

A VISION BASED MULTIROTOR AIRCRAFT FOR USE IN
THE SECURITY INDUSTRY

Masters Research Dissertation

For the qualification towards

MEng (Mechatronics)

Department of Mechatronics

Faculty of Engineering, The Built Environment and Information Technology

Benjamin David Nelson

Student number: 214006891

April 2020

Supervisor: Prof. Theo van Niekerk

Co-supervisor: Prof. Russell Phillips

Co-supervisor: Prof. Riaan Stopforth

 I

Declaration

Benjamin David Nelson

30 Bibury Avenue

Linkside

Port Elizabeth

South Africa

I hereby solemnly declare that the dissertation submitted is a summary of my own

research and that all sources used or referred to have been adequately referenced.

14 April 2020

B.D. Nelson

 II

Acknowledgements
The following people and entities, who helped make this research possible, are hereby

acknowledged:

• National Research Foundation, Eskom TESP programme, Department of

Science and Technology (DST) ROSSA programme, MerSETA and Mr Karl du

Preez, who provided the necessary funding for the research.

• Prof. Theo van Niekerk, for his encouragement to pursue a Master of

Engineering, as well as supervise the research.

• Prof. Russell Phillips, who co-supervised the research and provided invaluable

expertise in developing the system.

• Prof. Riaan Stopforth, who also co-supervised the research and provided

insight into the use of new technology and software to integrate the system.

• Mr Paul Mooney, an expert in drones and UAVs, for overseeing the entire

process of developing the system and providing constant guidance throughout

the research.

• My parents, Mr Charles Nelson and Mrs Dianne Nelson, for their constant

support and encouragement throughout my time at Nelson Mandela University.

 III

Abstract
This research consisted of developing a vision based multirotor aircraft that could be

used in the security industry. A second-hand aircraft was purchased and modified.

The aircraft made use of a Pixhawk flight controller and a Odroid XU4 companion

computer, which resulted in the computer injecting commands into the flight controller.

Robot Operating System was installed and used on the companion computer to

integrate the vision system and the aircraft. The vision system was designed to help

develop a landing system where the aircraft would land on an ArUco marker. The

vision system also allowed the aircraft to detect and follow humans. A Software in the

Loop (SITL) was run alongside Gazebo, allowing the developed landing system and

the human detecting system to be simulated and tested. The developed landing

system was implemented on the aircraft, where the developed landing system was

tested and compared to the aircraft’s current GPS based landing system. The

developed landing system obtained a better overall accuracy , while also taking longer

to land the aircraft compared to the GPS based landing system. There were also

numerous manual and autonomous test flights implemented on the aircraft.

 IV

Table of Contents
Declaration .. I

Acknowledgements .. II

Abstract ... III

List of Figures ... XII

List of Tables .. XVII

Chapter 1: Introduction .. 1

1.1 Significance of Research ... 2

1.2 Aim .. 2

1.3 Objectives .. 3

1.4 Delimitation .. 3

1.5 Hypothesis ... 4

1.6 Dissertation Outline ... 4

1.7 Research Contributions ... 5

1.8 Publications ... 6

1.9 Potential Applications .. 6

1.10 Conclusion ... 7

Chapter 2: Background Research and Literature Review 8

2.1 Multirotor Aircraft Components .. 8

2.2 Arduino .. 8

2.3 Pixhawk Flight Controller ... 9

2.4 Autopilot Software ... 11

2.4.1 ArduPilot ... 11

2.4.2 PX4 ... 11

2.5 Ground Control Station .. 11

2.6 MAVLink .. 12

 V

2.7 Robot Operating System ... 15

2.8 Euler Angles & Quaternions .. 16

2.9 Attitude of an Aircraft ... 17

2.10 Vision ... 18

2.10.1 Object detection, recognition and tracking .. 18

2.10.2 Darknet and YOLO ... 18

2.11 Fiducial Markers .. 20

2.12 Current Implemented Solutions ... 21

2.12.1 The Sunflower System .. 21

2.12.2 Nightingale Security .. 22

2.13 Conclusion ... 23

Chapter 3: System Architecture .. 25

3.1 Multirotor Aircraft Dynamics .. 25

3.1.1 Drag .. 25

3.1.2 Thrust .. 26

3.1.3 Lift ... 26

3.1.4 Flying .. 28

3.1.5 Hovering .. 29

3.1.6 Increasing and Decreasing Altitude .. 29

3.2 Hardware Architecture ... 29

3.2.1 DJI vs Self-developed Aircraft ... 29

3.2.2 Frame .. 31

3.2.3 Flight Controller ... 32

3.2.3.1 Generic Pixhawk 1 ... 32

3.2.3.2 Generic Pixhawk 2.4.6 ... 33

3.2.3.3 Pixhawk 2 Cube ... 33

 VI

3.2.3.4 Original Pixhawk 1 .. 34

3.2.4 Electronic Speed Controller .. 35

3.2.5 Brushless Motor & Propellers ... 35

3.2.6 Transmitter & Receiver ... 36

3.2.7 Battery ... 37

3.2.8 Flight Controller’s Extra Components ... 37

3.2.9 Gimbal ... 38

3.2.10 Companion Computer ... 39

3.2.11 Camera ... 40

3.2.12 Extra Components .. 41

3.2.13 Additional Modifications .. 43

3.2.14 Designed Components ... 44

3.2.14.1 Gimbal Attachment v1 .. 44

3.2.14.2 Gimbal Attachment v2 .. 45

3.2.14.3 Leg Extension ... 46

3.2.14.4 GPS Case .. 47

3.2.14.5 Webcam Case .. 47

3.2.15 Final Hardware Components .. 48

3.2.16 Final Aircraft Hardware Architecture ... 49

3.2.17 Pixhawk Configuration .. 50

3.3 Software Architecture .. 52

3.3.1 Autopilot Software ... 52

3.3.2 Ground Control Station Software .. 53

3.3.3 PX4 Parameters .. 55

3.3.4 Companion Computer Software .. 55

3.3.4.1 Operating System ... 55

 VII

3.3.4.2 ROS .. 55

3.3.4.3 Terminator .. 56

3.3.5 Tarot Gimbal Software .. 56

3.3.6 Virtual Machine Software .. 57

3.3.7 Virtual Network Computing Software .. 58

3.4 Conclusion ... 59

Chapter 4: Vision System ... 60

4.1 Using Robot Operating System ... 60

4.2 Camera Calibration .. 62

4.3 ArUco Marker Detection .. 64

4.4 Human Detection ... 66

4.4.1 Using Darknet: YOLO with ROS ... 66

4.4.2 Calculating the ground distance .. 69

4.4.2.1 Calculating the distance of the aircraft from the bottom of the video

frame .. 70

4.4.2.2 Calculating the distance of the person within the video frame 71

4.4.3 Centre a person in the frame .. 74

4.4.4 Developing coordinates for the aircraft using the calculated ground

distance and calculated angle .. 76

4.5 Conclusion ... 80

Chapter 5: Integrated System .. 81

5.1 The Landing System .. 81

5.1.1 Reasoning behind developing the landing system 81

5.1.2 Basic overview of the landing system ... 82

5.1.3 Design ... 83

5.1.3.1 determinepose.cpp ... 84

5.1.3.2 flyaircraft.cpp .. 90

 VIII

5.1.3.3 talker_autoland.cpp .. 91

5.1.3.4 talker_coordinates.cpp ... 91

5.1.3.5 talker_descent.cpp ... 92

5.1.3.6 talker_velocity.cpp .. 92

5.1.3.7 talker_flightmode.cpp ... 92

5.1.3.8 talker_quat.cpp ... 93

5.1.3.9 listener_status.cpp ... 93

5.1.4 Landing System Flow Chart .. 93

5.2 Human Detection System .. 93

5.2.1 Basic overview of the human detection system .. 94

5.2.2 Design ... 94

5.2.2.1 determinepose.cpp ... 95

5.2.2.2 boxinfo.cpp ... 96

5.2.2.3 boundingboxmove.cpp ... 97

5.2.2.4 EulerToQuat.py .. 97

5.2.2.5 QuatToEuler.py .. 98

5.2.3 Human detection system flow chart .. 99

5.3 User Requirements Specification .. 99

5.4 Conclusion ... 99

Chapter 6: Simulation ... 100

6.1 Setup of the Simulation ... 100

6.2 Landing System Simulation ... 102

6.3 Human Detection System Simulation .. 106

6.4 Conclusion ... 110

Chapter 7: Testing and Discussion ... 111

7.1 Test Flights .. 112

 IX

7.1.1 Manual Test Flight .. 112

7.1.2 Autonomous test flight performing a mission .. 113

7.1.3 An autonomous test flight where a mission is injected into the flight

controller by a separate system ... 114

7.1.4 An autonomous test flight using ROS ... 116

7.1.5 The aircraft autonomously landing using ROS 116

7.2 Human Detection System .. 124

7.2.1 Comparing Darknet’s YOLO version 3 to Darknet’s YOLO Tiny Version 3

 ... 125

7.2.2 Differentiating Between a Human and Another Object 127

7.2.3 Correcting the Calculated Distance .. 128

7.3 Improvements to the System ... 134

7.4 Conclusion ... 135

Chapter 8: Conclusion .. 136

8.1 Conclusion ... 136

8.2 Recommendations for Future Research .. 138

Bibliography .. 140

Appendices .. 149

Appendix 1.1: South Africa’s Crime Statistics ... 149

Appendix 2.1: Darknet’s YOLO Dataset .. 150

Appendix 3.1: Gimbal Attachment v1 CAD Drawing ... 151

Appendix 3.2: Gimbal Attachment v2 CAD Drawing ... 152

Appendix 3.3: Leg Extension CAD Drawing .. 153

Appendix 3.4: GPS Case CAD Drawings .. 154

Appendix 3.5: Webcam CAD Drawings ... 156

Appendix 3.6: Pixhawk Schematic and Pinout .. 159

Appendix 3.7: Pixhawk PX4 Parameters ... 163

 X

Appendix 4.1: Checkerboard Used for Camera Calibration 172

Appendix 5.1: determinepose.cpp node .. 173

Appendix 5.2: flyaircraft.cpp node ... 195

Appendix 5.3: talker_autoland.cpp node ... 202

Appendix 5.4: talker_coordinates.cpp node .. 204

Appendix 5.5: talker_descent.cpp node .. 206

Appendix 5.6: talker_velocity.cpp node ... 208

Appendix 5.7: talker_flightmode.cpp node .. 210

Appendix 5.8: talker_quat.cpp node .. 212

Appendix 5.9: listener_status.cpp node ... 214

Appendix 5.10: boxinfo.cpp node .. 215

Appendix 5.11: boundingboxmove.cpp node .. 220

Appendix 5.12: EulerToQuat.py node ... 226

Appendix 5.13: QuatToEuler.py node ... 228

Appendix 5.14: Quaternion Simulator .. 230

Appendix 5.15: Developed Landing System Flow Chart 232

Appendix 5.16: Human Detection System Flow Chart .. 233

Appendix 6.1: Terminals Used for the Developed Landing System 234

Appendix 6.2: Additional Terminals Used for the Human Detection System 236

Appendix 6.3: Testing of the Developed Landing System in Gazebo 237

Appendix 6.4: Nodes Tree for the Developed Landing System 240

Appendix 6.5: Nodes Tree for the Human Detection System 241

Appendix 7.1: Arduino PWM Script ... 242

Appendix 7.2: InsertWaypoints.cpp node .. 248

Appendix 7.3: Testing of the Developed Landing System on the Actual Aircraft 253

 XI

Appendix 7.4: Tables for Test 1, Test 2 and Test 3 for the Human Detection

System ... 256

 XII

List of Figures

Figure 2.1: An Arduino Uno board (Sparkfun, 2015) ... 9

Figure 2.2: Pixhawk 1 flight controller (PX4, 2019b) ... 10

Figure 2.3: MAVLink v1.0 packet representation (Koubaa, et al., 2015) 13

Figure 2.4: Rotations about the aircraft’s current frame (CHRobotics, 2019b) 18

Figure 2.5: YOLO being used to detect multiple objects within a frame 19

Figure 2.6: Examples of fiducial markers (Mostashiri & Dhupia, 2018) 20

Figure 2.7: The Sunflower System (Sunflower Labs Inc., 2019) 22

Figure 2.8: Nightingale Security system (ISC West, 2019) 23

Figure 3.1: Forces acting on a multirotor aircraft .. 26

Figure 3.2: Coanda Effect (Aviation History, 2015) ... 27

Figure 3.3: The forces applied to an aircraft (NASA, 2015) 27

Figure 3.4: Direction of rotation for the brushless motors (ArduPilot, 2019) 28

Figure 3.5: DJI F550 Flame Wheel (Build Your Own Drone, 2019) 32

Figure 3.6: Generic Pixhawk 2.4.6 (Banggood, 2019) .. 33

Figure 3.7: (a) Pixhawk 2 Cube (GetFPV, 2019) (b) Here+ GPS module (Heli Engadin,

2019) ... 34

Figure 3.8: Afro-ESC 30A ESC (RC Groups, 2013) .. 35

Figure 3.9: (a) Prop Drive brushless motor (HobbyKing, 2019) (b) APC 10 x 4.7 inches

propeller (Hobby-Miracle, 2019) .. 36

Figure 3.10: (a) FrSky Taranis Q X7 transmitter (GetFPV, 2019) (b) FrSky X8R

receiver (PorcupineRC, 2019) ... 36

Figure 3.11: Gens ace 3300mAh LiPo battery (Unmanned Tech, 2019) 37

Figure 3.12: (a) GPS Module and GPS Stand (Amazon, 2019) (b) 433Mhz telemetry

(Readytosky, 2019) ... 37

Figure 3.13: Tarot ZYX T-3D V gimbal (Tarot, 2017) .. 38

Figure 3.14: Tarot T4-3D Gimbal .. 39

 XIII

Figure 3.15: (a) Odroid XU4 (Hardkernel, 2019a) (b) Comparing the read and write

speeds (Hardkernel, 2019b) .. 40

Figure 3.16: Logitech C920 webcam (Logitech, 2019) ... 40

Figure 3.17: Unitek USB3.0 4-Port Hub (Unitek, 2019) .. 41

Figure 3.18: Hobbywing UBEC 8A (Hobbywing, 2015) ... 41

Figure 3.19: FTDI cable (left) and Wi-Fi module (right) ... 42

Figure 3.20: Modified D-Link DSL-2750U modem router .. 43

Figure 3.21: Polystyrene balls used to help with the direction of the aircraft. 43

Figure 3.22: Modification of keeping the tail polystyrene ball and supporting the rod

 .. 44

Figure 3.23: Part designed to attach the gimbal to the bottom plate of the aircraft’s

fuselage ... 45

Figure 3.24: New part designed to attach the gimbal to the aircraft’s bottom plate. . 46

Figure 3.25: Part designed to extend the legs on the aircraft. 46

Figure 3.26: (a) GPS case designed in CAD (b) GPS case opened 47

Figure 3.27: (a) the front of the webcam case (b) the back of the webcam case, which

is fastened to the Tarot T4-3D gimbal ... 48

Figure 3.28: Block diagram for the final hardware architecture of the aircraft 49

Figure 3.29: Peripherals connected to the Pixhawk .. 51

Figure 3.30: Receiver, gimbal and six ESCs connected to the Pixhawk 52

Figure 3.31 Terminator used to group terminals ... 56

Figure 3.32: Tarot Gimbal Software .. 57

Figure 3.33: VNC Viewer running on a MacBook Pro laptop 58

Figure 4.1: Camera calibration being performed using the checkerboard (Shipitko,

2017) ... 63

Figure 4.2: ArUco marker with an ID of 7 .. 65

Figure 4.3: Person detected on a field, where a bounding box was estimated 68

 XIV

Figure 4.4: Diagram demonstrating the frame seen by the camera 69

Figure 4.5: Angle between the aircraft and the bottom of the camera’s field of view 70

Figure 4.6: Angle between the aircraft and the top of the camera’s field of view 71

Figure 4.7: Angles within the cameras field of view .. 72

Figure 4.8: Triangle formed within the camera’s field of view 72

Figure 4.9: Same triangle as in figure 73

Figure 4.10: Smaller triangle formed underneath the bounding box of the person ... 73

Figure 4.11: Top view of the aircraft detecting a person ... 75

Figure 4.12: Frame of reference for ROS and PX4, where North East Down (NED) on

the left and East North Up (ENU) on the right (PX4, 2019h) 77

Figure 4.13: Example to demonstrate how the co-ordinate is calculated 77

Figure 4.14: Angles around the aircraft used to calculate the new co-ordinate 78

Figure 4.15: Quadrants around the aircraft ... 79

Figure 5.1: Code used to implement the quaternion multiplication (Euclidean Space,

2017) ... 89

Figure 6.1: Quadcopter model developed by PX4 for Gazebo 101

Figure 6.2: The Gazebo setup for the landing system. ... 102

Figure 6.3: The aircraft has taken off, where the window on the right shows the camera

feed. .. 103

Figure 6.4: Camera feed on when the aircraft had correctly aligned itself with the ArUco

marker ... 104

Figure 6.5: (a) Case 1 (b) Case 2 ... 104

Figure 6.6: (a) Case 3 (b) Case 4 ... 105

Figure 6.7: (a) Video of a person walking that was published by the

video_stream_opencv package (b) bounding box that was formed using the

darknet_ros package ... 106

Figure 6.8: The Gazebo setup for the human detection system 107

 XV

Figure 6.9: Case 1, where (a) is the orientation of the aircraft before the rotation and

(b) is the orientation of the aircraft after the rotation ... 108

Figure 6.10: Case 1, where (a) is the pose of the aircraft before the repositioning and

(b) is the pose of the aircraft after the repositioning .. 108

Figure 6.11: Case 2, where (a) is the orientation of the aircraft before the rotation and

(b) is the orientation of the aircraft after the rotation ... 109

Figure 6.12: Case 2, where (a) is the pose of the aircraft before the repositioning and

(b) is the pose of the aircraft after the repositioning .. 109

Figure 7.1: The multirotor aircraft flying at PERF .. 112

Figure 7.2: The mission setup for PERF that was done on QGroundControl 113

Figure 7.3: The mission performed that was seen on QGroundControl. 114

Figure 7.4 The Arduino injection setup ... 115

Figure 7.5: MAVROS terminal showing three new waypoints injected into the flight

controller ... 116

Figure 7.6: The aircraft and the ArUco marker before take off 117

Figure 7.7: The multirotor aircraft hovering above the ArUco marker when a person

held the marker ... 118

Figure 7.8: (a) aircraft hovering above the marker (b) aircraft disarming, resulting in

the aircraft dropping out of the air ... 119

Figure 7.9 The plot for the accuracy of landing the aircraft for both landing systems

 .. 123

Figure 7.10: The plot for the time taken to land the aircraft for both landing systems

 .. 123

Figure 7.11: The detected person using Darknet’s YOLO version 3 125

Figure 7.12: The detected person using Darknet’s YOLO tiny version 3 126

Figure 7.13: Darknet’s YOLO tiny version 3 incorrectly identified the person as a bird

 .. 127

Figure 7.14: A person and a dog was detected by the vision system 127

 XVI

Figure 7.15: The bounding box information of the person in their original position . 128

Figure 7.16: The bounding box information of the person after they had walked a few

steps to their left .. 129

Figure 7.17: The bounding box information of the person after the DJI had rotated to

centre the person in the video frame ... 129

Figure 7.18: Graph plotted and equation developed for Test 1’s data 132

Figure 7.19: Graph plotted and equation developed for Test 2’s data 132

Figure 7.20: Graph plotted and equation developed for Test 3’s data 133

 XVII

List of Tables

Table 2.1: Description of each byte in MAVLink v1.0 protocol (MAVLink, 2019) 14

Table 2.2: Terms frequently used when using ROS ... 16

Table 3.1: Advantages and disadvantages of using a DJI Phantom 4 Advanced 30

Table 3.2: Advantages and disadvantages of developing an aircraft 30

Table 3.3: List of components that can be found on the final design of the aircraft .. 48

Table 3.4: List of other components not directly used on the aircraft 49

Table 3.5: Peripherals connected to the Pixhawk ... 50

Table 3.6: Colour code of the wiring of the FTDI cable and their pinouts 51

Table 3.7: Description of the flight modes used on the aircraft while using ArduPilot

firmware (ArduPilot, 2019) .. 54

Table 3.8: Description of the flight modes used on the aircraft while using PX4 firmware

(PX4, 2019c) ... 54

Table 4.1: Using OpenCV for the vision system ... 60

Table 4.2: Using ROS to develop the entire system ... 61

Table 4.3: ROS packages used in the build .. 62

Table 4.4: Frame of reference for ROS and PX4 .. 76

Table 5.1: The topics subscribed to in the determinepose.cpp node 84

Table 5.2: The topics published to in the determinepose.cpp node 85

Table 5.3: Quaternion formed if the aircraft needs to rotate clockwise (0° < 𝜃 ≤ 90°)

 .. 87

Table 5.4: Quaternion formed if the aircraft needs to rotate clockwise (90° < 𝜃 < 180°)

 .. 87

Table 5.5: Quaternion formed if the aircraft needs to rotate counter clockwise (90° <

𝜃 ≤ 180°) ... 88

Table 5.6: Quaternion formed if the aircraft needs to rotate counter clockwise (0° ≤

𝜃 ≤ 90°) ... 88

 XVIII

Table 5.7: The topics subscribed to in the flyaircraft.cpp node 90

Table 5.8: The topics published to in the flyaircraft.cpp node 91

Table 5.9: The extra topic subscribed to in the determinepose.cpp node 95

Table 5.10: The topic subscribed to in the boxinfo.cpp node 96

Table 5.11: The topics published to in the boxinfo.cpp node 96

Table 5.12: The topics subscribed to in the boundingboxmove.cpp node 97

Table 5.13: The topic published to in the boundingboxmove.cpp node 97

Table 5.14: The topic subscribed to in the EulerToQuat.py node 98

Table 5.15: The topic published to in the EulerToQuat.py node 98

Table 5.16: The topic subscribed to in the QuatToEuler.py node 98

Table 5.17: The topic published to in the QuatToEuler.py node 98

Table 7.1: Type of data recorded for each landing ... 121

Table 7.2: The initial heading of the aircraft recorded before testing each landing

method .. 121

Table 7.3: Data recorded for the landing of the aircraft by using the GPS module . 122

Table 7.4: Data recorded for the landing of the aircraft by using the developed landing

system ... 122

Table 7.5: Test 1 points calculated ... 131

Table 7.6: Test 2 points calculated ... 132

Table 7.7: Test 3 points calculated ... 133

 1

Chapter 1: Introduction
In today’s modern era, there has been an increase in the number of people flying

aircraft. Specifically, there has been an increase in the number of people flying drones.

A drone, which can be formally classified as an unmanned aerial vehicle (UAV), is a

multirotor aircraft that is lifted and propelled using multiple rotors (Parker, 2018). A

drone does not have a pilot sitting inside it, which means it is operated either by

software or a remote pilot (Parker, 2018). This type of aircraft varies in multiples sizes,

depending on the number of motors and legs that are attached and installed onto the

centre frame of the aircraft. Some examples are a tricopter (3 legs & motors),

quadcopter (four legs & motors) and a hexacopter (6 legs & motors).

To this day, there is still uncertainty whether a drone can be classified as a UAV. This

is due to the fact that a UAV generally refers to any military aircraft that operates

without a pilot and can be reused (Parker, 2018). Throughout this research, the terms

UAV and multirotor aircraft will be used.

The development of multirotor aircraft has significantly helped humans accomplish

tasks that never seemed achievable before. Some examples are: use in military

operations for combat and reconnaissance purposes (Quadcopter Arena, 2017); use

by law enforcement agencies in search and rescue operations (Quadcopter Arena,

2017); great research opportunities for universities (e.g. robotics, flight control and

real-life systems) (Quadcopter Arena, 2017); and use for recreational purposes, such

as flying as a hobby or competitive racing (Quadcopter Arena, 2017). Another big

userbase of multirotor aircrafts are photographers who shoot photos and videos from

difficult positions, resulting in their content looking stunning and memorable.

Companies such as DJI have developed such aircraft which contain a three-axis

gimbal attached beneath the frame of the aircraft. A GoPro is even attached to these

gimbals to capture the moment. A gimbal is regarded as a mechanism that keeps an

instrument (e.g. camera) at a set orientation on an aircraft or ship. This will reduce the

shakiness of the video footage captured. (UAV Systems International, 2018). This

development of attaching a camera to a multirotor aircraft has increased the scope of

research in many different fields.

 2

1.1 Significance of Research
In 2017, the Institute for Economics and Peace (IEP) conducted a study rating the

level of peace for a number of countries around the world. This study was called the

Global Peace Index, where it was performed in the year 2017. The Institute rated

South Africa to be the 123rd most peaceful country in the world, out of a total of 163

countries and districts that were measured (Business Tech, 2017). This indicates that

South Africa is one of the most unsafe countries in the world. The document also

revealed the high crime rate in our country, where violent crime and homicide were

both rated 5 out of 5 (Institute for Economics & Peace, 2017).

These levels of violence and insecurity have a massive impact on the country’s

economy. The IEP measured the cost of violence in South Africa at 22.3% of GDP,

which is the equivalent of R1.92 trillion (Business Tech, 2017).

For a number of years, South Africa has been heavily affected by crime. Despite the

development of technology in today’s world, the country still seems to suffer from high

crime statistics. This is probably due to the increase in unemployment in the country.

The South African Police Service (SAPS) annually collects and releases the national

crime statistics for a given year. Appendix 1.1 reflects the extent of crime taking place

between the years of 2018 and 2019.

These statistics reveal that South Africa is in need of finding a new way to reduce

crime in the country. To help with this, the idea is to perform research that would

consist of developing an aircraft that could in the future help reduce the overall crime

rate in the country.

1.2 Aim
The aim of this research is to add to the development of an autonomous multirotor

aircraft that could be used in the security industry by making use of a vision system.

The aim includes using the vision system to help with the landing system of the aircraft

as well as guide and direct the aircraft to new positional coordinates based on

detecting human interaction.

 3

1.3 Objectives
The objectives of this dissertation consist of the following:

1. The performance of a literature review that could help understand the following

main topics:

a. Open source flight controllers

b. ROS

c. Object detection, object recognition and object tracking

d. Fiducial markers

2. The development of a vison based multirotor aircraft for use in the security

industry

a. Establishing a hardware architecture to define the interaction between

all the components used, whilst still allowing the system to be compact

and modular.

b. Establishing a software architecture to define all the software used as

well as to demonstrate how all the programs developed will interact with

one another.

3. The development of an autonomous multirotor aircraft

a. The development of a multirotor aircraft can be demonstrated.

b. The aircraft can perform a fully autonomous mission, where the flight

route is predefined.

c. The aircraft can perform a fully autonomous mission, where new

coordinates for the flight route can be injected into the flight controller by

other methods. This injection of new coordinates can take place during

flight.

4. The development of a vision system

a. Develop an algorithm that can be used to identify a marker to help guide

the aircraft during its landing phase.

b. Develop an algorithm that can be used to identify human interaction as

well as produce a new positional coordinate for the aircraft to fly towards.

1.4 Delimitation
Due to vast number of subsystems in this research, all being integrated into a single

system, there were a few limitations that occurred within the integrated subsystems:

 4

• Due to the limited funding available, superior components would not be able to

be purchased. Their performances would limit the accuracy and reliability of the

system.

• Due to the small space available on the aircraft, the components used would

need to be relatively small (e.g. the onboard computer). This would limit the

processing ability of the system.

• The testing of the system is heavily dependent on the weather, limiting when

the system can be tested.

• The testing of the system is limited to the aircraft’s battery capacity.

1.5 Hypothesis
A software and hardware architecture and a supporting digital simulation environment

can be designed to construct a vision based multirotor aircraft for the security industry,

where the focus will be on developing an alternative landing system and human

detection system.

1.6 Dissertation Outline
This dissertation will consist of the following chapters:

1. Chapter 1: Introduction

This chapter will provide an introduction to this research, where the aim,

objectives, significance, delimitation, research hypothesis, research

contributions and publications will all be discussed.

2. Chapter 2: Background Research and Literature Review

This chapter will consist of multiple sections that will bring relevant background

to this research.

3. Chapter 3: System Architecture

This chapter will discuss the components used, the designed components that

were developed and finally the hardware and software architecture.

4. Chapter 4: Vision System

This chapter will describe the vision system that was established to help with

the landing system as well as for detecting humans.

5. Chapter 5: Integrated System

 5

This chapter will discuss how ROS is used to integrate the system as well as

explain how the vision system and the aircraft is integrated with ROS, allowing

for a complete system.

6. Chapter 6: Simulation

This chapter will discuss all the simulations that were performed in testing the

landing system and the human detection system.

7. Chapter 7: Testing and Discussion

This chapter will discuss the test flights that were performed. These test flights

will consist of:

• A manual test flight.

• An autonomous test flight performing a mission.

• An autonomous test flight where a mission is injected into the flight

controller by a separate system.

• An autonomous test flight using ROS.

• The aircraft autonomously landing using ROS.

The chapter will include a data analysis on the ROS developed landing system,

where the GPS landing system will be compared to the ROS developed landing

system. A discussion will be performed for all the sections, including the human

detection system. Improvements to the system will also be mentioned.

8. Chapter 8: Conclusion

This chapter will conclude the dissertation, suggesting whether the hypothesis,

aim and objectives were achieved; future development to the system; and

whether the research made any significant contribution to the field of

engineering.

1.7 Research Contributions
After completing this research, the following research contributions will be obtained:

• The development of a vision system that can be used to detect ArUco markers

and detect objects within a video frame.

• The development of a multirotor aircraft that can be flown manually or be used

to perform autonomous missions.

• The development of a landing system that makes use of a vision system to land

an aircraft on an ArUco marker, providing a more accurate system than the

 6

GPS based landing system as well as a cheaper alternative system to using a

RTK system.

• The development of a human detection system that makes use of a vision

system to command an aircraft to reposition and re-orientate itself to follow a

moving person.

• A vision system and multirotor aircraft that is integrated using ROS.

1.8 Publications
A conference paper, called “Autonomous Landing of a Multirotor Aircraft on a Docking

Station”, was written together with Jacques du Preez, a fellow Mechatronics student,

pursuing a Master of Engineering. The paper was submitted and accepted for the

RobMech conference, which took place in Cape Town in January 2020. Jacques

attended the conference, where he presented a poster, demonstrating the work of both

writers.

1.9 Potential Applications
One potential application for the developed system would be to use it as part of a

security surveillance system. For instance, if a home alarm system were to be

triggered by an unwanted intruder, a signal could be sent to the developed system,

requesting the multirotor aircraft to fly autonomously to the specific location. Once the

aircraft arrived at the house concerned, it would then survey the property, searching

for any intruders by making use of the onboard vision system. If an intruder were to

be detected, the aircraft would send a signal to the security company’s control room,

requesting permission to follow him/her. If the necessary consent were received, the

aircraft would use its vision system to follow the intruder. The vision system would

constantly instruct the aircraft to adjust its position and orientation to centre the intruder

in the middle of the video feed of the vision system, as well as to keep the aircraft a

fixed distance away from him/her. When the aircraft is not being used, it could make

use of a docking station to charge the batteries of the aircraft as well as to protect the

aircraft from any harmful weather.

The above idea was presented to Atlas Security, a security company based in Port

Elizabeth, South Africa.

 7

1.10 Conclusion
 This chapter provided an overall introduction to the research, where the research was

defined to be the development of a vision based multirotor aircraft that can be used in

the security industry. The aim of the research was provided along with a list of

objectives to be achieved. The significance of the research was discussed, shedding

light on the current crime rates in South Africa. The delimitation and the hypothesis

for the research were also discussed. A layout for the dissertation was provided,

mentioning what will be discussed in each chapter. The research contributions were

outlined as well as mentioning the publication of a conference paper. The following

chapter, which is the background research and literature review, will discuss all the

relevant background material that was utilised throughout the research.

 8

Chapter 2: Background Research and Literature Review
The background research and literature review for this research will be approached in

the following manner: Firstly, the components required to fly a multirotor aircraft will

be discussed; secondly, topics that are related to the aircraft will be researched, such

as an Arduino, Pixhawk flight controllers, autopilot software, ground control stations,

MAVLink, ROS, Euler angles and quaternions, Darknet: YOLO and fiducial markers;

thirdly, the crime rates in South Africa will be investigated; and finally the current

implemented security solutions consisting of multirotor aircraft will be discussed.

2.1 Multirotor Aircraft Components
The main components that are commonly found on a multirotor aircraft as well as a

basic description of the component can be seen below (Kadamatt, 2017):

1. Frame: It is the body of the aircraft. It is responsible for holding all the

components of the aircraft.

2. Brushless Motors and Propellers: The brushless motors and propellers work

together to produce the thrust for the aircraft.

3. Electronic Speed Controllers (ESC): They are responsible for controlling the

rate at which the brushless motors spin depending on the pulse width

modulation (PWM) that each ESC has received from the flight controller.

4. Flight Controller: It is the “brains” of the aircraft, where it is constantly making

necessary calculations and producing PWM signals for the ESCs to control the

motors.

5. Transmitter and Receiver: They are used to control the aircraft. A pilot will

make use of the transmitter to fly the aircraft, whereas the receiver will receive

the command performed on the transmitter and pass it through to the flight

controller.

6. Battery: This is used to provide power to the aircraft.

2.2 Arduino
An Arduino is an open source physical computing platform used for creating interactive

objects that can stand alone or collaborate with software on a computer. Arduino was

designed for artists, designers and others who want to incorporate physical computing

 9

into their designs, without first having to become electrical engineers (Banzi & Shiloh,

2014).

The Arduino boards are able to read inputs (e.g. light on a sensor, pressing a button)

and turn it into an output (e.g. activating a motor, turning on an LED) (Banzi & Shiloh,

2014). It is possible to instruct the Arduino board by sending a set of instructions to

the microcontroller that is fixed on the board. This is done by using software, known

as the Integrated Development Environment (IDE), which is freely available off the

Arduino website. The language, used in the IDE to program the microcontroller,

consists of a set of C/C++ functions (Arduino, 2017).

There are a number of different versions of the Arduino boards available (e.g. Due,

Mega, Micro, Uno, etc.) (Sparkfun, 2015). Each model has its own specifications, with

different voltage inputs, different microcontrollers, etc.

An example of an Arduino board may be seen in Figure 2.1.

Figure 2.1: An Arduino Uno board (Sparkfun, 2015)

2.3 Pixhawk Flight Controller
Pixhawk is an independent open-hardware project that aims to provide the standard

for readily-available, high-quality and low-cost autopilot hardware designs, which can

 10

be used in the academic, hobby and developer communities (Pixhawk, 2019). The

Pixhawk project was first started at ETH Zurich as both an open-source hardware and

software project to create a flight controller (LambDrive, 2016). In the first designs,

the Pixhawk started out as two separate boards, one called the PX4FMUv1 and the

other called PX4IOv1. The PX4FMUv1 was the flight measurement unit (FMU) and

the PX4IOv1 was the inputs and outputs. Eventually, these two boards were

combined into one, which was called the Pixhawk 1 (LambDrive, 2016). The Pixhawk

1 can be found in Figure 2.2.

Figure 2.2: Pixhawk 1 flight controller (PX4, 2019b)

At the time, 3D Robotics was chosen as the prominent manufacturer. However, since

it is an open-hardware project, the schematics and PCB design files are freely

available for anyone to use, modify and manufacture themselves. Hence, there are

many clone Pixhawk flight controllers available to be purchased from Chinese

websites. The beauty of its being open-source is that it has allowed for many projects

to be developed as well as be freely available to incorporate into other projects. The

Pixhawk does not just have to be used as a flight controller, but has the ability to be

used within a ground based project. An example of where a Pixhawk can be used on

a ground based project is where the board is used on a four-wheeled rover, enabling

it to travel along a terrain.

 11

2.4 Autopilot Software
The autopilot software is the software that is installed onto the Pixhawk. Since the

Pixhawk is an open-source project, its purpose is to be used with an open-source

autopilot software. There are a number of open-source autopilot software available,

however two of the main ones are ArduPilot (APM) and PX4.

2.4.1 ArduPilot
ArduPilot, often referred to as APM, is one of the most advanced, full featured and

reliable open-source autopilot software available. It has been developed for over 5

years by a team of professional engineers and computer scientists. The software is

capable of controlling a numerous vehicles, such as:

1. Airplanes

2. Multirotors

3. Helicopters

4. Boats

5. Submarines

New software for aircraft, such as quad-planes and compound helicopters, are

currently being developed. The software has been installed on over 1 000 000

vehicles world-wide due to the software being one of the most tested and proven

autopilot software available (ArduPilot, 2016).

2.4.2 PX4
PX4 is an open-source flight control software that has been designed for drones and

other unmanned vehicles. The project provides a flexible set of tools for drone

developers to share technologies that create tailored solutions for specific drone

applications. The software was developed alongside the original Pixhawk project at

ETH Zurich. Today, the project consists of more than 300 global contributors and is

used by some of the world’s most-innovative companies across a wide range of drone

industry applications (PX4, 2018).

2.5 Ground Control Station
A ground control station (GCS) is generally referring to a software application, which

utilizes a ground-based computer, that is able to communicate with a UAV using a

 12

wireless telemetry. The GCS is able to display real-time data of the UAV’s

performance, position and orientation, which includes displaying typical instruments

that you would likely find in a real aeroplane. The GCS is also able to perform other

necessary tasks, (e.g. setting up a mission for an aircraft, sending the aircraft on a

mission, etc.) (ArduPilot, 2019). Depending on which GCS software is being used,

some offer the ability to load the aircraft’s firmware onto its flight controller, as well as

set up the aircraft so that it may be correctly used for flying.

Due to the vast number of open-source onboard software for UAVs, this has led to a

number of open-source GCS software available on the internet. Some examples are:

• MAVProxy

• Mission Planner

• QGroundControl (QGC)

The GCS that will be used for this research will be QGroundControl due to its ease of

use as well as support for multiple types of UAVs. The software is available on multiple

platforms, which are:

• Windows

• macOS X

• Linux

• Android

• iOS

This will allow for the aircraft to be quickly and easily adjusted on portable devices

(e.g. cell phone, tablet, etc.) when testing is being performed on an open field.

Most GCS communicate with a UAV using MAVLink protocol. More information on

this can be found in section 2.6.

2.6 MAVLink
Micro Air Vehicle Link, which is commonly referred to as MAVLink, is a lightweight

messaging protocol used for communicating with small unmanned vehicles (MAVLink,

2019). MAVLink, which was first released in early 2009 by Lorenz Meier, is a reliable

communication protocol as it provides methods for detecting packet drops as well as

 13

a well-established ITU X.25 checksum used for packet corruption detection (MAVLink,

2019).

MAVLink consists of two versions, where MAVLink v1.0 contains a minimum of 8 bytes

per packet sent (including start sign and packet drop detection) and MAVLink v2.0

containing 11 bytes, allowing for a more extensible protocol. MAVLink v1.0 can

support up to 255 vehicles all running concurrently, where each vehicle will be

assigned a vehicle ID (ranging from 1 to 255).

A packet transmitted via MAVLink v1.0 can be described by referring to Figure 2.3.

Figure 2.3: MAVLink v1.0 packet representation (Koubaa, et al., 2015)

The following table explains what each byte represents in the packet. This byte

information was obtained from MAVLink (MAVLink, 2019).

 14

Table 2.1: Description of each byte in MAVLink v1.0 protocol (MAVLink, 2019)

Byte Index Content Explanation
0 Packet start marker Protocol-specific start-of-text (STX)

marker used to indicate the beginning

of a new packet.

1 Payload length Indicates the length of the following

payload section.

2 Packet sequence number Used to detect any packet loss.

3 System ID Represents the ID of the vehicle that

is receiving the message.

4 Component ID Represents the ID of the component

that is sending the message.

5 Message ID Represents the ID of the message

type in the payload.

6 to (n+6) Payload data The message data. This depends on

the message type (i.e. Message ID).

(n+7) to (n+8) Checksum Used to verify that the sender and

receiver have perfectly understood a

message.

