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This classroom-based action research dissertation examined visualisation strategies 

used by pre-service Intermediate Phase PGCE education students to solve 

mathematical word-problems. The setting was an Eastern Cape university. Previous 

literature indicated a positive correlation between the use of visual scaffolds and 

success in solving word problems. However, a gap was found insofar as little research 

had been published on the application of visualisation to word-problems by student 

teachers in South Africa. This thesis advances our understanding of the role 

visualisation may play in assisting student teachers to solve word-problems. The 

theoretic framework was informed by Bruner’s theory of learning. The research was 

grounded in the hermeneutic tradition. An interpretivist research paradigm was 

expedited by using an inductive, naturalistic perspective and relativist ontology. Thirty-

eight student-teachers participated in the study. Parallel and convergent qualitative 

and quantitative data gathering instruments were used, thereby facilitating triangulation 

and examination for microgenesis. It was found that vestiges of past teaching practices 

initially limited the participants’ knowledge to a deeply-flawed, banking model of 

routines and an instrumental perception of mathematics. Disruptive calls for social 

justice impeded progress. Albeit visualisation strategies liberated understanding, many 

foundational concepts and skills had to be reconstructed. The confluence of time and 

rehearsal culminated in some measure of expertise. Sustained effort enabled new 

knowledge to be compressed and consigned to long-term memory. Salient visual 

representations assisted participants to conceptualise relational mathematical meta-

concepts and reduced the cognitive demands imposed by word-problems but that 

achievement was a hard-won prize.  
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CHAPTER 1 – INTRODUCTION 
 

Visualization or visualisation is any technique for creating images, diagrams,  

or animations to communicate a message. Visualization through visual imagery has 

been an effective way to communicate both abstract and concrete ideas since the 

dawn of man. 

(Rockswold, 2014) 

 

1.0 PROLOGUE - MR GENDALL’S ENGLISH CLASS 

When I reflect deeply about the life-journey that brought me to this place, this thesis, 

my earliest recollection of formally using visualisation goes back to around 1970/71. 

As best as I can remember, at that time I was in Standard 6 (Grade 8), and my first 

encounter with the use of visualisation, used as a deliberate cognising teaching and 

learning strategy, occurred in an English language lesson on parts of speech. 

 

In those days English grammar formed a sizable part of language studies and was the 

stuff of children’s nightmares for Standard 6 tests and examinations. Tenses, 

punctuation and parts of speech; past perfect tense; commas and colons; nouns, 

adverbs, conjunctions and prepositions – eight parts of speech in total. I remember 

wondering why on earth anyone would ever need to know these things, (naiveté is a 

very special gift bestowed upon the young), and I remember groaning, inwardly mostly, 

whenever we were asked to pull out that textbook.  

 

In Standard 6, Mr Gendall became my English teacher. He was also my tennis coach. 

He was young, apparently very good-looking, and all the girls in my class thought that 

he was cool. And, like any other properly trained Christian National Education teacher 

would have known, Mr Gendall was aware of his curriculum obligations so there would 

be no opportunity to avoid the grammar lessons. But, it was in how he taught those 

lessons and particularly the parts of speech – it was in the methodology that he used 

– that he profoundly improved my understanding of that work. 

 

At the beginning of our first term with him, Mr Gendall told us that just as all other 

Standard 6 children would be required to do, we were going to study parts of speech. 

Much groaning, not all inwards! Then he said that he was going to teach us a new way 

https://en.wikipedia.org/wiki/Image
https://en.wikipedia.org/wiki/Diagram
https://en.wikipedia.org/wiki/Animation
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to learn this work, and he concluded with an instruction that we would need to use our 

colouring pencils – our colouring pencils! - and, “bring them tomorrow.” 

 

Today, almost five decades later, I have to acknowledge that I have lost some of the 

fine detail of the methodology used by Mr Gendall, but its visual principles remain with 

me. And, as will be revealed later in the thesis, I think that is quite important. He used 

an approach in which, for example, a verb – a doing word, was conceived – visualised 

– as an action. Thus, said Mr Gendall, we were required to place a red-pencil, stick-

figure, running person on top of any and all doing words. In the same way, above each 

noun, a thing, we would draw a green house. Adverbs are used to modify, to paint 

verbs, thus a red paintbrush was placed above the adverbs. Similarly, green 

paintbrushes were to be placed above adjectives; conjunctions were drawn in blue, as 

a circle with an arrow; the articles, the, a and an, had a yellow triangle and the 

prepositions, as I recall, received a purple hat, because one had to think about them. 

And so it continued, but the short sentence below should better demonstrate my 

memory of those experiences:  

 

 

 

 

Mr Gendall was the first person to legitimise and liberate the colour-filled contents of 

my wooden pencil box. Before that, all I ever got to use was a Parker© pen and blotting 

paper. I had so much fun hunting down and inserting colourful sketches above the 

various words that I lost my loathing for parts of speech and quickly learned them all. 

In fact, as I recall, I started to describe the parts of speech as running man, or purple 

hat, etcetera, easily leaving the more mundane terms of verb and preposition behind. 

And, if my memory serves me well, I recall that my sense of elation was shared by all 

of my peers. 

 

Those  people who study semiotics would have a field day with Mr Gendall’s 

methodology. That a green pencil-sketch of a house, placed upon three abstract 

symbols,  c – a – t, should simultaneously represent not a house, but both a noun and 

a cat, and not just a cat, but indeed, any other object, including houses, and that this 

all is acceptable and makes sense to us, is a wondrous thing. It goes to the unique 
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cognitive capacity humans have to mentally leap from one context to another, to form 

– instantly – mental pathways that link and codify stimuli and ideas, construct schemas 

and reveal new understandings to ourselves. In this parts of speech example, the 

colourful icons act as visual scaffolds, as conduits to the concepts of prepositions, 

adjectives, etcetera. 

 

To this day, I continue to have more than a passing understanding of verbs and nouns, 

but the path was made much easier for me by using Mr Gendall’s visualising strategy. 

It has to be said that we never used vocabulary that contained words like visualisation 

or methodology in our classes. Nor did I, from Standard 6 through to matric, always 

draw colourful images on top of words. There was no need for this. As layers of 

understanding melded the iconic and symbolic representations of the parts of speech, 

I was able to consign that knowledge and those relationships to long-term memory. 

Subsequent to the assimilation and accommodation of the parts of speech visualising 

meta-concept, that is, its compression (Gray & Tall, 2007), I would only call up the 

visualising strategy to my working memory sporadically, so as to test a problematic 

word against my mental construct of those iconic images. Further, in as much as Mr 

Gendall’s methodology enabled my grammar marks to lift quantitatively from say, 
5

10
  

to 
9

10
 so too he qualitatively liberated a sense of being able to do it within me. 

 

1.1 INTRODUCTION 

I have worked as a mathematics teacher in higher education for thirty-two years. I have 

worked with thousands of students and, among other programmes of instruction, many 

cohorts of Post Graduate Certificate in Education (PGCE) students. In the PGCE 

programme, since 2012, I have been teaching the Intermediate Phase Studies, IPS 

413 E Mathematics module and it is in this module that I conducted the action research. 

PGCE students are often in their late twenties or early thirties and, on occasion, older 

than that. For some of these students, any recollections they may hold of mathematics 

might be vague and peppered with misremembered facts and details, ill-formed 

procedures and flawed conceptual understanding. Although a pass in IPS 413 E 

module is a prerequisite for the awarding of the PGCE qualification, experience has 

taught me that some students may be hesitant, even reticent in coming into the 

mathematics class. 
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1.1.1 TEACHING AND LEARNING MATHEMATICS IN THE 21ST 

CENTURY 

Albeit that PGCE students might be anxious about having to study mathematics, “the 

single most characteristic thing about human beings is that they learn. Learning is so 

deeply ingrained in man [sic] that it is almost involuntary, and thoughtful students of 

human behaviour have even speculated that our specialization as a species is a 

specialization for learning” (Bruner, 1966, p. 113). A modern view of mathematics is 

that it is a socio-cultural practice that can be undertaken by all members of a society 

(Siemon, Beswick, Brady, Clark, Faragher & Warren, 2012, p. 18). The capacities to 

think mathematically and solve mathematical problems are highly sought-after 

attributes; in the 21st century, a recognised qualification in mathematics has become a 

societal pre-requisite for many professions (Eastaway & Askew, 2010, p. 21). 

 

Whether it be used for a simple financial transaction, to buy a loaf of bread, or for the 

purchase of a ticket to a far-away destination; whether it is used to read a stock-market 

share-price report in a newspaper, or it is used to establish a basic understanding of 

temperature, 32°C, and thereby informs the way one should dress for that day, 

increasingly, and on many vectors, all humans apply mathematical skills and 

knowledge in their daily lives. From this, it follows that there is a societal expectation 

for mathematics teachers, and by extension PGCE student teachers, to create learning 

environments and activities that facilitate deep learning of the subject. 

 

Contemporary conceptions of our acquisition of mathematical knowledge suggests 

that the liberation of deep understanding occurs when teachers assist their pupils to 

actively construct and reconstruct their knowledge of mathematical concepts and skills 

(Bruner, 1966, p. 123 – 127; Hyde & Bizar, 1989, p. 89). Iterative reconstructions of 

mathematical knowledge and skills-sets should lead progressively towards a fuller 

understanding of mathematics. Thus, for PGCE student teachers to be able to thrive 

in the increasingly complex technological world, they themselves must hold requisite 

mathematical content, and this must be coupled with pedagogical and methodological 

knowledge. Only then, (Anghileri, 2007, p. 13) will they be able to assist their own 

pupils to successfully negotiate the numerous language, symbolic and operational 

complexities that are encountered when one does mathematics.  



 

5 

 

1.1.2 DOING MATHEMATICS AND PROBLEM-SOLVING 

Doing mathematics is much more than simply working with numbers and writing lists 

of formulae, etcetera. If we return to the exemplar about temperature that was 

presented earlier, we find that the digits 3 and 2, abstract symbols themselves, linked 

to the symbol °, linked to a problem-question of what to wear on a particular day, in 

fact requires high levels of meta-cognitive processing. On one level, we need to 

understand that in this situation the abstract symbols 32° act as a “mediator” (Bruner, 

1966, p. 18) which invokes a consideration that we are concerned with temperature. 

In a different context, 32° might imply an acute angle, or a bearing to be plotted on a 

map. Further, 32° on a Celsius scale implies a different temperature to the Fahrenheit 

or Kelvin scales and, if we successfully negotiate those hurdles, then we have to 

appreciate that, in different settings, 32°C evokes dissimilar human responses. If, while 

relaxing in a bistro, you are served a cup of 32°C coffee, it is highly probable that you 

will be very annoyed at receiving a cold cup of coffee. However, in the context of 

atmospheric temperatures, many humans would consider 32°C a hot day: armed with 

that conceptual understanding, most of us would dress in a way that enables us to 

remain as cool as possible. So, doing maths summons together many intersecting 

concepts, the cognitive synthesis of which enables us to construct cogent solutions to 

problems. 

 

Thus, it comes as no surprise to find that our mathematics curriculum, the South African 

Curriculum and Assessment Policy Statement (CAPS), Intermediate Phase, Grades 4 

– 6, Mathematics (Department of Basic Education, 2011), requires students to acquire 

concepts, routines and problem-solving skills that are integrated into subject content 

areas including numbers, patterns, geometry, measuring and working with data. 

Collectively, these content areas contribute to the construction of a wide base of 

mathematical skills and knowledge that in turn feeds into an even more important 

characteristic of mathematical endeavour, vis-à-vis, an ability to cogently combine 

relevant aspects of those knowledge structures to solve mathematical problems. 

Indeed, Siew Yin (2010) suggests that problem-solving lies at the heart of all 

mathematical endeavour; it is the principle reason for studying mathematics. Further, 

the inherent problem-solving capacities gifted to us through our “powers of 

ratiocination” (Bruner, 1966, p. 25), that is, our ability for reason and to form a train of 
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thought, provides us with mathematical thinking capabilities which enable us to 

productively engage with the subject. 

 

1.1.3   SOLVING WORD-PROBLEMS 

As a sub-set of problem-solving, solving word-problems is a cognitively demanding 

aspect of schools-based problem-solving. Such problems require students to negotiate 

complex linguistic, semantic, schematic, strategic and procedural knowledge bases 

(Mayer, 1997, p. 458). However, “many learners dislike and even fear word problems” 

(Murray, 2012, p. 55).  When students cannot cogently apply appropriate knowledge 

and skills bases to word-problems, they run the debilitating risks of becoming 

disenfranchised within the mathematics classroom (Breen, 2001, p. 42), of 

experiencing mathematical anxiety, and of limiting their future career paths. For many 

at-risk students (Belbase, 2013, p. 232), the mathematics they encounter happens to 

them and around them, but does not become a part of who they are and remains largely 

outside of their grasp. 

 

The reasons for ill-success in mathematical problem-solving are many-fold (Gooding, 

2009, p. 5). Thus, it follows that no single remedial strategy surmounts every hurdle; 

there is no silver bullet. However, visualising strategies that are rich in the deliberate 

application of enactive and iconic activities in the classroom (Naidoo, 2012, p. 1) 

appear to offer a methodology which seems to hold many benefits. Visual tools and 

techniques can assist students to construct their own cognitive frameworks of 

mathematical ideas; in turn, these frameworks may facilitate a better understanding of 

mathematical word-problems.  

 

1.2 BACKGROUND TO THE STUDY 

My PhD journey began seven or eight years ago and, over the course of time, it has 

become more focused. In June 2010, on a sunshine-filled, but icy-cold winter’s day, I 

had a chance meeting with a long-standing friend and academic colleague in 

Grahamstown. My vocalisation of my intention to do a PhD in mathematics education 

prompted my critical-friend to suggest that the last thing that was needed in South 

Africa would be yet another case study on factors that contribute to misunderstanding 

in mathematics. No, he said, the troubles are legion, and well-documented: rather, 
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what is needed, are solutions. And that, singularly – finding solutions – became the 

catalyst of my own adventure.  

 

It occurred to me that in the 21st century greater and greater emphasis is being placed 

upon teaching and learning mathematics in novel ways and in extending studies in 

mathematics beyond practice, rote and rehearsal-based exercises towards the 

integration of various sub-sets of mathematics for solving multi-step, non-routine, 

mathematical problems. Indeed, Henderson (2012, p. 46)  suggests that modern 

mathematics curricula endeavour to replace more traditional operations, routines and 

procedural approaches with a more inquiry-based view of learning and thinking about 

mathematics, which is to say working mathematically to solve problems.  As in other 

countries, this change of emphasis appears to be occurring in South Africa too. 

Because solving word-problems is a subset of problem-solving, it makes sense to 

briefly examine different conceptions of problem-solving as found in different parts of 

the world. I turn to this next. 

 

1.2.1 PROBLEM-SOLVING IN MATHEMATICS CURRICULA  

Hodgen, Marks and Pepper (2013, p. 31) make the point that, “fundamental differences 

in national education values and contexts mean that learning lessons from 

international comparisons is not straightforward, and we should be careful about 

‘cherry-picking’ policies and approaches from overseas.” In any country, the curriculum 

is tightly located within the social norms, aspirations and cultural practices of that 

society. However, it is prudent to be aware of conceptions of problem-solving that are 

found in other countries.  

 

Outside of African, in Singapore, problem-solving lies at the heart of mathematical 

teaching and learning (Ministry of Education, Singapore, 2012). In large measur,e 

visualisation strategies are used to make sense of problems (Naroth & Luneta, 2015). 

In Australia, problem solving requires learners to model ideas, learn to pose and solve 

problems, and perceive relationships between mathematics and other learning areas 

(Wernert & Thomson, 2016; Siemon, Beswick, Brady, Clark, Faragher & Warren, 

2012). In England, problem solving is guided by a conception of “working 

mathematically… develop fluency, reason mathematically [and] solve problems” 

(Department of Education, 2013). Similar stem-phrases drive problem-solving in the 
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United States of America (Malley, Neidorf, Arora & Kroeger, 2016; National Governors 

Association Center for Best Practices, Council of Chief State School Officers, 2017b). 

 

On the African continent, Namibian learners apply mathematics to their daily lives and 

are required to, “solve relevant problems in theoretical situations or in applications to 

everyday life” (Ministry of Education, 2010, p. 2). In Botswana, problem-solving is one 

of five mathematical content areas (Masole, Gabalebatse, Guga & Pharithi, 2016), and 

primary school learners are expected to use the four operations able to solve problems 

(Ministry of Education & Skills Development, 2002). Zimbabwe assigns 10% of 

assessment marks to problem-solving (Ministry of Education, 2006), but teachers 

confine problem solving to explicitly stated, drill-type calculations (Chauraya & Mhlolo, 

2008, p. 75). In Zambia, problem solving is used to improve, “learners’ intellectual 

competence in logical reasoning, spatial visualization, analysis and abstract thought” 

(Ministry of Education, Science, Vocational Training and Early Education, 2013).  

 

In South Africa, in the Curriculum and Assessment Policy Statement  (CAPS) 

document, non-routine, problem-solving has become a facet of our conception of 

mathematics and is perceived “to develop mental processes that enhance logical and 

critical thinking, accuracy and problem-solving that will contribute in decision-making” 

(Department of Basic Education, 2011, p. 4). These opportunities are found in phrases 

such as, “solve or complete number sentences by inspection or trial and error; 

visualize, name, describe, sort and compare; solve problems related to time, distance, 

speed, length, perimeter, area, and volume; pose simple questions about the 

environment, school, and family” (Reddy, Arends, Juan, & Prinsloo, 2016, p. 4 – 6).  

 

These exemplars demonstrate that across the world, societies are modernising their 

conception of mathematics, are moving away from rehearsal, rote and routines, and 

embracing problem-solving as a pivot for teaching and learning mathematics. The 

emerging trend is that teachers are required to integrate, “conceptual understanding 

and non-routine problem-solving” (Dalgarno & Colgan, 2007, p. 1054) into all aspects 

of mathematical. Teachers need to modify and/or reinvent their own mathematical 

skills-sets, content knowledge, pedagogical knowledge and curriculum knowledge to 

meet the requirements of new curricula. van der Sandt, (2007), suggests that steps 

must be taken to ensure a proper fit exists between teachers’ aspirations and the 
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requirements of a curriculum and the society that it serves. South Africa, through its 

CAPS iteration of curriculum aspirations, is moving quite decisively towards an 

understanding based, activities-filled and problem-solving approach towards 

mathematics. This means that for PGCE students’ mastery of mathematical content 

knowledge is not enough; that knowledge must be supported by subject content 

knowledge, pedagogy and methodological capacity.  

 

1.2.2  CHARACTERISTICS OF WORD-PROBLEMS 

Sepeng and Webb (2012, p. 1-2) describe word-problems as mathematical problems 

which are presented within a contextualizing, descriptive text. Mathematical word-

problems should provide learners with opportunities to apply their mathematical 

knowledge to solve realistic mathematical problems. Such problems require learners 

to “comprehend the contextual situation described in the problem, keep track of the 

incoming information, embed the numerical values in the relational storyline structure 

and finally perform arithmetic calculations” (Novak & Tassell, 2017, p. 21). Indeed, the 

examples, exercises and mathematical problems that learners encounter in 

classrooms must be seen to be transferable to the wider world: such work must be 

seen to must serve a purpose other than a compliance, a test or an examination.  

 

1.2.2.1  INSTRUMENTAL AND RELATIONAL UNDERSTANDING 

 On a lower plane of mathematical capacity, instrumental understanding, “usually 

involves a multiplicity of rules rather than fewer principles of more general application” 

(Skemp, 2006, p. 90). As such, it is a way of knowing things by doing them (Bruner, 

1966, p. 68). Relational understanding operates on a higher plane: in mathematics 

word-problems it is exemplified by an ability to use many different but intersecting 

complementary cognitive competences and skills-sets to solve the problem at hand.  

 

Word-problems can elevate the study of mathematics from the level of knowing rules 

but not why or how they work, of knowing routines, procedures and holding only 

instrumental understanding into the realm of relational understanding (Siemon et al. 

2012, p. 18; Reason, 2003, p. 6). That is, word-problems can improve mathematics 

competences to include, “knowing what to do and why” (Skemp, 1976, p. 25). 

Relational understanding prospers when students construct robust conceptual 

frameworks of underpinning mathematical principles and processes. With these in 
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place, they can then attend to many different, but related mathematical problems 

(Skemp, 1976, p. 25).   

 

However, Skemp (1976) cautions that exposure to the requisite cognitive skills-sets is 

not enough; sustained practice is needed - practice makes perfect. Further, a cognitive 

shift from instrumental to relational understanding is complicated by, “a tendency, 

among even bright undergraduates, to adopt an instrumental approach” (Anderson, 

1996, p. 819). An adverse effect of the so-called tick-in-a-box compliance mentality 

and copious paper-trails that this record-keeping generates, is that it detracts time and 

energy away from the modern view of teaching and learning mathematics for 

understanding. Recording every discrete skill or knowledge byte reduces the 

measurement of understanding to an instrumental view of knowing (Pesek and 

Kirshner, 2000, p. 524 - 525). Such practices contradict educational theory which 

teaches us that the depth of understanding can be better evaluated in terms of the 

type and strength of concepts that are held by learners; it is these deep conceptions 

which foster metacognition and liberate relational understanding. 

 

While relational understanding offers many cognitive benefits, “it is much more difficult 

to learn the fewer principles, and much easier to learn rules” (Reason, 2003, p. 6). 

However, the alternative to relational understanding, that is, learning by rigorously 

rehearsing and memorising routines and fixed procedural techniques, can predispose 

learners to resist venturing outside of their known instrumental skills and knowledge 

sets. Further, any fixation with learning routines, of being rule-bound, of being inflexible 

and attempting to consign all mathematical skills and knowledge to memory ultimately 

leads to a lack of enjoyment of the subject, and failure (Reason, 2003, p. 6). Indeed, 

Pesek and Kirshner, (2000, p. 525 – 527) caution that meticulously constructed layers 

of instrumental learning can interfere later in learning when pupils are required to apply 

relational understanding to problem-solving.  

 

1.2.2.2  CONSTRUCTION OF META-CONCEPTS 

Word-problems draw upon many operational and procedural aspects of mathematics 

and require students to apply both deductive and inductive reasoning (Plotz, Froneman 

& Nieuwoudt, 2012, p. 75). It stands to reason, then, that an ability to navigate through 

the higher-order cognitive processes that are integral to solving word-problems also 
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indicates an ability to work skillfully and with understanding with lower-order, 

procedural skills-sets such as multiplying and dividing, working with ratios, 

manipulating formulae and fractions, and so on. Gray and Tall (2007) and Chin (2013, 

p. 13-18) use the term compression to describe this mental agility. Stated differently, 

compression implies that when lower mathematics skills-sets become consolidated 

and automatic, cognitive space opens up for creative, higher order thinking to take 

place. A confluence of practice, integration, synthesis, meaning-making and time 

optimises compression. Deep understanding – compression – is a hard-won prize. It 

takes effort, attention to detail, agility of mind and much practice in both routine and 

non-routine problem-solving in order for one to consolidate and automate the 

numerous routines and skills-sets upon which compression and, by extension, 

problem-solving endeavours rest. 

 

Unfortunately, many students find it difficult to construct the meta-concepts – the 

relational understanding – that assists us to solve different word-problems. This is 

because struggling students tend to rely on instrumental understanding and do not link 

new experiences easily to their existing but fragile knowledge frameworks. Thus, they 

do not forge mental links and do not compress interrelated aspects of mathematics. In 

other words, suggests Chin (2013, p. 29), many struggling students do not piece 

together the connections – the conceptual frameworks – that enable them to use 

supportive, previously encountered mathematical knowledge and experiences to 

assist them to solve new problems in new contexts.  

 

1.2.2.3  PROBLEMS ENCOUNTERED WHEN SOLVING MATHEMATICAL 

WORD   PROBLEMS 

Gooding, (2009, p. 5) suggests that word-problems confront students with five types 

of difficulties; all or some of these difficulties may affect different students by varying 

degrees. These difficulties include an inability to (1) read and understand word-

problems, (2) form mental images of the contexts in which word-problems are set, (3) 

successfully construct number sentences or algorithms, (4) carry out mathematical 

calculations and, (5) judge the validity of the answers that they have calculated 

themselves. These difficulties are discussed below. Because language is a principal 

tool for teaching and learning mathematics, it plays a significant role in providing or 

restricting students’ access to solving word-problems (Mahofa & Adendorff, 2014, p. 
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86). Even the most elementary word-problems require “translation” (Tobias, 2006, p. 

2) into an appropriate mathematical code. When students read a word problem, they 

do not try to memorise the words; instead they try to use the cues in the sentence 

composition and words to construct meaning (Lieberman, 2004, p. 39). Where, for 

example, the language of instruction and word-problems are not presented in the 

mother tongue of the learners or, more precisely, where students cannot attach 

meaning to the words, syntax and phrasing that are found in word-problems, such 

learners are, “at a great disadvantage” (Murray, 2012, p. 55).  

 

A modern view of context, apropos word-problems in mathematics, situates these 

problems in real-life extra-mathematical situations which are understood by the 

readers of such problems (Holtman, Julie, Mbekwa, Mtetwa & Ngcobo, 2011, p. 121). 

Often this appeal to use real-life contexts is injudiciously used by educators, such that 

said contexts may lie outside of the real-life experiences of the learner (Murray, 2012, 

p. 57). In such cases, the ability to understand and visualise the word problem scenario 

is obscured. When this happens, the context of a word problem is lost to the learner, 

who is thus precluded from seeing and fathoming its requirements. Indeed, it is 

conceivable that because of this hurdle, students, “are possibly being marginalised by 

the inclusion of word problems in the curriculum” (Tobias, 2006, p. 12). 

 

However, even if pupils have negotiated the hurdles of language and context and can 

visualise a conception of the problem they are trying to solve, another barrier awaits 

them, that of, “problem execution” (Montague, 2012, p. 1). Problem execution, or the 

ability to set-out a mathematical strategy, is often multi-stepped and frequently requires 

the construction of a suitable algorithm. If children are mainly exposed to instrumental 

modes of learning (Skemp, 2016, p. 92), their lack of experience in relational 

understanding will impede success in establishing appropriate starting points to solve 

problems. In section 1.2.2.1, we have acknowledged that instrumental learning 

techniques are quite easy to apply; they rely mainly on rote learning and regurgitation, 

of knowing “rules without reasons” (Skemp, 2016, p. 92), and can achieve a single 

right answer quite easily. However, when such trained students are exposed to non-

routine word-problems, they find problem execution, the construction of algorithms and 

the setting-out of solutions elusive.  
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An additional hurdle in solving word-problems lies in the fact that many students cannot 

easily and consistently compute foundational operations. In subtraction, for example, 

a group of practicing American teachers was found to hold misconceptions regarding 

borrowing and believed that, “you cannot subtract a larger number from a smaller one” 

(Ma, 2010, p. 3). This myth, held as it was by the teachers, cascaded into their teaching 

practices which embraced memorisation and rote recall of low-order, instrumental 

routines. Similar myths or misunderstandings of computations are found in the other 

operations, too.  Because, “symbolic recording is very dense” (Siemon et al., 2012, p. 

382), where teachers and, by implication, their students, do not deeply understand the 

applications of arithmetic operations, things can end badly.  

 

A final stumbling block, as alluded to by Gooding (2009, p. 5), is that often students 

cannot perceive the validity of their answers. They lack the capacity to estimate what 

an acceptable answer might be. This mal-condition extends from the numbers found 

in an answer into the units which are attached to the said answers. Estimation is a 

process by which, by looking at the generalities of the numbers and operations found 

within a mathematical calculation, we are able to form an appropriate, if inexact, value-

judgement on the size and shape of a result. However, “estimation is a complex skill 

that requires the integration of a number of ideas and strategies” (Siemon et al., 2012, 

p. 388). Estimation requires the application of relational-understanding teaching and 

learning methods rather than rote and rehearsal-based, instrumental-instruction. 

 

From the above, it can be seen that word-problems impose heavy cognitive demands 

upon students. Word-problems require students to be able to critically call upon a 

repertoire of appropriate mathematical skills and tools; each problem will require its 

own particular combination of these skills and tools. To be successful, students need 

to be accomplished in the application of relational mathematics techniques (Skemp, 

2016, p. 92). Relational techniques bring with them the benefits of being adaptable in 

new contexts; they are easier to remember (albeit harder to learn); they provide the 

reward of intrinsic motivation, and they assist learners to develop comprehensive 

schema – cognitive networks of ideas which are organic and flexible in nature (Skemp, 

2016, p. 92 – 93). 
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1.2.2.4 THE ROLE OF VISUALISATION IN PROBLEM-SOLVING 

Visualisation plays an important role in assisting learners to contextualise word-

problems. Manipulatives and pictorial stimuli – which Bruner (1966, p. 11) calls the 

enactive and iconic representations of knowing – act, “as the basic “building blocks” of 

mathematics” (Novak & Tassell, 2017, p. 21). Where the use of these stimuli are 

absent in helping children to contextualise word-problems, said children are impeded 

from forming mental images of mathematical ideas. In these situations, such children 

must rely on rote, recall and routines which, while cognitively demanding, do not 

provide much opportunity for mathematical development. Conversely, when teachers 

use visualising strategies as a methodological technique cognition is greatly enhanced 

(Siemon et al., 2012, p. 337 – 345).  

  

In 1966, Bruner, reflecting upon the educational promise held by visualisation 

scaffolds, wrote, “I do not think that we have begun to scratch the surface of training 

in visualization – whether related to the arts, to science, or simply to the pleasures of 

viewing our environment more richly” (Bruner, 1966, p. 34). Five decades later, a 

modern-day view is that “visual literacy is crucially important in a contemporary society 

dominated by visual media” (Jordaan & Jordaan, 2013, p. 76). Good mathematics 

teachers make use of tactiles, visual representations, gestures and motions – 

embodied cognition – as visualising scaffolds that are used to assist their students to 

better understand mathematics problems (Boaler, Chen, Williams & Cordero, 2016).  

 

Previously, visualising scaffolds were seen as offering at best, a series of transitory 

steps towards doing real mathematics. However, our contemporary understanding of 

how humans learn has overturned that perspective (Makina & Wessels, 2009, p. 58). 

Current research advises us that, “visual mathematics is an important part of 

mathematics for its own sake and new brain-research tells us that visual mathematics 

even helps students learn numerical mathematics… [in fact]… when we don’t ask 

students to think visually, we miss incredible opportunities to increase students’ 

understanding and to enable important brain crossing” (Boaler et al., 2016). Visual 

demonstrations of mathematical ideas provide a sound footing for conceptual 

development. However, real cognitive growth only occurs when students themselves 

are encouraged to use manipulatives or draw representational models of their thinking 

on paper or form mental images in their minds to assist in problem-solving. Indeed: 
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a student’s ability to develop and interpret various representations 

increases the ability to do and understand mathematics. When students 

gain access to mathematical representations and the ideas they represent, 

they have a set of tools that significantly expands their capacity to think 

mathematically. Representations extend a person’s understanding of a 

concept, and shed light on an idea not fully understood in another form. 

Plotz, Froneman & Nieuwoudt, 2012, p. 76 

 

In Plotz et al. (2012), the use of the term representation is used literally, and is used 

to imply the use of tactile or visual scaffolds whereas representation, for Bruner (1966), 

implies three ways – three conceptions – of knowing which are effected via enactive, 

iconic and symbolic techniques. 

 

The use of visual tools invites the consideration of a constructivist epistemology: when 

students work with tactiles or develop visual ideas and solutions that are related to 

their mathematical word-problems, “they actively develop their own understanding of 

the world, rather than having such understanding delivered to them” (Mnguni, 2014, p. 

2). These visualising aides-mémoire enable students to “tease out” (Fong & Lee, 2004, 

p. 108) strategies that assist them to find solutions. Even when such strategies fail in 

the first instance, visualising models often provide some embryonic clarification so that 

students can then begin to problem-solve their problem. In other words, students begin 

to use their visual models reflexively as part of a metacognitive-loop thought process. 

 

Naidoo (2012) suggests that visual tools include concrete apparatus such as bottle-

tops and pebbles and iconic stimuli such as diagrams, pictures and transparencies, 

and judicious use of colour. The models that the students make provide visual-mental 

hooks that assist deep thinking (Anghileri, 2007, p. 15). And, suggest Siemon et al. 

(2012), these visual hooks free up cognitive space that enables students to focus more 

cogently on the construction of viable solutions for word-problems.  

 

Visualisation can play many scaffolding roles in assisting teachers and students to 

solve mathematics problems. Siew Yin (2010) suggests that these benefits include a 

better understanding of the problem; simplifying the problem; seeing connections to 

related problems; catering to individual learning styles; providing a substitute for 
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computation; transforming the problem into a mathematical form; and a tool to check 

the solution. However, for students to benefit from the use of such scaffolding 

potentials, their teachers must hold sound mathematical subject knowledge and deep 

mathematical pedagogical content knowledge. Thus, when the benefits of 

compression (Gray & Tall, 2007; Chin, 2013), discussed earlier (1.2.2.2), are coupled 

with visualising techniques, it would seem that relational teaching and learning 

methods can free-up cognitive space which can then be committed to the focused task 

of solving word-problems.  

 

However, it is prudent to end this section on a cautionary note. While visualisation 

offers – potentially – many opportunities to represent problems in interesting ways and 

thus – potentially – may improve mathematics understanding,  “the generally accepted 

dictum that a picture is worth a thousand words masks the fact that visual images do 

not constitute a universally understandable means of communication”  (Jordaan & 

Jordaan, 2013, p. 89). One has to acknowledge that life experience and enculturation 

within any society predisposes individuals to interpret tactile and visual and indeed 

symbolic representations of problems in different ways. 

 

1.2.3  SUBJECT CONTENT KNOWLEDGE 

Bloch (2009, p. 58) contends that, because South African schooling is a national 

disaster, our country fares badly in internationally-mediated mathematics tests. A 

principle reason for this disaster, suggests Bloch (2009, p. 83), is that most South 

African mathematics teachers hold low subject content knowledge of their subject. 

Thus, in effect, it is our teachers who disenfranchise their pupils. They do this by two 

means: many South African mathematics teachers do not understand the mathematics 

content they teach and, further, they use transmission modes of teaching and learning, 

which in turn encourages instrumental learning. However, as discussed earlier 

(1.2.2.1), instrumental learning has already been shown to severely limit deep 

mathematical conceptualisation (Skemp, 1976). 

 

Ball (2015), , prospective teachers need to be pedagogically equipped to better do 

their work, to better teach mathematics: student-teachers need to be taught both 

mathematical content knowledge and mathematical knowledge for teaching or 

“pedagogical content knowledge” (Shulman, 1986, p. 13). If we superimpose Ball’s 
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(2015) view upon my own work, my experiential learning suggests that, generally, 

PGCE student teachers have poor mathematical content knowledge and, further, 

because they typically enter the PGCE programme from undergraduate degrees which 

did not focus on methodological and pedagogical discussions, so here, too, their 

mathematical knowledge for teaching is of a very low standing.  

 

This background (1.1 through 1.2.3) makes the point that an inability to solve 

mathematical word-problems negatively influences classroom performance and 

compromises future career-pathing. Many inter-woven skills, procedures and 

mathematical concepts need to be compressed before students become comfortable 

with this work. It is my experience that many of my PGCE student teachers have 

followed mathematical paths devoid of enactive and iconic representations of ways of 

knowing this subject. Further, instrumentalism, hallmarks of which include the use of 

one routine and rote-learned – or mis-learned – mathematical facts and ideas seems, 

de facto, to embrace their full experience of mathematics. 

 

In the conception of mathematics word-problems, there exists a researchable gap. 

PGCE student teachers need to be given opportunities to progress beyond 

instrumental learning practices towards relational understanding. They need to be 

encouraged to compress smaller, instrumentally learned skills into larger, relationally-

constructed meta-concepts; visualisation techniques offer much promise in assisting 

students to do this. I want to understand the experiences of PGCE student teachers 

who encounter a mathematics course in which relational understanding and 

visualisation informs the conception, design and delivery of the module.  

 

1.3  STATEMENT OF THE RESEARCH PROBLEM  

Problem-solving skills and an ability to solve word-problems are highly desirable in 

schooling and the workplace (Siemon et al., 2012; Eastaway & Askew, 2010). As a 

consequence of curriculum renewal, problem-solving now plays an expanded role in 

teaching and learning mathematics within the CAPS curriculum (Department of Basic 

Education, 2011). Thus, prospective teachers must be trained to meet the challenges 

of our evolving curriculum (van der Sandt, 2007). However, albeit that the cognitive 

demand requirements for Intermediate Phase mathematics word-problems are 

relatively low and can be solved by using arithmetic computations, many student 
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teachers struggle to solve these problems. Partly, this is because, in South Africa, our 

traditional teaching methods have encouraged, “learner dependency and superficial 

understanding” (Malan, Ndlovu & Engelbrecht, 2014, p. 1). This inability to solve 

mathematical problems is not uniquely attributable to PGCE student teachers; world-

wide, many experienced teachers may be fearful of and struggle with this work 

(Dalgarno & Colgan, 2007, p. 1051; Ma, 2010, p. xxiiv).  

 

Improvements in teaching and learning mathematics are, “a function of appropriate 

levels of mathematics and pedagogic training” (Adler, 2017, p. 2). Student teachers 

may lack this necessary subject content knowledge and pedagogical content 

knowledge (Breen, 2001; Gooding, 2009). In cases where such students struggle to 

solve mathematical problems, underpinning mathematical skills sets may not have 

become compressed (Chin 2013). Visualisation should enable PGCE student teachers 

to conceive mathematical concepts in the abstract and relationally, should provide 

them with an innovative teaching methodology, and should assist them to develop 

pedagogical content knowledge, (Bruner, 1966; Skemp, 1976; Naidoo, 2012; 

Anghileri, 2007; Siemon et al., 2012). 

 

1.4  MAIN RESEARCH QUESTION 

How will visualisation strategies assist student-teachers to better 

understand and solve mathematical word-problems? 

 

1.5 SUB-RESEARCH QUESTIONS 

1. What existing word problem, problem-solving strategies do the students 

hold? 

2. What barriers to solving word problems do the students perceive that they 

hold? 

3. How effective do the students perceive the visualisation strategies to be? 

 

1.6   OBJECTIVES OF THIS STUDY 

 The first research objective is to examine the existing problem-solving 

strategies held by the pre-service students.  
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  A second objective is to try to provide redress for mathematical barriers that 

the students themselves may perceive that they hold.  

 A third objective is to establish the students’ views on the effectiveness of 

visualisation, as a teaching and learning strategy, for mathematical word-

problem, problem-solving.  

 

1.7   PURPOSE OF THIS STUDY 

The purpose of this research study is to investigate the application of visualising 

strategies to solve word-problems by pre-service education students. Hopefully, the 

study will provide evidence to myself, the pre-service PGCE students and other 

interested persons that visualisation strategies can provide pre-service education 

students with a liberating philosophical and ontological learning experience, can 

provide novel and productive ways to relearn mathematics, can broaden pedagogical 

capacities, and can improve their capacity to solve word-problems.   

   

1.8   SIGNIFICANCE OF THIS STUDY 

Most of the PGCE student teachers who graduate will take up Intermediate Phase 

teaching posts; in these posts, typically, they will be required to teach mathematics. It 

has been argued that any improvement in school-based mathematics will rest heavily 

on the preparation of better-trained mathematics teachers who graduate out of South 

African teacher-education programmes (Adler, Pournara, Taylor, Thorne & Moletanse, 

2009); further, they suggest that, “an informed research agenda that produces 

grounded but sound empirical and theoretical bases [should inform] advocacy in 

curriculum and teacher education.” (Adler et al., 2009, p. 29). Such a research agenda, 

they suggest, needs to critically examine the relationships between content 

knowledge, curriculum and pedagogy, with research goals that include finding: 

 

 Productive ways for teachers to learn and/or re-learn subject content 

to prepare them for teaching; 

 Ways of offering and inducting teachers into new experiences of 

teaching to broaden their pedagogical imagination. 

Adler et al., 2009, p. 29 
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Internationally, a deep understanding of undergraduates’ experiences of teaching and 

learning mathematics is a somewhat new research area (Brown & Murphy, 2000). 

Indeed, in South Africa, while universities have conducted some research into in-

service mathematics-education, “the most obvious under-researched area is initial 

teacher preparation” (Adler et al., 2009, p. 36). They point out that there are, “notable 

absences in research on primary mathematics… teacher education” (Adler et al., 2009, 

p. 36). The academic significance of this thesis is that it might demonstrate that 

visualising scaffolds enable students to assimilate and accommodate salient 

instrumental and relational mathematical skills and concepts. If this occurs, that is, if 

visualisation facilitates compression, this will provide some evidence that visualisation, 

as a novel and productive methodology, can be used as a teaching and learning 

methodology to solve word-problems. Further, research coming out of this thesis might 

benefit other pre-service, primary-school-mathematics, teacher-education, university 

programmes in South Africa. 

