float fYawRadians = 0; 
float fQuatX = 0; 
float fQuatY = 0; 
float fQuatZ = 0; 
float fQuatW = 0; 
float ArucoOrientation[4] = {0,0,0,0}; 
float MaintainHeight = 0; 
float MaintainX = 0; 
float MaintainY = 0; 
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float YawEuler = 0; 
float fFollowX = 0; 
float fFollowY = 0; 
float fFollowZ = 10; 
float RelativeAltitude = 0; 
 
bool bVelCallback = false; 
bool bAutoMove = false; 
bool SetParameterSuccess; 
bool PushParameterSuccess;  
bool bTakeoff = false; 
bool bArmed = false; 
bool bOffboard = false; 
bool bStabilize = false; 
bool bStatus = false; 
bool bRotate = false; 
bool bFirstRotation = false; 
bool bFirstSetpoint = false; 
bool bManual = true; 
bool bHover = false; 
bool bStartTimer = false; 
bool bStartRotation = false; 
bool bBusyRotating = false; 
bool bAllowedToLand = false; 
bool bFollow = false; 
bool bCoordinatesReceived = false; 
bool DisplayedAlready = false; 
bool bActivateDisarm = false; 
bool bLandAlreadyActivated = false; 
 
ros::Time rotate_time; 
ros::Time follow_time; 

 
int iCount = 0; 
int AverageHomeCount = 0; 
 
// declaring a 3x3 matrix 

Matrix3f R; 
Matrix3f Y; 
 
// Callback for the state of the aircraft 
void state_cb(const mavros_msgs::State::ConstPtr& msg) 
{ 
    current_state = *msg; 
} 
 
// vectors to store position before and after 

Vector3f positionbe; 
Vector3f positionaf; 
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//Change the horizontal velocity of the aircraft by making use of ParamSet and ParamPush 
void ChangeVelocity() 
{ 

 ros::NodeHandle n; 
 ros::Rate r(20.0); 
  
 ros::ServiceClient param_set_client = n.serviceClient<mavros_msgs::ParamSet> 
       ("mavros/param/set"); 

 ros::ServiceClient param_push_client = n.serviceClient<mavros_msgs::ParamPush> 
      ("mavros/param/push"); 
       
     ValueOfParameter.real = fVelocity; 
     ValueOfParameter.integer = 0; 

     SetParameter.request.value = ValueOfParameter; 
     SetParameter.request.param_id = "MPC_XY_VEL_MAX"; 
  
   SetParameterSuccess = param_set_client.call(SetParameter); 
   PushParameterSuccess = param_push_client.call(PushParameter);     

     
     if( SetParameterSuccess && PushParameterSuccess ) 
     { 
    printf("Velocity SUCCESSFULLY UPDATED with: %.1f \n", fVelocity); 
    printf("\n"); 

    StatusMsg.data = "Velocity SUCCESSFULLY UPDATED"; 
      bStatus = true; 
   // bVelCallback = false; 
   } 
   else 
   { 
    printf("Velocity UPDATE FAILED \n"); 
    printf("\n"); 
    StatusMsg.data = "Velocity UPDATE FAILED"; 

      bStatus = true; 
   } 
    
   ros::spinOnce(); 
   r.sleep();    

} 
 
//Change the descending velocity of the aircraft by making use of ParamSet and ParamPush 
void ChangeDescent() 
{ 

 ros::NodeHandle n; 
 ros::Rate r(20.0); 
  
 ros::ServiceClient param_set_client = n.serviceClient<mavros_msgs::ParamSet> 
       ("mavros/param/set"); 

 ros::ServiceClient param_push_client = n.serviceClient<mavros_msgs::ParamPush> 
      ("mavros/param/push"); 
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     ValueOfParameter.real = fDescent; 
     ValueOfParameter.integer = 0; 
     SetParameter.request.value = ValueOfParameter; 

     SetParameter.request.param_id = "MPC_Z_VEL_MAX_DN"; 
  
   SetParameterSuccess = param_set_client.call(SetParameter); 
   PushParameterSuccess = param_push_client.call(PushParameter);     
     

     if( SetParameterSuccess && PushParameterSuccess ) 
     { 
    printf("Velocity descent SUCCESSFULLY UPDATED with: %.1f \n", fDescent); 
    printf("\n"); 
    StatusMsg.data = "Velocity descent SUCCESSFULLY UPDATED"; 

      bStatus = true; 
   // bVelCallback = false; 
   } 
   else 
   { 

    printf("Velocity descent UPDATE FAILED \n"); 
    printf("\n"); 
    StatusMsg.data = "Velocity descent UPDATED FAILED"; 
      bStatus = true; 
   } 

    
   ros::spinOnce(); 
   r.sleep();    
} 
 

//Callback for the altitude of the aircraft 
void AltitudeCallback(const std_msgs::Float64::ConstPtr& msg) 
{  
   RelativeAltitude = msg->data; 

   if ((RelativeAltitude > 1.5) && (bTakeoff != true)) 
    { 
      bTakeoff = true; 
     printf("Height reached, therefore takeoff has commenced \n");       
      

     StatusMsg.data = "Height reached, therefore takeoff has commenced"; 
     bStatus = true; 
    } 
     
    if ((bOffboard == true) && (bTakeoff == true) && (RelativeAltitude < 0.2) && 

(bLandAlreadyActivated == false)) 
  { 
   bActivateDisarm = true; 
   bLandAlreadyActivated = true; 
    

  } 
} 
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//Callback for the local pose of the aircraft 
void LocalposeCallback(const geometry_msgs::PoseStamped::ConstPtr &msg) 
{ 

    local_pose=*msg; 
} 
 
//Update the aircraft's position 
void MoveAircraft(double x, double y, double z) 
{ 
/* final_pose.pose.position.x = x; 
  final_pose.pose.position.y = y; 
  final_pose.pose.position.z = z;   
 */  

  DeterminedAircraftPoseMsg.data[4] = x; 
 DeterminedAircraftPoseMsg.data[5] = y; 
 DeterminedAircraftPoseMsg.data[6] = z; 
} 
 

//Callback for the IMU of the aircraft 
void imuCallback(const sensor_msgs::Imu::ConstPtr &msg) 
{ 
 
  double x,y,z,w; 
 
  x=msg->orientation.x; 
  y=msg->orientation.y; 
  z=msg->orientation.z; 
  w=msg->orientation.w; 

     
  IMUQuat = Eigen::Quaternionf(w,x,y,z); 
   
  R = IMUQuat.normalized().toRotationMatrix(); 

 
} 
 
//Callback for the flightmode received from the talker_flightmode.cpp node 
void FlightmodeCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  FlightmodeMsg.data = msg->data.c_str(); 
   
  FlightmodeTemp = FlightmodeMsg.data; 
  istringstream StrStreamFlightmode(FlightmodeTemp); 

  
  StrStreamFlightmode >> sFlightmode; 
   
  if (sFlightmode == "offboard") 
  { 

  bOffboard = true; 
  bStabilize = false; 
  printf("Flight mode received is: %s \n", sFlightmode.c_str()); 
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  StatusMsg.data = "The flight mode received is: offboard"; 
   bStatus = true; 
  } 

  else if (sFlightmode == "stabilized") 
  { 
  bOffboard = false; 
  bStabilize = true; 
  printf("Flight mode received is: %s \n", sFlightmode.c_str()); 

  StatusMsg.data = "The flight mode received is: stabilized"; 
   bStatus = true; 
  }    
} 
 

//Callback for the coordinates received from the talker_coordinates.cpp node 
void CoordinatesCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  CoordinatesMsg.data = msg->data.c_str(); 
   

  if (bManual == true) 
  { 
   CoordinatesTemp = CoordinatesMsg.data; 
   istringstream StrStreamCoordinates(CoordinatesTemp); 
  

   StrStreamCoordinates >> sAxis; 
   StrStreamCoordinates >> sPos; 
   
   stringstream geek(sPos); 
   geek >> fPos; 

   
  printf("The axis received: %s \n", sAxis.c_str());  
  printf("The position received: %.8f \n", fPos); 
  printf("\n"); 

  StatusMsg.data = "coordinates received"; 
    bStatus = true; 
  
  if (sAxis == "x") 
  { 

   DeterminedAircraftPoseMsg.data[4] = fPos; 
    
  } 
  else if (sAxis == "y") 
  { 

    DeterminedAircraftPoseMsg.data[5] = fPos; 
      
  } 
  else if (sAxis == "z") 
  { 

   DeterminedAircraftPoseMsg.data[6] = fPos; 
 
  } 
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  else 
  { 
    printf("You entered an incorrect axis.\n"); 

    StatusMsg.data = "You entered an incorrect axis"; 
   bStatus = true; 
  }  
  } 
}  

 
//Callback for the multiple coordinates received from the boundingboxmove.cpp node 
void MultipleCoordinatesCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  MultipleCoordinatesMsg.data = msg->data.c_str(); 

   
 MultipleCoordinatesTemp = MultipleCoordinatesMsg.data; 
 istringstream StrStreamMultipleCoordinates(MultipleCoordinatesTemp); 
 
 StrStreamMultipleCoordinates >> sFollowY; 

 StrStreamMultipleCoordinates >> sFollowX; 
 
 stringstream geek1(sFollowY); 
 geek1 >> fFollowY; 
  

 stringstream geek2(sFollowX); 
 geek2 >> fFollowX; 
 
 bCoordinatesReceived = true; 
 

}  
 
//Converting the ArUco marker's quaternion to be used within the script 
Eigen::Quaternionf ConvertArucoQuaternion(Eigen::Quaternionf q1)  

{ 
 float w1 = q1.w(); 
 float x1 = q1.x(); 
 float y1 = q1.y(); 
 float z1 = q1.z();  

  

 //////// Rearranging negative signs ///////////// 
 if ((w1 < 0) && (y1 < 0)) 
 { 

  w1 = -w1; 
  x1 = -x1; 
  y1 = -y1; 
  z1 = -z1; 
 } 

 else if ((w1 < 0) && (z1 < 0)) 
 { 
  w1 = -w1; 
  x1 = -x1; 
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  y1 = -y1; 
  z1 = -z1;   
 } 

 

/////////subtracting euler z by 180 and invert y axis//////////// 
 
 if ((z1 < 0) && (w1 <= y1))   // clockwise (angle <= 90) in degrees 
 { 
  x1 = y1; 
  z1 = w1; 
  w1 = x1; 
  y1 = z1; 

   
  y1 = -y1; 
  z1 = -z1; 
 } 
 else if ((z1 < 0) && (w1 > y1))  // clockwise (90 < angle < 180)  
 { 
  x1 = -y1; 
  z1 = -w1; 
  w1 = x1; 
  y1 = z1;   

   
  w1 = -w1; 
  x1 = -x1; 
 } 
 else if ((z1 >= 0) && (w1 > z1)) // anticlockwise (90 < angle < 180) 
 { 
  x1 = -y1; 
  z1 = -w1; 
  w1 = x1; 

  y1 = z1;   
   
  w1 = -w1; 
  x1 = -x1; 
 } 

 else if ((z1 >= 0) && (w1 <= z1)) // anticlockwise (angle <= 90) 
 { 
  x1 = -y1; 
  z1 = -w1; 
  w1 = x1; 

  y1 = z1; 
   
  y1 = -y1; 
  z1 = -z1;   
 } 

 
 return Eigen::Quaternionf(w1,x1,y1,z1); 
  
} 
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//Callback for the quaternion received from the QuatFromUser topic 
void QuatCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  QuatMsg.data = msg->data.c_str(); 
   
  QuatTemp = QuatMsg.data; 
  istringstream StrStreamQuat(QuatTemp); 