MAVLink is built for hybrid networks to send high-rate data streams from data sources

(commonly UAVs) to data sinks (commonly ground stations). This hybrid design

pattern consists of a topic mode (publish-subscribe) and point-to-point mode. The topic

mode is used to save bandwidth by sending a protocol, but will not emit a target system

and component ID. A typical example of a command being used over this protocol

would be to change a flight mode (e.g. position hold, acro, etc.). The point-to-point

mode uses the target ID and target system when sending the message. Generally,

when these fields are used, it guarantees delivery of the message. An example of

when this protocol is used is when missions, parameters or commands are being sent

to the aircraft (MAVLink, 2019).

 15

2.7 Robot Operating System
When it comes to developing software for robots, it can often be quite challenging,

particularly as the scale and scope of robotics continue to grow. Often, robots can

have a wide variety of hardware, which often leads to a struggle of reusing code that

was previously developed for other hardware. It can also be quite daunting if new

code needs to be developed for these robots from scratch due to the code needing to

contain a deep stack starting from driver-level software. (Quigley, et al., n.d.). To help

with these challenges, Robot Operating System was developed.

Robot Operating System (ROS) Is a flexible framework that is used for writing and

developing robot software. ROS consists of a collection of tools, libraries and

conventions that aim at simplifying a task of creating complex and robust robot

behaviour across a wide variety of robotic platforms (ROS, 2019a). One of the benefits

of ROS is that the software is open-source. This allows for many people to use the

framework, develop code and libraries and share it amongst the ROS community. An

example of a package that is available to be used with ROS is MAVROS. This

package is used to convert the ROS commands that are developed into commands

that can be used on the MAVLink protocol, which will result in sending commands to

a potential UAV.

Table 2.2 is a list of terms commonly used when using ROS. These terms will be

commonly used throughout this research.

 16

Table 2.2: Terms frequently used when using ROS

Term Description of the term
Nodes It is an executable that uses ROS to communicate with other

ROS nodes (ROS, 2019b).

Messages A ROS data type used when subscribing or publishing to a

topic (ROS, 2019b).

Topics Nodes can either publish messages to a topic or subscribe

to a topic to receive messages (ROS, 2019b).

Publisher A message that is published to a topic for other Nodes to

access.

Subscriber A topic that is subscribed to, where a message is able to be

received from other nodes.

Service Server Allows for two way transport of messages, where the server

will receive a request, perform a task and send a reply.

Service Client Allows for two way transport of messages, where the client

requests a message and waits for a reply.

Workspace It is the directory (folder) where all packages can be created

or modified.

Package It is the software (files) that is used or developed within ROS

for a project.

Launch File A file that will open all the nodes specified in the file as well

as assign parameters certain values where required.

2.8 Euler Angles & Quaternions
Euler angles and quaternions are both used to represent a body’s rotation or

orientation. However, their methods of representing rotations are different. Euler

angles are able to represent a 3D orientation of an object by using a combination of

three rotations about different axes (CHRobotics, 2019a). These rotations all take

place on a fixed coordinate frame.

Quaternions are also able to represent a 3D orientation of an object. However, they

use a combination of a real number (scalar number) and complex numbers (imaginary

numbers). The scalar part is represented by ‘w’ and the imaginary part is represented

 17

by ‘x’, ’y’ and ‘z’ (AnimMotion, 2019), resulting in a four dimensional vector [w, x, y, z]

or [x, y, z, w].

Euler angles are easier to interpret than quaternions. However, the benefits of using

quaternions are as follows:

1. Quaternions are not affected by gimbal lock whereas Euler angles can be

affected. Gimbal lock is when a degree of freedom is lost due to two of the

axes rotating around the same axis and aligning themselves (AnimMotion,

2019).

2. There is less computational processing required, due to quaternions only

needing to be represented by a four element vector while Euler angles have a

3x3 matrix representation. Quaternions also require less memory space in

comparison to Euler angles (AnimMotion, 2019).

Because of the gimbal lock, quaternions are preferred to be used in ROS to describe

the orientation of an object.

2.9 Attitude of an Aircraft
The attitude (orientation) of an aircraft can be manipulated about the aircraft’s current

frame by making use of three types of rotation. These are:

1. roll (rotation about the x axis)

2. pitch (rotation about the y axis)

3. yaw (rotation about the z axis)

A representation of these rotations can be found in Figure 2.4.

 18

Figure 2.4: Rotations about the aircraft’s current frame (CHRobotics, 2019b)

2.10 Vision
This section will be separated into two categories:

• Object detection, recognition & tracking

• Darknet & YOLO

2.10.1 Object detection, recognition and tracking
Object detection refers to detecting the presence of a particular object in a given frame,

where the object in the frame is unknown (Howse, et al., 2016; Shipitko, 2017).

Object recognition is the process of identifying an object in a given frame (Howse, et

al., 2016). For example, an object recognition system would be able to detect that a

person and a dog can be found in a particular frame.

Object tracking is the extraction of the motion of an object from a sequence of images

estimating its trajectory (IGI Global, 2019).

2.10.2 Darknet and YOLO
Darknet is an open-source neural network framework that was written in C and CUDA

(Redmon, 2013). The framework supports both Central Processing Unit (CPU) and

Graphics Processing Unit (GPU) computation, meaning that the processing of the

neural network can be performed either on the computer’s main processor or by using

 19

the graphics card. You Only Look Once (YOLO) is a real-time objection detection

system that was developed using the Darknet framework (Redmon, 2013). Most object

detection systems use some sort of classifier in its detection process, whereas YOLO

has more of a regression approach. The way YOLO works is by applying the neural

network to a full image. The neural network will divide the image into regions and will

predict bounding boxes and probabilities for each region. The bounding boxes are

then weighted, based on the predicted probabilities that were determined (Redmon,

2013). The detection on the image is performed in one run of the algorithm, hence

the name You Only Look Once. An example of the detection software being performed

on an image can be referred to in Figure 2.5.

Figure 2.5: YOLO being used to detect multiple objects within a frame

The latest version available is YOLO version 3. This version has multiple models

available to be used. These models vary, depending on what system the neural

network is running on. For instance, there is model called Tiny YOLO available, which

allows for the model to be run on low processing devices, such as a cell phone or a

tiny computer (e.g. NVIDIA Jetson TX2). The current models available have been

trained to identify 80 objects/classes, where it’s based on the Common Objects in

Context (COCO) dataset. However, the neural network can be trained to detect an

 20

object of your choice. A list of 80 objects that are currently identifiable based on the

COCO dataset can be found in Appendix 2.1.

2.11 Fiducial Markers
Many computer vision applications, robot navigation and augmented reality often

require pose estimation (position and orientation estimation) within their applications.

Pose estimation is based on finding correspondences between points in the real

environment and their 2D image projection. To help with this, a fiducial marker can be

used, which is a binary square marker that provides enough correspondence to obtain

a camera pose. Their inner binary codification makes them specially robust, which

helps with the possibility of applying error detection and correction techniques

(OpenCV, 2019).

Some examples of fiducial markers can be seen in Figure 2.6.

Figure 2.6: Examples of fiducial markers (Mostashiri & Dhupia, 2018)

One of most common types of fiducial markers used is the ArUco marker. It is a

synthetic square marker that consists of a wide black boarder and an inner binary

matrix which represents the marker’s identifier (ID). The black border helps with faster

detection within the image captured (OpenCV, 2019).

There are a number of dictionaries available for ArUco markers, all depending on the

size of the internal matrix. This size of the matrix determines the number of bits for

 21

the marker. For instance, if a marker has an internal matrix of 4x4, the marker will

have a size of 16 bits. Within a specific dictionary, no two markers will look the same.

For example, if a dictionary of 5x5 is used, the marker with an ID of 1 will look different

to a marker that has an ID of 2.

2.12 Current Implemented Solutions
The following are current implemented solutions available or currently being

developed solutions, where unmanned aerial vehicles are being used in surveillance

systems.

2.12.1 The Sunflower System
The Sunflower System is a system that is currently being developed by Sunflower

Labs. They claim their system will be able to sense and deter unwanted visitors before

they reach your door. The system can be referred to in Figure 2.7. The system

consists of three key components, which are the sunflowers, the bee and the hive

(Sunflower Labs Inc., 2019).

• Sunflowers – These are sensors that are placed around the property which also

help with lighting up the area. They are used to alert the user of unusual activity.

The sensors are able to identify people, animals and cars.

• The Bee – This is an autonomous UAV that flies around the property. It has a

camera to capture and live stream precisely everything that is currently

happening at the time. The bee, which is normally guided by the sunflowers’

sensors, can also be directed to specific locations on the property.

• The Hive – This is a self-charging, weatherproof home for the bee. Since the

system has the sensors within the sunflowers, the bee isn’t required to offer

constant camera surveillance. When the bee isn’t flying around, it will be

docked safely within the hive, protecting the bee from the weather. The

system’s computer is also placed within the hive.

 22

Figure 2.7: The Sunflower System (Sunflower Labs Inc., 2019)

2.12.2 Nightingale Security
Nightingale Security have developed their own surveillance system where they make

use of a multirotor aircraft. Their fully autonomous system is able to fly patrols during

the day and night as well as in the rain and snow (Nightingale Security, 2019). The

aircraft is referred to as Blackbird, which has been named after the historic SR-71

Blackbird of the United States Air Force (Nightingale Security, 2019). This aircraft has

a maximum flight time of 33 minutes and can be fully recharged within 45 minutes.

The aircraft is able to perform scheduled autonomous patrols around a property,

respond to any alarms that have been triggered as well as even perform a manual

flight mission in the event of a crisis occurring. During flight time, a live video feed is

transmitted to view what the aircraft is seeing. In one of the videos on their website,

Nightingale Security demonstrates the aircraft’s ability to detect human activity. When

the aircraft is not being deployed, it lands and charges within a base station. The base

station, which has a rugged, weatherproof design, contains networked computers that

share critical flight information from the aircraft (Nightingale Security, 2019). The

system can be found in Figure 2.8, where the aircraft is currently positioned on the

docking station.

 23

Figure 2.8: Nightingale Security system (ISC West, 2019)

Nightingale Security’s system has been approved by the Federal Aviation

Administration (FAA) in the United States of America for performing night time and

multi-drone operations (Nightingale Security, 2019). They offer a monthly or annual

subscription model, where customers don’t need to purchase or maintain any

equipment.

2.13 Conclusion
This chapter shed light on a number of topics that will be used in this research. Due

to the nature of the research topic, the equipment and software that was researched

was fairly new technology, resulting in minimal information being available in journal

papers. The information included in this chapter was therefore primarily obtained from

websites. The typical components that can be found on a multirotor aircraft were

discussed. Hardware, such as the Arduino and the Pixhawk, were introduced and

their purposes explained. Software, such as the autopilot software and the ground

control station software, were explained. Other topics, such as Darknet’s YOLO,

fiducial markers, Euler angles, quaternions and the attitude of an aircraft were also

explained. The significance of using ROS was discussed. Current solutions were

mentioned, showing how a complete system should be implemented. Finally, the

crime statistics for South Africa were revealed, stressing the importance of developing

 24

a system to help reduce the overall crime in the country. The next chapter is the

System Architecture, which will discuss the entire design of the system.

 25

Chapter 3: System Architecture
This chapter will be divided into three sections. The first will give a basic overview of

the dynamics of the aircraft; the hardware architecture of the research will be

discussed in the second; and the software architecture in the third. The second section

will include comments on the numerous changes that were implemented. The

configuration of the hardware will also be discussed. The third section will make

mention of all the software that was used throughout the system.

One of the keys aspects for this research was to keep costs to the minimum. Since

the research was still in the developmental stage at the time of writing, there were

likely to be a number of crashes occurring during the testing phase. If a crash were to

occur and some of the components were to break, the replacement components would

need to be inexpensive.

3.1 Multirotor Aircraft Dynamics
In order for a multirotor aircraft to fly, it needs to overcome and oversee three crucial

factors: drag, thrust and lift (Kadamatt, 2017). Other factors which have an effect on

the way in which it flies are hovering, increasing and decreasing in altitude and

movement along its yaw, pitch & roll axes.

3.1.1 Drag
The word ‘drag’ is essentially a mechanical force that opposes the motion of any object

through a fluid (Kadamatt, 2017). Since the motors of a multirotor aircraft pass through

air, it is called ‘aerodynamic drag’ (as opposed to the word, ‘hydrodynamic drag’ used

to represent objects passing through water) (Kadamatt, 2017).

This aerodynamic drag on the rotors is generated due to the difference in velocity

between the rotors and the air around them (Kadamatt, 2017). The drag force is only

applied to the multirotor aircraft when it is in motion (either in a vertical, horizontal or

rotational direction). The drag force can be seen in Figure 3.1 & Figure 3.3.

 26

In order for a multirotor aircraft to rise off the ground and fly, it will have to overcome

the drag force as well as the overall weight of the aircraft (Kadamatt, 2017). This may

be overcome, depending on the thrust generated by the motors.

Figure 3.1: Forces acting on a multirotor aircraft

3.1.2 Thrust
Thrust stands for the force generated by the propellers that are attached to the motors.

The thrust force is used to overcome the drag force generated, as well as the overall

weight of the multirotor aircraft. The thrust force generated is not the main force

responsible for the rising of the multirotor aircraft. The lift force is responsible for this.

(How Things Fly, 2005). The thrust is the force which allows the motors to travel

through the air, overcoming the resistance caused by the drag. The thrust force may

be seen in Figure 3.1.

3.1.3 Lift
The lift of the multirotor aircraft is the force that works against the weight of the aircraft,

when being lifted into the air. The following are responsible for the lift on a wing (on

the propeller):

 27

1. Newton’s Third Law of Motion – For every action, there must be an equal and

opposite reaction. This force will generate lift at the bottom of the wing because

the mass of the air is pushed downwards and backwards (Kadamatt, 2017).

2. Bernoulli’s – The pressure difference between the air at the top and the bottom

of a wing, due to the Coanda Effect, will generate a lift towards the lower

pressure, which is present at the top (Kadamatt, 2017). This theorem is still

being tested to date. The effect can be seen in Figure 3.2.

Figure 3.2: Coanda Effect (Aviation History, 2015)

The propellers attached to the rotors will generate the lift force, using similar principles

as those mentioned above (which is pushing air downwards as well as the difference

in the air pressure). In order for the aircraft to rise, be able to hover and more

importantly, fly, the lift force must be greater than the weight of the aircraft. The lift

force can be seen in Figure 3.3.

Figure 3.3: The forces applied to an aircraft (NASA, 2015)

 28

3.1.4 Flying
The way in which a multirotor aircraft works is based on how the brushless motors

work. The rotational part of the motor is referred to as the rotor. As specified earlier,

a multirotor aircraft is a helicopter that consists of numerous motors that work together

to make the helicopter fly in certain directions. The following description will be based

on a hexacopter aircraft, which is a multirotor aircraft that contains six arms and six

motors. The way in which these six motors work depends on the direction in which

the motors are spinning. Each of the six motors will be attached to each of the six

ends of the arms that are attached to the frame. Three of the motors will spin in a

clockwise direction (CW), while the other three will spin in a counter clockwise direction

(CCW) (Allen, 2014). By doing so, any tendency of the motors to cause the aircraft to

spin in the air uncontrollably, due to the torque generated by the motors, will be

cancelled out. All clockwise motors are positioned in a triangle shape, while the

counter clockwise motors are also positioned in a triangle shape. Figure 3.4 below

demonstrates motors 1, 3 and 6 spinning in a clockwise direction while motors 2, 4

and 5 are spinning in a counter clockwise direction.

Figure 3.4: Direction of rotation for the brushless motors (ArduPilot, 2019)

At each of the motors, a torque is generated, which is in the same direction that its

specific rotor is turning. The direction in which each of these rotors rotates will

counteract this generated torque. The net torque will therefore equal zero (Kadamatt,

2017). This is the basis on how a multirotor aircraft is able to fly.

 29

3.1.5 Hovering
For a multirotor aircraft to hover in mid-air at a fixed position, the following needs to

take place (Kadamatt, 2017):

1. All the motors need to rotate at the same speed (calculated in revolutions per

minute - RPM).

2. The rotational speed of the motors needs to be sufficient, allowing the multirotor

aircraft to generate enough lift to counteract its own weight.

3. The torques created by each of the motors, which act against the frame of the

multirotor aircraft, need to be cancelled out or else the aircraft will want to yaw

in a specific direction.

3.1.6 Increasing and Decreasing Altitude
In order for a multirotor aircraft to gain altitude, all of the rotors are required to increase

their rotational speed simultaneously. Conversely, for a decrease in altitude, the

motors should decrease their rotational speed simultaneously. This increasing and

decreasing in altitude is achieved by using the throttle & elevator control sticks on the

transmitter (refer to the transmitter in section 3.2.6) (Kadamatt, 2017).

3.2 Hardware Architecture
This section will describe all the components that were used and installed throughout

the research as well as the final hardware architecture.

3.2.1 DJI vs Self-developed Aircraft
There were two possible approaches in deciding what type of aircraft would be used.

The first approach was to use a DJI Phantom 4 Advanced aircraft, where onboard

software could be developed for the aircraft via DJI’s Software Development Kit (SDK).

The second approach was to develop an aircraft from scratch. There are advantages

and disadvantages to both approaches. The advantages and disadvantages for

selecting the DJI Phantom 4 Advanced can be found in Table 3.1 and the advantages

and disadvantages for developing an aircraft can be found in Table 3.2.

 30

Table 3.1: Advantages and disadvantages of using a DJI Phantom 4 Advanced

Advantages Disadvantages

Top of the range off-the-shelf aircraft. Expensive to purchase.

Already has a functional vision system. Replacement parts are expensive.

Attachments can be added to the aircraft

(e.g. FLIR thermal camera).

Not much physical space available to

add additional hardware.

Has a flight mode available to follow a

moving object (where the object needs to

be selected via DJI’s mobile app).

Only the SDK is available. Cannot run

any choice of software on the aircraft.

DJI’s SDK is available.

Table 3.2: Advantages and disadvantages of developing an aircraft

Advantages Disadvantages
Completely customizable. Not a ready off-the-shelf aircraft that can

operate straight away.

A Pixhawk flight controller can be used. Many test runs will be required to get the

aircraft running efficiently.

Multiple components can be added to the

aircraft (e.g. companion computer,

camera, ultrasonic sensor, LIDAR, etc.).

Components are inexpensive compared

to DJI’s components.

Can lead to future development projects

(e.g. developing a docking / charging

station for the aircraft).

It was decided that developing an aircraft would be the preferred choice, mostly due

to the aircraft being completely customizable. At the time of deciding, a second-hand

hexacopter was offered and purchased from the advisor, Mr Paul Mooney. This

decision was made due the aircraft already having numerous components pre-

installed from a previous project he worked on. It was also easily available and allowed

for immediate hands on the aircraft. The aircraft was a hexacopter, as opposed to a

traditional quadcopter. This means that if a motor or ESC were to fail, the aircraft

 31

would still have five motors running, which would allow for the aircraft to still fly partially

and be allowed to land safely.

The purchased second-hand aircraft came with the following components:

1. Frame & extra legs

2. Six brushless motors

3. Six propellers

4. Six electronic speed controllers

Before discussing the components, it must be noted that in order to use ROS with the

aircraft, a number of components were required to be added to the aircraft. They were:

1. Companion computer

2. USB Hub

3. 5V Regulator

4. Camera

5. Wi-Fi Module

6. FTDI Cable

More information on these components will be discussed later in the chapter.

3.2.2 Frame
The frame of the second-hand hexacopter aircraft was a generic DJI F550 Flame

Wheel. An example of this frame can be found in Figure 3.5. This frame contained

six arms, which means that the aircraft would make use of six motors and six electronic

speed controllers (ESC) to provide the thrust required by the aircraft. The frame also

consisted of a power distribution board (PDB), which allowed for the electronic speed

controllers to be connected to the battery. Extra attachments that were included in the

purchase of this frame were four legs, which provided the aircraft with extra height off

the ground as well as allowed the aircraft to have extra attachments beneath its

fuselage.

 32

Figure 3.5: DJI F550 Flame Wheel (Build Your Own Drone, 2019)

3.2.3 Flight Controller
There were numerous changes made to the flight controller, the reasons for which will

be discussed below. It must be noted that only Pixhawk flight controllers were used

throughout this research because:

• A Pixhawk flight controller is an autopilot flight controller, which meant that it

could perform autonomous flights.

• The flight controller is open source, which meant that any open source

firmware (e.g. ArduPilot, PX4, etc.) could be uploaded onto the board.

• Components could easily be plugged into the flight controller, allowing for

disconnecting and attaching of new components to the board with ease.

• The flight controller is one of the most popular flight controllers in use, meaning

that there was a lot of information available to developers.

3.2.3.1 Generic Pixhawk 1

A second-hand generic Pixhawk 1 was first used and installed. This flight controller

was used due to its being available locally, allowing for immediate testing. However,

it was replaced after two weeks into the research. A general idea of what the generic

Pixhawk resembles can be seen in Figure 2.2.

 33

3.2.3.2 Generic Pixhawk 2.4.6

Since the aircraft was able to fly successfully with the generic Pixhawk 1, the next step

was to transform the multirotor aircraft into an autonomous aircraft. In order to give

effect to this, a few hardware changes needed to be implemented. A generic Pixhawk

2.4.6 kit was purchased from China to help with transforming the aircraft. This kit

included a GPS module, GPS stand and telemetry. The flight controller that was

currently on the aircraft was replaced with the generic Pixhawk 2.4.6 flight controller

so that the new components (e.g. GPS module) could be used on the aircraft to make

the system autonomous. This flight controller can be seen in Figure 3.6.

Figure 3.6: Generic Pixhawk 2.4.6 (Banggood, 2019)

3.2.3.3 Pixhawk 2 Cube

When it came to implementing and using ROS with the aircraft, a MAVROS specialist

from Russia suggested in changing the firmware of the aircraft from APM to PX4 as it

would allow for easier integration with the aircraft and ROS. However, there was an

issue with the PX4 firmware running on the generic Pixhawk. To resolve this issue,

the generic Pixhawk was replaced with a Pixhawk 2 Cube. This new flight controller,

which can be referred to in Figure 3.7(a), was a big improvement on the previous

Pixhawk. This was because the new flight controller had a vibration isolation for two

of its inertial measurement units (IMU’s) and had a third fixed IMU as a backup, which

would all result in the aircraft having a smoother and less jarring flight. A benefit of

 34

this Pixhawk was that it was capable of using real-time kinematic (RTK) positioning to

help with accurate positioning. However, this equipment was rather expensive, so the

standard Here+ GPS module (refer to Figure 3.7(b)), that came with purchasing the

flight controller, was installed alongside a power module to power the Pixhawk.

Figure 3.7: (a) Pixhawk 2 Cube (GetFPV, 2019) (b) Here+ GPS module (Heli

Engadin, 2019)

3.2.3.4 Original Pixhawk 1

During testing of the Pixhawk Cube, a problem occurred which prevented the flight

controller from arming. Arming refers to the aircraft passing all its safety checks and

allowing the brushless motors to spin at an idle speed, where the aircraft won’t take-

off. All aircraft need to be armed first before commencing their flights. The problem

was that the magnetometer kept giving inconsistent values to the Pixhawk. After

conducting some research on the internet, it was discovered that the reason for this

was that the Here+ GPS module contained two GPS boards within the module, where

the one was placed 180º from the other GPS board. This meant that the one GPS

board was facing towards the tail of the aircraft. The discrepancy caused an issue

with the PX4 firmware, resulting in the magnetometer being inconsistent. It must be

noted that this problem does not occur with the ArduPilot firmware.

As a result, the flight controller needed to be replaced with an original Pixhawk 1 flight

controller, which was manufactured by 3DR. This flight controller was chosen due to

 35

its being locally available as it belonged to a colleague. It resulted in a quick and

efficient solution. The Pixhawk can be seen in Figure 2.2.

3.2.4 Electronic Speed Controller
The Electronic Speed Controllers (ESCs) that were included with the second-hand

aircraft were Afro-ESC 30A with SimonK firmware installed on them. The ESC can be

referred to in Figure 3.8. SimonK firmware, (which was developed by Simon Kirby),

was beneficial for use on multirotor aircrafts due to its helping the ESCs offer a faster

response than your typical ESCs, resulting in the brushless motors reacting quicker to

changes in the throttle.

Figure 3.8: Afro-ESC 30A ESC (RC Groups, 2013)

3.2.5 Brushless Motor & Propellers
The motors that came with the second-hand aircraft were Prop Drive 28-26s 1000Kv

brushless motors, which can be referred to in Figure 3.9(a). The Kv refers to the

constant velocity of the motor, which is measured by the number of revolutions per

minute that a motor turns when one volt is applied with no load attached to the motor

(Reid, 2016). That means that if a three cell 11.1V LiPo was attached to the motor

with no load, the motor would spin at 11 100 rpm (1000 x 11.1).

The brand of propellers received were APC and the size of the propellers were 10 x

4.7 inches (refer to Figure 3.9(b)). The size means the diameter of the propeller was

10 inches and the pitch of the blade was 4.7 inches.

 36

Figure 3.9: (a) Prop Drive brushless motor (HobbyKing, 2019) (b) APC 10 x 4.7

inches propeller (Hobby-Miracle, 2019)

3.2.6 Transmitter & Receiver
In order to fly and control the aircraft manually, a transmitter and receiver needed to

be used. The transmitter is a remote controller that the pilot holds and uses to direct

the aircraft. The receiver would need to be installed onto the aircraft to receive the

commands from the pilot. The type of transmitter that was used in this case was a

FrSky 2.4Ghz ACCST Taranis Q X7. The receiver that was attached to the aircraft’s

fuselage was a FrSky 2.4Ghz ACCST X8R. The transmitter and receiver can be found

in Figure 3.10.

Figure 3.10: (a) FrSky Taranis Q X7 transmitter (GetFPV, 2019) (b) FrSky X8R

receiver (PorcupineRC, 2019)

 37

3.2.7 Battery
To power the motors, ESCs, Pixhawk, receiver and other components on the aircraft,

a Lithium Polymer (LiPo) battery was required. Two identical Gens ace 3300mAh

11.1V 25C 3S1P batteries were purchased, where they were connected in parallel, to

provide an overall capacity of 6600mAh. The battery can be seen in Figure 3.11.

Figure 3.11: Gens ace 3300mAh LiPo battery (Unmanned Tech, 2019)

3.2.8 Flight Controller’s Extra Components
Included in the Pixhawk 2.4.6 kit that was purchased (as mentioned in section 3.2.3.2)

was a GPS module, GPS stand and a 433Mhz telemetry, where all three components

were installed onto the aircraft. Inside the GPS module was a NEO-M8N GPS and a

magnetometer. The GPS module, GPS stand and the 433Mhz telemetry can be

referred to in Figure 3.12.

Figure 3.12: (a) GPS Module and GPS Stand (Amazon, 2019) (b) 433Mhz telemetry

(Readytosky, 2019)

 38

However, when the flight controller was switched to the genuine Pixhawk 1, the

aircraft’s current GPS module and 433MHz telemetry were swopped out for the GPS

module and 915MHz telemetry that came along with the genuine Pixhawk 1.

3.2.9 Gimbal
To install a camera onto the aircraft, a gimbal was required to help stabilize the video

footage. This is done by allowing the camera to keep facing its desired direction and

allowing the aircraft to move and twist around. The gimbal that was purchased was a

Tarot ZYX T-3D V 3-axis gimbal, which was designed to carry a GoPro Hero 5 camera.

The reason for purchasing this gimbal, which can be referred to in Figure 3.13, was

due to there being a GoPro camera available in the laboratory at the time of testing

the aircraft. However, the end goal was actually to use the gimbal to carry another

type of small camera that would be connected to a potential companion computer

(refer to section 3.2.11).

Figure 3.13: Tarot ZYX T-3D V gimbal (Tarot, 2017)

While experimenting with some of the settings on the software for the gimbal, the

gimbal controller module overheated and caused the module to become faulty. The

expected cause of the overheating was that the USB port of the laptop that the gimbal

was plugged into was a unique USB port that allowed any device to charge from the

port while the laptop was powered off. Unfortunately, a replacement module was not

available to be purchased on its own, so a new gimbal had to be purchased. This time

round, a different version gimbal was purchased, which was a Tarot T4-3D. This

gimbal was designed for a GoPro Hero 3, Hero 3+ and Hero 4 camera, whereas the

 39

former gimbal was only designed for a GoPro Hero 5. This gimbal can be seen in

Figure 3.14.

Figure 3.14: Tarot T4-3D Gimbal

3.2.10 Companion Computer
A companion computer was used on the aircraft to send and receive information to

and from the flight controller. It was decided that an Odroid XU4 companion computer,

which can be referred to in Figure 3.15(a), would be chosen because:

• It was small enough to fit onto the aircraft.

• The purchasing cost for a computer, computer case, power brick and eMMC

module was below R2 000.

• It had a low power consumption.

• It allowed for Linux Ubuntu to be installed onto the computer.

• It allowed for peripherals (e.g. webcam, Wi-Fi module, etc.) to be plugged into

the computer.

To store the operating system and the files for the computer, the Odroid had two

options available. The choice was between using either a Micro SD card or an eMMC

module. It was decided that a 32gb eMMC module would be used as it had faster

read and write speeds compared to the micro SD card. A chart demonstrating the

difference in speeds between a Micro SD class 10 card, a Micro SD UHS-1 card and

an eMMC 5.0 module can be referred to in Figure 3.15(b). As mentioned, a case for

the Odroid was also purchased.

 40

Figure 3.15: (a) Odroid XU4 (Hardkernel, 2019a) (b) Comparing the read and write

speeds (Hardkernel, 2019b)

3.2.11 Camera
A camera was required to be used for the vision system. Since this research was still

in its developmental stage, it was decided that a low cost Logitech C920 HD webcam

would be used instead of a more industry standard camera. The camera, which can

be referred to in Figure 3.16, had the capability of filming footage in 1080p (full HD) at

30 frames per second (FPS). Multispectral cameras and FLIR thermal cameras were

considered for use for this research. However, it was regarded as an unnecessary

expense. A big advantage of using a webcam was that it allowed for the digital video

feed to be used by the companion computer via one of the computer’s USB ports.

Figure 3.16: Logitech C920 webcam (Logitech, 2019)

 41

3.2.12 Extra Components
A USB hub was required to be installed onto the aircraft. This was due to there being

a shortage of USB ports available on the Odroid, when a keyboard and mouse were

also plugged into the Odroid. In addition, when plugging in the USB ports, it was found

that the Odroid was not providing enough power to the peripherals. Therefore, the

USB hub would need to have an external power source to help provide enough power

to the peripherals. The USB hub that was eventually installed onto the aircraft was a

Unitek USB3.0 4-Port Hub. This hub can be referred to in Figure 3.17.

Figure 3.17: Unitek USB3.0 4-Port Hub (Unitek, 2019)

In order to connect the Odroid and the USB hub to the LiPo batteries, the LiPo’s

maximum peak 12.6V (4.2V per cell) needed to be stepped down to the necessary 5V

required by the devices. A Hobbywing Universal Battery Elimination Circuit (UBEC)

5V at 8A (with a maximum of 15A) was purchased and connected to the LiPo batteries.

The UBEC, which can be seen in Figure 3.18, is in essence a voltage regulator.

Figure 3.18: Hobbywing UBEC 8A (Hobbywing, 2015)

 42

A Wi-Fi module and an FTDI cable were also purchased. The Wi-Fi module was

connected to one of the USB ports on the USB hub that was connected to the

companion computer. This Wi-Fi module was used to connect the Odroid computer

to a network, which was established to connect the Odroid computer to a ground

station computer. The Wi-Fi module was a standard Wi-Fi N module. The Future

Technology Devices International (FTDI) cable is a USB to Serial converter, which

was used to connect the companion computer to the flight controller. The serial side

of the FTDI cable was cut off and a new end was soldered onto the wires so that the

cable could be compatible with the Pixhawk flight controller. The FTDI cable and Wi-

Fi module can be found in Figure 3.19.

Figure 3.19: FTDI cable (left) and Wi-Fi module (right)

An additional component that was used, but not placed onto the aircraft, was a D-Link

DSL-2750U modem router. This router had the capabilities of using a 3G/4G modem

to connect the network to the internet. (However, this feature was not used). For this

research, the router was used to establish a network so that the companion computer

could communicate with the ground station computer. Since the router would be

placed outside during testing, it needed to be modified so that it could be powered

from an external power supply and not from a typical wall outlet. The modification

consisted of soldering two wires onto the router’s board, while the other end of the

wires were soldered to an XT60 connecter so that a 3 cell LiPo battery could power

the device. This modification can be seen in Figure 3.20.

 43

Figure 3.20: Modified D-Link DSL-2750U modem router

3.2.13 Additional Modifications
A carbon rod was attached to the aircraft with two polystyrene balls placed on either

end. This was attached to help the pilot determine the current direction of the aircraft

during flight. Each ball was coloured differently to distinguish between the nose (front)

and the tail (back) of the aircraft. The red and blue polystyrene ball with tinfoil wrapped

around it was attached to the nose of the aircraft and the green polystyrene ball was

attached to the tail. This setup can be referred to in Figure 3.21.

Figure 3.21: Polystyrene balls used to help with the direction of the aircraft.

 44

However, after flying the aircraft, It was decided that the front polystyrene ball at the

nose of the aircraft was no longer necessary and so the rod was cut in half. Only the

half at the tail end was kept. An extra piece of carbon rod was placed between the

two arms at the tail to secure the rod to the aircraft. This modification can be found in

Figure 3.22.

Figure 3.22: Modification of keeping the tail polystyrene ball and supporting the rod

3.2.14 Designed Components
The following parts were designed in Autodesk Inventor, where they were made via a

3D printer and tested on the aircraft.

3.2.14.1 Gimbal Attachment v1

Two identical parts needed to be designed in order to attach the Tarot ZYX T-3D V

gimbal (the first gimbal used) to the aircraft. Each part would need to allow for the

gimbal to be hung from it by means of a rod, cut to size. The part itself would also

need to be able to hang from the bottom plate of the aircraft’s fuselage.

The bottom plate of the fuselage contained numerous holes, which were used to push

the parts through and suspend each one with its own bolt. The designed part can be

viewed in Figure 3.23.

 45

Figure 3.23: Part designed to attach the gimbal to the bottom plate of the aircraft’s

fuselage

The designed parts were fully functional. However, there were two concerns. The

first was that there was too big a space between the bottom plate of the aircraft and

the gimbal. The second was that, since the part was hanging from the aircraft, it

allowed for extra movement of the gimbal, which could affect the stability of the gimbal.

This meant that the part would need to be redesigned at a later stage. However, for

the time being, the parts were sufficient and fulfilled their purpose. The CAD drawing

of the part can be found in Appendix 3.1.

3.2.14.2 Gimbal Attachment v2

When the Tarot ZYX T-3D V was replaced with the Tarot T4-3D, a new part needed

to be designed to attach the new gimbal to the bottom plate of the fuselage. This was

due to the new gimbal having slightly different dimensions to the previous gimbal. With

the new part came a new design, where instead of letting the designed part hang from

the fuselage, the part would rather be fastened to the bottom plate, only allowing the

gimbal to be hung. This would prevent the previous issues from occurring. The new

designed gimbal attachment can be found in Figure 3.24. Once again, two identical

parts were required to be printed. The CAD drawing of the part can be found in

Appendix 3.2.

Placed between the holes

in the bottom plate of the

fuselage, where the part

would hang via a bolt.

A rod is placed through the

holes, where the gimbal would

be attached to the rod.

 46

Figure 3.24: New part designed to attach the gimbal to the aircraft’s bottom plate.

3.2.14.3 Leg Extension

When the first gimbal and the two parts were attached to the aircraft, another issue

occurred. The four legs that were currently attached to the aircraft were not long

enough to prevent the gimbal from touching the ground. To fix this, another part was

developed that allowed the legs to be extended. This part, which was also 3D printed,

can be referred to in Figure 3.25. The part was designed to be hollow at the top, which

allowed for a portion of the bottom of the original leg to be placed within the part. The

part was also designed to follow the curve of the leg. Since there were four legs on

the aircraft, this meant that four parts were required to be printed. These legs were

still used with the second gimbal. The CAD drawing of the leg extension can be found

in Appendix 3.3.

Figure 3.25: Part designed to extend the legs on the aircraft.

 47

3.2.14.4 GPS Case

During one of the test flights (which consisted of the Pixhawk 2.4.6 flight controller, the

first gimbal and the extension legs), the aircraft tipped over and crashed, resulting in

the case of the GPS module as well as the wiring of the GPS module being damaged.

To resolve this issue, a new GPS case needed to be designed. The designed case

had a similar design to the original GPS case. The case consisted of two parts, where

the top part had a concave shape and the bottom part had a cylindrical shape. Both

parts had a cube shape hollowed out to allow for the GPS module to have a snug fit

within the case. Since the GPS module needed to be positioned in a similar orientation

to the flight controller, the outside of the concave part had an arrow designed on it to

show the direction in which the GPS case needed to be positioned. The inside of the

concave part had tiny legs designed along the border of the hollowed shape to allow

the GPS module to be placed on the legs. A cylindrical hole was also designed on the

side of both parts to allow room for the cable to pass through. These parts, which can

be seen in Figure 3.26, were also 3D printed. The CAD drawing for the top and the

base of the GPS case can be referred to in Appendix 3.4.

Figure 3.26: (a) GPS case designed in CAD (b) GPS case opened

3.2.14.5 Webcam Case

A part was designed to attach the webcam to the Tarot T4-3D gimbal. This part

contained two cubes. The first cube was used to fill the space in the gimbal where the

GoPro normally would have been mounted. The second cube was hollowed out to

house the webcam, where it also contained a lid to secure the webcam inside the part.

The part had a cylindrical hole cut out to allow the lens of the webcam to be outside of

the part. To save time, Mr Martin Corlett, a colleague who worked in the same

laboratory, was approached to design the part. It appears in Figure 3.27. The CAD

drawing for the parts can be seen in Appendix 3.5.

 48

Figure 3.27: (a) the front of the webcam case (b) the back of the webcam case,

which is fastened to the Tarot T4-3D gimbal

3.2.15 Final Hardware Components
Table 3.3 includes a list of components, as well as the quantity that were used, for the

final design of the aircraft.

Table 3.3: List of components that can be found on the final design of the aircraft

Component Name of component Quantity
Frame DJI F550 Flame Wheel 1

Flight Controller Original Pixhawk 1 1

ESC Afro-ESC 30A with SimonK firmware 6

Brushless Motor Prop Drive 28-26s 1000Kv 6

Power Module 3DR power module 1

Receiver FrSky X8R 1

Telemetry 3DR 915MHz telemetry 1

Gimbal Tarot T4-3D 1

Companion Computer Odroid XU4 1

USB Hub Unitek USB3.0 4-Port Hub 1

Camera Logitech C920 HD webcam 1

Voltage Regulator Hobbywing UBEC 8A 1

Wi-Fi Module Wi-Fi N Module 1

FTDI Cable - 1

 49

Table 3.4 shows all other necessary components that were used, but were not placed

onto the aircraft.

Table 3.4: List of other components not directly used on the aircraft

Component Name of component Quantity
Transmitter FrSky Taranis Q X7 1

Router D-Link DSL-2750U modem 1

Ground Station Computer Acer Predator 17 inch laptop &

MacBook Pro 15 inch laptop

1

3.2.16 Final Aircraft Hardware Architecture
A block diagram for the final hardware architecture of the aircraft can be found in

Figure 3.28. Please take note of the direction of the arrows as some of the

components have a bidirectional (as in two-way) data transfer between them. The

black arrows represent the data transfer between the components and the red arrows

represent the power being provided straight to the components from the LiPo batteries.

Figure 3.28: Block diagram for the final hardware architecture of the aircraft

 50

3.2.17 Pixhawk Configuration
There are a number of peripherals connected to the Pixhawk flight controller. To help

explain the setup, the table below shows the devices that were connected to their

specific pinout on the Pixhawk. The schematic and pinout for the Pixhawk can be

found in Appendix 3.6.

Table 3.5: Peripherals connected to the Pixhawk

Device Pixhawk Pinout
Telemetry (915 MHz) TELEM 1

FTDI (Companion Computer) TELEM 2

GPS Module (GPS + Compass) GPS & I2C

Power Module POWER

Receiver RCIN

ESCs (x6) MAIN OUT 1 – MAIN OUT 6

Gimbal (pitch and yaw axes) AUX OUT 1 & AUX OUT 2

The connections between the telemetry, FTDI, GPS module and power module with

their respective Pixhawk pinouts can be found in Figure 3.29.