 

1.9   RATIONALE FOR THIS STUDY 

In South Africa, teacher education programmes have moved from teacher training 

colleges into university settings. Spaces have opened up for professional qualifications 

that include innovative teacher-education programmes (Adler et al., 2009, p. 37). But 

this opportunity brings with it, its own tensions: in higher education settings, academics 

have limited contact time with students and must strike a balance in terms of the 

breadth and depth of the content knowledge that they cover in their lectures (Adler et 

al., 2009, p. 38). The central task (Gierdien, 2012, p. 2) of teacher preparation courses 

is mathematical knowledge for teaching. This requires a balance of content-knowledge 

with pedagogical and methodological knowledge and must assist student-teachers to 

use innovative methodologies that they may have never previously experienced.  

 

Parker (2009, p. 19) suggests that mature graduates who are considering an 

alternative career-path should be flagged as potential PGCE student teachers. Such 

students, she suggests, would bring experience and maturity into the education sector, 

and could partially offset the annual short-production of new teachers who are entering 

the profession in South Africa. Parker (2009) concedes that these graduates require 

support in order to fulfil the goals of the National Policy Framework for Teacher 
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Education and Development in South Africa (Department of Education, 2006), which, 

under the banner “more teachers, better teachers” (Department of Education, 2006, 

p.1), has called for teachers who are better qualified in terms of their content 

knowledge and understanding of educational pedagogy.  

Albeit they are already graduated persons, PGCE students are formally inducted into 

the world of education in a limited, intensive, single-year university-based qualification. 

In that short time-span, they have to transform themselves. This can prove to be a 

daunting task and, suggests Adler (2017), this short time-span may not enable 

students to be properly trained to teach mathematics. In this short time-span, PGCE 

student teachers need to develop an understanding of the synergies which play out 

between mathematical content knowledge, pedagogy and curriculum (van der Sandt, 

2007). Indeed, Shulman (1986) suggests that neither content knowledge nor 

pedagogical knowledge alone can suffice for teaching and learning mathematics. It is 

only in their blending that opportunities for true knowledge growth are found.  

Rather than trying to rediscover the underpinning features of our nation’s poor 

performance in mathematics, I am trying to seek a solution, one of many that will be 

needed to assist in the turn-around of our “national disaster” (Bloch, 2009, p. 58). My 

research questions invoke the use of both quantitative and qualitative research 

orientations and instruments: by combining such instruments, I hope to understand a 

complex situation better. In as much I hope that visualisation enables their 

mathematics scores to improve so, too, I hope that the participants in my research also 

experience a positive attitudinal shift towards mathematics. I hope that the evidence 

which is revealed through the action research (Chapter 4) demonstrates that 

visualizing strategies provide productive experiences of teaching and learning 

mathematics and word-problems in a novel way and liberates deep insights and 

understandings of aspects of pedagogical content knowledge (Adler et al., 2009). 

 

1.10   DELIMITATION OF THIS STUDY 

This action research study is delimitated to 38 participants who studied IPS 413 E 

Intermediate Phase Studies – Mathematics in Semester 1 of 2016 in an Eastern Cape 

university in the Republic of South Africa. The mathematical content is delimitated to 

Grade 4 to Grade 7, numbers-based, word-problems and the invoked arithmetic skills. 

The methodologies and pedagogical content knowledge are delimitated to theories 
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and skills-sets that influence teaching and learning when using visualization to solve 

Intermediate Phase mathematical word-problems. 

 

1.11   DEFINITION OF OPERATIONALISED TERMS 

Problem-solving – as a global or meta-concept talks to the predisposition that humans 

have, as specialists in learning (Bruner, 1966, p. 113), in attending to their continually 

developing understanding of their world. Human beings are driven by a deep curiosity 

of wanting to know the world and as, “a response to uncertainty and ambiguity” 

(Bruner, 1966, p. 43), where we perceive a hurdle or an alternative, we invoke the 

psychological problem-solving gifts bestowed upon us (Bruner, 1966, p. 24 – 25) to 

seek solutions to our human needs and wants. While, in the context of this thesis, 

problem-solving is confined to issues mathematical, in a wider sense, problem-solving 

embraces all of humankind’s attempts to improve, find alternatives, and seek answers. 

 

In the context of this study, as an operationalised term, problem-solving moves beyond 

routines-based mathematical exercises (Mukwambo, Ngcoza, & Chikunda, 2015), and 

implies, “engaging in a task for which the solution is not known in advance,” (Akinsola, 

2008, p. 80). Problems are solved by using a mixture of mathematical knowledge and 

skills bases, routines and techniques, modelling and intuitive guesses.  “In problem-

solving greater emphasis is placed on the process of arriving at the solution rather than 

on the solution itself” (Southwood & Spanneberg, 2000, p. 65). Schäfer (2010) 

suggests that problem-solving encourages people to talk mathematically, to make 

predictions and to form connections; she suggests that while the use of apparatus 

serves as a powerful scaffold – Bruner (1966) calls this enactive representation – 

problem-solving must also be extended to include meta-cognitive and abstract 

thinking. 

 

Word-problems – A word-problem, also called a story or verbal problem (Sepeng, 

2015), is, “a complex cognitive task” (Munez, Orrantia & Rosales, 2013, p. 337); are a 

sub-set of problem-solving. Word-problems provide short, descriptive narratives that 

are used to contextualise mathematical problems. Often, the contexts of word-

problems are situated within real-world scenarios that  are designed to provide realistic 

platforms for solving problems. This, in turn, assists students to reflexively consider 
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how and when to apply their mathematical content knowledge and techniques to 

strategically solve these problems (Sepeng & Webb, 2012).  

 

In the context of this study, as an operationalised term, word-problems can be 

understood to extend students beyond computational and algebraic performance, that 

is, beyond rote and routines based learning. Instead, word-problems can be 

understood to expose students to non-routine questions which may require multi-step 

solutions. In order to solve these problems, students must apply relational 

understanding to conceptualise and formulate appropriate solution strategies. 

 

 Visualisation – In the context of this research project, the global operationalisation of 

visualisation refers to the use of tactiles, drawings, computer-animation models and 

mental constructs as strategies for seeing, that is, understanding and revealing 

potential solutions to mathematical problems. Visualisation comprises especially two 

of Bruner’s (1966) three parallel processing systems, that is, enactive and iconic forms 

of representation. As such, “visual stimuli act as tools to negotiate new ideas,” (Mudaly, 

2010, p. 66).  

 

In this study, the operationalised use of visualisation is congruent with the global 

interpretation. When bottle-tops are used, to reveal the structure of a ratio, the 

construction is quickly accomplished and alerts the user to features of the problem. 

Where sketches are drawn to represent situations, the sketches are, “rapid and direct, 

and therefore cognitively economical, and provides instant feedback” (Goldschmidt, 

2003, p. 81). Such practical and mental tools facilitate mathematical exploration and 

meaning-making (Rosken & Rolka, 2006).  

 

Compression – Gray and Tall (2007) suggest that compression occurs when students 

gain the mental acuity to connect many mathematical concepts, facts and processes, 

to focus on salient features of these phenomena and draw from them those aspects 

which will enable them to cogently solve mathematical problems. Compression implies 

the automation of many mathematical knowledge and skills sets, and is a highly 

desirable outcome in teaching And learning mathematics. It is a particularly sought 

after attribute for solving mathematical problems.  
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In this study, as an operationalised term, when compression occurs, it liberates 

cognitive-space in the mind to attend to the precise details and requirements of the 

problem-at-hand. However, “if compression of the knowledge required for the next 

stage does not occur, then procedural learning becomes more likely” (Gray & Tall, 

2007, p. 37). In other words, where underpinning routines and concepts are not 

properly consolidated and schematized, the cumulative effect of only using 

memorised, routines-based learning techniques – variously called rote learning, 

procedural learning and instrumental learning – precludes students from making 

meaningful links, conceptual understanding, relational learning and compression. 

 

1.12   ASSUMPTIONS 

Mouton (2003, p. 148) suggests that in qualitatively-oriented research it is acceptable 

to formulate, “guiding ideas or expectations.” These ideas and expectations might also 

be called assumptions. Assumptions, suggests Hofstee (2006, p. 88) are, “things that 

you take to be true without checking whether or not they are true.” I have made the 

following assumptions: 

 

1. Many of the students may have experienced less-than-ideal mathematical 

stimulus in their formal schooling years;  

2. Many students might be “at-risk” mathematically, and thus appropriate 

scaffolding exercises will have to be included into the IPS 413 E programme; 

3. Many students will have difficulty in solving numbers-based word-problems; 

4. Very few, if any of the students have encountered the deliberate use of 

visualisation as a strategy for solving numbers-based word-problems; 

5. Some and possibly many students, because of inbuilt conservativism and 

previous instrumentalist learning approaches, may resist using the visualising 

strategies that are revealed to them. 

 

1.13   SUMMARY OF CHAPTER 1 & OUTLINE FOR THE THESIS 

Chapter 1:  Introduction 

Chapter 1 provides a context for the research. The chapter revealed that in South 

Africa, the mathematics curriculum is moving towards non-routine and relational, 

problem-solving endeavours. The chapter explained that many students struggle to 
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solve word-problems and introduced visualisation as a scaffold to facilitate 

understanding. Chapter 1 disclosed the purpose of the thesis. A background was 

presented to frame the research questions, the purpose of the study, its rationale, and 

delimitations of the study. A list of defined terms and assumptions was also presented.   

 

Chapter 2:  Literature Review 

The literature review contains three major components, namely (1) a socially-mediated 

conceptual framework for the thesis, (2) various empirical studies which inform my 

understanding of problem solving, mathematics teacher education and visualisation, 

and (3) a learning-theory theoretical framework which is used to inform my praxis. 

 

Chapter 3:  Methodology 

In the methodology chapter, I demonstrate the strengths and limitations of action 

research and its praxis in problem-solving contexts. I unpack the research paradigm, 

the mixed methods research approach, research design and my conception of the 

action cycles. I discuss my data collection instruments, validity, understanding, 

trustworthiness, reflexivity and ethics in research. I also identify my sample-size and 

explain how I analyse the quantitative and qualitative data that is captured.on research.  

 

Chapter 4:  Data Presentation and Preliminary Analysis of Findings 

This chapter provides an account of the fieldwork experiences of the research. I reveal 

trends from my analysis of a Thinkboard, discuss the data captured by the assessment 

tasks for Action Cycle 1 and Action Cycle 2, and reveal trends which were captured by 

my analysis of two questionnaires and discuss findings from the focus group interview. 

I also reveal opinions held by the participants after they completed the module.  

 

Chapter 5:  Summary of Findings, Conclusions and Recommendations 

A restatement of the aspirations of the thesis is followed by a brief summary of the 

research findings. I provided answers to the sub and main research questions and 

investigate implications and limitations of the work. I discuss problems which were 

encountered and make recommendations. I give an account of contributions that this 

research has made and provide a short autobiographical reflection of the research 

journey and a conclusion. 
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CHAPTER 2 – LITERATURE REVIEW 
 

2.0  INTRODUCTION 

My literature review is quite long. I wrote it in the knowledge that there can be, “no 

research without action and no action without research” (Cooke & Cox, 2005, p. xix), 

failing which, the cogence of the research must be compromised. Herr and Anderson 

(2005, p. 84) suggest that in action research, “the literature drawn for the study will 

develop as the researcher grows into deeper understanding of the issues under study.” 

Cooke & Cox (2005, p. xx) point out that the researcher’s voice is often a feature which 

is missing, but desired, in many action research reports. In part, I wrote some sections 

of the literature review during and after conducting the action research. Thus, the 

contents of the literature review were used as much to inform my action research 

praxis as to investigate the research questions.  

 

Early in the action research, in February 2016, the participants were asked to complete 

a Thinkboard. Further, in the first few weeks of the action research, and sadly, 

throughout the research project period, numerous stay-aways and other interruptions 

served to continually disrupt teaching and learning. The convergence of the 

information captured from the Thinkboard activity coupled with the students’ easy 

absconding from lessons heightened my awareness that many of my PGCE students 

carried battle-scars of previous encounters with mathematics and social injustices that 

had been served up to them in their lives.  

 

I realised that, unless these issues were philosophically addressed, the purposes of 

the thesis would be thwarted. Indeed, suggests McAteer (2013, p. 102), in action 

research that is linked to teaching and learning, the literature review should consider 

matters of philosophical stance.  Further, philosophical reflexivity, knowing thyself, and 

being aware of one’s own “epistemic, metaphysical, and moral judgements, decisions 

and behaviors” (Gonnerman, O’Rourke, Crowley, & Hall, 2015, p. 673-674), are 

important in educational action research, and, to paraphrase Hughes (1990, p. 90), 

unless researchers appreciate the phenomena which have shaped people’s lives, it is 

difficult to understand how people construct meaning. With this in mind, I reflected on 

some of the big ideas that have influenced my own thinking for the past two decades. 

In doing this and by writing about these perspectives in this literature review, I re-
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established my own view of knowledge – my epistemology. I called this first section of 

the literature review: Two Affective Influences on my Personal Perspectives. These 

affective influences guided my praxis and my daily interactions with the PGCE cohort 

for the duration of the research period. 

 

Because classroom-based, teacher-led action research typically looks to alleviate real-

world problematic situations (Herr & Anderson, 2005; Fraenkel & Wallen, 2009; Koshy, 

2010; Newton Suter, 2012), it made sense that this literature review should 

demonstrate that such a real-world problem exists. Thus, in the second part of my 

literature review, I have demonstrated that different, independent data-sets reveal that 

mathematical performance in South African schools is in crisis. In other words, there 

is a problem (in fact, there are many problems) that needs to be fixed. I have called 

this: Benchmarking South Africa’s Mathematical Performance: International, Regional 

and Local Data-sets. 

 

I have also interrogated the South African conception of mathematics for Grades 0 – 

9 so as to align my own work with that of our Department of Basic Education. This is 

not to suggest that I intended to slavishly apply the “technicist approach” (Schäfer, 

2010, p. 34) that is currently espoused by the South African Department of Education. 

Indeed, I believe that; such schemes of work, etcetera, can stifle imagination and can, 

“potentially promote very rigid teaching approaches that are governed by teaching 

towards objectives and assessment criteria” (Ludhra, 2008, p. 60). Like Schäfer 

(2010), I am deeply concerned with the plethora of teacher-proofing text-books, 

lesson-plans, scheduling, worksheets which are now de rigueur our national mode of 

operationalising our mathematics curriculum. But, I believed that it was important to 

find some congruence between the ambitions of my courseware and the aspirations 

of the state. To offer anything less, I felt, was to short-change the participants. This 

third focus is called:  A 21st Century View of Mathematics: A South African Perspective. 

 

I felt that, as a fourth component of the literature review, it would be important to begin 

to focus my research lens more tightly on mathematical problem-solving in general 

and the solving of word-problems in particular. By doing this, I felt that I would be 

positioning myself to use that understanding to inform my own praxis. I called this 

aspect of the literature review: Problem-Solving in Mathematics. 
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In the first week of Action Cycle 1, I asked the participants to complete an arithmetic 

exercise. I used the knowledge that I gleaned from this task to create activities to offset 

holes in the students’ knowledge of many low-level mathematical ideas. I then re-

evaluated the students’ in this work.  Unfortunately, there was little evidence of 

improvement. This was very disappointing and is discussed fully in Chapters 4 and 5. 

However, this set-back opened up space to look more deeply at mathematics teacher 

education, pedagogical content knowledge, difficulties that learners experience with 

multiplicative and fractional thinking, and principles which unpin effective mathematical 

teaching. This fifth part was called: Mathematics Teacher Education.  

 

The sixth part of the literature review investigates the concept of visualisation. It flows 

from the five parts of the literature review that precede it and is a pivot for the thesis. 

My academic reading and many years of teaching experience suggest to me that the 

visualisation of mathematical word-problems, as a learned problem-solving strategy, 

can liberate many latent potentials in otherwise struggling students. I believe that when 

students visualise mathematical problems, the visualising scaffolds that they create 

can act as mediators which can assist them to identify probable solutions.  Visual 

scaffolds can mollify many of the misunderstandings which prevent students from 

starting and solving word-problems. This part of my literature review is called: 

Visualisation as a Strategic Teaching and Learning Tool in Mathematics. 

 

Finally, in the seventh major part of this literature review, I present the theoretic 

framework for my thesis. It rests upon my understanding of Jerome Bruner’s (1915-

2016) theory of learning. This theory embraces the application of understanding and 

inquiry-based, cooperative and scaffolded teaching and learning perspectives and 

practices. I do not extend the theoretical framework to include social constructivism, 

per se. Albeit that in principle I subscribe to social constructivist practices, I am well 

aware of my own short-comings: too many years, working within a behaviourist-

inspired, transmission-mode-dominated teaching and learning environment preclude 

me from comfortably wearing the mantle of a social constructivist and I will forever 

remain an emerging social constructivist. I have called this part of the literature review: 

A Theoretical Framework for this Research. 

 



 

29 

 

2.1 TWO AFFECTIVE INFLUENCES ON MY PERSONAL 

PERSPECTIVE 

Below, in (2.1.1), I try to unpack my understanding of Plato’s allegory of the cave and 

how that understanding has influenced my own philosophy and epistemology. The 

second influence upon my own work (2.1.2) is derived from a critical theorist, Paulo 

Freire (1921-1997), who exposed links between social class, poverty, hunger and 

educational performance on one hand, and redress on the other. Alongside Lewin, 

Freire, a liberationist, is considered to be one of the founders of action research 

(Reason & Bradbury, 2008). Collectively, these influences speak to the importance 

that all humans are capacitated to live liberated lives. By extension, this action 

research should offer a similar promise to its participants. 

  

2.1.1    PLATO – THE ALLEGORY OF THE CAVE 

The philosophical roots of my thesis can be traced back to Plato’s Allegory of the Cave. 

The allegory is presented in Book VII of Plato’s Republic and is written as a dialogue 

between Socrates (Plato’s mentor) and Glaucon (Plato’s brother).  In the dialogue, 

Socrates directs increasingly sophisticated, philosophical questions to Glaucon. 

However, within the narrative of the allegory, Plato does not provide direct answers to 

the questions. Indeed, this is a feature found in much of his writing; typically, Plato 

“hides behind the narrative character” (Kohan, 2013, p. 315) of his propositions, thus 

we never have direct contact with Plato’s opinions. We have to wrestle with his writing 

for ourselves. This gives rise to various interpretations of the figurative symbolism that 

is found within the allegory.  

 

Plato uses the allegory as a symbol, a metaphor, to describe his belief in a two-level 

state of reality. He suggests that, in our day to day lives, humans function in the lower 

level, in the realm of things, sensations and naïve belief systems. Plato suggests that 

humans should use this lower realm as a springboard to seek the higher level, the 

realm of forms, in which abstract thought, truth and wisdom are found. It is in the higher 

realm, he believes, that humans find the full expression of their own emancipation.  

 

Plato superimposes the allegory upon his views of education. As an early champion of 

liberal education (Losin, 1996, p. 49 – 50), Plato, “propounds the value of a thinking 
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mind as greater than a doing person” (Nelsen, 2014, p. 102). He perceives, for 

example, a quest for vocational training as a servile goal and one that is incapable of 

expanding the human mind. It is only the liberally educated person who, “becomes 

capable of any desired intellectual skill because he or she learns how to think and to 

what end or purpose to think” (Nelsen, 2014, 102).  

 

Plato suggests that there is an ideal state for everything, including for example, tables. 

When humans experience tables for the first time, their early experiences of tables is 

incomplete: their early understanding produces only a prototype of tableness. 

Knowledge, argues Plato, “is not knowledge of content, or possession, but knowledge 

of relationship, affection and passion” (Kohan, 2013, p. 315). Through a constant 

search to know tables better - some tables are made from reclaimed wood, some are 

large, most tables have four legs, etcetera, numerous experiences of different tables 

in various settings elevates the embryonic understanding of tables closer and closer 

to a complete knowledge of tables, that is, to the form of tables. Plato argued that the 

true knowledge – understanding – of tables, or mathematics, or anything, occurs only 

in the realm of forms (Nelsen, 2014, p. 104). 

 

In the above, Plato’s realm of forms finds some congruence with Maslow’s (1943) 

hierarchy of needs, the highest levels of which are met when individuals obtain esteem, 

the capacity of be self-actualizing, and are free to pursue their desire to know (Maslow, 

1943, p. 385). Indeed, it is only when we become self-actualising that we come to hold 

ideals such as truth and goodness in high regard. When self-actualisation is not 

achieved, such conceptions are mollified by the more pressing needs of safety and 

well-being (Biehler & Snowman, 1997, p. 408). From this we can extrapolate that the 

realm of sensations can be perceived to be analogous with instrumental learning while 

the realm of forms draws links to relational understanding and compression. 

 

In Plato’s allegory, prisoners are fettered, looking at the back wall of a cave. A fire 

burns behind them. It illuminates the cave such that the prisoners observe flickering, 

distorted shadows of themselves on the wall. Also behind them, the prisoners can hear 

dampened echoes of guards who are standing and talking beyond their scope of view.  

These guards move various objects about, creating moving shadows on the walls of 
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the cave. However, because of their shackled circumstance, the prisoners cannot 

know that there are guards, a fire and moving objects in the cave.  

 

The shadows and echoes are a metaphor that represents the full, but naïve, 

experience of these prisoners’ lives; they have never known anything else. It 

represents their only way of knowing the world. But this, “knowledge is based on mere 

appearance, not on an understanding of the origins of the shadows, of the real things 

of which they are distortions” (Issitt, 2007, p. 392 – 393). The allegory talks to our 

distorted perception of the qualities of a good education (Losin, 1996, p. 50). 

 

Eventually, one prisoner breaks his shackles, finds his own way out of the cave and 

discovers that all that he had previously held as true was actually an illusion. In literal 

and figurative terms, this prisoner has moved from the dark to the light. Dark to light is 

itself a metaphor for unknowing to knowing. Through this allegory, Plato presents his 

view that most of what passes for education is but an illusion of education.  

 

Plato suggests that the purpose of a good education, of a good teacher, is to create 

enabling opportunities for students to emancipate themselves. This idea is best 

conveyed in Plato’s own words: 

 

Education isn’t what some people declare it to be, namely, putting 

knowledge into souls that lack it, like putting sight into blind eyes, [rather], 

education takes for granted that sight is there but that it isn’t turned the right 

way or looking where it ought to look, and tries to redirect it appropriately. 

Plato, as cited in Curren, 2007, p. 21 - 22 

 

In the allegory, the liberated prisoner, now acutely aware of the fullness of reality, of 

the world of forms, of his own journey towards wisdom, is confronted with a dilemma: 

does he continue into the world by himself, or does he return to the cave to liberate 

the other prisoners from their world of shadows. He realizes that going back carries 

with it two dangers. First, because his own new understanding of reality is incomplete, 

nascent, the other prisoners may perceive him to be mad and will simply ignore him; 

second, the prisoners, intellectually shackled by not knowing any better, may resist his 

offer to liberate them and might even attempt to kill him.  
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Plato suggests that any journey towards emancipation may well prove difficult – such 

a paradigm-shift is difficult to negotiate – but for those students (and teachers) who 

embrace new opportunity, the potential benefits might make the anticipated tensions 

worthwhile. Nor can one attend to this emancipatory journey towards knowing in a 

piecemeal manner. Plato makes the point that: 

 

The power to learn is present in everyone’s soul and the instrument with 

which each learns is like an eye that cannot be turned around from darkness 

to light without turning the whole body [my emphasis]. This instrument 

cannot be turned around from that which is coming into being without turning 

the whole soul until it is able to study that which is and the brightest thing 

that is, namely, the one we call the good. 

Plato, as cited in Curren, 2007, p. 22 

 

Plato suggests that the task of a good teacher is dual fold: through sustained effort 

teachers can awaken in their students a desire to emancipate themselves, to learn, 

and that burning desire to learn must be focused on that which is morally perceived to 

be good.  A liberal education enables teachers to assist students to, “think and act for 

themselves” (Holmes, 1987, p. 16), but for this to happen, the whole body has to be 

turned, that is, there must be a constant striving to move beyond the realm of 

sensations into the realm of forms. 

 

The allegory produces at least two important educational foci which speak directly to 

teaching and learning within the IPS 413 E Mathematics module, namely, the concept 

of two realms of reality, and the metaphor of the allegory itself. 

 

2.1.1.1 PLATO’S CONCEPT OF TWO REALMS OF REALITY 

The realm of things, of sensations and untested belief systems, resonates with 

teaching practices in which the teacher is the sole dispenser of knowledge. In such 

settings, figures, facts and practiced routines represent the knowledge that is allotted 

to students. Data that is discussed in Chapters 4 and 5 suggests that, in mathematics 

at least, the 2016 cohort of PGCE students derived most of their mathematical 

knowledge in such environments. These transition-mode situations impose, “a 

powerfully positivist, and inherently limited and limiting regime of truth in education” 
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(Issitt, 2007, p. 383). Students are perceived of as holding no or little worthwhile 

knowledge – tabula rasa – and are required to become passive recipients of factoids 

and knowledge systems as fed to them by their teachers. In other words, they become 

a shadow of their full potential.  

 

Plato argued in favour of – and modern societies need – students who have the 

capacity to think deeply, who are willing to take calculated risks and who are able to 

cognitively stretch their understanding of important issues. In effect, when students 

such as the 2016 IPS 413 E Mathematics cohort are encouraged to undertake creative, 

non-routine activities, they move from the realm of things into a higher, liberating plain, 

vis-à-vis, Plato’s realm of forms. 

 

2.1.1.2  A METAPHOR FOR A GOOD EDUCATION 

The metaphor of the allegory rings true in education settings where, albeit that 

liberating education practices are available, many teachers and students, knowing 

better, continue to cling to out-dated and often ill-working, educational practices. The 

task is to turn this resistance around, but liberating people who are shackled by their 

own conservativism, is problematic. Nor can effective change be done in half 

measures. For teachers such as myself, it means giving up some control; for students 

– the 2016 IPS 413 E cohort – it means embracing self-reliance and accountability.  

 

Transmission mode teaching practices are enormously seductive for teachers. It gives 

them complete control over what is constituted as being worthwhile, of what needs to 

be known and of the timing and mode of transmission to effect that transfer of 

knowledge. For teachers, giving up that control exposes us to the discovery that we 

are not experts in our subject matter and, further, that loss of control challenges us to 

study our subjects more deeply.  

 

For students, the removal of transmission mode practices requires them to shift 

towards embracing self-reliance; this implies that they take ownership of their lives, of 

liberating themselves and of striving to know more. Simultaneously, their liberalisation 

requires students to become accountable for their own actions; this may require them 

to confront their own ineptitude when they do not do well in their courses and, in turn, 

this might compel them to reflect upon their commitment to their studies. 
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2.1.2     FREIRE - THE OPPRESSION OF THE MANY BY THE FEW 

In his seminal book, Pedagogy of the Oppressed, Paulo Freire (1997, p. 24 - 25), posits 

that the liberation of people lies in their life-long vocation for the humanization of 

themselves and others. However, he suggests that the historical evidence of 

civilizations and societies reveals that, “injustice, exploitation, oppression and… 

violence,” (1997, p. 25) perpetrated by the few over the many, leads to the 

dehumanization of oppressors and the oppressed alike and creates in both illusions 

and distortions of what it is to be human. He stresses the point that the, “ontological 

and historical vocation,” of oppressed men and women, world-wide, is to become, 

“more fully human” (Freire, 1997, p. 48). 

 

Sadly, South Africa’s history, like many other histories, is replete with many examples 

of the oppression of the many by the few. These examples have worked thorough our 

country at political, social and domestic levels. In education, oppression has been as 

covert as the hidden curriculum and as overt as educational spend on different 

population groups in South Africa (Christie, 1988), and now, in the second decade of 

the 21st century, the ramifications of this violence that was visited upon our society 

remain an unhealed wound. 

 

Freire (1997, p. 37), writes, “Any situation in which “A” objectively exploits “B” or 

hinders his and her pursuit of self-affirmation as a responsible person is one of 

oppression.” Violence, suggests Freire (1997, p. 37), is always initiated by the 

oppressor; it cannot be constituted in any other way. It is not possible for the oppressed 

to initiate violence, as their own violence is always a reply to violence already visited 

upon them by an oppressor. The oppressed may act violently, but always, it is a 

reaction to violence perpetrated by their oppressors. And, the oppressor, knowing that 

his or her interests are served best by maintaining the status-quo, will violently work to 

preserve the privileges of the few, that is, his or her constituency, at the expense of 

sharing with the many (Freire, 1997, p. 34).  

 

The prestige of the oppressor is in large part manifested by the status that the 

oppressor imbues upon his or her accumulation of objects. The lens of the oppressor 

is one in which money, privilege, “more – always more – even at the cost of the 

oppressed having less or having nothing” (Freire, 1997, 40), commodifies humanity 
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and is used to identify who is taken as worthy to be human. Indeed, Freire (1997) 

writes: 

 

For the oppressors, there exists only one right: their right to live in peace, 

over against the right, not always even recognised, but simply conceded, of 

the oppressed to survival. 

Freire, 1997, p. 39 - 40. 

 

For the oppressed, their dehumanization by their oppressors is insidious, pervasive, 

complete. Typically, they will not even be aware that they have been subjugated and 

may not be aware of their own oppression. They will buy into a dominant fatalistic 

rhetoric that their own occupation (of the mind), their own demise, their low place in 

society, is of their own making. “So often do they hear that they are good for nothing, 

know nothing and are incapable of learning anything – that they are sick, lazy and 

unproductive – that in the end they become convinced of their own unfitness” (Freire, 

1997, p. 45). A self-fulfilling prophesy, fulfilled… 

 

Freire (in Curren, 2007) suggests that, because the ontological vocation of people is 

humanization, when oppressed people do get a sense of their oppression, when they 

get a sense that they have been duped and dehumanized, conflict and revolution will 

arise. When this happens, they will seek out ways to act, to liberate themselves and 

regain possession of their dispossessed humanness. And, Freire (1997) writes: 

 

It is only the oppressed who, by freeing themselves, can free their 

oppressors. The latter, as an oppressive class, can free neither others nor 

themselves. 

Freire, 1997, p. 38 

 

However, Freire (1997, p. 30) suggests that for those who would liberate themselves, 

a duality of consciousness exists and niggles at the back of the mind: on one hand the 

oppressed realise that without freedom, they cannot fully be human; or the other hand, 

they are fearful of the implications and responsibilities that come with this freedom. 

Thus, the internalised struggle of their liberation is a hard-won, intra-mental battle. 
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Flowing from the above, Paulo Freire (2007), explains that in banking models of 

education, teachers deposit knowledge into students for them to, “receive, memorize, 

and repeat” (Freire, as cited in Curren, 2007, p. 68). However, ultimately, a banking 

model disenfranchises students. Freire suggests that banking is a deliberate and 

oppressive practice that encourages passive acceptance of the status-quo by the 

marginalised and oppressed, vis-à-vis students: such a model turns students, “into 

“containers,” into “receptacles” to be “filled” by the teacher” (Freire, 1997, p. 53).  

 

Further, he suggests, “to alienate human beings from their own decision-making is to 

change them into objects” (Freire, 1997, p. 66). A banking model can only serve the 

interests of the dominant oppressor, that is, the teacher, the school, the education 

system. Often, teachers are unconscious of their role as oppressors, of their own 

subjugation within the system, and of the fact that they are perpetrating oppression 

upon others.  The dire and often unconsciously achieved consequences of banking 

education are that the oppressors of marginalized students perceive them to be 

“incompetent and lazy” (Freire, 1997, p. 53). Indeed, in the course of time, students 

will begin to perceive themselves as such.  

 

Banking models do not embrace the very creativity, risk-taking, inquiry-based 

exploration and transformational dialogue which are keystones of competence and 

deep understanding. In banking models, the scope of the students’ school experience 

is limited to, “receiving, filing, and storing the deposits” (Freire, 1997, p. 53) that are 

bestowed upon them by their benevolent, but oppressive, teachers.  

 

Given that a feature of our humanness is our cognitive awareness that we are ever, 

“unfinished,” (Curren, 2007, p. 72), Freire calls for an overthrow of pervasive banking 

systems of education in favour of a problem-solving model of education that is 

philosophically inspired by the liberation of full human potential. Liberating education, 

Freire suggests, “consists of acts of cognition, not transferals of information” (Curren, 

2007, p. 72). Through dialogue, students and teachers become co-constructors who 

meaningfully share their understanding of the world. The praxis of a problem-solving 

model of education demystifies reality, evokes critical reflection, and actions and 

unleashes the full creative cognitive capacities of teachers and students alike.  
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A problem-solving philosophy of education, “strives for the emergence of 

consciousness and critical intervention in reality” (Freire, as cited in Curren, 2007, p. 

72).  Conjoined as they are, students and teachers will critically reflect upon and 

constantly reconstruct their praxis. In doing this, rather than being perceived as objects 

who are acted upon in their education, Freire suggests that teachers and students 

become subjects who mutually liberate each other in their own education: 

 

Currently, higher education in South Africa is characterised by mass stay-ways by 

students, violent disruptions of classes and severe damage to university 

infrastructures. Indeed, as is discussed in detail in Chapter 4 (4.1.1), for the duration 

of the action research many such interruptions were visited upon my own university. 

In large measure, agreements are reached and promises are made, but often these 

agreements are perceived to be unattended to or broken by one or other party and this 

has exacerbated simmering tensions between the haves and the have nots in 

education in South Africa. At least two important aspects are gleaned from Freire’s 

(1997) text. These include his view that (1) oppressed human beings are ontologically 

predisposed to seek becoming more human and that (2) banking models of education 

need to be reformed to liberate human potentials.  

 

2.1.2.1 THE ONTOLOGICAL VOCATION OF OPPRESSED STUDENTS 

In 2015 through 2017, much violent upheaval has occurred on university campuses in 

South Africa. Nationally, the wanton destruction of our campuses and the disruption of 

our classes has been roundly condemned. However, Freire’s (1997) commentary on 

oppression and the ontological drive to be more human provides a sounding board 

against which we can better understand the turmoil. Introspection suggests that 

decades of broken promises and of jobless, debt-ridden, graduated students 

hopelessly walking our streets have created a powder-keg of seething resentment and 

that these frustrations, in large measure, have caused the outpouring of hurt by our 

students. Further, many students have been victims of generations of political, social, 

economic and educational violence, but their ontological destiny – the destiny that they 

are now rightfully claiming for themselves – is simply a quest to be more human. We 

should hold their ontological aspirations very close to our own hearts. 
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2.1.2.2 A BANKING VERSUS A LIBERATING MODEL OF EDUCATION 

For university students to enjoy the full gifts of a liberating university education, both 

academics and students must abandon the pervasive banking model of teaching and 

learning that stubbornly persists in many classrooms. This paradigm shift, while 

difficult, has the potential, on one hand, to liberate creative endeavour and higher 

cognitive thinking and, on the other, should enable students to reap the rewards and 

esteem of being self-actualizing South African citizens.  

 

Later, in Chapters 4 and 5, I will discuss the fact that, while this aspiration was 

constantly uppermost in my mind, the cohort of participants in the research and I only 

achieved this goal partially. In effect, in my role as an action researcher, I found that I 

was, “a living contradiction” (McNiff & Whitehead, 2006, p. 28) which was a difficult pill 

to swallow. I realised that while I espoused liberal approaches, all-too-easily I assumed 

a transmission mode teaching stance. 

 

In the next section of this literature review, I will reveal the perilous state of our 

country’s mathematical performance, this measured against many sets of data. 

Measured against that data, it is prudent to anticipate that oppressed children who do 

make it into our university classes will have clawed their way into our universities. We 

can anticipate that many PGCE students will have gaps in their mathematical 

knowledge and skills, but, equally, we can anticipate that, in spite of all obstacles that 

are thrown at them, they are tenacious and have high ambitions to graduate. 

 

2.2 BENCHMARKING SOUTH AFRICA’S MATHEMATICAL 

PERFORMANCE: INTERNATIONAL, REGIONAL AND 

LOCAL DATA-SETS 

Research into South Africa’s mathematical performance, when measured against 

international and national benchmarks, suggests crisis (Bloch, 2009, p. 17). Indeed, 

this crisis can be exemplified by the fact that by the time that they have completed the 

first year of their Intermediate Phase studies, “grade 4 learners are already almost two 

grades behind grade level expectations” (Graven, 2015, p.1). Bloch (2009) continues, 

suggesting that many South African mathematics teachers hold low subject content 

knowledge and states that, “the basics of pedagogy are often absent” (Bloch, 2009, p. 
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102). Further, van der Berg and Spaull (2011, p. 1) write that, “few outside of policy 

circles are aware of the extent of the underperformance of South Africa’s education 

system.” However, suggests Bloch (2009, p. 68), unless we identify and acknowledge 

this crisis, we cannot begin to deal with it. Unfortunately, the exemplars below will 

reinforce these pessimistic views. 

2.2.1 TRENDS IN INTERNATIONAL MATHEMATICS AND 

SCIENCE STUDIES REPORTS 

At Grade 8 level, South Africa has participated in five Trends in International 

Mathematics and Science Studies (TIMSS) cycles. These participations occurred in 

1994/5, 1998/9, 2003, 2011 and 2015.  

In 1995, 40 countries participated in the TIMSS study, (Gonzales, Calsyn, Leslie 

Jocelyn, Mak, Kastberg, Arafeh, Williams, & Tsen, 2000). In that cycle, pupils in 

Singapore achieved the highest results in mathematics, obtaining a national average 

of 643 out of 800 points for the test; in the same study, South African children were 

the lowest scoring nation, scoring, as the national average, 354 out of 800 available 

points. In other words, while the national average for Singapore was ±80%, the South 

African national average was ±44%. What is salient here is not just the position 

occupied by South Africa, which was last, but more significant is the size of the gap 

between the averages for first place at 643/800 and South Africa at 354/800; that is a 

difference of 289 points in an 800 mark test. 

Four years later, in 1999, with 38 participating countries in the Grade 8 mathematics 

test, once again Singapore’s pupils were first with 604 points as their national average 

out of 800 and, again, South Africa came last, this time with a national average of 275 

points. These scores convert to national averages of ±76% and ±34% for Singapore 

and South Africa respectively. Howie (2011, p. 2) writes that, “The [South African] 

average score of 275 points out of 800 points is well below the international average 

of 487 points.” Indeed, our national average was 212 points below the international 

average and 329 points below the Singapore national average. 

In 2003, 46 countries participated in the TIMSS study. In the 2003 cycle, the 

assessment of Grade 8 mathematical performance was measured against two 
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cognitive domain league-tables – namely (1) a content knowledge and technical 

procedure table, and (2) an application table. In the content knowledge and procedure 

domain, Korea and Singapore achieved 592 and 591 out of 800 points, or 74% and 

73,9%, respectively. South Africa, second but last in the content and technical 

procedure test, scored 261 out of 800 points or 32,6%. In the application domain test, 

Singapore was first with 611 out of 800 points, that is, 76,4%, and South Africa was 

last with 269 out of a possible 800 points, or 33,6% (Mullis, Martin, Gonzalez & 

Chrostowski, 2004).  

South Africa did not take part in the 2007 TIMSS research.  

 

However, four years later, it was suggested that, “in August 2011, the HSRC will 

administer the Trends in International Mathematics and Science Study to Grade 9 

students and this will provide a trend analysis with TIMSS 2003 results and a 

comparison of our mathematics and science performance with 50 other countries” 

(Reddy, Kivilu, Cosser & Frempong, 2011, p. 1).  

 

Indeed, this did happen. Note though, that at an international level, Grade 8 pupils 

were assessed, while in South Africa, it was Grade 9 pupils who wrote the test. 

Nonetheless, South Africa continued its own trend of being at the bottom of the class 

in this global research undertaking (Reddy, 2012).  

 

Only 24% of our Grade 9 pupils managed to achieve the lowest benchmark in that test, 

that is, 400 out of 800 marks, and a scant 1% managed to score at the highest, or 

advanced benchmark, 625 out of 800, or higher. However, the report states that the 

average achievements for South African pupils was, “not reliably measured because 

the percentage of students with achievement too low for estimation [my emphasis] 

exceeds 25%” (Mullis, Martin, Foy & Arora, 2012, p. 114). That is, more than 25% of 

the South African Grade 9 pupils who wrote the 2011 TIMSS Grade 8 test, achieved 

scores too low to be estimated. In effect, they were outliers. 