  
  StrStreamQuat >> sQuatW; 
  StrStreamQuat >> sQuatX; 
  StrStreamQuat >> sQuatY; 
  StrStreamQuat >> sQuatZ; 

 
  stringstream geek1(sQuatW); 
  geek1 >> fQuatW; 
   
  stringstream geek2(sQuatX); 

  geek2 >> fQuatX; 
   
  stringstream geek3(sQuatY); 
  geek3 >> fQuatY; 
   

  stringstream geek4(sQuatZ); 
  geek4 >> fQuatZ; 
 
//Commented out since constantly publishing in human detection system  
//  printf("The w quat received: %.8f \n", fQuatW);   

//  printf("The x quat received: %.8f \n", fQuatX);  
// printf("The y quat received: %.8f \n", fQuatY);  
// printf("The z quat received: %.8f \n", fQuatZ);  
// printf("\n"); 

// StatusMsg.data = "Quat received"; 
//  bStatus = true;  
 GeneralQuat = Eigen::Quaternionf(fQuatW,fQuatX,fQuatY,fQuatZ); 
   
}  

 
//Callback for the velocity from the VelocityFromUser topic 
void VelocityCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  VelocityMsg.data = msg->data.c_str(); 

   
  VelocityTemp = VelocityMsg.data; 
  istringstream StrStreamVelocity(VelocityTemp); 
  
  StrStreamVelocity >> sVelocity; 

   
  stringstream VelocitySS(sVelocity); 
  VelocitySS >> fVelocity; 
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  fVelocity = roundf(fVelocity * 10) / 10; 
   
  printf("The velocity received: %.1f \n", fVelocity); 

  printf("\n"); 
  StatusMsg.data = "velocity received"; 
  bStatus = true; 
   
 ChangeVelocity(); 

 
} 
 
//Callback for the descending velocity from the DescentFromUser topic 
void DescentCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  DescentMsg.data = msg->data.c_str(); 
   
  DescentTemp = DescentMsg.data; 
  istringstream StrStreamDescent(DescentTemp); 

  
  StrStreamDescent >> sDescent; 
   
  stringstream DescentSS(sDescent); 
  DescentSS >> fDescent; 

  fDescent = roundf(fDescent * 10) / 10; 
   
  printf("The descent velocity received: %.1f \n", fDescent); 
  printf("\n"); 
  StatusMsg.data = "Descent velocity received"; 

  bStatus = true; 
   
 ChangeDescent(); 
 

} 
 
//Perform Quaternion Multiplication 
Eigen::Quaternionf QuaternionMultiply(Eigen::Quaternionf q1, Eigen::Quaternionf q2)  
{ 

 
    float NewX1 =  q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y() + q1.w() * q2.x(); 
    float NewY1 = -q1.x() * q2.z() + q1.y() * q2.w() + q1.z() * q2.x() + q1.w() * q2.y(); 
    float NewZ1 =  q1.x() * q2.y() - q1.y() * q2.x() + q1.z() * q2.w() + q1.w() * q2.z(); 
    float NewW1 = -q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z() + q1.w() * q2.w(); 
 
  Quaternionf TempQuat = Eigen::Quaternionf(NewW1,NewX1,NewY1,NewZ1); 
   
  return TempQuat; 
} 

 
//Method used to decide whether the aircraft must rotate for the landing system or for a user 
input 
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void RotateAircraft(string sTypeOfRotation) 
{ 
 LocalPoseQuat = 

Eigen::Quaternionf(local_pose.pose.orientation.w,local_pose.pose.orientation.x,local_pose.pos
e.orientation.y,local_pose.pose.orientation.z); 
   
 if (sTypeOfRotation == "marker") 
 {  

  ArucoQuat = 
Eigen::Quaternionf(ArucoOrientation[0],ArucoOrientation[1],ArucoOrientation[2],ArucoOrientati
on[3]); 
  
  NewArucoQuat = ConvertArucoQuaternion(ArucoQuat); 

  FinalRotation = QuaternionMultiply(LocalPoseQuat.normalized(), 
NewArucoQuat.normalized()); 
     
 } 
  

 else if (sTypeOfRotation == "general") 
 { 
  FinalRotation = QuaternionMultiply(LocalPoseQuat, GeneralQuat);  
  FinalRotation = FinalRotation.normalized(); 
 } 

 
 DeterminedAircraftPoseMsg.data[0] = FinalRotation.w(); 
 DeterminedAircraftPoseMsg.data[1] = FinalRotation.x(); 
 DeterminedAircraftPoseMsg.data[2] = FinalRotation.y(); 
 DeterminedAircraftPoseMsg.data[3] = FinalRotation.z();   

   
} 
 
//Executes the landing system 

void RepositionAircraft(bool bHoverOnly) 
{ 
 positionaf=R*positionbe;       //R is important in order to keep the drone stabilized 
above the marker 
 

//     update the position 
 double x=(positionaf[0]+local_pose.pose.position.x); 
 double y=(positionaf[1]+local_pose.pose.position.y); 
 double z=(positionaf[2]+local_pose.pose.position.z); 
 

 if (bHoverOnly == false)    
 { 
  if (MarkerHeight > 1) 
  { 
   HeightWithRatio = MarkerHeight * CamRatioValue; 

  } 
  else 
  { 
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   HeightWithRatio = 0.2; 
  } 
 

  if (bStartRotation == true) 
  { 
   if ((ros::Time::now() - rotate_time) <= ros::Duration(5.0)) 
   {    
    if (DisplayedAlready == false) 
    { 
     printf("Rotation is starting soon... \n"); 
     StatusMsg.data = "Rotation is starting soon..."; 
      bStatus = true; 
     DisplayedAlready = true; 
    } 
   } 
 
   if (((ros::Time::now() - rotate_time) <= ros::Duration(12.0)) && 
((ros::Time::now() - rotate_time) > ros::Duration(5.0))) 

   {  
    if (DisplayedAlready == false) 
    { 
     printf("The aircraft has started to rotate... \n"); 
     StatusMsg.data = "The aircraft has started to rotate..."; 

      bStatus = true;      
     DisplayedAlready = true; 
    }  
    
    if (bFirstRotation == true) 
    {    
     RotateAircraft("marker"); 
     bBusyRotating = true; 
     bFirstRotation = false;     

    
    }  
 
   } 
    

   else if ((ros::Time::now() - rotate_time) > ros::Duration(12.0)) 
   { 
    printf("12 seconds finished... \n");  
    StatusMsg.data = "12 seconds finished..."; 
     bStatus = true; 
    bBusyRotating = false; 
    bStartRotation = false; 
    bAllowedToLand = true; 
    DisplayedAlready = false;      
   } 

  } 
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  if (((HeightWithRatio > positionbe[0]) && (positionbe[0] > -HeightWithRatio)) && 
((HeightWithRatio > positionbe[1]) && (positionbe[1] > -HeightWithRatio)))  
  { 

    if (bStartTimer == false) 
    { 
     rotate_time = ros::Time::now(); 
     bStartRotation = true; 
     bStartTimer = true;      

     printf("Timer started...\n"); 
     StatusMsg.data = "Timer started..."; 
      bStatus = true; 
    } 
        

    if ((bBusyRotating == false) && (bAllowedToLand == true)) 
    { 
     if(local_pose.pose.position.z >= 1) 
     { 
      MoveAircraft(x,y,z); 

       
      if (DisplayedAlready == false) 
      { 
       printf("Dropping altitude...\n"); 
       StatusMsg.data = "Dropping altitude..."; 

        bStatus = true; 
       DisplayedAlready = true; 
      } 
     } 
    

      else if(local_pose.pose.position.z < 1) 
      { 
       MoveAircraft(x,y,-2);      
      } 

     }  
  }  
   
  else 
  { 

   if (z != 0) 
   { 
     MoveAircraft(x,y,local_pose.pose.position.z); 
 //   printf("Positioning drone above aruco marker..\n"); 
   } 

  } 
 } 
 
 else if (bHoverOnly == true) 
 { 

  MoveAircraft(x,y,MaintainHeight); 
 } 
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} 
 

//Callback for the ArUco marker's pose 
void ArucoCallback(const geometry_msgs::PoseStamped::ConstPtr& msg) 
{ 
//     converting the pose to ground frame 
  positionbe[1]= -(msg->pose.position.x); 

  positionbe[0]= -(msg->pose.position.y); 
  positionbe[2]= -(msg->pose.position.z); 
  MarkerHeight = -(msg->pose.position.z); 
   
 ArucoOrientation[0] = msg->pose.orientation.w; 

 ArucoOrientation[1] = msg->pose.orientation.x; 
 ArucoOrientation[2] = msg->pose.orientation.y; 
 ArucoOrientation[3] = msg->pose.orientation.z; 
  
 if (bAutoMove == true) 
 { 
  if (bHover == false) 
  { 
   RepositionAircraft(false); 
  } 

  else if (bHover == true) 
  { 
   RepositionAircraft(true); 
  } 
 } 

} 
 
//Executes the human detection system 
void FollowPerson() 
{  
 GeneralQuat = Eigen::Quaternionf(fQuatW,fQuatX,fQuatY,fQuatZ); 
  
 bFollow = true; 
 bFirstSetpoint = true; 
/* 
  printf("The w quat received: %.8f \n", fQuatW);   
  printf("The x quat received: %.8f \n", fQuatX);  
 printf("The y quat received: %.8f \n", fQuatY);  
 printf("The z quat received: %.8f \n", fQuatZ);  

 printf("The follow x coordinate received: %.8f \n", fFollowX);  
 printf("The follow y coordinate received: %.8f \n", fFollowY); 
*/ 
 while (bFollow == true) 
 { 

  if (bStartTimer == false) 
  { 
   follow_time = ros::Time::now(); 
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   bStartRotation = true; 
   bStartTimer = true;      
   printf("Timer started...\n"); 

  } 
   
  if ((ros::Time::now() - follow_time) <= ros::Duration(2.0)) 
  { 
    

   if (DisplayedAlready == false) 
   { 
    printf("Rotation is starting soon... \n"); 
    StatusMsg.data = "Rotation is starting soon..."; 
     bStatus = true;      

    DisplayedAlready = true; 
   }  
  } 
   
  if (((ros::Time::now() - follow_time) <= ros::Duration(7.0)) && ((ros::Time::now() - 
follow_time) > ros::Duration(2.0))) 
  { 
   if (DisplayedAlready == false) 
   { 
    printf("The aircraft has started to rotate... \n"); 

    StatusMsg.data = "The aircraft has started to rotate..."; 
     bStatus = true;      
    DisplayedAlready = true; 
   }  
       

   if (bFirstRotation == true) 
   { 
    RotateAircraft("general"); 
    bBusyRotating = true; 
    bFirstRotation = false;      
    
   }  
        
  }  

   
  if ((ros::Time::now() - follow_time) > ros::Duration(7.0)) 
  {  
   if ((bFirstSetpoint == true) && (bCoordinatesReceived == true)) 
   { 

    printf("Follow coordinates uploaded... \n"); 
    DeterminedAircraftPoseMsg.data[4] = fFollowX; 
    DeterminedAircraftPoseMsg.data[5] = fFollowY; 
    DeterminedAircraftPoseMsg.data[6] = fFollowZ; 
     

    bFollow = false; 
    bStartTimer = false; 
    bFirstSetpoint = false; 
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    bCoordinatesReceived = false; 
       
   } 

  }    
 }   
} 
 
//Callback for the autoland command received from the talker_autoland.cpp node 

void AutolandCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  AutolandMsg.data = msg->data.c_str(); 
   
  AutolandTemp = AutolandMsg.data; 

  istringstream StrStreamAutoland(AutolandTemp); 
  
  StrStreamAutoland >> sAutoland; 
   
  if (sAutoland == "manual") 
  { 
   printf("Manual control activated \n"); 
   StatusMsg.data = "Manual control activated"; 
    bStatus = true; 
   bAutoMove = false; 
   bManual = true;   
  } 
  else if (sAutoland == "hover") 
  { 
   MaintainHeight = local_pose.pose.position.z; 

   printf("Auto move activated \n"); 
   StatusMsg.data = "Auto move activated"; 
    bStatus = true; 
  

   bManual = false; 
   bHover = true; 
   bAutoMove = true; 
   bFirstRotation = true; 
 