 51

Figure 3.29: Peripherals connected to the Pixhawk

Referring to Figure 3.29, it can be noted that the FTDI cable contained colour coded

cables within the cable. The colour of each wire and the pin it is connected to can be

seen in Table 3.6. Referring to Figure 3.29, in can also be noted that the red cable

was disconnected (as in not attached to the pin).

Table 3.6: Colour code of the wiring of the FTDI cable and their pinouts

Colour Pinout
Red VCC

White TX

Green RX

Blue CTS

Yellow RTS

Black GND

 52

The connections between the receiver, the six ESCs and the gimbal with their

respective pinouts can be found in Figure 3.30. The design for Figure 3.29 and Figure

3.30 was based off a similar design developed by Mr James Sewell (Sewell, 2019).

Figure 3.30: Receiver, gimbal and six ESCs connected to the Pixhawk

3.3 Software Architecture
This section will describe all the software programs that were used throughout the

research as well as discuss the firmware that was used on the flight controller.

3.3.1 Autopilot Software
As discussed in section 2.4, an autopilot software needs to be installed onto the

Pixhawk flight controller. Initially, when deciding which firmware would be used for

this research, the main focus was to use the most stable software currently available.

At the start of the research, the most commonly used software available was the one

developed by ArduPilot, of which there are different versions available. The specific

one that was used and installed onto the Pixhawk was the ArduCopter firmware as

this firmware is specifically designed for multirotor aircrafts. Since there are stable

 53

and beta versions of ArduCopter available, only the latest stable versions were ever

uploaded onto the Pixhawk.

However, when the decision was made to use ROS for this research project, the

Pixhawk’s firmware needed to be switched to a more ROS compatible firmware. The

decision was made to switch to PX4 firmware, where the most stable version was

always used. Even though ArduPilot was compatible with ROS, there were still a few

limitations to the way the firmware was integrable with ROS.

3.3.2 Ground Control Station Software
As discussed in section 2.5, the ground control station (GCS) is the software that is

installed onto a ground-based computer, used to communicate with a UAV. It was

decided that QGroundControl would be used as the main GCS software for this

research as it is supports both ArduPilot and PX4 firmware.

Before the aircraft could be taken for a test flight, the following needed to be set up via

QGroundControl to use ArduCopter on the aircraft:

• Uploading the ArduCopter firmware onto the Pixhawk.

• Calibrating the Pixhawk’s compass.

• Calibrating the Pixhawk’s gyroscope.

• Calibrating the Pixhawk’s accelerometer.

• Calibrating the Pixhawk’s level horizon.

• Calibrating the transmitter and assigning its channels to the Pixhawk

(e.g. channel 6 on the transmitter will arm the aircraft).

• Selecting which flight modes to be available for use by the aircraft.

The above were also needed to be set up for the Pixhawk when running PX4 firmware.

The following additional steps were required for setup:

• Maximum voltage per battery cell.

• Minimum voltage per battery cell.

ArduPilot and PX4 offer numerous flight modes to be used on a multirotor aircraft.

However, only 6 were selected for use with the ArduPilot firmware and 7 were selected

 54

for use with the PX4 firmware. Table 3.7 and Table 3.8 show the flight modes that

were selected for each firmware, as well as a description of the flight mode.

Table 3.7: Description of the flight modes used on the aircraft while using ArduPilot

firmware (ArduPilot, 2019)

Flight mode Description of flight mode
Acro Holds its attitude, but has no self-levelling.

Stabilize Self-levels itself along the roll and pitch axis.

PosHold Holds it altitude and position by using the GPS. However,

it has manual roll and pitch when the transmitter sticks

are not centred.

Loiter Holds its altitude and position by using the GPS.

Auto Performs a pre-defined autonomous mission.

RTL (return to land) Returns and lands at the take-off location.

Table 3.8: Description of the flight modes used on the aircraft while using PX4

firmware (PX4, 2019c)

Flight Mode Description of flight mode
Acro Holds its attitude, but has no self-levelling.

Stabilized Self-levels itself along the roll and pitch axis.

Position Holds it altitude and position by using the GPS.

However, it has manual roll and pitch when the

transmitter sticks are not centred.

Mission Executes a pre-defined mission/flight plan.

Return Aircraft ascends to a safe height and returns to its home

position, where it will land.

Land Lands at the current location.

Offboard Obeys a position, velocity or attitude setpoint provided

over MAVLink (often from a companion computer).

Other GCS software that was used to some extent were Mission Planner and

MavProxy. Mission Planner is a GCS software similar to QGroundControl. However,

the software is limited to only ArduPilot. Also, the graphical user interface (GUI) of the

 55

software is not as user friendly as QGroundControl. MavProxy is a command line

ground control station. However it was barely used due to its having a limited GUI

interface.

3.3.3 PX4 Parameters
There were numerous parameters that needed to be adjusted in order to allow the

aircraft to perform autonomous landing by making use of the companion computer.

The parameters that were adjusted on the PX4 firmware on the flight controller can be

referred to in Appendix 3.7.

3.3.4 Companion Computer Software
The following operating system and software were installed and used on the

companion computer.

3.3.4.1 Operating System

As discussed in section 3.2.10, an eMMC was purchased as the storage device for

the Odroid XU4. There were two choices between which operating system could be

used on the Odroid. They were Android and Linux. The decision was made to opt for

Linux as ROS only works on Linux. The version of Linux that came on the eMMC was

Ubuntu Mate, which is a less processor demanding operating system than the original

Linux Ubuntu. On the arrival of the computer and the eMMC, the operating system

was immediately upgraded to the latest version available, which at the time was

Ubuntu Mate 16.04.3-4.14. This was done by downloading the latest image file (.iso

file) from Hardkernel’s website. The image was flashed to the eMMC module by using

Etcher software.

3.3.4.2 ROS

Once the operating system was installed, robot operating system (ROS) was installed

onto the Odroid. The ROS version that was installed and used throughout the

research was ROS Kinetic. The installation was followed based on the installation

guide available on the ROS website. In order to use ROS, a workspace was needed

to be created to store all the packages, scripts of code and launch files that would be

used. For this research project, the workspace that was developed was called

 56

hexaircraft_ws and the package where all the scripts were developed in was called

hexaircraft.

3.3.4.3 Terminator

When it came to developing the code, the fact that the terminals that were used were

scattered around the computer screen, was frustrating. To rectify this, a program

called Terminator was installed. This helped group the terminals neatly as well as

provide for a layout to be set up, allowing for multiple terminals to be opened and

perform a unique task, all via the execution of one command in a terminal. This helped

save a lot of time when having to restart and open the terminals when developing the

code. An example of Terminator being used as well as its layout can be found in

Figure 3.31.

Figure 3.31 Terminator used to group terminals

3.3.5 Tarot Gimbal Software
Both Tarot gimbals that were used offer software available to allow parameters to be

adjusted and calibrations to be made on the gimbal. Figure 3.32 shows a screenshot

 57

of the software that was used, where the parameters that were set for the gimbal can

be seen.

Figure 3.32: Tarot Gimbal Software

3.3.6 Virtual Machine Software
In order to write scripts and develop code for the companion computer to use, it was

decided that the code would first be developed, either on a laptop or PC, then

transferred across to the companion computer. This would allow for the code to be

tested on a simulator before testing it on the actual aircraft (refer to chapter 6 to see

more information on the simulation). To be able to write the code on the laptop (which

was a Windows operating system laptop), a virtual machine was used to run Linux

Ubuntu in parallel with the Windows operating system, allowing for both systems on

the laptop to be used simultaneously. The only downside is that a virtual machine is

not granted as much processing power as compared to the Windows system. The

virtual machine software that was used was Oracle VirtualBox, which was downloaded

for free from their website. An extension pack was also downloaded off their website,

which supported extra features such as having support for USB 2.0 and USB 3.0

devices.

 58

The virtual machine was also used to run ROS on the ground station computer to send

commands through to the companion computer when a task needed to be performed.

This was done by using the network that was established by the D-Link router.

3.3.7 Virtual Network Computing Software
Initially during testing of the actual aircraft on the field, a computer monitor, HDMI

cable, keyboard and a mouse had to be taken to the field to set up the computer as

well as to run all the necessary programs and scripts to use ROS alongside the aircraft.

This become a tedious process as well as energy consuming (having to run back and

forth between the aircraft and the ground station computer) to get the complete system

up and running. To solve this problem, a VNC system was setup over the network.

Virtual network computing (VNC) is a graphical desktop sharing system that allows a

person to control the desktop interface of one computer from another computer or

mobile device remotely (Raspberry Pi, 2017). The computer that is required to be

remotely controlled needs to be running a VNC server whilst the computer that is going

to be used to control the other computer remotely needs to be running a VNC viewer.

Therefore, a VNC server needed to be set up on the companion computer and a VNC

viewer needed to be set up on the ground station computer (as in the laptop). The

software installed on the companion computer was called X11VNC Server and the

software installed on the ground station computer was VNC Viewer. The VNC Viewer

that was used in this research can be found in Figure 3.33.

Figure 3.33: VNC Viewer running on a MacBook Pro laptop

 59

3.4 Conclusion
In this chapter, the dynamics of the aircraft were explained and the components used

for the research and the integration of the hardware discussed. The setup of the flight

controller was explained, shedding light on how the flight controller was connected to

its peripherals as well as how the software was set up. Other software that was used

throughout the research was discussed, emphasising its relevance. The next chapter,

Vision System, will discuss the importance of the system and how it was established.

 60

Chapter 4: Vision System
From the beginning of this research, it became evident that the most important part of

this research would be the vision system. This chapter will be divided into three

sections. The first will discuss the reason for using Robot Operating System (ROS)

for the vision system; the second will deal with the use of the vision system to help

land the aircraft; and finally the third will explain how the vision system is used for

human detection.

4.1 Using Robot Operating System
One of the main factors that needed to be addressed was how the vision system would

be developed due to the numerous software and programming libraries available on

the internet. However, there were two approaches that stood out from the rest. The

first approach was to integrate OpenCV libraries into the vision system and then

command the aircraft to move to a new position via MAVLink. The second approach,

which was suggested by Prof. Riaan Stopforth, was to use ROS to integrate the whole

system, where the vision system would be developed within the system.

The following tables show the advantages and disadvantages to both approaches.

Table 4.1: Using OpenCV for the vision system

Advantages Disadvantages
OpenCV is open source (free to use). OpenCV is complicated to use.

OpenCV is fast due to it predominantly

written in C/C++ .

Not a seamless integration with the

aircraft.

OpenCV library has over 2500

optimized algorithms available to help

with practically any vision detection

scenario (OpenCV, 2019).

Has a community of 47 000 people to

help with issues (OpenCV, 2019).

 61

Table 4.2: Using ROS to develop the entire system

Advantages Disadvantages
ROS is open source (free to use). ROS is initially complicated to use.

Allows for the complete system to be

integrated seamlessly (including the

aircraft).

The only official supported languages are

Python, C++ and Lisp (with Java and Lua

currently being experimented).

Has over 3000 packages available to

be used within a project (e.g. OpenCV

can be used within ROS) (ROS,

2019c).

ROS provides great tutorials on its

website to learn to use the system.

Great community available to help with

solving issues.

The decision was made to use ROS for this research mainly due to the seamless

integration between all the major components of the system.

As discussed in section 3.3.4.2, the version of ROS used for this research was ROS

Kinetic. Table 4.3 contains a list of the main ROS packages that were used in the

ROS build, the author of the package as well as a description of the package.

 62

Table 4.3: ROS packages used in the build

ROS Package Author Description of the Package
mavros Vladimir Ermakov Communication driver for

various autopilots with MAVLink

communication protocol. Used

to translate code developed in

ROS into MAVLink commands

for the aircraft to understand

and follow (ROS, 2018c).

aruco_ros Rafael Muñoz Salinas,

Bence Magyar

Provides real-time marker

based 3D pose estimation using

ArUco markers (ROS, 2014).

darknet_ros Marko Bjelonic Real-time object detection

system (ROS, 2018a).

usb_cam Benjamin Pitzer ROS driver for V4L USB

cameras (ROS, 2016a).

camera_calibration James Bowman, Patrick

Mihelich

Allows for the calibration of

monocular or stereo cameras

using a checkerboard

calibration target (ROS, 2017).

rqt Dirk Thomas, Dorian

Scholz, Aaron Blasdel

Framework for GUI

development for ROS (ROS,

2016b).

video_stream_opencv Sammy Pfeiffer Contains a node to publish a

video stream (e.g. from a pre-

recorded file) (ROS, 2018b).

4.2 Camera Calibration
In order to use a camera in ROS, the first step to perform is to calibrate the camera.

As discussed in section 3.2.11, the Logitech C920 webcam was purchased to be used

on the aircraft. Therefore, the webcam was used in ROS. A camera calibration guide,

developed by Robotics with ROS, was followed to help with this calibration process

(Robotics with ROS, 2017).

 63

The first step was to disable the autofocus of the camera. This was to prevent the

camera from auto adjusting itself during the calibration process as well as when the

camera was being used for the vision system. This was done by installing software

on Ubuntu called uvcdynctrl and disabling the autofocus within the software.

The second step was to run the usb_cam package to connect the webcam to ROS.

The camera in ROS was called:

 /usb_cam

The video feed in ROS was published to the topic:

/usb_cam/image_raw

To view the video feed, the program rqt was used, which was a GUI development for

ROS.

Figure 4.1: Camera calibration being performed using the checkerboard (Shipitko,

2017)

To perform the calibration, the ROS package camera_calibration was used, where a

checkerboard calibration target was shown to the camera. The checkerboard used

can be found in Appendix 4.1. The checkerboard contained black and white squares,

where the camera would measure the distance between the inner corners of the

squares. An example of this calibration being implemented can be seen in Figure 4.1.

The size of the checkerboard was 8x6 (which means the number of inner corners was

 64

8x6) and the size of each square was 25.7 mm. The checkerboard was printed on an

A4 sheet of paper. The checkerboard was then:

1. Moved in front of the camera in a vertical and horizontal position.

2. Moved closer and further away from the camera.

3. Tilted (skewed) in different directions towards the camera.

Once the calibration was complete, the calibration data was saved in a .YAML file and

placed in the ROS directory on the computer, where it could be used by any ROS

package that wishes to use the calibration data.

4.3 ArUco Marker Detection
One of the main objectives for this research was to develop a vision system to help

with the landing of the multirotor aircraft. It was decided that fiducial markers,

specifically ArUco markers, would be used to be detected by the vision system. This

was decided because the ArUco marker was able to provide a positional and

orientational estimation (pose estimation) based on where the ArUco marker was

positioned in relation to the camera. This would help the aircraft to align itself with the

marker and then land on the marker, resulting in a potential accurate landing system.

To use ArUco markers with this system and specifically in ROS, the package

aruco_ros was used (where the original ArUco dictionary was used within the

package). This package was downloaded from the GitHub page assigned for

aruco_ros. The package works by taking the topic (image:=/usb_cam/image_raw)

published by the usb_cam package and then perform a check for any ArUco markers

that have the same ID as the ID that had been pre-set by the aruco_ros package. For

example, if an ID of 5 had been set in the aruco_ros package, the package would only

search in the video feed for an ArUco marker that had an ID of 5. For this entire

research, an ArUco marker with an ID of 7 was used. This specific marker can be

seen in Figure 4.2. The aruco_ros package was run by using the launch file available

in its package.

 65

Figure 4.2: ArUco marker with an ID of 7

If the aruco_ros had detected the marker with the same ID as the one requested, the

package had a topic that it would publish to, where the detected marker as well as the

marker’s axes (x, y and z) were shown in the video feed. The video feed (which was

viewed using the rqt package) for this published topic was called:

 /aruco_single/result

The positional and orientational estimation from the marker was published to a

separate topic, called:

 /aruco_single/pose

This topic could be broken into two sections (with a total of 7 values outputted to the

topic):

1. Positional estimation: in the form of a co-ordinate

• X co-ordinate

• Y co-ordinate

• Z co-ordinate

2. Orientational estimation: in the form of a quaternion

• W – scalar number

• X – imaginary number

• Y – imaginary number

• Z – imaginary number

 66

This topic was available to be used and integrated into a node that could be self-

developed. A node called determinepose.cpp was developed, where this topic was

subscribed to (more information on this in section 5.1.3.1).

4.4 Human Detection
This section will be broken into four sections:

1. Discussing the use of the Darknet: YOLO package with ROS.

2. Calculating the ground distance between the aircraft and the detected person.

3. Calculating the angle to centre the person in the frame.

4. Calculating the new coordinates for the aircraft to fly towards.

4.4.1 Using Darknet: YOLO with ROS
 As discussed in section 2.10.2, Darknet’s YOLO is an open source neural network

used for object detection. A ROS package called darknet_ros was developed, which

allows YOLO to be integrated into a ROS project. As discussed in section 2.10.2,

YOLO, based on the COCO dataset, is able to detect 80 objects, where one of the

objects that it is able to detect is a person. This package was downloaded from the

GitHub page that is assigned for darknet_ros. It must be noted that the Odroid XU4

companion computer was not capable of running Darknet’s YOLO due to the

insufficient processing power available. As a result, all the human detection aspects

of this research were performed in a simulation on a desktop computer (more

information on this in section 6.3).

In order to use the darknet_ros package, the first step was to choose which version of

YOLO would be used for the vision system. The version of YOLO used for this

package was tiny YOLO version 3 (referred to as YOLOv3-tiny). In order to use this

version, the following two files were downloaded from Darknet YOLO’s website:

1. yolov3-tiny-voc.cfg (the file stores the configuration for the neural network)

2. yolov3-tiny.weights (the file contains the trained weights for the neural network)

Another file, yolov3.yaml, was duplicated and renamed to yolov3-tiny.yaml (this file

contains the objects/classes that can be detected as well as the detection probability

threshold).

 67

In order to use the Logitech C920 webcam to detect objects using darknet_ros, a file

in the package needed to be amended. The ros.yaml file was configured to use the

topic that would be published by the usb_cam package. This topic was called:

/usb_cam/image_raw

If a pre-recorded video file was wanted to be run through darknet_ros instead of using

a webcam, the above topic would need to be replaced with the topic (being published)

that contained the pre-recorded file. In order to do this, a package called

video_stream_opencv was used. This package was used when performing the testing

for human detection (refer to section 6.3). The topic that was published by this

package, containing the pre-recorded video file, was:

 /videofile/image_raw

Once the launch file had been run, the video feed was searched for any possible

objects. If the ROS package detected a possible object, it would give a probability that

the detected object was correct. If the probability of the correct type of object detected

was higher than the probability threshold that was set in the yolov3-tiny.yaml file,

information based on the object would be published to a topic called:

 /darknet_ros/bounding_boxes

A bounding box would also appear around the detected object in the video feed (where

this was published to a separate topic). An example of a bounding box around a

detected object can be seen in Figure 4.3.

 68

Figure 4.3: Person detected on a field, where a bounding box was estimated

 The following information was published to the /darknet_ros/bounding_boxes topic, if

an object was detected:

1. Class

2. Probability

3. Xmax

4. Xmin

5. Ymax

6. Ymin

The bounding box was based on the resolution of the video feed, where it gave the

position at a specific pixel. For example, if a video feed had a resolution of 1920x1080

(Full HD), the maximum Xmax value possible would be 1920 and the maximum Ymax

value possible would be 1080. All bounding boxes were based on the origin being in

top left corner of the screen.

The topic containing the bounding box information was available to be used and

integrated into a node that could be self-developed. A node called boxinfo.cpp was

developed, where this topic was subscribed to (more information on this in section

5.2.2.2).

 69

4.4.2 Calculating the ground distance
If the idea is to develop a multirotor aircraft that can detect and follow a person, some

necessary calculations will be required. One of the first calculations is to calculate the

ground distance that the aircraft is away from the person.

Below is an example, where the aircraft is at an altitude of 10 metres and the person’s

bounding box (detected by darknet_ros) has a Ymax of 380 pixels .

Figure 4.4: Diagram demonstrating the frame seen by the camera

The red dotted line represents the frame that is seen by the camera. The green box

represents the bounding box that formed around the person, determined by using

darknet_ros. The reason that the green box appears to be floating is because it

resembles the person not being exactly at the bottom of the frame but actually standing

at some distance away from the camera, resulting in the person being higher up in the

frame. The webcam will be set at 45º by adjusting the angle of the gimbal that is

holding the camera. The orange dotted line resembles the altitude that the aircraft is

above the ground. For demonstration purposes, the altitude will be set at 10 metres.

Ym
ax

43.3º 10 m
etres

45º

66.25º

𝜃

𝛽

Logitech
C920

Webcam

Person

 70

To perform the calculations, the camera’s field of view was required. The webcam

had the following specifications (Logitech Apps, 2019):

Diagonal field of view (FOV) = 78º

Horizontal FOV = 70.42º

Vertical FOV = 43.3º

Focal length = 3.67mm

The resolution of the video feed was set at 640 x 480 pixels. This was because the

Odroid XU4 companion computer struggled to handle the video processing of the

camera’s capable 1920 x 1080 (Full HD) resolution. However, the actual test was only

performed on the simulation and not on the Odroid.

The ground distance calculation will be broken into two sections:

1. Calculating the distance of the aircraft from the bottom of the video frame.

2. Calculating the distance of the person within the video frame.

4.4.2.1 Calculating the distance of the aircraft from the bottom of the video frame

Figure 4.5: Angle between the aircraft and the bottom of the camera’s field of view

𝛽 = 45° − !"."°
%

𝛽 = 23.35°

𝛽

∅

10 m
etres

Β

 71

∅ = 180° − 90° − 23.35°

∅ = 66.65°

Β = tan(𝛽) × 10

Β = tan(23.35°) × 10

Β = 4.32	metres

4.4.2.2 Calculating the distance of the person within the video frame

Figure 4.6: Angle between the aircraft and the top of the camera’s field of view

𝛿 = 45° + !"."°
%

𝛿 = 66.65°

Τ = tan(𝛽) × 10

Τ = tan(66.65°) × 10

Τ = 23.16	metres

𝛿

10 m
etres

𝛾

Τ

 72

Figure 4.7: Angles within the cameras field of view

𝛼 = 180° − ∅

𝛼 = 180° − 66.65°

𝛼 = 113.35°

𝜃 = 180° − 113.35° − 43.3°

𝜃 = 23.35°	

Figure 4.8: Triangle formed within the camera’s field of view

Η = &'()&*&	,-./)0'1	2)(-13
456(8)

 (4.1)

Η = !:;
456(%"."<°)

Η = 1211.06 ≅ 1211	𝑝𝑖𝑥𝑒𝑙𝑠

To determine the distance with respect to only the video frame, the Ymax from the

bounding box of the person needs to be used.

480 (m
axim

um

vertic
al pixe

ls

of th
e fra

me)

𝜃

43.3º

𝛼

23.35º

Η

 73

𝑃𝑖𝑥𝑒𝑙𝑠	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑏𝑜𝑡𝑡𝑜𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑓𝑟𝑎𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙	𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠 − 𝑌𝑚𝑎𝑥 (4.2)

𝑃𝑖𝑥𝑒𝑙𝑠	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑏𝑜𝑡𝑡𝑜𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑓𝑟𝑎𝑚𝑒 = 480 − 380

𝑃𝑖𝑥𝑒𝑙𝑠	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑏𝑜𝑡𝑡𝑜𝑚	𝑜𝑓	𝑡ℎ𝑒	𝑓𝑟𝑎𝑚𝑒 = 100	𝑝𝑖𝑥𝑒𝑙𝑠

The distance of the person in the frame can be calculated by using linearization. This

is done by comparing the size of the two triangles, seen in Figure 4.9

Figure 4.9: Same triangle as in figure .

Figure 4.10: Smaller triangle formed underneath the bounding box of the person

Κ = =;;
456(%"."<°)

 (4.3)

Κ = 252.30 ≅ 252	pixels

100 Pixels

100 Pixe
ls

Κ

23.35º

Η

23.35º

Person

Person

 74

By linearization:
%<%.";
=%==.;>

= (
(?@A)

 (4.4)

𝑥 = %<%."
=%==.;>

× (23.16 − 4.32)

𝑥 = 3.92	𝑚𝑒𝑡𝑟𝑒𝑠

Therefore, the total ground distance between the aircraft and the person is:

𝑡𝑜𝑡𝑎𝑙	𝑔𝑟𝑜𝑢𝑛𝑑	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑥 + Β (4.5)

𝑡𝑜𝑡𝑎𝑙	𝑔𝑟𝑜𝑢𝑛𝑑	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 3.92 + 4.32

𝑡𝑜𝑡𝑎𝑙	𝑔𝑟𝑜𝑢𝑛𝑑	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 8.24	𝑚𝑒𝑡𝑟𝑒𝑠

It must be noted that the aircraft should only move forward by the calculated distance

of the person in the video frame (in the case of the above example, 3.92 metres). This

is because you do not want the aircraft to fly to the exact point where the person is

positioned or else the person will no longer be in the video feed. Therefore, throughout

the rest of this dissertation, the ground distance will refer to the calculated distance of

the person in the video frame.

The abovementioned calculations will be implemented into a script to be used by the

vision system. With regard to the script that will be developed, the altitude and the

vertical resolution will need to be stored in separate variables, allowing them to be

adjusted easily, if need be.

4.4.3 Centre a person in the frame
Figure 4.11 shows a top view of an aircraft, where it has detected a person and

calculated the bounding box for the person. The idea is to calculate the angle the

aircraft needs to rotate by making use of the bounding box, the horizontal resolution

of the video feed and the horizontal field of view of the camera.

With regards to the bounding box, the midpoint will be used. This can be calculated

by:

 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔	𝑏𝑜𝑥	 = B&'(CB&)D
%

 (4.6)

 75

Figure 4.11: Top view of the aircraft detecting a person

To determine whether the aircraft needs to rotate left or right:

 𝑅𝑜𝑡𝑎𝑡𝑒 = /E/'1	FE.)GED/'1	2)(-13
%

−𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡	𝑜𝑓	𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔	𝑏𝑜𝑥 (4.7)

If 𝑅𝑜𝑡𝑎𝑡𝑒 is negative, the aircraft must rotate right and if its positive or equal to zero,

the aircraft must rotate left.

Therefore, the angle to rotate the aircraft has two formulas depending on the direction

the aircraft needs to rotate:

1. Aircraft needs to rotate right:

𝐴𝑛𝑔𝑙𝑒	𝑡𝑜	𝑟𝑜𝑡𝑎𝑡𝑒	𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡	𝑟𝑖𝑔ℎ𝑡 = HE.)GED/'1	IJK
%

×
!"#$%!"&'

(
)*+&,*'-#.	012*.3-&*'

(

 = HE.)GED/'1	IJK
%

× B&'(CB&)D
HE.)GED/'1	L-3E1*/)ED

 (4.8)

2. Aircraft needs to rotate left:

𝐴𝑛𝑔𝑙𝑒	𝑡𝑜	𝑟𝑜𝑡𝑎𝑡𝑒	𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡	𝑙𝑒𝑓𝑡 = HE.)GED/'1	IJK
%

×
)*+&,*'-#.	012*.3-&*'

(@(!"#$%!"&')
(

)*+&,*'-#.	012*.3-&*'
(

 = HE.)GED/'1	IJK
%

× HE.)GED/'1	L-3E1*/)ED@(B&'(CB&)D)
HE.)GED/'1	L-3E1*/)ED

 (4.9)

Equation 4.8 and Equation 4.9 will be applied to a script to perform the calculation.

𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥

𝑡𝑜𝑡𝑎𝑙	ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠
2

𝛼
2

Bounding box

Aircraft

 76

4.4.4 Developing coordinates for the aircraft using the calculated ground
distance and calculated angle
The idea was to develop a method that could calculate a coordinate for the aircraft to

fly to, based on the bounding box that was formed using the darknet_ros package.

To calculate the new potential coordinate, the following will need to take place:

1. Use the calculated ground distance.

2. Use the calculated angle that the aircraft needs to rotate towards, as well as

the angle that the aircraft is rotated by at the time of the calculation (in other

words, the direction that the aircraft is facing).

3. The new coordinate will be calculated based on a cartesian coordinate system,

where the aircraft’s home position and current position will be used.

Before continuing with the calculation, the aircraft’s frame of reference needs to be

discussed. The aircraft’s frame of reference has been established by PX4. PX4 uses

a FRD (X Forward, Y Right and Z Down) for the local body frame and NED (X North,

Y East and Z Down) for the local world frame. However, the ROS frame is different to

the PX4 frame. Table 4.4 explains what frame is used for ROS and PX4 and Figure

4.12 demonstrates the frames used for ROS and PX4.

Table 4.4: Frame of reference for ROS and PX4

Frame ROS PX4
Body FLU (X Forward, Y Left and Z

Up)

FRD (X Forward, Y Right and Z

Down)

World ENU (X East, Y North and Z

Up)

NED (X North, Y East and Z

Down)

 77

Figure 4.12: Frame of reference for ROS and PX4, where North East Down (NED)

on the left and East North Up (ENU) on the right (PX4, 2019h)

The following is an example of how the new co-ordinate would be calculated if the new

co-ordinate formed in the first quadrant relative to the aircraft. For this example, the

aircraft is currently at the co-ordinate (-2:5). A distance of 17 metres will be used as

the calculated ground distance for the example.

Figure 4.13: Example to demonstrate how the co-ordinate is calculated

Home Position
(0 ; 0)

Current Position

(2 ; 5)

y

x

New Destination

(y ; x)
17 metres

 78

Figure 4.14: Angles around the aircraft used to calculate the new co-ordinate

The angle 𝛼 is the angle that the aircraft is facing after it has rotated to centre the

person in the middle of the frame. This angle can be determined by reading the

quaternion from the aircraft, then converting the quaternion to an Euler angle to obtain

the rotated angle about its z axis.

For now, 𝛼 will be approximated at 70º for demonstration purposes.

𝜃 = 90° − 𝛼

𝜃 = 90° − 70°

𝜃 = 20°

Thus, T and K can be calculated:

Τ = 17 × cos(20°)

Τ = 15.97	𝑚𝑒𝑡𝑟𝑒𝑠

	

Κ = 17 × sin(20°)	

Κ = 5.82	𝑚𝑒𝑡𝑟𝑒𝑠

Κ 𝛼

𝜃

𝜔

𝛾

17 metres

New Destination
(y ; x)

Τ

 79

Therefore, the y and x co-ordinates are as follows:

𝑦 = 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡	𝑦	𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 − Τ (4.10)

𝑦 = 2 − 15.97

𝑦 = −13.97

𝑥 = 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡	𝑥	𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 + Κ (4.11)

𝑥 = 5 + 5.82

𝑥 = 10.82

This example was used to illustrate the principles that will apply. However, as

mentioned, this example was based on the new co-ordinate being in the first quadrant

(refer to Figure 4.14). Since there are four quadrants (based around the aircraft) that

the new co-ordinate could be positioned at, the principles above would need to be

adapted accordingly when developing the script to move the aircraft using ROS.

Figure 4.15: Quadrants around the aircraft

x

y

Quadrant 1 Quadrant 2

Quadrant 3 Quadrant 4

 80

4.5 Conclusion
To conclude this chapter, the reasoning behind using ROS to integrate the whole

system (including the vision system) was mentioned. The ROS packages used

throughout the research were discussed in detail. A camera calibration was performed

for the Logitech C920 webcam. The vision system for the landing of the aircraft and

the vision system for the human detection system were discussed. Calculations for

both the landing system and the human detection system were performed. The next

chapter, Integrated System, discusses how the vision system was integrated with the

aircraft by using ROS.

 81

Chapter 5: Integrated System
The following chapter will explain how the entire system is integrated. Since ROS was

used in the system, this chapter will mainly expand upon how ROS was used to

integrate the system. Certain sections of code from the scripts that were developed

and used in the system will be discussed in detail. The landing system and the human

detection system will be discussed, where all the necessary calculations will be set out

in detail. Flow charts will be included for the landing system and the human detection

system. Finally, a user requirements specification for this system will be discussed.

5.1 The Landing System
This section will discuss why the landing system was developed, provide a basic

overview of how the system works, as well as discuss the design of the system in

detail, explaining all the scripts that were developed for the system. A flow chart will

also be used to show how the system works.

5.1.1 Reasoning behind developing the landing system
Before discussing how the landing system was developed, the reasoning behind

developing the system needs to be explained. Currently, the Pixhawk flight controller

has the ability to be flown autonomously by making use of the GPS module mounted

onto the aircraft. This GPS module would also be used to land the system

autonomously. However, the GPS module, which contained a Neo-M8N GPS (as well

as a compass) module, had the following statistics that were obtained from its

datasheet (u-blox, 2015):

• Horizontal accuracy: 2.5 metres (autonomous)

• Heading accuracy: 0.3 degrees

This horizontal accuracy would not be sufficient if the aircraft was required to land in

an accurate position (e.g. if a charging docking station is developed for the aircraft,

where the docking station has a top plate of 1.5 x 1.5 mitres).

There were other methods available at the time to help with the precision landing of

an aircraft. These methods were:

1. Real Time Kinematic (RTK) GPS: A more advanced GPS system that attempts

to eliminate the possible errors by making use of a second GPS receiver

 82

positioned at the ground control station. The system is able to obtain

centimetre-level accuracy (PX4, 2019d).

2. IR-Lock Sensor: This is a sensor (that is installed onto the bottom of the aircraft)

that detects a MarkOne beacon that is positioned at the specified landing spot.

The system claims to obtain a precision landing of roughly 10cm (PX4, 2019e).

However, using one of these systems would result in additional expenditure in respect

of the aircraft. Since a camera was already going to be installed onto the aircraft that

would be used for human detection, the idea was to integrate a landing system into

the entire system, making use of the camera.

5.1.2 Basic overview of the landing system
Before going into detail, a basic overview of the landing system is provided as follows:

1. The aircraft’s flight mode is switched to Offboard mode via a node.

2. The aircraft will arm itself, take off and become airborne.

3. A node is run to inform ROS that the landing system is to commence.

4. The vision system will search for the ArUco marker positioned on the ground.

5. The system will reposition the aircraft over the ArUco marker, where the aircraft

will hover directly above the marker.

6. Once the aircraft is above the ArUco marker, a timer will start, warning the

ground control station that the aircraft is about to be rotated.

7. The system will begin to rotate the aircraft to align the aircraft with the

orientation of the ArUco marker. The system will have a couple of seconds to

rotate the aircraft.

8. After the time has elapsed, the system will cause the aircraft to descend,

constantly keeping it positioned over the marker. If the aircraft drifts out of a

horizontal tolerance range that has been set, the system will stop the aircraft

from descending and force it to be repositioned directly above the marker.

9. The system will land the aircraft on top of the ArUco marker, where the aircraft

will be automatically disarmed.

 83

5.1.3 Design
There were two projects that assisted the development of the landing system:

1. PX4 had an offboard example available on their website, where a multirotor

aircraft was able to take off and hover at an altitude of two metres. This project

provided a platform to start from, where new code could be developed and

implemented (PX4, 2019f).

2. Aerial Robotics had developed code where a multirotor aircraft was able to take

off, detect an ArUco marker and hover above a ArUco marker, all being run in

Gazebo simulation software. They also made use of PX4’s offboard example.

Aerial Robotics’ ROS package could be found on their GitHub page (Aerial

Robotics, 2019). This package helped demonstrate how an aircraft could be

moved, based on detecting an ArUco marker.

These were the following nine ROS nodes that were developed for the landing system

(where the nodes were written in C++ language):

1. determinepose.cpp: It’s purpose is to determine the co-ordinates that the

aircraft needs to fly towards. This is the script that performs all the necessary

calculations to align the aircraft with the ArUco marker and land on the marker

autonomously.

2. flyaircraft.cpp: Its main purpose is to communicate commands to and from the

aircraft via MAVROS.

3. talker_autoland.cpp: It’s purpose is to choose how the aircraft should be flown.

4. talker_coordinates.cpp: It allows the aircraft to be manually repositioned.

5. talker_descent.cpp: It changes the descending velocity of the aircraft.

6. talker_velocity.cpp: It changes the horizontal velocity of the aircraft.

7. talker_flightmode.cpp: It chooses the flight mode for the aircraft.

8. talker_quat.cpp: It allows the aircraft to be manually rotated by using a

quaternion.

9. listener_status.cpp: This is the script used to receive all the commands that

have been executed on the aircraft.

 84

5.1.3.1 determinepose.cpp

The script was also used by the human detection system (more information on this in

section 5.2.2.1). The following table is a list of subscribed topics (topics that provide

information) that were contained in the node to be used in the landing system:

Table 5.1: The topics subscribed to in the determinepose.cpp node

Topic Description of the topic
CoordinatesFromUser Coordinates received from the

talker_coordinates.cpp script.

QuatFromUser Yaw the aircraft by sending a quaternion from the

talker_quat.cpp script.

VelocityFromUser Horizontal velocity received from the

talker_velocity.cpp script.

DescentFromUser Descending velocity received from the

talker_descent.cpp script.

AutolandFromUser How the aircraft should be flown, which is received

from the talker_autoland.cpp script.

FlightmodeFromUser Flight mode received from talker_flightmode.cpp

script.

mavros/state Receives the current state from the aircraft via

MAVROS (e.g. whether the aircraft is armed or

not).

mavros/imu/data Receives the aircraft’s IMU data via MAVROS in

the form of a quaternion.

mavros/local_position/pose Receives the aircraft’s local position and

orientation via MAVROS.

aruco_single/pose Receives the ArUco marker’s position and

orientation relative to the aircraft’s current position

and orientation.

mavros/global_position/rel_alt Receives the aircraft’s current relative altitude, via

MAVROS, from where the aircraft was armed.

 85

The following table is a list of published topics (publishing topics for the other nodes

to use) that were contained in the node to be used by the landing system.

Table 5.2: The topics published to in the determinepose.cpp node

Topic Description of the topic
aircraftpose_pub Publishes the determined position and orientation

for the aircraft.

StatusFromAircraft Publishes all the current commands that are taking

place (e.g. when the aircraft is about to rotate).

In order for the aircraft to reposition itself above the ArUco marker, the following took

place:

1. The positional information of the marker was used. Since the marker’s frame

of reference was different to the aircraft’s frame of reference, the marker’s

positional information had to be converted in order for the aircraft to use it

correctly. This is due to PX4’s FRD frame (as discussed in section 4.4.4). The

coordinate conversions implemented were:

• aircraft’s x coordinate = - (ArUco marker’s y coordinate)

• aircraft’s y coordinate = - (ArUco marker’s x coordinate)

• aircraft’s z coordinate = - (ArUco marker’s z coordinate)

These coordinates were stored in a 1 x 3 matrix.

2. To stabilise the aircraft above the ArUco marker, the above calculated co-

ordinates had to be multiplied by the aircraft’s IMU. The IMU data, which was

initially in the form of a quaternion, was converted into a rotational matrix (3 x 3

matrix) to be able to be multiplied to the co-ordinates matrix. This multiplication

forms a 1 x 3 matrix, representing how far away the aircraft is from the ArUco

marker in form of an x, y and z coordinate value.

3. The aircraft’s current local position was added to the newly calculated x, y and

z values. This step was crucial as it would allow the ArUco marker to be placed

anywhere, irrespective of where the aircraft was armed. This will even allow

the aircraft to follow the ArUco marker if it was mounted onto a moving object.

 86

In order to rotate the aircraft so that it could properly aligned with the ArUco marker,

the following took place:

• The aircraft first needed to be hovering above the ArUco marker. A tolerance

was developed, allowing the aircraft to rotate even if the aircraft was not directly

above the marker. This tolerance value was scaled, meaning that if the aircraft

was further away from the marker, the tolerance range was greater and if the

aircraft was closer to the marker, the tolerance range was smaller.

• Since the ArUco markers’ frame of reference was different to the aircraft’s frame

of reference, the marker’s orientation (as in quaternion) needed to be converted

for the aircraft to use. To visualise the marker’s quaternion and see what its

respective Euler angles were, an online quaternion simulator was used.

Screenshots from the online simulator can be found in Appendix 5.14. By using

the simulator, a conversion method was determined by trial and error. The

following was deduced:

1) Convert the quaternion to Euler angles.

2) Subtract the z axis component of the Euler angle by 180 degrees.