 

In the latest iteration of the TIMSS, conducted in 2015 and released on 29 November 

2016, the trends presented above continue to manifest. In 2015, 39 countries took part 

in the Grade 8 mathematics TIMSS test (Mullis et al., 2016). In the 2015 cycle, as in 
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the 2011 cycle preceding it, South Africa’s Grade 9 children wrote the Grade 8 TIMSS 

mathematics test. In this cycle, as in the previous cycle, the data capturers had, 

“reservations about reliability because the percentage of students with achievement 

too low for estimation exceeds 25%” (Mullis et al., 2016). 

 

Singapore, followed by Korea, came in first and second with respective national 

average scores of 621 and 606 achieved out of a possible 800 points. Indeed, East 

Asian countries took the top five berths in achievement, namely, Singapore (621); 

Korea (606); Chinese Taipei (599); Hong Kong (594) and Japan (586). This was 

followed by a 48 point gap with the sixth best performing country, that being the 

Russian Federation (538).  The middle mark for this international test was 500. South 

Africa, second but last, and Saudi Arabia, with scores of 372 and 368 respectively, 

were at the bottom of the pile (Mullis et al., 2016). 

 

Four benchmarks with attendant descriptors of capability were set for the Grade 8 

mathematics test: 

 

1. Advanced Benchmark: 625 Can apply and reason in a variety of 

problem situations, solve linear 

equations, and make generalizations. 

2. High Benchmark:  550 Can apply understanding and  

knowledge in a variety of relatively 

complex situations. 

3. Intermediate Benchmark: 475 Can apply basic mathematical 

      knowledge in a variety of situations 

4. Low Benchmark:  400 Have some knowledge of whole  

     numbers and basic graphs 

Mullis et al., 2016. 

 

It is worth noting the following comparisons of performance between Singapore and 

South Africa. In Singapore, 99% of the Grade 8 pupils achieved the low benchmark; 

94% obtained the intermediate benchmark; 81% the high benchmark, and 54% scored 

above the advanced benchmark. In other words, 54% of Singapore’s Grade 8 pupils 

scored 625 marks or more in the test (Mullis et al., 2016). In South Africa, only 34% of 
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our Grade 9 pupils achieved the low benchmark; 13% achieved the intermediate 

benchmark; 3% obtained the high benchmark, and a scant 1% of South African pupils 

scored in the advanced benchmark (Mullis et al., 2016). 

 

Collectively, this summary of South Africa’s performance in various Grade 8 TIMSS’s 

reports demonstrates that, at a Grade 8 level, when compared to their international 

peers in mathematics, South African Grade 9 pupils are hardly competitive. Now, it 

might be useful to refocus the lens more tightly to compare South African performance 

with those of its immediate African neighbours.  

 

2.2.2  SOUTHERN AND EASTERN AFRICA CONSORTIUM FOR   

MONITORING EDUCATIONAL QUALITY REPORTS 

The Southern and Eastern Africa Consortium for Monitoring Educational Quality 

(SACMEQ) was launched in 1995, and is now driven by 15 ministries of education in 

the southern African region. It has undertaken three regional surveys.  

 

The first project, SACMEQ I, (UNESCO, 2010, p. 2) was conducted from 1995 to 1998. 

The research sample included 1 000 schools and 20 000 Grade 6 pupils from 7 African 

countries: South Africa did not participate in this project. Participating countries 

included Kenya, Malawi, Mauritius, Namibia, Tanzania (Zanzibar), Zambia and 

Zimbabwe. 

 

The SACMEQ II research project (UNESCO, 2010, p. 2) took place from 1998 to 2004. 

The sample included 2 000 schools, 40 000 Grade 6 pupils, and 14 countries: South 

Africa participated in the project. The other participating countries included Botswana, 

Kenya, Lesotho, Malawi, Mauritius, Mozambique, Namibia, Seychelles, Swaziland, 

Tanzania (Mainland), Tanzania (Zanzibar), Uganda and Zambia.  

 

In the SACMEC II project, 8 of the 14 countries that took part produced higher national 

averages than South Africa. Mauritian Grade 6 pupils achieved the highest national 

average at 585 out of 800 points, or ±73%. South Africa achieved a national average 

score of 486 out of 800 points, or ±61%. The worst performing country in the SACMEQ 
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II project was Namibia, which achieved a national average of 431 out of 800 points, or 

±54% (Makuwa, 2010, p. 4). 

 

The data for SACMEQ III, (UNESCO, 2010, p. 2), was captured in 2007. Approximately 

61 000 pupils, 8 000 teachers, 2 800 schools and 15 countries were involved in the 

exercise. Participating countries included Botswana, Kenya, Lesotho, Malawi, 

Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania 

(Mainland), Tanzania (Zanzibar), Uganda,  Zambia and Zimbabwe.  

 

Seven of the participating countries obtained better results than South Africa. The 

results indicate that in 2007 Mauritius retained its position as best performer in the 

region: its Grade 6 pupils scored, as a national average, 623 out of 800 points, or 

±78%. In that cycle, the South African national average was 495 out of 800, or ± 62%, 

and Zambia, last in the region, achieved 435 out of 800 points, or ±54%. (Makuwa, 

2010, p. 4). Below, in Table 2.1, we can observe and compare regional performances 

in Grade 6 math in SACMEQ II (2000) and SACMEQ III (2007), respectively.  

 

Table 2.1  

SACMEQ II & SACMEC III mathematical performance. Source: Makuwa, 2010, p. 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

    

 

 

 

 

 Pupil Mathematics Score 

COUNTRY 2000 2007  

Botswana  512.9 520.5 ► 

Kenya  563.3 557.0 ► 

Lesotho  447.2 476.9 ▲ 

Malawi  432.9 447.0 ▲ 

Mauritius  584.6 623.3 ▲ 

Mozambique  530.0 483.8 ▼ 

Namibia  430.9 471.0 ▲ 

Seychelles  554.3 550.7 ► 

South Africa   486.1 494.8 ► 

Swaziland   516.5 540.8 ▲ 

Tanzania  522.4 552.7 ▲ 

Uganda  506.3 481.9 ▼ 

Zambia  435.2 435.2 ► 

Zanzibar  478.1 486.2 ► 

Zimbabwe   ×× 519.8 ×× 

SACMEQ  500.0 509.5 ► 
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For the comparison, a mean of 500 was established in the 2000 data, and 509,5 for 

the 2007 data-set. Scores written in green are more than 10 points above the mean, 

scores in black are within 10 points of the mean, and those in red are more than 10 

points below the mean. A green arrow, pointing upwards, indicates a positive growth 

of at least 10 points between 2000 and 2007, a grey, horizontal arrow indicates 

sustained performance, and a red, downward pointing arrow indicates a drop of more 

than 10 points between 2000 and 2007. Zimbabwe did not take part in the 2000 

research programme. 

 

 The data in Table 2.1 suggests that, when compared to our African neighbours, South 

Africa’s Grade 6 pupils are not particularly competitive in mathematics. In both 2000 

and 2007, South Africa lies below the regional mean scores.  

 

Further, if one drills deeper into the 2007 data-set, (see Table 2.2 below), it reveals 

the low-standing performance of the Eastern Cape compared to the other South 

African provinces: only Limpopo fares worse. 

 

Table 2.2  

SACMEQ III. South African provincial scores. Source: Hungi et al., 2010, p. 13 

 

 Pupil Mathematics 

Score 

PROVINCE 2007 

Eastern Cape 468.8 

Free State 491.6 

Gauteng 545.0 

KwaZulu Natal 485.2 

Mpumalanga 476.1 

Northern Cape 498.7 

Limpopo 446.7 

North West 503.1 

Western Cape 565.7 

        

The empirical data shows that in comparison to international standards, the various 

TIMSS reports place South Africa bottom of the class; within the SACMEC 2007 

programme, when compared with its fourteen regional neighbours, South Africa is in 
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the middle of the class, and within South Africa itself, the Eastern Cape is second but 

last in mathematical performance.  

 

SACMEQ IV was conducted in 2012/3. At the time of writing this text the regional data 

captured by that exercise was not available on the SACMEQ website. Indeed, it might 

have been embargoed. Spaull (2016) was appointed by the SACMEQ Secretariat as 

an analyst for SACMEQ IV, but he subsequently resigned, stating matters of good 

conscience. He suggests that the SACMEQ IV data and results are flawed on (1) 

methodological design and consistency, and (2) “particularly the fact that weaker 

students had been excluded from the final results,” (Spaull, 2016). Further, he 

suggests, SACMEQ refused to investigate issues that he raised pertaining to the 

comparability and validity of the data (Spaull, 2016). This might explain why, 

apparently, the SACMEQ IV data for mathematics capability in South Africa has 

climbed from a national average of 495 in 2007 to 587 in 2013.  

 

Spaull (2016) suggests that the data reveals to us that, “the fact that teacher test 

scores plummeted at the same time that student test scores soared should already 

make us very curious about the technical procedures that might lead to such a 

situation” (Spaull, 2016). And, he continues: 

 

Unfortunately, the contract that I have signed with SACMEQ prevents me 

from publishing any results that are based on that data until the international 

report has been publicly released, at which time I will provide a full account 

of my technical concerns and reasons for the non-comparability. I have also 

subsequently deleted the data on SACMEQ’s request. 

Spaull, 2016. 

 

2.2.3   THE PERCEPTION OF INFLATION OF MARKS 

An additional and worrying trend in South Africa is a perception that we are artificially 

raising the matriculation examination mathematics marks. In part, this perception 

arose because, a decade ago, our national Department of Education (DoE) attempted 

to find parity between the now out-dated Higher Grade (HG) Mathematics matriculation 

examination and the now in vogue National Senior Certificate (NSC) for Mathematics. 

Indeed, a comparison between the results obtained in the 2007 Higher Grade (HG) 



 

46 

 

Mathematics and the 2008 National Senior Certificate (NSC) Mathematics 

matriculation examinations suggests that marks-inflation did occur.  

 

In a report that was compiled by the Centre for Development and Enterprise (2010), in 

principle the South African National Department of Education equated a 40% HG 

examination result in 2007 with a 50% NSC result in 2008. In practice, the NSC mark 

was lifted to 54%.  However, “the real leniency and grade inflation appears further up 

the scale” (Centre for Development and Enterprise, 2010, p. 9); a 64% HG 

matriculation result in 2007 generated an equivalency of 80% for a 2008 NSC 

counterpart. A comparative table, (Table 2.3), below, will demonstrate the full 

magnitude of this excess.  

 

Table 2.3  

Comparisons between 2007 HG and 2008 NSC scores. Source: Centre for 

Development and Enterprise, 2010, p. 9 

 

HG Mathematics 2007 NSC Mathematics 2008 

10 13 

14 19 

20 26 

22 30 

27 36 

29 40 

35 47 

37 50 

40 54 

45 60 

46 62 

50 66 

53 70 

64 80 

      

There has been widespread speculation that, after the 2007-2008 event, the DoE 

continued to inflate matric results. Indeed, the 2010 matric results gave so much rise 

to the speculation of inflation that, on 30 December 2010, Professor Sizwe Mabizela, 

the chairman of Umalusi offered a contradiction to this perception stating that, “We are 
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satisfied that those examinations are credible and can be released,"with the rider that, 

“any errors had been "technical" in nature” (News24, 2010).   

 

The TIMSS and SACMEQ reports, coupled with widely held views of inflation of matric 

maths marks, paint a bleak picture of our pupils’ mathematical competitiveness in 

international, regional and local contexts. However, the problem gets worse! 

 

2.2.4  THE EARLY LOSS OF PUPILS FROM SOUTH AFRICAN 

CLASSROOMS 

Bloch (2009, p. 67) writes the following, “It is quite clear that millions of children are 

not progressing through the school system. It is estimated that perhaps only 52 of 

every 100 who start Grade 1 make it to Grade 12.” By way of one example and 

confirmation of Bloch’s (2009) view, we can turn the clock back to 2000.  

 

In that year, 1 055 397 children entered formal schooling in South Africa via the Grade 

1 classroom (Department of Education, 2002, p. 8). As a cohort, those children would 

eventually matriculate in 2011. In 2011, 534 498 children were registered for Grade 

12, which is approximately 51% of the 2000 registration class. 

 

Further, at the end of 2011, the DoE announced that South Africa had achieved a 

matriculation pass-rate of 70,2% (Department of Education, 2013, p. 27). But, in 

making this announcement, the DoE used sleight-of-hand and possibly even a bit of 

deception.  

 

As we know, in 2011, 534 498 children were registered for Grade 12. Of this number, 

496 090 children sat for their matric exams and, of these children, 348 117 passed the 

matric exam (Department of Basic Education, 2013, p. 10). It is upon the fraction 

348 117 / 496 090 that the Department of Education generated the 70,2% pass rate.  

 

However, viewed from the perspective of those children who registered for Grade 1 in 

2000, that is, 1 055 397, we see that less than half of the original class of 2000 actually 

made it into the matric examination room. When measured against the full registration 
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class of 2000, the 70,2% pass-rate, actually drops to approximately 33%, which is 

348 117 / 1 055 397. 

 

In 2011, a mark of 30% was considered a pass in mathematics for the matriculation 

examination (Department of Education, 2013, p. 27). In that year, 224 635 pupils sat 

for the mathematics matric exam. Of these candidates, 104 033 pupils passed matric 

mathematics (Department of Basic Education, 2013, p. 27).  

 

In other words, just less than half of the children (46%) who wrote mathematics 

managed to achieve a mark of 30% or more. Indeed, only 67 541 pupils managed to 

get a mark of 40% or more (Department of Basic Education, 2013, p. 27). Therefore, 

based on the original intake in 2000, only 1 in 10 pupils of the registration class of 2000 

managed to write and pass the mathematics subject.  

 

2.2.5  NATIONAL AVERAGE MARKS FOR ANNUAL NATIONAL 

ASSESSMENT IN MATHEMATICS 

To monitor performance, progression and competitiveness across South Africa, the 

DoE has introduced compulsory annual national testing in mathematics. These 

benchmarking tests - the Annual National Assessments or ANAs - were first written in 

Grades 1 through 6 and Grade 9 in 2012. Every child in every state school in South 

Africa is required to write these tests.  

 

A summary of the mathematical performance of South African pupils in these grades 

for 2012, 2013 and 2014 is presented in Table 2.4, below. The data-set in Table 2.4 is 

worrying: while the average marks obtained by pupils in the Foundation and 

Intermediate Phases show some positive improvement (albeit that they start, in 2012, 

off low bases), the mathematical performance at the end of the GET Band, in Grade 

9, remains stubbornly, shockingly, low. Annually, by the end of the Foundation and 

Intermediate Phases, some marked improvement in the percentage of pupils who 

achieve 50% or more is noted. However, in parallel to the data revealed in Table 2.4, 

performance by Senior Phase Grade 9 pupils is shockingly poor. The delivery of ANAs 

in 2015 and 2016 was disrupted by education unions. Any limited amount of data that 

might have been captured is, to my best knowledge, unavailable 
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Table 2.4  

ANA results for mathematics. Source: Department of Basic Education, 2014, p. 41. 

National Average Marks for Annual National Assessment in Mathematics 

Grade 2012 2013 2014 

1 68% 60% 68% 

2 57% 59% 62% 

3 41% 53% 56% 

4 37% 37% 37% 

5 30% 33% 37% 

6 27% 39% 43% 

9 13% 14% 11% 

 

The data-set in Table 2.5 is even more forbidding. It reveals, for Grades 3, 6 and 9 

respectively, the percentage of pupils who managed to achieve a mark of 50% or more 

when they wrote the ANA tests. 

 

Table 2.5  

Pupils who achieved 50% or more in ANA for mathematics. Source: Department of 

Basic Education, 2014, p. 43. 

Pupils who Achieved 50% or more in the Annual National Assessment in 

Mathematics 

Grade 2012 2013 2014 

3 36% 59% 65% 

6 11% 27% 35% 

9 2% 2% 3% 

 

The literature review has demonstrated that in mathematics, “South Africa comes at 

the bottom of the pile” (Bloch, 2009, p. 66). With this sober overview of poor 

mathematical performance in South African schools in mind, it is now important to 

become both introspective and forward-looking. Cognisant of the current crisis in 

mathematics in South Africa, we need to be looking for ways to improve the situation.  
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2.3 A 21st CENTURY VIEW OF MATHEMATICS: A SOUTH 

AFRICAN PERSPECTIVE 

It is said that teaching only occurs when someone has learned something. If this idiom 

is applied as a pivot in mathematics, then what is it that is taught and what is it that 

students learn when teachers and students are engaged in mathematics? In asking 

this question, I am not seeking answers to the specific curriculum content that is 

encountered in the mathematics classroom. Rather, it is important to try to discover 

the principles, the philosophy, the critical driving forces upon which that curriculum is 

constructed because that must drive what we teach and what we learn.  

 

2.3.1  THE CAPS-CURRICULUM DEFINITION OF MATHEMATICS 

South Africa’s Curriculum and Assessment Policy Statement (CAPS) document for 

mathematics defines mathematics in the following way: 

 

Mathematics is a language that makes use of symbols and notations to 

describe numerical, geometric and graphical relationships. It is a human 

activity that involves observing, representing and investigating patterns and 

quantitative relationships in physical and social phenomena and between 

mathematical objects themselves. It helps to develop mental processes that 

enhance logical and critical thinking, accuracy and problem-solving that will 

contribute in decision-making. 

Department of Basic Education, 2011, p. 4 

 

The above-quoted definition, written in the present tense, contains only three 

sentences, but constitutes a deeply-conceptualised and tightly articulated definition of 

mathematics. Indeed, every word contained in the definition is saturated in meaning. 

 

In the first sentence, the character of mathematics is identified by the abstract-noun, 

“language” – this word used instead of “mathematics is a science.” Similarly, the use 

of the verb “describe” and abstract-noun “relationships” co-construct a focus on the 

core mathematical concepts which are number-systems, shapes and figures, and 

visual representation of data. 
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In the second sentence, the noun “activity” and the verbs “observing, representing and 

investigating” collectively suggest that all participants are actively engaging in their 

own construction of mathematical knowledge. I have italicised “all” because the 

phrase, “it is a human activity…” (Department of Basic Education, 2011, p. 4), suggests 

that the study and understanding of mathematics is a perfectly natural condition of 

human existence and, as such, is a subject which should be made available to all 

human beings. 

 

 The second sentence in the definition is important because it markedly shifts the 

philosophical stance of mathematics away from the tabula-rasa or empty-vessels view 

of learners that was an endemic feature of a behaviourist view of pupils and of 

transmission-mode teaching and learning for the greater part of the 20th century. 

Further, in the same sentence, the deliberate use of the nouns and abstract-nouns, 

“patterns, relationships, phenomena and objects” all point to a view of mathematics as 

being located, and thereby available to us, in the real world. 

 

The third sentence describes an epistemological rationale for studying mathematics. 

“Develop[s]” is a doing word – a verb. Mathematics develops, “mental processes that 

enhance logical and critical thinking, accuracy and problem-solving, [and] decision-

making.” (Department of Basic Education, 2011, p. 4).  Collectively, these adjectives 

and nouns point to a view of mathematical knowledge that is far wider than, “there’s 

an example in the text-book, on page 24, and do not ask me again.” Further, as 

exemplified in Chapter 1, (1.2.1.1 – 1.2.1.9), the third sentence in the definition aligns 

the South African epistemology for mathematics with views held by other countries.  

 

In addition to the above, an analysis of the Specific Aims contained within the CAPS 

(2011) policy document shows congruence between the specific aims and the 

definition. There are eight aims, and they contain many conscientizing phrases. 

Such phrases include, “critical awareness; confidence and competence; without 

being hindered by a fear of mathematics; spirit of curiosity and a love; beauty and 

elegance; creative part of human activity; deep conceptual understanding; application 

to physical, social and mathematical problems; the study of related subject matter” 

(Department of Basic Education, 2011, p. 4) 

 



 

52 

 

The CAPS definition of mathematics reveals a view of mathematics that is located in 

the real world, is socially mediated, actioned and problem-solving oriented. This being 

the case, and building upon the groundwork laid in Chapter 1, (1.1.2; 1.1.3; 1.2.2), the 

purpose and nature of mathematical problem-solving and word-problems must be 

explained more fully. 

 

2.4  PROBLEM-SOLVING IN MATHEMATICS 

Uniquely, human beings have the cognitive capacity to think about, strategize and 

solve complex problems (Bukatko & Daehler, 1995). From infancy through adulthood, 

the human capacity to solve problems becomes more sophisticated and multifaceted 

as layers of skills-sets, learning and life experience are brought to bear on problems 

at hand. Krulik and Rudnick (1980, p. 4) explain problem-solving as being, “the means 

by which an individual uses previously acquired knowledge, skills and understanding 

to satisfy the demands of an unfamiliar situation.” Common features found in our 

distinctly human ability to solve problems include: 

 

1. having an ability to represent problems in ways which enable investigation. 

These representations may take the form of tactiles, visual and/or mental 

images, words, symbols, maps and so on; 

2. a mental flexibility to plan, to establish a sequential, route-marked path to follow 

to proceed through problems; 

3. in the face of many alternatives, have an ability to strategically select an optimal 

path to follow, and, 

4. when confronted with new problems, to be able to cognitively transfer and apply 

previously learned knowledge and skills into similar situations (Bukatko & 

Daehler, 1995) 

 

These capacities resonate well with the CAPS definition of mathematics (2.3.1)  

 

2.4.1 GOOD VERSUS POOR PROBLEM SOLVERS 

Carson (2007, p. 9) suggests that a distinguishing feature between struggling versus 

successful problem solvers is that successful persons make use of comprehensive, 

cognitive knowledge bases. People who are good at solving problems draw on many 
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rehearsed skills-sets and reflect upon experiences of previously encountered, similar 

problems. Indeed, 

 

…gifted mathematics students have a repertoire of ideas, strategies, and 

representations that seem to be organized into a highly sophisticated 

network of knowledge, equipping them with powerful ways to approach 

problem solving situations. 

English, Lesh, & Fennewald, 2008, p. 8 

 

This expert knowledge is only acquired through experience and time: experts draw on 

domain specific knowledge, a vast content-specific vocabulary, factual, semantic, 

schematic and strategic knowledge (Mayer, 1997, p. 388 - 392). Further, Courtney-

Clark and Wessels (2014), citing Kilpatrick, Swafford and Findell (2001), suggest that 

this proficiency is demonstrated through five interwoven strands, namely, conceptual 

understanding, procedural fluency, strategic competence, adaptive reasoning and 

productive disposition.   

 

In effect, the critical thinking invoked by problem-solving requires us to delve into our 

cognitive toolboxes and to then extract the particular mix of content-specific skills, 

procedures and factual knowledge that will help us to successfully solve a particular 

problem (Carson, 2007, p. 10). Further, Carson (2007, p. 12), presents as an example 

a pair of chess players, one an expert, the other a novice, and makes the point that 

“an expert chess player is not a better problem solver, he or she just has a more 

extensive knowledge base than a novice player.” Novice students have the facility to 

develop more comprehensive and better organised knowledge bases. When these 

expanding knowledge bases are coupled with many learning opportunities in which 

they practice similar problem-solving strategies, we can anticipate that over time these 

experiences will enable them to become expert problem solvers.  

 

2.4.2 GALOTTI’S LIST OF PROBLEM-SOLVING TECHNIQUES 

Galotti (2014), a psychologist, suggests that humans make use of a limited number of 

general problem-solving methods to solve most of the problems that we encounter. 

Techniques that humans use include methods such as: 
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1. Generate and Test: in which one generates an initial potential solution strategy, 

tests its efficacy and, upon reflection, may iteratively work through further 

cycles of generating and testing with the goal of refining towards an optimal 

solution (Galotti, 2014, p. 254).  

2. Means-ends Analysis: in which one compares that which is available with that 

which is required. Although it is similar to the generate and test method listed 

above, it may not easily produce the most efficient and effective solutions. 

However, it does require the problem-solver to closely interrogate potential sub-

sections within a problem (Galotti, 2014, p. 255). 

3. Working backwards: in which one treats the desired endpoint as a frame of 

reference from which, working backwards, one perceives the various stages 

which one might need to negotiate to achieve that goal (Galotti, 2014, p. 255). 

Outcomes-based education provides a very powerful example of this problem-

solving technique. When it was in vogue in South Africa in the late 1990s and 

first decade of the 21st century, teachers had to ascertain desired outcomes 

and then, working backwards, had to determine the various skills, knowledge-

sets, values, etcetera, that needed to be built into their learning programmes to 

achieve those stated outcomes. 

4. Backtracking: requires one to analyse and use provided data to make 

“provisional assumptions” (Galotti, 2014, p. 255), which thereby enable one to 

make a start to solve the problem. Often, false starts are generated, but if one 

keeps a record of these false starts, the errors lead to refinement as one 

carefully picks a path back to its source. A typical example of this is the situation 

where one has lost one’s car-keys, and needs to reflect on possible places 

where the keys might have last been used/placed. 

5. Reasoning by analogy: in which one reflects upon similar, past experiences to 

create viable analogies to solve the problem at hand (Galotti, 2014, p. 258 - 

260). While the contexts and details may be different, the prepared brain can 

intuitively reveal to itself analogous characteristics between past and present 

problems which enable it to use those past experiences and problems to deal 

with current problems. In effect, the brain cognitively transfers past learning 

experiences into the conscious mind so as to use those experiences as mental 

scaffolds for solving the problem at hand. (Bukatko & Daehler, 1995, p. 348 - 

349). 
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While any mathematical problem might draw from any or all five of Galotti’s (2014) list 

of problem-solving techniques, reasoning by analogy, (later in this thesis, 2.6.1), 

referred to as supportive met-befores), plays a significant role in successfully solving 

mathematical problems. 

 

2.4.3 MATHEMATICAL EXERCISES AND PROBLEMS 

The term problem is used somewhat ubiquitously in mathematics to cover all manner 

of mathematical endeavour. Therefore, it is useful to distinguish mathematical 

exercises from mathematical problems. Mathematical exercises are typically 

presented as a series of low-order, repetitive, text-book based, practice problems that 

are presented to learners to complete: typically, they develop instrumental knowledge 

through the use of stylised routines and procedures to achieve predicable answers 

(Badger, Sanguin, Hawkes, Burn, Mason, & Pope, 2012, p. 10). While they are 

important, these routines-based, practice-makes-perfect, drill-and-rote mathematical 

exercises must be complimented by non-routine problems for which there are no 

immediate algorithmic solutions. Such problems require relational thinking and can 

elicit critical, creative, innovative and systematic thinking.  

 

2.4.4 TYPES OF MATHEMATICAL PROBLEMS 

Zanele (2015, p. 18 - 19) suggests that it is possible to conceive of all mathematical 

problems as existing on a three-tiered, hierarchical ladder. The least cognitively 

demanding of mathematical problems are said to be highly structured problems. Such 

problems might include mathematical exercises. These problems are solved through 

the consistent use of practiced, step-by-step solutions which generate predicable and 

convergent (the one correct answer) answers. Galotti (2014) uses a similar term, well-

defined problems, to explain the nature of such problems, which: 

 

have a clear goal (you know immediately if you have reached the solution), 

present a small set of information to start from, and often (but not always) 

present a set of rules or guidelines to abide by while you are working towards 

a solution.  

Galotti, 2014, p. 252 
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On a slightly higher plane, we find moderately structured problems (Zanele, 2015, p. 

18 - 19; Galotti, 2014, p. 252). When students encounter these problems, they are 

required to demonstrate flexibility and a capacity for adaptation, and to use different 

converging strategies to achieve an outcome.  

 

On the highest plane of problem-solving, students work with ill-structured problems 

(Zanele, 2015, p. 18 - 19). These imprecise problems introduce a requirement to 

observe and understand the problem from multiple perspectives and to use past 

experiences to inform the solution strategies that are to be used by the problem-solver. 

From this work, many better or lesser satisfactory solution-strategies and answers may 

be generated and these, in turn, may give rise to further investigation.  

 

2.4.5  BENEFITS OF ACQUIRING MATHEMATICAL PROBLEM-

SOLVING SKILLS 

Mathematics equips humans with skills that enable us to solve real-world problems 

(Siemon et al., 2012, p. 18).  Although students may not perceive this as its end-goal, 

the processes of mathematics are driven by a desire to solve problems. Indeed, many 

mathematics teachers would support the view that, “solving problems is not only a goal 

of learning mathematics but also a major means of doing so” (Akinsola, 2008, p. 80). 

Still, it must be acknowledged that a requisite foundational-knowledge and skills-sets 

must be put in place: this cognitive toolbox of mathematical competences must be 

instantly available to the student and its construct must be informed by the labour of 

repetition and many exercises.  

 

Mathematical problems bring the subject to life. They provide an affirming rationale for 

the requirements that students learn basic skills such as times-tables, BODMAS, 

measuring, converting, and so on. Problems enable students to transfer these 

previously-learned low-order skills into novel problem-solving situations. When solving 

problems, they may adopt and adapt numerous strategies to facilitate their finding 

solutions (Siew Yin, 2010). This, in itself, is quite a creative process. For those persons 

who are well-versed in the ways of mathematics, synergies in solving problems and 

interpreting visual stimuli, analysing patterns, constructing geometric figures, etcetera, 

are found in abundance.  
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2.4.6 TYPES OF UNDERSTANDING USED IN SOLVING 

MATHEMATICAL PROBLEMS  

Siemon et al. (2012, p. 71) suggest that when students successfully integrate 

previously learned skills, concepts, routines and experiences, they demonstrate 

instrumental (or procedural) understanding. When intuitive judgement calls are added 

to the mix, in other words, when students successfully blend instrumental 

understanding with creative thinking and hunches, they demonstrate relational 

understanding. In turn, when mastery of content knowledge, skills and values is 

achieved, students demonstrate compression (Gray & Tall, 2007). Compression is a 

combining of instrumental and relational understanding.  Put differently, knowing 

something deeply, “is not to know it as an entity having a life of its own, but it is to know 

it in relation to something else” (Mwakapenda, 2004, p. 35). The achievement of 

compression frees up cognitive space for problem-solving and focused logical and 

deductive thinking. In other words, compression – that is the skilful and automatic use 

of foundational mathematical skills and processes – is a prerequisite for effective 

problem-solving.  

 

Gray and Tall (2007) found that when learners do not acquire sufficient levels of 

integration of mathematical processes, they cannot achieve compression of 

mathematical meta-concepts. They found that: 

 

in many cases the desired abstraction of thinkable concepts often does not 

occur as required, with many students remaining at a fragile procedural level 

of operation. This has long-term consequences for the successful teaching 

of mathematics at all levels.  

Gray & Tall, 2007, p. 6 

 

The term compression has become a pivotal focus of my own meta-thinking. When I 

reflect deeply about the day-to-day engagements and meetings that I have with many 

of my mathematics students, I think that often one of the biggest hurdles that they face 

is their inability to join-the-dots. For many, compression has not occurred: for example: 
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1. Many students do not understand nor perceive any relationship between an 

image of a square, its constant side length and surface area with the symbols 

of x2, √𝑥 and area; they seem unable to link the image, symbols and concepts 

to each other;  

2. nor do many students link the fraction 
1

3
  to 0,333. to 33,333% and depressingly, 

nor can they link the concept of one third to a fair-proportioned, physical part of 

a tactile or a visual representation of one third as in, for example, a pie diagram. 

 

In these sorts of cases, the consolidation of underpinning instrumental and relational 

sub-concepts and skills has not happened and compression has not been achieved. 

 

2.4.7   PROBLEMS EXPERIENCED WITH WORD-PROBLEMS 

The word-problems used in Intermediate Phase classrooms in South Africa are located 

in the real world. They are typically highly structured to moderately structured (Zanele, 

2015), and are oriented towards instrumental rather than relational understanding 

(Siemon et al., 2012). However, many pupils, and indeed even university students, 

struggle to solve these problems. In large part, this is because many intersecting 

mathematical skills and knowledge sets have to be assimilated and accommodated 

before they can be applied seamlessly in novel, word-problem situations. Indeed, 

suggests Mayer (1997, p. 390 - 391), to become expert problem solvers, students must 

first acquire thousands of individual pieces of domain-specific knowledge. Often, these 

knowledge factoids and skills-sets are not in place. When any one or any combination 

of the bouquet of skills and knowledge is missing or misunderstood, where there are 

gaps in the foundational arithmetic concepts, then the successful solution of word-

problems becomes elusive to learners. 

 

In many countries across the world, pupils struggle to solve word-problems. However, 

albeit that, “an increase in globalisation is fostering the assumption of universalism in 

mathematics education” (Naroth & Luneta, 2015, p. 268), authors such as Leung, Graf, 

and Lopez-Real (2006), Hodgen, Marks, and Pepper (2013), and Naroth and Luneta 

(2015) caution that methodologies and practices that work in one country many not 

necessarily work in a second country. Indeed, as discussed later in this chapter (2.7.3), 
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Bruner believes that, all other things being equal, our different cultures predispose us 

to interpret the same information in different ways. 

 

Teachers and researchers are trying to unpack the causes of children’s struggles with 

problem solving and are using that knowledge to seek remediation strategies to enable 

their learners to cope better with the rigour of word-problems. Two commonly 

encountered hurdles lie in (1) children’s inability to read and understand the 

requirements of a mathematical problem; this frequently occurs when the language of 

teaching and learning is not in the learners’ mother tongue (Kasule & Mapolelo, 2016, 

p. 266 - 267), and (2) in their inability to construct enabling representations for said 

problems. Two exemplars, below, are used to explore these hurdles. 

 

2.4.7.1  LANGUAGE AS A BARRIER TO UNDERSTANDING 

In classrooms where mathematical problem solving rather than rote and routines-

driven computations are used, good literacy skills are considered to be an 

indispensable requirement for mathematics problem solving (Evans, Ardito, & Kim, 

2017). In such environments, where prior knowledge, skills and conceptual 

understanding are required, the sentence structures are designed to provide useful 

real-world contexts for learners. Learners who cannot fathom the asking requirements 

of word problems – in South Africa,  this often occurs because the problems are stated 

in English while the learners’ mother tongue is another language – are placed in a 

particularly difficult bind. They are precluded from success by a language barrier rather 

than or before any difficulty in mathematics can be entertained. 

 

Impediments to understanding mathematical word-problems for English second-

language students include, “the use of low-frequency terms (e.g. “spinner”) as well as 

words that are ambiguous in meaning, such as “one” [won], …and change (a 

difference, or money received in a financial transaction)” (Barbu & Beal, 2010, p. 3).  

Long worded problems are awkward for non-mother tongue learners such that, “the 

impact of linguistic complexity on students’ perceptions of the mathematics of the 

problem” (Barbu & Beal, 2010, p. 14) has a bearing on their ability to construct viable 

solutions. In effect, when students perceive the linguistic complexity of the 

mathematics problems to be of a high order, they also perceive that the construction 

of a solution strategy will prove to be equally difficult.  
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“Language provides the tools of thought, and carries the cultural inheritance of the 

communities (ethnic, gender, class, etc.) in which the individual grows up” (Lerman, 

1996, p. 137). English, for example, is littered with homonyms and homophones that 

are easily understood – in context – by English speakers. However, for students who 

do not use English as a home language, such plays on words can become a nightmare. 

Thus, when creating word-problems in which the dominant language is intended to be 

read by non-mother tongue learners, it is prudent to reflect upon the multiple-meanings 

and nuances assigned to words and the cognitive-havoc that ambiguous words or 

turns of phrase might unleash. Indeed, one misunderstood word can alter the entire 

meaning of a mathematical sentence (Sherman & Gabriel, 2016, p. 473).  

 

Evans, et al. (2017) suggest that support structures which may assist non-mother 

tongue learners include encouraging these learners to write up their mathematical 

thinking in reflective, peer-assessed journals; requesting these learners to work in 

collaborative groups – so-called communities of inquiry (Splitter, 1991) where bilingual 

learners may offer support as translators to other learners; getting the learners to apply 

themselves to real-world mathematics problem solving learning opportunities, and 

assisting learners to construct notes of problematic vocabulary, phrases and 

conventions.  

 

In South Africa, Moloi (2015) used a participatory action research lens to investigate 

mathematical problem solving through play in rural regions of South Africa. Like Evans, 

et al. (2017), he found that (1) contextualised learning – that is, contextualised for the 

rural setting – enhanced learning, (2) problem solving should be learner centred, and 

(3) where “the teacher explains everything to learners their potentialities are oppressed 

and marginalised” (Moloi, 2015, p. 25). By interaction with others, the learners 

increased their social and linguistic capital, making breakthroughs in terms such as the 

comparative use of big, bigger and biggest.  

 

Later in this thesis, in the data analysis chapter, I will recount how simple English 

phrases such as “twice as much” or “has one third more” or “double” triggers anxiety 

and misinterpretation for many PGCE mathematics students, so much so that theirs 

can become a test of vocabulary and literacy rather than of numeracy.   
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2.4.7.2  POOR REPRESENTATIONAL SKILLS AS A BARRIER TO 

PROBLEM-SOLVING 

Sajadi, Amiripour, and Rostamy-Malkhalifeh (2013, p. 4) suggest, “there is a significant 

correlation between using efficient representation and efficient word problem solving 

ability.” They found that students who efficiently made use of tactile and iconic 

representations scored better marks in tests and examinations than those who did not, 

or could not, construct such representations.  

 

A representation, they suggest, “is defined as any configuration of characters, images, 

concrete object, [sic] etc. [sic] that can symbolize or “represent” something else” 

(Sajadi et al., 2013, p. 4). Such representations enable students to visualise situations 

and to model potential strategies to solve mathematical problems (Barmby, Bolden, 

Raine & Thompson, 2013).  However, carelessly constructed representations of word-

problems can obfuscate the problem-at-hand and unwittingly oppress the 

demonstration of mathematical competence (Rellensmann, Schukajlow & Leopold, 

2017). 

 

My own views are congruent with Sajadi et al. (2013) and Rellensmann et al. (2017), 

above. Indeed, my own thesis is driven by a view that a capacity to construct visual 

representations of problems – visual scaffolds – potentially liberates problem solving 

endeavours. However, it is not all plain sailing. Later, in Chapters 4 and 5, I will reveal 

that (1) on occasion, participants resisted constructing any visual support, preferring 

to stick with symbolic representations, and (2) sometimes, especially when 

fundamental drawing skills were not practiced and compressed, the visual scaffolds 

become more of a hindrance than an aid. 

 

Thus, it is fair to suggest that students who are able to use manipulatives or iconic 

representations to express their understanding of word-problems are potentially better 

positioned to be able to solve word-problems than students who cannot, but this is not 

always true (Siemens, 2006). 
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2.5 MATHEMATICS TEACHER EDUCATION  

In this section, I examine aspects of mathematics teacher education, pedagogical 

content knowledge and some arithmetic concerns which have influenced this study.  

 

Haylock and Mann (2014) suggest that in primary school education, one of the most 

important things that children should learn in mathematics is how to learn mathematics 

Because we can anticipate that in primary school education, most of the experiences 

of mathematics that learners encounter are orchestrated by their teachers, it is clear 

that teachers have a profound influence on children’s understanding and disposition 

towards mathematics. Their experiences of mathematics might mostly develop a rote-

driven learning mind set or, alternatively, might invoke meaningful-learning.  

 

2.5.1   FACTORS WHICH INFORM OUR CONCEPTIONS OF 

MATHEMATICS 

In classrooms where teachers present mathematics as a basket of discrete facts and 

formulae, rote learned operations and routines, this orientation to mathematics will 

typically become the view that their learners hold of the subject. Such a view might be 

said to be instrumentalist, that is, the teaching focus is content-driven and emphasises 

performance; for learners, the focus becomes mastery of disconnected skills, seeking 

the right answer and quiet acceptance of courseware (Beswick, 2005). In this sort of 

classroom, it is quite conceivable that learners may use memorization, mimicry and 

procedural rehearsal to produce right answers, but these answers might be done in 

the absence of any deep understanding of the completed assignment (Cornbleth, 

1987; Tipps, Johnson & Kennedy, 2011). Such practices are unsustainable; learning 

without understanding, mindlessly trying to memorise list of maths-facts or formulae, 

and blindly rehearsing particular stratagems can only take one so far.   

 

Similarly, when teachers portray mathematics as reflective, risk-taking and socially 

constructed endeavour, so too, their learners will usually adopt a similar stance – a so-

called meaningful-learning mind-set (Haylock and Mann, 2014). Teachers who adopt 

these positions might be said to hold Platonist beliefs regarding the nature of 

mathematics: in their teaching they too would be focused on content but would 
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emphasize understanding, and they would encourage their learners to actively 

construct their own understanding of mathematics (Beswick, 2005). 