  } 
  else if (sAutoland == "land") 
  { 
   MaintainHeight = local_pose.pose.position.z; 
      

   printf("Land activated \n"); 
   StatusMsg.data = "Land activated"; 
   bStatus = true; 
   
   bManual = false; 
   bHover = false; 
  bAutoMove = true; 
  bFirstRotation = true; 
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  } 

  else if (sAutoland == "rotate") 
  { 
   printf("Rotate activated \n"); 
   StatusMsg.data = "Rotate activated"; 
   bStatus = true; 
   //bFirst = true; 
  
   bManual = false; 
   RotateAircraft("general"); 
    

  } 
  else if (sAutoland == "follow") 
  { 
  // MaintainHeight = 30; 
   printf("Follow person activated \n"); 

   StatusMsg.data = "Follow person activated"; 
    bStatus = true; 
  
   bManual = false; 
   bHover = false; 
   bAutoMove = false; 
   bFirstRotation = true; 
   FollowPerson();    
  } 
   

  else 
  { 
   printf("Flight mode input incorrect. \n"); 
  }     

} 
 
//Main method 
int main(int argc, char **argv) 
{ 

    //name assigned for the node 
    ros::init(argc, argv, "determinepose"); 
    ros::NodeHandle nh; 
 
    //Topics that are subscribed to 

    ros::Subscriber sub_Coordinates = nh.subscribe("CoordinatesFromUser", 10, 
CoordinatesCallback); 
    ros::Subscriber sub_Quat = nh.subscribe("QuatFromUser", 100, QuatCallback); 
    ros::Subscriber sub_Velocity = nh.subscribe("VelocityFromUser", 10, VelocityCallback); 
    ros::Subscriber sub_Descent = nh.subscribe("DescentFromUser", 10, DescentCallback); 

    ros::Subscriber sub_Autoland = nh.subscribe("AutolandFromUser", 10, AutolandCallback); 
    ros::Subscriber sub_Flightmode = nh.subscribe("FlightmodeFromUser", 10, 
FlightmodeCallback); 
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    ros::Subscriber sub_MultipleCoordinates = nh.subscribe("/MultipleCoordinates", 10, 
MultipleCoordinatesCallback); 
    ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State> 

            ("mavros/state", 10, state_cb); 
    ros::Subscriber imu_sub = nh.subscribe<sensor_msgs::Imu> 
            ("/mavros/imu/data",10,imuCallback); 
    ros::Subscriber localpose_sub = nh.subscribe<geometry_msgs::PoseStamped> 
            ("/mavros/local_position/pose",100,LocalposeCallback); 

    ros::Subscriber aruco_sub = nh.subscribe<geometry_msgs::PoseStamped> 
            ("aruco_single/pose", 1000, ArucoCallback); 
    ros::Subscriber altitude_sub = 
nh.subscribe<std_msgs::Float64>("mavros/global_position/rel_alt", 10, AltitudeCallback); 
     

    //Topics that are published to 
    ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped> 
            ("mavros/setpoint_position/local", 10); 
    ros::Publisher aircraftpose_pub = nh.advertise<std_msgs::Float64MultiArray> 
            ("/determinedaircraftpose", 100); 

     ros::Publisher status_pub = nh.advertise<std_msgs::String>("StatusFromAircraft", 10); 
 
    //Service clients that are communicated 
    ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool> 
            ("mavros/cmd/arming"); 

    ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode> 
            ("mavros/set_mode"); 
 
    ros::Rate rate(20.0); 
     

    DeterminedAircraftPoseMsg.data.clear(); 
   
  for (int i = 0; i < 7; i++) 
  {  

   DeterminedAircraftPoseMsg.data.push_back(0); 
  } 
 
    //Wait till communication with the flight controller 
    while(ros::ok() && !current_state.connected) 
    { 
        ros::spinOnce(); 
        rate.sleep(); 
    } 
 

    DeterminedAircraftPoseMsg.data[0] = local_pose.pose.orientation.w; 
    DeterminedAircraftPoseMsg.data[1] = local_pose.pose.orientation.x; 
    DeterminedAircraftPoseMsg.data[2] = local_pose.pose.orientation.y; 
    DeterminedAircraftPoseMsg.data[3] = local_pose.pose.orientation.z;   
    DeterminedAircraftPoseMsg.data[4] = local_pose.pose.position.x; 

    DeterminedAircraftPoseMsg.data[5] = local_pose.pose.position.y; 
    DeterminedAircraftPoseMsg.data[6] = 2; 
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    ChangeVelocity(); 
    ChangeDescent(); 
      

    printf("The pose may now be adjusted \n"); 
    StatusMsg.data = "Determinepose is ready."; 
  
    while(ros::ok()) 
    { 

            //the position and orientation is published to the topic determinedaircraftpose 
    aircraftpose_pub.publish(DeterminedAircraftPoseMsg);    
      
        //variables are reset back to default when the aircraft has disarmed 
     if ((!current_state.armed) && bActivateDisarm == true) 
   {       
    sAxis = "z"; 
    sPos = "2"; 
    sVelocity = "1"; 
    sAutoland = "false"; 

    sDescent = "0.2"; 
    sFlightmode = ""; 
    sYaw = "0"; 
    sQuatX = "0"; 
    sQuatY = "0"; 

    sQuatZ = "0"; 
    sQuatW = "0"; 
    sFollowX = "0"; 
    sFollowY = "0"; 
 

    fVelocity = 1.5; 
    fDescent = 0.2; 
    fPos = 2; 
    AverageHomeZ = 0; 

    CamRatioValue = 0.2; 
    HeightWithRatio = 0; 
    MarkerHeight = 0; 
    fYawDegrees = 0; 
    fYawRadians = 0; 

    fQuatX = 0; 
    fQuatY = 0; 
    fQuatZ = 0; 
    fQuatW = 0; 
    ArucoOrientation[0] = 0; 

    ArucoOrientation[1] = 0; 
    ArucoOrientation[2] = 0; 
    ArucoOrientation[3] = 0; 
     
    MaintainHeight = 0; 

    MaintainX = 0; 
    MaintainY = 0; 
    YawEuler = 0; 



 193 

    fFollowX = 0; 
    fFollowY = 0; 
    fFollowZ = 30; 

    RelativeAltitude = 0; 
 
    bVelCallback = false; 
    bAutoMove = false; 
    SetParameterSuccess; 

    PushParameterSuccess;  
    bTakeoff = false; 
    bArmed = false; 
    bOffboard = false; 
    bStabilize = false; 
    bStatus = false; 
    bRotate = false; 
    bFirstRotation = false; 
    bFirstSetpoint = false; 
    bManual = true; 
    bHover = false; 
    bStartTimer = false; 
    bStartRotation = false; 
    bBusyRotating = false; 
    bAllowedToLand = false; 
    bFollow = false; 
    bCoordinatesReceived = false; 
    DisplayedAlready = false; 
    bLandAlreadyActivated = false;                 
  

      bActivateDisarm = false; 
 
    DeterminedAircraftPoseMsg.data[0] = local_pose.pose.orientation.w; 
    DeterminedAircraftPoseMsg.data[1] = local_pose.pose.orientation.x; 

    DeterminedAircraftPoseMsg.data[2] = local_pose.pose.orientation.y; 
    DeterminedAircraftPoseMsg.data[3] = local_pose.pose.orientation.z; 
  
    DeterminedAircraftPoseMsg.data[4] = local_pose.pose.position.x; 
    DeterminedAircraftPoseMsg.data[5] = local_pose.pose.position.y; 

    DeterminedAircraftPoseMsg.data[6] = 2;  
            
      printf("The aircraft has been disarmed and the variables have been reset.\n"); 
      StatusMsg.data = "The aircraft has been disarmed and the variables have been reset."; 
       

      status_pub.publish(StatusMsg); 
     } 
      
     if (bStatus == true) 
     { 

      status_pub.publish(StatusMsg); 
      bStatus = false; 
     } 
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      ros::spinOnce(); 
      rate.sleep(); 

       
    } 
 
    return 0; 
}     
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Appendix 5.2: flyaircraft.cpp node 
//relevant libraries used in this node 
#include <ros/ros.h> 
#include <geometry_msgs/PoseStamped.h> 
#include <mavros_msgs/CommandBool.h> 
#include <mavros_msgs/SetMode.h> 

#include <mavros_msgs/State.h> 
#include <std_msgs/Float64MultiArray.h> 
#include "std_msgs/MultiArrayLayout.h" 
#include "std_msgs/MultiArrayDimension.h" 
#include <std_msgs/String.h> 

#include <std_msgs/Float64.h> 
 
// this allows identifiers to be used 
using namespace std; 
 

//declaring variables 
mavros_msgs::State current_state; 
mavros_msgs::SetMode offb_set_mode; 
mavros_msgs::CommandBool arm_cmd; 
 

std_msgs::String FlightmodeMsg; 
 
string FlightmodeTemp; 
 
string sFlightmode = ""; 

 
bool bOffboard = false; 
bool bOffboardSet = false; 
bool bStabilizeSet = false; 
bool bLandSet = false; 
bool bArmAircraft = false; 
bool bPublish = false; 
bool bTakeoff = false; 
bool bAirborne = false; 
bool bLandAlreadyActivated = false; 
bool bActivateDisarm = false; 
 
std_msgs::Float64MultiArray TempPose; 
float ArrPose[7]; 
 
float RelativeAltitude = 0; 
 
//Callback to receive the state of the aircraft 
void state_cb(const mavros_msgs::State::ConstPtr& msg) 
{ 
    current_state = *msg; 
} 
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//Callback to receive the pose for the aircraft from the determinedaircraftpose topic 
void AircraftPoseCallback(const std_msgs::Float64MultiArray::ConstPtr& msg) 
{ 

 
 for (int i = 0; i < 7; i++) 
 { 
  ArrPose[i] = msg->data[i]; 
 } 

 
} 
 
//Callback to receive the altitude of the aircraft 
void AltitudeCallback(const std_msgs::Float64::ConstPtr& msg) 
{  
   RelativeAltitude = msg->data; 
    
   if ((RelativeAltitude > 1.5) && (bTakeoff != true)) 
    { 

      bTakeoff = true; 
    } 
     
    if ((bOffboard == true) && (bTakeoff == true) && (RelativeAltitude < 0.2) && 
(bLandAlreadyActivated == false)) 
  { 
     bLandSet = true; 
     bOffboard = false; 
     bActivateDisarm = true; 
  }   

} 
 
//Callback to receive the flight mode from the talker_flightmode.cpp node 
void FlightmodeCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  FlightmodeMsg.data = msg->data.c_str(); 
   
  FlightmodeTemp = FlightmodeMsg.data; 
  istringstream StrStreamFlightmode(FlightmodeTemp); 

  
  StrStreamFlightmode >> sFlightmode; 
   
  if (sFlightmode == "offboard") 
  { 

  bOffboard = true; 
  bOffboardSet = true; 
  bStabilizeSet = false; 
  bLandSet = false; 
  bArmAircraft = true; 
  bPublish = true; 
  bLandAlreadyActivated = false; 
  printf("Flight mode received is: %s \n", sFlightmode.c_str()); 
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  } 
  else if (sFlightmode == "stabilized") 
  { 

   bOffboard = false; 
  bOffboardSet = false; 
  bStabilizeSet = true; 
  bLandSet = false; 
  bArmAircraft = true; 
  bPublish = false; 
  printf("Flight mode received is: %s \n", sFlightmode.c_str()); 
  } 
  else if (sFlightmode == "land") 
  { 

   bOffboard = false; 
  bOffboardSet = false; 
  bStabilizeSet = false; 
  bLandSet = true; 
  bPublish = false; 
  printf("Flight mode received is: %s \n", sFlightmode.c_str()); 
  }   
     