3) Invert the y axis component of the Euler angle.

For example, if the aircraft needed to rotate clockwise by an acute angle

(smaller than 90 degrees) and the above three steps were followed, the

outcome that would appear on the quaternion simulator can be found in

Appendix 5.14.

However, a new method was discovered to convert the quaternion to be used

by the aircraft, which can be found in Appendix 5.1 under the method called

ConvertArucoQuaternion. This new method, which was also developed by trial

and error, consisted of re-arranging the quaternion’s components. The code

developed for this re-arranging was designed to work only if the quaternion’s

components consisted of:

1. Both the x and y being a negative value.

2. Both the x and z being a negative value.

 87

If the quaternion’s components did not comply with the above two provisos, the

quaternion was still able to be used. The four components just needed to be

inverted, if the components looked as follows:

• Both the w and y being a negative value.

• Both the w and z being a negative value.

The following four tables show the re-arrangements of the components,

depending on the angle by which the aircraft needed to be rotated. Only the w

and y component values were used in the rearranging. For example, referring

to Table 5.3, the new quaternion’s z will equal the previous inverted w

component.

Table 5.3: Quaternion formed if the aircraft needs to rotate clockwise (0° < 𝜃 ≤ 90°)

New Quaternion Components Consists of previous Quaternion
components

w y

x y

y -w

z -w

Table 5.4: Quaternion formed if the aircraft needs to rotate clockwise (90° < 𝜃 <

180°)

New Quaternion Components Consists of previous Quaternion
components

w y

x y

y -w

z -w

 88

Table 5.5: Quaternion formed if the aircraft needs to rotate counter clockwise (90° <

𝜃 ≤ 180°)

New Quaternion Components Consists of previous Quaternion
components

w y

x y

y -w

z -w

Table 5.6: Quaternion formed if the aircraft needs to rotate counter clockwise (0° ≤

𝜃 ≤ 90°)

New Quaternion Components Consists of previous Quaternion
components

w -y

x -y

y w

z w

Referring to the above tables, it can be noted that Table 5.3, Table 5.4 and

Table 5.5 all had the same conversion, while Table 5.6‘s conversion was

different.

• This newly formed quaternion (referred to as the new ArUco quaternion)

needed to be used by the aircraft. However, the aircraft currently had an

orientation at the time of converting the ArUco marker’s quaternion. Therefore,

to use this new ArUco quaternion, it needed to be multiplied to the aircraft’s

current quaternion.

In order to perform quaternion multiplication, it must be noted that quaternion

multiplication is not commutative, meaning:

𝑎 × 𝑏 ≠ 𝑏 × 𝑎	

Therefore, to perform the correct multiplication between the aircraft and the new

ArUco quaternion, the ordering was as follows:

 89

𝑓𝑖𝑛𝑎𝑙	𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛	 = 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡′𝑠	𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛	 × 	𝑛𝑒𝑤	𝐴𝑟𝑈𝑐𝑜	𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛

Figure 5.1 shows a screenshot of code obtained from website Euclidean Space,

which was used to implement the quaternion multiplication. The x, y, z and w

would form the final quaternion, where q1 would be the aircraft’s quaternion

and q2 would be the new ArUco quaternion.

Figure 5.1: Code used to implement the quaternion multiplication (Euclidean Space,

2017)

This final quaternion would be published to the ROS topic aircraftpose_pub,

where it would eventually be uploaded to the aircraft by using the flyaircraft.cpp

node. This final quaternion is what would be used to align the orientation of the

aircraft with the ArUco marker’s orientation correctly.

The important methods to take note of in the determinepose.cpp script are:

• MoveAircraft

• ConvertArucoQuaternion

• QuaternionMultiply

• RotateAircraft

• RepositionAircraft

There were many other tasks that were implemented in the determinepose.cpp script.

Many of these tasks included the human detection system, which is discussed in

section 5.2.2.1. One of them was receiving the horizontal and descent velocity from

talker_velocity.cpp and talker_descent.cpp and publishing them to the aircraft by

making use of MAVROS’ ParamSet and ParamPush. ParamSet and ParamPush are

features that allow for practically any parameter on the Pixhawk to be adjusted from a

script.

 90

It must be noted that, when the aircraft was descending towards the markers and had

reached one meter above the marker, the developed system caused the aircraft to

switch from Offboard flight mode to Land flight mode, where it would descend directly

without adjusting its horizontal position. This was decided upon for two reasons:

1. The marker would become too big to be detected by the vision system,

resulting in the ArUco marker not being completely in the video feed.

2. It would force the aircraft to disarm itself once landed.

5.1.3.2 flyaircraft.cpp

As discussed, the flyaircraft.cpp (which can be referred to in Appendix 5.2) node’s

main purpose was to communicate to the aircraft via MAVROS. Some of these

commands consisted of:

a. Allowing the aircraft to arm and take off.

b. Telling the aircraft where to re-position itself by sending positional and

orientational information.

c. Instructing the aircraft to change its flight mode.

The node would receive information with regard to position and orientation from the

determinepose.cpp node and communicate this to the aircraft. The topics that are

subscribed to within the node can be referred to in Table 5.7.

Table 5.7: The topics subscribed to in the flyaircraft.cpp node

Topic Description of the topic
FlightmodeFromUser Flight mode received from talker_flightmode.cpp

script.

mavros/state Receives the current state from the aircraft via

MAVROS (e.g. whether the aircraft is armed or

not).

mavros/global_position/rel_alt Receives the aircraft’s current relative altitude, via

MAVROS, from where the aircraft was armed.

determinedaircraftpose Receives the determine positional and

orientational information calculated in

determinepose.cpp node.

 91

Table 5.8 displays the published topics that were contained in the flyaircraft.cpp node

to be used by the landing system.

Table 5.8: The topics published to in the flyaircraft.cpp node

Topic Description of the topic
local_pos_pub Publishes the determined position and orientation

to the aircraft via MAVROS.

5.1.3.3 talker_autoland.cpp

This node asks the user to choose how the aircraft should be flown while in offboard

mode. The choices were:

• manual: the aircraft would be able to move to a set point based on the co-

ordinate and co-ordinate value it received in the talker_coordinates.cpp node.

• hover: the aircraft will reposition itself directly above the ArUco marker and

hover (as in maintain its altitude).

• land: the aircraft will perform its autonomous landing sequence.

• rotate: the aircraft will rotate based on a quaternion it has received via the

talker_quat.cpp node.

• follow: the aircraft will rotate and reposition itself based on the position of the

person detected (this is used for the human detection system).

This node would publish one topic called AutoLandFromUser, where it would contain

one of the above offboard flight modes chosen by the user. This node can be referred

to in Appendix 5.3.

5.1.3.4 talker_coordinates.cpp

This node, which can be found in Appendix 5.4, was used to control the aircraft

manually while the aircraft was in offboard flight mode. The node would publish one

topic called CoordinatesFromUser, which contained the axis the aircraft needed to

travel along and the co-ordinate to which it should fly, based on the input from the

user.

 92

Some examples are:

• z 3

• x -2

• y 5

Only one axis and one coordinate can be published at a time.

5.1.3.5 talker_descent.cpp

The node, which can be referred to in Appendix 5.5, was used to allow the user to

control the descending velocity of the aircraft. This node would publish one topic called

DescentFromUser, where it would send the velocity (in metres per second) decided

upon by the user (e.g. 1.5). The purpose of the node was to be able to control the

descending velocity of the aircraft, depending on the speed of the wind on the day of

testing the landing system.

5.1.3.6 talker_velocity.cpp

This node was used to allow the user to choose the horizontal velocity of the aircraft.

The node would publish one topic called VelocityFromUser, where it would send the

velocity (in metres per second) chosen by the user (e.g. 5.0). This node was also

developed to be able to control the horizontal velocity of the aircraft, depending on the

wind conditions on the day of testing the landing system. The node can be seen in

Appendix 5.6.

5.1.3.7 talker_flightmode.cpp

This node, which can be referred to Appendix 5.7, was used to choose the flight mode

for the Pixhawk flight controller. The flight modes that the node allowed were:

• Offboard

• Stabilized

The node would publish to one topic called FlightModeFromUser, where it would

contain one of the two flight modes above. The landing system would not run until the

flight mode of the aircraft had been switch into Offboard mode.

 93

5.1.3.8 talker_quat.cpp

This node was used to rotate the aircraft by a quaternion when the manual mode was

selected in talker_autoland.cpp node. The node allowed a user to enter the quaternion

in the form (w x y z). The node would publish one topic called QuatFromUser, were it

would publish the quaternion that was inserted. This node can be found in Appendix

5.8.

5.1.3.9 listener_status.cpp

This node, which can be seen in Appendix 5.9, was used to listen to the current

commands being performed or status of the aircraft throughout the entire system. The

node had one subscriber called StatusFromAircraft, where it would wait to receive any

information with regards to the system and then output the information to the node.

This node was developed for the purpose of using the node on a ground station

computer.

5.1.4 Landing System Flow Chart
A flow chart was developed for the landing system. This can be referred to in Appendix

5.15.

5.2 Human Detection System
This section will provide a basic overview of the human detection system as well as

the design of the system in detail, discussing the scripts that were developed for this

system. A flow chart of the system is also available.

Before getting started, it must be pointed out that the roll, pitch and yaw angles of an

aircraft are not the same as the Euler angles of the orientation of the aircraft. Euler

angles represent the rotation of an object based on a fixed coordinate frame while the

roll, pitch and yaw angles represent the rotation of an object based on the current

coordinate frame. However, for the purposes of this section, the aircraft will only be

rotated about its z axis (namely, only one axis). This means, with respect to the Euler

angle, that the rotation about the z axis can be used to yaw the aircraft by the same

angle.

 94

For the rest of section 5.2, with regards to the Euler angle, the rotation about the z axis

will be denoted by y .

5.2.1 Basic overview of the human detection system
A basic guideline as to how the human detection system works follows:

1. The aircraft’s flight mode is switched to Offboard mode via a node.

2. The aircraft will arm itself, take off and become airborne.

3. The aircraft is sent to an altitude of ten metres.

4. A node is run where a command to follow the aircraft is sent, informing ROS to

implement the human detection system.

5. A human is detected, providing the bounding box around the person.

6. A node is run to calculate the ground distance between the aircraft and the

person as well as the angle required to rotate the aircraft so that the person is

in the centre of the screen.

7. A timer will start, where the aircraft will have five seconds to rotate by using the

angle determined.

8. Once the timer has finished, coordinates for the aircraft will be determined

based on the previously determined ground distance.

9. The aircraft will fly towards the coordinates.

The above steps explain how the aircraft will be able to follow a person.

5.2.2 Design
This system made use of the same nine nodes that were developed for the landing

system. However, extra code was added to the node determinepose.cpp to allow the

aircraft to follow a person. This modification of code will be discussed in section

5.2.2.1.

There were four new nodes that were developed to be used by this system (where two

were written in C++ language and two were written in Python language), namely:

1. boxinfo.cpp: This C++ script was used to read the bounding box information

and determine the ground distance and angle to rotate the aircraft.

 95

2. boundingboxmove.cpp: This C++ script was used to develop coordinates for

the aircraft to fly towards, based on the ground distance and the angle of the

aircraft.

3. EulerToQuat.py: This Python script was used to convert Euler angles to a

quaternion

4. QuatToEuler.py: This Python script was used to convert a quaternion to Euler

angles.

The reason for developing the two python scripts was due to the libraries available in

Python being better at converting between Euler angles and quaternions, as opposed

to C++.

The following design attributes must be noted:

• This system was designed so that the aircraft would maintain its altitude while

following a person.

• This system was designed so that only the bounding box information regarding

a person was able to be used. This means that only a person would be followed

and not, for example, a dog. However, the video feed will still show a bounding

box around all detected objects.

5.2.2.1 determinepose.cpp

As previously discussed, this script was also used in the human detection system.

There was another topic that was subscribed to in the script. This topic, which can be

seen in Table 5.9, will receive the x and y coordinates that the aircraft will need to

travel towards.

Table 5.9: The extra topic subscribed to in the determinepose.cpp node

Topic Description of the topic
MultipleCoordinates x and y coordinates received from

boundingboxmove.cpp.

The extra method that was developed in the script, which was to be used for the human

detection system, was called FollowPerson. This method, which can be referred to in

 96

Appendix 5.1, was responsible for arranging when the aircraft needed to rotate to

centre the person in the video frame and when the aircraft should travel towards the

coordinates. It made use of a timer, where the aircraft had five seconds to rotate

during this time. It also made use of the angle determined in the node boxinfo.cpp to

determine by how much and in what direction the aircraft needed to rotate. After the

time had elapsed, co-ordinates were received from the boundingboxmove.cpp node

and then sent to the aircraft by making use of the flyaircraft.cpp node.

5.2.2.2 boxinfo.cpp

This node was used for implementing the calculations and formulas determined in

sections 4.4.2 and 4.4.3. It was responsible for using the darknet_ros package to

collect the bounding box information, determine the angle to rotate the aircraft by, as

well as determine the ground distance. The node, which can be found in Appendix

5.10, would first determine whether the detected object was a person or not. If it were

a person, the angle and ground distance would be calculated by using the bounding

box information.

The topic that this node was subscribed can be seen in Table 5.10. Table 5.11 lists

all the published topics in the node.

Table 5.10: The topic subscribed to in the boxinfo.cpp node

Topic Description of the topic
darknet_ros/bounding_boxes The bounding box information of all the detected

objects in the video frame by using darknet_ros.

Table 5.11: The topics published to in the boxinfo.cpp node

Topic Description of the topic
AngleFromBoundingBox The calculated angle and direction that the aircraft

must rotate towards in order to centre the person in

the middle of the video frame.

DistanceFromBoundingBox The calculated ground distance that the aircraft is

away from the detected person.

 97

5.2.2.3 boundingboxmove.cpp

This node, which can be referred to in Appendix 5.11, was designed to implement the

calculations determined in section 4.4.4. The node would calculate coordinates for the

aircraft to fly towards based on:

1. The direction the aircraft was facing.

2. The aircraft’s current position.

3. The aircraft’s home position.

4. The ground distance that was previously calculated.

The aircraft would obtain the direction of the aircraft from the QuatToEuler.py node.

The topics that the node was subscribed to can be seen in Table 5.12.

Table 5.12: The topics subscribed to in the boundingboxmove.cpp node

Topic Description of the topic
DistanceFromBoundingBox This is the ground distance that was calculated in

boxinfo.cpp.

AngleForLinearMovement The angle that the aircraft is currently facing

obtained from QuatToEuler.py.

The node only had one publisher topic, which can be referred to in Table 5.13.

Table 5.13: The topic published to in the boundingboxmove.cpp node

Topic Description of the topic
MultipleCoordinates This will publish the x and y coordinate that the

aircraft needs to fly towards.

5.2.2.4 EulerToQuat.py

This node, which can be found in Appendix 5.12, was responsible for converting the

angle (as in the angle determined to rotate the aircraft to centre the person in the video

feed) to a quaternion for the aircraft to use. A Python library called pyquaternion was

used to help with this conversion. The library was able to take Euler angles and

convert them into a quaternion. The y value (rotation about the z axis) of the Euler

angle was the angle obtained and the rotations about the x axis and y axis were both

 98

set to zero as the aircraft was only required to yaw. These Euler angles were then

converted to a quaternion and then sent to the main determinepose.cpp node.

The topics subscribed and published to can be referred to in Table 5.14 & Table 5.15.

Table 5.14: The topic subscribed to in the EulerToQuat.py node

Topic Description of the topic
AngleFromBoundingBox The angle and direction that the aircraft must rotate

towards, which is obtained from boxinfo.cpp node.

Table 5.15: The topic published to in the EulerToQuat.py node

Topic Description of the topic
QuatFromUser The converted quaternion which was used in the

determinepose.cpp node.

5.2.2.5 QuatToEuler.py

This Python node, which can be seen in Appendix 5.13, was responsible for converting

quaternions into Euler angles. The library that was used to help with this conversion

was the euler_from_quaternion library. The quaternion that was received was the

quaternion that was formed by the aircraft’s local pose. Only the y rotation was

extracted from the Euler angle, which was eventually sent to the

boundingboxmove.cpp node to be used.

The topics subscribed and published to can be seen in Table 5.16 and Table 5.17.

Table 5.16: The topic subscribed to in the QuatToEuler.py node

Topic Description of the topic
mavros/local_position/pose The position and orientation of the aircraft obtained

via MAVROS.

Table 5.17: The topic published to in the QuatToEuler.py node

Topic Description of the topic
AngleForLinearMovement The aircraft’s current y rotation, which was used by

the boundingboxmove.cpp node.

 99

5.2.3 Human detection system flow chart
A flow chart was developed for the human detection system. This can be referred to

in Appendix 5.16.

5.3 User Requirements Specification
The user requirements specification (URS) for this system are:

• The aircraft will be able to fly manually and autonomously.

• The vision system will detect an ArUco marker.

• The vision system will detect a human and be able to distinguish it from

other objects.

• The aircraft and the vision system will be integrated with Robot

Operating System (ROS).

• The aircraft may land on an ArUco marker autonomously.

• Using the developed landing system may result in the aircraft landing

more accurately compared to when the aircraft makes use of the stand

GPS based landing system.

• Using the human detection system may result in the aircraft’s position

and orientation being manipulated, allowing the detected human to be

centred in the middle of the video feed.

5.4 Conclusion
In this chapter, the entire system was discussed, based on how ROS was used to

integrate the system. The nodes and published and subscribed topics for both the

landing system and the human detection system were discussed in detail. Flow charts

for both the landing system and the human detection system were presented. The next

chapter, Simulation, will discuss how the landing system and the human detection

system were simulated using Gazebo.

 100

Chapter 6: Simulation
The purpose of this chapter is to discuss the simulation of the landing system and the

human detection system that was performed. The setup of the simulation will be

discussed and the benefits to using such simulation.

6.1 Setup of the Simulation
To help with the testing phase of the system, it was decided that the system would be

tested on a simulator. Research was performed in the type of simulation software

available for use. The software that was chosen for this research was Gazebo, which

is an open-source 3D simulation environment for autonomous robots. Gazebo is

useful for testing object-avoidance and computer vision systems (PX4, 2019g). Since

Gazebo is open-source, it has been integrated into ROS’ main installation by

developers.

There are multiple benefits to testing the system in Gazebo first before performing real

life testing of the system. Some of these benefits are:

• A system can quickly be developed and tested on the simulation.

• A simulation allows for code developed to be tested thoroughly before testing it

on the simulation. This will heavily reduce the number of crashes that could

occur on the actual system, thus reducing the cost of having to purchase

replacement parts.

• Parts of a system can be individually tested in Gazebo (e.g. the camera system

on detecting ArUco markers can be tested).

• It allows systems that incorporate Artificial Intelligence (AI) to train their neural

networks on the simulation.

To use the model with ROS, a Software in the Loop (SITL) simulation environment

had to be set up. A model would need to be created for use in the simulation software.

A model is an object that is manipulated in the simulation. In the case of this research,

it would be an aircraft. Developers from the PX4 team had developed a SITL

simulation environment to be used for testing. The developers had made multiple

models to be used in Gazebo. One of models that they had developed was a

quadcopter, referred to in Figure 6.1, which makes use of PX4’s firmware.

 101

Figure 6.1: Quadcopter model developed by PX4 for Gazebo

One aspect that was missing from this model in Gazebo was a camera. A guide was

developed by Aerial Robotics, where they demonstrate how to adapt the model to add

a cube underneath the fuselage (Aerial Robotics, 2018). This cube was configured to

act as a camera.

It must be noted that the simulations were performed on a desktop PC that contained

an Intel i7 processor and an AMD Radeon graphics card. This was done because the

desktop PC was able to provide more processing power than the two laptops that were

used throughout this research. However, it came with a disadvantage because the

darknet_ros package was designed to work on a Nvidia graphics card. This meant that

all the human detection video processing was performed on the computer’s processor

and not on the graphics card. The result was that the frames per second (FPS) were

constantly under 1 FPS.

Another point to note is that the simulation was only used to observe how the aircraft

would react to the developed algorithms. No actual data would be collected from the

simulation.

 102

6.2 Landing System Simulation
To test the landing system in Gazebo, an ArUco marker model needed to be added to

the Gazebo environment (referred to as the world). A few ArUco markers for Gazebo

had previously been developed by Jose Luis Sanchez Lopez, which he had available

for use on his GitHub page (Lopez, 2016). Aerial Robotics provided a guide on how

to add one of his developed markers into Gazebo (Aerial Robotics, 2018).

For the simulation, an ArUco marker with an ID of 7 was used, which had dimensions

of 500 x 500 mm. An example of what the setup resembled can be found in Figure

6.2.

Figure 6.2: The Gazebo setup for the landing system.

To perform the simulation, the packages to be used (e.g. aruco_ros, MAVROS, etc.)

and the package containing all the self-developed nodes were required to be run. The

terminals that were used to run each of the respective packages or nodes for the

landing system can be found in Appendix 6.1. The terminals were all grouped by

making use of the Terminator application for Linux (as discussed in section 3.3.4.3).

To allow the aircraft to take off, the word “offboard” was entered into the

talker_flightmode.cpp node, which switched the aircraft to offboard mode. The aircraft

armed automatically and the aircraft became airborne. In a separate window, the

video feed of the camera could be seen. Figure 6.3 resembles the aircraft that has

taken off and the window on the right shows the video feed.

 103

Figure 6.3: The aircraft has taken off, where the window on the right shows the

camera feed.

In order to use the landing system, the vision system was required to be able to detect

the marker clearly, meaning the whole square shape of the marker needed to be

present in the video feed. If a marker was detected, the marker’s x, y and z axes

became present. The colour coding of the axes were as follows:

• X axis: red

• Y axis: green

• Z axis: blue

In Figure 6.3, the window shows the ArUco marker that was detected, where the ArUco

marker was positioned on the ground. In order for the aircraft to rotate so that it aligned

itself correctly with the ArUco marker, the aircraft would need to rotate clockwise by

an angle smaller than 90º so that the y axis (green arrow) in the window pointed

vertically upwards. Figure 6.4 shows the camera feed of when the aircraft had rotated

to align itself with the marker correctly. As discussed in section 5.1.3.1, there are four

scenarios in which the aircraft would rotate, namely:

1. Rotate clockwise by an angle smaller than or equal to 90º.

2. Rotate clockwise by an angle greater than 90º and smaller than 180º.

3. Rotate counter-clockwise by an angle smaller than or equal to 90º.

4. Rotate counter-clockwise by an angle greater than 90º and smaller than or

equal to 180º.

 104

Figure 6.5 shows a window of the camera feed for cases 1 and 2, while Figure 6.6

shows the camera feed for cases 3 and 4.

Figure 6.4: Camera feed on when the aircraft had correctly aligned itself with the

ArUco marker

Figure 6.5: (a) Case 1 (b) Case 2

 105

Figure 6.6: (a) Case 3 (b) Case 4

For illustration purposes, case 2 will be used. Once the aircraft was airborne and had

detected the ArUco marker, the system was allowed to land. This was done by

inserting the word, “land” into the talker_autoland.cpp node. An example of this

landing process for case 2 can be found in Appendix 6.3.

A node tree was developed for all the nodes that were used to test the landing system

in Gazebo. The nodes tree, which can be referred to in Appendix 6.4, shows the

communication between all the nodes used. Video footage of the simulation was

recorded for all four cases. The videos for each case, which were uploaded to

YouTube, can be found at :

• Case 1: https://youtu.be/mdYK1TQIlvM

• Case 2: https://youtu.be/ES7XcSzqHwE

• Case 3: https://youtu.be/frJMAQSdxZw

• Case 4: https://youtu.be/HRgFgTyTseI

These videos can only be accessed via the links as the videos have been set to be

unlisted to the general public.

 106

6.3 Human Detection System Simulation
To perform a simulation for the human detection system, the same setup was used

that was developed for the landing system. However, there were an additional six

nodes that were executed. These additional nodes can be found in Appendix 6.2. The

simulation consisted of running a pre-recorded video of a person walking on a field.

This was done by using the video_stream_opencv package, where it would be given

the file directory of a video or package and output the footage of picture to a specific

topic. The video that was recorded for the simulation was done by using a DJI

Phantom 4 Advanced in 1920x1080 resolution (Full HD), where the camera angle of

the aircraft was set at 45º. The video (as in the published topic) can be referred to in

Figure 6.7(a). This topic was then used by the darknet_ros package. This means that

for the simulation, the bounding box, that was formed using the darknet_ros package,

will fall within the follow criteria:

• The Xmax value will not be bigger than 1920.

• The Xmin value will not be smaller than 1.

• The Ymax value will not be bigger than 1080.

• The Ymin value will not be smaller than 1.

Figure 6.7(b) shows the bounding box that was determined for the video that was

published.

Figure 6.7: (a) Video of a person walking that was published by the

video_stream_opencv package (b) bounding box that was formed using the

darknet_ros package

 107

It must be noted that both pictures were captured at the exact time. However, the

position of the person in both figures is not the same. This is due to the low FPS that

was discussed in section 6.1. The final setup for the human detection system can be

found in Figure 6.8.

Figure 6.8: The Gazebo setup for the human detection system

For this simulation, the aircraft was first switched to Offboard mode, where it would

arm automatically and then take off to an altitude of two metres (designed for the

landing system). However, the human detection system was designed to work at an

altitude of ten metres. This meant that the aircraft was first manually adjusted to an

altitude of ten metres by using the talker_coordinates.cpp node. Once the aircraft was

in position, the aircraft was told to follow the person via the talker_autoland.cpp node.

The human detection system would then execute, allowing the aircraft to rotate, based

on the angle that was determined, as well as allow the aircraft to reposition itself

according to the desired calculated co-ordinates.

There were instances in which the aircraft would rotate:

1. The bounding box that was determined is to the left of the midpoint of the

screen.

2. The bounding box that was determined is to the right of the midpoint of the

screen.

 108

Case 1 would result in the aircraft yawing in a counter clockwise direction, whereafter

it would reposition itself according to the calculated co-ordinates. Case 2 would result

in the aircraft yawing in a clockwise direction, whereafter it would reposition itself

according to the calculated co-ordinates. Refer to Figure 6.9 and Figure 6.10 to see

an illustration of case 1 and Figure 6.11 and Figure 6.12 to see an illustration of case

2. The blue propellers of the aircraft are at the nose of the aircraft (as in the front of

the aircraft).

Figure 6.9: Case 1, where (a) is the orientation of the aircraft before the rotation and

(b) is the orientation of the aircraft after the rotation

Figure 6.10: Case 1, where (a) is the pose of the aircraft before the repositioning and

(b) is the pose of the aircraft after the repositioning

 109

Figure 6.11: Case 2, where (a) is the orientation of the aircraft before the rotation

and (b) is the orientation of the aircraft after the rotation

Figure 6.12: Case 2, where (a) is the pose of the aircraft before the repositioning and

(b) is the pose of the aircraft after the repositioning

A node tree was also developed for all the nodes that were used to test the human

detection system in Gazebo. This nodes tree can be referred to in Appendix 6.5. Video

footage of the simulation was recorded, where case 1 and case 2 were both executed.

The video shows the aircraft changing its orientation as well as its position, first for

case 1 and then for case 2. This video can be found at: https://youtu.be/5Sr8a3fw3kc.

 110

6.4 Conclusion
The setup and importance of the simulation were discussed. The method of testing

the landing system was explained, where figures were used to show the system

operating successfully. The method of testing the human detected system was also

discussed, providing figures (including figures of the aircraft’s positional and

orientational information). The next chapter, Testing and Discussion, will discuss the

testing that was performed as well as provide a data analysis on the landing system,

comparing the GPS based landing system with the developed ArUco marker landing

system.

 111

Chapter 7: Testing and Discussion
This chapter will discuss the numerous types of test flights that were physically

performed on the multirotor aircraft. A data analysis will be performed, where the

aircraft’s current GPS system to land the aircraft will be compared with the developed

landing system that makes use of the ArUco marker. The human detection system

will be discussed to explain the testing that was performed on the simulation computer.

Finally, improvements to the system will be discussed.

It must be noted that there was an issue with the PX4 firmware at the time of

performing the test flights. The issue consisted of the aircraft not disarming itself once

the aircraft hand landed on the ground. ROS specialists from FH Aachen, who also

integrate ROS with multirotor aircrafts, were contacted about the issue. They

explained that they also encountered the same problem and that it was most likely a

firmware issue. This was reported to PX4. However, no feedback had been received

at the time of writing. In the meantime, in order to perform the test flights, the aircraft

had to be manually disarmed for all autonomous missions and landing (including the

GPS based landing system and the developed ArUco marker landing system). This

manual disarming was performed by the pilot of the aircraft, Mr Paul Mooney, who was

an advisor for the research. It resulted in the aircraft not landing at the exact point

specified by the algorithms, resulting in an inaccuracy (+- 150 mm) for the landing

system.

All test flights were performed at Port Elizabeth Radio Flyers (PERF). The aircraft

flying at the location can be found in Figure 7.1. The videos referred to in this chapter

were recorded either on an Apple iPhone 10 smart phone, a DJI Phantom 4 Advanced

drone or a DJI Mavic drone.

 112

Figure 7.1: The multirotor aircraft flying at PERF

7.1 Test Flights
The test flights that were performed on the aircraft include:

• A manual test flight.

• An autonomous test flight performing a mission.

• An autonomous test flight where a mission is injected into the flight controller

by a separate system.

• An autonomous test flight using ROS.

• The aircraft autonomously landing using ROS.

7.1.1 Manual Test Flight
A manual test flight was performed, where the pilot was able to fly the aircraft by using

the transmitter to control the aircraft. To perform this test, the aircraft needed to be

flown by the pilot. For the test flight, the aircraft was flown in three flight modes, which

were:

1. Acro

2. Stabilized

3. Position

For the test, the aircraft took off in Stablilized flight mode, where it was able to level

itself unassisted. After a few seconds, the aircraft was switched to Acro flight mode,

Multirotor Aircraft

Pilot & Ground

Station Computer

 113

which resulted in the pilot having to level the aircraft instead. Finally the aircraft was

switched to Position flight mode, where the aircraft was able to hold its position and

altitude by using the GPS module that was mounted onto the aircraft. The aircraft was

eventually landed by using the same flight mode.

A video of the manual flight test was recorded on an iPhone. The video consists of the

pilot explaining how he is controlling the aircraft. This video can be found at:

https://youtu.be/8vMhNxAXXFs.

7.1.2 Autonomous test flight performing a mission
A mission was performed by the aircraft, where the aircraft would take off, fly to a set

of GPS coordinates specified on the ground station computer and land back at the

point where the aircraft took off. To perform this mission, the aircraft made use of the

GPS module to direct the aircraft to the required GPS coordinates. The mission that

was setup on QGroundControl for the aircraft to perform can be found in Figure 7.2.

Figure 7.2: The mission setup for PERF that was done on QGroundControl

The aircraft would take off at point 1, fly towards point 2, then point 3 and so on until

reaching point 6. Point 7 was a command to return home along the quickest route

possible and land at the take-off position. The aircraft managed to perform the

autonomous mission successfully. The aircraft’s flight route that was performed could

 114

be observed on QGroundControl, which is represented by a red line. A screenshot of

the above can be found in Figure 7.3. From the Figure 7.3, it can be seen that the

aircraft was slightly off the orange line between points 3 and 4 and points 5 and 6.

Point 9 can be ignored as it was a land command inserted for safety reasons.

Figure 7.3: The mission performed that was seen on QGroundControl.

A video of the aircraft performing the mission was recorded by using the DJI Mavic

drone, where it followed the flight executed by the multirotor aircraft. This video can

be found at: https://youtu.be/0u_R5Ex_9bA.

7.1.3 An autonomous test flight where a mission is injected into the flight

controller by a separate system
During the early stages of this research, it was suggested by the advisor Mr Paul

Mooney that the possibility be investigated to develop a system or alternative method

that could control the aircraft or execute a mission. Research was performed in

potentially developing a system that would make use of an Arduino.

A system was eventually developed in collaboration with Mr James Sewell, a fellow

Masters student who was also performing research in UAVs. An example script

developed by David Hasko, which was obtained off the internet, would send a PPM

signal out of a 3.5 mm headphone jack that was attached to an Arduino (Hasko, 2016).

 115

This system consisted of using an Arduino Mega, where the board would send a PPM

signal through to the transmitter’s auxiliary port (which is the same type of port as a

3.5 mm port). Connected to the Arduino was a 3.5 mm headphone jack that plugged

into the transmitter as well as three push buttons that were soldered to a Veroboard.

The three buttons represented:

• Button 1 soldered to a green wire: Changing the aircraft’s flight mode to Auto

flight mode.

• Button 2 soldered to a white wire: Changing the aircraft’s flight mode to Acro

flight mode.

• Button 3 soldered to a red wire: Changing the aircraft’s flight mode to Return

To Land (RTL) flight mode.

The code was edited to use the buttons only to adjust the PWM signal of one of the

channels. This meant that, if a button were pressed, the PWM signal connected to the

respective channel would only change. However, the script allowed for adjustments

to be made on multiple channels. Figure 7.4 reveals the setup of the Arduino with the

3.5 mm headphone jack and the three push buttons. It must be noted that this system

was tested when the aircraft was still using the ArduPilot firmware. The test performed

successfully. However there was no video footage recorded to show the system

working. The edited Arduino script can be found in Appendix 7.1.

Figure 7.4 The Arduino injection setup

 116

7.1.4 An autonomous test flight using ROS
This test investigated the possibility of injecting new waypoints into the flight controller

by using ROS. The setup for this test consisted of developing a ROS script called

InsertWaypoints.cpp, which consisted of using the MAVROS package. This script can

be viewed in Appendix 7.2. The idea behind the script came from a portion of code

uploaded to a GitHub forum by a user named aykutkabaoglu (GitHub, 2017). For this

test, the script consisted of a few GPS co-ordinates that were previously stored. When

the script was run, the GPS co-ordinates would be inserted into the flight controller.

The GPS coordinates inserted could be seen in the MAVROS terminal on the ground

station computer as well as on QGroundControl after performing the mission. The test

performed successfully. However, it was never executed on a test flight. The GPS

co-ordinates inserted were three co-ordinates at the Nelson Mandela University fields.

A screenshot of the MAVROS terminal receiving the new GPS coordinates can be

found in Figure 7.5 where the three waypoints can be found at WP: Item #1 – WP:

Item #3.

Figure 7.5: MAVROS terminal showing three new waypoints injected into the flight

controller

7.1.5 The aircraft autonomously landing using ROS
This test was performed on the aircraft after successfully testing the landing system

on the simulation in Gazebo. For this test, the ArUco marker was printed and fastened

to a piece of hardboard using masking tape. Originally, the size of the ArUco marker

printed was 500 x 500 mm, the same size as the marker in the simulation. However,

after the first test flight, it became apparent that the marker was too big to be landed

 117

on by the aircraft. However, the marker was still able to be detected from above when

the aircraft had an altitude of roughly five metres. To help with the landing, the ArUco

marker was reprinted to a smaller size, which now had a size of 396 mm x 396 mm.

The setup for the test can be found in Figure 7.6.

Figure 7.6: The aircraft and the ArUco marker before take off

To perform the test, the same scripts that were developed for the simulation were

used. However, a slight adjustment was made in order to test the system safety. The

script flyaircraft.cpp was adjusted not to activate Offboard mode automatically when

selected in the talker_flightmode.cpp node, but rather to wait for an input from the pilot.

The Offboard flight mode was setup on the transmitter. This allowed the pilot to exit

Offboard flight mode whenever the aircraft was struggling to fly due to the wind or

other factors affecting it. For example, at the beginning of testing the Offboard flight

mode, the aircraft was instructed to take off to an altitude of five metres. However,

since the GPS module had not connected to enough satellites in time, the GPS module

was not ready to be used, resulting in the aircraft only using the onboard sensors such

as IMU to hover the aircraft at the correct setpoint. This resulted in the aircraft drifting

sideways in one direction. So, the pilot had to take over the flying of the aircraft and

land it safely to enable the test to be restarted.

 118

To demonstrate that the aircraft was able to detect the marker correctly, a person was

told to hold the ArUco marker in his hands and walk a few steps on the grass. The

aircraft was changed to “hover” in the talker_autoland.cpp node. The aircraft

successfully managed to keep hovering above the marker, regardless of where the

person was standing. A photo of this can be referred to in Figure 7.7.

Figure 7.7: The multirotor aircraft hovering above the ArUco marker when a person

held the marker

After testing the aircraft’s hovering capabilities, it was decided to test whether the

aircraft could execute the landing system successfully. For this test, the aircraft was

not told to rotate to align itself correctly with the ArUco marker. Instead, the aircraft

just repositioned itself above the marker and begin its descent to the ground. Initially,

when the script was developed, the aircraft was told to land by setting the z axis of the

 119

coordinates to zero. When it reached the last metre above the ground, the aircraft

would stop repositioning itself above the marker and only descend towards the ground.

When the “land” mode was executed in the talker_autoland.cpp node, the aircraft

managed to reposition itself above the marker and descend towards to the ground

successfully. However, the aircraft reached a point roughly 300 mm above the marker,

where it would stop descending and remain hovering above the marker (refer to Figure

7.8(a)). After a couple of seconds, the aircraft would disarm, resulting in the brushless

motors shutting down and the aircraft dropping out of the air (refer to Figure 7.8(b)).

The aircraft managed to disarm because the script contained code to disarm the

aircraft when the altitude of the aircraft was zero for a certain period of time. The

expected issue was that the aircraft’s sensors predicted the aircraft was already on

the ground. To resolve this, the flyaircraft.cpp node was adjusted, where the aircraft

would switch from Offboard flight mode to Land flight mode once the aircraft had

dropped to an altitude of one metre (as shown in the flow chart in Appendix 5.15). This

adjustment managed to resolve the problem. However, the aircraft still experienced

the disarming issue as specified in the beginning of the chapter.

Figure 7.8: (a) aircraft hovering above the marker (b) aircraft disarming, resulting in

the aircraft dropping out of the air

After adjusting the code to switch the aircraft to Land flight mode as well as adding in

the code to rotate the aircraft correctly, the code was tested on the simulation (as

discuss in section 6.3). After successful testing on the simulation, the test was

 120

performed on the aircraft at PERF, where it was successful. Pictures from the test

flight can be found in Appendix 7.3.

Videos of the developed landing system and the GPS based landing system being

executed were recorded using the DJI Mavic drone. The videos can be found at:

• Developed landing system: https://youtu.be/7oPOAwui09k.

• GPS based landing system: https://youtu.be/WQKi86ONiw4.

After achieving a successful test result, the decision was made to compare the

developed landing system to the aircraft’s current method of using the GPS module to

land the system. To perform the data analysis, a test was constructed where there

would be ten landings performed for each landing method. For each landing, the type

of data recorded can be found in Table 7.1. It must be noted that the timer was only

started once the aircraft started its descent. This means that the time taken to

reposition the aircraft above the point where the aircraft was armed as well as the time

taken to rotate the aircraft was not included.

The following steps were implemented for testing each landing method:

1. The aircraft would take off and reach an altitude of five metres, where it would

hover.

2. The aircraft would be horizontally repositioned between three and five metres

away from the place where the aircraft needed to land. The position chosen

was different for each landing.

3. The aircraft was instructed to land.

4. The aircraft repositioned itself above the landing point, where it would orientate

itself correctly.

5. The timer was started once the aircraft began to descend.

6. The timer was stopped once the aircraft touched the ground.

7. The accuracy, bearing, time and heading of the aircraft were recorded.

8. This process was implemented ten times to record ten landings.

 121

Table 7.1: Type of data recorded for each landing

Type of Data Recorded Units Description
Accuracy Millimetres

(mm)

The distance from where the aircraft

took armed to where the aircraft

landed.

Bearing o’clock The position where the aircraft landed

from where the aircraft was armed.

Time Seconds (s) The time taken from when the aircraft

begins descending to when the

aircraft touches the ground.

Heading Degrees (º) The direction the aircraft was facing

once it had landed.

The initial heading of the aircraft was recorded before commencing the testing for the

GPS enabled landing as well as for the developed landing system. These initial

headings can be found in Table 7.2.