 

Thus, because student teachers will typically perceive their ways of knowing 

mathematics through the lens of their past (school-based) teacher-belief driven 

experiences of mathematics (Muir, 2008), it is vital that in their undergraduate studies 

of mathematics, student teachers are encouraged to consider and explore views and 

understandings of mathematics that might be at odds with their life-experience. 

Further, while a goal of modern education is to provide optimal teaching and learning 

environments for all learners, the reality is that many schools are not afforded that 

luxury (Berry, Bol & Mckinney, 2009). Thus, student teachers must be trained to deal 

teach in less than optimal working conditions. 

 

2.5.2 A NEED FOR SPECIALISED MATHEMATICS TEACHING 

KNOWLEDGE 

In [2.3.1] above, I unpacked the current South African definition of mathematics. In 

support of this definition, the CAPS documentation provides specific aims that 

embrace views which encourage learners to develop a critical awareness of 

mathematical relationships, its relationship with society, our cultures and the 

environment, a curiosity towards and appreciation of the elegance of mathematics, a 

recognition that mathematics is a part of all human activity, and a desire to develop 

within all learners a deep conceptual understanding of mathematics (Department of 

Basic Education, 2011).  

 

Clearly, this shifts us towards a Platonic view of the nature of mathematics. Analogous 

with the Platonic view, Tipps, Johnson and Kennedy (2011, p. 75), describe directed 

teaching/thinking lessons in mathematics not as transmission mode lessons but as 

“interactive and incorporates manipulative materials, visual aids, discussion and 

argument, and engaging tasks to encourage thinking.” In such classrooms the teacher 

directs learning by introducing and scaffolding new knowledge but students are 

encouraged to construct their own understanding. This being the case, student 

teachers in South Africa must be exposed to mathematical ideas and materials that 

will contribute to these aims.  
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Indeed, student-teachers need to combine their ability to do mathematics – we call this 

content knowledge (CK) – with complimentary skills which enable them to teach 

mathematics – we call this pedagogical content knowledge (PCK) – which 

encompasses the unique skills, knowledge and understanding that mathematics 

teachers should hold in order to effectively teach this subject (Shulman, 1986). 

 

Shulman (1987) identified seven aspects of PCK that student-teachers need to 

understand, namely (1) mathematical content knowledge; (2) a general understanding 

of pedagogy, management and organisation; (3) a knowledge of curriculum 

requirements, materials and programmes; (4) specialised pedagogical content 

knowledge and professional understanding; (5) a knowledge of their learners; (6) 

knowledge of the school and the community that it serves; and (7) an understanding 

of context, philosophical underpinning, drivers and values espoused by the curriculum.  

 

2.5.3  MULTIPLICATIVE THINKING AS AN APPLICATION OF 

SHULMAN’S PCK 

Multiplicative thinking is a big idea that enables human beings to work flexibly with (1) 

a range of numbers which might include whole numbers, rational numbers, fractions, 

decimals, ratios, proportions and percentages, (2) direct and indirect proportions, (3) 

enables us to communicate multiplicative thinking – multiplying and dividing – using 

models and diagrams, words and symbols, and written computations, and (4) enables 

us to accurately estimate the outcome of our computations (Siemon et al., 2012). 

 

While repeated addition and skip-counting provides a useful access point, it is incorrect 

and inefficient to treat multiplicative thinking as simply repeatedly adding-on. 

Multiplicative thinking is a complex task which can take years for learners to properly 

understand. It incorporates proportional reasoning and the coordinated understanding 

of how multipliers (or multiplication operators) and multiplicands (the number of objects 

in each group) relate to each other (Tipps, Johnson & Kennedy, 2011). “The use of 

such composite units introduces the distinction between how many and how much” 

(Siemon et al., 2012, p. 354), and shapes our thinking processes. Early and informal 

introductions to multiplicative thinking exposes children to the concepts of fair sharing 

(simple proportion), and equal sharing and, at a later stage, enables them to 
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comprehend complex relationships including one-to many, many-to-one, partitioning, 

unitising, equipartitioning and composite units (Siemon et al., 2012). Early school 

experiences of multiplicative thinking might be based on counting, which is additive in 

nature or splitting, which is oriented towards multiplicative operations. 

 

Counting techniques might include counting large collections, repeated addition, skip 

counting, arrays//regions and repeated subtractions. Splitting might including 

equalling, doubling and halving (partitioning); and the use of arrays/regions, areas 

(often demonstrated as proportionally correct areas of rectangles or squares), and 

Cartesian products (often depicted on a tree diagram). Indeed, arrays, as rectangular 

arrangements of discrete objects, and regions, as a continuous rectangular (area 

based) representations provide particularly useful visual demonstrations of the 

multiplicative principles (Tipps, Johnson & Kennedy, 2011; Siemon, et al., 2012). 

 

Multiplication and division facts such as the times-tables need to be prioritised, but this 

done such that these facts are not merely rote-learned but are laden with meaning. 

Arrays can be used to assist learners to appreciate the versatile and beneficial 

applications of the commutative property in multiplication (Siemon, et al., 2012). Over 

time, a more formal recording of multiplication and division and the use of algorithms 

is introduced into multiplicative thinking such that most children are able to use these 

techniques by the end of the middle years in primary school.  

 

In South African schools, the mathematics content that is taught is largely driven by 

the CAPS curriculum policy documents. In turn, aspects of those content areas 

requirements inform the mathematical content that is offered to student teachers. Five 

content areas are identified in CAPS, namely (1) Numbers, Operations and 

Relationships; (2) Patterns, Functions and Algebra; (3) Space and Shape (Geometry); 

(4) Measurement; and (5) Data Handling (Department of Basic Education, 2011). 

Within the curriculum, “big ideas” provide a framework for progression. By way of 

example,  

 

…multiplicative thinking not only encompasses the various meanings and 

representations of multiplication and division,… but also supports 

connections between the operations and the base 10 system of numeration, 
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the rational numbers, and generalisations associated with propositional 

reasoning. 

Siemon et al. 2013, p. 13. 

 

In the Intermediate Phase (Grades 4 – 6), under the content area of Numbers, 

Operations and Relationships, Grade 4 learners must, for example, use number facts 

for units multiplied by multiples of 10 and 100, use skip-counting in 2, 3, 5, 10, 25, 50 

and 100 between 0 and at least 10 000, must use estimation, doubling and halving, 

perceive multiplication and division as inverse operations, use input-output flow 

diagrams, solve problems of ratio and rate, and group and equally share with 

remainders (Department of Basic Education, 2011). 

 

Thus, it is clear that it is not good enough that student-teachers simply have an ability 

to multiply and divide, as such limited subject knowledge would restrict their ability to 

teach conceptually (Ma, 2010). Indeed, “being able to do mathematics is simply the 

starting point for the journey into teaching mathematics” (Venkat, Mathews and du 

Plessis, 2012, p. 111). Instead, student teachers’ knowledge of these operations must 

extend beyond the instrumental skills of multiplication and division to a relational 

understanding of the operations. It flows from this that in order to then effectively teach 

multiplicative thinking, student-teachers must acquire the specialised PCK that will 

enable them to assist their future learners to make sense of this work. 

 

Thus, on one hand, the student-teacher needs to hold a range of computational skills. 

This might start with perhaps the times-tables and would, over time, extend to long 

multiplication and multiplication with decimals and fractions. However, on the other 

hand, these techniques have to be consolidated with an understanding of nature of 

multiplication, of how the product is established through repeated aggregation – 

perhaps demonstrated in an array, and the scaling structure of multiplication – perhaps 

demonstrated on a number line.  

 

While an expert teacher might easily turn to an empty number line, or might construct 

an array using bottle-tops or draw an area model of the multiplier and multiplicand or 

use a vertical layout for computation or ‘move the comma’ in the case of multiplications 

by 10, etcetera, this expert knowledge must be taught to student-teachers (Haylock, 
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2002). This tallies with a view that teaching is “an extremely complex task” (Siemon et 

al., 2013, p. 53), which, rather than relying on common sense and an innate ability to 

do it, in fact must be learned. 

 

Where a Platonic understanding of the nature of mathematics is embraced, 

complimentary educational theorists voices should be introduced into the student-

teachers’ university experience. Among many others, Ausubel’s discussion on prior 

knowledge and advance organisers (Ausubel, 1968); Piaget’s theory of cognitive 

development, the concepts of schema, adaptation via assimilation, accommodation, 

equilibration and stages of cognitive development (Piaget, 1986; Wadsworth, 1989; 

von Glasersfeld, 1996; Piaget, 2000); Vygotsky’s zone of proximal development (ZPD) 

(Bodrova & Leong, 1996); Bruner’s learning theory (Bruner, 1966); and Gardner’s 

theory of multiple intelligences (Gardner, 1993; Gardner, 1997), all provide useful 

educational theory footholds. 

 

In addition to an ability to do mathematics and a knowledge of educational theoretical 

knowledge, student-teachers also need to know what covert hurdles might make 

mathematics difficult for learners. Ball (2009) suggests that in their university classes, 

student teachers should be required to continuously practice mathematics, represent 

mathematical ideas in different ways and seek different explanations for the types of 

mistakes that they and their future learners might make in mathematics.The 

specialised knowledge that effective teachers hold, Ball, Hill and Bass (2005), 

demonstrates such teachers not only have an ability to evaluate a correctly undertake 

multiplication calculation, but can also identify the nature of mistakes which learners 

make in achieving incorrect products, as seen, in Figure 2.1, below: 

 

 

 

 

 

Figure 2.1. Example of PCK applied to multiplicative errors 

 

While many individuals might compute the correct answer, it takes PCK to reveal the 

nature of the mistakes which might occur while working through such calculations. But 
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more than that, having established the nature of the particular mistake that had 

occurred, competent teachers would then select an appropriate strategy to assist the 

learner to overcome the obstacle. The critical point to make here is that student-

teachers must be taught to assess their learners’ work not on the basis of marking it 

right or wrong, but with a view to understanding the nature of difficulties and finding 

appropriate mechanisms to support their learners. Such diagnostic assessment 

competence “is believed to be a prerequisite for teachers’ abilities to promote specific 

skills in their students.” (Friedrich, Jonkmann, Nagengast, Schmitz, & Trautwein, 2013,    

p. 26). 

 

Gardner (1997), suggests that logjams in understanding can often be eliminated by 

reconceptualising problems in novel ways and suggests that: 

 

Reconceptualization is most-likely to come about if an individual has multiple 

representations of a problem – that is, if he or she can think about the 

problem in a number of different ways, particularly ways that have not 

previously been brought to bear on that problem. The more that an individual 

can make use of his unique strengths in attacking a problem, the more likely 

he will arrive at an approach that holds special, hitherto unanticipated 

promise for illuminating that problem. 

Gardner, 1997, p. 149 

 

Thus, in overcoming an obstacle to find the product of 35 x 25, as in the example 

above, the expert teacher might encourage learners to adopt a strategy that might take 

the form of a visual representation – an array or an area diagram. It has to be 

acknowledged however, that different learners might be more or less inclined towards 

a visual representation (Nardi, 2014), in which case an alternative computational 

representation might be adopted. Indeed, the actual signs and symbols used in 

multiplications, the ways of presenting and recording information and multiplication 

with zeros, can all prove problematic for many learners (Siemon et al., 2012). Thus, 

strategies for providing remedial support need to be taught to student-teachers. 
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2.5.4  FRACTIONAL THINKING AS AN APPLICATION OF 

SHULMAN’S PCK 

In South Africa, in the Intermediate Phase of schooling, that is, Grades 4 – 6, Grade 4 

learners are exposed to intermeshing fractional thinking ideas. These include 

comparing and ordering halves, thirds, etcetera through eighths; describing and 

comparing common fractions in diagrams, adding common fractions with the same 

denominators and understanding equivalence. Learners are also expected to solve 

word problems containing fractions, grouping and sharing. By the end of the phase, 

when learners complete Grade 6, the sophistication of the asking requirements 

increases and includes addition and subtraction of mixed numbers, fractions of wholes, 

percentages, two digit denominators, equivalence between common, decimal fractions 

and percentages, and addition and subtraction of decimals to two decimal places 

(Department of Basic Education, 2011).  

 

Clearly, even if student teachers understand all of these content aspects of fractions – 

often, however, they do not – then still, they need to assimilate requisite PCK skills so 

as to become effective teachers of fractions. 

 

Many fractional facts and ideas are misunderstood and can hamper progression. 

Learners may not conceive the symbolic fractional numbers of 
1

2 
 , 0,5 𝑎𝑛𝑑 50% as 

representative of the same amount (Tipps, Johnson & Kennedy, 2011), or may not 

understand how to negotiate calculations with mixed numbers (Petit, Laird & Marsden, 

2010).  

 

Among conceptions of fractions that should inform student teachers’ PCK 

understanding of fractions, they should be able to (1) demonstrate and use a variety 

of models of fractions to explain different perceptual features of fractions, (2) 

understand that learners may make use of flawed whole number reasoning to solve 

problems involving fractions, (3) use partitioning for understanding and explaining part-

to-whole relationships, ordering and comparing; equivalence and operations with 

fractions, (4) use number lines to assist learners to understand the concepts of relative 

size, equivalence, the effects of adding and subtracting fractions, and the density of 

fractions, (5) employ procedural skills and understanding in formalised adding and 
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subtracting, (6) understand that multiplying and dividing fractions are amongst the 

most complex tasks that are undertaken in mathematics in the primary school (Petit, 

Laird & Marsden, 2010). Siemon, et al. (2013, p. 569) suggest however, that because 

“fractions are inherently multiplicative, multiplying and dividing fractions is in many 

respects more straightforward than adding and subtracting fractions.” Facets of 

working with fractions, and conceptual and skills aspects of applicable PCK are 

discussed below. 

 

Haylock and Manning (2014) suggests that models offer visual and intuitive insights 

that symbolic representations might obscure. Where Haylock and Manning, 2014, and 

Petit, Laird and Marsden, 2010, use the term models other authors use representations 

(Siemon et al. 2013; Nardi, 2014). However, albeit that the mathematician’s models 

provide a visible trace of the attributes of problems, the goal must be the development 

of an ability to mentally visualise scenarios and solutions: student teachers must 

understand that “modelling is a means to the mathematics, not the end” (Petit, Laird & 

Marsden, 2010, p. 1).  

 

Visual models might include artefacts, number lines and number strips, arrays, shaded 

sections of rectangular and circular shapes, fraction charts, and base-ten materials. In 

cases where learners are at risk or have cognitive challenges, judiciously-used math 

cards which break down fractional computations can be used as scaffolds (Tipps, 

Johnson & Kennedy, 2011). Continuous fraction models – area diagrams and number 

lines – are based on conceptions of being infinitely divisible; discrete fraction models, 

as representations of a whole – a packet of sweets or a sack of potatoes – represent 

collections which are not intended for further partitioning (Siemon et al. 2012). 

 

Each of these models offers particular benefits and limitations. Circles, for example, 

used as fractional representations (or pie charts), may display proportions, parts of 

whole and whole effectively, but cannot illustrate zero values. Similarly, the icons used 

in pictograms, when used as representations of larger groups, can be misinterpreted 

to imply singular items (Rickard, 2013).  

 

Further, the homophones, whole and hole, and the colloquial use of whole, as in, 

Trevor ate a whole half of a chocolate cake, can create confusion. This language 
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complication would be particularly true for non-mother tongue speakers. It is, however, 

quite acceptable to use informal language such as top number and bottom number 

alongside the formal vocabulary of fractions (Haylock, 2002). However, it must be 

noted that links between executive function, bilingualism and mathematical 

achievement have suggested that bilingualism can favourably enhance mathematical 

reasoning and problem-solving capacities (Hartanto, Yang, & Yang, 2018). 

 

Other challenges which are linked to misunderstanding the concept of whole include 

learners’ inability to perceive the whole when they are provided with a part of the whole 

– If ¾ of the class is 24, how many in the class?; not considering the original size of 

the whole when apportioning part-sizes to fractions – If 0,5 of 120 sweets were eaten, 

how many sweets remain?, and making incorrect comparisons with wholes that are 

not of the same magnitude – Determine 40% of 50 and 100 (Petit, Laird & Marsden, 

2010). 

 

Fraction diagrams can be used to demonstrate the concept of partitioning, that is, the 

whole contains equally sized parts. In the case of common fractions, problems which 

are encountered include learners’ misinterpretation of the role of the denominator or 

misinterpretation of a partitioned fraction diagram. Tipps, Johnson and Kennedy 

(2011) encourage teachers to allow learners to consider slices of bread, fruit and 

liquids for partitioning, and to then encourage learners to fold paper shapes such as 

squares, hexagons and circles into halves, thirds and so forth. Siemon et al. (2012), 

caution that when learners populate fraction strips that are pre-designed for their use 

– perhaps by their teacher or in s textbook – many misunderstandings can manifest; 

they suggest that deep understanding can only be achieved by encouraging learners 

to construct their own fraction diagrams and that then these diagrams are populated 

based on their own understanding of unit parts and partitioning.   

 

Ratios, rates and percentages are built up as extensions of fractional understanding 

and equivalence. These concepts require proportional reasoning. Proportional 

reasoning requires learners to compare quantities, often as percentages, but this is a 

complex undertaking which develops over time. Indeed, Tipps, Johnson and Kennedy 

(2011), suggest that up to ninety percent of adults struggle with proportional reasoning. 

Typically such problems compare either two phenomena – for example a comparison 
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of distances covered by two cars in different times to identify their average speeds, or 

problems where three out of four quantities are known, with the requirement that the 

fourth be established (Siemon, et al. 2012).  

 

Flawed understanding of the effects of a percentage increase on an amount and 

subsequently a decrease on the revised amount can hamper understanding: for 

example, raising 100 by 10% produces 110, but then subsequently decreasing 110 by 

10% produces 99. Clearly, for mathematicians, the starting points in the two 

calculations are different, but for many learners, the rationale seems counterintuitive 

(Haylock, 2002). For these sorts of stumble-stones, a visual representation in the form 

of a pair of partitioned arrays, might be used to clear up the misunderstanding. 

 

Student teachers need to assist learners to comprehend relative size and number 

density, that is, the property that between any two fractions, common or decimal, there 

are an infinite number of other fractions.  

 

Number lines are useful in assisting teachers to understand learners’ spatial sense 

(Gardner, 1993), sense of relative size, and capacity to sort and order fractions, for 

example from smallest to biggest. Various combinations of plays on denominators and 

numerators, or one, two and three digit decimals can be used to explore learners’ 

ordering skills (Tipps, Johnson & Kennedy, 2011). 

 

Number lines are also particularly good at helping learners to make sense number 

density, and for this illumination, a magnifying visualisation of a section of a number 

line, displayed perhaps via a data-projector, might prove beneficial. Alternatively, 

teachers might use a washing-line activity in which the washing line becomes 

populated with fractions attached to pegs (Siemon et al., 2013). The point of this 

activity is to demonstrate that no matter how tightly two fractions might be packed 

alongside one another on the number line, there will always be a limitless number of 

other fractions between them (Petit, Laird & Marsden, 2010; Tipps, Johnson & 

Kennedy, 2011). Indeed, this zooming in, approaching zero,  is analogous with the first 

principles conceptions which underpin calculus.  
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In South Africa, by the end of Grade 6, learners are expected to demonstrate 

procedural fluency in adding and subtracting mixed numbers (Department of Basic 

Education, 2011). Petit, Laird and Marsden (2010), suggest that procedural fluency – 

that is, the application of formal computation techniques that are used to add and 

subtract mixed numbers – must be complimented with conceptual understanding and 

the use of appropriate models – visual representations – of fractions. They suggest 

that visual representations in the form of area models, partitions and number lines, can 

unlock meaning. Siemon et al. (2013), offer a similar view; they too suggest that mixed 

numbers are best understood when, in the early stages, visual stimuli – an array 

perhaps – are used in tandem with the more symbolic and somewhat ritualised 

computational techniques. Such models enable learners to visually link underpinning 

fractional concepts such as equivalence and common denominators and bring them 

to bear on the steps in procedural processes. 

 

Decimals are handled in a somewhat similar manner. In South Africa, by the end of 

the Intermediate Phase, Grade 6 learners are expected to attend to “addition and 

subtraction of decimal fractions with at least two decimal places” (Department of Basic 

Education, 2011, p. 11). Here to, as above, student teachers should understand that 

visual representations – for example a number line or 10 x 10 grids (Siemon, et al., 

2013) or Cuisenaire rods (Petit, Laird and Marsden, 2010) – used alongside the more 

formal columns-based setting-out techniques (Haylock & Manning, 2014), offer a 

conceptually powerful link for procedural fluency. 

 

Multiplication and division of common fractions are not discussed in the Intermediate 

Phase in South Africa, but student teachers should understand the PCK skills, 

concepts and problems that learners need to negotiate when they encounter these 

types of calculations. Multiplication of decimal fractions is included in the Intermediate 

Phase (Department of Basic Education, 2011).  

 

Multiplying and dividing common fractions requires a resetting of one’s mind-space. 

Many learners carry over from their understanding of multiplication with whole 

numbers, the misconception that multiplication with common fractions will always 

result in a numerically larger product. Thus, while this conception is true for ¼ x 3, it is 

not true for ⅜ x ½. Petit, Laird and Marsden (2010), suggest that partitioned area 
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models make the rationale of why these different outcomes are achieved, more 

accessible for learners. An example of the application of a visual strategy might be that 

the product of 
1

3 
 ×  

3

4
  can be found by folding a sheet of paper into thirds in one 

orientation and then folding it into quarters in the opposite orientation, thereby creating 

12 congruent smaller areas. This folding and filling of spaces reveals the product to be 

3

12
 or 

1

4
  (Sowder et al., 1998). When such a strategy is used alongside the procedural 

routines of multiply the top numbers, then multiply the bottom ones, then simplify if 

possible, the conceptual meaning conferred by the visual scaffolds assists children to 

build up understanding (Tipps, Johnson & Kennedy, 2011). 

 

Similarly, while division with whole numbers – for example,  34 ÷ 2 = 17  typically 

generates a quotient that is smaller than the dividend, this is not necessarily true with 

common fractions. While, for example 
1

2
 ÷

5

2
=

1

5
  and clearly, the quotient 

1

5
  is smaller 

than the dividend  
1

2
 , in a separate example such as 

1

2
 ÷

1

4
=

2

1
  the quotient 

2

1
 𝑜𝑟 2 is 

larger than the dividend 
1

2
.  PCK skills and knowledge are required to unpack this type 

of conundrum. While most learners are exposed to the phrase invert and multiply and 

successfully (procedurally) complete division computations, most do not perceive how 

it is that division with fractions supplies its surprising answers (Siemon et al, 2012).  

 

If the approach that is adopted is quotitive division, the divisor is perceived as the size 

of a group, and the quotient tells us how many groups – of this size – can be obtained 

from the dividend. So, the answer tells us the number of parcels, each the same size 

as the divisor, that are available to us. Thus, in 
3

1
 ÷  

1

2
 the quotient 6 tells us that there 

are 6 groups of 
1

2
 in 3. Similarly, we would find 8 groups of 

1

2
 in 4; 10 groups of 

1

2
 in 5, 

an so on. Although a bit obscured by the shapes of the fractions, the analogy extends 

to, for example   
3

5
 ÷  

2

7
 ; here, the quotient is found to be  

21

10
 𝑜𝑟 2

1

10
  In effect, this 

means that there are 2
1

10
  groups of an amount  

2

7
  in the dividend fraction 

3

5
 

 

Where a partitive approach is applied, the divisor is perceived as representing the total 

number of equal parts, and the quotient of division establishes the size of each part 

(Siemon et al. 2012). 
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2.5.5   PRINCIPLES WHICH UNPIN EFFECTIVE MATHEMATICS 

TEACHING PRACTICE 

Muir (2008), identified six principles for effective teaching of numeracy, where 

numeracy implies extending mathematical competence to include contextualised 

applications in everyday life. These principles include attributes that should be 

inculcated into student teachers conceptions of mathematics and include (1) making 

connections between different areas of mathematics; (2) Challenging all learners in 

the class and holding high but realistic expectations of the learners; (3) teaching for 

conceptual understanding and linking concepts across the curriculum; (4) holding 

purposeful and challenging discussions on mathematical practices and reasoning with 

learners; (5) focusing on the big ideas in mathematics by engaging learners in the 

importance of being able to use a variety of methods to examine problems at hand; 

and (6) holding, displaying and encouraging positive attitudes towards mathematics 

as a worthwhile and enjoyable pursuit. 

 

Similarly, Haylock and Mann (2014), suggest that meaningful-learning mind-sets are 

created when learners are encouraged to make cognitive connections between 

intersecting mathematical ideas. A connections model is proposed; in this model, deep 

mathematical understanding is presented as being able to connect vocabulary, use 

symbols, construct pictures and engage in real world experiences. Further, in the 

primary school, children should understand equivalence, transformation, conservation 

of number and classification as big mathematical ideas which underpin their 

understanding of mathematics. Teachers need to assist there learners to construct 

these “networks of connections” or schema (Haylock and Mann, 2014, p. 30). 

 

Moschkovich (2013), suggests that classroom practices which support mathematical 

reasoning, use multiple resources and encourage all learners’ participation create 

opportunities for all learners to develop mathematical thinking. Equity of opportunity 

for all learners is enhanced when teachers’ practices are informed by an understanding 

of their students’ history and life experiences and use this knowledge to create 

contextualised learning opportunities. Vocabulary, for non-mother tongue learners 

should extend beyond rote to understanding. Teachers should understand use 

curriculum materials. Moschkovich (2013, p. 48) suggests that mathematics teachers 
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who make a positive difference in their learners accomplishment and their conceptual 

development, typically adhere to two principles, namely (1) in their classes, these 

teacher focus on concept development, not routines, and (2) they “give students the 

time to wrestle with important mathematics.” 

 

It is clear that in intent, there is close dove-tailing between the seven aspects of PCK 

(Shulman, 1987), the six principles for effective teaching of numeracy (Muir, 2008), 

Haylock and Mann (2014), and Moschkovich (2013), above. 

 

Further, Muir (2008), demonstrated that the (1) relationship between teachers’ belief 

systems of mathematics, their (2) knowledge of mathematics, and their (3) classroom 

practice, influenced what was taken as worthwhile. Here, Muir’s (2008) views are 

analogous with Beswick (2005), who contrasted teaching practices in transmission-

mode classrooms with Platonic classrooms. 

 

Muir (2008) found that in primary schools, teachers often were able to list and use 

numerous facts and formulae but lacked conceptual understanding of the 

mathematics. Further, many teachers admitted that they were anxious, lacked 

confidence in and felt professionally unprepared to teach mathematics (Ma, 2008; 

Haylock & Manning, 2014). In turn, these factors contributed to their lesson-planning 

and the way they blended courseware, questions and assessment in their classes.  

Similarly, Ma (2010), found that in one group of average teachers in the United States 

of America, not one of the group displayed any deep understanding of elementary 

mathematics and concluded that any improvement in learners’ mathematics scores 

would necessitate first, an improvement in their teachers’ knowledge of school 

mathematics. And, to break the cycle of low-quality education and low quality teachers, 

she suggests, a refocusing on initial teacher preparation is required.  

 

In their own research, Sowder, Philipp, Armstrong and Schappelle (1998), drew 

conclusions which were congruent with Muir (2008) and Ma (2010), above and found 

that many primary mathematics teachers held “weak and unconnected knowledge of 

a subject they taught daily … [and were]… struck by the teachers’ lack of 

understanding of what their students knew and did not know” (Sowder, et al., 1998, p. 

180). Similarly, Berry, Bol and McKinney (2009) found that pre-service teachers did 
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not understand mathematical content, did not know how learners learn mathematics, 

lacked instructional and assessment knowledge, and did not know how to teach for 

understanding. 

 

Muir (2008) established that teachers might be more or less categorized as being 

connectionist, transmission or discovery oriented. Teachers who used connectionist 

principles, that is, teachers who encouraged children to construct their own unique, 

deep and meaning-filled conceptions and representations of courseware, were found 

to provide the most beneficial learning opportunities for learners. Further, in her 

research, Muir (2008, p. 93), suggests that the “use of representations was found in 

this study to be particularly relevant to developing the principles of conceptual 

understanding and making connections.” Nor are these representations limited to the 

use of manipulatives, but also include diagrams, words and symbols. However, the 

mere use of representations is not enough; it is how they are used that makes the 

difference. 

 

Further, effective teachers provide instructional examples which are designed to 

provide conceptual and structural clarity for their learners. However, because one 

illuminating example cannot be assumed to provide a suitable scaffolding framework 

for all learners, numerous strategies must be employed to reveal the full scope of a 

mathematical idea or concept (Bruner, 1966; Gardner, 1997; Muir, 2008).  

 

Further, the choice of tasks which are used in the classroom must be challenging for 

all learners and must bring with them varying aspects of cognitive demand and skills 

development (Bloom, Max, Furst, Hill & Krathwohl, 1956; Muir 2008). In this regard, 

the consideration of Vygotsky’s Zone of Proximal Development, and his framework for 

understanding, namely that (1) learners need to construct their own knowledge, (2) 

development is linked to social circumstance, (3) learning can be in advance of 

development, and (4) language, or the lack thereof, plays a pivotal role in mental 

development, can assist student teachers to factor in appropriate engagement points 

and scaffolding assistances (Bodrova & Leong, 1996).  

 

Gestures can be used by teachers and learners as a visual demonstration “that the 

body is involved in thinking and speaking about the ideas expressed in those gestures” 
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(Alibali & Nathan, 2011, p. 247). As such, pointing, representational and metaphoric 

gestures can represent embodiments of our perceptions of mathematics and thereby 

reveal our mathematical thinking to others. When gestures are used meaningfully in 

conjunction with other visual-verbal scaffolds, they assist learners to make sense of 

mathematical ideas. Gestures are often spontaneously produced and to serve as a 

universally understood form of communication that can express meanings and 

conceptions of mathematical ideas (Edwards, 2009).   

 

Modelling is the practice where teachers demonstrate “what to do an / or how to do it” 

(Muir, 2008, p. 95), with learners. Modelling requires teachers to strategically seek 

inputs from learners and should not be confused with reinforcement-driven, 

behaviourist-inspired, transmission-mode practices where learners copy-down and 

mindlessly repeat routines (Wood, 1998). Instead, modelling provides opportunities to 

develop conceptual understanding while maintaining a focus on the mathematics at 

hand. In modelling, teachers and learners alike might include various gestures, 

demonstrations, representations and discussions that focus on interesting examples. 

 

From all of the above, it is clear that albeit that student teachers need to hold many 

intermeshing skills and competences, a continuous thread demanding the use of 

models / representations / visual scaffolds has been revealed, their contribution being 

that said models can illuminate hidden mathematical concepts and can elevate rote-

learned routines into deeply conceptualised mathematical computations. I turn next to 

the role visualisation can play in assisting learners to understand mathematical ideas. 

 

2.6  VISUALISATION AS A STRATEGIC TEACHING AND 

LEARNING TOOL IN MATHEMATICS 

Almost thirty years ago, Fosnot wrote, “The discipline to which the greatest disservice 

occurs in the schools is perhaps mathematics. Unfortunately, it is often taught solely 

as arithmetic computation, with little or no attempt made at facilitating reasoning or the 

development of logic” (1989, p. 71). Unfortunately, the data found in Chapter 4 will 

confirm that thirty years later, for many participants in this study, mathematics has 

been presented to them as a series of instrumentally learned, arithmetic routines and 

computations. However, as seen in [2.3, 2.4, and 2.5] above, South African learners 
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are now required to deeply engage with mathematical ideas, are required to develop 

relational understanding and to use mathematical knowledge in creative and flexible 

ways to solve problems. Their teachers are encouraged to use PCK understanding 

and appropriate teaching techniques to assist learners to develop their own 

mathematical understanding. Teachers are encouraged to use apparatus and other 

visual representations of big mathematics ideas; these concrete and iconic 

representation can assist us to illuminate and understand concepts and characteristics 

that might be obscured by symbolic representations of mathematical ideas.  

 

Because it is now recognised that mathematical understanding and reasoning can be 

negotiated and enhanced through the sensible use of manipulatives and sketches of 

ideas, in this section of the literature review I pay close attention to the role that 

visualising strategies can play in assisting students in their mathematics. However, it 

has to be acknowledged that visual strategies may not prove beneficial for all learners. 

This is discussed in [2.6.3.1], below. 

 

2.6.1  THE ROLE OF SUPPORTIVE MET-BEFORES  

Antonini, Presmeg, Mariotti, and Zaslavsky (2011, p. 191) make the point that 

mathematicians, epistemologists and mathematics teachers alike agree that 

mathematical thinking is enhanced when students are exposed to many different 

mathematical examples and exemplification. However, students have, “different 

abilities, interests, learning styles and cultural backgrounds” (Chamberlin and Powers, 

2010, p. 114). Each student may present a different, “epistemological gap” (Carroll, 

2017, p. 3), which occurs when, in past learning experiences, appropriate scaffolding 

was not introduced and the exemplifications that were used might have impeded rather 

than enhanced learning. It follows, then, that for comprehensive development to occur 

(Doyle, 2006, p. 31), all examples must be designed to enable previous learning to be 

linked to subsequent learning. This conduit, which Tall (2014, p. 223) calls, “supportive 

met-befores” assists students to construct new skills, procedures and concepts.  

 

Supportive met-befores help students to form generalized conceptual frameworks of 

mathematical ideas. In this regard, supportive met-befores are analogous with the 

linking, integrative features of relational understanding. 
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2.6.2  COMPRESSION 

As successive, positive experiences of mathematics are laid down, the coherence of 

these experiences leads to compression (Tall, 2014, p. 226) such that foundational 

overarching concepts – meta-concepts – are formed and become automatic, making 

future connections and success more easily attainable. In effect, success breeds 

success. However, when these successes are not achieved, this, “may lead to a 

negative feed-back loop in which the desire to avoid failure leads to less engagement 

with the mathematics” (Tall, 2014, p. 227). This avoidance of the subject leads to a 

downward spiral in mathematical confidence, and often causes at-risk students to 

adopt rote-learning approaches rather than attempt to understand their mathematics. 

 

2.6.2.1 EMBODIED COMPRESSION 

Tall (2014, p. 226) suggests that when we are provided with opportunities to, for 

example, physically rearrange a fixed number of objects in different ways, we come to 

understand, to see, that the different arrangements do not change the total. Many such 

practical examples leads to embodied compression. This compression enjoins our 

eyes and hands; it is tangible: we can see it, it is self-evident, and we begin to perceive 

that a particular rule will hold true for all similarly defined cases. Tall (2014, p. 226) 

calls this generic proof – one case is seen to be a fair representation of a category of 

examples.  These initial interactions with, in this example, a fixed group of objects help 

us to develop a generalizable understanding of, for example, number bonds. 

 

2.6.2.2 SYMBOLIC COMPRESSION 

Symbolic compression (Tall, 2014, p. 226) occurs when, “embodied operations on 

objects such as counting, adding, sharing, is compressed into symbolic operations on 

whole numbers, fractions, signed numbers and so on.” Symbolic compression occurs 

when numerous generic proofs are assimilated to develop a robust conceptual 

framework of a mathematical idea. The initial use of carefully selected examples, 

exemplified in practical and visible ways, can assist students to make meaning of their 

mathematical experiences. From this store of early physically and visually located 

understandings, that is, embodied compression, students should in time, link and 

compress numerous related memories into symbolic meta-concepts, vis-à-vis, 

symbolic compression. 
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2.6.3 A CASE FOR THE USE OF VISUALISATION TECHNIQUES 

IN MATHEMATICS 

The use of visual representations has benefits for both teachers and their students. 

For teachers, visual representations, “play an important role in the explanation of 

mathematical ideas” (Barmby, Bolden, Raine & Thompson, 2013, p. 6), while, for 

students, a capacity to visually represent mathematical ideas fosters deep 

understanding of mathematical ideas. Indeed, “the ability to transform thoughts into 

images is often viewed as a test of true understanding” (Wolfe, 2004, p. xi). Indeed, 

albeit that the full scope of the benefits and limitations of visualisation in mathematics 

are yet to be revealed, there is now much interest in this field: 

 

Developers and practitioners are not waiting for educational theory and 

empirical study to guide them; they simply move forward based on their 

practical experience and informed inferences about what is useful and why. 

 Macnab, Phillips & Norris, 2012, p. 103 

 

As an application of the views held by Macnab, Phillips and Norris (2012), above, the 

visualising activities which are introduced to the participants in my research project 

have been developed and refined by myself. Hopefully, the data and findings of this 

thesis will add to a growing body of information about the role of visualisation in 

mathematics. 

 

2.6.3.1 VISUAL TECHNIQUES MAY NOT BE A BEST FIT FOR EVERYONE 

Different individuals, based on their unique ways of thinking, may be drawn towards or 

reject the incorporation of visual solutions into their own schemata. Learners who 

prefer to make use of their kinaesthetic and/or spatial intelligences might be drawn 

towards visual constructions while learners who are more logically oriented might 

prefer the clarity brought to them by a more symbolic notation of mathematical ideas 

(Gardner, 1993). 

 

Constructing visual representations can be problematic for students, because, 

“understanding a diagram as both a process and a product is critical if a student is to 

proficiently use a diagram to solve a word problem” (Poch, van Garderen, & 
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Scheuermann, 2015, p. 154). Thus, “teachers cannot assume that students recognise 

these representations in the manner expected” (Barmby et al., 2013, p. 7). Further, 

Presmeg (1986, p. 301) makes the point that where, in their past experiences of 

mathematics, the use of visualization was not a preferred methodological tool in the 

school curriculum, students may well not perceive any need to use concrete and visual 

methods. However, Presmeg (2009), Duval (2013), Clements (2014) and Wilkie & 

Clarke (2014) all support a view that there is, “compelling empirical evidence of the 

power of visualization in supporting sensemaking skills and growth in mathematical 

knowledge and understanding” (Rivera, Steinbring, & Aravi, 2014, p. 2).  

 

Further, while Siemon et al. (2012), support the use of drawings of mathematical ideas 

that are constructed by learners, Rellensmann, Schukajlow and Leopold, (2017, p. 55), 

suggest that although drawing is widely perceived to be a useful aid in assisting 

learners to solve mathematical problems, “empirical studies on the benefits of learner-

generated drawing [my emphasis] in mathematics have shown mixed results.”  

 

Learner-generated drawings are intended to produce illustrations of learners’ 

understanding of mathematical ideas and problems and to provide visual scaffolds to 

assist them to negotiate pathways. However, Rellensmann, Schukajlow and Leopold, 

(2017) found that in cases where learners feel they do not benefit from the use of such 

scaffolds, cognitive overload – caused by fulfilling the teacher’s requirements – 

occurred, and thereby, reduced the learners’ performance. This, they suggested, 

occurs because in such students, the cognitive requirements which are invoked to 

construct the sketches reduces the amount of mental space made available for 

information processing. 

 

2.6.3.2 PEDAGOGICAL ACCRETION 

Mhlolo, Venkat and Schäfer (2012, p. 1), suggest that, “current reforms in mathematics 

education emphasize the need for pedagogy because it offers learners opportunities 

to develop their proficiency with complex high-level cognitive processes.” However, in 

my own experience, pedagogical accretion, in which teachers and children are 

encouraged to use novel approaches rather than routines and formulae, can be fraught 

with difficulty. On many occasions, in spite of using what I would have thought are 

innovative, interesting and conceptually accessible teaching strategies, I have found 
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that my own students are hesitant and even resist the use of such approaches. Indeed, 

I reflect upon this issue in Chapter 4 and 5. It can be very discouraging.  

 

Mhlolo et al. (2012, p. 1) state that when teachers in a Gauteng based research project 

were encouraged to present their mathematical ideas as visual representations, “the 

teachers’ representations of mathematical connections were either faulty or superficial 

in most cases.” This would be my experience as well. However, in spite of this sort of 

problem, Mhlolo et al. (2012) hold the view that: 

 

The ability to present a concept in several different ways shows a deep 

understanding of that concept, [and] recognising and producing alternate 

representations is a particularly fruitful way of conceptualising what a 

mathematical connection is. 

Mhlolo et al., 2012, p. 2 

 

Thus, suggest Mhlolo et al. (2012, p. 8), in classrooms where meaningful and cogent 

representations of mathematical concepts are not made available to them, “most 

learners probably [lose] opportunities to develop a deep understanding of mathematical 

connections.” Put differently, it is now understood that, “knowledge is amplified in the 

multiplicity of representation choices” (Siemens, 2006, p. 84).  