} 
 

//Main Method 
int main(int argc, char **argv) 
{ 
//name assigned for the node 
    ros::init(argc, argv, "flyaircraft"); 

    ros::NodeHandle nh; 
 
//Topics that are subscribed to 
    ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State> 

            ("mavros/state", 10, state_cb); 
    ros::Subscriber sub_aircraftpose = 
nh.subscribe<std_msgs::Float64MultiArray>("/determinedaircraftpose", 100, 
AircraftPoseCallback); 
    ros::Subscriber sub_Flightmode = nh.subscribe("FlightmodeFromUser", 10, 

FlightmodeCallback); 
    ros::Subscriber altitude_sub = 
nh.subscribe<std_msgs::Float64>("mavros/global_position/rel_alt", 10, AltitudeCallback); 
     
//Topics that are published to 

    ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped> 
            ("mavros/setpoint_position/local", 10); 
 
//Service clients that are communicated 
    ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool> 

            ("mavros/cmd/arming"); 
    ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode> 
            ("mavros/set_mode"); 
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    //the setpoint publishing rate MUST be faster than 2Hz 
    ros::Rate rate(20.0); 

     
    printf("flyaircraft has started...\n");  
   
    // wait till communication with the flight controller 
   while(ros::ok() && !current_state.connected){ 
        ros::spinOnce(); 
        rate.sleep(); 
    } 
 
    geometry_msgs::PoseStamped pose; 

    pose.pose.position.x = 0; 
    pose.pose.position.y = 0; 
    pose.pose.position.z = 2; 
 
    //send a few setpoints before the aircraft may be used in offboard mode 

    for(int i = 100; ros::ok() && i > 0; --i){ 
        local_pos_pub.publish(pose); 
        ros::spinOnce(); 
        rate.sleep(); 
    } 

     
    printf("100 setpoints published\n"); 
    
    offb_set_mode.request.custom_mode = "OFFBOARD"; 
 

    arm_cmd.request.value = true; 
 
    ros::Time last_request = ros::Time::now(); 
 

  printf("starting offboard and arming sequence...\n"); 
   
    while(ros::ok()) 
    { 
      

       if (bOffboardSet == true) 
      { 
       pose.pose.position.x = 0; 
       pose.pose.position.y = 0; 
       pose.pose.position.z = 2; 

 
    //send a few setpoints before starting 
       for(int i = 100; ros::ok() && i > 0; --i) 
       { 
         

         local_pos_pub.publish(pose); 
         ros::spinOnce(); 
          rate.sleep(); 
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       } 
       //Swithces to offboard mode 
       printf("Inside OffboardSet \n"); 

       offb_set_mode.request.custom_mode = "OFFBOARD"; 
       set_mode_client.call(offb_set_mode); 
       offb_set_mode.response.mode_sent; 
       arm_cmd.request.value = true; 
       bOffboardSet = false; 
       ros::Time last_request = ros::Time::now(); 
      } 
       
            //Switches to Land flight mode when altitude point has been reached 
      else if (bLandSet == true) 
      { 
       offb_set_mode.request.custom_mode = "AUTO.LAND"; 
       set_mode_client.call(offb_set_mode); 
       offb_set_mode.response.mode_sent; 
       arm_cmd.request.value = true; 
       bLandSet = false; 
       bLandAlreadyActivated = true; 
       printf("AUTO.LAND has been requested... \n"); 
      }     
 

//Code used specifically to use this node on Gazebo simulation 
  //Start of simulation code 
  
        if( current_state.mode != "OFFBOARD" && 
            (ros::Time::now() - last_request > ros::Duration(5.0)) && bOffboard == true) 
        { 
            if( set_mode_client.call(offb_set_mode) && 
                offb_set_mode.response.mode_sent) 
            { 

                ROS_INFO("Offboard enabled"); 
            } 
            last_request = ros::Time::now(); 
        } 
         

        else  
        { 
          
            if( !current_state.armed && 
                (ros::Time::now() - last_request > ros::Duration(5.0)) && bArmAircraft == true) 
            { 
            printf("Inside Attempting to arm... \n"); 
                if( arming_client.call(arm_cmd) && 
                    arm_cmd.response.success) 
                { 

                    ROS_INFO("Vehicle armed"); 
                    bArmAircraft = false; 
             //       bPublish = true; 
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                } 
                last_request = ros::Time::now(); 
            } 

        } 
   
  //End of simulation code 
   
   

  /* 
  //Code used specifically to use this node on the actual aircraft 
    //Start of actual aircraft code 
         if( current_state.mode != "OFFBOARD" && 
            (ros::Time::now() - last_request > ros::Duration(5.0))) 

        { 
            if( current_state.mode == "OFFBOARD") 
            { 
                ROS_INFO("Offboard enabled"); 
            } 

            last_request = ros::Time::now(); 
        } 
         
        else  
        { 

      //      if( !current_state.armed && (ros::Time::now() - last_request > ros::Duration(5.0)) 
&& bArmAircraft == true) 
            if( !current_state.armed && 
                (ros::Time::now() - last_request > ros::Duration(5.0)) && (bOffboard == true) 
&& current_state.mode == "OFFBOARD") 

            { 
              printf("Inside Arming sequence \n"); 
                if( arming_client.call(arm_cmd) && 
                    arm_cmd.response.success) 

                { 
                    ROS_INFO("Vehicle armed"); 
             //       bArmAircraft = false; 
                    bPublish = true; 
                } 

                last_request = ros::Time::now(); 
            } 
        } 
 */  
    //End of actuall aircraft code 

        
        
        if ((bPublish == true) && (current_state.mode != "AUTO.LAND")) 
        { 
        pose.pose.orientation.w = ArrPose[0]; 

        pose.pose.orientation.x = ArrPose[1]; 
        pose.pose.orientation.y = ArrPose[2]; 
        pose.pose.orientation.z = ArrPose[3]; 
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        pose.pose.position.x = ArrPose[4]; 
        pose.pose.position.y = ArrPose[5]; 

      pose.pose.position.z = ArrPose[6]; 
     
                  //publish the pose to the aircraft via MAVROS 
        local_pos_pub.publish(pose); 
     } 

     
    if ((!current_state.armed) && bActivateDisarm == true) 
    { 
                    //resets all the variables 
      bOffboard = false; 
      bOffboardSet = false; 
      bStabilizeSet = false; 
      bLandSet = false; 
      bArmAircraft = false; 
      bPublish = false; 
      bTakeoff = false; 
      bAirborne = false; 
      bLandAlreadyActivated = false; 
      bActivateDisarm = false; 
       

      printf("Aircraft has been disarmed \n"); 
    } 
     
        ros::spinOnce(); 
        rate.sleep(); 

    } 
 
    return 0; 
} 
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Appendix 5.3: talker_autoland.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include "std_msgs/String.h" 
#include <iostream> 
#include <string> 

#include <sstream> 
 
// this allows identifiers to be used 
using namespace std; 
 

//Declared variables 
string sAutoland = "false"; //DEFAULT VELOCITY 
 
//Main Method 
int main(int argc, char **argv) 
{ 
 //name assigned for the node 
  ros::init(argc, argv, "talker_autoland"); 
 
  ros::NodeHandle nh; 

 
  //Topics that are published 
  ros::Publisher autoland_pub = nh.advertise<std_msgs::String>("AutolandFromUser", 10); 
 
  ros::Rate loop_rate(20); 

 
  int count = 0; 
  while (ros::ok()) 
  { 

 
    std_msgs::String msg; 
 
    std::stringstream ss; 
     

    //Receives the user's input for the type of autonomous flight 
    cout << "Please either enter 'manual' , 'hover' , 'land' , 'follow' or 'rotate':" << endl; 
     
   cin >> sAutoland; 
     

   ss << sAutoland; 
 
  printf("\n"); 
  printf("The autoland you have chosen is: %s \n", sAutoland.c_str()); 
  msg.data = ss.str(); 

  printf("\n");   
     
    //Publishes the user's input 
    autoland_pub.publish(msg); 
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    ros::spinOnce(); 
 

    loop_rate.sleep(); 
 
  } 
 
  return 0; 
} 
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Appendix 5.4: talker_coordinates.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include "std_msgs/String.h" 
#include <iostream> 
#include <string> 

#include <sstream> 
 
// this allows identifiers to be used 
using namespace std; 
 

//Variables declared 
string sAxis = "z"; 
string sPos = "2"; 
float fPos = 2; 
 

//Main method 
int main(int argc, char **argv) 
{ 
  //name assigned for the node 
  ros::init(argc, argv, "talker_coordinates"); 

 
  ros::NodeHandle nh; 
     
  //Topics that are published to 
  ros::Publisher coordinates_pub = nh.advertise<std_msgs::String>("CoordinatesFromUser", 10); 

 
  ros::Rate loop_rate(20); 
 
  int count = 0; 
  while (ros::ok()) 
  { 
 
    std_msgs::String msg; 
 

    std::stringstream ss; 
     
    //Receives the coordinate from the user 
    cout << "Please enter axis and position value (e.g. x 2):" << endl; 
     

    cin >> sAxis >> sPos; 
     
    ss << sAxis + " " + sPos; 
    
  stringstream geek(sPos); 

    
  geek >> fPos; 
     
  printf("\n"); 



 205 

   printf("The axis you have chosen: %s \n", sAxis.c_str());  
  printf("The value you have chosen: %.8f \n", fPos); 
  printf("\n"); 

    
    msg.data = ss.str(); 
 
    //Publishes the user's input 
    coordinates_pub.publish(msg); 

 
 
    ros::spinOnce(); 
 
    loop_rate.sleep(); 

 
  } 
 
 
  return 0; 
} 
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Appendix 5.5: talker_descent.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include "std_msgs/String.h" 
#include <iostream> 
#include <string> 

#include <sstream> 
 
// this allows identifiers to be used 
using namespace std; 
 

//Variables declared 
string sVelocity = "1"; //DEFAULT VELOCITY 
 
//Main Method 
int main(int argc, char **argv) 
{ 
 
  //name assigned for the node 
  ros::init(argc, argv, "talker_descent"); 
 

  ros::NodeHandle nh; 
 
  //Topics that are published 
  ros::Publisher descent_pub = nh.advertise<std_msgs::String>("DescentFromUser", 10); 
 

  ros::Rate loop_rate(20); 
 
  int count = 0; 
  while (ros::ok()) 
  { 
 
    std_msgs::String msg; 
 
    std::stringstream ss; 

     
    //Receives the descending velocity from the user 
    cout << "Please enter a velocity in m/s with decimal (e.g. 1.0):" << endl; 
     
   cin >> sVelocity; 

     
   ss << sVelocity; 
 
  printf("\n"); 
  printf("The velocity you have chosen: %s m/s\n", sVelocity.c_str()); 

  msg.data = ss.str(); 
  printf("\n");   
     
    //Publishes the descending velocity from the user 
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    descent_pub.publish(msg); 
 
    ros::spinOnce(); 

 
    loop_rate.sleep(); 
 
  } 
 

  return 0; 
} 
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Appendix 5.6: talker_velocity.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include "std_msgs/String.h" 
#include <iostream> 
#include <string> 

#include <sstream> 
 
// this allows identifiers to be used 
using namespace std; 
 

//Variables declared 
string sVelocity = "12"; //DEFAULT VELOCITY 
 
int main(int argc, char **argv) 
{ 

//name assigned for the node 
  ros::init(argc, argv, "talker_velocity"); 
 
  ros::NodeHandle nh; 
   

//Topics that are published to 
  ros::Publisher velocity_pub = nh.advertise<std_msgs::String>("VelocityFromUser", 10); 
 
  ros::Rate loop_rate(20); 
 

  int count = 0; 
  while (ros::ok()) 
  { 
 

    std_msgs::String msg; 
 
    std::stringstream ss; 
 