Table 7.2: The initial heading of the aircraft recorded before testing each landing

method

Landing Method Initial Heading
GPS enabled landing 180º

Developed ArUco marker landing system 179º

Table 7.3 shows the data that was recorded for the aircraft landing via the GPS module

and Table 7.4 shows the data that was recorded for aircraft landing via the developed

landing system. Figure 7.9 is a plot containing the accuracy for both landing systems

and Figure 7.10 is a plot for the time taken to land the aircraft for each landing system.

 122

Table 7.3: Data recorded for the landing of the aircraft by using the GPS module

Landing Accuracy (mm) Bearing (o'clock) Time (s) Heading (º)
1 990 9 8.9 185

2 4570 10 11.5 175

3 120 9 9.8 182

4 1180 9 9.5 185

5 1510 10 8.6 190

6 700 9 10.5 178

7 1150 4 8.5 184

8 640 3 7.9 173

9 940 3 9.6 176

10 1520 4 10.7 186

Table 7.4: Data recorded for the landing of the aircraft by using the developed

landing system

Landing Accuracy (mm) Bearing (o'clock) Time (s) Heading (º)
1 40 9 34.4 158

2 100 9 18.5 177

3 80 8 20.7 193

4 50 7 20.1 175

5 240 3 23.4 180

6 90 10 24.6 172

7 110 10 20.9 187

8 70 9 22.1 182

9 130 4 20.8 188

10 100 9 23 180

 123

Figure 7.9 The plot for the accuracy of landing the aircraft for both landing systems

Figure 7.10: The plot for the time taken to land the aircraft for both landing systems

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12

Ac
cu

ra
cy

 (m
m

)

Landing

Comparing the accuracy for both landing systems

GPS enabled landing system Developed landing system

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Ti
m

e
(s

)

Landing

Comparing the time taken to land the aircraft for both landing
systems

GPS enabled landing system Developed landing system

 124

Referring to Figure 7.9, it can clearly be seen that the developed landing system had

a better accuracy than the GPS enabled landing system. However, referring to Figure

7.10, the developed landing system did generally take longer to land the aircraft

compared to the GPS enabled system. Since the purpose of developing a landing

system was to improve on the accuracy of the overall landing of the aircraft, it can be

said that the developed landing system outperformed the GPS enabled landing system

in this regard.

If, in a real life scenario, an autonomous docking station (that can autonomously

charge an aircraft) were to be developed for the aircraft, the aircraft would need to land

accurately on the platform of the docking station to allow for it to be charged

autonomously. For this reason, the accuracy of landing the aircraft would be more

important than the time taken for it to land. Further research and developments in

reducing the time taken to land the aircraft would result in a greater efficiency of the

landing system.

7.2 Human Detection System
This section will discuss the following:

• Comparing Darknet’s YOLO version 3 to Darknet’s YOLO tiny version 3.

• Differentiating between a human and another object.

• Correcting the calculated distance.

When it came to testing the human detection system, it soon became apparent that

the processing power of the onboard Odroid XU4 computer would be insufficient to

run Darknet’s YOLO. Therefore, all testing of the human detection system was

performed on the desktop computer, where it used the computer’s processor to

perform Darknet’s necessary calculations (as stated in section 6.1). A solution to the

insufficient power of the onboard computer is discussed in section 7.3.

 125

7.2.1 Comparing Darknet’s YOLO version 3 to Darknet’s YOLO Tiny Version 3
Since there are multiple versions of Darknet’s YOLO available, a decision was made

to compare the version 3 to the tiny version 3. The tiny version operates in the same

way as the standard version. However, the tiny version gives less accurate results

compared to the standard version due to its using less processing power from the

computer to detect objects.

To compare the two versions, a test was performed where a pre-recorded video was

published to a topic (by using the video_stream_opencv package) and both versions

of Darknet’s YOLO run independently to detect any objects in the published topic. The

results for the Darknet’s YOLO version 3 can be found in Figure 7.11 and the results

for Darknet’s YOLO tiny version 3 can be found in Figure 7.12. Both figures show:

• The bounding box formed around the detected person.

• The left terminal showing the frames per second (FPS) and the probability of

the detected person.

• The right terminal showing the bounding box information for the detected

object.

Figure 7.11: The detected person using Darknet’s YOLO version 3

 126

Figure 7.12: The detected person using Darknet’s YOLO tiny version 3

It can be seen in Figure 7.11 that the standard version 3 managed to detect a person

with a probability of 91%, which is higher than the 70% obtained for the tiny version 3

in Figure 7.12. This means that the standard version 3 is able to detect objects better

than the tiny version 3. However, the 0.1 FPS in Figure 7.11 is lower than the 1.0 FPS

obtained in Figure 7.12.

From the above, it can be deduced that the standard version would take roughly ten

times longer to detect an object compared to the tiny version (for example, the

standard version would take roughly ten seconds to detect a human compared to the

one second obtained from the tiny version). For this reason, if the system were to be

implemented on an onboard computer, the tiny version would definitely be the

preferred choice. However, you would not achieve the best detection results. This

can also be seen in Figure 7.13, where the tiny version incorrectly thought that the

person in the video feed was a bird.

 127

Figure 7.13: Darknet’s YOLO tiny version 3 incorrectly identified the person as a bird

7.2.2 Differentiating Between a Human and Another Object
If the complete system were to be implemented in a real-world scenario, the vision

system would need to be able to differentiate between different moving objects and be

programmed only to follow a person. To prove that this was possible, a test was

performed where a video was recorded of a person walking a dog on a field. The pre-

recorded video was once again published to a topic by using the ROS

video_stream_opencv package. For this test, the standard YOLO version 3 was used.

Referring to Figure 7.14, the two detected objects can be seen, where a 100%

probability for each object was obtained.

Figure 7.14: A person and a dog was detected by the vision system

Identified the object as

a bird with a probability

of 32%.

 128

7.2.3 Correcting the Calculated Distance
During the simulation process for the human detection system, an error was detected

in the calculating the distance the aircraft needed to travel towards the human.

Originally, when the “follow” command was inserted in the talker_autoland.cpp node,

the aircraft determined the ground distance in the beginning. However, when the

aircraft rotated to centre the person in the video frame, the Ymax of the bounding box

of the person was reduced. This resulted in the person being further away than

originally anticipated.

To demonstrate this, a person was told to stand still, walk a few steps horizontally to

his left and then stand still, where the DJI drone would rotate itself to centre the person

in the video frame. Figure 7.15 shows the original position of the person, Figure 7.16

is after the person had walked a few steps to their left and Figure 7.17 is a screenshot

of the person once the aircraft had rotated itself to centre the person in the video frame.

It must be noted that the standard YOLO version 3 was used to obtain a more accurate

result.

Figure 7.15: The bounding box information of the person in their original position

 129

Figure 7.16: The bounding box information of the person after they had walked a few

steps to their left

Figure 7.17: The bounding box information of the person after the DJI had rotated to

centre the person in the video frame

Ymax: 561

Ymax: 476

 130

When comparing Figure 7.16 and Figure 7.17, it can be seen that Figure 7.17’s Ymax

was smaller than that of Figure 7.16. There were two potential solutions to resolve

this problem:

1. Redesign the algorithm for the human detection system only to calculate the

ground distance once the aircraft had rotated.

2. Develop an equation to insert into the algorithm to calculate the potential future

Ymax (after the aircraft has rotated), depending on the current position of the

bounding box. This calculation would be added to the existing ground distance

originally calculated, resulting in a slightly greater ground distance.

Due to time constraints, it was decided to develop an equation. To achieve this, the

process followed was:

1. The DJI was flown and hovered at an altitude of ten metres. The DJI recorded

a video of this entire process.

2. A person was required to stand in the centre of the video frame. This was

regarded as the home position.

3. The person walked five steps to his left and remained stationary.

4. The aircraft rotated to centre the person in the video frame.

5. The aircraft would then rotate back to its original position to face the home

position.

6. The process was repeated another four times where the person walked another

five steps and the aircraft was rotated.

7. The video was process through the standard Darknet YOLO version 3, where

the bounding box values for each position were recorded.

This entire process was repeated three times (resulting in three tests performed),

where the Ymax value of the home position of the person was different each time. The

three tests were recorded in Excel, which can be found in Appendix 7.4 . The numbers

in the position column refer to when the person took a few steps horizontally and

remained stationary. The letters in the position column refer to when the aircraft had

rotated to centre the person in the video frame. This means that 1 correlates to A, 2

correlates to B, etc.. For example, Figure 7.15 would be regarded as the home

position, Figure 7.16 would be regarded as position 1 and Figure 7.17 would be

regarded as position A.

 131

When determining the equation for each test, the average for the x values were used

for the positions containing numbers, meaning:

 𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 	B&'(CB&)D
%

 (7.1)

The Xaverage was calculated for all positions, which can be found in the tables in

Appendix 7.4. However only the Xaverage for the positions containing the numbers

were used.

To calculate an equation, the Xaverage was plotted on a graph alongside the

difference between the Ymax of when the person had taken a few steps and remained

stationary and the Ymax of the home position.

For example, referring to the Test 1 table in Appendix 7.4, the Xaverage of position 1

was calculated (1208) and the Ymax of the position A (577) was subtracted from the

Ymax of the home position (581). This resulted in a coordinate of (1208 ; 4).

Table 7.5, Table 7.6 and Table 7.7 were developed for the three tests. Graphs were

plotted, based on these three tables, which can be referred to in Figure 7.18, Figure

7.19 & Figure 7.20. A linear equation was developed for each graph. These three

equations were used in the algorithm to correct the ground distance.

Table 7.5: Test 1 points calculated

Position Xaverage Calculated Ymax Addition
home 960 0
1 1208 4
2 1448 4
3 1745.5 59
4 1839 83

 132

Figure 7.18: Graph plotted and equation developed for Test 1’s data

Table 7.6: Test 2 points calculated

Position Xaverage Calculated Ymax Addition
home 960 0
1 1325.5 94
2 1579 175
3 1861 294

Figure 7.19: Graph plotted and equation developed for Test 2’s data

y = 0.0936x - 104.75
R² = 0.7964

-20

0

20

40

60

80

100

0 500 1000 1500 2000

Ca
lc

ul
at

ed
 Y

m
ax

 a
dd

iti
on

Xaverage

Test 1

y = 0.3233x - 322.05
R² = 0.9854

-50

0

50

100

150

200

250

300

350

0 500 1000 1500 2000

Ca
lc

ul
at

ed
 Y

m
ax

 a
dd

iti
on

Xaverage

Test 2

 133

Table 7.7: Test 3 points calculated

Position Xaverage Calculated Ymax Addition
home 960 0
1 1200.5 10
2 1352.5 48
3 1555.5 90
4 1748 135

Figure 7.20: Graph plotted and equation developed for Test 3’s data

It must be noted that for the three tests, the Xaverage was only greater than the

midpoint of 960 pixels and was never calculated for the Xaverage to be below 960

pixels. This meant that if the Xaverage was smaller than 960, the difference between

the two was added to the midpoint of 960 pixels to obtain a new Xaverage. For

example, say the Xaverage was 925, the following calculations were implemented:

𝑋M)NN-.-D0- = 𝑋&)M2E)D/ − 𝑋',-.'O-

𝑋M)NN-.-D0- = 960 − 925

𝑋M)NN-.-D0- = 35

Therefore,

𝑋D-P',-.'O- = 𝑋&)M2E)D/ +	𝑋M)NN-.-D0-

𝑋D-P',-.'O- = 960 + 35

𝑋D-P',-.'O- = 995

y = 0.1793x - 187.81
R² = 0.9462

-40

-20

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000

Ca
lc

ul
at

ed
 Y

m
ax

 a
dd

iti
on

Xaverage

Test 3

 134

This Xnewaverage would be inserted into one of the three equations developed.

When determining which equation to use, a range was used based on the Ymax value.

The ranges were:

• If Ymax was smaller than 500 pixels (Ymax < 500), then test 3’s equation was

used.

• If Ymax was greater or equal to 500 pixels and Ymax was smaller than 750

pixels (500 ≤ Ymax < 750), then test 1’s equation was used.

• If Ymax was greater or equal to 750 pixels (Ymax ≥ 750), then test 2’s equation

was used.

Using one of these three equations does not replace the originally calculated ground

distance, but is added to the originally calculated ground distance, resulting in a

greater overall ground distance needed to be travelled by the aircraft.

7.3 Improvements to the System
Due to the system containing many components, there was bound to be a few of them

that needed to be upgraded. From the beginning of the research, the idea was to keep

the overall project costs to a minimum. That is why numerous second-hand

components were used for the system. The following improvements could be

implemented on the aircraft:

• Since the Odroid XU4 companion computer was not capable of being used for

the human detection system, a more powerful computer is required. The ideal

solution to this problem is to use an Nvidia Jetson TX2 module attached to a

carrier board. This module is ideal because Darknet’s YOLO was developed

on the CUDA framework, which works best with Nvidia graphics cards. The

purpose of the carrier board is to provide the module with IOs (inputs/outputs).

This choice of computer will drastically improve on the FPS that was achieved

in this research.

• Due to the shortage of space on the fuselage, some of the peripherals and the

companion computer had to be placed on their sides to fit all of the components

onto the aircraft. This resulted in some of the components not being tightly

 135

fitted onto the aircraft. To improve on this, the aircraft’s fuselage should be

redesigned to house all the components in a neat, compact system.

• The 6600 mAh capacity of the LiPo batteries were emptied between roughly

five to seven minutes due to the batteries needing to power numerous

components. To avoid this, bigger batteries could be used or more added to

the system, where they could be assigned to power specific components (e.g.

one battery could power the companion computer and the peripherals

connected to the computer).

• If the system were to be used in a real-world scenario, the webcam would need

to be replaced with a camera for industrial use. Thermal cameras and

multispectral cameras should be considered in this regard.

7.4 Conclusion
The numerous tests flights that were executed on the aircraft were discussed, as well

as the various ways of flying the aircraft, albeit manually or autonomously. In the

chapter, other ways of controlling the aircraft, such as injecting new waypoints for the

aircraft to fly towards by using ROS as well as using an Arduino to send the aircraft on

a mission were mentioned. The two landing systems of the aircraft were discussed

and compared, highlighting the developed landing system outperforming the GPS

enabled landing system. Finally the human detection system was discussed,

comparing Darknet’s YOLO version 3 to Darknet’s YOLO tiny version 3, revealing that

the system was able to differentiate between a human and a dog as well as correct

the calculated ground distance. Improvements to the system were suggested, which

could potentially allow the aircraft to be used in detecting and following humans. The

conclusion follows in the next chapter, which will conclude the entire research paper.

 136

Chapter 8: Conclusion
The purpose of this chapter is to conclude the dissertation, highlighting the developed

multirotor aircraft as well as the simulations and testing performed. The research

contributions and the original hypothesis will be discussed. The chapter will also

include recommendations for future research.

8.1 Conclusion
This dissertation demonstrated the vast development of multirotor aircraft in today’s

era. One of the topics that was investigated was the latest crime statistics of South

Africa, which revealed that a new method or device was required to help reduce the

overall crime in the country. This lead to the development of this research.

The focus was to provide the aircraft with another method of landing itself, which did

not need to make use of the expensive RTK system that was currently available. This

lead to developing a vision system for the aircraft. The vision system was used for the

developed landing system as well as for the human detection system. The vision

system comprised a Logitech C920 webcam (which was mounted on a Tarot gimbal)

that was connected to a Odroid XU4 companion computer running ROS. The reason

for ROS being used on the computer was to integrate the entire system, allowing the

vision system to communicate with the aircraft, informing the aircraft to re-orientate

and reposition itself based on what the vision system detected.

The developed landing system consisted of detecting an ArUco marker placed on the

ground. When instructed to land, the aircraft repositioned itself above the marker,

adjusted its orientation to align itself correctly with the marker and began its descent,

eventually landing on the ArUco marker. The human detection system consisted of

detecting a human by making use of Darknet’s YOLO version 3 and Darknet’s YOLO

tiny version 3.

Both the landing system and the human detection system were developed by making

use of a SITL simulation (otherwise known as a Software in the Loop simulation). This

SITL was run alongside Gazebo, allowing for a model in Gazebo to be manipulated

 137

by making use of a ROS node. This enabled all the ROS nodes to be tested in Gazebo

first, before testing them on the actual aircraft.

After successfully testing the landing system in Gazebo, the system was implemented

onto the actual aircraft, where physical testing took place. After making adjustments

in the algorithms to force the aircraft to touch the ground, the aircraft successfully

managed to land. However, the aircraft was never able to disarm due to an issue in

the PX4 firmware. The developed landing system was then compared to the aircraft’s

GPS based landing system, where ten landings were performed using each system.

The developed landing system obtained a better accuracy than the GPS enabled

landing system. However, the time taken to land the aircraft using the developed

landing system took longer than the GPS enabled landing system.

The human detection system was only tested in the simulation and not on the actual

aircraft due to the Odroid XU4 companion computer providing insufficient processing

power. This limited the amount of testing possible for the system.

There were numerous tests performed on the aircraft, showing that the aircraft was

successfully able to be flown manually and autonomously. The main reason that this

was possible was due to the open-source Pixhawk flight controller running PX4

firmware being used. This choice in firmware allowed for the aircraft to able to be

integrated with ROS. The decision to use ROS for this research helped integrate the

entire system with ease.

There were a few limitations that were experienced when doing the research. The first

was that the aircraft was only flown in light wind conditions. So, the results recorded

for the GPS based landing system and the developed landing system do not reflect

how the aircraft would perform in stronger wind conditions. The second limitation was

that the human detection system was only tested on two humans and one dog. This

system should be tested further on a larger range of subjects, varying in size and

height.

Looking at the research contributions mentioned in section 1.7, all of the points

mentioned were obtained. A vision system was developed that could detect ArUco

 138

markers and detect objects within the video frame. A multirotor aircraft was developed

that could be flown manually and autonomously. The developed landing system was

able to help improve on the accuracy when the aircraft landed. However, this

improvement in accuracy resulted in the aircraft taking longer to land. If the developed

landing system was improved by performing further research in this regard, the time

taken to land the aircraft could be reduced substantially, resulting in a more efficient

landing system. The developed human detection system was able to be used to

manipulate the aircraft during flight. However, this human detection system was not

implemented on the aircraft due to the aircraft’s onboard computer not having sufficient

processing power to execute the said detection system. This could easily be

addressed by using a more powerful computer. Therefore, further research should be

performed in testing the human detection system on the aircraft. Finally, the vision

system and the aircraft were integrated by ROS. This integration will assist other

students in performing research in a similar field as the necessary foundation for their

research has been laid.

Referring to the original hypothesis a hardware and system architecture was designed

and a digital simulation environment was used and implemented. An alternative

landing system was successfully developed and tested on the actual aircraft. A human

detection was successfully developed, however it was never tested on the actual

aircraft. From these points, it can be said that a vision based multirotor aircraft can in

fact be developed to be used in the security industry.

8.2 Recommendations for Future Research
During this research, a number of ideas came to mind where future research could be

implemented:

• Develop a docking station that could charge and protect the multirotor aircraft

when not being used.

• Design a waterproof fuselage so that the aircraft could house all the

components into a neat compact system, allowing the multirotor aircraft to be

flown in raining or windy conditions.

• Develop a battery management system to improve on the flight time of the

aircraft.

 139

• Develop a communication system to allow the aircraft to be controlled and the

video feed of the aircraft to be viewed from a control room.

• Improve on the human detection system.

 140

Bibliography
Aerial Robotics, 2018. aruco_detection_gazebo. [Online] Available at:

https://github.com/AerialRobotics-IITK/aruco_detection_gazebo [Accessed 23

November 2019].

Aerial Robotics, 2019. Github offb_node.cpp. [Online] Available at:

https://github.com/AerialRobotics-

IITK/aruco_detection_gazebo/blob/master/offboard/src/offb_node.cpp#L4

[Accessed 31 January 2019].

Allen, C., 2014. How a Quadcopter Works. [Online] Available at: http://ffden-

2.phys.uaf.edu/webproj/212_spring_2014/Clay_Allen/clay_allen/works.html

[Accessed 5 April 2017].

Amazon, 2019. FPVKing 6M GPS Module Built-in Compass +Black GPS Folding

Antenna Mount Holder for APM2.6 APM2.8 Pixhawk Flight Controller. [Online]

Available at: https://www.amazon.com/FPVKing-Compass-Folding-Pixhawk-

Controller/dp/B077DC7WDB [Accessed 6 November 2019].

AnimMotion, 2019. Unit Quaternions vs Euler Angles: The Pros. [Online] Available at:

http://peyman-mass.blogspot.com/2013/04/unit-quaternions-vs-euler-angles.html

[Accessed 11 November 2019].

ArduPilot, 2016. ArduPilot. [Online] Available at: http://ardupilot.org/about [Accessed

29 October 2019].

ArduPilot, 2019. Choosing a Ground Station. [Online] Available at:

http://ardupilot.org/copter/docs/common-choosing-a-ground-station.html

[Accessed 24 October 2019].

ArduPilot, 2019. Connect ESCs and Motors. [Online] Available at:

https://ardupilot.org/copter/docs/connect-escs-and-motors.html [Accessed 30

November 2019].

ArduPilot, 2019. Copter Flight Modes. [Online] Available at:

http://ardupilot.org/copter/docs/flight-modes.html [Accessed 9 November 2019].

 141

Aviation History, 2015. Airfoils and Lift. [Online] Available at: http://www.aviation-

history.com/theory/airfoil.htm [Accessed 17 May 2017].

Banggood, 2019. Holybro Pix32 Pixhawk PX4 2.4.6 Flight Controller & Buzzer &

Power Module with XT60 Set. [Online] Available at:

https://www.banggood.com/Holybro-Pix32-Pixhawk-PX4-2_4_6-Flight-Controller-

Buzzer-Power-Module-with-XT60-Set-p-

1310396.html?gmcCountry=ZA¤cy=ZAR&createTmp=1&utm_source=goo

gleshopping&utm_medium=cpc_union&utm_content=xibei&utm_campaign=xibei

-ssc-za-a [Accessed 22 November 2019].

Banzi, M. & Shiloh, M., 2014. Make: Getting Started With Arduino. 3rd ed. Sebastopol:

Maker Media Inc..Arduino, 2017. Arduino. [Online] Available at:

https://www.arduino.cc/en/ [Accessed 6 November 2017].

Build Your Own Drone, 2019. DJI F550 FLAME WHEEL E305 ARF KIT V2. [Online]

Available at: https://www.buildyourowndrone.co.uk/dji-f550-flame-wheel-e305-

artf-v2 [Accessed 6 November 2019].

Business Tech, 2017. South Africa ranks among the most dangerous countries in the

world - it's costing us. [Online] Available at:

https://businesstech.co.za/news/lifestyle/200044/south-africa-ranks-among-the-

most-dangerous-countries-in-the-world-and-its-costing-us/ [Accessed 7 February

2018].

CHRobotics, 2019a. Understanding Euler Angles. [Online] Available at:

http://www.chrobotics.com/library/understanding-euler-angles [Accessed 11

November 2019].

CHRobotics, 2019b. Understanding Quaternions. [Online] Available at:

http://www.chrobotics.com/library/understanding-quaternions [Accessed 12

November 2019].

Euclidean Space, 2017. Maths - Quaternion Code. [Online] Available at:

https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions

/code/index.htm [Accessed 21 May 2019].

 142

GetFPV, 2019. FrSky Taranis Q X7 2.4GHz 16CH Transmitter (Black). [Online]

Available at: https://www.getfpv.com/frsky-taranis-q-x7-2-4ghz-16ch-transmitter-

black.html [Accessed 7 November 2019].

GetFPV, 2019. Pixhawk 2.1 Standard Set. [Online] Available at:

https://www.getfpv.com/pixhawk-2-1-standard-set.html [Accessed 7 November

2019].

GitHub, 2017. Sending waypoint info by using mavros services. [Online] Available at:

https://github.com/mavlink/mavros/issues/837 [Accessed 8 October 2018].

Hardkernel, 2019a. ODROID-XU4. [Online] Available at:

https://www.hardkernel.com/shop/odroid-xu4-special-price/ [Accessed 7

November 2019].

Hardkernel, 2019b. 32GB eMMC Module XU4 Linux. [Online] Available at:

https://www.hardkernel.com/shop/32gb-emmc-module-xu4-linux/ [Accessed 10

November 2019].

Hasko, D., 2016. Generate PPM signal with Arduino. [Online] Available at:

https://quadmeup.com/generate-ppm-signal-with-arduino/ [Accessed 10

December 2019].

Heli Engadin, 2019. Pixhawk 2.1 Standard Set & Here+ V2 RTK GNSS Combo.

[Online] Available at: https://www.heliengadin.com/products/pixhawk2-1-

standard-set-here-rtk-gnss-combo [Accessed 7 November 2019].

Hobby-Miracle, 2019. APC 10 x 4.7 Slow Flyer Propeller. [Online] Available at:

http://hobby-miracle.com/index.php?route=product/product&product_id=2423

[Accessed 14 November 2019].

HobbyKing, 2019. PROPDRIVE v2 2826 1000KV Brushless Outrunner Motor. [Online]

Available at: https://hobbyking.com/en_us/propdrive-v2-2826-1000kv-brushless-

outrunner-motor.html [Accessed 6 November 2019].

 143

Hobbywing, 2015. UBEC 8A (2-3S). [Online] Available at:

http://www.hobbywing.com/goods.php?id=378&filter_attr=5758.0 [Accessed 8

November 2019].

How Things Fly, 2005. The Four Forces. [Online] Available at:

http://howthingsfly.si.edu/forces-flight/four-forces [Accessed 10 June 2017].

Howse, J., Joshi, P. & Beyeler, M., 2016. OpenCV: Computer Vision Projects with

Python. Birmingham: Packt Publishing.

IGI Global, 2019. What is object tracking. [Online] Available at: https://www.igi-

global.com/dictionary/moving-object-detection-and-tracking-based-on-the-

contour-extraction-and-centroid-representation/20697 [Accessed 25 September

2019].

Institute for Economics & Peace, 2017. Global Peace Index 2017, pp. 1-140.

ISC West, 2019. Robotic Aerial Security. [Online] Available at:

https://www.iscwest.com/en/Exhibitors/5630991/Nightingale-

Security/Products/1519649/Robotic-Aerial-Security [Accessed 28 October 2019].

Kadamatt, V., 2017. How quadcopters work & fly: An intro to multirotors. [Online]

Available at: http://www.droneybee.com/how-quadcopters-work/ [Accessed 25

April 2017].

Koubaa, A., Allouch, A. & Alajlan, M., 2015. Micro Air Vehicle Link (MAVLink) in a

Nutshell: A Survey. Journal of Latex Class Files, 14(8), p. 3.

LambDrive, 2016. Pixhawk Family. [Online] Available at:

https://www.lambdrive.com/depot/Robotics/Controller/PixhawkFamily/index.html

[Accessed 28 October 2019].

Logitech Apps, 2019. Logitech C920 Pro Webcam Review. [Online] Available at:

https://logitech-apps.com/logitech-c920/ [Accessed 22 July 2019].

Logitech, 2019. C920 HD PRO WEBCAM. [Online] Available at:

https://www.logitech.com/en-hk/product/hd-pro-webcam-c920 [Accessed 8

November 2019].

 144

Lopez, J. L. S., 2016. Aruco Visual Markers for Gazebo Simulator. [Online] Available

at: https://github.com/joselusl/aruco_gazebo [Accessed 20 February 2019].

MAVLink, 2019. MAVLink Developer Guide. [Online] Available at:

https://mavlink.io/en/ [Accessed 19 September 2019].

MAVLink, 2019. Packet Serialization. [Online] Available at:

https://mavlink.io/en/guide/serialization.html [Accessed 14 October 2019].

Mostashiri, N. & Dhupia, J. S., 2018. A novel spatial mandibular motion-capture

system based on planar fiducial markers. IEEE Sensors - Engineering.

NASA, 2015. What is Drag?. [Online] Available at: https://www.grc.nasa.gov/www/k-

12/airplane/drag1.html [Accessed 11 June 2017].

Nightingale Security, 2019. Nightingale Security. [Online] Available at:

https://www.nightingalesecurity.com [Accessed 29 October 2019].

OpenCV, 2019. Detection of ArUco Markers. [Online] Available at:

https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html [Accessed 22

October 2019].

OpenCV, 2019. OpenCV About. [Online] Available at: https://opencv.org/about/

[Accessed 12 November 2019].

Parker, G., 2018. Drone vs UAV - What is the difference. [Online] Available at:

https://wiki.ezvid.com/m/drone-vs-uav-what-is-the-difference-_2FJYp_SrUkP-

[Accessed 15 July 2018].

Pixhawk, 2019. Pixhawk. [Online] Available at: https://pixhawk.org [Accessed 29

October 2019].

PorcupineRC, 2019. FrSky X8R 8/16CH SBUS Telemetry Receiver (ACCST

Compatible). [Online] Available at: http://www.porcupinerc.com/FrSky-X8R-

816CH-SBUS-Telemetry-Receiver-ACCST-Compatible_p_544.html [Accessed 7

November 2019].

 145

PX4, 2018. PX4 Autopilot. [Online] Available at: https://px4.io [Accessed 29 October

2019].

PX4, 2019a. Pixhawk 1 & Turnigy TGY-IA6C 2.4Ghz Receiver. [Online] Available at:

https://discuss.px4.io/t/pixhawk-1-turnigy-tgy-ia6c-2-4ghz-receiver/9190

[Accessed 5 November 2019].

PX4, 2019b. Pixhawk 1 Flight Controller. [Online] Available at:

https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk.html [Accessed 8

November 2019].

PX4, 2019c. Flight Modes. [Online] Available at:

https://docs.px4.io/v1.9.0/en/flight_modes/ [Accessed 9 November 2019].

PX4, 2019d. RTK GPS. [Online] Available at:

https://docs.px4.io/v1.9.0/en/gps_compass/rtk_gps.html [Accessed 14 November

2019].

PX4, 2019e. Precision Landing. [Online] Available at:

https://docs.px4.io/v1.9.0/en/advanced_features/precland.html [Accessed 14

November 2019].

PX4, 2019f. MAVROS offboard control example. [Online] Available at:

https://dev.px4.io/v1.9.0/en/ros/mavros_offboard.html [Accessed 31 January

2019].

PX4, 2019g. Gazebo Simulation. [Online] Available at:

https://dev.px4.io/v1.9.0/en/simulation/gazebo.html [Accessed 23 November

2019].

PX4, 2019h. Using Vision or Motion Capture Systems for Position Estimation. [Online]

Available at: https://dev.px4.io/v1.9.0/en/ros/external_position_estimation.html

[Accessed 3 December 2019].

Quadcopter Arena, 2017. The History of Drones and Quadcopters. [Online] Available

at: http://quadcopterarena.com/the-history-of-drones-and-quadcopters/

[Accessed 20 July 2018].

 146

Quaternion Simulator, 2019. Quaternions. [Online] Available at:

https://quaternions.online [Accessed 21 May 2019].

Quigley, M., Gerkey, B. & Conley, K., n.d. ROS: an open-source Robot Operating

System. California, s.nop.

Raspberry Pi, 2017. VNC (Virtual Network Computing). [Online] Available at:

https://www.raspberrypi.org/documentation/remote-access/vnc/ [Accessed 10

November 2019].

RC Groups, 2013. Afro 30a Multirotor ESC w/ SimonK. [Online] Available at:

https://www.rcgroups.com/forums/showthread.php?1948812-Afro-30a-Multirotor-

ESC-w-SimonK [Accessed 9 November 2019].

Readytosky, 2019. Readytosky 3DRobotics Radio 433Mhz Telemetry Kit. [Online]

Available at: http://www.readytosky.com/e_productshow/?383-Readytosky-

3DRobotics-Radio-Telemetry-Kit-433Mhz-433Air-Module-383.html [Accessed 6

November 2019].

Redmon, J., 2013. Darknet: Open Source Neural Networks in C. [Online] Available

at: https://pjreddie.com/darknet/ [Accessed 26 September 2019].

Reid, J., 2016. Understanding Kv Ratings. [Online] Available at:

https://www.rotordronepro.com/understanding-kv-ratings/#outer-popup

[Accessed 21 November 2019].

Robotics with ROS, 2017. Calibrating a Monocular Camera with ROS. [Online]

Available at: http://ros-developer.com/2017/04/23/camera-calibration-with-ros/

[Accessed 18 February 2019].

ROS, 2014. aruco_ros. [Online] Available at: http://wiki.ros.org/aruco_ros [Accessed

20 February 2019].

ROS, 2016a. usb_cam. [Online] Available at: http://wiki.ros.org/usb_cam [Accessed

20 February 2019].

ROS, 2016b. rqt. [Online] Available at: http://wiki.ros.org/rqt [Accessed 20 February

2019].

 147

ROS, 2017. camera_calibration. [Online] Available at:

http://wiki.ros.org/camera_calibration [Accessed 20 February 2019].

ROS, 2018a. darknet_ros. [Online] Available at: http://wiki.ros.org/darknet_ros

[Accessed 6 June 2019].

ROS, 2018b. video_stream_opencv. [Online] Available at:

http://wiki.ros.org/video_stream_opencv [Accessed 6 June 2019].

ROS, 2018c. mavros. [Online] Available at: http://wiki.ros.org/mavros [Accessed 16

November 2019].

ROS, 2019a. About ROS. [Online] Available at: https://www.ros.org/about-ros/

[Accessed 3 September 2019].

ROS, 2019b. Understanding Nodes. [Online] Available at:

http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes [Accessed 21 November

2019].

ROS, 2019c. Is ROS for Me?. [Online] Available at: https://www.ros.org/is-ros-for-me/

[Accessed 12 November 2019].

Sewell, J.A., 2019. Vision-Based Autonomous Aircraft Payload Delivery System.

Shipitko, O., 2017. 3D pose estimation algorithm for intelligent box picking of

warehouse automation robot. Moscow, s.n.

South African Police Service, 2019. SAPS Crimestats. [Online] Available at:

https://www.saps.gov.za/services/crimestats.php [Accessed 11 October 2019].

Sparkfun, 2015. Arduino Comparison Guide. [Online] Available at:

https://learn.sparkfun.com/tutorials/arduino-comparison-guide [Accessed 17 June

2017].

Sunflower Labs Inc., 2019. The Sunflower System. [Online] Available at:

https://sunflower-labs.com [Accessed 28 October 2019].

 148

Tarot, 2017. ZYX T-3D V User Manual. [Online] Available at:

http://www.tarotrc.com/Download/Detail.aspx?Lang=en&Id=7f048157-8b73-

4bd7-b3de-5b5fd772d6e1 [Accessed 6 November 2019].

u-blox, 2015. NEO-M8, s.l.: s.n.

UAV Systems International, 2018. What is a gimbal?. [Online] Available at:

https://www.uavsystemsinternational.com/what-is-a-gimbal/ [Accessed 21 July

2018].

Unitek, 2019. USB3.0 4-Port Hub. [Online] Available at: https://www.unitek-

products.com/products/usb3-0-4-port-hub [Accessed 7 November 2019].

Unmanned Tech, 2019. Gens ace 3300mAh 11.1V 25C 3S1P Lipo Battery Pack.

[Online] Available at: https://www.unmannedtechshop.co.uk/product/gens-ace-

3300mah-11-1v-25c-3s1p-lipo-battery-pack/ [Accessed 8 November 2019].

 149

Appendices
Appendix 1.1: South Africa’s Crime Statistics

South Africa's Crime Statistics
Crime Category 2018/2019
Murder 21 022
Sexual Offences 52 420
Attempted Murder 18 980
Assault with the intent to inflict grievous bodily harm 170 979
Common assault 162 012
Common robbery 51 765
Robbery with aggravating circumstances 140 032
Rape 41 583
Sexual Assault 7 437
Attempted Sexual Offences 2 146
Contact Sexual Offences 1 254
Carjacking 16 026
Robbery at residential premises 22 431
Robbery at non-residential premises 19 991
Robbery of cash in transit 183
Bank robbery 4
Truck hijacking 1 182
Arson 4 083
Malicious damage to property 113 089
Burglary at non-residential premises 71 224
Burglary at residential premises 220 865
Theft of motor vehicle and motorcycle 48 324
Theft out of or from motor vehicle 125 076
Commercial crime 83 823
Shoplifting 60 167

 150

Appendix 2.1: Darknet’s YOLO Dataset

person elephant wine glass diningtable

bicycle bear cup toilet

car zebra fork tvmonitor

motorbike giraffe knife laptop

aeroplane backpack spoon mouse

bus umbrella bowl remote

train handbag banana keyboard

truck tie apple cell phone

boat suitcase sandwich microwave

traffic light frisbee orange oven

fire hydrant skis broccoli toaster

stop sign snowboard carrot sink

parking meter sports ball hot dog refrigerator

bench kite pizza book

bird baseball bat donut clock

cat baseball glove cake vase

dog skateboard chair scissors

horse surfboard sofa teddy bear

sheep tennis racket pottedplant hair drier

cow bottle bed toothbrush

 151

Appendix 3.1: Gimbal Attachment v1 CAD Drawing

1 1

2 2

3 3

4 4

A
A

B
B

S
H

E
E
T
 1

O

F
 1

D
R
A
W

N

C
H

E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O

V
E
D

B
e
n
ja

m
in

 N
e
ls

o
n

D
W

G
 N

O

T
I
T
L
E

G
im

b
a
l
A
tt

a
c
h
m

e
n
t

v
1

S
I
Z
E

B

S
C
A
L
E

N
e
ls

o
n
 M

a
n
d
e
la

 U
n
iv

e
r
s
it
y

R
E
V

2
:
 1

F
R
O

N
T
 V

I
E
W

S
I
D

E
 V

I
E
W

T
O

P
 V

I
E
W

42.50

P
2
.5

0

P
1
0
.0

0

1
3
.0

0

2
5
.6

1

R
8
.0

0

3
4
.1

0

1
0
.5

5
1
0
.5

5

16.00

37.50

7.50

14.00

2
1
.5

0

10.08 19.42

8.005.00

5
.0

0
5
.0

0

 152

Appendix 3.2: Gimbal Attachment v2 CAD Drawing

1 1

2 2

3 3

4 4

A
A

B
B

SH
EE

T
1

 O
F

1

D
RA

W
N

CH
EC

KE
D

Q
A

M
FG

AP
PR

O
VE

D

Be
nj

am
in

 N
el

so
n

D
W

G
 N

O

TI
TL

E

G
im

ba
l A

tt
ac

hm
en

t
v2

SI
ZE B

SC
AL

E

N
el

so
n

M
an

de
la

 U
ni

ve
rs

ity

RE
V

1.
5

:
1

29.50

FR
O

N
T

VI
EW

SI
D

E
VI

EW

TO
P

VI
EW

P
10

.0
0

R7
.5

0

10.00

13
.0

0

5.00

R2
.5

0

17
.5

0

2.
50
`

27
.5

0

13.00

P
10

.0
0

R7
.5

0

5.00

R2
.5

0

17
.5

0

2.
50

11
5.

00

27
.5

0

R6
0.

00

45
.0

0

 153

Appendix 3.3: Leg Extension CAD Drawing

1 1

2 2

3 3

4 4

A
A

B
B

S
H

E
E
T
 1

O

F
 1

D
R
A
W

N

C
H

E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O

V
E
D

B
e
n
ja

m
in

 N
e
ls

o
n

D
W

G
 N

O

T
IT

L
E

L
e
g
 E

x
te

n
si

o
n

S
IZ

E

B
S
C
A
L
E

N
e
ls

o
n
 M

a
n
d
e
la

 U
n
iv

e
rs

it
y

R
E
V

2
 :

 1

F
R
O

N
T
 V

IE
W

S
ID

E
 V

IE
W

T
O

P
 V

IE
W

61.50

21.50

1
5
.0

0

1
1
.0

0

58.50

R
9
2
.5

0

 154

Appendix 3.4: GPS Case CAD Drawings

1 1

2 2

3 3

4 4

A
A

B
B

SH
EE

T
1

 O
F

1

D
RA

W
N

CH
EC

KE
D

Q
A

M
FG

AP
PR

O
VE

D

Be
nj

am
in

 N
el

so
n

D
W

G
 N

O

TI
TL

E

G
PS

 C
as

e
To

p

SI
ZE B

SC
AL

E

N
el

so
n

M
an

de
la

 U
ni

ve
rs

ity

RE
V

1.
5:

 1

12.50

1.00

P
5.

00

R2
7.