 

2.6.3.3  THE USE OF VISUAL TOOLS 

Where Mhlolo et al. (2012) above use the term representations, Naidoo (2012) writes 

about visual tools. Naidoo (2012, p. 1) suggests that, “visual tools … make 

mathematical concepts easier to understand for learners. Visual tools include the use 

of concrete apparatus and iconic stimuli such as diagrams, pictures, transparencies 

and colour.  

 

Master teachers deliberately incorporate visual tools into their explanations so as to 

enable their students to grasp abstract mathematical concepts (Naidoo, 2012, p. 2). 

Further, she contends that, “good teachers often use symbols, colour, diagrams and 

gestures in the classroom as an alternative to the routine approach of ‘talk and chalk’ 

teaching,” and states that, “the use of visual tools assists in uncovering the role that 

visual reasoning plays in solving problems in mathematics” (Naidoo, 2012, p. 2). This 
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view supports the position held by du Toit and Kruger (1993, p. 40), who wrote that, 

“the forming of visual images is indispensable for meaning attribution.”  

 

Rellensmann, Schukajlow and Leopold, (2017) found that strategic knowledge about 

drawing, the accuracy with which drawings are executed as fair representations of 

ideas, and types of drawings used – their fit-for-purpose – all contribute to the use of 

visual tools in problem solving. They suggest that a pictorial sketch, or situational 

drawing, which depicts a problem’s surface structure might be useful in a low 

abstraction situation, for example, in a pictograph. However, a more succinct use of 

drawing – that is, mathematical drawing – is needed for tasks what require higher 

levels of abstractions, for example, an array or a tree-diagram. Mathematical drawings 

present an abstracted and idealised visual representation of a mathematical problem. 

Learners use these sketches to consider which strategies and computations to 

execute, and use the results to compare and validate against reality.  

 

The pictorial orientation of situational drawings initially assists learners to makes sense 

of mathematical ideas, while the more abstracted mathematical drawing facilitates 

planning, computation and validation of findings. Where irrelevant information is 

presented on such sketches, they can serve as distractions from the purpose of the 

sketch (Rellensmann, Schukajlow & Leopold, 2017).  

 

In concert with Rellensmann, Schukajlow and Leopold (2017), above, Kadunz and 

Sträßer (2004) suggest that as complimentary visualisation techniques, images, offer 

us analogous, heuristic representations of ideas while diagrams are used to represent 

our algorithmic thinking structures. Here, images and situational drawings imply much 

the same idea. Similarly, mathematical drawings and diagrams appear to be 

interchangeable in each case the former terms produce a more pictorial 

representation, while the latter pair, offers a more abstracted sketch of a mathematical 

idea or situation. Images may confer some ambiguity while diagrams “are created 

according to accepted rules of a system of representations and are used according to 

these rules” (Kadunz & Sträßer, 2004, p. 245). Images and diagrams are used to 

create and demonstrate meaning. 
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2.6.3.4 EMBODIED COGNITION 

Naidoo’s (2012) use of the term gestures, and Tall’s (2014) explanation of embodied 

compression both resonate well with a conception of embodied cognition. Boaler et al. 

(2016), writing about embodied cognition, suggest that mathematics teachers and 

students should use their arms, legs and bodies as devices to mediate and explain 

mathematical ideas. 

 

We gesture because we see, experience and remember mathematics 

physically and visually, and greater emphasis on visual and physical 

mathematics will help students understand mathematics. 

Boaler et al., 2016, p. 5 

 

In other words, “the ways we posture, gaze, point, and use tools when expressing 

ideas is evidence of our holding mathematical ideas in the motor and perceptual areas 

of the brain” (Boaler et al., 2016, p. 5). She suggests that mathematics teachers who 

use their bodies to explain ideas and concepts in physically demonstrative ways 

enable learners to perceive course-materials better. The visualisation of, for example, 

the sides of an equilateral triangle, or a large number versus a small number, by means 

of the movement of hands and arms – thereby embodying the idea which is under 

discussion – eases cognitive uptake of that idea.  

 

Boaler et al. (2016) contend that because, “the body is an intrinsic part of cognition, 

the parts of our brain that control perception and movement of our bodies are also 

involved in knowledge representation” (Boaler et al., 2016, p. 5). It follows that students 

should be encouraged to use their bodies and gestures to ensure that they construct 

their own personalised muscle-memory banks of mathematical ideas. She suggests 

that such actions enable the mind to lay down mental pathways that provide links 

between, “visual and sensory motor memories” (Boaler et al., 2016, p. 5).  

 

In summary, Naidoo (2012), du Toit and Kruger (1993) and Boaler et al. (2016), above, 

suggest that the deliberate use of visual stimuli (1) facilitates more comprehensive 

learning transfer and uptake, and (2) makes it possible for us to identify – teacher and 

pupil alike – the deductive processes employed by the problem-solver.  
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2.6.3.5 VISUALISATION AS A MEDIATOR FOR THE COMPLEXITY OF ORAL 

EXPLANATION 

Mudaly (2010, p. 65) states that, generally speaking, mathematics teachers teach in, 

“a verbal way, where the teacher orally engages his or her learners with new or old 

concepts.” But, he continues, the, “abstract cues… [and] added language problems,” 

(Mudaly, 2010, p. 65) found in mathematical concepts and vocabulary may easily 

overwhelm learners. Contrasted with this verbal approach, Mudaly (2010, p. 65), cites 

examples where the use of visual information is used as a means of negotiating 

understanding in the world: babies visually discern their parents from other adults, 

teenagers use brand logos as status-symbols, and adults use road-signs to travel 

safely on our streets, etcetera. Mudaly (2010) makes the point that pictures make our 

ideas clearer to ourselves and to others (Muldaly, 2010, p. 65), and suggests that the 

use of well-conceptualised visual stimuli facilitates the linking of prior knowledge with 

new knowledge and, “act as tools to negotiate new ideas” (Mudaly, 2010, p. 66). 

Mudaly (2010), points out a subtle but important distinction between something that is 

visualised and visual literacy. The former, something visualised, (Mudaly, 2012, p. 67) 

refers to our ability to physically or mentally see an image; the latter, visual literacy, 

refers to a deeper construct, one in which such images can be mentally manipulated, 

reoriented and reimagined. Mudaly (2010, p. 67) holds the position that, “visual literacy 

is visualisation combined with logical thought,” and continues, stating that: 

 

…if visual literacy is successfully taught then there is a natural tendency for 

the mind to engage in logical and rational thought at the sight of a picture or 

diagram. Visual literacy … [refers] to the internal processes that the mind 

engages in after viewing an external picture or diagram or a mental image.  

Mudaly, 2010, p. 68 

 

2.6.3.6 SEMIOTIC COMPLEXITY 

Duval (2014) writes about the, “semiotic complexity” (2014, p. 159) or 

misunderstandings that visualization techniques might impose upon students. He 

cautions that imbuing artefacts such as bottle-tops or simple representative sketches 

with mathematical meaning can, for some students, prove to be counter-productive in 

conceptualising problems. It is quite possible that students may misunderstand or be 

unable to define the representational qualities of a visual scaffold. However, by 
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assisting students to perceive diagrams as more than mere pictures can be a 

transformative process that opens up future mathematical development and 

understanding” (Poch, van Garderen, & Scheuermann, 2015). This benefit 

notwithstanding, as discussed in (2.6.3.1), above, we have to acknowledge and 

prepare for situations where students might find the use of visualisation obstructs their 

conceptualisation and learning. 

 

2.6.3.7  INTERPRETING FIGURAL INFORMATION AND VISUAL 

PROCESSING 

In the 1980s, Bishop (1983), having focused his eye on the problems that students 

had in interpreting and solving geometric problems, constructed a visualisation theory 

which connects spatial awareness and mental conjecture. Under the umbrella concept 

of visualisation, he conceived two separate but intersecting visual capacities that were 

required for problem-solving, (1) Interpreting Figural Information (IFI), and (2) Visual 

Processing (VP). 

 

Interpreting Figural Information, or IFI, implies that we use our eyes, literally, to explore 

visual stimuli. If we use the example of a map, we find that we use IFI to identify 

features on that map to enable us to orientate ourselves and negotiate a path forward 

on that map. IFI speaks to our ability to look at external stimuli – a smiling face, body-

language, a treasure map, a geometric shape – and, by mentally drawing upon 

memories of previous, similar experiences, use those memories to try to understand 

and interpret the new visual stimuli before us. The eyes serve as a conduit between 

the external world and our understanding of the world. Based on our interpretation of 

the visual data received by our eyes, IFI enables us to orient ourselves and to take 

action. IFI is akin to Mudaly’s (2010) concept of visualising. 

 

Visual Processing, or VP, occurs as a far more sophisticated undertaking. VP refers 

to our capacity to imagine and to mentally manipulate artefacts and situations. For 

example, when we close our eyes and mentally draw up a picture of a loved one, or 

we mentally rotate a geometric object, we are using visual processing. Visual 

processing is very powerful: it enables us to mentally remember images and 

manipulate things we have seen but, more importantly, it enables us to imagine 
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objects, systems, etcetera, which we have never actually encountered. In this regard, 

Bishop’s (1983) views of VP is congruent with Mudaly’s (2010, p. 67) visual literacy. 

 

2.6.3.8 SPATIAL ORIENTATION AND SPATIAL VISUALISATION AND 

IMAGERY 

Siemon et al. (2012, p. 223), suggest that, “when we are involved in visualisation, we 

are forming images, either mentally or externally through diagrams… [and that] being 

able to reason using visualisation is an important aspect of mathematics.” Further, 

although we live in a three dimensional world, most visual representations of 

mathematics are presented as two dimensional drawings in text-books (Risma, Putri, 

& Hartono, 2013). Siemon et al. (2012, p. 224) suggest that, “Spatial sense is an 

important aspect of numeracy, being inherently mathematical and also essential for 

living and interacting in our world,” and explain (2012, p. 223) that spatial sense 

comprises two main spatial abilities, namely, (1) Spatial orientation, and, (2) Spatial 

visualisation and imagery. 

 

Spatial orientation finds a strong accord with Bishop’s (1983) Interpreting Figural 

Information or IFI concept. Spatial orientation skills include being able to visualise 

dynamic changes in images; creating a mental warehouse of images of shapes and 

objects and being able to link “spatial knowledge to verbal/analytical knowledge” 

(Siemon et al., 2012, p. 223). 

 

Spatial visualisation or spatial imagery is more than a simple remembered image of an 

event or object. Zimmerman and Cunningham (1991), in Siemon et al. (2012 p. 223), 

have defined it as, “the process of forming images (mentally, or with pencil and paper 

or with the aid of technology) and using such images effectively for mathematical 

discovery and understanding.” 

 

Risma, Putri, and Hartono (2013) suggest that when students are encouraged to make 

use of spatial visualisation, they begin to use spatial terms more confidently and 

develop spatial visualisation capacities – in other words, practice makes for conceptual 

and skills-based improvements. Further, the role of the teacher is important – over-

teaching or providing too much support or too soon, reduces the efficacy of spatial 
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visualisation as a learning and problem-solving scaffold. Further, where teachers 

themselves are insecure in using such techniques, little benefit accrues to learners. 

______________________________ 

 

In this section, I have suggested that visual tools in the form of previous met-befores, 

tactiles, sketches, photographs and mental constructions can facilitate deep 

understanding of mathematical ideas and, in addition, when compression occurs, can 

assist students to solve word-problems. Throughout this chapter, many perspectives 

on mathematics have been presented, with each designed to build up a case to 

support the use of visual scaffolds in an IPS 413 E mathematics classroom as an 

appropriate, novel and beneficial teaching and learning methodology. It is now 

important to link all of these views into a suitable theoretical framework for the thesis. 

In this regard, the outstanding contribution made by Jerome Bruner (1915 – 2016) in 

assisting us to deeply understand learning, provides me with such a structure. 

 

2.7  A THEORETICAL FRAMEWORK FOR THIS RESEARCH 

My decision to write the theoretical framework at the end of this chapter stems from 

my view that, for action research, cogence in thinking about the issues which inform 

the research, should culminate in a theoretical framework that is consistent with the 

aspirations of the research. 

 

In South Africa, many of us continue to teach by drilling, by rote and regurgitation, by 

using the one right method. In doing this, we reduce our subject to a 19th through 

middle 20th century transmission-mode view of mathematics. When we focus mostly 

on operations, processes, and convergence but do not provide our pupils with 

opportunities for risk-taking, experimentation and application, we short-change our 

pupils: we ignore a most essential epistemological aspect of 21st century mathematics, 

that is, mathematics as an understanding-based, problem-solving, human enterprise. 

 

In contrast to the transmission-mode teaching and learning scenario outlined above, 

Jerome S. Bruner (1915 – 2016) posits a view that the accretion of relational 

knowledge and deep learning is driven by the active participation of intrinsically 

motivated, inquiry-oriented learners. My own epistemological, pedagogical and 
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methodological positions rest heavily upon Bruner’s conceptualisations of knowing and 

learning, therefore the theoretical framework of this research is guided by Bruner’s 

theory of learning. 

 

2.7.1 A RE-EMPHASIS OF THE ASPIRATIONS OF THE CAPS 

DEFINITION OF MATHEMATICS  

If we return to the South African definition of mathematics for a moment (refer to 2.3.1), 

we are reminded that the CAPS (2011) view of mathematics is that it is, “a human 

activity that involves observing [my emphasis], representing [my emphasis] and 

investigating [my emphasis]” and that it, “helps to develop mental processes [my 

emphasis] that enhance logical and critical thinking, accuracy and problem-solving that 

will contribute in decision-making” (South Africa, 2011).  The use of the verbs – 

observing, representing and investigating – as pivots, suggests that there are 

epistemological, methodological and pedagogical imperatives to provide visualising 

opportunities to students to enable them to really sink their teeth into these features of 

mathematics and thereby to engage with mathematics in ways which foster deep 

understanding. Indeed, it is clear that within the CAPS curriculum, rote-learned factoids 

withdraw – Bruner himself called these, “pellets of this or that” (Bruner, 1980, p. 408) 

–  in favour of students actively learning for understanding.  

 

Bush, Daddysman and Charnigo (2014) conceive three main types of learning 

experiences that students encounter – I would be more inclined to conceive a 

continuum – which includes no learning, rote learning, and meaningful learning. The 

first classification is self-explanatory; teaching might have taken place, but no learning 

uptake has been achieved. The second classification identifies an ability the students 

might develop to recall key facts, that is, rote learning, but does not extend to the 

capacity to do anything meaningful with that information. Meaningful learning, the third 

classification, occurs when students cogently, intuitively, creatively and strategically 

attend to non-routine problem-solving enterprises. Meaningful learning liberates the 

full knowing and understanding potentials in students.  

 

Visual stimuli provide a gateway to understanding. Indeed, in this literature review, 

authors such as Siemon et al., (2012),  Mudaly, (2010), Mholo et al., (2012), Naidoo, 
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(2012), and Boaler et al. (2016), among others, promote a view that visualisation is an 

important mediating tool in teaching and learning mathematics. Visualising stimuli – 

visual scaffolds – can facilitate logical development, critical thinking and deeper 

understanding of mathematic ideas and can thereby assist students to solve 

mathematical problems. But visualising strategies, on their own, offer only a part 

solution for improvement in mathematical understanding. These strategies must be 

complemented by robust pedagogy and methodology, a theory of learning, one such 

as that espoused by Bruner. My own work and, by extension, the theoretical framework 

of the thesis are informed by Bruner’s views on learning. 

 

2.7.2  BRUNER – A BRIEF OVERVIEW 

In the late 1940s, Bruner was a central figure in the cognitivist reform movement that 

rejected empiricist views of knowledge structures, rote-learned behaviours, and 

positivistic curricula. Instead, Bruner viewed humans as active and intelligent problem-

solvers and suggested that, provided that the intellectual development of the learner 

was accounted for, “any subject can be taught effectively in some intellectually honest 

form to any child at any stage of development” (Bruner, 1960, p. 33). He suggested 

that learning involves three processes, all acting in unison, namely, acquisition, which 

adds to or overturns our previously held ideas and knowledge; transformation, which 

reorganises new knowledge to accommodate it within our existing knowledge 

structures and thereby enables us to use this new knowledge as a means of prediction, 

extrapolation, etcetera; and evaluation, which tests this newly acquired information to 

make sure that it fits with our world view (Bruner, 1960, p. 48 - 49).  

 

Bruner (1986, p. 130), considered himself a constructivist and believed that, “what we 

call the world is a product of some mind whose symbolic procedures construct the 

world” (Bruner, 1986, p. 95). Continuing, he put forward an opinion that, “no one “world” 

is more “real” than all others, none is ontologically privileged as the unique real world” 

(Bruner, 1986, p. 96). Instead, every human being creates his or her own unique view 

and understanding of the world.  

 

Bruner (1966) favoured an epistemology that encouraged pupils to construct their own 

knowledge (Bruner, 1966, p. 41 – 42), and recommended that schools should, “enlist 

the natural energies that sustain spontaneous learning – curiosity, a desire for 
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competence, aspiration to emulate a model, and a deep-sensed commitment to the 

web of social reciprocity” (Bruner, 1966, p. 127). Bruner downplayed the effectiveness 

of tests and exams as a motivation for learning, suggesting that, “where grades are 

used as a substitute for the reward of understanding, it may well be that learning will 

cease as soon as grades are no longer given – at graduation” (Bruner, 1960, p. 51).  

 

In his later years, Bruner amended his views of the cognitive perspectives of his earlier 

work, suggesting this needed to be supplanted by acknowledging that our culture, as 

a mediating and locating context, equips us with predispositions which shape our 

perception of ourselves and our world (Bruner, 1980, p. 102 – 103; Takaya, 2008, p. 

2). When educational norms and practices are viewed from this position, it becomes 

apparent that epistemologically and culturally, there can be no neutrality in learning. 

Bruner unshackled himself from his earlier intrapsychic views of knowing and realigned 

himself with views which acknowledge the social construction of knowledge. 

 

2.7.2.1 FOUR CRITICAL IDEAS FROM BRUNER’S EARLY WORK 

Four critical ideas manifested from his early work, (Bruner, 1960), those being that: 

1. Many classrooms are set up for teaching, not for learning: such classrooms 

preclude learning of much more than the rote recall of facts and algorithms that 

transmission mode teaching habits endorse. However, deep learning is largely 

driven by curiosity (Bruner, 1966, p. 43) and success in future learning is 

dependent on the structuring of practical, understanding-based experiences in 

numerous earlier learning opportunities (Bruner, 1960, p. 11 - 15); 

2. Often, teachers wait too long to introduce new or big ideas: they premise this 

delay on a view that such work lies outside of the comprehension of younger 

learners. However, through the mediation of a spiral curriculum, Bruner (1960, 

p. 33) contends that by accommodating the intellectual development of children 

and revisiting the same content over a number of years at increasing levels of 

sophistication, children can come to deeply understand that content; 

3. Bruner posited that intuition and intuitive ways of knowing are a critical, but 

neglected, prerequisite for deep thinking. “Intuition implies the act of grasping 

the meaning or significance or structure of a problem without explicit reliance 

on the analytical apparatus of one’s craft” (Bruner, 2007, p. 51). Experience-

based intuition enables mathematicians, as an example, to have “a sense of 
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what combinations are likely to have predictive effectiveness and which are 

absurd” (Bruner, 1980, p. 211). Indeed, intuition comes before formal proof and 

the application of an algorithm; 

4. Bruner argued that intrinsic rather than extrinsic motives for learning should 

drive the processes of teaching and learning. Extrinsic motives, vis-à-vis 

parental approval and avoiding failure in tests, conspires to encourage rote 

learning (Bruner, 1980, p. 406). However, the construction of knowledge, “is not 

a matter of getting him [sic] to commit results to mind. Rather, it is to teach him 

[sic] to participate in the process that makes possible the establishment of 

knowledge” (Bruner, 1966, p. 72). Bruner’s (1980) position aligns with Plato, 

(2.1.1), and Freire, (2.1.3), discussed earlier in this literature review. 

 

2.7.3  TWO MAJOR THEMES FROM BRUNER’S WORK 

The four ideas listed above consolidate into two major themes: Bruner posited that (1) 

the acquisition of knowledge requires active participation by the learner, and (2) we 

learn mostly by linking new information to our existing knowledge frameworks. 

 

2.7.3.1 ACQUIRING KNOWLEDGE 

Bruner (1980), as an advocate of inquiry-based, discovery-oriented, intrinsically-

motivated and hypothetical modes of learning, suggested that we best acquire 

knowledge through participation in acts of problem-solving; he wrote: 

 

Mastery of the fundamental ideas of a field involves not only the grasping of 

its general principles, but also the development of an attitude towards 

learning and inquiry, towards guessing and hunches, towards the possibility 

of solving problems on one’s own. 

Bruner, 1960, p. 20 

 

In the context of the above-written quote, fundamental implies a meaningful 

understanding of a foundational concept: for example, the conception of a square has 

powerful, deep and wide applicability in many directions. Accordingly, when teaching 

the fundamental concepts and big ideas in a subject, teachers must be employed to 

accomplish this knowledge construction (Bruner, 1960, p. 18 - 19). Further, he 

suggested that, “it is only through the exercise of problem solving and the effort of 
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discovery that one learns the working heuristic of discovery” (Bruner, 1980, p. 410). In 

addition, “since learning and problem-solving depend upon the exploration of 

alternatives, instruction must facilitate and regulate the exploration of alternatives on 

the part of the learner” (Bruner, 1966, p. 43).  

 

Bruner (1966) believed that with proper support from their teachers, students would 

learn to adopt problem-solving approaches that would predispose them to use novel 

and intuitive ideas to work through new, non-routine problem-situations and to discover 

optimal solutions for themselves. He suggested that, “discovery, like surprise, favors 

the well-prepared mind” (Bruner, 1980, p. 402). However, he acknowledged that the, 

“method of discovery would be too time-consuming for presenting all of what a student 

must cover in mathematics” (Bruner, 1960, p. 21). This sage advice compels teachers 

to expertly blend learning opportunities of discovery with moments of exemplification. 

Indeed, he conceded that, in mathematics at least, many exercises in, “computational 

practice may be a necessary step towards understanding conceptual ideas in 

mathematics” (Bruner, 1960, p. 29).  

 

Bruner’s (2007, p. 50) conception of discovery posited that it is only when we are 

actively engaging with solving problems that we are creating opportunities for 

discovery. Nor did he restrict his conception of discovery to something that was 

previously unknown to human-kind. Rather, he suggested, uppermost in his 

conception of discovery was the discovery of new ideas and knowledge for oneself. 

This enables one, “to be his [sic] own discoverer” (Bruner, 1980, p. 402). However, 

when teachers evoke a quest for discovery, within learners there will be an, 

“expectancy that there will be something to find” (Bruner, 1980, p. 404). In other words, 

the effort expended in taking risks and in thinking has to be matched with discovering 

something that is worthwhile.  

 

Discovery-based-learning can be a time-consuming, risk-taking enterprise in which 

one stream of ideas may lead to a dead-end whereas a different stream of thought 

may lead to a suitable solution. While Bruner was aware of curriculum pressures that 

teachers face, nonetheless, he advocated that teachers should try to provide enough 

time for students to work through such problems and to achieve success. When this 
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happens, “discovery, with the understanding and mastery it implies, becomes its own 

reward, a reward that is intrinsic to the activity of working” (Bruner, 2007, p. 51). 

 

With reference to Piaget’s processes of assimilation and accommodation (Craig, 2016, 

p. 58), Bruner (2007) suggested that discovery requires a blending of (1) expository 

mode teaching, or listening, as a metaphor for accepting and unpacking new 

information, that is, the assimilation of information – and (2) hypothetical mode 

conceptualising, or speaking, as a metaphor for active problem-solving, that is, using 

the accommodation of information to best fit with the requirements of the new problem. 

When student and teacher cooperatively work in the hypothetical mode, that is, the 

world of ideas and theorising, the student ceases to be a recipient of information and 

knowledge and transforms, “to taking a part in the formulation and may at times even 

play the principal role in it” (Bruner, 1980, p. 403). 

 

2.7.3.2 LINKING PREVIOUS WITH NEW KNOWLEDGE 

Bruner believed that, “the principal problem of human memory is not storage, but 

retrieval” (Bruner, 1980, p. 411). He suggested that we are biologically primed to store 

vast amounts of sensory and learned information. So, storage is not the issue; the 

problem, rather, is that often we appear to not have the facility to retrieve those 

memories. However, he suggested, where ideas – memories – are paired to additional 

stimuli, be it a linking picture, a paired word, or a mnemonic, for example, retrieval is 

simplified because of the better organisation of the information and the bonds it has 

with its linking devices. 

 

The human mind constantly cycles through the three mental processes, namely 

acquisition, transformation, and evaluation. The act of learning, that is, our acquisition 

of new skills and knowledge, may contradict or overthrow an existing understanding 

that we hold. In trying to make sense of the new information, we transform it so as to 

cause the new knowledge to link with as many of our existing ideas as possible, and 

while doing this, we evaluate this information and try to judge whether we have made 

cogent sense of the new knowledge (Bruner, 1980, p. 421 - 422).  

 

Because our skill-filled capacities are inherently the result of practice over time, Bruner 

suggested that provided, “one respects the ways of thought of the growing child” 
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(Bruner, 1960, p. 52), a spiral curriculum offers an optimal path for linking previously 

learned information to new information (Bruner, 2007, p. 53). Indeed, he suggested, 

“there are very few single or simple adult acts that cannot be performed by a young 

child” (Bruner, 1980, p. 327). Further, when complicated adult acts are reconstituted 

into simpler sub-components, even novices can achieve success. The difference 

between the expert and the novice lies largely in the, “orchestration of these 

components into an integrated sequence” (Bruner, 1980, p. 327). A spiral approach, 

in which sub-components are incrementally introduced to the orchestra offers learners 

opportunities to become skill-filled.  

 

Where practitioners adopt a spiral approach in their teaching programmes, Bruner 

(2007) suggests that in planning their curriculum teachers need to consider (1) the 

problem of structure, (2) the problem of sequence, and (3) the problem of embodiment. 

 

2.7.3.3 THE PROBLEM OF STRUCTURE 

Bruner believed that teachers who avoid teaching big ideas to their students, and 

particularly their younger students, are often reluctant to entertain this work because 

of their awareness of their own lack of understanding of those ideas. However, as 

mentioned earlier, (2.7.3.2), Bruner (2007, p. 53) suggests that complex ideas can 

always be paraphrased in simpler, but nonetheless accurate restatements of general 

underlying principles and ideas.  

 

Bruner (1960, p. 9) believed that teachers who structure their courseware do a great 

service to at-risk students who typically lose direction when courseware is loosely 

thrown together. However, structure should invoke more than the sequencing of facts 

and techniques. Structure should be conceptualised as operating at the heart of 

knowledge transfer (Bruner, 1960, p. 12).  “To learn structure” suggested Bruner 

(1960, p. 7), “is to learn how things are related.” This, talks to the positive attributes of 

relational rather than instrumental learning, discussed in (1.2.2.1). Over time, simpler, 

generalizable ideas allow us to tease out deeper understandings of complex ideas. 
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2.7.3.4 THE PROBLEM OF SEQUENCE 

A second consideration requires teachers to sequence learning in ways which create 

supportive stepping stones. Bruner (2007, p. 53) suggested that to miss out a stepping 

stone, or to move to a new idea, premising the new knowledge upon a misunderstood 

previous idea, simply frustrates the enterprise of teaching and learning. This view finds 

congruence with the concept of supportive met-befores, discussed earlier in (2.6.1). 

Sequencing can be linked to Bruner’s (2007, p. 54) view on readiness, which proposes 

that, “any subject can be taught to anyone at any age in some form that is honest.” 

Sequencing requires teachers translate ideas into a language and explanation which 

is age-appropriate. Furthermore, teachers should, “opt for depth and continuity in our 

teaching rather than coverage.” (Bruner, 2007, p. 54). Failing this, teachers may limit 

the potential for children to learn deeply.  

2.7.3.5 THE PROBLEM OF EMBODIMENT 

Embodiment addresses the need to establish ways for teachers to bridge, “the gap 

between the ideas in mathematics and the students’ ways of understanding such 

ideas” (Bruner, 2007, p. 53). Big ideas, much like the idiom of eating an elephant one 

bite at a time, can be incrementally addressed, with successive layers of 

understanding building upon previous layers. Iterative experiences of a meta-concept 

can provide opportunities for embryonic ideas to become well-established within long 

term memory and, over time, leads to compression (2.6.2).  

 

2.7.4  BRUNER’S THREE PHASES OF LEARNING 

Bruner (1980) contended that humans, “can be described as a species that has 

become specialised by the use of technological implements” (Bruner, 1980, p. 327). 

He suggested that through the embodied actions of working with tools we have 

genetically wired ourselves to solve problems by using techniques which incorporate 

the use of tools. Indeed, the techniques and tools that we use impart a flavour to and 

influence our representations of the world and frame the ways in which we perceive 

the world. These learned techniques, “serve to amplify our motor acts, our perceptions, 

and our ratiocinative [common sense] activities” (Bruner, 1980, p. 327), so that we 

learn to react to external stimuli, to problems, in practiced ways.  
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In short, the capacities that have been shaped by our evolution as tool users 

are the ones that we rely upon in the primary task of representation.  

Bruner, 1980, p. 327 

 

Representations, broadly, imply the techniques which we use to understand and 

explain the world. The use of tools, as practiced techniques, must be stored, processed 

and encoded to become memories which must be made easily retrievable. Bruner 

(1980, p. 327) conceived three modes of representation, namely, (1) enactive 

representation, (2) iconic representation, and (3) symbolic representation. In learning, 

these representations are assimilated and accommodated such that enactive 

representations may be subsumed by iconic representation which, in turn, may be 

subsumed and supplanted by symbolic modes of representation. However, all three 

modes of representation remain available to the skilled mind.  

 

2.7.4.1  ENACTIVE REPRESENTATION 

Enactive representation refers to our ability to physically negotiate our way through the 

world. “Enactive representation is based, it seems, upon a learning of responses and 

forms of habituation” (Bruner, 1966, p. 11). By practicing particular motor-skills sets, 

such as climbing a flight of stairs or touching biscuits as we count them out, we come 

to represent, “past events through appropriate motor response” (Bruner, 1980, p. 328).  

 

Over time, “the nervous system converts a sequence of responses into an image or 

schema” (Bruner, 1966, p. 14). With proper attention to practice, these motor 

responses become automated, part of our muscle-memory, such that we do not 

expend undue cognitive effort attending to the acts of climbing stairs or counting-on. 

 

2.7.4.2 ICONIC REPRESENTATION  

Iconic representation, “summarizes events by the selective organization of precepts 

and of images by the spatial, temporal, and qualitative structures of the perceptual field 

and their transformed images” (Bruner, 1980, p. 328). Further, “iconic organisation is 

principally governed by principles of perceptual organization” (Bruner, 1966, p. 11), 

and in this regard is linked to Gestalt theory and Gestalt cues (Appendix A), as it is 

“solidly based upon the analysis of naive phenomenology of experience and the 
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manner in which perception and memory are linked by the rule of phenomenal 

similarity” (Bruner, 1966, p. 18). 

 

By, for example, picking an apple off a tree, biting the fruit, and so on, our initial 

experiences of apples are stored in memory as an enactive representation. Over time, 

these experiences are subsumed by perceptions and mental images of apples that are 

arranged and stored in the mind. Consequently, when needed, a concept of apples 

can be conjured up in the mind’s eye as an iconic representation of apples. In this way, 

the enactive representation of apples is subsumed by an iconic representation. 

 

It is important to note that humans are always free to return to the enactive stage: the 

subsumption of the enactive by the iconic mode of representation does not imply the 

extinction of the former in favour of the latter. We are free, as it were, to return to the 

kitchen table to eat another apple. And indeed, every time we do this, with each 

experience of apples, we further develop our enactive and iconic conception of apples. 

 

2.7.4.3 SYMBOLIC REPRESENTATION 

Symbolic representation enables humans to assign meaning to symbols. The symbols 

themselves are an abstraction from the world of things and images of things; the 

symbolic world contains letters and words, musical notes and mathematical 

nomenclature. “Symbols (words) are arbitrary ... there is no analogy between the 

symbol and the thing” (Bruner, 1966, p. 11). In Bruner’s (1980, p. 328) own words, “a 

symbol system represents things by design features that include remoteness and 

arbitrariness. A word neither points directly to its referent here and now, nor does it 

resemble it as a picture.” 

 

The elegance ascribed to symbolic representation is attributed to the fact that because 

symbolic notation, “remains invariant across transformations in imagery, the learner 

comes to grasp the formal or abstract properties of the things he is dealing with” 

(Bruner, 1966, p. 68).  However, this achievement, properly discovered, requires us to 

first engage in the world, and thereby construct an enactive representation of it, 

following which we construct iconic representations of the world. Once these 

representations are stable, we are positioned to embrace the sophistication of abstract 

symbolic representation. 
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2.7.5  BRUNER’S THEORY OF LEARNING 

In teaching and learning, it is possible to apply the three modalities of representation 

as a hierarchal methodology that can facilitate deep understanding. Bruner conceived 

a three-stage, constructivist-based learning theory. In it, Taber (2009, p. 149) posited 

that deep learning occurs when learners are given opportunities to sequentially work 

through tasks which are first saturated in the use of tactiles – manipulatives – with such 

learning experiences being gradually replaced by pictorial information as 

representations of ideas, and that, in turn, is eventually exchanged in favour of the 

abstraction of words and numbers (Naroth & Luneta, 2015, p. 269). Through the 

processes of (1) acting within the world, vis-à-vis, “instrumental activity” (Bruner, 1966, 

p. 68), (2) observing and constructing unique representational images of the world, 

and (3) acquiring the skills which enable one to craft symbolic descriptions and 

interpretations, “people convert reality into their own unique portrayal of reality” 

(Presno, 1997).   

 

2.7.5.1 APPLYING BRUNER’S THEORY OF LEARNING TO MATHEMATICS 

Critically, in teaching and learning, the sequences and changes in methodological 

presentation from enactive through iconic through symbolic representational forms of 

knowing need to be scaffolded by knowledgeable teachers (Ndlovu, 2014, p. 3).  

 

Bruner remained quite flexible on cycling back through the three forms, stating that in 

problem-solving he had noted that even though children might have reached the 

abstraction level for a particular aspect of mathematics, many preferred to return to 

the iconic representation as a means for making understanding (Presno, 1997). 

 

2.7.5.2  ENACTIVE REPRESENTATION IN MATHEMATICS 

Witzel, Smith and Brownell (2001) applied Bruner’s learning theory to mathematics. 

Writing about pedagogical enactive strategies that they used with students who were 

struggling in algebra, they suggest that teachers should: 

 

make instruction relevant and use explicit instruction to provide students 

with hands-on experiences. Hands-on experiences allow students to 

understand how numerical symbols and abstract equations are operating at 

a concrete level, making the information more accessible to all students.   
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Witzel, Smith & Brownell, 2001, p. 103 

 

I think it important that we cherry-pick the terms, relevant, explicit instruction, hands-

on experiences and accessible from the above quote. Collectively, they point to a view 

of teaching and learning mathematics which is explored in real-world contexts by 

teachers who directly manage their learning environments and who use tactiles and 

other apparatus to make the subject meaningful to all participants. The learning 

environment must be rich in its use of things that are found in the world as these provide 

useful tangible, visual scaffolds. It is important to note that Bruner himself believed that, 

“not teaching devices, but teachers were the principle agents of instruction” (Bruner, 

1960, p. 15) and that it is through the conduit of doing that we begin to learn (Presno, 

1997). These views support the CAPS definition of mathematics, as found in (2.3.1) in 

this chapter.  

 

Witzel, Smith and Brownell (2001, p. 103), like Bruner, advocate a three-phase, 

“concrete to representational to abstract (CRA) sequence of instruction” teaching 

approach. Within the first phase or concrete level, teachers should make copious use 

of tactile stimuli: such models enable students to understand and self-correct 

deficiencies in their solutions (Kribs-Zaleta, 2008, p. 456). In the second phase, the 

iconic representational level, students should use a blend of tactile and iconic stimuli.  

 

The concrete phase involves manipulatives, such as toothpicks for counting. 

The representational phase uses pictures, such as tally marks. Pictorial 

representations relate directly to the manipulatives and set up the student 

to solve numeric problems without pictures. Matching pictorial 

representations to abstract problems helps students to understand. For 

basic algebra, it is important to include aids to represent arithmetic 

processes, as well as physical and pictorial materials to represent 

unknowns. 

Witzel, Smith & Brownell, 2001, p. 103 

 

The above quote advances a view that teachers who set aside a great deal of teaching 

time for mathematical explorations in the concrete and representational worlds, in other 
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words in the visualisation (2.6) of mathematical situations and problems, in fact set the 

scene for later success when symbolic abstraction is added to the mix.  

 

2.7.5.3  ICONIC REPRESENTATION IN MATHEMATICS 

Bruner’s second stage – iconic representation – is based on Gestalt theory (Presno, 

1997). Initially, images provide iconic summaries of our engagements with the world 

but, with experience, more sophisticated images are conjured up in the imagination. 

Scott Baumann et al. (1997) suggest that the iconic stage plays a vital role in linking 

the outside world – the world of things – to the mind of the cognising being. In the 

iconic stage the, “direct manipulation of objects is replaced by the beginning of more 

abstract thinking with visual or other perceptual imagery” (Özgün-Koco & Edwards, 

2010, p. 51). We develop mental tools that enable us to look at iconic representations 

of objects and understand them. We also develop the capacities to rotate objects 

mentally and imagine objects, scenarios and phenomena that we have never seen.  

 

2.7.5.4 SYMBOLIC REPRESENTATION IN MATHEMATICS 

Abstract reasoning, the third level in Bruner’s learning theory, introduces learners to 

the world of words and numbers and symbolic nomenclature. Success at this level is 

largely dependent on the quality and quantity of learning experiences in the concrete 

and representational levels of instruction. In the symbolic representation stage of 

conceptual development we, “grasp the formal or abstract properties” (Bruner, 1966, 

p. 68) of things and ideas with which we are dealing. This highest level of Bruner’s 

three-stage learning theory draws parallels with Plato’s higher realm of forms, 

discussed earlier (2.1.1). Through our deliberate and thought-filled, mark-making on 

paper and computer screens, for example, we demonstrate – for others to see – our 

particular understanding, our interpretation of the world. 

 

Bruner’s three stage learning theory finds cogence with dual-code theory which posits 

that, “students learn better when provided with visual and verbal representations rather 

than visual or verbal representations alone” (Moreno & Valdez, 2005, p. 43). Indeed, 

“visualizing what you read makes the text more meaningful and memorable” (Wilson, 

2012, p. 189). Dual coding theory suggests that, “kinaesthetic and tactile experiences 

may be encoded not as verbal information but instead as a type of image” (Jones, 

Minogue, Tretter, Negishi & Taylor, 2006, p. 112), which reinforces the role that visual 
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stimuli play in teaching and learning. Indeed, in the context of teaching word-problems 

that are written in English to students who are typically not English speakers, the use 

of suitable pictures, alongside the texts of word-problems, can play a significant role in 

supporting meaning-making of intent (Sadoski, 2005, p. 233 - 234). 

 

2.7.6 IMPLICATIONS OF BRUNER’S THEORY OF LEARNING 

FOR THIS THESIS 

Bruner’s conception of learners is that they are intelligent, intuitive, problem-solving 

and action-oriented human beings. As such, they must be allowed to act in the roles of 

listener – as a metaphor for learning from others - and speaker - as a metaphor for 

constructing knowledge with others. While Bruner’s conception of epistemology is 

firmly positioned in the construction of understanding – schema – the journey towards 

this goal is located first in learning experiences that occur in the real world. Bruner 

suggests that a structured, inquiry-based (discovery), spiral curriculum (embodiment), 

offers maximum educational beneficiation for learners. To this end, he envisages the 

use of a hierarchy for learning, moving learning from the world of enactive through 

iconic through symbolic modes of representation, and always presented with a view 

that looping-back is an inbuilt feature of the learning theory. 

 

2.8  SUMMARY OF CHAPTER 2 

Teachers hold philosophies, opinions and biases which are informed by their life 

experiences. In Plato’s Allegory of the Cave I have suggested that deep learning is a 

continuous construction, is intrinsically motivated and requires effort and risk-taking. 

Freire posits that ontologically oppressed humans will seek redress and suggests that 

banking forms of education oppress learning. Bourdieu provides evidence of the 

devastating effects of marginalisation – oppression – of some human beings by others.  