//Receives the horizontal velocity from the user     

    cout << "Please enter a velocity in m/s with decimal (e.g. 12.0):" << endl; 
     
   cin >> sVelocity; 
     
   ss << sVelocity; 

 
  printf("\n"); 
  printf("The velocity you have chosen: %s m/s\n", sVelocity.c_str()); 
  msg.data = ss.str(); 
  printf("\n");   

  
//Publishes the velocity from the user    
    velocity_pub.publish(msg); 
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    ros::spinOnce(); 
 
    loop_rate.sleep(); 

 
  } 
 
  return 0; 
} 

 
 

 

  



 210 

Appendix 5.7: talker_flightmode.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include "std_msgs/String.h" 
#include <iostream> 
#include <string> 

#include <sstream> 
 
// this allows identifiers to be used 
using namespace std; 
 

//Variables declared 
string sFlightmode = "false";  
 
//Main Method 
int main(int argc, char **argv) 
{ 
 //name assigned for the node 
  ros::init(argc, argv, "talker_flightmode"); 
 
  ros::NodeHandle nh; 

 
  //Topics that are published 
  ros::Publisher flightmode_pub = nh.advertise<std_msgs::String>("FlightmodeFromUser", 10); 
 
  ros::Rate loop_rate(20); 

 
  int count = 0; 
  while (ros::ok()) 
  { 

 
    std_msgs::String msg; 
 
    std::stringstream ss; 
 

//Receives the flight mode from the user     
    cout << "Please enter flightmode (e.g. offboard or stabilized):" << endl; 
     
   cin >> sFlightmode; 
     

   ss << sFlightmode; 
 
  printf("\n"); 
  printf("The flightmode you have chosen is: %s \n", sFlightmode.c_str()); 
  msg.data = ss.str(); 

  printf("\n");   
 
//Publishes the flight mode from the user     
    flightmode_pub.publish(msg); 
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    ros::spinOnce(); 
 

    loop_rate.sleep(); 
 
  } 
 
  return 0; 
} 
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Appendix 5.8: talker_quat.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include "std_msgs/String.h" 
#include <iostream> 
#include <string> 

#include <sstream> 
 
// this allows identifiers to be used 
using namespace std; 
 

//Variables declared 
string sX = "0"; 
string sY = "0"; 
string sZ = "0"; 
string sW = "0"; 

 
//Main Method 
int main(int argc, char **argv) 
{ 
 //name assigned for the node 

  ros::init(argc, argv, "talker_quat"); 
 
  ros::NodeHandle nh; 
 //Topics that are published 
  ros::Publisher quat_pub = nh.advertise<std_msgs::String>("QuatFromUser", 100); 

 
  ros::Rate loop_rate(20); 
 
  int count = 0; 
  while (ros::ok()) 
  { 
 
    std_msgs::String msg; 
 

    std::stringstream ss; 
  
//Receives a quaternion from the user      
    cout << "Please a quaternion (format is: w x y z ):" << endl; 
     

    cin >> sW >> sX >> sY >> sZ; 
     
    ss << sW + " " + sX + " " + sY + " " + sZ; 
    
 // stringstream geek(sPos); 

    
 // geek >> fPos; 
     
  printf("\n"); 
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  printf("The w you have chosen: %s \n", sW.c_str());  
   printf("The x you have chosen: %s \n", sX.c_str());  
   printf("The y you have chosen: %s \n", sY.c_str());  

   printf("The z you have chosen: %s \n", sZ.c_str());  
    
//  printf("The value you have chosen: %.8f \n", fPos); 
  printf("\n"); 
    

    msg.data = ss.str(); 
 
//Publishes the quaternion from the user    
    quat_pub.publish(msg); 
 

 
    ros::spinOnce(); 
 
    loop_rate.sleep(); 
 

  } 
 
 
  return 0; 
} 
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Appendix 5.9: listener_status.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include "std_msgs/String.h" 
 
// this allows identifiers to be used 

using namespace std; 
 
//Variables declared 
std_msgs::String StatusMsg;  
 

string sStatus = "null"; 
 
string StatusTemp; 
 
//Callback to receive messages from the StatusFromAircraft topic 

void StatusCallback(const std_msgs::String::ConstPtr& msg) 
{ 
  StatusMsg.data = msg->data.c_str(); 
   
  StatusTemp = StatusMsg.data; 

   
 printf("%s \n", StatusTemp.c_str());  
 printf("\n"); 
   
}  

 
//Main Method 
int main(int argc, char **argv)   
{ 

 //name assigned for the node 
  ros::init(argc, argv, "listener_status"); 
 
  ros::NodeHandle nh; 
 

//Topics that are subscribed to 
  ros::Subscriber sub_Coordinates = nh.subscribe("StatusFromAircraft", 10, StatusCallback); 
 
 ros::Rate r(20); 
  

 while (ros::ok()) 
 {  
  
   ros::spinOnce(); 
   r.sleep(); 

 } 
  return 0; 
}  
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Appendix 5.10: boxinfo.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include "std_msgs/String.h" 
#include "darknet_ros_msgs/BoundingBoxes.h" 
#include <math.h> 

#include <sstream> 
#include <iostream> 
#include <iterator> 
#include <string> 
#include <boost/range.hpp> 

 
// this allows identifiers to be used 
using namespace std; 
 
//Variables declared 

darknet_ros_msgs::BoundingBoxes BoxMsg; 
 
int xmax; 
int xmin; 
int ymax = 380; 
int ymin; 
int xavg; 
int yavg; 
int xdistancetomid; 
int ydistancetomid; 
int yDifference; 
int boundingboxsize; 
 
//webcam resolution 

//int camerawidth = 640; 
//int cameraheight = 480; 
 
//DJI video Footage resolution 
int camerawidth = 1920; 
int cameraheight = 1080; 
 
int camerawidthhalved = camerawidth / 2; 
int cameraheighthalved = cameraheight / 2; 
 

//double hfov = 70.42; //logitech c920 webcam 
//double vfov = 43.3;  //logitech c920 webcam 
 
double hfov = 76.25; //DJI Phantom 4 Pro (calculated) 
double vfov = 47.64;  //DJI Phantom 4 Pro (calculated) 

 
double AngleToRotate; 
 
float AltitudeSet = 10; 
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float VFOV; 
float AngleToFirstPoint; 
float AngleToFinalPoint; 
float GroundDistanceToFirstPoint; 
float GroundDistanceToLastPoint; 
float MaxDistance; 
float OppAngle; 
float AngleOnStraightLine; 
float AngleForMainTriangle; 
float Hypotenuse; 
float ymaxDifference; 
float HypotenuseForLinearization; 
float DistanceBetweenAircraftAndPerson; 
float DistanceToMove; 
float yextra = 0; 
float ywithequation; 
float xavgpastmidpoint; 
float abovexavg 
 
bool PubOpen = false; 
//bool PubOpen = true; 
 
std_msgs::String msgAngle; 

std_msgs::String msgDistance; 
 
//Callback to receive the bounding box information obtained by using the darknet_ros package 
void BoxesCallback(const darknet_ros_msgs::BoundingBoxes::ConstPtr& msg) 
{  

 boundingboxsize = boost::size(msg->bounding_boxes); 
 printf("Size of the array: %i \n", boundingboxsize); 
 
 for (int i = 0; i < boundingboxsize;i++) 
 { 
  if (msg->bounding_boxes[i].Class == "person") 
  { 
   xmax = msg->bounding_boxes[0].xmax; 
   xmin = msg->bounding_boxes[0].xmin; 

   ymax = msg->bounding_boxes[0].ymax; 
   ymin = msg->bounding_boxes[0].ymin; 
     
    printf("xmax: %i \n", xmax);  
    printf("xmin: %i \n", xmin);  

    printf("ymax: %i \n", ymax);  
    printf("ymin: %i \n", ymin);  
     
    xavg = (xmax + xmin) / 2; 
    yavg = (ymax + ymin) / 2; 

     
   printf("xavg: %i \n", xavg);  
    printf("yavg: %i \n", yavg);  
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    xdistancetomid = (camerawidth/2) - xavg; 
    ydistancetomid = (camerawidth/2) - yavg; 

   
    //determining which direction and angle to rotate the aircraft based on the the position 
of the bounding box on the video feed 
    if (xdistancetomid < 0) 
     { 

      printf("rotate right by %i pixels\n", -xdistancetomid); 
     AngleToRotate = ((hfov / 2) * (xdistancetomid) / 
camerawidthhalved); 
      printf("rotate right by %.2f degrees \n", -AngleToRotate); 
          

     } 
    else 
     { 
      printf("rotate left by %i pixels\n", xdistancetomid); 
     AngleToRotate = ((hfov / 2) * (xdistancetomid) / 

camerawidthhalved); 
      printf("rotate left by %.2f degrees \n", AngleToRotate);  
     }  
 
  /*  if (ydistancetomid < 0) 

     { 
      printf("move camera up by %i pixels\n", -ydistancetomid); 
     } 
    else 
     { 

      printf("move camera down by %i pixels\n", ydistancetomid); 
     }     
   */ 
  

//fixes the ground distance, as mentioned in section    
 
    if ((xavg - camerawidthhalved) < 0) 
    { 
     xavgpastmidpoint = camerawidthhalved + (camerawidthhalved - xavg); 

    } 
    else 
    { 
     xavgpastmidpoint = xavg; 
    } 

 
   if (ymax < 500) 
   { 
    yextra = 0..1793*xavgpastmidpoint - 187.81; 
   } 

   else if ((ymax >= 500) && (ymax < 750)) 
   { 
    yextra = 0.0936*xavgpastmidpoint - 104.75; 
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   } 
   else if (ymax >= 750) 
   { 

    yextra = 0.3233*xavgpastmidpoint - 322.05; 
   } 
 
    //Calculates the ground distance 
   ymaxDifference = cameraheight - (ymax + yextra); 

   HypotenuseForLinearization = ymaxDifference / (sin(AngleForMainTriangle * M_PI 
/ 180)); 
   DistanceToMove = (HypotenuseForLinearization / Hypotenuse) * MaxDistance; 
   DistanceBetweenAircraftAndPerson =  GroundDistanceToFirstPoint + DistanceToMove; 
 

   printf("Distance between the aircraft and the person: %.2f metres\n", 
DistanceBetweenAircraftAndPerson); 
   printf("Distance aircraft needs to move: %.2f \n", DistanceToMove); 
   printf("\n"); 
          

    PubOpen = true; 
   } 
   else 
   { 
    printf("An object was detected, but not a human. \n"); 

    printf("\n"); 
   } 
  } 
}  
 

//Main method 
int main(int argc, char **argv)   
{ 
 //name assigned for the node 

  ros::init(argc, argv, "boxinfo"); 
 
  ros::NodeHandle nh; 
 
  //Topics that are subscribed to 

  ros::Subscriber sub_Box = nh.subscribe("/darknet_ros/bounding_boxes", 10, BoxesCallback); 
//Topics that are published 
    ros::Publisher angle_pub = nh.advertise<std_msgs::String>("/AngleFromBoundingBox", 10); 
 ros::Publisher distance_pub = nh.advertise<std_msgs::String>("/DistanceFromBoundingBox", 
10); 

 ros::Rate r(10); 
 
 //Calculations part of determining the ground distance 
 AngleToFirstPoint = 45 - (vfov/2); 
 AngleToFinalPoint = 45 + (vfov/2); 

 GroundDistanceToFirstPoint = AltitudeSet * tan(AngleToFirstPoint * M_PI / 180); 
 GroundDistanceToLastPoint = AltitudeSet * tan(AngleToFinalPoint * M_PI / 180); 
 MaxDistance = GroundDistanceToLastPoint - GroundDistanceToFirstPoint; 
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 OppAngle = 180 - 90 - AngleToFirstPoint; 
 AngleOnStraightLine = 180 - OppAngle; 