50

R2
6.

50

P
1.

50

33.00

33
.0

0

19
.5

0
16.50

16.86

R4
.6

1

6.0
0

12
.7

6

12.76

TO
P

VI
EW

FR
O

N
T

VI
EW

BO
TT

O
M

 V
IE

W

 155

1 1

2 2

3 3

4 4

A
A

B
B

SH
EE

T
1

 O
F

1

D
RA

W
N

CH
EC

KE
D

Q
A

M
FG

AP
PR

O
VE

D

Be
nj

am
in

 N
el

so
n

D
W

G
 N

O

TI
TL

E

G
PS

 C
as

e
Ba

se

SI
ZE B

SC
AL

E

N
el

so
n

M
an

de
la

 U
ni

ve
rs

ity

RE
V

1.
5:

 1

33
.0

0

10
.0

0

R2
6.

50

R2
7.

50

6.00

1.00

P
2.

00

P
4.

00

2.00

55
.0

0

3.
00

33.00

R2
6.

00

5.57

6.5
5

TO
P

VI
EW

FR
O

N
T

VI
EW

4.00

 156

Appendix 3.5: Webcam CAD Drawings

1 1

2 2

3 3

4 4

A
A

B
B

SH
EE

T
1

 O
F

1

D
RA

W
N

CH
EC

KE
D

Q
A

M
FG

AP
PR

O
VE

D

M
ar

tin
 C

or
le

tt

D
W

G
 N

O

TI
TL

E

W
eb

ca
m

 H
ol

de
r

SI
ZE B

SC
AL

E

N
el

so
n

M
an

de
la

 U
ni

ve
rs

ity

RE
V

1
:

1

26.00

86
.0

0

7.50

P
3.

00

1.
50

53.00

26.00

15
.0

0
21

.0
0

59
.0

0

4.22

3.15

R1
.7

5

4.
50

R1
.5

0

R1
.5

0
3.

00

9.
70

15.00

10.00

13.50

1.50

3.
50

FR
O

N
T

VI
EW

SI
D

E
VI

EW

TO
P

VI
EW

9.70

 157

1 1

2 2

3 3

4 4

A
A

B
B

SH
EE

T
1

 O
F

1

D
RA

W
N

CH
EC

KE
D

Q
A

M
FG

AP
PR

O
VE

D

M
ar

tin
 C

or
le

tt

D
W

G
 N

O

TI
TL

E

W
eb

ca
m

 L
id

SI
ZE B

SC
AL

E

N
el

so
n

M
an

de
la

 U
ni

ve
rs

ity

RE
V

1
:

1

26.00

86
.0

0

P
3.

00

3.
00

1.50

P
12

.5
0

43
.0

0

2.00

12
.5

0

.50

1.
50

FR
O

N
T

VI
EW

TO
P

VI
EW

 158

1 1

2 2

3 3

4 4

A
A

B
B

SH
EE

T
1

 O
F

1

DR
AW

N

CH
EC

KE
D

QA M
FG

AP
PR

OV
ED

M
ar

tin
 C

or
le

tt

DW
G

NO

TI
TL

E

W
eb

ca
m

 B
ac

k
Li

d

SI
ZE B

SC
AL

E

Ne
lso

n
M

an
de

la
 U

ni
ve

rs
ity

RE
V

2:
 1

41.00

3.50

1.
50

59
.0

0

5.00

R1
.5

0 P
5.

60

7.00

1.50

FR
ON

T
VI

EW

TO
P

VI
EW

 159

Appendix 3.6: Pixhawk Schematic and Pinout

 160

TELEM1 & TELEM2 Ports
Pin Signal Volt

1

(red) VCC +5V

2 (blk) TX (OUT) +3.3V

3 (blk) RX (IN) +3.3V

4 (blk) CTS (IN) +3.3V

5 (blk) RTS (OUT) +3.3V

6 (blk) GND GND

GPS Port
Pin Signal Volt

1

(red) VCC +5V

2 (blk) TX (OUT) +3.3V

3 (blk) RX (IN) +3.3V

4 (blk) CAN2 TX +3.3V

5 (blk) CAN2 RX +3.3V

6 (blk) GND GND

SERIAL 4/5 Port
Pin Signal Volt

1

(red) VCC +5V

2 (blk) TX (#4) +3.3V

3 (blk) RX (#4) +3.3V

4 (blk) TX (#5) +3.3V

5 (blk) RX (#5) +3.3V

6 (blk) GND GND

 161

ADC 6.6V
Pin Signal Volt

1

(red) VCC +5V

2 (blk) ADC IN up to +6.6V

3 (blk) GND GND

ADC 3.3V
Pin Signal Volt

1

(red) VCC +5V

2 (blk) ADC IN up to +3.3V

3 (blk) GND GND

4 (blk) ADC IN up to +3.3V

5 (blk) GND GND

I2C
Pin Signal Volt

1

(red) VCC +5V

2 (blk) SCL +3.3 (pullups)

3 (blk) SDA +3.3 (pullups)

4 (blk) GND GND

CAN
Pin Signal Volt

1

(red) VCC +5V

2 (blk) CAN_H +12V

3 (blk) CAN_L +12V

4 (blk) GND GND

 162

SPI
Pin Signal Volt

1

(red) VCC +5V

2 (blk) SPI_EXT_SCK +3.3V

3 (blk) SPI_EXT_MISO +3.3V

4 (blk) SPI_EXT_MOSI +3.3V

5 (blk) !GPIO_EXT +3.3V

6 (blk) !SPI_EXT_NSS +3.3V

7 (blk) GND GND

POWER
Pin Signal Volt

1

(red) VCC +5V

2 (blk) VCC +5V

3 (blk) CURRENT +3.3V

4 (blk) VOLTAGE +3.3V

5 (blk) GND GND

6 (blk) GND GND

SWITCH
Pin Signal Volt

1

(red) VCC +3.3V

2 (blk) !IO_LED_SAFETY GND

3 (blk) SAFETY GND

 163

Appendix 3.7: Pixhawk PX4 Parameters

Parameter Parameter Value Parameter Parameter Value

BAT_ADC_CHANNEL -1 MPC_LAND_ALT2 5

BAT_A_PER_V 15.39103031 MPC_LAND_SPEED 0.600000024

BAT_CAPACITY 6600 MPC_MANTHR_MIN 0.079999998

BAT_CNT_V_CURR 0.000805664 MPC_MAN_TILT_MAX 35

BAT_CNT_V_VOLT 0.000805664 MPC_MAN_Y_MAX 200

BAT_CRIT_THR 0.07 MPC_POS_MODE 1

BAT_EMERGEN_THR 0.050000001 MPC_SPOOLUP_TIME 5

BAT_LOW_THR 0.150000006 MPC_THR_CURVE 0

BAT_N_CELLS 3 MPC_THR_HOVER 0.600000024

BAT_R_INTERNAL -1 MPC_THR_MAX 1

BAT_SOURCE 0 MPC_THR_MIN 0.079999998

BAT_V_CHARGED 4.184000015 MPC_TILTMAX_AIR 45

BAT_V_DIV 10.17793941 MPC_TILTMAX_LND 12

BAT_V_EMPTY 3 MPC_TKO_RAMP_T 0.400000006

BAT_V_LOAD_DROP 0.5 MPC_TKO_SPEED 1.5

BAT_V_OFFS_CURR 0 MPC_VELD_LP 5

CAL_ACC0_EN 1 MPC_VEL_MANUAL 10

CAL_ACC0_ID 1246218 MPC_XY_CRUISE 5

CAL_ACC0_XOFF -0.067638397 MPC_XY_MAN_EXPO 0

CAL_ACC0_XSCALE 0.991395772 MPC_XY_P 0.600000024

CAL_ACC0_YOFF -0.072976589 MPC_XY_TRAJ_P 0.300000012

CAL_ACC0_YSCALE 1.005786061 MPC_XY_VEL_D 0.01

CAL_ACC0_ZOFF -0.245393276 MPC_XY_VEL_I 0.02

CAL_ACC0_ZSCALE 0.994733572 MPC_XY_VEL_MAX 2

CAL_ACC1_EN 1 MPC_XY_VEL_P 0.090000004

CAL_ACC1_ID 1114634 MPC_YAWRAUTO_MAX 45

CAL_ACC1_XOFF 3.092870712 MPC_YAW_EXPO 0

CAL_ACC1_XSCALE 1.047754049 MPC_YAW_MODE 0

CAL_ACC1_YOFF 3.552666187 MPC_Z_MAN_EXPO 0

CAL_ACC1_YSCALE 1.000845194 MPC_Z_P 1

CAL_ACC1_ZOFF 2.505486012 MPC_Z_TRAJ_P 0.300000012

CAL_ACC1_ZSCALE 1.000477791 MPC_Z_VEL_D 0

CAL_ACC_PRIME 1246218 MPC_Z_VEL_I 0.02

CAL_AIR_CMODEL 0 MPC_Z_VEL_MAX_DN 0.5

CAL_AIR_TUBED_MM 1.5 MPC_Z_VEL_MAX_UP 3

CAL_AIR_TUBELEN 0.200000003 MPC_Z_VEL_P 0.200000003

CAL_BARO_PRIME 0 NAV_ACC_RAD 2

CAL_GYRO0_EN 1 NAV_AH_ALT 600

 164

CAL_GYRO0_ID 2163722 NAV_AH_LAT -265847810

CAL_GYRO0_XOFF 0.001806231 NAV_AH_LON 1518423250

CAL_GYRO0_XSCALE 1 NAV_DLL_ACT 0

CAL_GYRO0_YOFF 0.025406186 NAV_DLL_AH_T 120

CAL_GYRO0_YSCALE 1 NAV_DLL_CHSK 0

CAL_GYRO0_ZOFF -0.018975759 NAV_DLL_CH_ALT 600

CAL_GYRO0_ZSCALE 1 NAV_DLL_CH_LAT -266072120

CAL_GYRO1_EN 1 NAV_DLL_CH_LON 1518453890

CAL_GYRO1_ID 2228490 NAV_DLL_CH_T 120

CAL_GYRO1_XOFF 0.035897288 NAV_DLL_N 2

CAL_GYRO1_XSCALE 1 NAV_FORCE_VT 1

CAL_GYRO1_YOFF 0.03162903 NAV_FT_DST 8

CAL_GYRO1_YSCALE 1 NAV_FT_FS 1

CAL_GYRO1_ZOFF 0.029917274 NAV_FT_RS 0.5

CAL_GYRO1_ZSCALE 1 NAV_FW_ALTL_RAD 5

CAL_GYRO_PRIME 2163722 NAV_FW_ALT_RAD 10

CAL_MAG0_EN 1 NAV_GPSF_LT 0

CAL_MAG0_ID 73225 NAV_GPSF_P 0

CAL_MAG0_ROT 0 NAV_GPSF_R 15

CAL_MAG0_XOFF 0.080767058 NAV_GPSF_TR 0

CAL_MAG0_XSCALE 1.071887374 NAV_LOITER_RAD 50

CAL_MAG0_YOFF 0.015436961 NAV_MC_ALT_RAD 0.800000012

CAL_MAG0_YSCALE 0.892002106 NAV_MIN_FT_HT 8

CAL_MAG0_ZOFF -0.107885525 NAV_RCL_ACT 2

CAL_MAG0_ZSCALE 1.059280038 NAV_RCL_LT 120

CAL_MAG1_EN 1 NAV_TRAFF_AVOID 1

CAL_MAG1_ID 131594 PLD_BTOUT 5

CAL_MAG1_ROT -1 PLD_FAPPR_ALT 0.100000001

CAL_MAG1_XOFF -0.157269895 PLD_HACC_RAD 0.200000003

CAL_MAG1_XSCALE 1.047619462 PLD_MAX_SRCH 3

CAL_MAG1_YOFF 0.27500093 PLD_SRCH_ALT 10

CAL_MAG1_YSCALE 0.966791272 PLD_SRCH_TOUT 10

CAL_MAG1_ZOFF -0.138879791 PWM_AUX_DIS1 -1

CAL_MAG1_ZSCALE 0.998935401 PWM_AUX_DIS2 -1

CAL_MAG2_ID 0 PWM_AUX_DIS3 -1

CAL_MAG2_ROT -1 PWM_AUX_DIS4 -1

CAL_MAG3_ID 0 PWM_AUX_DIS5 -1

CAL_MAG3_ROT -1 PWM_AUX_DIS6 -1

CAL_MAG_PRIME 73225 PWM_AUX_DIS7 -1

CAL_MAG_SIDES 63 PWM_AUX_DIS8 -1

CBRK_AIRSPD_CHK 0 PWM_AUX_DISARMED 1500

CBRK_BUZZER 0 PWM_AUX_FAIL1 -1

 165

CBRK_ENGINEFAIL 284953 PWM_AUX_FAIL2 -1

CBRK_FLIGHTTERM 121212 PWM_AUX_FAIL3 -1

CBRK_GPSFAIL 0 PWM_AUX_FAIL4 -1

CBRK_IO_SAFETY 22027 PWM_AUX_FAIL5 -1

CBRK_RATE_CTRL 0 PWM_AUX_FAIL6 -1

CBRK_SUPPLY_CHK 0 PWM_AUX_FAIL7 -1

CBRK_USB_CHK 0 PWM_AUX_FAIL8 -1

CBRK_VELPOSERR 0 PWM_AUX_MAX 2000

COM_ARM_AUTH 256010 PWM_AUX_MAX1 -1

COM_ARM_IMU_ACC 0.699999988 PWM_AUX_MAX2 -1

COM_ARM_IMU_GYR 0.25 PWM_AUX_MAX3 -1

COM_ARM_MAG 0.150000006 PWM_AUX_MAX4 -1

COM_ARM_MIS_REQ 0 PWM_AUX_MAX5 -1

COM_ARM_SWISBTN 0 PWM_AUX_MAX6 -1

COM_ARM_WO_GPS 1 PWM_AUX_MAX7 -1

COM_ASPD_FS_ACT 0 PWM_AUX_MAX8 -1

COM_ASPD_FS_DLY 0 PWM_AUX_MIN 1000

COM_ASPD_STALL 10 PWM_AUX_MIN1 -1

COM_DISARM_LAND 0.100000001 PWM_AUX_MIN2 -1

COM_DL_LOSS_T 10 PWM_AUX_MIN3 -1

COM_EF_C2T 5 PWM_AUX_MIN4 -1

COM_EF_THROT 0.5 PWM_AUX_MIN5 -1

COM_EF_TIME 10 PWM_AUX_MIN6 -1

COM_FLIGHT_UUID 108 PWM_AUX_MIN7 -1

COM_FLTMODE1 6 PWM_AUX_MIN8 -1

COM_FLTMODE2 8 PWM_AUX_REV1 0

COM_FLTMODE3 2 PWM_AUX_REV2 0

COM_FLTMODE4 3 PWM_AUX_REV3 0

COM_FLTMODE5 11 PWM_AUX_REV4 0

COM_FLTMODE6 5 PWM_AUX_REV5 0

COM_HLDL_LOSS_T 120 PWM_AUX_REV6 0

COM_HLDL_REG_T 0 PWM_AUX_TRIM1 0

COM_HOME_H_T 5 PWM_AUX_TRIM2 0

COM_HOME_V_T 10 PWM_AUX_TRIM3 0

COM_LOW_BAT_ACT 0 PWM_AUX_TRIM4 0

COM_OA_BOOT_T 100 PWM_AUX_TRIM5 0

COM_OBL_ACT 0 PWM_AUX_TRIM6 0

COM_OBL_RC_ACT 0 PWM_DISARMED 900

COM_OBS_AVOID 0 PWM_MAIN_DIS1 -1

COM_OF_LOSS_T 0 PWM_MAIN_DIS2 -1

COM_POSCTL_NAVL 0 PWM_MAIN_DIS3 -1

COM_POS_FS_DELAY 1 PWM_MAIN_DIS4 -1

 166

COM_POS_FS_EPH 5 PWM_MAIN_DIS5 -1

COM_POS_FS_EPV 10 PWM_MAIN_DIS6 -1

COM_POS_FS_GAIN 10 PWM_MAIN_DIS7 -1

COM_POS_FS_PROB 30 PWM_MAIN_DIS8 -1

COM_RC_ARM_HYST 1000 PWM_MAIN_FAIL1 -1

COM_RC_IN_MODE 0 PWM_MAIN_FAIL2 -1

COM_RC_LOSS_T 0.5 PWM_MAIN_FAIL3 -1

COM_RC_OVERRIDE 0 PWM_MAIN_FAIL4 -1

COM_RC_STICK_OV 12 PWM_MAIN_FAIL5 -1

COM_TAKEOFF_ACT 0 PWM_MAIN_FAIL6 -1

COM_TAS_FS_INNOV 1 PWM_MAIN_FAIL7 -1

COM_TAS_FS_INTEG -1 PWM_MAIN_FAIL8 -1

COM_TAS_FS_T1 3 PWM_MAIN_MAX1 -1

COM_TAS_FS_T2 100 PWM_MAIN_MAX2 -1

COM_VEL_FS_EVH 1 PWM_MAIN_MAX3 -1

EKF2_ABIAS_INIT 0.200000003 PWM_MAIN_MAX4 -1

EKF2_ABL_ACCLIM 25 PWM_MAIN_MAX5 -1

EKF2_ABL_GYRLIM 3 PWM_MAIN_MAX6 -1

EKF2_ABL_LIM 0.400000006 PWM_MAIN_MAX7 -1

EKF2_ABL_TAU 0.5 PWM_MAIN_MAX8 -1

EKF2_ACC_B_NOISE 0.003 PWM_MAIN_MIN1 -1

EKF2_ACC_NOISE 0.349999994 PWM_MAIN_MIN2 -1

EKF2_AID_MASK 1 PWM_MAIN_MIN3 -1

EKF2_ANGERR_INIT 0.100000001 PWM_MAIN_MIN4 -1

EKF2_ARSP_THR 0 PWM_MAIN_MIN5 -1

EKF2_ASPD_MAX 20 PWM_MAIN_MIN6 -1

EKF2_ASP_DELAY 100 PWM_MAIN_MIN7 -1

EKF2_AVEL_DELAY 5 PWM_MAIN_MIN8 -1

EKF2_BARO_DELAY 0 PWM_MAIN_REV1 0

EKF2_BARO_GATE 5 PWM_MAIN_REV2 0

EKF2_BARO_NOISE 2 PWM_MAIN_REV3 0

EKF2_BCOEF_X 25 PWM_MAIN_REV4 0

EKF2_BCOEF_Y 25 PWM_MAIN_REV5 0

EKF2_BETA_GATE 5 PWM_MAIN_REV6 0

EKF2_BETA_NOISE 0.300000012 PWM_MAIN_REV7 0

EKF2_DECL_TYPE 7 PWM_MAIN_REV8 0

EKF2_DRAG_NOISE 2.5 PWM_MAIN_TRIM1 0

EKF2_EAS_NOISE 1.399999976 PWM_MAIN_TRIM2 0

EKF2_EVA_NOISE 0.050000001 PWM_MAIN_TRIM3 0

EKF2_EVP_NOISE 0.050000001 PWM_MAIN_TRIM4 0

EKF2_EV_DELAY 175 PWM_MAIN_TRIM5 0

EKF2_EV_GATE 5 PWM_MAIN_TRIM6 0

 167

EKF2_EV_POS_X 0 PWM_MAIN_TRIM7 0

EKF2_EV_POS_Y 0 PWM_MAIN_TRIM8 0

EKF2_EV_POS_Z 0 PWM_MAX 1950

EKF2_FUSE_BETA 0 PWM_MIN 1075

EKF2_GBIAS_INIT 0.100000001 PWM_RATE 400

EKF2_GND_EFF_DZ 0 PWM_SBUS_MODE 0

EKF2_GND_MAX_HGT 0.5 RC10_DZ 0

EKF2_GPS_CHECK 245 RC10_MAX 2000

EKF2_GPS_DELAY 110 RC10_MIN 1000

EKF2_GPS_MASK 0 RC10_REV 1

EKF2_GPS_POS_X 0 RC10_TRIM 1500

EKF2_GPS_POS_Y 0 RC11_DZ 0

EKF2_GPS_POS_Z 0 RC11_MAX 2000

EKF2_GPS_P_GATE 5 RC11_MIN 1000

EKF2_GPS_P_NOISE 0.5 RC11_REV 1

EKF2_GPS_TAU 10 RC11_TRIM 1500

EKF2_GPS_V_GATE 5 RC12_DZ 0

EKF2_GPS_V_NOISE 0.5 RC12_MAX 2000

EKF2_GYR_B_NOISE 0.001 RC12_MIN 1000

EKF2_GYR_NOISE 0.015 RC12_REV 1

EKF2_HDG_GATE 2.599999905 RC12_TRIM 1500

EKF2_HEAD_NOISE 0.300000012 RC13_DZ 0

EKF2_HGT_MODE 0 RC13_MAX 2000

EKF2_IMU_POS_X 0 RC13_MIN 1000

EKF2_IMU_POS_Y 0 RC13_REV 1

EKF2_IMU_POS_Z 0 RC13_TRIM 1500

EKF2_MAGBIAS_ID 73225 RC14_DZ 0

EKF2_MAGBIAS_X 0.001802281 RC14_MAX 2000

EKF2_MAGBIAS_Y -0.001675414 RC14_MIN 1000

EKF2_MAGBIAS_Z -4.92853E-05 RC14_REV 1

EKF2_MAGB_K 0.200000003 RC14_TRIM 1500

EKF2_MAGB_VREF 2.5E-07 RC15_DZ 0

EKF2_MAG_ACCLIM 0.5 RC15_MAX 2000

EKF2_MAG_B_NOISE 1E-04 RC15_MIN 1000

EKF2_MAG_DECL -23.14025879 RC15_REV 1

EKF2_MAG_DELAY 0 RC15_TRIM 1500

EKF2_MAG_E_NOISE 0.001 RC16_DZ 0

EKF2_MAG_GATE 3 RC16_MAX 2000

EKF2_MAG_NOISE 0.050000001 RC16_MIN 1000

EKF2_MAG_TYPE 0 RC16_REV 1

EKF2_MAG_YAWLIM 0.25 RC16_TRIM 1500

EKF2_MIN_OBS_DT 20 RC17_DZ 0

 168

EKF2_MIN_RNG 0.100000001 RC17_MAX 2000

EKF2_MOVE_TEST 1 RC17_MIN 1000

EKF2_NOAID_NOISE 10 RC17_REV 1

EKF2_NOAID_TOUT 5000000 RC17_TRIM 1500

EKF2_OF_DELAY 5 RC18_DZ 0

EKF2_OF_GATE 3 RC18_MAX 2000

EKF2_OF_N_MAX 0.5 RC18_MIN 1000

EKF2_OF_N_MIN 0.150000006 RC18_REV 1

EKF2_OF_POS_X 0 RC18_TRIM 1500

EKF2_OF_POS_Y 0 RC1_DZ 10

EKF2_OF_POS_Z 0 RC1_MAX 2003

EKF2_OF_QMIN 1 RC1_MIN 982

EKF2_PCOEF_XN 0 RC1_REV 1

EKF2_PCOEF_XP 0 RC1_TRIM 982

EKF2_PCOEF_YN 0 RC2_DZ 10

EKF2_PCOEF_YP 0 RC2_MAX 2006

EKF2_PCOEF_Z 0 RC2_MIN 982

EKF2_REQ_EPH 3 RC2_REV 1

EKF2_REQ_EPV 5 RC2_TRIM 1500

EKF2_REQ_GDOP 2.5 RC3_DZ 10

EKF2_REQ_HDRIFT 0.100000001 RC3_MAX 2006

EKF2_REQ_NSATS 6 RC3_MIN 982

EKF2_REQ_SACC 0.5 RC3_REV 1

EKF2_REQ_VDRIFT 0.200000003 RC3_TRIM 1498

EKF2_RNG_AID 0 RC4_DZ 10

EKF2_RNG_A_HMAX 5 RC4_MAX 2006

EKF2_RNG_A_IGATE 1 RC4_MIN 982

EKF2_RNG_A_VMAX 1 RC4_REV 1

EKF2_RNG_DELAY 5 RC4_TRIM 1501

EKF2_RNG_GATE 5 RC5_DZ 10

EKF2_RNG_NOISE 0.100000001 RC5_MAX 2006

EKF2_RNG_PITCH 0 RC5_MIN 982

EKF2_RNG_POS_X 0 RC5_REV 1

EKF2_RNG_POS_Y 0 RC5_TRIM 1494

EKF2_RNG_POS_Z 0 RC6_DZ 10

EKF2_RNG_SFE 0.050000001 RC6_MAX 2006

EKF2_TAS_GATE 3 RC6_MIN 982

EKF2_TAU_POS 0.25 RC6_REV 1

EKF2_TAU_VEL 0.25 RC6_TRIM 1494

EKF2_TERR_GRAD 0.5 RC7_DZ 10

EKF2_TERR_NOISE 5 RC7_MAX 2006

EKF2_WIND_NOISE 0.100000001 RC7_MIN 982

 169

EV_TSK_RC_LOSS 0 RC7_REV 1

EV_TSK_STAT_DIS 0 RC7_TRIM 1494

FD_FAIL_P 60 RC8_DZ 10

FD_FAIL_R 60 RC8_MAX 2006

FW_MAN_P_SC 1 RC8_MIN 982

FW_MAN_R_SC 1 RC8_REV 1

FW_MAN_Y_SC 1 RC8_TRIM 1494

GF_ACTION 1 RC9_DZ 0

GF_ALTMODE 0 RC9_MAX 2006

GF_COUNT -1 RC9_MIN 982

GF_MAX_HOR_DIST 0 RC9_REV 1

GF_MAX_VER_DIST 0 RC9_TRIM 1494

GF_SOURCE 0 RC_ACRO_TH 0.5

GPS_1_CONFIG 201 RC_ARMSWITCH_TH 0.25

GPS_2_CONFIG 0 RC_ASSIST_TH 0.25

GPS_DUMP_COMM 0 RC_AUTO_TH 0.75

GPS_UBX_DYNMODEL 7 RC_CHAN_CNT 18

GPS_YAW_OFFSET 0 RC_FAILS_THR 0

IMU_ACCEL_CUTOFF 30 RC_FLT_CUTOFF 10

IMU_GYRO_CUTOFF 30 RC_FLT_SMP_RATE 50

LED_RGB_MAXBRT 15 RC_GEAR_TH 0.25

LNDMC_ALT_MAX -1 RC_KILLSWITCH_TH 0.25

LNDMC_FFALL_THR 2 RC_LOITER_TH 0.5

LNDMC_FFALL_TTRI 0.300000012 RC_MAN_TH 0.5

LNDMC_LOW_T_THR 0.300000012 RC_MAP_ACRO_SW 0

LNDMC_ROT_MAX 20 RC_MAP_ARM_SW 6

LNDMC_XY_VEL_MAX 1.5 RC_MAP_AUX1 7

LNDMC_Z_VEL_MAX 0.5 RC_MAP_AUX2 8

LND_FLIGHT_T_HI 0 RC_MAP_AUX3 0

LND_FLIGHT_T_LO -509819056 RC_MAP_AUX4 0

MAV_0_CONFIG 101 RC_MAP_AUX5 0

MAV_0_FORWARD 1 RC_MAP_AUX6 0

MAV_0_MODE 0 RC_MAP_FAILSAFE 0

MAV_0_RATE 1200 RC_MAP_FLAPS 0

MAV_1_CONFIG 102 RC_MAP_FLTMODE 5

MAV_1_FORWARD 1 RC_MAP_GEAR_SW 0

MAV_1_MODE 2 RC_MAP_KILL_SW 0

MAV_1_RATE 0 RC_MAP_LOITER_SW 0

MAV_2_CONFIG 0 RC_MAP_MAN_SW 0

MAV_BROADCAST 0 RC_MAP_MODE_SW 0

MAV_COMP_ID 1 RC_MAP_OFFB_SW 9

MAV_FWDEXTSP 1 RC_MAP_PARAM1 0

 170

MAV_HASH_CHK_EN 1 RC_MAP_PARAM2 0

MAV_HB_FORW_EN 1 RC_MAP_PARAM3 0

MAV_ODOM_LP 0 RC_MAP_PITCH 3

MAV_PROTO_VER 0 RC_MAP_POSCTL_SW 0

MAV_RADIO_ID 0 RC_MAP_RATT_SW 0

MAV_SYS_ID 1 RC_MAP_RETURN_SW 0

MAV_TYPE 13 RC_MAP_ROLL 2

MAV_USEHILGPS 0 RC_MAP_STAB_SW 0

MC_ACRO_EXPO 0.689999998 RC_MAP_THROTTLE 1

MC_ACRO_EXPO_Y 0.689999998 RC_MAP_TRANS_SW 0

MC_ACRO_P_MAX 720 RC_MAP_YAW 4

MC_ACRO_R_MAX 720 RC_OFFB_TH 0.5

MC_ACRO_SUPEXPO 0.699999988 RC_POSCTL_TH 0.5

MC_ACRO_SUPEXPOY 0.699999988 RC_RATT_TH 0.5

MC_ACRO_Y_MAX 540 RC_RETURN_TH 0.5

MC_AIRMODE 0 RC_RSSI_PWM_CHAN 0

MC_BAT_SCALE_EN 1 RC_RSSI_PWM_MAX 1000

MC_DTERM_CUTOFF 0 RC_RSSI_PWM_MIN 2000

MC_PITCHRATE_D 0.003 RC_STAB_TH 0.5

MC_PITCHRATE_FF 0 RC_TRANS_TH 0.25

MC_PITCHRATE_I 0.200000003 RTL_DESCEND_ALT 5

MC_PITCHRATE_MAX 220 RTL_LAND_DELAY 0

MC_PITCHRATE_P 0.150000006 RTL_MIN_DIST 20

MC_PITCH_P 6.5 RTL_RETURN_ALT 5

MC_PR_INT_LIM 0.300000012 RTL_TYPE 0

MC_RATT_TH 0.800000012 SDLOG_DIRS_MAX 0

MC_ROLLRATE_D 0.003 SDLOG_MISSION 0

MC_ROLLRATE_FF 0 SDLOG_MODE 0

MC_ROLLRATE_I 0.200000003 SDLOG_PROFILE 3

MC_ROLLRATE_MAX 220 SDLOG_UTC_OFFSET 0

MC_ROLLRATE_P 0.150000006 SENS_BARO_QNH 1013.25

MC_ROLL_P 6.5 SENS_BOARD_ROT 0

MC_RR_INT_LIM 0.300000012 SENS_BOARD_X_OFF 0.021766607

MC_TPA_BREAK_D 1 SENS_BOARD_Y_OFF 1.469085574

MC_TPA_BREAK_I 1 SENS_BOARD_Z_OFF 0

MC_TPA_BREAK_P 1 SENS_DPRES_ANSC 0

MC_TPA_RATE_D 0 SENS_DPRES_OFF 0

MC_TPA_RATE_I 0 SENS_EN_LL40LS 0

MC_TPA_RATE_P 0 SENS_EN_THERMAL -1

MC_YAWRATE_D 0 SENS_FLOW_MAXHGT 3

MC_YAWRATE_FF 0 SENS_FLOW_MAXR 2.5

MC_YAWRATE_I 0.100000001 SENS_FLOW_MINHGT 0.699999988

 171

MC_YAWRATE_MAX 125 SENS_FLOW_ROT 6

MC_YAWRATE_P 0.200000003 SER_GPS1_BAUD 0

MC_YAW_P 2.799999952 SER_TEL1_BAUD 57600

MC_YR_INT_LIM 0.300000012 SER_TEL2_BAUD 921600

MIS_ALTMODE 1 SYS_AUTOCONFIG 0

MIS_DIST_1WP 900 SYS_AUTOSTART 6001

MIS_DIST_WPS 900 SYS_BL_UPDATE 0

MIS_LTRMIN_ALT -1 SYS_CAL_ACCEL 0

MIS_MNT_YAW_CTL 0 SYS_CAL_BARO 0

MIS_TAKEOFF_ALT 2.5 SYS_CAL_GYRO 0

MIS_TAKEOFF_REQ 0 SYS_CAL_TDEL 24

MIS_YAW_ERR 12 SYS_CAL_TMAX 10

MIS_YAW_TMT -1 SYS_CAL_TMIN 5

MNT_MODE_IN -1 SYS_COMPANION 0

MOT_ORDERING 0 SYS_FMU_TASK 0

MOT_SLEW_MAX 0 SYS_HAS_BARO 1

MPC_ACC_DOWN_MAX 10 SYS_HAS_MAG 1

MPC_ACC_HOR 5 SYS_HITL 0

MPC_ACC_HOR_ESTM 0.5 SYS_MC_EST_GROUP 2

MPC_ACC_HOR_MAX 10 SYS_PARAM_VER 1

MPC_ACC_UP_MAX 10 SYS_RESTART_TYPE 0

MPC_ALT_MODE 0 SYS_STCK_EN 1

MPC_AUTO_MODE 1 SYS_USE_IO 1

MPC_COL_PREV_D -1 TC_A_ENABLE 0

MPC_CRUISE_90 3 TC_B_ENABLE 0

MPC_DEC_HOR_SLOW 5 TC_G_ENABLE 0

MPC_HOLD_DZ 0.100000001 THR_MDL_FAC 0

MPC_HOLD_MAX_XY 0.800000012 TRIM_PITCH 0

MPC_HOLD_MAX_Z 0.600000024 TRIM_ROLL 0

MPC_JERK_AUTO 8 TRIM_YAW 0

MPC_JERK_MAX 20 VT_B_DEC_MSS 2

MPC_JERK_MIN 8 VT_B_REV_DEL 0

MPC_LAND_ALT1 10

 172

Appendix 4.1: Checkerboard Used for Camera Calibration

 173

Appendix 5.1: determinepose.cpp node

//relevant libraries used in this node
#include <ros/ros.h>

#include <geometry_msgs/PoseStamped.h>
#include <Eigen/Core>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>

#include <std_msgs/String.h>
#include <std_msgs/Float64MultiArray.h>
#include <std_msgs/MultiArrayLayout.h>
#include <std_msgs/MultiArrayDimension.h>
#include <std_msgs/Float64.h>

#include <tf/tf.h>
#include <string>
#include <sstream>
#include <Eigen/Geometry>
#include <sensor_msgs/Imu.h>

#include <math.h>
#include <mavros_msgs/ParamValue.h>
#include <mavros_msgs/ParamSet.h>
#include <mavros_msgs/ParamPush.h>
#include <iostream>

// this allows identifiers to be used
using namespace std;
using namespace Eigen;

// declaring variables
geometry_msgs::PoseStamped final_pose;
geometry_msgs::PoseStamped local_pose;
mavros_msgs::State current_state;

mavros_msgs::ParamValue ValueOfParameter;
mavros_msgs::ParamSet SetParameter;
mavros_msgs::ParamPush PushParameter;

Quaternionf LocalPoseQuat;

Quaternionf IMUQuat;
Quaternionf ArucoQuat;
Quaternionf FinalRotation;
Quaternionf NewArucoQuat;
Quaternionf GeneralQuat;

std_msgs::String CoordinatesMsg;
std_msgs::String VelocityMsg;
std_msgs::String DescentMsg;
std_msgs::String AutolandMsg;

 174

std_msgs::String FlightmodeMsg;
std_msgs::String YawMsg;
std_msgs::String QuatMsg;

std_msgs::String MultipleCoordinatesMsg;

std_msgs::Float64MultiArray DeterminedAircraftPoseMsg; // {orientation w, orientation x,
orientation y, orientation z, position x, position y, position z}

std_msgs::String StatusMsg;
string CoordinatesTemp;
string VelocityTemp;
string AutolandTemp;
string DescentTemp;

string FlightmodeTemp;
string YawTemp;
string QuatTemp;
string MultipleCoordinatesTemp;

string sAxis = "z";
string sPos = "2";
string sVelocity = "1";
string sAutoland = "false";
string sDescent = "0.2";

string sFlightmode = "";
string sYaw = "0";
string sQuatX = "0";
string sQuatY = "0";
string sQuatZ = "0";

string sQuatW = "0";
string sFollowX = "0";
string sFollowY = "0";

float fVelocity = 1.5;
float fDescent = 0.2;
float fPos = 2;
float AverageHomeZ = 0;
//float CamRatioValue = 4.0;

float CamRatioValue = 0.2;
float HeightWithRatio = 0;
float MarkerHeight = 0;
float fYawDegrees = 0;
float fYawRadians = 0;
float fQuatX = 0;
float fQuatY = 0;
float fQuatZ = 0;
float fQuatW = 0;
float ArucoOrientation[4] = {0,0,0,0};
float MaintainHeight = 0;
float MaintainX = 0;
float MaintainY = 0;

 175

float YawEuler = 0;
float fFollowX = 0;
float fFollowY = 0;
float fFollowZ = 10;
float RelativeAltitude = 0;

bool bVelCallback = false;
bool bAutoMove = false;
bool SetParameterSuccess;
bool PushParameterSuccess;
bool bTakeoff = false;
bool bArmed = false;
bool bOffboard = false;
bool bStabilize = false;
bool bStatus = false;
bool bRotate = false;
bool bFirstRotation = false;
bool bFirstSetpoint = false;
bool bManual = true;
bool bHover = false;
bool bStartTimer = false;
bool bStartRotation = false;
bool bBusyRotating = false;
bool bAllowedToLand = false;
bool bFollow = false;
bool bCoordinatesReceived = false;
bool DisplayedAlready = false;
bool bActivateDisarm = false;
bool bLandAlreadyActivated = false;

ros::Time rotate_time;
ros::Time follow_time;

int iCount = 0;
int AverageHomeCount = 0;

// declaring a 3x3 matrix

Matrix3f R;
Matrix3f Y;

// Callback for the state of the aircraft
void state_cb(const mavros_msgs::State::ConstPtr& msg)
{
 current_state = *msg;
}

// vectors to store position before and after

Vector3f positionbe;
Vector3f positionaf;

 176

//Change the horizontal velocity of the aircraft by making use of ParamSet and ParamPush
void ChangeVelocity()
{

 ros::NodeHandle n;
 ros::Rate r(20.0);

 ros::ServiceClient param_set_client = n.serviceClient<mavros_msgs::ParamSet>
 ("mavros/param/set");

 ros::ServiceClient param_push_client = n.serviceClient<mavros_msgs::ParamPush>
 ("mavros/param/push");

 ValueOfParameter.real = fVelocity;
 ValueOfParameter.integer = 0;

 SetParameter.request.value = ValueOfParameter;
 SetParameter.request.param_id = "MPC_XY_VEL_MAX";

 SetParameterSuccess = param_set_client.call(SetParameter);
 PushParameterSuccess = param_push_client.call(PushParameter);

 if(SetParameterSuccess && PushParameterSuccess)
 {
 printf("Velocity SUCCESSFULLY UPDATED with: %.1f \n", fVelocity);
 printf("\n");

 StatusMsg.data = "Velocity SUCCESSFULLY UPDATED";
 bStatus = true;
 // bVelCallback = false;
 }
 else
 {
 printf("Velocity UPDATE FAILED \n");
 printf("\n");
 StatusMsg.data = "Velocity UPDATE FAILED";

 bStatus = true;
 }

 ros::spinOnce();
 r.sleep();

}

//Change the descending velocity of the aircraft by making use of ParamSet and ParamPush
void ChangeDescent()
{

 ros::NodeHandle n;
 ros::Rate r(20.0);

 ros::ServiceClient param_set_client = n.serviceClient<mavros_msgs::ParamSet>
 ("mavros/param/set");

 ros::ServiceClient param_push_client = n.serviceClient<mavros_msgs::ParamPush>
 ("mavros/param/push");

 177

 ValueOfParameter.real = fDescent;
 ValueOfParameter.integer = 0;
 SetParameter.request.value = ValueOfParameter;

 SetParameter.request.param_id = "MPC_Z_VEL_MAX_DN";