In the second section of the review, I unpacked international, regional and local sets of 

data which confirmed that mathematics in South Africa is in poor health. In section 

three, I suggested that South Africa’s curriculum policy encourages a liberalising 

mathematical pedagogy, an activities-based teaching and learning methodological 

approach and an understanding-based epistemological view of mathematics.  
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In the fourth section, I presented an overview of problem-solving in mathematics and a 

focused discussion on word-problems. I revealed barriers which preclude students 

from success and suggested that, where compression has not taken place, students 

muddle through problem-solving tasks. In section five, I discussed modern views on 

mathematics teacher education and pedagogy. In section six, I discussed the role that 

visualisation may play in assisting students to better understand and solve word-

problems.  

 

In the last part of the literature review, I revealed the theoretical framework for this 

thesis. Bruner’s theory of learning draws together the pedagogical, methodological, 

ontological and epistemological aspirations of a liberalising philosophy of education. 

As such, Bruner’s theory pulls together all of the viewpoints that precede it in the 

literature review and informs my praxis. 

  

In Chapter 3 I will provide an account of the research methodology that was used in 

this research project. Its guiding principles, data collection instruments and ethical 

considerations were designed to answer the main and sub-research questions found 

in Chapter 1 of this thesis and to work harmoniously with the philosophical, academic 

and theoretical framework espoused in Chapter 2.   
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CHAPTER 3 - METHODOLOGY 
 

3.0     INTRODUCTION 

Before I undertook this thesis, I vacillated over the research design for this research: 

the two contenders in my conceptualisation were case studies and action research. 

Although they are in some ways similar, it was the repeated suggestion that action 

research seeks to solve problems that led me to believe that a mixed methods 

approach and an action research design was the correct route for me to follow. Blaikie 

(2010, p. 50) suggests that, “few if any social research projects are exclusively 

concerned with advancing knowledge for its own sake.” I did not want to simply write 

a report on a social circumstance; potential benefits were that the action research 

would expose the participants to a novel and meaning-filled experience of mathematics 

and would thereby, possibly emancipate them from imposed limitations on their 

understanding and conceptions of mathematics. I also felt this would enable me to 

reflexively improve my practice (Leitch & Day, 2000; Herr & Anderson, 2005). 

 

3.1   FEATURES OF ACTION RESEARCH 

Action research practitioners aspire to increase their understanding of problematic 

situations and thereby, to construct beneficial modifications to offset those challenging 

conditions (Blaikie, 2010, p. 73). It is suggested that, “action research resides mainly 

within the [theoretical] domain of social psychology and organizational development 

… the overriding philosophy is enhanced efficiency and effectiveness” (Ellis & Kiely, 

2005, p. 94). Further, in action research, improving, being involved, supporting and 

constructing change is understood to be part of the research process, and indeed, 

action research can be seen to be “an embodiment of democratic principles in 

research” (Robson, 2002, p. 216).  

 

In the context of this thesis, efficiency and effectiveness are derived from views that 

suggest that visual scaffolds can pull together and consolidate the important 

mathematical ideas, issues, requirements and features that are found in word-

problems and the application of these visual scaffolds can be cast over a wide 

spectrum of mathematical problems (Fosnot, 1989; Siemon et al., 2012; Haylock & 

Manning, 2014; Rellensmann, Schukajlow & Leopold , 2017).  
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3.1.1    STRENGTHS OF ACTION RESEARCH 

A main strength of action research is that, when it is successful, the emancipated 

participants embrace the experiences of the research which, in turn, “enhances 

chances of high construct validity, low refusal rates and ‘ownership’ of findings” 

(Mouton, 2003, p. 151). Indeed, “a major goal of action research is to generate local 

knowledge that is fed back into the setting” (Herr & Anderson, 2005, p. xv). In this 

regard, two settings which might potentially benefit from the research are my own 

practice in a university setting and, as a second setting, the classrooms in which, in 

the not too distant future, many of the participants will be teaching mathematics.  

 

Bradbury (2015, p. 6 - 7) suggests that action research is underpinned by three 

principles, namely, that (1) the self is relational – we enjoy relationships with the earth 

and those upon it; that (2) systems seek wholeness over time – we strive towards 

collaboration among rather than domination over others and; (3) the primacy of 

practical contribution – we seek to balance science and art in achieving practical, 

emancipatory solutions. Such research is ongoing, thus the changes which might 

occur are not events, but rather part of ongoing processes (Robson, 2002). Bradbury 

writes, “Finding ourselves in relationship with complex, emergent systems, we seek to 

make a positive difference, to minimise suffering, to work towards justice, to muddle 

through” (2015, p. 7).  

 

3.1.2    LIMITATIONS OF ACTION RESEARCH 

The biggest limitations for action research are that the results might be written up to 

only reflect upon, “strong causal and structural explanations” (Mouton, 2003, p. 150); 

descriptive aspects of the research supplant the requirement to obtain hard data, and 

findings may be biased towards qualitative aspects of the research and, “ lack of rigour 

in analysis” (Mouton, 2003, p. 150). Further, Altrichter, Posch and Somekh (1993, p. 

191), suggest some researchers may, “offer very few analytical points and 

interpretations in order to reduce the risk of getting it wrong.” In addition, the moral 

high ground that action researchers may claim for themselves, that they are “doing 

good” (Greenwood, 2005, p. 173) is no justification for sloppy research. Also, because 

the researcher has a stake in the work, the knowledge generated by action research 

cannot be said to be neutral (Herr & Anderson, 2005, p. 26). 
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3.1.3  DYNAMIC CONSERVATIVISM 

Social institutions “are characterised by dynamic conservatism” (Herr & Anderson, 

2005, p. 24). Often, members within a social organisation – vis-à-vis, for example, 

academics in a university faculty – prefer tradition, routines, processes and ways of 

knowing and doing to which they have become accustomed. “It is dynamic in that it 

constantly pulls practitioners back to a status quo that consists of norms, rules, skills, 

and values that become so omnipresent as to be taken for granted and go 

unchallenged… Action research can either reproduce those norms, rules, skills, and 

values or it can challenge them” (Herr & Anderson, 2005, p. 24). Often, faculty placed 

a strong emphasis, “on research as the action, and less emphasis on the effort to solve 

particular problems or induce particular changes in behaviour” (Sanford, 2005, p. 13). 

In my own faculty, our policies regarding thesis construction, research paradigm, 

approach, and design are well-worn and widely understood, and I have tried to work 

within the prescribed frameworks that are employed within the faculty.  

 

3.1.4  EPISTEMOLOGICAL PERSPECTIVE 

The epistemological view of my action research project lies within, “the hermeneutic 

tradition” (Hitchcock & Hughes, 2001, p. 227). “Hermeneutics focuses on recapturing 

the meanings of interacting with others, recovering and reconstructing the intentions 

of the other actors in a situation” (Cohen, Manion & Morrison, 2001, p. 29). A 

hermeneutic stance provides one with a, “powerful means of deepening self-

understanding and building a conception of one’s professional situation” (Brown & 

Heggs, 2011, p. 297). Such understanding, also called verstehen (Bryman, 2012, p. 

29), explores peoples’ perceptions of social phenomena. In my own research, I have 

used exchanges with the participants and collected data using different instruments to 

construct value-judgements regarding the efficacy of the activities in the action 

research and of the participants’ opinions and experiences of the IPS 413 E 

Mathematics lessons. Having claimed a hermeneutic epistemological stance, it makes 

sense that my research lens is focused through an interpretivist paradigm.  

 

3.2  RESEARCH PARADIGM – INTERPRETIVISM 

Lincoln and Denzin (2006), in Mertens, Bledsoe, Sullivan and Wilson (2010, p. 195), 

state that paradigms encompass ontology and epistemology and suggest that, 
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“paradigms are the overarching cosmological statements to which we subscribe when 

we engage in research. While mixed methods approaches are often associated with 

pragmatism (Teddlie & Tashakkori, 2009, p. 7), for the purposes of my thesis – which 

has an action research design – an interpretivist paradigm seemed better fulfil the 

philosophical, ontological and epistemological aspirations of the research. 

Interpretivism supports partnerships between the research and participants and 

thereby can focus on personal and professional development (Hammersley, 2012). 

 

An interpretivist paradigm, “seeks to understand people’s lived experience” (Hennink, 

Hutter & Bailey, 2011, p. 14). Research that is driven by an interpretivist paradigm 

pursues social justice and an understanding of peoples’ perceptions of their lived 

experiences (Moyo, Modiba, & Simwa, 2015, p. 60). Such research is socially 

constructed. The researcher tries to empathetically interpret, understand and make 

sense of people’s subjective, but meaningful life experiences (Bryman, 2012, p. 28 - 

30). Because this subjectivity impacts on research findings, interpretivist researchers 

have to problematize the notion of values-free research (Hennink, Hutter & Bailey, 

2011, p. 14 - 15). 

 

Reflexive analysis and interpretation of data enables the action researcher to discover 

problematic trends and thereby consciously try to improve the problematic 

phenomena. An interpretivist paradigm melds well with action research which is 

exploratory, descriptive, action-related inductive rather than deductive and places an 

emphasis on the well-being of its participants (Mouton, 2003, p. 151). 

 

3.2.1   A NATURALISTIC PERSPECTIVE 

The adoption of an interpretivist paradigm enables researchers to work alongside their 

research participants (Maxwell, 1996, p. 4), and thereby adopt a naturalistic 

perspective. This action research occurred within its most natural setting (Bryman, 

2012, p, 622) – vis-à-vis the classroom.  

 

Further, the research was (1) contextualized within the context of the PGCE IPS 413 

E module; (2) as new evidence and information revealed itself, adaptations to the 

original planning were made; and (3) the emergent plan was informed by the 

interactions between researcher and participants.  
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By its very nature, such work required a fair degree of, “inductive theorizing, i.e. making 

sense of what you find after you’ve found it” (Gillham, 2000a, p. 7). Inductive 

reasoning, suggests Connole (1993, p. 10), “proceeds from specific observations 

(data) to general principles (laws).” That is, numerous specific observations enable the 

researcher to construct a composite situational understanding of the environment and 

activities that are being scrutinised. 

 

3.2.2  A RELATIVIST ONTOLOGY 

Ontologically, in action research, the reality of the researcher is understood to be 

socially mediated through experience, communication, interpretation and reflection. In 

action research, ontology is premised upon constructivist belief systems (Geelan, 

2003, p. 13) and is said to be a relativist ontology. In other words, by constructing 

meaning and seeking consensus, a relativist ontology enables the researcher to arrive 

at a truth – there may be other truths – and any truth is but one of many (Bryman, 

2012, 32-38). From this ontological perspective, it follows that although the researcher 

may be seeking specific and concrete understanding and resolution of a specific 

situation, the epistemological position is one in which knowledge remains uncertain 

and is subjectively constructed by the researcher (Koshy, 2010, p. 23 - 24). Fraenkel 

and Wallen (2009) suggest that action research practitioners ask questions such as:  

 

What kinds of methods, for example, work best for what kind of students?  

How can teachers encourage students to think about important issues? How 

can content, teaching strategies, and learning activities be varied to help 

students of differing ages, gender, ethnicity, and ability learn more 

effectively? How can subject matter be presented so as to maximise 

understanding?  

Fraenkel & Wallen, 2009, p. 589 

 

Answers to such questions require analysis and interpretation of the on-the-ground 

experiences of the participants.  
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3.2.3 THE IMPOSITION OF PRE-SET THEORY IN TEACHING 

AND LEARNING 

Mouton (2003, p. 151) suggests that in conceptualising action research projects, there 

is an, “emphasis on the participants and their world-views: [there is] a reluctance to 

impose any pre-set theory or explanation.” The requirement to establish the world-view 

positions held by the participants and to interact with them carries Platonic and 

Socratic overtones, and has been found to increase understanding of phenomena, 

situations and environments worldwide (Sepeng & Webb, 2012).  

 

3.2.4  MICROGENESIS  

Mouton (2003, p. 150-151) suggests that most types of action research, “have an 

explicit (political) commitment to the empowerment of participants and to changing the 

social conditions of the participants.” Action research can be used to demonstrate 

“microgenesis – that is, development within an observable time period” (Wertsch, in 

Cazden, 1997, p. 307). Such development can occur over relatively short time-spans 

(Birjandi & Ebadi, 2012). 

 

3.3 RESEARCH APPROACH – MIXED METHODS  

As an emerging approach, various authors apply different meaning to terms such as 

paradigm, methodology and methods and indeed many, “writings about MM blur the 

distinctions between paradigms, methodologies, and methods” (Teddlie & Tashakkori, 

2009, p. 21). In this thesis, the terms research paradigm, research approach, and 

research design are formulated within the prescripts of my university.  

 

Conceived variously as being the third path, the third research community, the third 

research paradigm or third methodological movement (Teddlie & Tashakkori, 2009, p. 

3-4), mixed methods research approaches include, “qualitative and quantitative 

features in the design, data collection and analysis” (Mertens, 2005, p. 292), and 

thereby offer an alternative to the dichotomy of maintaining an only qualitatively 

oriented or only quantitatively oriented research stance. While some researchers 

suggest that, on the basis of epistemological position, it is not possible to combine 

qualitative and quantitative research, most researchers have adopted a technical 

approach which recognises that, “quantitative and qualitative research are each 
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connected to distinctive epistemological and ontological assumptions, but the 

connections are not viewed as fixed and ineluctable” (Bryman, 2012, p. 631). 

 

The rationale for using mixed methods approaches is informed by the fact that such 

an approach mixes qualitative and quantitative data rather than using them in tandem. 

In this thesis, I have conferred equal priority to the quantitative and quantitative aspects 

of my research and use both methods concurrently so as to comprehensively answer 

the research questions. Different tools are used to answer particular sub-questions 

more fully, to provide context for and illustration of the findings and to enhance the 

overall understanding of the findings. Such research lends itself to interpretivist 

explanations (Bryman, 2012, p. 628-634).  

 

Because educational problems can be complex to resolve, mixed methods enable 

researchers to generate better understanding using the best-fit features of differently 

oriented qualitative and quantitative research instruments (Greene, Kreider, & Mayer, 

2011, p. 260). Mixed methods approaches facilitate the purposes of action research 

that seeks the emancipation of its participants.  

 

In action research, the researcher and participants co-construct an understanding of a 

problematic reality and then conceive of strategies for improving that reality. Action 

research is perceived as being less about using tried and trusted methods and more 

about being, “a work of art emerging in the doing of it” (Reason & Bradbury, 2008, p. 

5). The action researcher, understanding the benefits and limitations of different 

quantitative and qualitative data gathering tools, uses a mixed methods approach so 

that, “their combined strength would result in improving the depth and accuracy of the 

findings” (Kumar, 2014, p. 20). 

 

3.3.1. QUANTITATIVE FEATURES OF A MIXED METHODS 

APPROACH 

In a mixed methods approach, the quantitative analyses provide a structured 

measurement of phenomena, produces an element of validity and reliability for the 

findings, and “communicates findings in an analytical and aggregate manner” (Kumar, 

2014, p. 14). Measurement produces delineations, gauges differences consistently, 
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and “provides the basis for more precise estimates of the degree of relationship” 

(Bryman, 2012, p. 164). As such, quantitative research tends to be linear, produce 

evidence of causality and generalization and can offer only a part answer to the 

emancipatory goals of action research. 

 

3.3.2 QUALITATIVE FEATURES OF A MIXED METHODS 

APPROACH 

Qualitative features of a mixed methods approach are that they are open and flexible, 

are unstructured, study multiplicities and “communicate findings in a descriptive and 

narrative rather than analytical manner (Kumar, 2014, p. 14). As such, qualitative 

research is inclined towards language, the well-being of its participants, contextualises 

conclusions and leans on experience (Henning, Stone, & Kelly, 2009, p. 4). In mixed 

methods research, these descriptive narratives are combined with quantitative findings 

to provide accurate answers to a multiplicity of research questions (Kumar, 2014, p. 

25). 

 

3.3.3   CONVERGENT PARALLEL MIXED METHODS 

The use of many research tools is very time-consuming and generates copious 

amounts of data, but, suggest Fraenkel and Wallen (2009, p. 558), the payoff is that 

by integrating qualitative and quantitative data-sets, the different data will potentially 

help to reveal and explain patterns, trends, opinions and behaviours. This, in turn, 

provides cross-checks for the work, and enhances methodological triangulation 

(Creswell, 2014, p. 201) for the research.  

 

In order to ensure methodological triangulation, a “convergent parallel mixed methods” 

strategy was used (Creswell, 2014, p. 15), that is, different qualitative and quantitative 

techniques were collected at about the same time. Later, in Chapters 4 and 5, the 

findings will show that in spite of the pre-planning, the execution of that planning did 

not go smoothly. 
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3.4  RESEARCH DESIGN – ACTION RESEARCH 

Cohen, Manion and Morrison (2001) introduce their view of action research in the 

following way:  

 

One of the founding figures of action research, Kurt Lewin (1948) remarked 

that research which produced nothing but books is inadequate. The task, … 

is not merely to understand and interpret the world but to change it. Action 

research is a powerful tool for change and improvement at the local level.  

Cohen, Manion & Morrison, 2001, p. 226   

 

In action research design, “the action aspect is central to the process and influences 

the methods” (Noffke & Somekh, 2011, p. 97). Action research treats theory and 

practice as intertwined, of equal value and, “integrates the development of practice 

within the construction of research knowledge in a cyclical process” (Noffke & Somekh, 

2011, p. 94). Further, Cohen, Manion and Morrison (2001, p. 226) posit that action 

research can be used by individuals or groups who are seeking localised solutions to 

localised problems. As such, its practice can immediately impact on social settings and 

bringing about improvement (Noffke & Somekh, 2011, p. 97).  In educational settings, 

for example, these problems can be found in wide-ranging areas that include the 

construction and exploration of new teaching methods, of trailing different learning 

strategies, experimenting with assessment, professional and attitudinal development 

programes and assessment.  

 

3.4.1   TYPES OF ACTION RESEARCH 

Fraenkel and Wallen (2009, p. 590-591), suggest that there are two main types of 

action research, namely (1) Practical Action Research, in which the, “primary purpose 

is to improve practice in the short term as well as to inform larger issues,” and (2) 

Participatory Action Research, which, in addition to the above, also seeks to empower 

people and bring about beneficial social change. Henry and McTaggart (1996, p. 6), 

perceive a third research strand: Classroom Action Research, which provides 

opportunities for research which is conducted in classrooms:  
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Classroom action research typically involves the use of interpretive modes 

of enquiry and data collection … with a view to teachers making judgments 

about how to improve their own practices …The emphasis is ‘practical’, that 

is, on the interpretations teachers and students are making in the situation. 

Henry & McTaggart, 1996, p. 6 

 

For the purposes of this action research, the best fit alternative seemed to be 

classroom action research.  

 

3.4.2  GENERAL ATTRIBUTES OF ACTION RESEARCH 

Action research typically focuses on direct intrusions within the research setting; it is, 

“inquiry that is done by or with insiders of an organization or community, but never to 

or on them” (Herr & Anderson, 2005, p. 3). Often undertaken by teacher-researchers 

(Frankel & Wallen, 2009, p. 13), action research focuses on the improvement of 

existing situations and practices. Teachers who undertake action research reflexively 

consider the problematic situations and “taken-for-granted practices” (Newton Suter, 

2012, p. 172) in their classrooms and attempt to improve problematic situations. This 

“leads not just to new practical knowledge, but to new abilities to create knowledge” 

(Reason & Bradbury, 2008, p. 5). Robinson (2005) writes that, “action researchers 

share a commitment to three main goals: the understanding and improvement of 

practice; the enhancement of the problem-solving capacities of the practitioners with 

whom they collaborate; and the advancement of knowledge about practice itself” 

(Robinson, 2005, p. 60). In this sense, action research can be perceived as a living 

entity, constantly adjusting and readjusting itself to the unfolding needs and aspirations 

of the participants that it would liberate. 

 

3.4.3    PRAXIS 

Praxis, suggests Woodwell (2014, p. 166), is a term that is synonymous with action 

research. Praxis describes the iterative, cyclical processes which are used by 

practitioners to reflect upon and learn from past experiences and improve their 

practice. Praxis is largely driven by intra-mental cognitive function and an intrinsic 

human motivation to do better. As such, it is informal and does not necessarily invoke 

the use of classification.  
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Reflection and intuitive thinking arouses “the intellectual technique of arriving at 

plausible but tentative formulations without going through the analytic steps by which 

such formulations would be found to be valid or invalid” (Bruner, 1960, p. 13). Bruner 

(1960, p. 13-14), suggested as well that, “the training of hunches is a much-neglected 

and essential feature of productive” (Bruner, 1960, p. 13-14). Indeed: 

 

those involved in action research want to solve some kind of day-to-day 

immediate problem, such as how to decrease absenteeism or incidents of 

vandalism among the student body, motivate apathetic students, figure out 

ways to use technology to improve the teaching of mathematics, or increase 

funding. 

Fraenkel & Wallen, 2009, p. 589 

 

Thus, action research can be seen to not only report on an existing situation or 

phenomenon but also, through praxis – planning, acting, evaluating, refining and 

learning (Koshy, 2010, p. 9) – to also actively attempt to intervene, and when possible, 

to improve that situation or phenomenon.  

 

3.4.4  CONCEPTUALISING A PLAN OF ACTION 

Herr and Anderson (2005, p. 9) posit that some researchers, “see the goal of action 

research as improving practice or developing individuals, whereas others see its goal 

as transforming practice and participants.”  I tried to attend to both aspirations. In an 

attempt to solve a real world problem, vis-à-vis an inability to solve mathematical word-

problems, I constructed a teaching and learning spiral that contained two action cycles.  

 

I used mathematics content knowledge tasks to establish prior knowledge – that data 

was quantified. Interpretation of the data revealed gaps in content knowledge and 

thereby enabled me to create leaning opportunities and activities that might provide 

cognitive and skills support to the participants and to reflexively monitor the efficacy of 

these learning-oriented tasks (Henning, Stone, & Kelly, 2009, p. 128 - 129).  

 

Sepeng and Webb (2012, p. 4), designed action cycles in which their prior-knowledge 

assignments were re-administered at the end of the action cycle. In this way, they were 

able to make a direct comparison of the two data-sets seamless. This technique 
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enabled them to accurately quantify the value-added by the teaching and learning 

strategies that they had used. This, technique became a feature of my own work. 

 

In order to establish and understand the participants’ views on barriers that might 

preclude them from solving word-problems and their views upon the efficacy of the 

visualising strategies that were used in the IPS 413 E module, I used field-notes, a 

Thinkboard, questionnaires and a focus group interview to gather qualitative data. 

 

3.4.5  PLANNING ACTION CYCLES 

Koshy (2010) suggests that when they are presented on paper, action research cycles 

follow a somewhat linear path; conversely, in practice the various stages in action 

research tend to be overlapping and, “in reality the process is likely to be more fluid, 

open and responsive” Koshy (2010, p. 4). However, as one drills downwards towards 

a better understanding of a problem and its potential solutions, so consecutive, 

iterative activities should become better focused. In my planning, I envisaged working 

through two research action cycles. 

  

In the first cycle, through a process of, “analysis, fact findings, planning, execution and 

evaluation” (Sanford, 2005, p. 13), I hoped to find starting points, and establish real 

and perceived ineptitudes and inadequacies that might be present within the cohort:  

some individuals might have previously developed a loathing/fear of mathematics 

while others might not fully understand basic arithmetic routines and conventions, 

etcetera. I planned to uncover those stories and mathematical gaps and use that 

information to try to alleviate fears and misconceptions and to assist the students to 

develop a more robust understanding of foundational mathematical concepts, 

practices and pedagogy. 

 

To that end, reflexively, I conceived and constructed a series of education-theory 

lessons in which salient aspects of visualisation research was used to set the tone of 

the methodological and pedagogical aspirations of the module and this research. I 

coupled this work to CAPS (Department of Education, 2011) directives and various 

aspects of numbers-based, arithmetic content. I constructed numerous visual stimuli to 

embed patterning and fractions calculations. I was aware that all of these 
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considerations would be subject to my interpretation of findings obtained in my initial 

lessons with the students. 

 

The second cycle was conceived to build upon successes and failures that manifested 

in the first cycle. I used the stepping-stones and stumble-stones that were revealed in 

the first cycle to push towards developing a visual strategy for solving word-problems. 

I hoped that these evolutionary, iterative cycles of planning, acting and reflecting would 

produce improved ways of knowing and doing (Reason & Bradbury, 2008, p. 1 - 5).  

 

3.4.6   FEATURES OF ACTION RESEARCH  

Mouton (2001, p. 150-151), suggests that action researchers do this type of research 

“in order to gain understanding and insight into the life-worlds of research participants.” 

Mouton (2001) also suggests that action research is empirically based; that is, the 

findings are derived from activities, experiments and observations rather than from 

theory. The data that informs the findings are a hybrid of existing data (as found in a 

literature review) and new data (as would be captured during the actual contact 

sessions with participants). Further, the research questions that drive action research 

are, “exploratory and descriptive or [have an] action-related focus. Conceptualisation 

is, “more inductive than deductive,” in other words, one makes “sense of what you find 

after you’ve found it” (Gillham, 2000a, p. 7).  

 

Mouton (2001) suggests that the most common modes of data collection include the 

observation of the actions of participants; semi-structured interviews; analysis of 

documents; and the construction of stories – a first person account of the trials and 

tribulations of the day-to-day experiences of the researcher and the participants. Both 

analytical and interpretive views can be woven into a research text to narrate this story 

(Gillham, 2000a, p. 22). The narrative should assist the reader to understand the lived 

experiences of the people involved in the action research, however, novice qualitative 

researchers may concentrate, “too much on description at the cost of analysis and 

interpretation” (Altrichter, Posch & Someka, 1993, p. 185), and may tend to, “offer very 

few analytical points and interpretations in order to reduce the risk of getting it wrong” 

(Altrichter et al., 1993, p. 191).  

Gillham (2000a, p. 6) suggests that individuals and context have a direct bearing on 

the nature of activity and subsequently on the data that materialises. This gives rise to 
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an emergent design: for all the planning that is done, nonetheless, the original grand 

research plan can be derailed by on-the-ground, lived experiences. Thus, while it is 

acceptable to conceive a hypothesis or hold a set of assumptions at the outset of the 

research, it is acknowledged that the actual research and the collected data might lie 

at a tangent to, or even contradict, the original proposition.  

 

Gillham (2000a) writes, “working inductively from what’s there in the research setting 

develops grounded theory: theory that is grounded in the evidence that is turned up” 

(Gillham, 2000a, p. 17).  In other words, the evidence that is revealed through research 

– the data – enables one to conceptualise and reconceptualise a grounded theory: the 

richer the evidence, the richer the theory. Thus, in action research, it is a good practice 

to begin the research project by seeking out and gathering together useful information 

while adopting, as best possible, a neutral position and an unprejudiced mind (Gillham, 

2000a, p. 18). Indeed: 

 

The American social anthropologist Clifford Geertz emphasizes the 

importance of beginning research into any culture by describing what you 

find in detail. He calls this thick description: a process which makes you pay 

attention to the fine grain of what you are observing, and reflecting on it. 

Gillham, 2000a, p. 19. 

 This open position, and the data that is assembled by the initial research, may force 

a, “paradigm shift – a complete change in the way we understand or theorize about 

what we are studying” (Gillham, 2000a, p. 19). 

 

3.4.7 CONCEPTUALISING ACTION CYCLES FOR THIS THESIS 

An action research is designed to contain a spiral of action cycles (Koshy, 2010, p. 4; 

Herr & Anderson, 2005, p. 5) such that data gathered in preceding cycles feeds into 

subsequent cycles. Analytic spirals (Hennink, Hutter, & Bailey, 2011, p. 237 - 238) 

within action cycles enable researchers to develop thick descriptions of data. “Each 

cycle increases the researchers’ knowledge of the original question, puzzle, or 

problems and, it is hoped, leads to its solution” (Herr & Anderson, 2005, p. 5). 
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3.4.7.1 A MODEL OF AN ACTION RESEARCH PROJECT 

An action research model, suggest Fraenkel and Wallen (2009, p. 592) and  Koshy 

(2010 p. 4), includes: 

 planning to implement a change; 

 enacting the change, observing the effects of the process and the 

consequences of the change; 

 reflecting on these processes and the consequences and after re-

planning; then 

 once again, acting and observing; 

 reflecting and planning; 

 and, iteratively, moving forward 

 

Below, in Figure 3.1, I have constructed a simple flow-chart to demonstrate how the 

various aspects of action research flow from one to another.  

 

 

    

 

 

 

 

 

 

 

Figure 3.1. A flow-chart containing iterative cycles of action research 

 

Various authors such as Cohen, Manion and Morrison (2001, p. 234 - 239), Mertler 

(2012, p. 14 - 22), and Rembe, Shumba, Maphosa and Musesengwe (2016, p. 38 - 93) 

provide slightly different models. However, when they are distilled to their essence, 

they all adopt a spiral methodology and they each employ a looping-back feature which 

is premised upon the view that, should a route prove fruitless or of little benefit, then a 

review of troublesome phenomenon will need to be identified and an alternative path 
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will need to be put in place. In fact, action research provides teachers with a common-

sense explanation of good teaching praxis.   

 

3.4.7.2  A CONCEPTION OF A LAYOUT FOR MY ACTION CYCLES 

Below, in Figure 3.2, I have constructed a broad-strokes representation of my general 

conception of the layout for an action cycle in my own research. The conception of this 

layout is based upon an action research design model: Plan, Act, Observe, Reflect, 

created by Kemmis and Wilkinson (1998). 

 

Figure 3.2. A flow-chart which demonstrates the general conception of a 

single action cycle 

 

Initial planning was done prior to the implementation of the action research. In Action 

Cycle 1, two tasks were prepared for the participants one of which looked at existing 

foundational arithmetic knowledge and the second of which, looked at their existing 

ability to attend to and solve word-problems. The captured data provided information 

on the participants’ prior knowledge and revealed gaps in their knowledge. The 

scrutinised data facilitated the construction of materials and activities that were 

conceived to offset some of the knowledge gaps. Subsequently, that courseware was 

offered to the participants. Their interaction with the courseware and classroom-based 

activities were observed and iteratively, on-the-ground experiences of each task 

informed the next. At the end of the action cycle, the participants were re-evaluated, 

and that data was used to reflect upon the efficacy of the action cycle.  

 

In general conception, the main features of Action Cycle 2 mimicked Action Cycle 1. 
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3.4.8  CONCEPTION OF ACTION CYCLE 1 FOR THESIS 

The Kemmis and Wilkinson (1998) model, above, was fine-tuned to define features of 

the conception of the first action cycle of the thesis. It is presented in Figure 3.3, below: 

 

Figure 3.3.  Conception of Action Cycle 1 for IPS 413 E Mathematics 

 

3.4.8.1  ACTION CYCLE 1: 1 – ESTABLISH PRIOR KNOWLEDGE 

At the beginning of the first action cycle, the participants were asked to complete two 

assignments (Item 1 in Figure 3.3), one of which investigated Foundational Arithmetic 

Concepts while the other looked into Word-Problem Calculations. The quantitative data 

was captured and was then analysed. It was used to establish existing prior knowledge 

and knowledge gaps, and served as a baseline for the conception of and design of 

activities that might provide support to the participants.  

 

3.4.8.2 ACTION CYCLE 1: 2 – ADMINISTER QUESTIONNAIRE 

Concurrent with the application of the prior knowledge tasks, I intended to ask the 

participants to complete a questionnaire (Item 2 in Figure 3.3). I intended to use that 

information to investigate the participants’ perceptions of mathematics. However, on-

the-ground factors precluded the administration of the questionnaire during Action 

Cycle 1. Because of different on-the-ground factors, a spontaneously-conceived 
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Thinkboard (Addendum in Figure 3.3) was presented to the participants. Later, this is 

fully discussed in (4.1). 

 

3.4.8.3  ACTION CYCLE 1: 3 – REFLEXIVE SUPPORT 

The quantitative data and qualitative data were considered and then, reflexively, were 

used to conceptualise and construct scaffolding mathematical activities (Item 3 in 

Figure 3.3) in the action cycle.  

 

3.4.8.4 ACTION CYCLE 1: 4 – RE-EVALUATION OF MATHEMATICAL 

KNOWLEDGE 

At the conclusion of Action Cycle 1, (Item 4 in Figure), the participants mathematical 

content knowledge was re-evaluated.  

 

3.4.8.5       ACTION CYCLE 1: 5 – EXPLORE FOR MICROGENESIS 

 After marking and collating, the quantitative prior knowledge data was compared with 

the data captured by the re-evaluation tasks (Item 5 in Figure 3.3). The data-sets were 

used to ascertain whether microgenesis, (3.2.4), that is, improvement in performance 

over an observed period of time, had indeed occurred (Cazden, 1997).  

 

3.4.8.6 ACTION CYCLE 1: 6 – PERCEPTIONS OF VISUALISING SCAFFOLDS 

At the end of the first action cycle, I also planned to hold a semi-structured interview 

(Item 6 in Figure 3.3) with a purposefully selected sample of the participants. I planned 

to use this opportunity to try to establish their opinions regarding the mathematical 

content and the visual methodologies and scaffolds that were used in the first action 

cycle.  As in (3.4.8.2), above, on the ground factors precluded the administration of the 

questionnaire during Action Cycle 1. Later, this is discussed in (4.1). 

 

In my conception of this action research project, the second action cycle began at the 

start of the second quarter of 2016. In it, I planned to use the thick research findings 

gleaned from the first action cycle as a baseline, a starting point, for the second cycle 

which, itself, was designed in much the same way as the first action cycle. 
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3.5   SAMPLE AND SAMPLING  

The full population of the 2016 cohort of PGCE students for IPS 413 E Mathematics 

was 60 persons. Every student was invited to participate in the study. Thus, ideally, the 

entire population might have become part of the sample. Because I had direct access 

to the participants in the study, a “single-stage” (Creswell, 2014, p. 158) sample was 

invoked. Chin (2013, p. 64 - 65), working with a cohort of 24 PGCE students, achieved 

8 participants for his PhD research and of these, selected 5 for data capturing purposes 

for his doctoral thesis. In this research, 38 out of 60 students became participants.  

 

3.6   DATA COLLECTION INSTRUMENTS 

In Chapter 1, I have suggested that my main research question states: 

How will visualisation strategies assist student-teachers to better understand and 

solve mathematical word-problems? 

 

The main research question is framed by three sub-questions: 

 

4. What existing word-problem, problem-solving strategies do the students hold? 

5. What barriers to solving word-problems do the students perceive that they hold? 

6. How effective do the students perceive the visualisation strategies to be? 

 

In this thesis, Chapter 2 – the literature review – has revealed some of the conceptions 

and experiences of others, and has served to inform this research. However, in order 

to capture a more full understanding – and thereby answer the research questions, 

additional information has to be captured using the quantitative and qualitative data 

captured from the various assignments, questionnaires, classroom classroom-based 

activities, etcetera. Woven together, such data streams have a capacity to reveal a 

rich tapestry of information.  

 

However, Herr and Anderson (2005) caution that: 

 

most insider action researchers are doing the inquiry while continuing to 

carry the rest of their workloads. … Because of this lived reality, the 

methodological approach to the data gathering need to be researcher 
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friendly; by this we mean realistically doable, given the contexts and 

demands of our jobs.  

Herr & Anderson, 2005, p. 78 

 

With this in mind, the research tools described below were chosen be appropriate for 

the purposes of action research and simultaneously, given that I was the only 

researcher involved this quest, the research instruments needed to be user-friendly 

and doable. 

 

3.6.1  QUANTITATIVE ASSESSMENT TASKS            

Like Sepeng & Webb (2012), (3.4.4), in each action cycle, an assessed assignment 

was offered at the beginning, and subsequently again, at the end of each action cycle. 

This strategy was appealing because it enabled me to quantitatively measure the value 

added by the teaching and learning strategies used during each action cycle.   

 

In 2015, I conceptualised questions to insert into the action cycle 1 assignments. 

Because the B Ed Year 1, IPS 123 E Mathematics module had mathematical content 

that was similar to the work covered by the participants, in semester 2 of 2015, a pilot 

run was conducted in the B Ed classroom and information captured from that exercise 

was used to fine-tune the Action Cycle 1 tasks. A Foundational Arithmetic Concepts 

assignment was designed to examine arithmetic competencies (Siemon et al., 2012, 

p. 588 - 589); a second assignment, Word-Problems Calculations was used to 

establish how the participants coped with routines-based, well-structured, 

mathematical word-problems (Zanele, 2015, p. 18). 

 

3.6.1.1  LOT AND HOT SKILLS 

Bloom’s taxonomy for learning, teaching and assessing (Bloom, Max, Furst, Hill, & 

Krathwohl, 1956), in its verb-driven, updated form (Krathwohl & Anderson, 2010) was 

used to support the construction on the questions in the assessment tasks. The revised 

taxonomy, “encourages learners to be actively engaged in classroom activities” 

(Maphalala, 2016, p. 105); it liberates both Low Order Thinking (LOT) and Higher 

Order Thinking (HOT) skills (Thompson, 2008, p. 97; Bennie, 2005, p. 82), and 

provides intrinsic motivation to learners to monitor their own cognitive development. 
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The hierarchical structure of the cognitive domain of Bloom’s Revised Taxonomy 

enables teachers to use the questioning taxonomy to examine ideas in different ways.  

 

The taxonomy provides modalities such as question stems which enable teachers to 

expand the scope of questions – and their imposed cognitive demands – progressively 

away from lower order thinking (LOT) skills towards higher order thinking (HOT) 

(Bezuidenhout & Alt, 2011, p. 1074; Mohammadi et al., 2015, p. 16). The view is that, 

over time, LOT skills are subsumed by HOT skills, schemata are constructed and 

compression occurs (2.6.2).  

 

3.6.1.2  DESCRIPTION OF PRIOR KNOWLEDGE ASSESSMENT TASKS 

The prior knowledge assessment tasks were designed to provide answers to the first 

sub-research question, namely, What existing word-problem, problem-solving 

strategies do the students hold? The assessment tasks were provided to the 

participants in February 2016.  Each assessment task was 40 minutes long.  

 

The Foundational Arithmetic Concepts assessment task contained four main 

questions, with altogether twenty sub-questions. Each correct answer was awarded 

one mark. Questions 1 and 2 offered questions which tested Remembering skills while 

Questions 3 and 4 offered questions at a Remembering and Understanding level 

(Krathwohl & Anderson, 2010).  

 

The Word-Problem Calculations assessment task contained ten word-problems, the 

first five of which were asked at an Understanding and Applying level on Bloom’s 

Revised Taxonomy of Thinking Skills, and the latter five questions at an Applying and 

Analysing level (Krathwohl & Anderson, 2010).  

 

3.6.2  QUESTIONNAIRES 

Two questionnaires were constructed. The discussion below reveals the influences 

that affected the design and layout of the questionnaires.  
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3.6.2.1 ACTION CYCLE 1 - QUESTIONNAIRE 1 

Questionnaire 1 was constructed to elicit responses that reveal answers to the second 

sub-research question, namely, What barriers to solving word-problems do the 

students perceive that they hold? It contained two parts, namely Part A and Part B. 

 

Part A had 3 sub-sections and 10 specific questions: it sought biographical and 

language information. Sub-section A1 explored gender, home language, age, and 

highest mathematical achievement in school. Sub-section A2 investigated attitudes 

towards mathematics: the questions were presented on a “Likert scales” type of grid, 

(Cohen, Manion & Morrison, 2001, p. 253). Sub-section A3 examined the participants’ 

personal views of their English language fluency in mathematical settings.  It, too, used 

Likert scales questions. 

 

Part B had 5 sub-sections and 10 specific questions. The questions in Part B, were 

used to establish the participants’ views on barriers that they perceived that they had 

when they try to solve mathematical word-problems. Part B in a novel way. To assist 

the participants to reflect deeply, I required them to read through a scaffold about word-

problems before they attended to the answers for the questionnaire. I used Gooding’s 

(2009) five barriers that are linked to solving word problems as the pivot for the 

questions. Each of the five barriers was addressed through two Likert scales (Cohen, 

Manion & Morrison, 2000, p. 253), questions. Below each pair of questions, I inserted 

an area for short specified responses.  

 

3.6.2.2 ACTION CYCLE 2 – QUESTIONNAIRE 2 

The second questionnaire was designed to be administered to the participants after 

they had worked through numerous visualising and activities-filled lessons. Its task, 

chiefly, was to provide insights and answers for the third research sub-question, 

namely, “How effective do the students perceive the visualisation strategies to be?” 

 

The questionnaire focused on two central themes. Each theme has sub-sections. Each 

sub-section contained a Likert scales (Cohen, Manion & Morrison, 2001, p. 253) area 

for the participants to populate and an area in which, should they choose to do so, the 

participants might write a personal, reflective account of a point that they might wish 

to share. 
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Part 1 posed questions to establish whether, from their personal perspective, the 

participants felt any benefit was derived from the visual approach and visual scaffolds 

that they were exposed to in their IPS 413 E mathematics classes. The conception 

and layout of Part 1 of Questionnaire 2 was similar to that found in Questionnaire 1. 