 AngleForMainTriangle = 180 - AngleOnStraightLine - vfov; 
 Hypotenuse = cameraheight / (sin(AngleForMainTriangle * M_PI / 180)); 
 
 while (ros::ok()) 
 {   

  if (PubOpen == true) 
  {    
   std::stringstream ss1; 
   ss1 << AngleToRotate; 
   msgAngle.data = ss1.str(); 

  //calculated angle to rotate the aircraft is published 
            angle_pub.publish(msgAngle); 
         
   std::stringstream ss2; 
   ss2 << DistanceToMove;    

   msgDistance.data = ss2.str(); 
  //calculated ground distance to move the aircraft is published 
            distance_pub.publish(msgDistance); 
    
   printf("Angle and distance determined. \n");   

   printf("\n"); 
    
   PubOpen = false; 
  } 
   ros::spinOnce(); 

   r.sleep(); 
 } 
  
  return 0; 
   
} 
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Appendix 5.11: boundingboxmove.cpp node 
//relevant libraries used in this node 
#include "ros/ros.h" 
#include <string> 
#include <math.h> 
#include <std_msgs/String.h> 

#include <iostream> 
#include <sstream>  
#include <boost/lexical_cast.hpp> 
#include <geometry_msgs/PoseStamped.h> 
 

// this allows identifiers to be used 
using namespace std; 
 
//Declared variables 
float fAngleAircraft; //angle that the drone is facing after it has rotated to make the person 
in the centre of the screen (angle must be obtained from the aircraft) 
            
//negative angle means rotation is clockwise 
 
float fAngleO; 
float fDistance; 
float fCurrentX = 5; 
float fCurrentY = 2; 
float fAdjacent; 
float fOpposite; 
float fNewX; 
float fNewY; 
float fAngleReceived; 
float fDistanceReceived; 
 
bool bAngle = false; 
bool bDistance = false; 
 
string sAngle; 

string sDistance;  
string sTemp; 
string DistanceTemp; 
string AngleTemp; 
 

std_msgs::String DistanceMsg; 
std_msgs::String AngleMsg; 
std_msgs::String msgCoordinates; 
 
std::string sCoordinates; 

 
geometry_msgs::PoseStamped local_pose; 
 
//Callback to receive the ground distance from the boxinfo.cpp node 
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void DistanceCallback(const std_msgs::String::ConstPtr& msg) 
{ 
 DistanceMsg.data = msg->data.c_str(); 

   
  DistanceTemp = DistanceMsg.data; 
  istringstream StrStreamDistance(DistanceTemp); 
  
  StrStreamDistance >> sDistance; 

 
  stringstream DistanceSS(sDistance); 
  DistanceSS >> fDistanceReceived; 
   
//  printf("Distance received: %.2f \n",fDistanceReceived); 

   
  bDistance = true; 
} 
 
//Callback to receive the converted aircraft's angle from the QuatToEuler.py node 

void AngleCallback(const std_msgs::String::ConstPtr& msg) 
{ 
 AngleMsg.data = msg->data.c_str(); 
   
  AngleTemp = AngleMsg.data; 

  istringstream StrStreamAngle(AngleTemp); 
  
  StrStreamAngle >> sAngle; 
   
  stringstream AngleSS(sAngle); 

  AngleSS >> fAngleReceived; 
   
 // printf("Angle received: %.2f \n",fAngleReceived); 
   

  bAngle = true; 
} 
 
//Callback to receive the local pose of the aircraft 
void LocalposeCallback(const geometry_msgs::PoseStamped::ConstPtr &msg) 
{ 
    local_pose=*msg;    
} 
 
//Method to calculate the coordinates the aircraft needs to fly towards 

void CoordinatesForAircraft() 
{ 
 fAngleAircraft = fAngleReceived;   //negative means aircraft rotates clockwise 
 fDistance = fDistanceReceived; 
 fCurrentY = local_pose.pose.position.y; 

 fCurrentX = local_pose.pose.position.x; 
 
 printf("Angle received: %.2f \n",fAngleAircraft); 
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 printf("Distance received: %.2f \n",fDistance); 
 printf("Aircraft's current y co-ordinate: %.2f \n", fCurrentY); 
 printf("Aircraft's current x co-ordinate: %.2f \n", fCurrentX); 

 printf("\n"); 
  
 if (fDistance >= 0) 
 { 
  if ((fAngleAircraft >= -90) && (fAngleAircraft < 0)) //Example 1 
  { 
   fAngleO = 90 -(-fAngleAircraft); 
   printf("fAngleO: %.2f \n", fAngleO); 
   fAdjacent = cos(fAngleO * M_PI / 180) * fDistance; 
   fOpposite = sin(fAngleO * M_PI / 180) * fDistance; 

   
   printf("fAdjacent: %.2f \n", fAdjacent); 
   printf("fOpposite: %.2f \n", fOpposite); 
      
   fNewY = fCurrentY - fAdjacent; 

   fNewX = fCurrentX + fOpposite;             
  } 
                                                                             
  else if ((fAngleAircraft >= -180) && (fAngleAircraft < -90)) //Example 2 
  { 

   fAngleO = (-fAngleAircraft) - 90; 
   printf("fAngleO: %.2f \n", fAngleO); 
   fAdjacent = cos(fAngleO * M_PI / 180) * fDistance; 
   fOpposite = sin(fAngleO * M_PI / 180) * fDistance; 
   

   printf("fAdjacent: %.2f \n", fAdjacent); 
   printf("fOpposite: %.2f \n", fOpposite); 
      
   fNewY = fCurrentY - fAdjacent; 

   fNewX = fCurrentX - fOpposite;           
  } 
  
  else if ((fAngleAircraft <= 180) && (fAngleAircraft > 90)) //Example 3 
  { 

   fAngleO = fAngleAircraft - 90; 
   printf("fAngleO: %.2f \n", fAngleO); 
   fAdjacent = cos(fAngleO * M_PI / 180) * fDistance; 
   fOpposite = sin(fAngleO * M_PI / 180) * fDistance; 
   

   printf("fAdjacent: %.2f \n", fAdjacent); 
   printf("fOpposite: %.2f \n", fOpposite); 
      
   fNewY = fCurrentY + fAdjacent; 
   fNewX = fCurrentX - fOpposite;     

  } 
  
  else if ((fAngleAircraft <= 90) && (fAngleAircraft >= 0)) //Example 4 
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  { 
   fAngleO = 90 - fAngleAircraft; 
   printf("fAngleO: %.2f \n", fAngleO); 

   fAdjacent = cos(fAngleO * M_PI / 180) * fDistance; 
   fOpposite = sin(fAngleO * M_PI / 180) * fDistance; 
   
   printf("fAdjacent: %.2f \n", fAdjacent); 
   printf("fOpposite: %.2f \n", fOpposite); 

      
   fNewY = fCurrentY + fAdjacent; 
   fNewX = fCurrentX + fOpposite;     
  } 
  

  printf("New Y co-ordinate: %.2f \n", fNewY);  
  printf("New X co-ordinate: %.2f \n", fNewX); 
  printf("Therefore, (y;x) = ( %.2f ; %.2f ) \n",fNewY,fNewX); 
  printf("\n");  
     

 } 
  
 else if (fDistance < 0) 
 { 
//  printf ("fDistance is negative \n"); 

  if ((fAngleAircraft >= -90) && (fAngleAircraft < 0)) //Example 5 
  { 
   fAngleO = 90 -(-fAngleAircraft); 
   printf("fAngleO: %.2f \n", fAngleO); 
   fAdjacent = cos(fAngleO * M_PI / 180) * (-fDistance); 

   fOpposite = sin(fAngleO * M_PI / 180) * (-fDistance); 
   
   printf("fAdjacent: %.2f \n", fAdjacent); 
   printf("fOpposite: %.2f \n", fOpposite); 

      
   fNewY = fCurrentY + fAdjacent; 
   fNewX = fCurrentX - fOpposite;             
  } 
  

  else if ((fAngleAircraft >= -180) && (fAngleAircraft < -90)) //Example 6 
  { 
   fAngleO = (-fAngleAircraft) - 90; 
   printf("fAngleO: %.2f \n", fAngleO); 
   fAdjacent = cos(fAngleO * M_PI / 180) * (-fDistance); 

   fOpposite = sin(fAngleO * M_PI / 180) * (-fDistance); 
   
   printf("fAdjacent: %.2f \n", fAdjacent); 
   printf("fOpposite: %.2f \n", fOpposite); 
      

   fNewY = fCurrentY + fAdjacent; 
   fNewX = fCurrentX + fOpposite;           
  } 
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  else if ((fAngleAircraft <= 180) && (fAngleAircraft > 90)) //Example 7 
  { 
   fAngleO = fAngleAircraft - 90; 

   printf("fAngleO: %.2f \n", fAngleO); 
   fAdjacent = cos(fAngleO * M_PI / 180) * (-fDistance); 
   fOpposite = sin(fAngleO * M_PI / 180) * (-fDistance); 
   
   printf("fAdjacent: %.2f \n", fAdjacent); 

   printf("fOpposite: %.2f \n", fOpposite); 
      
   fNewY = fCurrentY - fAdjacent; 
   fNewX = fCurrentX + fOpposite;     
  } 

 
  else if ((fAngleAircraft <= 90) && (fAngleAircraft >= 0)) //Example 8 
  { 
   fAngleO = 90 - fAngleAircraft; 
   printf("fAngleO: %.2f \n", fAngleO); 

   fAdjacent = cos(fAngleO * M_PI / 180) * (-fDistance); 
   fOpposite = sin(fAngleO * M_PI / 180) * (-fDistance); 
   
   printf("fAdjacent: %.2f \n", fAdjacent); 
   printf("fOpposite: %.2f \n", fOpposite); 

      
   fNewY = fCurrentY - fAdjacent; 
   fNewX = fCurrentX - fOpposite;     
  }    
   

  printf("New Y co-ordinate: %.2f \n", fNewY);  
  printf("New X co-ordinate: %.2f \n", fNewX); 
  printf("Therefore, (y;x) = ( %.2f ; %.2f ) \n",fNewY,fNewX); 
  printf("\n");        

 } 
 
 std::ostringstream ssCombined; 
  
 ssCombined << fNewY; 

 ssCombined << " "; 
 ssCombined << fNewX; 
  
 sTemp = boost::lexical_cast<std::string>(ssCombined.str()); 
 printf("Combined ostringstream: %s \n", sTemp.c_str()); 

  
 msgCoordinates.data = sTemp; 
  
 bAngle = false; 
 bDistance = false; 
} 
 
//Main method 
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int main(int argc, char **argv) 
{ 
 //name assigned for the node 

  ros::init(argc, argv, "boundingboxmove"); 
 
  ros::NodeHandle nh; 
   
    //Topics that are subscribed to 

 ros::Subscriber sub_distance = nh.subscribe("/DistanceFromBoundingBox", 10, 
DistanceCallback); 
 ros::Subscriber sub_angle = nh.subscribe("/AngleForLinearMovement", 10, AngleCallback); 
 ros::Subscriber localpose_sub = nh.subscribe<geometry_msgs::PoseStamped> 
            ("/mavros/local_position/pose",100,LocalposeCallback); 

  
    //Topics that are published 
    ros::Publisher coordinates_pub = nh.advertise<std_msgs::String>("/MultipleCoordinates", 
10); 
   

  ros::Rate r(10); 
   
  printf("boundingboxmove.cpp has started...\n"); 
   
  while (ros::ok()) 
  { 
 
   if ((bAngle == true) && (bDistance == true)) 
   {  
    CoordinatesForAircraft();  

     
    //Publishes the y and x coordinates for the aircraft to fly towards 
            coordinates_pub.publish(msgCoordinates); 
   }         

   ros::spinOnce();    
   r.sleep(); 
  } 
}   
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Appendix 5.12: EulerToQuat.py node 
#!/usr/bin/env python 
 