 SetParameterSuccess = param_set_client.call(SetParameter);
 PushParameterSuccess = param_push_client.call(PushParameter);

 if(SetParameterSuccess && PushParameterSuccess)
 {
 printf("Velocity descent SUCCESSFULLY UPDATED with: %.1f \n", fDescent);
 printf("\n");
 StatusMsg.data = "Velocity descent SUCCESSFULLY UPDATED";

 bStatus = true;
 // bVelCallback = false;
 }
 else
 {

 printf("Velocity descent UPDATE FAILED \n");
 printf("\n");
 StatusMsg.data = "Velocity descent UPDATED FAILED";
 bStatus = true;
 }

 ros::spinOnce();
 r.sleep();
}

//Callback for the altitude of the aircraft
void AltitudeCallback(const std_msgs::Float64::ConstPtr& msg)
{
 RelativeAltitude = msg->data;

 if ((RelativeAltitude > 1.5) && (bTakeoff != true))
 {
 bTakeoff = true;
 printf("Height reached, therefore takeoff has commenced \n");

 StatusMsg.data = "Height reached, therefore takeoff has commenced";
 bStatus = true;
 }

 if ((bOffboard == true) && (bTakeoff == true) && (RelativeAltitude < 0.2) &&

(bLandAlreadyActivated == false))
 {
 bActivateDisarm = true;
 bLandAlreadyActivated = true;

 }
}

 178

//Callback for the local pose of the aircraft
void LocalposeCallback(const geometry_msgs::PoseStamped::ConstPtr &msg)
{

 local_pose=*msg;
}

//Update the aircraft's position
void MoveAircraft(double x, double y, double z)
{
/* final_pose.pose.position.x = x;
 final_pose.pose.position.y = y;
 final_pose.pose.position.z = z;
 */

 DeterminedAircraftPoseMsg.data[4] = x;
 DeterminedAircraftPoseMsg.data[5] = y;
 DeterminedAircraftPoseMsg.data[6] = z;
}

//Callback for the IMU of the aircraft
void imuCallback(const sensor_msgs::Imu::ConstPtr &msg)
{

 double x,y,z,w;

 x=msg->orientation.x;
 y=msg->orientation.y;
 z=msg->orientation.z;
 w=msg->orientation.w;

 IMUQuat = Eigen::Quaternionf(w,x,y,z);

 R = IMUQuat.normalized().toRotationMatrix();

}

//Callback for the flightmode received from the talker_flightmode.cpp node
void FlightmodeCallback(const std_msgs::String::ConstPtr& msg)
{
 FlightmodeMsg.data = msg->data.c_str();

 FlightmodeTemp = FlightmodeMsg.data;
 istringstream StrStreamFlightmode(FlightmodeTemp);

 StrStreamFlightmode >> sFlightmode;

 if (sFlightmode == "offboard")
 {

 bOffboard = true;
 bStabilize = false;
 printf("Flight mode received is: %s \n", sFlightmode.c_str());

 179

 StatusMsg.data = "The flight mode received is: offboard";
 bStatus = true;
 }

 else if (sFlightmode == "stabilized")
 {
 bOffboard = false;
 bStabilize = true;
 printf("Flight mode received is: %s \n", sFlightmode.c_str());

 StatusMsg.data = "The flight mode received is: stabilized";
 bStatus = true;
 }
}

//Callback for the coordinates received from the talker_coordinates.cpp node
void CoordinatesCallback(const std_msgs::String::ConstPtr& msg)
{
 CoordinatesMsg.data = msg->data.c_str();

 if (bManual == true)
 {
 CoordinatesTemp = CoordinatesMsg.data;
 istringstream StrStreamCoordinates(CoordinatesTemp);

 StrStreamCoordinates >> sAxis;
 StrStreamCoordinates >> sPos;

 stringstream geek(sPos);
 geek >> fPos;

 printf("The axis received: %s \n", sAxis.c_str());
 printf("The position received: %.8f \n", fPos);
 printf("\n");

 StatusMsg.data = "coordinates received";
 bStatus = true;

 if (sAxis == "x")
 {

 DeterminedAircraftPoseMsg.data[4] = fPos;

 }
 else if (sAxis == "y")
 {

 DeterminedAircraftPoseMsg.data[5] = fPos;

 }
 else if (sAxis == "z")
 {

 DeterminedAircraftPoseMsg.data[6] = fPos;

 }

 180

 else
 {
 printf("You entered an incorrect axis.\n");

 StatusMsg.data = "You entered an incorrect axis";
 bStatus = true;
 }
 }
}

//Callback for the multiple coordinates received from the boundingboxmove.cpp node
void MultipleCoordinatesCallback(const std_msgs::String::ConstPtr& msg)
{
 MultipleCoordinatesMsg.data = msg->data.c_str();

 MultipleCoordinatesTemp = MultipleCoordinatesMsg.data;
 istringstream StrStreamMultipleCoordinates(MultipleCoordinatesTemp);

 StrStreamMultipleCoordinates >> sFollowY;

 StrStreamMultipleCoordinates >> sFollowX;

 stringstream geek1(sFollowY);
 geek1 >> fFollowY;

 stringstream geek2(sFollowX);
 geek2 >> fFollowX;

 bCoordinatesReceived = true;

}

//Converting the ArUco marker's quaternion to be used within the script
Eigen::Quaternionf ConvertArucoQuaternion(Eigen::Quaternionf q1)

{
 float w1 = q1.w();
 float x1 = q1.x();
 float y1 = q1.y();
 float z1 = q1.z();

 //////// Rearranging negative signs /////////////
 if ((w1 < 0) && (y1 < 0))
 {

 w1 = -w1;
 x1 = -x1;
 y1 = -y1;
 z1 = -z1;
 }

 else if ((w1 < 0) && (z1 < 0))
 {
 w1 = -w1;
 x1 = -x1;

 181

 y1 = -y1;
 z1 = -z1;
 }

/////////subtracting euler z by 180 and invert y axis////////////

 if ((z1 < 0) && (w1 <= y1)) // clockwise (angle <= 90) in degrees
 {
 x1 = y1;
 z1 = w1;
 w1 = x1;
 y1 = z1;

 y1 = -y1;
 z1 = -z1;
 }
 else if ((z1 < 0) && (w1 > y1)) // clockwise (90 < angle < 180)
 {
 x1 = -y1;
 z1 = -w1;
 w1 = x1;
 y1 = z1;

 w1 = -w1;
 x1 = -x1;
 }
 else if ((z1 >= 0) && (w1 > z1)) // anticlockwise (90 < angle < 180)
 {
 x1 = -y1;
 z1 = -w1;
 w1 = x1;

 y1 = z1;

 w1 = -w1;
 x1 = -x1;
 }

 else if ((z1 >= 0) && (w1 <= z1)) // anticlockwise (angle <= 90)
 {
 x1 = -y1;
 z1 = -w1;
 w1 = x1;

 y1 = z1;

 y1 = -y1;
 z1 = -z1;
 }

 return Eigen::Quaternionf(w1,x1,y1,z1);

}

 182

//Callback for the quaternion received from the QuatFromUser topic
void QuatCallback(const std_msgs::String::ConstPtr& msg)
{
 QuatMsg.data = msg->data.c_str();

 QuatTemp = QuatMsg.data;
 istringstream StrStreamQuat(QuatTemp);

 StrStreamQuat >> sQuatW;
 StrStreamQuat >> sQuatX;
 StrStreamQuat >> sQuatY;
 StrStreamQuat >> sQuatZ;

 stringstream geek1(sQuatW);
 geek1 >> fQuatW;

 stringstream geek2(sQuatX);

 geek2 >> fQuatX;

 stringstream geek3(sQuatY);
 geek3 >> fQuatY;

 stringstream geek4(sQuatZ);
 geek4 >> fQuatZ;

//Commented out since constantly publishing in human detection system
// printf("The w quat received: %.8f \n", fQuatW);

// printf("The x quat received: %.8f \n", fQuatX);
// printf("The y quat received: %.8f \n", fQuatY);
// printf("The z quat received: %.8f \n", fQuatZ);
// printf("\n");

// StatusMsg.data = "Quat received";
// bStatus = true;
 GeneralQuat = Eigen::Quaternionf(fQuatW,fQuatX,fQuatY,fQuatZ);

}

//Callback for the velocity from the VelocityFromUser topic
void VelocityCallback(const std_msgs::String::ConstPtr& msg)
{
 VelocityMsg.data = msg->data.c_str();

 VelocityTemp = VelocityMsg.data;
 istringstream StrStreamVelocity(VelocityTemp);

 StrStreamVelocity >> sVelocity;

 stringstream VelocitySS(sVelocity);
 VelocitySS >> fVelocity;

 183

 fVelocity = roundf(fVelocity * 10) / 10;

 printf("The velocity received: %.1f \n", fVelocity);

 printf("\n");
 StatusMsg.data = "velocity received";
 bStatus = true;

 ChangeVelocity();

}

//Callback for the descending velocity from the DescentFromUser topic
void DescentCallback(const std_msgs::String::ConstPtr& msg)
{
 DescentMsg.data = msg->data.c_str();

 DescentTemp = DescentMsg.data;
 istringstream StrStreamDescent(DescentTemp);

 StrStreamDescent >> sDescent;

 stringstream DescentSS(sDescent);
 DescentSS >> fDescent;

 fDescent = roundf(fDescent * 10) / 10;

 printf("The descent velocity received: %.1f \n", fDescent);
 printf("\n");
 StatusMsg.data = "Descent velocity received";

 bStatus = true;

 ChangeDescent();

}

//Perform Quaternion Multiplication
Eigen::Quaternionf QuaternionMultiply(Eigen::Quaternionf q1, Eigen::Quaternionf q2)
{

 float NewX1 = q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y() + q1.w() * q2.x();
 float NewY1 = -q1.x() * q2.z() + q1.y() * q2.w() + q1.z() * q2.x() + q1.w() * q2.y();
 float NewZ1 = q1.x() * q2.y() - q1.y() * q2.x() + q1.z() * q2.w() + q1.w() * q2.z();
 float NewW1 = -q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z() + q1.w() * q2.w();

 Quaternionf TempQuat = Eigen::Quaternionf(NewW1,NewX1,NewY1,NewZ1);

 return TempQuat;
}

//Method used to decide whether the aircraft must rotate for the landing system or for a user
input

 184

void RotateAircraft(string sTypeOfRotation)
{
 LocalPoseQuat =

Eigen::Quaternionf(local_pose.pose.orientation.w,local_pose.pose.orientation.x,local_pose.pos
e.orientation.y,local_pose.pose.orientation.z);

 if (sTypeOfRotation == "marker")
 {

 ArucoQuat =
Eigen::Quaternionf(ArucoOrientation[0],ArucoOrientation[1],ArucoOrientation[2],ArucoOrientati
on[3]);

 NewArucoQuat = ConvertArucoQuaternion(ArucoQuat);

 FinalRotation = QuaternionMultiply(LocalPoseQuat.normalized(),
NewArucoQuat.normalized());

 }

 else if (sTypeOfRotation == "general")
 {
 FinalRotation = QuaternionMultiply(LocalPoseQuat, GeneralQuat);
 FinalRotation = FinalRotation.normalized();
 }

 DeterminedAircraftPoseMsg.data[0] = FinalRotation.w();
 DeterminedAircraftPoseMsg.data[1] = FinalRotation.x();
 DeterminedAircraftPoseMsg.data[2] = FinalRotation.y();
 DeterminedAircraftPoseMsg.data[3] = FinalRotation.z();

}

//Executes the landing system

void RepositionAircraft(bool bHoverOnly)
{
 positionaf=R*positionbe; //R is important in order to keep the drone stabilized
above the marker

// update the position
 double x=(positionaf[0]+local_pose.pose.position.x);
 double y=(positionaf[1]+local_pose.pose.position.y);
 double z=(positionaf[2]+local_pose.pose.position.z);

 if (bHoverOnly == false)
 {
 if (MarkerHeight > 1)
 {
 HeightWithRatio = MarkerHeight * CamRatioValue;

 }
 else
 {

 185

 HeightWithRatio = 0.2;
 }

 if (bStartRotation == true)
 {
 if ((ros::Time::now() - rotate_time) <= ros::Duration(5.0))
 {
 if (DisplayedAlready == false)
 {
 printf("Rotation is starting soon... \n");
 StatusMsg.data = "Rotation is starting soon...";
 bStatus = true;
 DisplayedAlready = true;
 }
 }

 if (((ros::Time::now() - rotate_time) <= ros::Duration(12.0)) &&
((ros::Time::now() - rotate_time) > ros::Duration(5.0)))

 {
 if (DisplayedAlready == false)
 {
 printf("The aircraft has started to rotate... \n");
 StatusMsg.data = "The aircraft has started to rotate...";

 bStatus = true;
 DisplayedAlready = true;
 }

 if (bFirstRotation == true)
 {
 RotateAircraft("marker");
 bBusyRotating = true;
 bFirstRotation = false;

 }

 }

 else if ((ros::Time::now() - rotate_time) > ros::Duration(12.0))
 {
 printf("12 seconds finished... \n");
 StatusMsg.data = "12 seconds finished...";
 bStatus = true;
 bBusyRotating = false;
 bStartRotation = false;
 bAllowedToLand = true;
 DisplayedAlready = false;
 }

 }

 186

 if (((HeightWithRatio > positionbe[0]) && (positionbe[0] > -HeightWithRatio)) &&
((HeightWithRatio > positionbe[1]) && (positionbe[1] > -HeightWithRatio)))
 {

 if (bStartTimer == false)
 {
 rotate_time = ros::Time::now();
 bStartRotation = true;
 bStartTimer = true;

 printf("Timer started...\n");
 StatusMsg.data = "Timer started...";
 bStatus = true;
 }

 if ((bBusyRotating == false) && (bAllowedToLand == true))
 {
 if(local_pose.pose.position.z >= 1)
 {
 MoveAircraft(x,y,z);

 if (DisplayedAlready == false)
 {
 printf("Dropping altitude...\n");
 StatusMsg.data = "Dropping altitude...";

 bStatus = true;
 DisplayedAlready = true;
 }
 }

 else if(local_pose.pose.position.z < 1)
 {
 MoveAircraft(x,y,-2);
 }

 }
 }

 else
 {

 if (z != 0)
 {
 MoveAircraft(x,y,local_pose.pose.position.z);
 // printf("Positioning drone above aruco marker..\n");
 }

 }
 }

 else if (bHoverOnly == true)
 {

 MoveAircraft(x,y,MaintainHeight);
 }

 187

}

//Callback for the ArUco marker's pose
void ArucoCallback(const geometry_msgs::PoseStamped::ConstPtr& msg)
{
// converting the pose to ground frame
 positionbe[1]= -(msg->pose.position.x);

 positionbe[0]= -(msg->pose.position.y);
 positionbe[2]= -(msg->pose.position.z);
 MarkerHeight = -(msg->pose.position.z);

 ArucoOrientation[0] = msg->pose.orientation.w;

 ArucoOrientation[1] = msg->pose.orientation.x;
 ArucoOrientation[2] = msg->pose.orientation.y;
 ArucoOrientation[3] = msg->pose.orientation.z;

 if (bAutoMove == true)
 {
 if (bHover == false)
 {
 RepositionAircraft(false);
 }

 else if (bHover == true)
 {
 RepositionAircraft(true);
 }
 }

}

//Executes the human detection system
void FollowPerson()
{
 GeneralQuat = Eigen::Quaternionf(fQuatW,fQuatX,fQuatY,fQuatZ);

 bFollow = true;
 bFirstSetpoint = true;
/*
 printf("The w quat received: %.8f \n", fQuatW);
 printf("The x quat received: %.8f \n", fQuatX);
 printf("The y quat received: %.8f \n", fQuatY);
 printf("The z quat received: %.8f \n", fQuatZ);

 printf("The follow x coordinate received: %.8f \n", fFollowX);
 printf("The follow y coordinate received: %.8f \n", fFollowY);
*/
 while (bFollow == true)
 {

 if (bStartTimer == false)
 {
 follow_time = ros::Time::now();

 188

 bStartRotation = true;
 bStartTimer = true;
 printf("Timer started...\n");

 }

 if ((ros::Time::now() - follow_time) <= ros::Duration(2.0))
 {

 if (DisplayedAlready == false)
 {
 printf("Rotation is starting soon... \n");
 StatusMsg.data = "Rotation is starting soon...";
 bStatus = true;

 DisplayedAlready = true;
 }
 }

 if (((ros::Time::now() - follow_time) <= ros::Duration(7.0)) && ((ros::Time::now() -
follow_time) > ros::Duration(2.0)))
 {
 if (DisplayedAlready == false)
 {
 printf("The aircraft has started to rotate... \n");

 StatusMsg.data = "The aircraft has started to rotate...";
 bStatus = true;
 DisplayedAlready = true;
 }

 if (bFirstRotation == true)
 {
 RotateAircraft("general");
 bBusyRotating = true;
 bFirstRotation = false;

 }

 }

 if ((ros::Time::now() - follow_time) > ros::Duration(7.0))
 {
 if ((bFirstSetpoint == true) && (bCoordinatesReceived == true))
 {

 printf("Follow coordinates uploaded... \n");
 DeterminedAircraftPoseMsg.data[4] = fFollowX;
 DeterminedAircraftPoseMsg.data[5] = fFollowY;
 DeterminedAircraftPoseMsg.data[6] = fFollowZ;

 bFollow = false;
 bStartTimer = false;
 bFirstSetpoint = false;

 189

 bCoordinatesReceived = false;

 }

 }
 }
}

//Callback for the autoland command received from the talker_autoland.cpp node

void AutolandCallback(const std_msgs::String::ConstPtr& msg)
{
 AutolandMsg.data = msg->data.c_str();

 AutolandTemp = AutolandMsg.data;

 istringstream StrStreamAutoland(AutolandTemp);

 StrStreamAutoland >> sAutoland;

 if (sAutoland == "manual")
 {
 printf("Manual control activated \n");
 StatusMsg.data = "Manual control activated";
 bStatus = true;
 bAutoMove = false;
 bManual = true;
 }
 else if (sAutoland == "hover")
 {
 MaintainHeight = local_pose.pose.position.z;

 printf("Auto move activated \n");
 StatusMsg.data = "Auto move activated";
 bStatus = true;

 bManual = false;
 bHover = true;
 bAutoMove = true;
 bFirstRotation = true;

 }
 else if (sAutoland == "land")
 {
 MaintainHeight = local_pose.pose.position.z;

 printf("Land activated \n");
 StatusMsg.data = "Land activated";
 bStatus = true;

 bManual = false;
 bHover = false;
 bAutoMove = true;
 bFirstRotation = true;

 190

 }

 else if (sAutoland == "rotate")
 {
 printf("Rotate activated \n");
 StatusMsg.data = "Rotate activated";
 bStatus = true;
 //bFirst = true;

 bManual = false;
 RotateAircraft("general");

 }
 else if (sAutoland == "follow")
 {
 // MaintainHeight = 30;
 printf("Follow person activated \n");

 StatusMsg.data = "Follow person activated";
 bStatus = true;

 bManual = false;
 bHover = false;
 bAutoMove = false;
 bFirstRotation = true;
 FollowPerson();
 }

 else
 {
 printf("Flight mode input incorrect. \n");
 }

}

//Main method
int main(int argc, char **argv)
{

 //name assigned for the node
 ros::init(argc, argv, "determinepose");
 ros::NodeHandle nh;

 //Topics that are subscribed to

 ros::Subscriber sub_Coordinates = nh.subscribe("CoordinatesFromUser", 10,
CoordinatesCallback);
 ros::Subscriber sub_Quat = nh.subscribe("QuatFromUser", 100, QuatCallback);
 ros::Subscriber sub_Velocity = nh.subscribe("VelocityFromUser", 10, VelocityCallback);
 ros::Subscriber sub_Descent = nh.subscribe("DescentFromUser", 10, DescentCallback);

 ros::Subscriber sub_Autoland = nh.subscribe("AutolandFromUser", 10, AutolandCallback);
 ros::Subscriber sub_Flightmode = nh.subscribe("FlightmodeFromUser", 10,
FlightmodeCallback);

 191

 ros::Subscriber sub_MultipleCoordinates = nh.subscribe("/MultipleCoordinates", 10,
MultipleCoordinatesCallback);
 ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>

 ("mavros/state", 10, state_cb);
 ros::Subscriber imu_sub = nh.subscribe<sensor_msgs::Imu>
 ("/mavros/imu/data",10,imuCallback);
 ros::Subscriber localpose_sub = nh.subscribe<geometry_msgs::PoseStamped>
 ("/mavros/local_position/pose",100,LocalposeCallback);

 ros::Subscriber aruco_sub = nh.subscribe<geometry_msgs::PoseStamped>
 ("aruco_single/pose", 1000, ArucoCallback);
 ros::Subscriber altitude_sub =
nh.subscribe<std_msgs::Float64>("mavros/global_position/rel_alt", 10, AltitudeCallback);

 //Topics that are published to
 ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>
 ("mavros/setpoint_position/local", 10);
 ros::Publisher aircraftpose_pub = nh.advertise<std_msgs::Float64MultiArray>
 ("/determinedaircraftpose", 100);

 ros::Publisher status_pub = nh.advertise<std_msgs::String>("StatusFromAircraft", 10);

 //Service clients that are communicated
 ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>
 ("mavros/cmd/arming");

 ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>
 ("mavros/set_mode");

 ros::Rate rate(20.0);

 DeterminedAircraftPoseMsg.data.clear();

 for (int i = 0; i < 7; i++)
 {

 DeterminedAircraftPoseMsg.data.push_back(0);
 }

 //Wait till communication with the flight controller
 while(ros::ok() && !current_state.connected)
 {
 ros::spinOnce();
 rate.sleep();
 }

 DeterminedAircraftPoseMsg.data[0] = local_pose.pose.orientation.w;
 DeterminedAircraftPoseMsg.data[1] = local_pose.pose.orientation.x;
 DeterminedAircraftPoseMsg.data[2] = local_pose.pose.orientation.y;
 DeterminedAircraftPoseMsg.data[3] = local_pose.pose.orientation.z;
 DeterminedAircraftPoseMsg.data[4] = local_pose.pose.position.x;

 DeterminedAircraftPoseMsg.data[5] = local_pose.pose.position.y;
 DeterminedAircraftPoseMsg.data[6] = 2;

 192

 ChangeVelocity();
 ChangeDescent();

 printf("The pose may now be adjusted \n");
 StatusMsg.data = "Determinepose is ready.";

 while(ros::ok())
 {

 //the position and orientation is published to the topic determinedaircraftpose
 aircraftpose_pub.publish(DeterminedAircraftPoseMsg);

 //variables are reset back to default when the aircraft has disarmed
 if ((!current_state.armed) && bActivateDisarm == true)
 {
 sAxis = "z";
 sPos = "2";
 sVelocity = "1";
 sAutoland = "false";

 sDescent = "0.2";
 sFlightmode = "";
 sYaw = "0";
 sQuatX = "0";
 sQuatY = "0";

 sQuatZ = "0";
 sQuatW = "0";
 sFollowX = "0";
 sFollowY = "0";

 fVelocity = 1.5;
 fDescent = 0.2;
 fPos = 2;
 AverageHomeZ = 0;

 CamRatioValue = 0.2;
 HeightWithRatio = 0;
 MarkerHeight = 0;
 fYawDegrees = 0;
 fYawRadians = 0;

 fQuatX = 0;
 fQuatY = 0;
 fQuatZ = 0;
 fQuatW = 0;
 ArucoOrientation[0] = 0;

 ArucoOrientation[1] = 0;
 ArucoOrientation[2] = 0;
 ArucoOrientation[3] = 0;

 MaintainHeight = 0;

 MaintainX = 0;
 MaintainY = 0;
 YawEuler = 0;

 193

 fFollowX = 0;
 fFollowY = 0;
 fFollowZ = 30;

 RelativeAltitude = 0;

 bVelCallback = false;
 bAutoMove = false;
 SetParameterSuccess;

 PushParameterSuccess;
 bTakeoff = false;
 bArmed = false;
 bOffboard = false;
 bStabilize = false;
 bStatus = false;
 bRotate = false;
 bFirstRotation = false;
 bFirstSetpoint = false;
 bManual = true;
 bHover = false;
 bStartTimer = false;
 bStartRotation = false;
 bBusyRotating = false;
 bAllowedToLand = false;
 bFollow = false;
 bCoordinatesReceived = false;
 DisplayedAlready = false;
 bLandAlreadyActivated = false;

 bActivateDisarm = false;

 DeterminedAircraftPoseMsg.data[0] = local_pose.pose.orientation.w;
 DeterminedAircraftPoseMsg.data[1] = local_pose.pose.orientation.x;

 DeterminedAircraftPoseMsg.data[2] = local_pose.pose.orientation.y;
 DeterminedAircraftPoseMsg.data[3] = local_pose.pose.orientation.z;

 DeterminedAircraftPoseMsg.data[4] = local_pose.pose.position.x;
 DeterminedAircraftPoseMsg.data[5] = local_pose.pose.position.y;

 DeterminedAircraftPoseMsg.data[6] = 2;

 printf("The aircraft has been disarmed and the variables have been reset.\n");
 StatusMsg.data = "The aircraft has been disarmed and the variables have been reset.";

 status_pub.publish(StatusMsg);
 }

 if (bStatus == true)
 {

 status_pub.publish(StatusMsg);
 bStatus = false;
 }

 194

 ros::spinOnce();
 rate.sleep();

 }

 return 0;
}

 195

Appendix 5.2: flyaircraft.cpp node
//relevant libraries used in this node
#include <ros/ros.h>
#include <geometry_msgs/PoseStamped.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>

#include <mavros_msgs/State.h>
#include <std_msgs/Float64MultiArray.h>
#include "std_msgs/MultiArrayLayout.h"
#include "std_msgs/MultiArrayDimension.h"
#include <std_msgs/String.h>

#include <std_msgs/Float64.h>

// this allows identifiers to be used
using namespace std;

//declaring variables
mavros_msgs::State current_state;
mavros_msgs::SetMode offb_set_mode;
mavros_msgs::CommandBool arm_cmd;

std_msgs::String FlightmodeMsg;

string FlightmodeTemp;

string sFlightmode = "";

bool bOffboard = false;
bool bOffboardSet = false;
bool bStabilizeSet = false;
bool bLandSet = false;
bool bArmAircraft = false;
bool bPublish = false;
bool bTakeoff = false;
bool bAirborne = false;
bool bLandAlreadyActivated = false;
bool bActivateDisarm = false;

std_msgs::Float64MultiArray TempPose;
float ArrPose[7];

float RelativeAltitude = 0;

//Callback to receive the state of the aircraft
void state_cb(const mavros_msgs::State::ConstPtr& msg)
{
 current_state = *msg;
}

 196

//Callback to receive the pose for the aircraft from the determinedaircraftpose topic
void AircraftPoseCallback(const std_msgs::Float64MultiArray::ConstPtr& msg)
{

 for (int i = 0; i < 7; i++)
 {
 ArrPose[i] = msg->data[i];
 }

}

//Callback to receive the altitude of the aircraft
void AltitudeCallback(const std_msgs::Float64::ConstPtr& msg)
{
 RelativeAltitude = msg->data;

 if ((RelativeAltitude > 1.5) && (bTakeoff != true))
 {

 bTakeoff = true;
 }

 if ((bOffboard == true) && (bTakeoff == true) && (RelativeAltitude < 0.2) &&
(bLandAlreadyActivated == false))
 {
 bLandSet = true;
 bOffboard = false;
 bActivateDisarm = true;
 }

}

//Callback to receive the flight mode from the talker_flightmode.cpp node
void FlightmodeCallback(const std_msgs::String::ConstPtr& msg)
{
 FlightmodeMsg.data = msg->data.c_str();

 FlightmodeTemp = FlightmodeMsg.data;
 istringstream StrStreamFlightmode(FlightmodeTemp);

 StrStreamFlightmode >> sFlightmode;

 if (sFlightmode == "offboard")
 {

 bOffboard = true;
 bOffboardSet = true;
 bStabilizeSet = false;
 bLandSet = false;
 bArmAircraft = true;
 bPublish = true;
 bLandAlreadyActivated = false;
 printf("Flight mode received is: %s \n", sFlightmode.c_str());

 197

 }
 else if (sFlightmode == "stabilized")
 {

 bOffboard = false;
 bOffboardSet = false;
 bStabilizeSet = true;
 bLandSet = false;
 bArmAircraft = true;
 bPublish = false;
 printf("Flight mode received is: %s \n", sFlightmode.c_str());
 }
 else if (sFlightmode == "land")
 {

 bOffboard = false;
 bOffboardSet = false;
 bStabilizeSet = false;
 bLandSet = true;
 bPublish = false;
 printf("Flight mode received is: %s \n", sFlightmode.c_str());
 }

}

//Main Method
int main(int argc, char **argv)
{
//name assigned for the node
 ros::init(argc, argv, "flyaircraft");

 ros::NodeHandle nh;

//Topics that are subscribed to
 ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>

 ("mavros/state", 10, state_cb);
 ros::Subscriber sub_aircraftpose =
nh.subscribe<std_msgs::Float64MultiArray>("/determinedaircraftpose", 100,
AircraftPoseCallback);
 ros::Subscriber sub_Flightmode = nh.subscribe("FlightmodeFromUser", 10,

FlightmodeCallback);
 ros::Subscriber altitude_sub =
nh.subscribe<std_msgs::Float64>("mavros/global_position/rel_alt", 10, AltitudeCallback);

//Topics that are published to

 ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>
 ("mavros/setpoint_position/local", 10);

//Service clients that are communicated
 ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>

 ("mavros/cmd/arming");
 ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>
 ("mavros/set_mode");

 198

 //the setpoint publishing rate MUST be faster than 2Hz
 ros::Rate rate(20.0);

 printf("flyaircraft has started...\n");

 // wait till communication with the flight controller
 while(ros::ok() && !current_state.connected){
 ros::spinOnce();
 rate.sleep();
 }

 geometry_msgs::PoseStamped pose;

 pose.pose.position.x = 0;
 pose.pose.position.y = 0;
 pose.pose.position.z = 2;

 //send a few setpoints before the aircraft may be used in offboard mode

 for(int i = 100; ros::ok() && i > 0; --i){
 local_pos_pub.publish(pose);
 ros::spinOnce();
 rate.sleep();
 }

 printf("100 setpoints published\n");

 offb_set_mode.request.custom_mode = "OFFBOARD";

 arm_cmd.request.value = true;

 ros::Time last_request = ros::Time::now();

 printf("starting offboard and arming sequence...\n");

 while(ros::ok())
 {

 if (bOffboardSet == true)
 {
 pose.pose.position.x = 0;
 pose.pose.position.y = 0;
 pose.pose.position.z = 2;

 //send a few setpoints before starting
 for(int i = 100; ros::ok() && i > 0; --i)
 {

 local_pos_pub.publish(pose);
 ros::spinOnce();
 rate.sleep();

 199

 }
 //Swithces to offboard mode
 printf("Inside OffboardSet \n");

 offb_set_mode.request.custom_mode = "OFFBOARD";
 set_mode_client.call(offb_set_mode);
 offb_set_mode.response.mode_sent;
 arm_cmd.request.value = true;
 bOffboardSet = false;
 ros::Time last_request = ros::Time::now();
 }

 //Switches to Land flight mode when altitude point has been reached
 else if (bLandSet == true)
 {
 offb_set_mode.request.custom_mode = "AUTO.LAND";
 set_mode_client.call(offb_set_mode);
 offb_set_mode.response.mode_sent;
 arm_cmd.request.value = true;
 bLandSet = false;
 bLandAlreadyActivated = true;
 printf("AUTO.LAND has been requested... \n");
 }

//Code used specifically to use this node on Gazebo simulation
 //Start of simulation code

 if(current_state.mode != "OFFBOARD" &&
 (ros::Time::now() - last_request > ros::Duration(5.0)) && bOffboard == true)
 {
 if(set_mode_client.call(offb_set_mode) &&
 offb_set_mode.response.mode_sent)
 {

 ROS_INFO("Offboard enabled");
 }
 last_request = ros::Time::now();
 }

 else
 {

 if(!current_state.armed &&
 (ros::Time::now() - last_request > ros::Duration(5.0)) && bArmAircraft == true)
 {
 printf("Inside Attempting to arm... \n");
 if(arming_client.call(arm_cmd) &&
 arm_cmd.response.success)
 {

 ROS_INFO("Vehicle armed");
 bArmAircraft = false;
 // bPublish = true;

 200

 }
 last_request = ros::Time::now();
 }

 }

 //End of simulation code

 /*
 //Code used specifically to use this node on the actual aircraft
 //Start of actual aircraft code
 if(current_state.mode != "OFFBOARD" &&
 (ros::Time::now() - last_request > ros::Duration(5.0)))

 {
 if(current_state.mode == "OFFBOARD")
 {
 ROS_INFO("Offboard enabled");
 }

 last_request = ros::Time::now();
 }

 else
 {

 // if(!current_state.armed && (ros::Time::now() - last_request > ros::Duration(5.0))
&& bArmAircraft == true)
 if(!current_state.armed &&
 (ros::Time::now() - last_request > ros::Duration(5.0)) && (bOffboard == true)
&& current_state.mode == "OFFBOARD")

 {
 printf("Inside Arming sequence \n");
 if(arming_client.call(arm_cmd) &&
 arm_cmd.response.success)

 {
 ROS_INFO("Vehicle armed");
 // bArmAircraft = false;
 bPublish = true;
 }

 last_request = ros::Time::now();
 }
 }
 */
 //End of actuall aircraft code

 if ((bPublish == true) && (current_state.mode != "AUTO.LAND"))
 {
 pose.pose.orientation.w = ArrPose[0];

 pose.pose.orientation.x = ArrPose[1];
 pose.pose.orientation.y = ArrPose[2];
 pose.pose.orientation.z = ArrPose[3];

 201

 pose.pose.position.x = ArrPose[4];
 pose.pose.position.y = ArrPose[5];

 pose.pose.position.z = ArrPose[6];

 //publish the pose to the aircraft via MAVROS
 local_pos_pub.publish(pose);
 }

 if ((!current_state.armed) && bActivateDisarm == true)
 {
 //resets all the variables
 bOffboard = false;
 bOffboardSet = false;
 bStabilizeSet = false;
 bLandSet = false;
 bArmAircraft = false;
 bPublish = false;
 bTakeoff = false;
 bAirborne = false;
 bLandAlreadyActivated = false;
 bActivateDisarm = false;

 printf("Aircraft has been disarmed \n");
 }

 ros::spinOnce();
 rate.sleep();

 }

 return 0;
}

 202

Appendix 5.3: talker_autoland.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <iostream>
#include <string>

#include <sstream>

// this allows identifiers to be used
using namespace std;

//Declared variables
string sAutoland = "false"; //DEFAULT VELOCITY

//Main Method
int main(int argc, char **argv)
{
 //name assigned for the node
 ros::init(argc, argv, "talker_autoland");

 ros::NodeHandle nh;

 //Topics that are published
 ros::Publisher autoland_pub = nh.advertise<std_msgs::String>("AutolandFromUser", 10);

 ros::Rate loop_rate(20);

 int count = 0;
 while (ros::ok())
 {

 std_msgs::String msg;

 std::stringstream ss;

 //Receives the user's input for the type of autonomous flight
 cout << "Please either enter 'manual' , 'hover' , 'land' , 'follow' or 'rotate':" << endl;

 cin >> sAutoland;

 ss << sAutoland;

 printf("\n");
 printf("The autoland you have chosen is: %s \n", sAutoland.c_str());
 msg.data = ss.str();

 printf("\n");

 //Publishes the user's input
 autoland_pub.publish(msg);

 203

 ros::spinOnce();

 loop_rate.sleep();

 }

 return 0;
}

 204

Appendix 5.4: talker_coordinates.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <iostream>
#include <string>

#include <sstream>

// this allows identifiers to be used
using namespace std;

//Variables declared
string sAxis = "z";
string sPos = "2";
float fPos = 2;

//Main method
int main(int argc, char **argv)
{
 //name assigned for the node
 ros::init(argc, argv, "talker_coordinates");

 ros::NodeHandle nh;

 //Topics that are published to
 ros::Publisher coordinates_pub = nh.advertise<std_msgs::String>("CoordinatesFromUser", 10);

 ros::Rate loop_rate(20);

 int count = 0;
 while (ros::ok())
 {

 std_msgs::String msg;

 std::stringstream ss;

 //Receives the coordinate from the user
 cout << "Please enter axis and position value (e.g. x 2):" << endl;

 cin >> sAxis >> sPos;

 ss << sAxis + " " + sPos;

 stringstream geek(sPos);

 geek >> fPos;

 printf("\n");

 205

 printf("The axis you have chosen: %s \n", sAxis.c_str());
 printf("The value you have chosen: %.8f \n", fPos);
 printf("\n");

 msg.data = ss.str();

 //Publishes the user's input
 coordinates_pub.publish(msg);

 ros::spinOnce();

 loop_rate.sleep();

 }

 return 0;
}

 206

Appendix 5.5: talker_descent.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <iostream>
#include <string>

#include <sstream>

// this allows identifiers to be used
using namespace std;

//Variables declared
string sVelocity = "1"; //DEFAULT VELOCITY

//Main Method
int main(int argc, char **argv)
{

 //name assigned for the node
 ros::init(argc, argv, "talker_descent");

 ros::NodeHandle nh;

 //Topics that are published
 ros::Publisher descent_pub = nh.advertise<std_msgs::String>("DescentFromUser", 10);

 ros::Rate loop_rate(20);

 int count = 0;
 while (ros::ok())
 {

 std_msgs::String msg;

 std::stringstream ss;

 //Receives the descending velocity from the user
 cout << "Please enter a velocity in m/s with decimal (e.g. 1.0):" << endl;

 cin >> sVelocity;

 ss << sVelocity;

 printf("\n");
 printf("The velocity you have chosen: %s m/s\n", sVelocity.c_str());

 msg.data = ss.str();
 printf("\n");

 //Publishes the descending velocity from the user

 207

 descent_pub.publish(msg);

 ros::spinOnce();

 loop_rate.sleep();

 }

 return 0;
}

 208

Appendix 5.6: talker_velocity.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <iostream>
#include <string>

#include <sstream>

// this allows identifiers to be used
using namespace std;

//Variables declared
string sVelocity = "12"; //DEFAULT VELOCITY

int main(int argc, char **argv)
{

//name assigned for the node
 ros::init(argc, argv, "talker_velocity");

 ros::NodeHandle nh;

//Topics that are published to
 ros::Publisher velocity_pub = nh.advertise<std_msgs::String>("VelocityFromUser", 10);

 ros::Rate loop_rate(20);

 int count = 0;
 while (ros::ok())
 {

 std_msgs::String msg;

 std::stringstream ss;

//Receives the horizontal velocity from the user

 cout << "Please enter a velocity in m/s with decimal (e.g. 12.0):" << endl;

 cin >> sVelocity;

 ss << sVelocity;

 printf("\n");
 printf("The velocity you have chosen: %s m/s\n", sVelocity.c_str());
 msg.data = ss.str();
 printf("\n");

//Publishes the velocity from the user
 velocity_pub.publish(msg);

 209

 ros::spinOnce();

 loop_rate.sleep();

 }

 return 0;
}

 210

Appendix 5.7: talker_flightmode.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <iostream>
#include <string>

#include <sstream>

// this allows identifiers to be used
using namespace std;

//Variables declared
string sFlightmode = "false";

//Main Method
int main(int argc, char **argv)
{
 //name assigned for the node
 ros::init(argc, argv, "talker_flightmode");

 ros::NodeHandle nh;

 //Topics that are published
 ros::Publisher flightmode_pub = nh.advertise<std_msgs::String>("FlightmodeFromUser", 10);

 ros::Rate loop_rate(20);

 int count = 0;
 while (ros::ok())
 {

 std_msgs::String msg;

 std::stringstream ss;

//Receives the flight mode from the user
 cout << "Please enter flightmode (e.g. offboard or stabilized):" << endl;

 cin >> sFlightmode;

 ss << sFlightmode;

 printf("\n");
 printf("The flightmode you have chosen is: %s \n", sFlightmode.c_str());
 msg.data = ss.str();

 printf("\n");

//Publishes the flight mode from the user
 flightmode_pub.publish(msg);

 211

 ros::spinOnce();

 loop_rate.sleep();

 }

 return 0;
}

 212

Appendix 5.8: talker_quat.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <iostream>
#include <string>

#include <sstream>

// this allows identifiers to be used
using namespace std;

//Variables declared
string sX = "0";
string sY = "0";
string sZ = "0";
string sW = "0";