As in the first questionnaire, the sub-questions explored the five categories of 

difficulties that students confront when they attend to word-problems (Gooding, 2009).  

 

In Part 2 contained the same questions as Part 1. However, in Part 2, the participants 

were encouraged to imagine a future time, in 2017 and beyond, in which they might 

be teaching mathematics to Intermediate Phase children. In Part 2, the participants 

were encouraged to consider whether or not they believed that the visual scaffolds that 

were used in their IPS 413 E Mathematics classes would be applied into their own 

teaching practice. 

 

3.6.2.3 FACTORS THAT INFLUENCED THE USE OF QUESTIONNAIRES 

Gillham (2000b, p. 1) suggests that, “good research cannot be built on poorly collected 

data; … poorly collected data will be wasteful of time and money, and discredit the 

name of ‘research’.” Further, in order to assure reliability (Newton Suter, 2012, p. 251), 

and validity (Shenton, 2004, p. 69); questionnaires must be treated as but one tool in 

a box filled with many research tools which are triangulated to form a comprehensive 

and coherent answer to a research question. 

 

Methodological triangulation (Creswell, 2014, p. 201; Fraenkel & Wallen, 2009, p. 510) 

was achieved by complementing the findings from the questionnaires with the literature 

review, field notes, semi-structured interviews and the quantitative assessment tasks. 

Collectively, the interrogation of the multiple data sets that were gathered from the 

research tools were knitted together to form a cogent understanding and thereby 

offered deep insight – crystallization – of the research (Fraenkel & Wallen, 2009, p. 

512).  

 

3.6.2.4 BENEFITS OF USING QUESTIONNAIRES 

Gillham (2000b, p. 5-14) suggests that questionnaires have many benefits which 

include: 

 Questionnaires are cheap; 
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 They are not time-consuming to administer; 

 They can generate rich data quite easily and without too much difficulty; 

 It is easy to collate True/False and Likert scales data; 

 Participants can submit their completed questionnaires anonymously; 

 All participants receive the same questionnaire and answer the same questions. 

 Questionnaires can be used to test hypotheses. 

 

3.6.2.5 PROBLEMS ENCOUNTERED WHEN USING QUESTIONNAIRES 

Gillham (2000b, p. 9-14) raises the following problems with questionnaires:  

 One needs a captive audience, otherwise the response returns tend to be low; 

 Many researchers badly conceptualise and poorly design their questionnaires; 

 Badly conceived questions result in badly answered questionnaires, vis-a-vis, 

they produce data which is of no value to the research enterprise; 

 Questionnaires need to be short but impactful; 

 They must written up using clear and unambiguous language;  

 The words used in the questions will have a bearing on the quality of the 

answers; 

 The literacy levels of participants and their mother-tongue versus the language 

in use impact on how the questions are understood and answered; 

 For most people, oral forms of communication are better than written forms; 

 The participants may not take the questionnaire seriously; 

 Participants may be worrying about what is done with the data. 

 

Most, of the participants were isiXhosa mother-tongue learners with mixed abilities 

when speaking, writing and thinking in English. Irwin (2002) suggests that, “local 

circumstances, conditions and values must be of paramount consideration if 

questionnaires are to be used effectively in southern Africa” (Irwin, 2002, p. 10). With 

that in mind, in 2015, two isiXhosa-speaking colleagues reviewed the questionnaires. 

Their advice was worked into the questionnaires. The words and sentences were reset 

to about a Grade 7 to Grade 8 level.  While Gillham (2000b, p. 20) cautions that in all 

probability the views of these peers were, “impressionistic rather than specific,” 

nonetheless their comments enabled me to coax out issues of ambiguity and to write 
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up the questions in shorter sentences. Succinctly, Koshy (2010, p. 83), states, “Keep 

the questionnaire simple.” This advice, too, was applied to the questionnaires. 

 

3.6.2.6 TYPES OF QUESTIONS USED IN QUESTIONNAIRES 

Questionnaires can address three types of questions, namely (1) facts; (2) opinions, 

values and judgements; and (3) behaviours.  Gillham (2000b, p. 28) and Fraenkel and 

Wallen (2009, p. 132) suggest that selected response questions are useful when trying 

to gather factually-based information that can be answered with True/False or Yes/No 

responses. These questions are also called closed-ended questions (Fraenkel & 

Wallen, 2009, p. 396) because the response is discrete.  Selected response questions 

are easy to administer, require very little thinking on the part of the participants and 

are easy to collate. 

 

Ranked response questions are similar in structure to selected response questions, 

but are used for questions that probe opinions and values. Ranking allows participants 

to allocate degrees of importance or, “relative degree of preference, priority, intensity, 

etc.” (Cohen, Manion & Morrison, 2001. p. 252). This allows participants to, “express 

preferential judgements” Gillham (2000b, p. 31). Likert scales offer an alternative type 

of ranked response technique. They contain “affective measures” (Newton Suter, 

2012, p. 113), thus they have the ability to examine self- or other-directed perceptions, 

values and attitudes that participants might have towards mathematics, aspects of 

mathematics, or mathematics teachers, etcetera.  

 

The difference between Likert scales and either selected responses or ranked order 

questions lies in the addition of a rating scale that is found in the Likert scales (Cohen, 

Manion & Morrison, 2001, p. 253). By introducing an interrogative adverb such as, 

how, into, for example, how seriously? or how often?, the answers open up possibilities 

for a continuum of degrees of acceptance or rejection of the position statement or 

question. In my own work, I placed statements rather than questions into my 

questionnaires. I adopted a five scale rating and provided spaces in a grid for the 

participants to populate with short textual responses. 

 

Specified response questions, suggests Gillham (2000b, p. 30), are open questions 

that are used to probe people’s thoughts. They are often presented at the end of a 
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questionnaire and ask participants to provide written responses and explanations of 

their opinions. Cohen, Manion and Morrison (2001) suggest that open-ended 

responses, “contain the ‘gems’ of information that otherwise might not have been 

caught,” and continue, stating that, “an open-ended question can catch the 

authenticity, richness, depth of response, honesty and candour which… are hallmarks 

of qualitative research” (Cohen, Manion & Morrison, 2001, p. 255). 

 

3.6.2.7 FACTORS THAT INFLUENCE THE READABILITY OF 

QUESTIONNAIRES 

Gillham (2000b, p. 38) suggests that the ordering of the questions in the questionnaire 

should follow a logical pattern, leading the participant from one question to the next. 

Further, he suggests, “it is extremely boring… to answer a series of scaled-response 

questions; and people stop thinking about what they are doing” (Gillham, 2000b, p. 

39). To offset that negative potential, a mixture of selected response, ranked response 

and specified response questions were blended into the questionnaire. 

 

Gillham (2000b, p. 37) suggests that a well-designed questionnaire should look and 

work well. His view talks to a hallmark of my own work: I have always believed that the 

good-design of a paper, a slide-show, a text or an explanation provides a professional 

and critical – but often overlooked – contribution to the successful outcome of learning 

endeavour. From an aesthetic point of view, Gillham (2000b, p. 37) suggests that one 

should aim for an uncluttered layout and the use of easily-read fonts such as Arial, 

Comic Sans MS or (more formally) Times New Roman. These fonts present well on 

paper. Further, a well-designed questionnaire should have a cover page and title and 

should contain pertinent information. He suggests that questionnaires should be, at 

most, five to six pages long, with each page containing at most five to six questions.  

  

In this research, Questionnaire 1 was six pages long. Two of these pages were 

reserved for the cover page and an information page, while the four other pages 

contained the questions. There were two main themes which together contain six main 

areas of interest, with a combined 20 sub-questions in total. In Questionnaire 2 too, 

there were six pages, two of which were for the cover page and information, while the 

other pages contained the questions. In this questionnaire, there were two main 

themes, six main areas of interest, and 15 sub-questions. 
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3.6.3  FIELD NOTES 

Altrichter et al. (1996, p. 68-118) suggest when one writes field notes, it is important 

for the researcher to try to adopt the lens of a neutral observer. However, despite this 

desire to embrace a neutral position, Cohen, Manion and Morrison (2001, p. 145) 

suggest that this type of data gathering can bring many tensions into a research 

setting: it can be difficult to establish suitable codes of conduct and communicative 

techniques that are agreeable to all parties, and it can be tricky to try to handle issues 

which have emotional content attached to them. Fraenkel and Wallen (2009, p. 506) 

suggest field notes, “are the researchers’ written account of what they hear, see, 

experience, and think in the course of collecting and reflecting on their data.” But, 

writes Silverman (2002, p. 64), unwittingly, researchers, may try to report on everything 

such that they do not see the trees for the woods. 

 

3.6.3.1 BENEFITS OF USING FIELD NOTES 

Field notes, “can be written in situ and away from the situation” (Cohen, Manion & 

Morrison, 2001, p. 146), and they enable the researcher to construct a qualitative, 

unstructured narrative (Cohen, Manion & Morrison, 2001, p. 190). Further, for 

educators, they enable the researcher to reveal the context and constraints of teaching 

and learning and help to flesh-out the detail of what actually occurs in the classroom.  

 

3.6.3.2 RECORDING OBSERVATIONS 

The recording of observations can be attended to in different ways. These may include: 

 quick, fragmentary jottings of key words/symbols; 

 transcriptions and detailed observations written out fully; 

 descriptions that, when assembled and written out, form a 

comprehensive and comprehensible account of what has 

happened; 

 pen portraits of participants; 

 reconstructions of conversations;  

 descriptions of the physical settings of events; 

 descriptions of events, behaviour and activities; 

Cohen, Manion & Morrison, 2001, p. 311 
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3.6.4  FOCUS GROUP INTERVIEWS 

Interviews, or, “vocal questionnaires” (Newton Suter, 2012, p. 114) enable researchers 

to better understand the mathematical knowledge, skills, reasoning, solution strategies 

and conceptual understanding of their participants (Siemon et al., 2012, p. 132). 

Benefits include understanding the needs of the participants better; finding out how 

they think and what they think; developing a sense of their beliefs and motivation 

pertaining to mathematics and informing and optimising future lessons. 

 

3.6.4.1 PURPOSIVE SAMPLING 

A “purposive sample” (Fraenkel & Wallen, 2009, p. 99) was selected from the group of 

participants for the focus group interview. Purposive sampling requires researchers to 

think critically about the features of a research project that they want to examine and 

to then use that knowledge to choose participants whom they judge will be best suited 

to assist them in achieving that goal (Silverman, 2002, p. 250). Such samples are 

selected by researchers who, “use their judgement to select a sample that they believe, 

based on prior information, will provide the data they need” (Fraenkel & Wallen, 2009, 

p. 99).  

 

Even so, it is important to note that because, “the selection of a focus group does not 

follow strict methodological dictates, … it cannot be considered a valid representation 

of larger public opinion” (Woodwell, 2014, p. 29). A focus group should ideally 

comprise six to eight selected participants who, with the support of a moderator, reflect 

upon a selected group of issues for about sixty to ninety minutes (Hennink, Hutter & 

Bailey, 2011, p. 136). In this research, the data that was captured from the various 

quantitative assessments, questionnaires and field notes were used to identify a 

purposive sample of the participants for the focus group interview.  

 

3.6.4.2 BENEFITS OF USING FOCUS GROUP INTERVIEWS 

Focus group interviews are a primary source of data collection (Mouton, 2003, p. 69; 

Roth & Bradbury, 2013, p. 354). Because the participants are in a group, they get to 

hear each-other’s opinions. Cohen, Manion and Morrison (2001, p. 267) suggest that 

focus group interviews are exchanges of thoughts and ideas which are shared between 

people on matters of common interest. These opportunities validate and assist all 

participants to better understand each other’s perspectives. Prompted by the 
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viewpoints of others, participants may be encouraged to share additional information 

(Bantwini & Arowolo, 2015, p. 505). This enables the researcher to, “get close to the 

social actors’ meanings and their interpretations, to their accounts of the social 

interaction in which they have been involved” (Blaikie, 2010, p. 207). Focus group 

interviews, like other qualitative research tools, “can be used for exploratory, 

explanatory or evaluative research” (Hennink, Hutter & Bailey, 2011, p. 136 - 137), but 

it is important to acknowledge that because the information is captured within the 

framework of a group, the group dynamic may distort the data. In addition, Fraenkel 

and Wallen, (2009, p. 452) make the point that a focus group interview is not a group 

discussion, and caution the moderator against allowing the participants to go off topic. 

 

3.6.4.3 UNAVOIDABLE FEATURES OF FOCUS GROUP INTERVIEWS 

Cicourel (1964), in Cohen, Manion and Morrison (2000, p. 267), describes, “five 

unavoidable features of the interview situation.”   

 

1. There are many factors which inevitably differ from one interview to 

another, such as mutual trust, social distance and the interviewer’s 

control. 

2. The respondent may well feel uneasy and adopt avoidance tactics if 

the questioning is too deep. 

3. Both interviewer and respondent are bound to hold back part of what 

it is in their power to state. 

4. Many of the meanings which are clear to one will be relatively opaque 

to the other, even when the intention is genuine communication. 

5. It is impossible, just as in everyday life, to bring every aspect of the 

encounter within rational control. 

Cohen, Manion & Morrison, 2001, p. 267 - 268 

 

Despite the fact that the participants were mature students, in interview situations, the 

interviewer is typically perceived to be the one who is in power. That, I knew, was a 

tension that could not be totally removed from any interview situation. Thus, with 

reference to (1) above, I was aware that it might prove difficult to win over the trust of 

the participants. 
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Item (4) above was equally problematic. Most of the participants were isiXhosa mother-

tongue speakers who have to negotiate the hurdles of language opacity and 

demonstrate their understanding of mathematical concepts in English.  

 

To offset the power-relations, trust and language barriers, I asked an expert 

mathematician – a person who was also an isiXhosa mother-tongue colleague – to 

conduct the focus group interview. 

 

3.6.4.4 INTERVIEW QUESTIONS 

The design of interview questions, much like the construction of the questions within 

questionnaires, depends on what it is that the researcher wants to know. Issues that 

impact on the design of an interview include: 

 

 the nature of the subject matter; 

 whether the interviewer is dealing with facts, opinions or attitudes; 

 whether specificity or depth is sought; 

 the respondent’s level of education; 

 the kind of information she can be expected to have; 

 whether or not her thought needs to be structured;  

 some assessment of her motivational level; 

 the extent of the interviewer’s own insight into the respondent’s 

situation; and 

 the kind of relationship the interviewer can expect to develop with the 

respondent. 

Cohen, Manion & Morrison, 2001, p. 274 

 

An advantage of focused group interviews is that the investigator has situational 

awareness and can, “recognize symbolic or functional silences, ‘distortions’, 

avoidances, or blockings” (Merton and Kendall, in Cohen, Manion and Morrison, 

2001, p. 290), which can then be flagged to be explored more deeply, thereby 

facilitating naturalistic, emergent design and inductive theorising.  
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3.7 UNDERSTANDING, TRUSTWORTHINESS, 

REFLEXIVITY AND RELIABILITY 

3.7.1  UNDERSTANDING 

Because the issues of subjectivity, opinion, attitude and world-view conspire have the 

potential to create bias Cohen, Manion and Morrison (2001), to make sense of the 

action research findings, understanding has been applied to the research. While 

acknowledging the potential for bias, the descriptive explanations and deep 

understanding of on-the-ground experiences (Abma & Schwandt, 2011, p. 103) work 

well with the pedagogical aspirations of action research. Understanding in research is 

“addressed through the honesty, depth, richness and scope of the data achieved, the 

participants approached, the extent of triangulation and the disinterestedness or 

objectivity of the researcher” (Cohen, Manion & Morrison, 2001, p. 105).  

 

3.7.2  TRUSTWORTHINESS 

Often, in action research, researchers use qualitative and quantitatively oriented 

research instruments. Where this is the case, trustworthiness (Herr & Anderson, 2005; 

Feza, 2015) is used as a “demonstration that the researcher’s interpretations of the 

data are credible, or “ring true,” to those who provided the data” (Herr & Anderson, 

2005, p. 50). Trustworthiness is perceived to provide a fitting lens for assessing action 

research.  

 

3.7.3  REFLEXIVITY 

Researchers, unwittingly or otherwise, may influence the research field in which they 

conduct their work; individual ontologies may impact on research decisions which 

govern what is chosen for observation or rejection and what it is that is deemed as 

important or not (Calas & Smircich, 1999, p. 664). As this can be the undoing of 

research programmes, cautious researchers apply reflexivity to their work. 

  

Reflexivity is, in basic terms, thinking critically about what you are doing and 

why, confronting and often challenging your own assumptions, and 

recognising the extent to which your thoughts, actions and decision-making 

processes shape what you see and how you research. 

Drake, 2015, p. 103 
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Reflexivity requires the researcher to deliberately and deeply consider both the field 

that is under investigation and also the personal, internal habits of mind that may impact 

upon the researcher’s understanding of that field (Watt, 2007, p. 82). Thus, through the 

analysis of multiple sources of data, triangulation (Koshy, 2010, p. 98; Silverman, 2002, 

p. 234) is used to construct comprehensive understandings  of the findings of the 

research; this, in turn, leads to, “richer, ‘thicker’ descriptions”  (Geertz, in Geelan, 2003, 

p. 11).  

 

However, triangulation can imply that a single finding or result is implicit in the analysis 

of the data. But for action research, this is not necessarily correct. More to the point, 

the multiple-data sets that are obtained during the research can generate different 

perspectives and understandings; these data-sets can be used to lead to a truth or 

crystallisation which will provide an account of the interpretations of the data by the 

researcher. But, quite conceivable, there will be other truths. 

 

3.7.4       RELIABILITY 

Reliability refers to the consistency of an outcome (Koshy, 2010, p. 98; Newton Suter, 

2012, p. 251). Put another way, reliability implies that whether you attempt to prove or 

disprove a certain point, the research conclusion will yield a similar result (Hofstee, 

2006, 24). However, where researchers use, “judgement calls” (Woodwell, 2014, p. 

104) with data that cannot be replicated by others, reliability is compromised. Examined 

through the lens of quantitative research endeavour, qualitative methods are often 

criticized as being, “impressionistic, biased, commonplace, insignificant, 

ungeneralizable, idiosyncratic, subjective and short-sighted” (Cohen, Manion & 

Morrison, 2001, p. 120), but that tension occurs because the reliabilities of the 

quantitatively versus qualitatively inspired research lie on different planes.  

 

Qualitative research is conducted in the real world and addresses issues of context, 

situation, authenticity, detail and meaningfulness. Thus, indeed there are aspects of 

being impressionistic, etcetera, but this flows from the philosophical, ontological and 

epistemological standpoints inherent in this type of research. Accordingly, “in 

qualitative research, reliability can be regarded as a fit between what researchers 

record as data and what actually occurs in the natural setting that is being researched” 

(Cohen, Manion & Morrison, 2001, p. 119).  
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Because action researchers use a mixture of quantitative and qualitative research 

instruments and triangulation, these in-built features of action research tend to balance 

out the impressionistic aspects of the study. Further, in order to enhance the reliability 

of their work, researchers can use “low-inference descriptors” (Silverman, 2002, p. 226 

- 227), that is, they can use precise verbatim accounts to complement their 

impressionistic interpretations of situations. Using a process called member checking 

(Fraenkel and Wallen, 2009, p. 504; Creswell, 2014, p. 201), participants can review 

the truthfulness and accuracy of findings of the research.  

 

3.8  DATA ANALYSIS 

Newton Suter (2012, p. 173) suggests that, “data analysis and interpretation involve 

the discovery of trends or patterns in the data and the conclusions (if any) possible 

from the analysis.” In this thesis, various qualitatively and quantitatively oriented data-

gathering research instruments were combined such that, hopefully, the whole was 

“more than the sum of its parts” (Bryman, 2012, p. 699). While quantitatively captured 

data can be quite easy to enumerate, qualitative data requires the use of descriptive, 

coherent, credible and accurate narratives Koshy (2010, p. 101).   

 

Action research findings are stylistically less formal than other research and are often 

presented in a, “quasi-story form, and as such, are more personal” (Newton Suter, 

2012, p. 173). “Practitioners tend to use narrative and story as a way to communicate 

professional knowledge, which makes it particularly appropriate for action research” 

(Herr & Anderson, 2005, p. 34). In addition, “since good stories are memorable, a story 

format can be an effective way to share findings and ideas” (Newton Suter, 2012, p. 

173 - 174).   

 

3.8.1  ANALYSIS TECHNIQUES 

The application of both quantitative and qualitative research gathering techniques 

enable researchers to explore more deeply the, “complexity of human phenomena” 

(Sandelowski, 2000, p. 246). Descriptive narratives and numerical data can be 

combined and analysed to enhance the richness of the research. Qualitative data can 

be sorted and coded while quantitative data can be examined for trends and 

percentages (Christ, 2010, p. 647). For the purposes of action research, software such 
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as Microsoft Word© and Microsoft Excel© are appropriate for capturing, analysing, 

numerating and codifying data (Newton Suter, 2012, p. 383). 

 

In order to establish whether the different data-sets converge, researchers use a “side-

by-side” (Creswell, 2014, p. 222) technique to compare trends in the various data-sets. 

Using an additional research technique called “data transformation” (Creswell, 2014, 

p. 223), quantitative data can also be re-examined through a qualitative lens and, 

similarly, qualitative data can be analysed and reduced to numerical data. 

 

Sandelowski (2000, p. 253) proposes that quantitizing occurs when qualitative data is 

interpreted by using quantitative tools, while qualitizing implies that quantitative data 

sets are analysed through the use of qualitative tools. Using numbers to explain verbal 

and written data, or alternatively, using a narrative to describe numerical data can 

reveal multiple layers of understanding of the research project.  

 

3.8.1.1  QUANTITATIVE DATA ANALYSIS  

In this research, numerical data was captured for each action cycle from the prior 

knowledge assessment tasks and the re-assessment tasks. The primary data was 

consolidated into Microsoft Excel© spreadsheets. The formula-generating capacity of 

Microsoft Excel© was used to establish the mean, median, mode and range of each 

data-set. Summaries of these data-sets were visualised in Box and Whisker plots. The 

numerical data was qualitized to provide a detailed explanation of interesting aspects 

that were observed in the data. The questionnaires contained a number of attitudinal 

Likert scale questions (Fraenkel & Wallen, 2009, p. 124 - 126). That data was 

quantitatively analysed in Microsoft Excel© and was then qualitized. 

 

3.8.1.2   QUALITATIVE DATA ANALYSIS 

Because qualitative data can generate copious and clumsy amounts of data (Bryman, 

2012, p. 565), researchers need to avoid offering superficial analyses of such research 

data. Newton Suter (2012, p. 351 - 352) suggests that, “conclusions in qualitative 

research are typically derived from identified patterns and uncovered conceptual, not 

statistical, relationships.” Inductively, these patterns lead from loosely-connected 

generalizations to specific positions of understanding which in turn reveal information 

that is hidden in the data. 
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 A Thinkboard was used to establish the PGCE students’ impressionistic views of 

mathematics. Three other questionnaires sought perspectives on barriers they 

perceived they held, and their sense of the efficacy of the visualisation strategies that 

were used in the classroom. Transcribed verbal responses from the focus-group 

interview were analysed for, “frequencies” (Fraenkel & Wallen, 2009, p. 453). Through 

iterative levels of coding and abstraction, as clarity of the frequencies invoked better 

coding, the data was thematically contextualised (Newton Suter, 2012, p. 355).  

 

Collectively, the various quantitatively and qualitatively oriented data-sets provided a 

holistic view of the participants’ experiences of the visually mediated learning 

experiences and revealed trends of acceptance or rejection, embracing of the new 

techniques or loathing of them, etcetera. In turn, the findings enabled me to answer the 

sub and main research question of the thesis. 

 

3.9  ETHICAL CONSIDERATIONS 

Ethics, or moral philosophy (Coetzee, le Roux & Mohangi, 2016), functioning as a 

singular noun, is “the philosophical study of the moral value of human conduct and of 

the rules and principles that ought to govern it” (“Ethics”, 1999, p. 488).  When treated 

as a plural noun, ethics is understood as, “a code of behaviour considered correct, 

especially that of a particular group, profession, or individual, the moral fitness of a 

decision, course of action, etc.” (“Ethics”, 1999, p. 488).  

 

When researchers are awarded the privilege of working with other human beings, it is 

important that they are scrupulously honest and do their research with a commitment 

to preserving the dignity and privacy of participants who, by the very act of participating 

in the research, unwittingly may put themselves at risk. Ethics helps to foreground the, 

“principles and values researchers build into their work so that research integrity can 

be maintained” (Sotuku & Duku, 2015, p. 113). As such, ethics transcends the vagaries 

found in different cultural settings and their practices, and rather, embraces principles 

which are held to be truthful, respectful, fair and honest (Coetzee, le Roux & Mohangi, 

2016). In reporting, where participants’ opinions or quotes are transcribed, such 

material must not identify the participant (Booth, Osman & Venkat, 2016).  
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Because real world research can inadvertently uncover illegal activities, it is 

understood that in those situations, the legal requirement to report such activities to 

the authorities must override the confidentiality agreements that are made between 

the research and participants (Robson, 2002).   

 

However, in real world research, for the most part it is the participants themselves who 

may potentially occupy a vulnerable position that expose themselves to exploitation. 

Unacceptable practices include (1) involving people without their knowledge, (2) 

coercion, (3) withholding information about the true nature of the work, (4) deception, 

(5) diminishing the social standing of participants, (6) imposing the researcher’s will on 

the participants, (7) exposing participants to mental distress of physical harm, (8) 

invasion of privacy, (9) selectively withholding benefit, and (10) treating participants 

with disrespect (Robson, 2002). 

 

 Thus, research participants must be fully aware of the nature, size and shape of the 

research project in which they might become involved. If and when they are suitably 

convinced that they might wish to contribute to the research, participants are required 

to give their informed consent to allow the research to move forward. Cohen, Manion 

and Morrison, 2001 (p. 50 - 51), explain informed consent as the process by which 

potential participants think about and then use free-will to decide whether or not to 

participate in a research activity. Indeed, Mouton (2003, p. 243) advises that people 

have, “the right to refuse to participate in research, [and have a] right to anonymity and 

confidentiality.” 

 

Further, it is unacceptable to impose the researcher’s own values and expectations 

upon the participants in a research project, the “ethical course is to try to seek an 

understanding of what is going on by telling it as it is” (Robson, 2002, p. 71) 

 

In my university, ethical considerations are attended to in a professional manner. We 

are aware of considerations of cultural differences, power-relations, vested interests, 

etcetera, and how, unchecked, these factors can influence and possibly contaminate 

research. Numerous stepping stones need to be carefully negotiated before ethical 

clearance is awarded to the researcher. These steps include the requirements to 

complete and have approved a Protocol Synopsis of the research, a General Ethics 
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form for Academics and Students, an Ethics Application Form for Humans, an Ethics 

Checklist, an Ethics Investigator’s Declaration – Conflict of Interest, and an Ethics 

Confidentiality Consent Form. 

 

It is only after the above requirements have been properly administered that the 

university provides an Ethical Clearance Certificate.  

 

3.10  LIMITATIONS OF THE STUDY  

Limitation 1: The field data for this research project was collected in Semester 1 of 

2016. Quantitative and qualitative data was captured from 38 Intermediate Phase 

PGCE  participants in the IPS 413 E – Mathematics class. Thus, the data captured 

and conclusions drawn from the action research were bounded by that time-span.  

 

Limitation 2: I was keenly aware that the English language and mathematical 

vocabulary might act as barriers-to-learning in the class. My empirical experience has 

shown that many English-explained concepts are difficult for non-mother tongue 

students to grasp. Indeed, I was aware that the students’ test results might be skewed 

downwards, not because of mathematical incompetence per se, but because they 

were disenfranchised, excluded from success, by language-limitations. Thus, I have 

had to concede that the generalisability of this work is somewhat restricted. 

 

Limitation 3: Although the generalisability of this action research findings may be 

limited, Herr and Anderson (2005, p. 6) make the point that, while the results of an 

individual action research may not offer a universal truth, each narrative becomes a 

reflective study of both the process and the product of a unique set of contextualised 

experiences. Collectively, these narratives add immeasurably to practitioners’ 

understanding of similar problems solved in different contexts.  

 

 

 

 

 

 



 

142 

 

3.11  SUMMARY 

In any thesis, the methodological chapter is tasked with providing a roadmap of the 

rationale, features and procedural details of the study that was undertaken. This 

chapter began with an explanation of the features of action research projects and 

specifically made mention of their intrinsic motivation to solve real-world problems. I 

discussed strengths, limitation, potential bias and dynamic conservativism. 

 

This thesis is positioned within the hermeneutic tradition, thus an interpretivist research 

paradigm was adopted. This gave rise to a naturalistic perspective, a relativist ontology 

and an acknowledgement that the findings would offer only one of many accounts 

which might be drawn from the experience. Because of the interdisciplinary, inductive 

and emergent nature of action research, quantitative and qualitative data collection 

instruments were used. Microgenesis was used to detect improvements. The research 

unearthed unexpected problems which, in turn, needed to be addressed. The various 

research tools were designed to converge, thereby facilitating methodological 

triangulation.  

 

In each of two action cycles, prior knowledge assessment tasks were provided to the 

participants are the beginning of each cycle, and thereby provided baseline data, and 

then, these tasks served as an assessment tool for reassessment at the end of each 

action cycle.  This enabled me to construct a quantitative comparison of mathematical 

competence between each pair of assessments. Bloom’s Revised Taxonomy was 

applied to the assessment questions.  

 

Qualitative data was used to capture the participants’ views about mathematics, the 

IPS 413 E Mathematics module and the visualising methodology that was used within 

the module. Qualitative data was captured using a Thinkboard activity, three 

questionnaires, field notes and a focused group interview. Issues of understanding, 

trustworthiness of the findings, reflexivity, samples and sample sizes, reliability, data 

analysis techniques and ethical considerations are also supplied in this chapter. 

 

Next, in Chapter 4, the data findings are discussed. The chapter will first give an 

account of important fieldwork experiences; it will then discuss the Thinkboard activity, 

the assessment tasks for both Action Cycles; the findings from Questionnaires 1 and 
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2; the focus group interview; and the qualitative data that was obtained from a 

questionnaire that was provided to participants after the completion of the action 

research. 
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CHAPTER 4 – DATA PRESENTATION AND  

PRELIMINARY ANALYSIS OF FINDINGS 

4.0  INTRODUCTION 

This chapter was originally written in the form of a journal as an account of the day to 

day experiences and observations which occurred during the research period with the 

participants. However, the chapter became very cumbersome and long. Thus, after 

extensive consultation with my supervisor, the chapter was reconstructed into its 

current size and shape. And, rather than try to account for every interaction, it was 

agreed that instead, I would use exemplars of factors that worked through the action 

research period would be introduced into this chapter. Because of my stance as a 

practitioner who is working within his own setting, it is acknowledged that I am working 

as “an insider committed to the success of the actions under study” (Herr & Anderson, 

2005, p. 33). The data collection chapter now has five distinct sub-sections which 

discuss the Fieldwork Experiences, a Thinkboard Activity, Action Cycle 1, Action Cycle 

2, and the participants’ reflective research perspectives.  

 

In writing-up this chapter, I have been guided by Herr and Anderson (2005) who 

suggest that action research is written in the first person and can contain, “elements of 

humour and irony and a narrative hook that leads the reader into wanting to read more” 

(Herr & Anderson, 2005 p. 34). This writing technique is ideally suited for the purposes 

of conveying the muddiness and the on-the-ground realities that action researchers 

might try to describe to their readers. Because action researchers deal with real and 

complex problems, their work can result in unanticipated outcomes. In these fluid 

situations, creativity and flexibility are highly desirable attributes and the informal voice 

that is used serves to make complicated situations more easily understood by the 

reader. Further, action researchers, “often punctuate their reports in a provocative way, 

maybe by asking challenging questions or upsetting our traditional thinking about 

something” (Newton Suter, 2012, p. 373).  

 

4.1  FIELDWORK EXPERIENCES 

In this part of the chapter, I will recount some of the important lows and aha moments 

which occurred in the field. I will provide an account of the unfolding landscape as I 
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understood it and I will attempt to provide an honest, sober and accurate record of my 

research experiences. 

 

4.1.1 DISRUPTION – THE FRAGMENTATION OF A UNIVERSITY 

MODULE  

In my discussion on Freire (2.1.2), I have written about the negative implications of 

ontological oppression and societal neglect. Here, I present a localised manifestation 

of such oppression – my IPS 413 E classroom – and of the disrupted teaching and 

learning experiences that the participants had to endure in the first semester of 2016.  

 

In the past few years, intermittent, unanticipated disruptions have thwarted teaching 

and learning processes at my university.  Recently, these disruptions have increased 

in frequency to the point where they threaten the viability of our programmes. While I 

have always been aware of these interruptions to learning, chronicling my fieldwork 

experiences has focused my attention on the fragmentation of our students’ education 

into disjointed periods of calm, alternating with brooding tension, boycotts and 

violence. I did not set out to give a report on absenteeism in this thesis, however, its 

prevalence – and there are many reasons for its manifestation – is an important 

unexpected finding and needs to be introduced into the thesis. Below, I give an account 

of attendance and absenteeism which played out in the IPS 413 E Mathematics 

module and which, thereby, had a direct bearing on my action research.  

 

On Wednesday, 10 February 2016, I met with the IPS 413 E – Mathematics cohort for 

the first time.  I arrived at my classroom 40 minutes early, but the PGCE cohort were 

late for my lesson - they had been kept back in their earlier lecture. Further, even 

though some of these students were up to 15 to 20 minutes late for the lesson, they 

seemed to drag their feet into my classroom. Indeed, albeit that in the course of time I 

would come to learn that the cohort contained a very affable group of mature learners, 

this first lesson also heralded a pattern of late arrivals and foot dragging. Forty-four 

students attended the first lesson, but, correctly, I anticipated that the class-size would 

grow in the following weeks. This too – late registrations for university programmes – 

has become a trend which conspires against inspiring efficient and effective 

introductions to academic modules. 
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 Higher Education in South Africa is in a state of flux: starting in 2015, under banners 

such as @nofeeincrease and @feesmustfall, large swathes of university students 

have, on occasion, vacated their classrooms in favour of seeking social justice. And, 

indeed, on Monday 15th February, in only the second teaching week in 2016 and after 

I had only had one lesson with the PGCE cohort, the mass-mobilisation of students 

manifested yet again. Because of the volatility of the on-the-ground situation, classes 

were suspended. At that time, the principle reasons for the mass-action were unclear 

and no one had any idea about when and how the strike action would be resolved. For 

my part, having achieved a small measure of goodwill in my first lesson, I was troubled 

that that goodwill might be lost. 

 

Four days later, on the 19th February, university management met with various student 

factions. Collectively, they resolved to call for a respite from the stay-away and our 

students agreed to resume attending classes. With that in mind, I began preparations 

to meet with the PGCE class, for only the second time, on Monday 22nd February and 

indeed, that lesson did take place.  

 

However, on the 22nd February, yet another problem manifested: it was announced 

that changing, on the ground circumstances now required all of the B Ed and PGCE 

students to undertake a two-week school-experience practicum in the first semester of 

2016. This requirement caught staff and students off guard.  

 

The first semester of study contains about 12 to 15 contact weeks which typically 

creates about 24 to 30 lessons for IPS 413 E Mathematics module. Thus, because of 

the stay-away, I entered the third week of the semester with two lessons already lost 

to strike action, and the spectre of losing four more lessons during the newly scheduled 

semester 1 practicums. This impacted on my pre-planning for the action-cycles and 

data-collection phases of my thesis. But more trouble was to come… 

 

Two days later, on the 24th February, my lesson with the PGCE cohort got off to a 

rocky start. In that week we were living through an appalling heat wave and were 

experiencing unbearably high humidity percentages, too. On that day, when I entered 

my classroom, I was hit by a blast-furnace-hot wall of thick, super-saturated air. The 

air-conditioning had been set to its maximum 31oC setting and left running. I turned 
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down the temperature to 16oC but that did not offer any reprieve: while the heating coil 

in the air-conditioner worked properly, the condenser had no refrigerant gas, so all that 

I really managed to do was circulate the hot air. To add to my miseries, the PGCE 

students, who now numbered 60 in total, arrived very late for my class. As had 

happened previously, they explained that the lecturer in their previous lesson typically 

always arrived late for lessons and then worked through into the next (my) lesson. I 

realised that I would have to address this matter.  

 

On Friday, 26th February, our students boycotted their university classes and after this 

mass action, the following week, on Monday 29th February, only 38 of my students 

attended my class; on Wednesday 2nd March, there were 44 students, and on Monday 

7 March, only 37 out of 60 registered students attended the IPS 413 E Mathematics 

lesson.  

 

Human Rights Day, a public holiday in South Africa, was celebrated on 21 March 2016. 

This celebration did mean, however, that I lost a lesson with my PGCE cohort. 

Similarly, Easter Monday, also called Family Day in South Africa, is a public holiday 

and was celebrated on 28 March 2016 so I lost a lesson with the PGCE cohort. Further, 

immediately after the Easter weekend and a short university break, the PGCE students 

were away for two weeks, doing the aforementioned unplanned practicums in Eastern 

Cape local schools; the practicums cost me 4 lessons.  

 

After the practicums had been completed, only 33 of the PGCE students returned to 

the university on the 18th April. However, on that day, while I was negotiating the way 

forward with these students, members of the Students’ Representative Council (SRC), 

entered my classroom and, for reasons unknown to me, closed down all teaching and 

learning for the day.  

 

On the 19th April, Mr Muisi Maimane of the Democratic Alliance political party paid a 

visit to our university and that visit brought the university to a stand-still. And, as if that 

was not enough, the greater part of East London was without water and we learned 

that for the following three or four days, while emergency repairs were effected to our 

major water-reticulation pipeline, no running water would be available on our campus.  



 

148 

 

Because of this water crisis, at 12h00 on 19th April, the vice chancellor closed the 

university.  

 

In South Africa, 27th April is celebrated as national Freedom Day. Thus, because this 

public holiday occurred on a Wednesday, I lost a lesson with the PGCE cohort. Further, 

in our country, as in many other countries, 1st May of each year is celebrated as 

Workers’ Day. Because the 1st May fell on a Sunday, Monday 2nd May was celebrated 

as a public holiday and so another lesson with my PGCE cohort was lost. 

 

On Wednesday 11th May, fearful as I was that my students were not properly prepared 

for their June examination, I negotiated an extra lesson for the PGCE cohort. On Friday 

13th May, most, but not all of the class attended the extra lesson. However, many of 

them seemed to be in a bad mood. During the lesson, I did not interrogate this 

heaviness with them, but certainly, it was not a pleasant lesson. And so, rather than 

being a, “yes, an extra lesson…” it was more like pulling teeth. 

 

At the end of the lesson, I asked a few students to explain the brooding atmosphere. 

They suggested that, (1) because our university administrators required them to sign 

off on financial matters, many students queued for long and frustrating hours at the 

Finances Offices:  some of the students encamped in front of the offices as early as 

04h00 and, I was told, were only attended to well after midday. Also, (2), on the 13th 

May, some academics had cancelled their lessons with the cohort, thus many of the 

students felt it was unfair of me to call them in for this extra lesson.  

 

I squeezed in a second make-up lesson on the17th May. Many students attended the 

lesson and it was conducted in a far better atmosphere than the first extra lesson. 

Twelve to fifteen students stayed on after the make-up lesson to ask me to help them 

with various mathematical hiccups. This smaller group worked together for an 

additional hour and a half and appeared to make some profound strides.  
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On the 18th May, only about one third of the 

180 students my B Ed Year 2 class attended 

their lesson with me. The rest were absent and 

were either at home or were milling in the 

street immediately outside my classroom. 

They were protesting in support of their peers 

who, having been arrested for the destruction 

of university property in a previous violent 

mass-action incident, were appearing in court 

on that day. In my university, unless we are 

told to do otherwise by senior management, 

university staff are instructed to carry on with 

their lessons, thus I began my work with the 

students who had indeed come to the lesson. 