#relevant libraries used in this node 
import rospy 
import math 
from pyquaternion import Quaternion 
from std_msgs.msg import String 
 
roll = pitch = 0.0 
yaw = 20 

 
bReceived = 0 
x = y = z = w = 0 
 
#Callback to receive the angle from the bounding box obtained by using the darknet_ros package 

def get_angle(msg): 
  global bReceived 
  global my_quat 
  AngleReceived = msg.data 
  print AngleReceived 

# negative angle means aircraft must turn right 
# positive angle means aircraft must turn left 
# my_quat = Quaternion(axis=[0, 0, 1], angle=-0.349)  #negative angle will rotate aircraft 
right in gazebo 
  AngleConverted = (float(AngleReceived))*math.pi/180 

  print AngleConverted 
#the angle is converted to a quaternion 
  my_quat = Quaternion(axis=[0, 0, 1], angle=AngleConverted) 
  bReceived = 1 

 
#Name assigned for the node 
rospy.init_node('EulerToQuat') 
 
#Topic that is subscribed to 

sub = rospy.Subscriber ('/AngleFromBoundingBox', String, get_angle) 
 
#Topic that is published 
pub = rospy.Publisher ('/QuatFromUser', String, queue_size=10) 
 

print "EulerToQuat.py has started" 
 
r = rospy.Rate(10) 
while not rospy.is_shutdown(): 
 if (bReceived == 1): 
  global my_quat 
#  print my_quat 
  (w,x,y,z) = my_quat 
  tempstr = str(w) + " " + str(x) + " " + str(y) + " " + str(z) 
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  print tempstr 
  bReceived = 0 
#the quaternion is published to the topic QuatFromUser 

  pub.publish(tempstr) 
 r.sleep() 
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Appendix 5.13: QuatToEuler.py node 
#!/usr/bin/env python 
 
#relevant libraries used in this node 
import rospy 
import math 
from geometry_msgs.msg import PoseStamped, Quaternion 
from tf.transformations import euler_from_quaternion, quaternion_from_euler 
from std_msgs.msg import String 
 
#Declared variables 

 
roll = pitch = 0.0 
yaw = 20 
 
bReceived = 0 

x = y = z = w = 0 
 
#callback to receive the quaternion from the aircraft 
def get_quat(msg): 
  global bReceived 
  global CurrentQuat 
  CurrentQuat = msg.pose.orientation 
 # print CurrentQuat 
 # print " " 
  bReceived = 1; 

   
#Name assigned for the node 
rospy.init_node('QuatToEuler') 
 

#Topic that is subscribed to 
sub = rospy.Subscriber ('/mavros/local_position/pose', PoseStamped, get_quat) 
 
#Topic that is published 
pub = rospy.Publisher ('/AngleForLinearMovement', String, queue_size=10) 

 
r = rospy.Rate(10) 
 
print "QuatToEuler.py has started..." 
 

while not rospy.is_shutdown(): 
 if (bReceived == 1): 
  global CurrentQuat   
  print CurrentQuat 
  print " " 

  RearrangeQuat = [CurrentQuat.x, CurrentQuat.y, CurrentQuat.z, CurrentQuat.w] 
#the yaw is obtained by converting the quaternion to Euler angles 
  (roll, pitch, yaw) = euler_from_quaternion(RearrangeQuat) 
  YawDegrees = (float(yaw))*180/math.pi 
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  print YawDegrees 
  tempstr = str(YawDegrees) 
  print " " 

  bReceived = 0 
 
#the yaw angle is published 
  pub.publish(tempstr) 
 r.sleep() 
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Appendix 5.14: Quaternion Simulator 
All three screenshots were captured from the Quaternion Simulator (Quaternion 

Simulator, 2019). 

 

1) Convert the quaternion to Euler angles. 

 
 

 

2) Subtract the z axis Euler angle by 180 degrees. 
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3) Invert the y axis Euler angle. 
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Appendix 5.15: Developed Landing System Flow Chart 
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Appendix 5.16: Human Detection System Flow Chart 
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Appendix 6.1: Terminals Used for the Developed Landing System 
 

 

 
 

  

talker_descent.cpp 

node 

listener_status.cpp node 

flyaircraft.cpp node talker_flightmode.cpp 

node 

talker_velocity.cpp 

node 

talker_autoland.cpp 

node 

talker_coordinates.cpp 

node 

determinepose.cpp 

node 
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mavros node roscore 

terminal 

Gazebo node 

talker_quat.cpp node 

PX4 SITL node 

aruco_ros 

node 
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Appendix 6.2: Additional Terminals Used for the Human Detection System 
 

 

  
 

 

  

EulerToQuat.py node video_stream_opencv node 

boundingboxmove.cpp 

node 

QuatToEuler.py node 

darknet_ros node boxinfo.cpp node 
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Appendix 6.3: Testing of the Developed Landing System in Gazebo 
1. The position of the aircraft prior to executing the land command. 

 

 
 

2. The aircraft repositioning itself above the ArUco marker and hovering in its 

position for a few seconds. 
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3. The aircraft rotating to align itself with the ArUco marker. 

 

 
 

4. The aircraft starting its descent while constantly keeping itself aligned with the 

ArUco marker. 
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5. The aircraft landing correctly on the marker and disarming itself. 
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Appendix 6.4: Nodes Tree for the Developed Landing System 
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Appendix 6.5: Nodes Tree for the Human Detection System 
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Appendix 7.1: Arduino PWM Script 
//***************************** 

////////PPM Transmitter//////// 

//***************************** 

//James Sewell 

//Benjy Nelson 

//MEng(Mechatronics) 

//Nelson Mandela University 

/*****************************/ 

 

 

//Inital Variables and Configuration 

#define CHANNEL_NUMBER 4  //set the number of channels 

#define CHANNEL_DEFAULT_VALUE 1000  //set the default servo value 

#define FRAME_LENGTH 22500  //set the PPM frame length in microseconds (1ms = 1000µs) 

#define PULSE_LENGTH 500  //set the pulse length 

#define onState 1  //set polarity of the pulses: 1 is positive, 0 is negative 

#define sigPin 8  //set PPM signal output pin on the arduino 

 

int AUTO_PB = 2; //Green Auto Flight Mode Push Button Pin (Interrupt used) 

int ACRO_PB = 3; //White Acro (Manual) Flight Mode Push Button Pin (Interrupt used) 

int RTL_PB = 4; //Red RTL Flight Mode Push Button Pin (Interrupt used) 

int ppm[CHANNEL_NUMBER]; //ppm array 

 

int ButtonStateAuto; 

int ButtonStateAcro; 

int ButtonStateRTL; 

 

int LastButtonStateAuto = LOW; 

int LastButtonStateAcro = LOW; 

int LastButtonStateRTL = LOW; 

 

unsigned long LastDebounceTimeAuto = 0; 

unsigned long LastDebounceTimeAcro = 0; 

unsigned long LastDebounceTimeRTL = 0; 

 

unsigned long DebounceDelay = 50; 

 

int OutputStateAuto = LOW; 

int OutputStateAcro = LOW; 

int OutputStateRTL = LOW; 

 

int ButtonAuto = 0; 

int ButtonAcro = 0; 

int ButtonRTL = 0; 

 

unsigned long CurrentTimer = 0; 

int Temp = 0; 

 

bool AlreadyArmed = false; 



 243 

 

void setup() 

{  

  pinMode(AUTO_PB, INPUT); 

  pinMode(ACRO_PB, INPUT); 

  pinMode(RTL_PB, INPUT); 

 

  //Define push button interrupts  

  attachInterrupt(5, AUTO_ISR, FALLING); 

  attachInterrupt(4, ACRO_ISR, FALLING); 

  attachInterrupt(3, RTL_ISR, FALLING);   

   

  //initiallize default ppm values 

  for(int i=0; i<CHANNEL_NUMBER; i++) 

  { 

      ppm[i]= CHANNEL_DEFAULT_VALUE; 

  } 

 

   ppm[2] = 1300; 

     

  pinMode(sigPin, OUTPUT); 

  digitalWrite(sigPin, !onState);  //set the PPM signal pin to the default state (off) 

   

  cli(); 

  TCCR1A = 0; // set entire TCCR1 register to 0 

  TCCR1B = 0; 

   

  OCR1A = 100;  // compare match register, change this 

  TCCR1B |= (1 << WGM12);  // turn on CTC mode 

  TCCR1B |= (1 << CS11);  // 8 prescaler: 0,5 microseconds at 16mhz 

  TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt 

  sei(); 

 

  Serial.begin(9600); 

} //End of SETUP() 

 

void loop() 

{ 

  //Added Code 

  ButtonAuto = digitalRead(AUTO_PB); 

  ButtonAcro = digitalRead(ACRO_PB); 

  ButtonRTL = digitalRead(RTL_PB); 

 

  if (ButtonAuto != LastButtonStateAuto) 

  { 

   LastDebounceTimeAuto = millis(); 

  } 

   

  if ((millis() - LastDebounceTimeAuto) > DebounceDelay)  

  { 
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    if (ButtonAuto != ButtonStateAuto)  

    { 

      ButtonStateAuto = ButtonAuto; 

      if (ButtonStateAuto == HIGH)  

      { 

//        OutputStateAcro = 0; 

//        OutputStateRTL = 0; 

//        OutputStateAuto = 1; 

 

        ppm[0] = 1000;    //Reset flightmode 

     

        if (AlreadyArmed == false) 

        {          

          ppm[1] = 1000;    //Set low PWM for throttle 

          ppm[2] = 2000;    //Set high PWM for yaw 

 

          noInterrupts(); 

           

         CurrentTimer = millis(); 

         Serial.print("Before loop: "); 

         Serial.println(CurrentTimer); 

          int TempTime = (millis()); 

          while((millis() - CurrentTimer) < 5000) 

          { 

             

            Serial.print("Inside loop: "); 

            Serial.print(CurrentTimer); 

            Serial.print(" Temp Time: "); 

            Serial.println(TempTime); 

          } 

 

          interrupts(); 

          ppm[1] = 1250; 

           

          AlreadyArmed = true;       

        }     

        ppm[0] = 1300;            

      } 

    } 

  } 

 

  if (ButtonAcro != LastButtonStateAcro) 

  { 

   LastDebounceTimeAcro = millis(); 

  } 

   

  if ((millis() - LastDebounceTimeAcro) > DebounceDelay)  

  { 

    if (ButtonAcro != ButtonStateAcro)  

    { 



 245 

      ButtonStateAcro = ButtonAcro; 

      if (ButtonStateAcro == HIGH)  

      { 

//        OutputStateAuto = 0; 

//        OutputStateRTL =  0; 

//        OutputStateAcro = 1; 

 

        ppm[0] = 1600; 

      } 

    } 

  } 

 

  if (ButtonRTL != LastButtonStateRTL) 

  { 

   LastDebounceTimeRTL = millis(); 

  } 

   

  if ((millis() - LastDebounceTimeRTL) > DebounceDelay)  

  { 

    if (ButtonRTL != ButtonStateRTL)  

    { 

      ButtonStateRTL = ButtonRTL; 

      if (ButtonStateRTL == HIGH)  

      { 

//        OutputStateAuto = 0; 

//        OutputStateAcro = 0; 

//        OutputStateRTL = 1; 

 

        ppm[0] = 1900;       

      } 

    } 

  } 

 

/* 

  Serial.print("Channel 1: "); 

  Serial.print(ppm[0]); 

  Serial.print(" Channel 2: "); 

  Serial.print(ppm[1]); 

  Serial.print(" Channel 3: "); 

  Serial.println(ppm[2]); 

*/ 

 

LastButtonStateAuto = ButtonAuto; 

LastButtonStateAcro = ButtonAcro; 

LastButtonStateRTL = ButtonRTL;   

  } //Irrelevant to programme but necessary for compile 

 

//Auto push button ISR 

void AUTO_ISR() 

{ 



 246 

  for(int i=0; i<CHANNEL_NUMBER; i++) 

    ppm[i]= 1800; 