//Main Method
int main(int argc, char **argv)
{
 //name assigned for the node

 ros::init(argc, argv, "talker_quat");

 ros::NodeHandle nh;
 //Topics that are published
 ros::Publisher quat_pub = nh.advertise<std_msgs::String>("QuatFromUser", 100);

 ros::Rate loop_rate(20);

 int count = 0;
 while (ros::ok())
 {

 std_msgs::String msg;

 std::stringstream ss;

//Receives a quaternion from the user
 cout << "Please a quaternion (format is: w x y z):" << endl;

 cin >> sW >> sX >> sY >> sZ;

 ss << sW + " " + sX + " " + sY + " " + sZ;

 // stringstream geek(sPos);

 // geek >> fPos;

 printf("\n");

 213

 printf("The w you have chosen: %s \n", sW.c_str());
 printf("The x you have chosen: %s \n", sX.c_str());
 printf("The y you have chosen: %s \n", sY.c_str());

 printf("The z you have chosen: %s \n", sZ.c_str());

// printf("The value you have chosen: %.8f \n", fPos);
 printf("\n");

 msg.data = ss.str();

//Publishes the quaternion from the user
 quat_pub.publish(msg);

 ros::spinOnce();

 loop_rate.sleep();

 }

 return 0;
}

 214

Appendix 5.9: listener_status.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include "std_msgs/String.h"

// this allows identifiers to be used

using namespace std;

//Variables declared
std_msgs::String StatusMsg;

string sStatus = "null";

string StatusTemp;

//Callback to receive messages from the StatusFromAircraft topic

void StatusCallback(const std_msgs::String::ConstPtr& msg)
{
 StatusMsg.data = msg->data.c_str();

 StatusTemp = StatusMsg.data;

 printf("%s \n", StatusTemp.c_str());
 printf("\n");

}

//Main Method
int main(int argc, char **argv)
{

 //name assigned for the node
 ros::init(argc, argv, "listener_status");

 ros::NodeHandle nh;

//Topics that are subscribed to
 ros::Subscriber sub_Coordinates = nh.subscribe("StatusFromAircraft", 10, StatusCallback);

 ros::Rate r(20);

 while (ros::ok())
 {

 ros::spinOnce();
 r.sleep();

 }
 return 0;
}

 215

Appendix 5.10: boxinfo.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include "std_msgs/String.h"
#include "darknet_ros_msgs/BoundingBoxes.h"
#include <math.h>

#include <sstream>
#include <iostream>
#include <iterator>
#include <string>
#include <boost/range.hpp>

// this allows identifiers to be used
using namespace std;

//Variables declared

darknet_ros_msgs::BoundingBoxes BoxMsg;

int xmax;
int xmin;
int ymax = 380;
int ymin;
int xavg;
int yavg;
int xdistancetomid;
int ydistancetomid;
int yDifference;
int boundingboxsize;

//webcam resolution

//int camerawidth = 640;
//int cameraheight = 480;

//DJI video Footage resolution
int camerawidth = 1920;
int cameraheight = 1080;

int camerawidthhalved = camerawidth / 2;
int cameraheighthalved = cameraheight / 2;

//double hfov = 70.42; //logitech c920 webcam
//double vfov = 43.3; //logitech c920 webcam

double hfov = 76.25; //DJI Phantom 4 Pro (calculated)
double vfov = 47.64; //DJI Phantom 4 Pro (calculated)

double AngleToRotate;

float AltitudeSet = 10;

 216

float VFOV;
float AngleToFirstPoint;
float AngleToFinalPoint;
float GroundDistanceToFirstPoint;
float GroundDistanceToLastPoint;
float MaxDistance;
float OppAngle;
float AngleOnStraightLine;
float AngleForMainTriangle;
float Hypotenuse;
float ymaxDifference;
float HypotenuseForLinearization;
float DistanceBetweenAircraftAndPerson;
float DistanceToMove;
float yextra = 0;
float ywithequation;
float xavgpastmidpoint;
float abovexavg

bool PubOpen = false;
//bool PubOpen = true;

std_msgs::String msgAngle;

std_msgs::String msgDistance;

//Callback to receive the bounding box information obtained by using the darknet_ros package
void BoxesCallback(const darknet_ros_msgs::BoundingBoxes::ConstPtr& msg)
{

 boundingboxsize = boost::size(msg->bounding_boxes);
 printf("Size of the array: %i \n", boundingboxsize);

 for (int i = 0; i < boundingboxsize;i++)
 {
 if (msg->bounding_boxes[i].Class == "person")
 {
 xmax = msg->bounding_boxes[0].xmax;
 xmin = msg->bounding_boxes[0].xmin;

 ymax = msg->bounding_boxes[0].ymax;
 ymin = msg->bounding_boxes[0].ymin;

 printf("xmax: %i \n", xmax);
 printf("xmin: %i \n", xmin);

 printf("ymax: %i \n", ymax);
 printf("ymin: %i \n", ymin);

 xavg = (xmax + xmin) / 2;
 yavg = (ymax + ymin) / 2;

 printf("xavg: %i \n", xavg);
 printf("yavg: %i \n", yavg);

 217

 xdistancetomid = (camerawidth/2) - xavg;
 ydistancetomid = (camerawidth/2) - yavg;

 //determining which direction and angle to rotate the aircraft based on the the position
of the bounding box on the video feed
 if (xdistancetomid < 0)
 {

 printf("rotate right by %i pixels\n", -xdistancetomid);
 AngleToRotate = ((hfov / 2) * (xdistancetomid) /
camerawidthhalved);
 printf("rotate right by %.2f degrees \n", -AngleToRotate);

 }
 else
 {
 printf("rotate left by %i pixels\n", xdistancetomid);
 AngleToRotate = ((hfov / 2) * (xdistancetomid) /

camerawidthhalved);
 printf("rotate left by %.2f degrees \n", AngleToRotate);
 }

 /* if (ydistancetomid < 0)

 {
 printf("move camera up by %i pixels\n", -ydistancetomid);
 }
 else
 {

 printf("move camera down by %i pixels\n", ydistancetomid);
 }
 */

//fixes the ground distance, as mentioned in section

 if ((xavg - camerawidthhalved) < 0)
 {
 xavgpastmidpoint = camerawidthhalved + (camerawidthhalved - xavg);

 }
 else
 {
 xavgpastmidpoint = xavg;
 }

 if (ymax < 500)
 {
 yextra = 0..1793*xavgpastmidpoint - 187.81;
 }

 else if ((ymax >= 500) && (ymax < 750))
 {
 yextra = 0.0936*xavgpastmidpoint - 104.75;

 218

 }
 else if (ymax >= 750)
 {

 yextra = 0.3233*xavgpastmidpoint - 322.05;
 }

 //Calculates the ground distance
 ymaxDifference = cameraheight - (ymax + yextra);

 HypotenuseForLinearization = ymaxDifference / (sin(AngleForMainTriangle * M_PI
/ 180));
 DistanceToMove = (HypotenuseForLinearization / Hypotenuse) * MaxDistance;
 DistanceBetweenAircraftAndPerson = GroundDistanceToFirstPoint + DistanceToMove;

 printf("Distance between the aircraft and the person: %.2f metres\n",
DistanceBetweenAircraftAndPerson);
 printf("Distance aircraft needs to move: %.2f \n", DistanceToMove);
 printf("\n");

 PubOpen = true;
 }
 else
 {
 printf("An object was detected, but not a human. \n");

 printf("\n");
 }
 }
}

//Main method
int main(int argc, char **argv)
{
 //name assigned for the node

 ros::init(argc, argv, "boxinfo");

 ros::NodeHandle nh;

 //Topics that are subscribed to

 ros::Subscriber sub_Box = nh.subscribe("/darknet_ros/bounding_boxes", 10, BoxesCallback);
//Topics that are published
 ros::Publisher angle_pub = nh.advertise<std_msgs::String>("/AngleFromBoundingBox", 10);
 ros::Publisher distance_pub = nh.advertise<std_msgs::String>("/DistanceFromBoundingBox",
10);

 ros::Rate r(10);

 //Calculations part of determining the ground distance
 AngleToFirstPoint = 45 - (vfov/2);
 AngleToFinalPoint = 45 + (vfov/2);

 GroundDistanceToFirstPoint = AltitudeSet * tan(AngleToFirstPoint * M_PI / 180);
 GroundDistanceToLastPoint = AltitudeSet * tan(AngleToFinalPoint * M_PI / 180);
 MaxDistance = GroundDistanceToLastPoint - GroundDistanceToFirstPoint;

 219

 OppAngle = 180 - 90 - AngleToFirstPoint;
 AngleOnStraightLine = 180 - OppAngle;

 AngleForMainTriangle = 180 - AngleOnStraightLine - vfov;
 Hypotenuse = cameraheight / (sin(AngleForMainTriangle * M_PI / 180));

 while (ros::ok())
 {

 if (PubOpen == true)
 {
 std::stringstream ss1;
 ss1 << AngleToRotate;
 msgAngle.data = ss1.str();

 //calculated angle to rotate the aircraft is published
 angle_pub.publish(msgAngle);

 std::stringstream ss2;
 ss2 << DistanceToMove;

 msgDistance.data = ss2.str();
 //calculated ground distance to move the aircraft is published
 distance_pub.publish(msgDistance);

 printf("Angle and distance determined. \n");

 printf("\n");

 PubOpen = false;
 }
 ros::spinOnce();

 r.sleep();
 }

 return 0;

}

 220

Appendix 5.11: boundingboxmove.cpp node
//relevant libraries used in this node
#include "ros/ros.h"
#include <string>
#include <math.h>
#include <std_msgs/String.h>

#include <iostream>
#include <sstream>
#include <boost/lexical_cast.hpp>
#include <geometry_msgs/PoseStamped.h>

// this allows identifiers to be used
using namespace std;

//Declared variables
float fAngleAircraft; //angle that the drone is facing after it has rotated to make the person
in the centre of the screen (angle must be obtained from the aircraft)

//negative angle means rotation is clockwise

float fAngleO;
float fDistance;
float fCurrentX = 5;
float fCurrentY = 2;
float fAdjacent;
float fOpposite;
float fNewX;
float fNewY;
float fAngleReceived;
float fDistanceReceived;

bool bAngle = false;
bool bDistance = false;

string sAngle;

string sDistance;
string sTemp;
string DistanceTemp;
string AngleTemp;

std_msgs::String DistanceMsg;
std_msgs::String AngleMsg;
std_msgs::String msgCoordinates;

std::string sCoordinates;

geometry_msgs::PoseStamped local_pose;

//Callback to receive the ground distance from the boxinfo.cpp node

 221

void DistanceCallback(const std_msgs::String::ConstPtr& msg)
{
 DistanceMsg.data = msg->data.c_str();

 DistanceTemp = DistanceMsg.data;
 istringstream StrStreamDistance(DistanceTemp);

 StrStreamDistance >> sDistance;

 stringstream DistanceSS(sDistance);
 DistanceSS >> fDistanceReceived;

// printf("Distance received: %.2f \n",fDistanceReceived);

 bDistance = true;
}

//Callback to receive the converted aircraft's angle from the QuatToEuler.py node

void AngleCallback(const std_msgs::String::ConstPtr& msg)
{
 AngleMsg.data = msg->data.c_str();

 AngleTemp = AngleMsg.data;

 istringstream StrStreamAngle(AngleTemp);

 StrStreamAngle >> sAngle;

 stringstream AngleSS(sAngle);

 AngleSS >> fAngleReceived;

 // printf("Angle received: %.2f \n",fAngleReceived);

 bAngle = true;
}

//Callback to receive the local pose of the aircraft
void LocalposeCallback(const geometry_msgs::PoseStamped::ConstPtr &msg)
{
 local_pose=*msg;
}

//Method to calculate the coordinates the aircraft needs to fly towards

void CoordinatesForAircraft()
{
 fAngleAircraft = fAngleReceived; //negative means aircraft rotates clockwise
 fDistance = fDistanceReceived;
 fCurrentY = local_pose.pose.position.y;

 fCurrentX = local_pose.pose.position.x;

 printf("Angle received: %.2f \n",fAngleAircraft);

 222

 printf("Distance received: %.2f \n",fDistance);
 printf("Aircraft's current y co-ordinate: %.2f \n", fCurrentY);
 printf("Aircraft's current x co-ordinate: %.2f \n", fCurrentX);

 printf("\n");

 if (fDistance >= 0)
 {
 if ((fAngleAircraft >= -90) && (fAngleAircraft < 0)) //Example 1
 {
 fAngleO = 90 -(-fAngleAircraft);
 printf("fAngleO: %.2f \n", fAngleO);
 fAdjacent = cos(fAngleO * M_PI / 180) * fDistance;
 fOpposite = sin(fAngleO * M_PI / 180) * fDistance;

 printf("fAdjacent: %.2f \n", fAdjacent);
 printf("fOpposite: %.2f \n", fOpposite);

 fNewY = fCurrentY - fAdjacent;

 fNewX = fCurrentX + fOpposite;
 }

 else if ((fAngleAircraft >= -180) && (fAngleAircraft < -90)) //Example 2
 {

 fAngleO = (-fAngleAircraft) - 90;
 printf("fAngleO: %.2f \n", fAngleO);
 fAdjacent = cos(fAngleO * M_PI / 180) * fDistance;
 fOpposite = sin(fAngleO * M_PI / 180) * fDistance;

 printf("fAdjacent: %.2f \n", fAdjacent);
 printf("fOpposite: %.2f \n", fOpposite);

 fNewY = fCurrentY - fAdjacent;

 fNewX = fCurrentX - fOpposite;
 }

 else if ((fAngleAircraft <= 180) && (fAngleAircraft > 90)) //Example 3
 {

 fAngleO = fAngleAircraft - 90;
 printf("fAngleO: %.2f \n", fAngleO);
 fAdjacent = cos(fAngleO * M_PI / 180) * fDistance;
 fOpposite = sin(fAngleO * M_PI / 180) * fDistance;

 printf("fAdjacent: %.2f \n", fAdjacent);
 printf("fOpposite: %.2f \n", fOpposite);

 fNewY = fCurrentY + fAdjacent;
 fNewX = fCurrentX - fOpposite;

 }

 else if ((fAngleAircraft <= 90) && (fAngleAircraft >= 0)) //Example 4

 223

 {
 fAngleO = 90 - fAngleAircraft;
 printf("fAngleO: %.2f \n", fAngleO);

 fAdjacent = cos(fAngleO * M_PI / 180) * fDistance;
 fOpposite = sin(fAngleO * M_PI / 180) * fDistance;

 printf("fAdjacent: %.2f \n", fAdjacent);
 printf("fOpposite: %.2f \n", fOpposite);

 fNewY = fCurrentY + fAdjacent;
 fNewX = fCurrentX + fOpposite;
 }

 printf("New Y co-ordinate: %.2f \n", fNewY);
 printf("New X co-ordinate: %.2f \n", fNewX);
 printf("Therefore, (y;x) = (%.2f ; %.2f) \n",fNewY,fNewX);
 printf("\n");

 }

 else if (fDistance < 0)
 {
// printf ("fDistance is negative \n");

 if ((fAngleAircraft >= -90) && (fAngleAircraft < 0)) //Example 5
 {
 fAngleO = 90 -(-fAngleAircraft);
 printf("fAngleO: %.2f \n", fAngleO);
 fAdjacent = cos(fAngleO * M_PI / 180) * (-fDistance);

 fOpposite = sin(fAngleO * M_PI / 180) * (-fDistance);

 printf("fAdjacent: %.2f \n", fAdjacent);
 printf("fOpposite: %.2f \n", fOpposite);

 fNewY = fCurrentY + fAdjacent;
 fNewX = fCurrentX - fOpposite;
 }

 else if ((fAngleAircraft >= -180) && (fAngleAircraft < -90)) //Example 6
 {
 fAngleO = (-fAngleAircraft) - 90;
 printf("fAngleO: %.2f \n", fAngleO);
 fAdjacent = cos(fAngleO * M_PI / 180) * (-fDistance);

 fOpposite = sin(fAngleO * M_PI / 180) * (-fDistance);

 printf("fAdjacent: %.2f \n", fAdjacent);
 printf("fOpposite: %.2f \n", fOpposite);

 fNewY = fCurrentY + fAdjacent;
 fNewX = fCurrentX + fOpposite;
 }

 224

 else if ((fAngleAircraft <= 180) && (fAngleAircraft > 90)) //Example 7
 {
 fAngleO = fAngleAircraft - 90;

 printf("fAngleO: %.2f \n", fAngleO);
 fAdjacent = cos(fAngleO * M_PI / 180) * (-fDistance);
 fOpposite = sin(fAngleO * M_PI / 180) * (-fDistance);

 printf("fAdjacent: %.2f \n", fAdjacent);

 printf("fOpposite: %.2f \n", fOpposite);

 fNewY = fCurrentY - fAdjacent;
 fNewX = fCurrentX + fOpposite;
 }

 else if ((fAngleAircraft <= 90) && (fAngleAircraft >= 0)) //Example 8
 {
 fAngleO = 90 - fAngleAircraft;
 printf("fAngleO: %.2f \n", fAngleO);

 fAdjacent = cos(fAngleO * M_PI / 180) * (-fDistance);
 fOpposite = sin(fAngleO * M_PI / 180) * (-fDistance);

 printf("fAdjacent: %.2f \n", fAdjacent);
 printf("fOpposite: %.2f \n", fOpposite);

 fNewY = fCurrentY - fAdjacent;
 fNewX = fCurrentX - fOpposite;
 }

 printf("New Y co-ordinate: %.2f \n", fNewY);
 printf("New X co-ordinate: %.2f \n", fNewX);
 printf("Therefore, (y;x) = (%.2f ; %.2f) \n",fNewY,fNewX);
 printf("\n");

 }

 std::ostringstream ssCombined;

 ssCombined << fNewY;

 ssCombined << " ";
 ssCombined << fNewX;

 sTemp = boost::lexical_cast<std::string>(ssCombined.str());
 printf("Combined ostringstream: %s \n", sTemp.c_str());

 msgCoordinates.data = sTemp;

 bAngle = false;
 bDistance = false;
}

//Main method

 225

int main(int argc, char **argv)
{
 //name assigned for the node

 ros::init(argc, argv, "boundingboxmove");

 ros::NodeHandle nh;

 //Topics that are subscribed to

 ros::Subscriber sub_distance = nh.subscribe("/DistanceFromBoundingBox", 10,
DistanceCallback);
 ros::Subscriber sub_angle = nh.subscribe("/AngleForLinearMovement", 10, AngleCallback);
 ros::Subscriber localpose_sub = nh.subscribe<geometry_msgs::PoseStamped>
 ("/mavros/local_position/pose",100,LocalposeCallback);

 //Topics that are published
 ros::Publisher coordinates_pub = nh.advertise<std_msgs::String>("/MultipleCoordinates",
10);

 ros::Rate r(10);

 printf("boundingboxmove.cpp has started...\n");

 while (ros::ok())
 {

 if ((bAngle == true) && (bDistance == true))
 {
 CoordinatesForAircraft();

 //Publishes the y and x coordinates for the aircraft to fly towards
 coordinates_pub.publish(msgCoordinates);
 }

 ros::spinOnce();
 r.sleep();
 }
}

 226

Appendix 5.12: EulerToQuat.py node
#!/usr/bin/env python

#relevant libraries used in this node
import rospy
import math
from pyquaternion import Quaternion
from std_msgs.msg import String

roll = pitch = 0.0
yaw = 20

bReceived = 0
x = y = z = w = 0

#Callback to receive the angle from the bounding box obtained by using the darknet_ros package

def get_angle(msg):
 global bReceived
 global my_quat
 AngleReceived = msg.data
 print AngleReceived

negative angle means aircraft must turn right
positive angle means aircraft must turn left
my_quat = Quaternion(axis=[0, 0, 1], angle=-0.349) #negative angle will rotate aircraft
right in gazebo
 AngleConverted = (float(AngleReceived))*math.pi/180

 print AngleConverted
#the angle is converted to a quaternion
 my_quat = Quaternion(axis=[0, 0, 1], angle=AngleConverted)
 bReceived = 1

#Name assigned for the node
rospy.init_node('EulerToQuat')

#Topic that is subscribed to

sub = rospy.Subscriber ('/AngleFromBoundingBox', String, get_angle)

#Topic that is published
pub = rospy.Publisher ('/QuatFromUser', String, queue_size=10)

print "EulerToQuat.py has started"

r = rospy.Rate(10)
while not rospy.is_shutdown():
 if (bReceived == 1):
 global my_quat
print my_quat
 (w,x,y,z) = my_quat
 tempstr = str(w) + " " + str(x) + " " + str(y) + " " + str(z)

 227

 print tempstr
 bReceived = 0
#the quaternion is published to the topic QuatFromUser

 pub.publish(tempstr)
 r.sleep()

 228

Appendix 5.13: QuatToEuler.py node
#!/usr/bin/env python

#relevant libraries used in this node
import rospy
import math
from geometry_msgs.msg import PoseStamped, Quaternion
from tf.transformations import euler_from_quaternion, quaternion_from_euler
from std_msgs.msg import String

#Declared variables

roll = pitch = 0.0
yaw = 20

bReceived = 0

x = y = z = w = 0

#callback to receive the quaternion from the aircraft
def get_quat(msg):
 global bReceived
 global CurrentQuat
 CurrentQuat = msg.pose.orientation
 # print CurrentQuat
 # print " "
 bReceived = 1;

#Name assigned for the node
rospy.init_node('QuatToEuler')

#Topic that is subscribed to
sub = rospy.Subscriber ('/mavros/local_position/pose', PoseStamped, get_quat)

#Topic that is published
pub = rospy.Publisher ('/AngleForLinearMovement', String, queue_size=10)

r = rospy.Rate(10)

print "QuatToEuler.py has started..."

while not rospy.is_shutdown():
 if (bReceived == 1):
 global CurrentQuat
 print CurrentQuat
 print " "

 RearrangeQuat = [CurrentQuat.x, CurrentQuat.y, CurrentQuat.z, CurrentQuat.w]
#the yaw is obtained by converting the quaternion to Euler angles
 (roll, pitch, yaw) = euler_from_quaternion(RearrangeQuat)
 YawDegrees = (float(yaw))*180/math.pi

 229

 print YawDegrees
 tempstr = str(YawDegrees)
 print " "

 bReceived = 0

#the yaw angle is published
 pub.publish(tempstr)
 r.sleep()

 230

Appendix 5.14: Quaternion Simulator
All three screenshots were captured from the Quaternion Simulator (Quaternion

Simulator, 2019).

1) Convert the quaternion to Euler angles.

2) Subtract the z axis Euler angle by 180 degrees.

 231

3) Invert the y axis Euler angle.

 232

Appendix 5.15: Developed Landing System Flow Chart

 233

Appendix 5.16: Human Detection System Flow Chart

 234

Appendix 6.1: Terminals Used for the Developed Landing System

talker_descent.cpp

node

listener_status.cpp node

flyaircraft.cpp node talker_flightmode.cpp

node

talker_velocity.cpp

node

talker_autoland.cpp

node

talker_coordinates.cpp

node

determinepose.cpp

node

 235

mavros node roscore

terminal

Gazebo node

talker_quat.cpp node

PX4 SITL node

aruco_ros

node

 236

Appendix 6.2: Additional Terminals Used for the Human Detection System

EulerToQuat.py node video_stream_opencv node

boundingboxmove.cpp

node

QuatToEuler.py node

darknet_ros node boxinfo.cpp node

 237

Appendix 6.3: Testing of the Developed Landing System in Gazebo
1. The position of the aircraft prior to executing the land command.

2. The aircraft repositioning itself above the ArUco marker and hovering in its

position for a few seconds.

 238

3. The aircraft rotating to align itself with the ArUco marker.

4. The aircraft starting its descent while constantly keeping itself aligned with the

ArUco marker.

 239

5. The aircraft landing correctly on the marker and disarming itself.

 240

Appendix 6.4: Nodes Tree for the Developed Landing System

 241

Appendix 6.5: Nodes Tree for the Human Detection System

 242

Appendix 7.1: Arduino PWM Script
//*****************************

////////PPM Transmitter////////

//*****************************

//James Sewell

//Benjy Nelson

//MEng(Mechatronics)

//Nelson Mandela University

/*****************************/

//Inital Variables and Configuration

#define CHANNEL_NUMBER 4 //set the number of channels

#define CHANNEL_DEFAULT_VALUE 1000 //set the default servo value

#define FRAME_LENGTH 22500 //set the PPM frame length in microseconds (1ms = 1000µs)

#define PULSE_LENGTH 500 //set the pulse length

#define onState 1 //set polarity of the pulses: 1 is positive, 0 is negative

#define sigPin 8 //set PPM signal output pin on the arduino

int AUTO_PB = 2; //Green Auto Flight Mode Push Button Pin (Interrupt used)

int ACRO_PB = 3; //White Acro (Manual) Flight Mode Push Button Pin (Interrupt used)

int RTL_PB = 4; //Red RTL Flight Mode Push Button Pin (Interrupt used)

int ppm[CHANNEL_NUMBER]; //ppm array

int ButtonStateAuto;

int ButtonStateAcro;

int ButtonStateRTL;

int LastButtonStateAuto = LOW;

int LastButtonStateAcro = LOW;

int LastButtonStateRTL = LOW;

unsigned long LastDebounceTimeAuto = 0;

unsigned long LastDebounceTimeAcro = 0;

unsigned long LastDebounceTimeRTL = 0;

unsigned long DebounceDelay = 50;

int OutputStateAuto = LOW;

int OutputStateAcro = LOW;

int OutputStateRTL = LOW;

int ButtonAuto = 0;

int ButtonAcro = 0;

int ButtonRTL = 0;

unsigned long CurrentTimer = 0;

int Temp = 0;

bool AlreadyArmed = false;

 243

void setup()

{

 pinMode(AUTO_PB, INPUT);

 pinMode(ACRO_PB, INPUT);

 pinMode(RTL_PB, INPUT);

 //Define push button interrupts

 attachInterrupt(5, AUTO_ISR, FALLING);

 attachInterrupt(4, ACRO_ISR, FALLING);

 attachInterrupt(3, RTL_ISR, FALLING);

 //initiallize default ppm values

 for(int i=0; i<CHANNEL_NUMBER; i++)

 {

 ppm[i]= CHANNEL_DEFAULT_VALUE;

 }

 ppm[2] = 1300;

 pinMode(sigPin, OUTPUT);

 digitalWrite(sigPin, !onState); //set the PPM signal pin to the default state (off)

 cli();

 TCCR1A = 0; // set entire TCCR1 register to 0

 TCCR1B = 0;

 OCR1A = 100; // compare match register, change this

 TCCR1B |= (1 << WGM12); // turn on CTC mode

 TCCR1B |= (1 << CS11); // 8 prescaler: 0,5 microseconds at 16mhz

 TIMSK1 |= (1 << OCIE1A); // enable timer compare interrupt

 sei();

 Serial.begin(9600);

} //End of SETUP()

void loop()

{

 //Added Code

 ButtonAuto = digitalRead(AUTO_PB);

 ButtonAcro = digitalRead(ACRO_PB);

 ButtonRTL = digitalRead(RTL_PB);

 if (ButtonAuto != LastButtonStateAuto)

 {

 LastDebounceTimeAuto = millis();

 }

 if ((millis() - LastDebounceTimeAuto) > DebounceDelay)

 {

 244

 if (ButtonAuto != ButtonStateAuto)

 {

 ButtonStateAuto = ButtonAuto;

 if (ButtonStateAuto == HIGH)

 {

// OutputStateAcro = 0;

// OutputStateRTL = 0;

// OutputStateAuto = 1;

 ppm[0] = 1000; //Reset flightmode

 if (AlreadyArmed == false)

 {

 ppm[1] = 1000; //Set low PWM for throttle

 ppm[2] = 2000; //Set high PWM for yaw

 noInterrupts();

 CurrentTimer = millis();

 Serial.print("Before loop: ");

 Serial.println(CurrentTimer);

 int TempTime = (millis());

 while((millis() - CurrentTimer) < 5000)

 {

 Serial.print("Inside loop: ");

 Serial.print(CurrentTimer);

 Serial.print(" Temp Time: ");

 Serial.println(TempTime);

 }

 interrupts();

 ppm[1] = 1250;

 AlreadyArmed = true;

 }

 ppm[0] = 1300;

 }

 }

 }

 if (ButtonAcro != LastButtonStateAcro)

 {

 LastDebounceTimeAcro = millis();

 }

 if ((millis() - LastDebounceTimeAcro) > DebounceDelay)

 {

 if (ButtonAcro != ButtonStateAcro)

 {

 245

 ButtonStateAcro = ButtonAcro;

 if (ButtonStateAcro == HIGH)

 {

// OutputStateAuto = 0;

// OutputStateRTL = 0;

// OutputStateAcro = 1;

 ppm[0] = 1600;

 }

 }

 }

 if (ButtonRTL != LastButtonStateRTL)

 {

 LastDebounceTimeRTL = millis();

 }

 if ((millis() - LastDebounceTimeRTL) > DebounceDelay)

 {

 if (ButtonRTL != ButtonStateRTL)

 {

 ButtonStateRTL = ButtonRTL;

 if (ButtonStateRTL == HIGH)

 {

// OutputStateAuto = 0;

// OutputStateAcro = 0;

// OutputStateRTL = 1;

 ppm[0] = 1900;

 }

 }

 }

/*

 Serial.print("Channel 1: ");

 Serial.print(ppm[0]);

 Serial.print(" Channel 2: ");

 Serial.print(ppm[1]);

 Serial.print(" Channel 3: ");

 Serial.println(ppm[2]);

*/

LastButtonStateAuto = ButtonAuto;

LastButtonStateAcro = ButtonAcro;

LastButtonStateRTL = ButtonRTL;

 } //Irrelevant to programme but necessary for compile

//Auto push button ISR

void AUTO_ISR()

{

 246

 for(int i=0; i<CHANNEL_NUMBER; i++)

 ppm[i]= 1800;

}

//Acro push button ISR

void ACRO_ISR()

{

 for(int i=0; i<CHANNEL_NUMBER; i++)

 ppm[i]= 2000;

}

//RTL push button ISR

void RTL_ISR()

{

 for(int i=0; i<CHANNEL_NUMBER; i++)

 ppm[i]= 1000;

}

//Actual Output Sequence

ISR(TIMER1_COMPA_vect)

{ //leave this alone

 static boolean state = true;

 TCNT1 = 0;

 //Section A - High pulse section

 if (state)

 { //start pulse

 digitalWrite(sigPin, onState);

 OCR1A = PULSE_LENGTH * 2;

 state = false;

 }

 else

 { //End pulse and calculate when to start the next pulse

 static byte cur_chan_numb;

 static unsigned int calc_rest;

 digitalWrite(sigPin, !onState);

 state = true;

 //Section B - Low pulse for extended period of time

 if(cur_chan_numb >= CHANNEL_NUMBER) //Terminates packet transfer

 {

 cur_chan_numb = 0;

 calc_rest = calc_rest + PULSE_LENGTH;//

 OCR1A = (FRAME_LENGTH - calc_rest) * 2;

 calc_rest = 0;

 }

 //Section C - Low pulse for small period

 247

 else

 {

 OCR1A = (ppm[cur_chan_numb] - PULSE_LENGTH) * 2;

 calc_rest = calc_rest + ppm[cur_chan_numb];

 cur_chan_numb++;

 }

 }

}

 248

Appendix 7.2: InsertWaypoints.cpp node
//relevant libraries used in this node
#include <ros/ros.h>
#include <mavros_msgs/WaypointPush.h>
#include <mavros_msgs/CommandHome.h>
#include <mavros_msgs/WaypointClear.h>

#include <std_msgs/String.h>
#include <cstdlib>
#include <mavros_msgs/Waypoint.h>

//Declared variables

bool MissionClear = false;
bool MissionInsert = false;
bool SetHomePos = false;

//Main method

int main(int argc, char **argv)
{
 //name assigned for the node
 ros::init(argc, argv, "InsertWaypoints");
 ros::NodeHandle p;

 ros::NodeHandle n;
 ros::NodeHandle l;

 //Service Clients that are communicated with
 ros::ServiceClient wp_clear_client =

p.serviceClient<mavros_msgs::WaypointClear>("mavros/mission/clear");
 ros::ServiceClient wp_srv_client =
n.serviceClient<mavros_msgs::WaypointPush>("mavros/mission/push");
 ros::ServiceClient set_home_client =

l.serviceClient<mavros_msgs::CommandHome>("mavros/cmd/set_home");

 mavros_msgs::WaypointPush wp_push_srv;
 mavros_msgs::WaypointClear wp_clear_srv;
 mavros_msgs::CommandHome set_home_srv;

 mavros_msgs::Waypoint wp_msg;

 ros::Rate rate(20.0);

 ros::Time PrevTime = ros::Time::now();

 while(MissionClear != true)
 {
 if ((MissionClear != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0)))
 {
 if (wp_clear_client.call(wp_clear_srv))
 {
 ROS_INFO("Waypoint list was cleared");

 249

 MissionClear = true;
 }
 PrevTime = ros::Time::now();

 }

 ros::spinOnce();
 rate.sleep();
 }

// wp_clear_srv.request = {};

 set_home_srv.request.current_gps = false;
 set_home_srv.request.latitude = -34.005196;

 set_home_srv.request.longitude = 25.682365;
 set_home_srv.request.altitude = 30.0;
 PrevTime = ros::Time::now();

 while(SetHomePos != true)
 {
 if ((SetHomePos != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0)))
 {
 if (set_home_client.call(set_home_srv))
 {

 ROS_INFO("Home was set to a new position");
 SetHomePos = true;
 }
 PrevTime = ros::Time::now();
 }

 ros::spinOnce();
 rate.sleep();
 }

 // MissionClear = false;

//A blank waypoint is uploaded

/////////////////////////////// 0 ///

 wp_msg.frame = 3;
// wp_msg.frame = 0;
 wp_msg.command = 16;
 wp_msg.is_current = false;
 wp_msg.autocontinue = false;
 wp_msg.param1 = 0;
 wp_msg.param2 = 0;
 wp_msg.param3 = 0;
 wp_msg.param4 = 0;

 wp_msg.x_lat = 1;
 wp_msg.y_long = 2;
 wp_msg.z_alt = 3;

 250

 wp_push_srv.request.start_index = 0;
 PrevTime = ros::Time::now();
 MissionInsert = false;

 while(MissionInsert != true)
 {
 if ((MissionInsert != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0)))
 {

 wp_push_srv.request.waypoints.push_back(wp_msg);
 if (wp_srv_client.call(wp_push_srv))
 {
 // ROS_INFO("Waypoint list was cleared");
 ROS_INFO("Mission waypoints sent: %d", wp_push_srv.response.success);

//obtained from WaypointPush Service
 ROS_INFO("Waypoints sent: %d", wp_push_srv.response.wp_transfered);
 MissionInsert = true;
 }
 PrevTime = ros::Time::now();

 }

 ros::spinOnce();
 rate.sleep();
 }

 //The first waypoint is uploaded

////////////////////////////// 1 ///

 wp_msg.frame = 3;
 wp_msg.command = 22;
 wp_msg.is_current = false;
 wp_msg.autocontinue = false;
 wp_msg.param1 = 0;
 wp_msg.param2 = 0;
 wp_msg.param3 = 0;
 wp_msg.param4 = 0;
 wp_msg.x_lat = -34.005196;

 wp_msg.y_long = 25.682365;
 wp_msg.z_alt = 30.0;

 wp_push_srv.request.start_index = 0;
 PrevTime = ros::Time::now();

 MissionInsert = false;

 while(MissionInsert != true)
 {
 if ((MissionInsert != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0)))
 {
 wp_push_srv.request.waypoints.push_back(wp_msg);
 if (wp_srv_client.call(wp_push_srv))
 {

 251

 // ROS_INFO("Waypoint list was cleared");
 ROS_INFO("Mission waypoints sent: %d", wp_push_srv.response.success);
//obtained from WaypointPush Service

 ROS_INFO("Waypoints sent: %d", wp_push_srv.response.wp_transfered);
 MissionInsert = true;
 }
 PrevTime = ros::Time::now();
 }

 ros::spinOnce();
 rate.sleep();
 }
//The second waypoint is uploaded

/////////////////////////////// 2 ///
 wp_msg.frame = 3;
// wp_msg.frame = 0;
 wp_msg.command = 16;

 wp_msg.is_current = false;
 wp_msg.autocontinue = false;
 wp_msg.param1 = 0;
 wp_msg.param2 = 0;
 wp_msg.param3 = 0;

 wp_msg.param4 = 0;
 wp_msg.x_lat = -34.005310;
 wp_msg.y_long = 25.682194;
 wp_msg.z_alt = 30.0;

 wp_push_srv.request.start_index = 0;
 PrevTime = ros::Time::now();
 MissionInsert = false;

 while(MissionInsert != true)
 {
 if ((MissionInsert != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0)))
 {
 wp_push_srv.request.waypoints.push_back(wp_msg);

 if (wp_srv_client.call(wp_push_srv))
 {
 // ROS_INFO("Waypoint list was cleared");
 ROS_INFO("Mission waypoints sent: %d", wp_push_srv.response.success);
//obtained from WaypointPush Service

 ROS_INFO("Waypoints sent: %d", wp_push_srv.response.wp_transfered);
 MissionInsert = true;
 }
 PrevTime = ros::Time::now();
 }

 ros::spinOnce();
 rate.sleep();
 }

 252

//The third waypoint is uploaded

/////////////////////////////// 3 ///

 wp_msg.frame = 3;
// wp_msg.frame = 0;
 wp_msg.command = 16;
 wp_msg.is_current = false;
 wp_msg.autocontinue = false;
 wp_msg.param1 = 0;
 wp_msg.param2 = 0;
 wp_msg.param3 = 0;
 wp_msg.param4 = 0;

 wp_msg.x_lat = -34.005329;
 wp_msg.y_long = 25.683224;
 wp_msg.z_alt = 30.0;

 wp_push_srv.request.start_index = 0;

 PrevTime = ros::Time::now();
 MissionInsert = false;

 while(MissionInsert != true)
 {

 if ((MissionInsert != true) && (ros::Time::now() - PrevTime > ros::Duration(2.0)))
 {
 wp_push_srv.request.waypoints.push_back(wp_msg);
 if (wp_srv_client.call(wp_push_srv))
 {

 // ROS_INFO("Waypoint list was cleared");
 ROS_INFO("Mission waypoints sent: %d", wp_push_srv.response.success);
//obtained from WaypointPush Service
 ROS_INFO("Waypoints sent: %d", wp_push_srv.response.wp_transfered);

 MissionInsert = true;
 }
 PrevTime = ros::Time::now();
 }

 ros::spinOnce();
 rate.sleep();
 }

 ros::spinOnce();

 return 0;

}

 253

Appendix 7.3: Testing of the Developed Landing System on the Actual

Aircraft

1. The aircraft manually positioned using the talker_coordinates.cpp node, where

“land” mode will be activated using the talker_autoland.cpp node.

2. The aircraft repositioned above the ArUco marker.

 254

3. The aircraft rotated to align itself correctly with the ArUco marker.

(Take note of the direction that the tail of the aircraft is facing).

4. The aircraft descending towards the ground.

 255

5. The aircraft landed successfully on the ArUco marker.

 256

Appendix 7.4: Tables for Test 1, Test 2 and Test 3 for the Human

Detection System

Test 1

Position Xmin Ymin Xmax Ymax Xaverage

home null null null 581 960

1 1179 444 1237 586 1208

A 920 437 971 577 945.5

2 1414 498 1482 631 1448

B 917 454 959 577 938

3 1701 449 1790 587 1745.5

C 953 396 995 522 974

4 1793 481 1885 611 1839

D 939 374 973 498 956

Test 2

Position Xmin Ymin Xmax Ymax Xaverage

home null null null 931 960

1 1292 772 1359 920 1325.5

A 915 693 969 837 942

2 1532 725 1626 860 1579

B 909 628 958 756 933.5

3 1809 699 1913 841 1861

C 957 510 1010 637 983.5

 257

Test 3

Position Xmin Ymin Xmax Ymax Xaverage

home null null null 385 960

1 1175 269 1226 385 1200.5

A 952 255 1001 375 976.5

2 1326 240 1379 358 1352.5

B 988 217 1032 337 1010

3 1525 239 1586 353 1555.5

C 935 182 971 295 953

4 1714 207 1782 330 1748

D 945 141 981 250 963