} 

 

//Acro push button ISR 

void ACRO_ISR() 

{   

  for(int i=0; i<CHANNEL_NUMBER; i++) 

    ppm[i]= 2000; 

 

} 

 

//RTL push button ISR 

void RTL_ISR() 

{ 

  for(int i=0; i<CHANNEL_NUMBER; i++) 

    ppm[i]= 1000; 

} 

 

 

//Actual Output Sequence 

ISR(TIMER1_COMPA_vect) 

{  //leave this alone   

  static boolean state = true; 

   

  TCNT1 = 0; 

 

  //Section A - High pulse section 

  if (state)  

  {  //start pulse 

    digitalWrite(sigPin, onState); 

    OCR1A = PULSE_LENGTH * 2; 

    state = false; 

  }  

  else 

  {  //End pulse and calculate when to start the next pulse 

    static byte cur_chan_numb; 

    static unsigned int calc_rest; 

   

    digitalWrite(sigPin, !onState); 

    state = true; 

    //Section B - Low pulse for extended period of time 

    if(cur_chan_numb >= CHANNEL_NUMBER) //Terminates packet transfer 

    { 

      cur_chan_numb = 0; 

      calc_rest = calc_rest + PULSE_LENGTH;//  

      OCR1A = (FRAME_LENGTH - calc_rest) * 2; 

      calc_rest = 0; 

    } 

    //Section C - Low pulse for small period 
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    else 

    { 

      OCR1A = (ppm[cur_chan_numb] - PULSE_LENGTH) * 2; 

      calc_rest = calc_rest + ppm[cur_chan_numb]; 

      cur_chan_numb++; 

    }  

  } 

 

} 
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Appendix 7.2: InsertWaypoints.cpp node 
//relevant libraries used in this node 
#include <ros/ros.h> 
#include <mavros_msgs/WaypointPush.h> 
#include <mavros_msgs/CommandHome.h> 
#include <mavros_msgs/WaypointClear.h> 

#include <std_msgs/String.h> 
#include <cstdlib> 
#include <mavros_msgs/Waypoint.h> 
 
//Declared variables 

bool MissionClear = false; 
bool MissionInsert = false; 
bool SetHomePos = false; 
 
//Main method 

int main(int argc, char **argv) 
{ 
  //name assigned for the node 
 ros::init(argc, argv, "InsertWaypoints"); 
 ros::NodeHandle p; 

 ros::NodeHandle n; 
 ros::NodeHandle l; 
 
 //Service Clients that are communicated with 
 ros::ServiceClient wp_clear_client = 

p.serviceClient<mavros_msgs::WaypointClear>("mavros/mission/clear"); 
 ros::ServiceClient wp_srv_client = 
n.serviceClient<mavros_msgs::WaypointPush>("mavros/mission/push"); 
 ros::ServiceClient set_home_client = 

l.serviceClient<mavros_msgs::CommandHome>("mavros/cmd/set_home"); 
  
 mavros_msgs::WaypointPush wp_push_srv; 
 mavros_msgs::WaypointClear wp_clear_srv; 
 mavros_msgs::CommandHome set_home_srv; 

  
 mavros_msgs::Waypoint wp_msg; 
  
 ros::Rate rate(20.0); 
  

 ros::Time PrevTime = ros::Time::now(); 
  
 while(MissionClear != true) 
 { 
  if ((MissionClear != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0))) 
  { 
   if (wp_clear_client.call(wp_clear_srv)) 
   { 
    ROS_INFO("Waypoint list was cleared"); 
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    MissionClear = true; 
   } 
   PrevTime = ros::Time::now(); 

  } 
   
  ros::spinOnce(); 
  rate.sleep(); 
 } 

  
// wp_clear_srv.request = {}; 
  
 set_home_srv.request.current_gps = false; 
 set_home_srv.request.latitude = -34.005196; 

 set_home_srv.request.longitude = 25.682365; 
 set_home_srv.request.altitude = 30.0; 
 PrevTime = ros::Time::now(); 
 
 while(SetHomePos != true) 
 { 
  if ((SetHomePos != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0))) 
  { 
   if (set_home_client.call(set_home_srv)) 
   { 

    ROS_INFO("Home was set to a new position"); 
    SetHomePos = true; 
   } 
   PrevTime = ros::Time::now(); 
  } 

   
  ros::spinOnce(); 
  rate.sleep(); 
 } 

  
 // MissionClear = false; 
 
//A blank waypoint is uploaded 

/////////////////////////////// 0 /////////////////////////////////////////////////////   

 wp_msg.frame = 3; 
// wp_msg.frame = 0; 
 wp_msg.command = 16; 
 wp_msg.is_current = false; 
 wp_msg.autocontinue = false; 
 wp_msg.param1 = 0; 
 wp_msg.param2 = 0; 
 wp_msg.param3 = 0; 
 wp_msg.param4 = 0; 

   wp_msg.x_lat = 1; 
 wp_msg.y_long = 2; 
 wp_msg.z_alt = 3; 
  



 250 

 wp_push_srv.request.start_index = 0; 
 PrevTime = ros::Time::now(); 
 MissionInsert = false; 
 
 while(MissionInsert != true) 
 { 
  if ((MissionInsert != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0))) 
  { 

   wp_push_srv.request.waypoints.push_back(wp_msg); 
   if (wp_srv_client.call(wp_push_srv)) 
   { 
  //  ROS_INFO("Waypoint list was cleared"); 
    ROS_INFO("Mission waypoints sent: %d", wp_push_srv.response.success); 

//obtained from WaypointPush Service 
    ROS_INFO("Waypoints sent: %d", wp_push_srv.response.wp_transfered); 
    MissionInsert = true; 
   } 
   PrevTime = ros::Time::now(); 

  } 
   
  ros::spinOnce(); 
  rate.sleep(); 
 } 

 
    //The first waypoint is uploaded 

////////////////////////////// 1 ///////////////////////////////////////////////////// 
  

 wp_msg.frame = 3; 
 wp_msg.command = 22; 
 wp_msg.is_current = false; 
 wp_msg.autocontinue = false; 
 wp_msg.param1 = 0; 
 wp_msg.param2 = 0; 
 wp_msg.param3 = 0; 
 wp_msg.param4 = 0; 
   wp_msg.x_lat = -34.005196; 

 wp_msg.y_long = 25.682365; 
 wp_msg.z_alt = 30.0; 
  
 wp_push_srv.request.start_index = 0; 
 PrevTime = ros::Time::now(); 

 MissionInsert = false; 
 
 while(MissionInsert != true) 
 { 
  if ((MissionInsert != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0))) 
  { 
   wp_push_srv.request.waypoints.push_back(wp_msg); 
   if (wp_srv_client.call(wp_push_srv)) 
   { 
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  //  ROS_INFO("Waypoint list was cleared"); 
    ROS_INFO("Mission waypoints sent: %d", wp_push_srv.response.success); 
//obtained from WaypointPush Service 

    ROS_INFO("Waypoints sent: %d", wp_push_srv.response.wp_transfered); 
    MissionInsert = true; 
   } 
   PrevTime = ros::Time::now(); 
  } 

   
  ros::spinOnce(); 
  rate.sleep(); 
 } 
//The second waypoint is uploaded 

/////////////////////////////// 2 /////////////////////////////////////////////////////   
 wp_msg.frame = 3; 
// wp_msg.frame = 0; 
 wp_msg.command = 16; 

 wp_msg.is_current = false; 
 wp_msg.autocontinue = false; 
 wp_msg.param1 = 0; 
 wp_msg.param2 = 0; 
 wp_msg.param3 = 0; 

 wp_msg.param4 = 0; 
   wp_msg.x_lat = -34.005310; 
 wp_msg.y_long = 25.682194; 
 wp_msg.z_alt = 30.0; 
  

 wp_push_srv.request.start_index = 0; 
 PrevTime = ros::Time::now(); 
 MissionInsert = false; 
 

 while(MissionInsert != true) 
 { 
  if ((MissionInsert != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0))) 
  { 
   wp_push_srv.request.waypoints.push_back(wp_msg); 

   if (wp_srv_client.call(wp_push_srv)) 
   { 
  //  ROS_INFO("Waypoint list was cleared"); 
    ROS_INFO("Mission waypoints sent: %d", wp_push_srv.response.success); 
//obtained from WaypointPush Service 

    ROS_INFO("Waypoints sent: %d", wp_push_srv.response.wp_transfered); 
    MissionInsert = true; 
   } 
   PrevTime = ros::Time::now(); 
  } 

   
  ros::spinOnce(); 
  rate.sleep(); 
 }  
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//The third waypoint is uploaded 

/////////////////////////////// 3 /////////////////////////////////////////////////////   

 wp_msg.frame = 3; 
// wp_msg.frame = 0; 
 wp_msg.command = 16; 
 wp_msg.is_current = false; 
 wp_msg.autocontinue = false; 
 wp_msg.param1 = 0; 
 wp_msg.param2 = 0; 
 wp_msg.param3 = 0; 
 wp_msg.param4 = 0; 

   wp_msg.x_lat = -34.005329; 
 wp_msg.y_long = 25.683224; 
 wp_msg.z_alt = 30.0; 
  
 wp_push_srv.request.start_index = 0; 

 PrevTime = ros::Time::now(); 
 MissionInsert = false; 
 
 while(MissionInsert != true) 
 { 

  if ((MissionInsert != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0))) 
  { 
   wp_push_srv.request.waypoints.push_back(wp_msg); 
   if (wp_srv_client.call(wp_push_srv)) 
   { 

  //  ROS_INFO("Waypoint list was cleared"); 
    ROS_INFO("Mission waypoints sent: %d", wp_push_srv.response.success); 
//obtained from WaypointPush Service 
    ROS_INFO("Waypoints sent: %d", wp_push_srv.response.wp_transfered); 

    MissionInsert = true; 
   } 
   PrevTime = ros::Time::now(); 
  } 
   

  ros::spinOnce(); 
  rate.sleep(); 
 } 
  
 ros::spinOnce();  

   
 return 0; 
  
} 
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Appendix 7.3: Testing of the Developed Landing System on the Actual 

Aircraft 
 

1. The aircraft manually positioned using the talker_coordinates.cpp node, where 

“land” mode will be activated using the talker_autoland.cpp node. 

 

 
 

2. The aircraft repositioned above the ArUco marker. 
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3. The aircraft rotated to align itself correctly with the ArUco marker.  

(Take note of the direction that the tail of the aircraft is facing). 

 

  
 

4. The aircraft descending towards the ground. 
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5. The aircraft landed successfully on the ArUco marker. 
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Appendix 7.4: Tables for Test 1, Test 2 and Test 3 for the Human 

Detection System 
 

Test 1 

Position Xmin Ymin Xmax Ymax Xaverage 

home null null null 581 960 

1 1179 444 1237 586 1208 

A 920 437 971 577 945.5 

2 1414 498 1482 631 1448 

B 917 454 959 577 938 

3 1701 449 1790 587 1745.5 

C 953 396 995 522 974 

4 1793 481 1885 611 1839 

D 939 374 973 498 956 

 

 

Test 2 

Position Xmin Ymin Xmax Ymax Xaverage 

home null null null 931 960 

1 1292 772 1359 920 1325.5 

A 915 693 969 837 942 

2 1532 725 1626 860 1579 

B 909 628 958 756 933.5 

3 1809 699 1913 841 1861 

C 957 510 1010 637 983.5 
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Test 3 

Position Xmin Ymin Xmax Ymax Xaverage 

home null null null 385 960 

1 1175 269 1226 385 1200.5 

A 952 255 1001 375 976.5 

2 1326 240 1379 358 1352.5 

B 988 217 1032 337 1010 

3 1525 239 1586 353 1555.5 

C 935 182 971 295 953 

4 1714 207 1782 330 1748 

D 945 141 981 250 963 

 

 