       Figure 4.1. A typical boycott poster 

          

However, early in the lesson, a member of the Students Representative Council (SRC) 

made her way into our classroom and requested all of the students to leave the class; 

the SRC, see Figure 4.1, above, had called for a general stay-away. I pointed out to 

the SRC student that as democratically elected representatives of the students, the 

SRC would appreciate the sanctity of the South African Constitution and rights such 

as freedom of movement and freedom of association. I pointed out to her that freely, 

students were engaging in protest action, outside the classroom, and freely, other 

students, those in my class, had made a choice to study. The logic of my comments 

was lost on her and did not deflect her from her purpose: she insisted that the students 

must leave and must join the strike-action. She stated that should we remain in class, 

we would be violently removed from the classroom. When I indicated to her that she 

should choose her words more cautiously – that she was in fact threatening us – that 

too went right over her head. Prudently, I dismissed the class. Thus, later in the day, 

another lesson with my PGCE students would be lost.  

 

Two days later, on the 20th May, the university held a centenary celebration. Presidents 

Jacob Zuma and Robert Mugabe were in attendance (Figure 4.2, below). On that day, 
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in spite of ongoing protest-action, I managed to work in a third extra lesson for the 

PGCE cohort. Almost every single student arrived for the lesson.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Presidents Zuma and Mugabe attend centenary celebrations 

 

The extra lesson was three hours long. At its conclusion, I administered a make-up 

task for students who needed an extra opportunity to “boost” (the students use this 

term) their marks up to our minimum, duly-performed, semester mark of 40%. This 

meant that some students were in my class for about four and a half hours, but all in 

all, the lesson and boost-task were attended to in high spirits.  

 

Three days later, on the 23rd May, our faculty received an instruction from the Vice 

Chancellor’s office which announced an amendment for the Duly Performed 

requirement for the June 2016 exam period: any student holding a Duly Performed 

mark lower than 40% was to be automatically awarded 40%. This consideration, taken 

to alleviate continuing simmering tensions, was a part of a larger negotiated agreement 

between the management of the university and the SRC.  

 

The following week, from 30th May through 3rd June, the students went into Study 

Week. They used this time to prepare themselves for their examinations which 

commenced on 6th June 2016 and on the 9th June, at 13h00, the PGCE students sat 

for their IPS 413E Mathematics exam. 
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Thus, in summary, 29 lessons were potentially available to the module, but because 

of the stay-ways, very late arrival for classes, the co-incidence of public holidays falling 

on my teaching days and the unscheduled school experience practicums, 16 teaching 

days were either totally or partly lost. The module retained only 13 unimpeded lessons 

and 3 extra lessons were offered to the students. The various upheavals made it 

difficult to sustain any traction. After each interruption, it became necessary to invest 

time and energy into renewing relationships, refreshing and consolidating previous 

learning before any headway might be made. From the beginning of the semester 

through to the examination, progression was repeatedly marred by disruption. Such 

disturbances have become an endemic feature of teaching and learning, so much so 

that the abnormal is now normal. And, the lens of my research has foregrounded the 

magnitude of this aberration. 

 

4.1.2 DESPAIR – A QUEST FOR AN ETHICAL CLEARANCE 

CERTIFICATE 

Correctly so, all research that is undertaken in my university must receive an ethical 

clearance certificate and research number. It gives one a licence to conduct research. 

Obtaining an ethical clearance certificate is a technical and tedious task, but it is an 

important undertaking. The ethical clearance certificate carries with it a clearance 

number which, for research purposes, has to be attached to consent forms, 

questionnaires and any other research documentation.  

 

On 20th November 2015, I submitted the requisite forms to the faculty for scrutineering 

so as to demonstrate that, ethically, my proposed PhD study would be in good 

standing.  All that day the documentation was inspected by senior members of staff, 

returned to me to effect minor adjustments and was re-submitted for final approval, a 

clearance certificate and a research number. Typically, it then takes about two to three 

weeks to obtain approval and the all-important clearance number. I anticipated receipt 

of the approval between 1st and 15th December 2016. However, by the end of January 

2016, I had received neither feedback nor the clearances. This saga continued to drag 

itself out for the month of February 2016.  
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In February, too, I conducted the first pair of prior-knowledge tasks for Action Cycle 1. 

These diagnostic tasks were used to ascertain the participants’ base-line capabilities 

(Department of Basic Education, 2011). My supervisor and I agreed that, although the 

clearances had not been issued, such testing is stock-in-trade for reflexive teaching, 

thus we felt this action was sound. I subsequently marked, collated and analysed the 

two data-sets and then used the information to create concept-building learning 

opportunities for the cohort, which again, is stock-in-trade for my work.   

 

On the 8th March, I learned that my ethical clearance documents had never left our 

premises. In error, they had sat unattended to on a university desk for three months. 

Thus, although they were long overdue on my planning agenda, I decided that I could 

not administer the questionnaires, nor conduct any small-group interviews. These 

tasks were scheduled as activities that would be undertaken by my research 

participants. I realised that there would be little chance of recording any evidence by 

way of interviews or questionnaires for the first action-cycle of the action research.  

 

After the administration error was uncovered, the due processes were hastily actioned 

and I finally received my ethical clearance certificate (Appendix B). The number is: 

DRA011SSHA01 / 6408640984 and it was issued on 22 March 2016. It had taken four 

months to complete this task, but at least I now had it to hand. Armed with these 

numbers, I was able to insert the information onto my questionnaires and was free to 

move forward with the research. 

 

On the 18th April, after completing their school practicums, my students returned to the 

university. My research supervisor and I used that opportunity to formally ask the 

PGCE cohort to consider becoming part of my research programme. In possibly too 

much detail, we explained everything to them and discussed how very important it was 

that they not feel coerced into participation: each student was also provided with a full, 

written account of the purposes of the thesis and asked to carefully read the 

documents so as to fully understand the ethical dimensions of the research.  

 

None the less, although only 33 students attended the lesson, when asked whether 

they would like to become formal participants in the research, every single person 

signed-up on the consent forms. And then, on the 25th April, an additional 5 students 
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approached me and volunteered to become participants in the research, thus bringing 

the total to 38 participants.  

 

4.1.3 DISTRESS – A THREAT TO THE VIABILITY OF THE PGCE 

QUALIFICATION 

On 26th February, a few of our ex-PGCE students – students who had graduated and 

were working – returned to the university, deeply distressed and seeking advice. The 

King Williams’ Town, Department of Education, District Office had employed them as 

teachers; they had been awarded full-time teaching posts and were at work, teaching. 

However, while sifting through the reams of paper-work that formalized their 

employment, these ex-students had had to deal with department officials in East 

London. And, in those offices, an official had flatly rejected their qualifications and told 

them very bluntly to get out of their state-run schools. The official suggested that their 

PGCE qualifications did not serve as an entry point for teaching in the GET Band and 

so they would all lose their jobs.  

 

From these students, I also learned that qualified PGCE graduates from other 

universities in the Eastern Cape were experiencing the same frustrations. After some 

initial parries and ripostes, as a collective, the universities elected to engage with the 

Department on this matter. Our academic and administrative position was that the DoE 

officials had misinterpreted their own guiding framework and instructions.  However, 

no resolution was found.  Further, the tension between the DoE and the universities 

spilled over into my own interactions with the 2016 PGCE cohort who became very 

fearful that their time spent in the programme might come to nought.  

 

By the 8th March, the deadlock had taken on an ominous lustre. A growing number of 

ex-PGCE students had been affected by the Department of Education (Eastern Cape) 

view that their PGCE qualification did not provide an entry point to teach in Eastern 

Cape public schools. And, despite ongoing meetings between the universities and the 

DoE, a stalemate prevailed. In my university, because an unsatisfactory outcome 

would prove disastrous for them, the ex-PGCE students petitioned the Vice Chancellor 

of the university to assist them. Many had already been working without payment for 

months and had been told by the DoE that they had to vacate their teaching posts. 
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Further, and understandably so, the ex-students felt that if they did lose their posts, 

the chances of their being paid for the work they had already done, was very low.  

 

It was clear that the ramifications of a negative outcome for the existing cohort of PGCE 

students was that it would nullify their ability to obtain gainful employment with the 

DoE. Also, because of the ongoing volatility in Higher Education, our faculty was aware 

that any perception of poor treatment of students, past or present, had the potential to 

ripple through the campus and might-well set off even more stay-away action. 

Fortunately, time would show that this did not happen but, sadly, during the course of 

writing this thesis, the impasse remained unresolved and I think might have contributed 

to the high levels of absenteeism in my IPS 413 E Mathematics classes. 

 

4.1.4 DISCUSSION – SCAFFOLDING MIS-UNDERSTOOD 

FOUNDATIONAL ARITHMETIC CONCEPTS 

By way of example, below I discuss how I used the primary data that was captured 

from the Foundational Arithmetic Concepts, Action Cycle 1, prior knowledge task to try 

to provide conceptual support for participants who had struggled to correctly answer 

the questions in the task. In much the same way, I used the primary data captured 

from the other prior knowledge tasks to identify problems and to then conceive 

strategies that might provide support to the participants. 

 

The baseline setting Foundational Arithmetic Concepts, Action Cycle 1, task was 

administered on the 10th February 2016. I marked the assignments and then, in MS 

Excel©, I collated the primary data and constructed summaries and graphs of the 

trends that I found. Using intuition and insights that I had gained from the primary data, 

I created feedback and scaffolding lessons for the PGCE cohort, as outlined below”   

 

1. The quantitative primary data enabled me to ascertain and rank performance 

for each question. This, in turn, enabled me to introduce my first design feature 

into my teaching and learning strategy:  

In Microsoft Word©, I reordered the questions in the Foundational Arithmetic 

Concepts assignment so that, in descending order, the question that had 

achieved the highest success rate appeared first, followed consecutively 
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through to the worst performing question. On the right hand side of each 

question I inserted, as a percentage, the class success rate for that question. 

 

2. Next, I introduced a second design feature:  

 

Based on the skills, routines and procedural mis-conceptions that precluded the 

students from success, I constructed new sets of questions that required the 

students to solve numerous problems that were similar to the original questions. 

Bloom’s Revised Taxonomy (Krathwohl & Anderson, 2010) was incorporated 

into the design of these questions.  

 

Thus, my over-arching plan was that each type of mathematical content question and 

its attendant mathematical skills, routines and concepts would be visited at least four 

times prior to the June 2016 examination. Those times were occasioned by (1) the 

prior-knowledge task; (2) scaffolding of problematic questions via the re-ordered issue 

and investigation of the task, (3) practicing mathematical ideas in numerous activities; 

and, (4) the re-evaluation task.  

 

3. Having gained permission from the PGCE cohort, I applied a third design 

feature:  

 

At a meta-cognitive and ethical level, I had promised myself that I would share 

all of my data with the participants and that this sharing would happen 

spontaneously and sporadically, as and when new data was revealed to me.  

 

Thus, in class, I used a data-projector to display the trends that I found in the data. We 

scrutinized the data sets, often finding trends that demonstrated that many participants 

were struggling with similar mathematical procedural and conceptual problems. These 

expositions introduced a sense of camaraderie and optimism among the participants. 

They found the shared information captivating and, for many, it dispelled any sense of 

isolation, of being the only one who didn’t get it.   

 



 

156 

 

Mathematical content knowledge and the construction of a connections model – linking 

pictures, symbols, language and real-world scenarios (Haylock & Mann, 2014) – were 

major foci for the semester. Further, into many lessons, I also introduced aspects of, 

for example, Ausubel’s concept of prior learning (Ausubel, 1968), or important issues 

pertaining to CAPS (Department of Basic Education, 2011), or social constructivism, 

etcetera. I did this to integrate mathematical content knowledge (Muir, 2008; Tipps, 

Johnson & Kennedy, 201), subject content knowledge (Sowder, Philipp, Armstrong & 

Schappelle, 1998), and pedagogical content knowledge (Shulman, 1986) and used 

these cross-linking opportunities to establish pivots for our shared exploration of 

mathematics.  

 

By way of example, on 24th February I cross-linked the conception of compression 

(Tall, 2014), Blooms’ Revised Taxonomy, the BODMAS acronym and mathematical 

operations and routines. I used this linking technique to demonstrate how evidence 

captured from a test in which a student might have correctly remembered a low-order 

fact such as the BODMAS acronym, but subsequently might not have solved a low-

level understanding task such as 19 + 16 x 17 – 5 = ?, would signal that the 

compression of the relevant unpinning facts, routines and ideas might not have 

occurred and that a robust schema (Piaget, 1986), might not have been constructed. 

 

New or problematic mathematical content was scaffolded and many tactile and visual 

stimuli were brought to bear upon the teaching and learning processes (Bruner, 1966). 

Such stimuli included the use of found resources such as bottle-tops or pebbles, 

biscuits and Smarities© which are useful in sharing situations, arrays, formulating 

fractions; ratios, building number-lines, directed numbers and number patterns. In the 

South African context, I believe that my use of found resources is appropriate; models 

and posters of fractions or number-lines and Cuisenaire© rods, etcetera, largely, are 

not available in South African schools.  In class I introduced the practice of using 

ribbons (made either from card or drawn in fair proportion on paper), which facilitate 

the construction of visible interpretation of ideas as diverse as fractions and word-

problems. I also made use of a document camera and data-projector to create directed 

teaching/thinking lessons (Tipps, Johnson & Kennedy, 2011, p. 75), which were 

developed to assist the participants to improve their mathematical knowledge. And, in 

support of all of the above, I constructed numerous MS PowerPoint© slideshows. 
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4.1.5 DISCUSSION – REFLECTIONS ON A TYPICAL LESSON – 

7   MARCH 2016 

Within the constraints of this thesis, it is not possible to reflect upon every lesson which 

occurred within the semester. However, I would like to offer, as one example, my 

reflections on a lesson I had with the participants on 7th March 2016. 

 

Although only 37 out of 60 registered students attended that IPS 413 E Mathematics 

lesson, I used the lesson to begin to unpack the various mathematical skills-sets, 

vocabulary and concepts which had proved to be outside of their understanding in the 

Action Cycle 1, Foundational Arithmetic Concepts, prior-knowledge task. On an ad-

hoc and informal basis, I incorporated numerous tactile and iconic scaffolds into our 

discussions  

 

Q 4.5 is presented in Figure 4.3, below. It is taken from the Action Cycle 1, 

Foundational Arithmetic Concepts prior knowledge assessment tasks. Because only 

1/44 of the students who wrote the test managed to correctly answer this ratios-based 

question, it was reviewed in class on 7th March. This question and its answer enable 

me to discuss the methodology that was applied in my lesson.  

 

 

 

 

 

 

 

Figure 4.3 Question 4.5 as found in Action Cycle 1, Foundational Arithmetic 

Concepts, Prior Knowledge task. 
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In my reflexive planning, I had realised that Q 4.5 had proved to be massively 

problematic for the entire cohort. Thus, in order to provide a robust conceptual scaffold 

for this poorly understood problem, I created a four-page ratios activity for the students 

(Appendix C). This document was provided to the participants in the form of a 

photocopied handout and was used in conjunction with colourful found resources. My 

plan was for the students to work through the document by themselves, in pairs or 

small groups. I hoped that, without my assistance, they would be able to use a 

combination of the information that was provided to them in the worksheets, their own 

intuition and their past learning experiences to reconstruct and liberate lost memories 

of important features of ratios. However, in this conception of discovery and social 

construction of knowledge, I was only mildly successful. Many students found it difficult 

to more forward by themselves or with the assistance of their peers and so, eventually, 

I reverted to a transmission teaching and learning mode.  Indeed, the passage of time 

would show that this was a trap I fell into easily. 

 

I gathered the class around me – we formed a large, loose semi-circle –  and then, 

using biscuits, I demonstrated the sharing of biscuits between a father and two sons, 

such that, on the basis of one for me, one for you, the father enjoys twice the number 

of biscuits as that boys. This amusing modelling was used to then discuss different 

types of sharing possibilities and different meanings attached to fractions notations, 

and was linked our use of vocabulary and language, and the manipulatives and images 

that were being used in the lesson.  

 

The larger exercise was designed to help the participants to visualise ratios in terms 

of concepts such as the size of the whole, the sum of the parts of a whole and why it 

is that we might divide the whole by the sum of its parts (so as to establish a unit size), 

etcetera. The explanation, combined with the vocabulary, real-world scenarios, visual 

and activities-driven parts of the work, and worksheets assisted the students to make 

better sense of ratios, but the rationale of a unit size proved evasive for some of the 

students and, intuitively, I believed that most of the students did not construct a meta-

concept of ratios. That is, compression did not occur. Thus, I realised that, in 

subsequent lessons, that meta-concept would need to be reviewed and carefully 

attended to, failing which, all the fractions and ratios concepts would flounder. 

 



 

159 

 

In Figure 4.4, below, taken from the worksheets, a ratio of 3 : 7 is presented. On the 

top line a rectangular representation of a whole has been sub-divided into 10 equal 

unit parts. The sum of the parts in this ratio is 10 (3 + 7 = 10). The participants were 

required to use the symbolic (3 : 7) and iconic (rectangular bar) cues to colour the unit 

cells in fair proportion so as to properly represent 3 : 7. There are many possible, 

correct answers. A correct solution, and I think, the most obvious one, is presented in 

the lower sketch.  All the students easily negotiated the requirement.  

 

Figure 4.4.  Direct correspondence between ratio and shading in of parts 

 

However, when the questions on the worksheets progressed to the order found in the 

Figure 4.5, below, some of the students stumbled: 

 

Figure 4.5.  Indirect correspondence between ratio and shading in of parts 

 

I think that because rectangular bars had been sub-divided into 10 units, inadvertently, 

I complicated the situation. The question raised two sticking points:  

 

1. there were 10 divisions in the whole but only 5 parts in the ratio; and  

2. there were too many 2s in the solution: the sum of the parts 2 + 3 was 5; 5 

divided into 10 is 2, that is, the unit size and coincidentally 2 was also a number 

in the ratio.  

 

In my planning, I did not anticipate this problem. So, assisting the students to 

conceptualise an answer to this question became a bit of a mess. I reverted to a 

chalkboard sketch of the bar, first sub-divided into 10ths and then repeated in 5ths. 

This comparison model – in effect a fractions wall and equivalent fractions – seemed 
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to reduce the misunderstanding, but again reinforced my understanding that this type 

of work would require much more support. 

 

Fortunately, towards the end of the exercise, when confronted with questions of the 

order below, Figure 4.6, (which did not contain any printed sub-divisions of the whole), 

most of the participants finally began to put the various sub-tasks of this procedural 

work together.  

 

 

Figure 4.6. Representation of ratio in a rectangular bar by means of 

calculation and measurement 

 

By rote mostly, the students easily added the parts in the ratio, measured the full length 

of the rectangular bar, divided that length by the sum of parts, and used that quotient 

to construct, in fair proportion, the visual representation of the ratio. 

 

The three examples presented above were used to consolidate many interrelated skills 

and content knowledge that are applied to ratios. Following the use of these 

preliminary visualising activities, the work was formalised and ratios were inserted into 

contextualising word-problems, as in Figure 4.7, presented below. 

 

2. Thando, Sipokazi and Jane eat 240 sweets in the ratio of 3:4:5. 

How many sweets does each child eat? 

3. Lulu owns pens, rulers and erasers in the proportion 4:3:5.  She 

owns 16 pens. How many rulers and erasers does she have? 

 

Figure 4.7.  Routine application of ratios in Intermediate Phase word-

problems 
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While the students easily worked through question 2, above, question 3 required 

additional scaffolding. Question 3 did not fit into the routine set up by the questions 

which preceded it. In question 2, for example, the total of 240 sweets is shared. In 

question 3, the total is not supplied; instead, what we get is a relationship between 

pens as parts (4 parts) and a number of pens (16 pens).   

 

In order to bring some sense of the asking requirements of the question and its solution 

to bear on our discussions, I returned the group to our informal semi-circle, and using 

Smarties©, I placed 16 red smarties into a 4 x 4 discrete representation of an array, 

and used that array as a link to the ratio (4 : 3 : 5), in equal groups to the 4 in the ratio, 

and from there, to the 3 parts (each a group of 4), and 5 parts, respectively. 

 

While the difficulty in Q3 was unanticipated, the discovery of this conceptual glitch was 

important. With the ritual of the first routine, as set up in Q2 disrupted, many 

participants had become disoriented. This demonstrated, yet again, that even when 

the students appeared to be getting it right, their understanding of the concepts and 

processes was often tenuous and that compression was elusive. 

 

Towards the end of the lesson, I presented a blended-learning, asynchronous activity 

in the form of a photocopied handout to the students, (Appendix D). In it, the students 

were directed to use an internet website – one which is saturated in visual 

explanations, examples and video clips – to learn for themselves many foundational 

arithmetic ideas and vocabulary. My thinking was that by putting the students in charge 

of their own learning, I was in fact offering them an opportunity to liberate their own 

dormant potentials.  
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4.1.6  DISCUSSION – MULTIPLICATIVE REASONING  

On the 10th February 2016, I met the IPS 413 E Mathematics cohort for the first time. 

I used that lesson to introduce myself and the module to the participants and I also 

used the first period to give the participants an arithmetic competence diagnostic 

assessment task. By carefully marking and reflecting on the answers that were 

provided to me in their answer books, I was alerted to problematic arithmetic concepts 

and practices that were found in the scripts, and was thus able to consider appropriate 

starting points with the participants. The data revealed many problems, of which 

multiplication and multiplicative reasoning was but one.  

 

Twelve of the twenty questions in the task used, in different ways, multiplicative facts, 

skills and reasoning. These questions included mental multiplication, ascertaining 

perfect squares and cubes, multiplication in mixed operations calculations, long 

multiplication, multiplication by zero, factors and, multiplication and division as part of 

a ratio calculation. The numbers used in the questions and their answers, (with the 

exception of the ratio question), were restricted to whole numbers. All of the solutions 

were obtained without the aid of a digital calculator. 

 

With the exception of Q1.2 which required a True/False response to the statement: In 

the pattern: 1; 4; 9; 16; 25; ____; ____; the next two numbers are 34 and 43, and 

which garnered 25/34 correct responses, the other eleven multiplication/division-

based questions enjoyed very low returns. The unifying fact that emerged from the 

data was that many students simply did not know their times-tables, and thus, any 

conception build upon that missing pivotal link, was bound to fail.  

 

I believe, albeit they are learned number facts, and mostly rote-learned at that, pupils 

and research participants alike, must know the times-tables. Haylock (2002), Siemon, 

et al. (2012), and Rickard (2013), agree. Indeed, Rickard (2013, p. 91) suggests that, 

“armed with predominately instant recall of multiplication facts, learners can then 

employ these quickly and easily,” in a range of multiplicative ways. These ways include 

multiplying digits in mental and long multiplication, calculating related facts for, for 

example multiples of 10, application to decimal multiplication, doubling and halving, 

etcetera. 
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However, in concert with Haylock (2002), Siemon, et al. (2012), and Rickard (2013), I 

also agree that the times-tables should be contextualised and understood. Haylock 

(2002), suggests that while an early understanding of multiplication is built upon 

repeated adding, a second facet – scaling up and down – as found in ratios, is an 

important multiplication concept with which learners must grapple. In this regard, he 

suggests (Haylock, 2013), arrays, as found in the blocks of chocolate in chocolate bars 

or constructed with arrangements of bottle tops, are ideal for demonstrating the 

commutative and distributive laws, scaling, repeated addition, etcetera.  

 

Building on these starter activities, it is then possible to use learners’ early 

understanding of multiplication to introduce visually rich, area models (locally, South 

Africans also call this the Grid Method), an understanding of which, in the course of 

time, can be brought to bear on algebraic computations (Siemon et al., 2012).  

 

Alongside this work, appropriate language needs to be introduced into teaching and 

learning. Vocabulary should be introduced incrementally and should start with informal 

terminology which builds up to a more precise mathematical language. Thus, one 

might start multiplicative investigations with everyday language and real-life contexts 

such as two boxes of biscuits and nine biscuits in each, which then becomes two nines. 

The formal language acquisition requirements then progress to the use of times, as in 

3 x 4 = 12 and hence, to simple number sentences such as, six multiplied by three and 

so forth (Rickard, 2002).  

 

Aligned with this introduction to language and symbols, Van Der Walle, Karp and Bay-

Williams (2010), suggest that an understanding of multiplicative symbolism can be 

negotiated via the use of simple story problems and the use of smallish numbers so 

as to allow learners to focus on appropriate use of symbols, context and concepts 

rather than the burden of onerous computations. Remainders too, should be 

introduced early. Further, it is suggested that the use of models – typically, arrays, 

ribbons and number lines – facilitates cognitive uptake of multiplicative thinking and 

brings some clarity to the counter-intuitive view that, for example 3 x 6 = 6 x 3 = 2 x 9, 

etcetera. Van Der Walle, Karp and Bay-Williams (2010), also remind us that zero and 

one, as factors, present many learners with cognitive challenges. 
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Armed with this knowledge, and with Plato’s allegory of the cave (2.1.1), Freire’s 

liberating conception of education (2.1.2) and Bruner’s social constructivist learning 

theory (2.7) offering me a philosophical and epistemological bed-rock, I set about trying 

to address the many interrelated multiplicative thinking problems that manifested in the 

participants’ workings. I set about trying to create learning opportunities that would 

enable the participants to develop multiplicative reasoning and would encourage them 

to become more self-reliant. I created a review exercise, discussed in (4.1.7), in which 

all of the questions in the prior knowledge task were rewritten with similar, but not 

identical questions. The questions in the review document were reordered; the best 

answered questions in the prior knowledge task were listed first, and then, in 

descending order of achievement, I listed all the other questions.  

 

In our classroom, while reviewing their arithmetic assignments, the first hurdle that I 

had to overcome was a view that the participants believed that, had they had access 

to their calculators, they would have fared better in the arithmetic task. While we 

agreed that in all probability this most most-likely true, our discussion gave me an 

opportunity to discuss teaching and learning practices and requirements in South 

African primary schools (for example, see Table 4.7) and the attendant, requisite skills 

that the participants, as teachers, must hold in order to fulfil those roles.  

 

The participants readily acknowledged the importance that primary school 

mathematics teachers attach to multiplicative thinking and the times-tables – indeed, 

in their thinkboards (4.2) which they had completed before doing the arithmetic task, 

the participants made it clear that they were keen to become really good teachers. In 

the course of the lesson, this first fruitful discussion worked itself into three short, 

interlinked discussions.  

 

On the data projector, I first presented a traditional list of the times-tables and used 

that to introduce the concept of transmission mode, rote learning, vis-à-vis, Freire’s 

banking model (2.1.2.3). The slide elicited memories of chanting the time-tables. 

 

Second, I introduced a slide which contained an array-display of the times-tables and 

used that to unpack multiplicative number facts in a visual way. I used this slide to 

demonstrate that, for example 4 x 5 = 5 x 4. I also show the participants how the array 
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revealed bounded areas, for example 4 x 5 = 20, and I highlighted how the perfect 

squares were presented, to the seeing mind, on a diagonal. It can be suggested that, 

via this mechanism, I was attempting to move beyond rote learning into a mode which 

liberated understanding, vis-à-vis, I was applying Plato’s metaphor for a good 

education (2.1.1.3), Freire’s liberating model of education (2.1.2.3) and Bruner’s iconic 

and symbolic modes of representation (2.7.4.2 and 2.7.4.3).  

 

During this lesson, I switched between slideshow and chalkboard, expository teaching 

and whole class discussion. Indeed, this was to become a feature of all lessons, but 

often, more-times than I had hoped for, the direct instruction component of our lessons 

became a/the pivot for progression. Killen (2015, p. 137), suggests that direct 

instruction “remains one of the most effective ways of promoting student learning and 

it has a long history of strong research support,” but it should also give rise to guided 

practice and independent practice. This too, guided and independent practice, became 

a feature of our lessons. 

 

The third component of our discussions focused on a vocabulary list of multiplicative 

(and other) facts that I issued to the participants. In class, I used my computer to link 

us to a web-site: https://www.mathsisfun.com/ . I demonstrated how the homepage in 

the web-site was put together and I paid particular attention to the dictionary feature in 

the homepage. I encouraged the participants to put aside a few hours to use the 

vocabulary list with the web-site dictionary to study, by themselves, some of the 

important ideas which they needed to understand. It is important to note that the 

dictionary feature offers much more than a short description of mathematical 

vocabulary; it offers full explanations in a user-friendly format that blends text with 

pictures, examples with short exercises, and provides links to adjacent ideas.  

In that lesson, I believed that the above explanations and demonstrations would 

provide a suitable refresher for the participants and that, really, all that was needed 

was a brushing away of cobwebs to remind the participants of competences that they 

most-likely already held. However, the following weeks, two things quickly became 

clear to me in class. First, albeit that they were a lovely group of people to work with, 

it rapidly became obvious that the participants were continuously distracted from their 

university work and thus did not seem to apply themselves to their studies. This is 

https://www.mathsisfun.com/
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discussed in (4.1.1) and (4.1.3). Second, I realised that the multiplicative problems that 

the participants held went beyond simply brushing aside cobwebs. I came to find that 

many of the participants held very little cogent understanding of the operations and 

arithmetic conventions which, as seen in (4.3 – 4.10). Nor did we ever fully repair this 

aberration, thus an inability to recall multiplicative facts and apply multiplicative 

reasoning limited progression throughout the semester. 

In South Africa, long multiplication can be attended to by partitioning or using the 

standard form, with columns for units, tens, hundreds, etcetera (Department of Basic 

Education, 2011). The participants called this the house method.  

In a lesson, where the house technique was discussed in class, some of the 

participants were perplexed and derailed by such matters as which number to write on 

top, which side of the columns to affix the multiplication and addition signs, and in 

which order – units, tens, hundreds or alternatively hundreds, then tens and units – to 

conduct the multiplication computations. These factors became sticking points, and 

trivial as it might seem, some of the participants attached a great deal of importance 

to the side on which to place the operations signs. Similarly, in spite of the evidence 

presented to them on the chalkboard, some participants seemed inflexible in 

perceiving that different routines, properly executed, would achieve the same answer.  

In unpacking this work, I reminded the participants that, in an earlier lesson, we had 

acknowledged that 3 x 5 = 5 x 3 (the commutative property of multiplication), thus we 

could anticipate that, for example, 423 x 512  = 512 x 423 and that therefore which 

number goes on top, was not really problematic. For convenience, however, we 

eventually agree that the first-listed number would go on top.  

Later, after the lesson, I realised that, in trying to discuss the commutative property in 

the context of a long multiplication calculation, and given that the participants were 

strongly predisposed to applying (mis-understood) rituals and different rituals at that, I 

may have cognitively stretched some participants too far. The solving of, for example 

125 x 364, alternately, 364 x 125 and multiplying, for example, first the units and then 

tens, and hundreds or alternatively, hundreds, tens then units, etcetera, with the 

accompanying zeros as placeholders, might have been a bit too complex. However, in 

that lesson, I did not realise that some participants remained unsteady.  
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What I did notice though, was that when it came to the multiplication itself, alongside 

the columns, some participants constructed lists of the times tables – 1 x 4 = 4; 2 x 4 

= 8; 3 x 4 = 12… or lists of repeated additions – 4 + 4 + 4… Not only was this an 

onerous and ill-efficient strategy, but on top of this, the participants were prone to 

making mistakes in their listings. And, it indicated that they had still not revised their 

times tables. Indeed, this missing skill-set – an inability to instantly recall multiplication 

facts – was carried through, through the full period of research. Its manifestation in 

assessment tasks is discussed further in (4.5.9.1) in this chapter. 

Linked to their difficulties with long multiplication, I realised that, in setting out their 

work, some students did not appear to grasp the concept of the columns. Two errors 

were noted, namely that generally, (1) many students were very untidy – sloppy even 

– in setting out their long multiplications, and, (2) many did not understand the idea 

that the units, the tens, and hundreds, were attached vertically to columns. With either 

of these situations in play, and often both, errors were bound to occur, and did. 

Evidence of this too, is found in this chapter (4.3.1 and 4.4.1).  

In class, my expository work is always neat, colour-coded, and properly set-out. This 

is true whether I construct a slideshow or work on a chalkboard. I used this fact to 

discuss, at length, a framework for setting-out work that would find favour in schools. 

I also drew a distinction between the setting-out conventions we use in exercise books 

and so-called rough-work. Indeed, because I believe deeply in trialling mathematical 

ideas, my participants were encouraged to keep a scribble-pad close to hand to give 

effect to their thinking.  

After the class, I conceptualised and constructed a letter about setting out which I 

subsequently provided to the participants. The rationale which informed the 

development of the letter was a view that I hold that, particularly students who are at 

risk, benefit enormously when they learn to neatly structure their mathematical 

solutions. This allows them to visualise patterning in their steps and to follow paths 

towards a final answer. Thus, quick ideas aside, even in their scribble-pads, I believe 

that a neatish approach can benefit students who are struggling with mathematical 

ideas. By extension, I have also found that, especially students who are struggling, get 

lost in a sea of symbols and numbers and jottings when they do not have the 

wherewithal to cogently structure their thoughts. These facts notwithstanding, in my 

own private calculations, I often scribble, so I am aware of the contradiction in my 
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writing. However, as in all things, a balance must be struck, and for at risk students – 

and many of the participants appeared to be struggling – I thought that the letter would 

prove to be of benefit.  

Also, as a reflective activity, partly because the discussion about long multiplication 

had not gone to plan, I asked the participants to each bring to class about twenty to 

thirty bottle-tops or buttons or pebbles, etcetera. Such artefacts can be used to 

construct arrays to visualise the commutative, associative and distributive properties 

of multiplication. I thought that, rather than confine such work to a teacher-led 

demonstration, it might be useful for the participants to use these manipulatives 

themselves to assist their mathematical thinking. I also felt that such participant-

involved investigations would serve the purposes of my thesis.  

With the benefit of hindsight, I continue to believe that this was a constructive and 

beneficial way to try to assist the participants to make sense of multiplicative and other 

arithmetic facts, but two niggles persisted throughout the research period, namely, (1) 

many participants never brought such resources to class, and (2) of those who did – 

about a half of the participants – many seemed loathe to use them. In quiet discussion 

with some of them, in much the same way that (incorrectly) many teachers in their past 

had frowned upon the use of fingers in thinking and counting, so too, they quietly felt 

that the use of bottle-tops was for babies. My counter-position that modern 

perspectives of mathematics teacher education (2.5), Shulman’s (1987) conception of 

complimentary content knowledge (CK) and pedagogical content knowledge (PCK) 

(2.5.2), and effective mathematics teaching practice (2.5.5) all contradict these myths, 

did not really bear any fruit. 

I did, however, often use these manipulatives on number lines and arrays to explain 

multiplicative facts and ideas. They facilitated explorations into factors, factor pairs, 

remainders, primes, squares and square roots, and also provided me with an entrance 

point to area models of multiplication. However, typically, because so many 

participants would not take a first step, it would often be me, sitting cross-legged on 

the floor, moving small, square wall tiles or pebbles into different configurations with 

the participants observing rather than doing. It seemed as if, while I was doing it, it was 

fine (and they appreciated the exposition), but they could not/would not enact the same 

practices (2.7.4.1). Further, when, through exposition, they realised that a number and 

its square root could be visually linked to a square and its side length, they appreciated 
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that new understanding, but seemingly, few returned to their desks to make notes of 

these discoveries. 

In the second quarter of 2016, as a visual application of the distributive property of 

multiplication, I introduced the participants to a paper and pencil-based model – the 

grid method – which in fact is simply an areas-based representation of multiplication. 

I did this reflexively, partly to relook at long multiplication from a new, visual, 

perspective, and partly to improve the participants PCK. I used numbers such as 34 x 

26 to achieve areas – for example four areas from (30 + 4) x (20 + 6) – the sums of 

which were added together to achieve the final products.  

In the context of this class, the participants perceived the technique as novel and 

interesting. However, although some students quickly understood the multiplicative 

links between the iconic and symbolic representations of long multiplication, others did 

not grasp the intersection. To counter this, on my chalkboard, I reverted to much 

smaller numbers, 8 x 7, reconstructed an area model (5 + 3) x (5 + 2), then carefully 

drew a rectangular representation of 8 x 7, reconfigured it to (5 + 3) x (5 + 2), drew in 

horizontal and vertical lines to represent unit squares, and counted out the answer, 56. 

With the exposition completed, the participants used the grid technique as an 

alternative to long division and were encouraged to try different distributive 

combinations to test the concept. All seemed to go well, and in subsequent lessons, 

the technique was used again. However, when they were re-evaluated on this work, 

only 3/38 participants correctly completed a grid/areas based multiplication task 

(4.9.8). Seemingly, compression of this technique did not take place.  
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4.1.7  DISCUSSION – FRACTIONAL REASONING  

In the arithmetic task that was completed by the participants on the 10th February 2016, 

only one question was directly linked to an understanding of fractions. In it, the 

participants were required to shade 
5

8
 of a large square which had been sub-divided 

into sixteen smaller squares. Only 8/34 participants, or 24% managed this task.  

In a word-problems task, completed on 22nd February 2016, five of the ten word 

problems that were contained in the assignment required the direct use of either 

fractions or ratios in their solutions. These questions, 2, 3, 4, 6 and 7, returned success 

rates of 17%, 37%, 37%, 8% and 16% respectively. A full discussion about the 

participants’ solutions to these questions is provided in (4.4) of this chapter. 

Because the arithmetic and word problems tasks were presented to the participants at 

the beginning of the semester, careful analysis of the answer sheets enabled me to 

get some sense of misunderstandings and to thereby consider activities that might 

help the participants to better understand fractions. However, to give some sense of 

the magnitude of the difficulties that the participants encountered, Q2 in the word 

problems task might prove enlightening. The question, written in full, stated: 

Altogether Shirley and Jean have 120 teaspoons. Shirley owns 
𝟑

𝟖
 of the 

teaspoons. How many teaspoons does Shirley have? How many teaspoons does 

Jean have?  

Only 6/37 participants (17%) correctly answered this question. With the exception of 

one other student, who was awarded one mark out of three for this question, all the 

other participants got it completely wrong. While a full description of the errors is 

provided in (4.4.3), it is worth looking at the conceptions that need to be in place – but 

were missing –  to answer the question. 

As a minimum, readers of the question would have to perceive that the sharing of the 

teaspoons is between two people and that, based on the 
𝟑

𝟖
 fraction, the teaspoons are 

distributed in a fixed manner, in effect, a 3 parts : 5 parts ratio. Furthermore, the reader 

would have to perceive that the 120 count represents the entirety of the teaspoons that 

are shared – that is, the 120 does not represent one person’s stock – rather the 120 is 

distributed between the two people. Further, one has to understand the roles of the 

numerator and denominator in the 
𝟑

𝟖
 fraction.  
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For the prepared mind in which a fractions meta-concept or schema is in place, the 

relationship between the denominator (8) and the whole (120), invites division of 120 

by 8, thereby generating a unit-size 15. This quotient is then multiplied by 3 and 5 

respectively to achieve 45 and 75, the sum of which, in a quick check, returns us to 

120. However, 31 of the 37 participants could not do this work. 

While this discussion will focus on some reflexive activities that were used to try to 

improve the participants understanding of fractions, it has to be acknowledged that 

success in fractional thinking depends on, and in turn, symbiotically contributes to, 

success in algebraic thinking, ratios, decimals, percentages, measurement, estimation 

and proportional reasoning. When these relationships are perceived and understood, 

compression is effected; that compression provides problem-solvers with an ability to 

fluidly integrate many intermeshed underpinning skills and ideas.    

Siemon et al. (2012) suggest that our fractional understanding develops best when our 

early experiences of fractions are informal, draw from our life-experience, and include 

visual stimuli which allow us to perceive parts, (fair shares); comparisons (bigger, 

smaller, half, etcetera); perceive conceptual differences between how many and how 

much, enable us to construct, partition and understand fraction diagrams (paper 

ribbons, area representations, etcetera), before we introduce fractional symbols and 

formal computations. Indeed, such informal use of models “should permeate 

instruction, not just be an incidental experience, but a way of thinking, solving 

problems, and developing fractions” (Petit, Laird & Marsden, 2010, p. 1).   

It is clear then, that if we introduce the formal vocabulary and formal computational 

aspects of fractional work into learning programmes at too early a stage, we may inhibit 

rather than contribute to fractional understanding. Also, when banking models are 

used, such as when, in the multiplication of one common fraction with another, we 

reduce computation to the routine that we multiply the top numbers and then multiply 

the bottom numbers, any sight deviation from a fixed path – for example, the inclusion 

of mixed numbers or mixed operations – precludes success. Further, Petit, Laird and 

Marsden (2010), caution that, unwittingly, teachers may use models in a rote learning 

manner – for example, always reverting to the use of fraction circles – and suggest 

that to reduce the likelihood of this happening, teachers should multiple models 

(manipulatives, number lines, partitioned rectangular and circular areas, arrays, 
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etcetera), which cause learners to continuously reapply their minds to the perceptual 

features found in the different models.  

So, it is important to begin fractional work with (1) simple contextualised tasks which 

encourage informal use of fractional thinking – John has twice as many sweets as…; 

Harry has half the number of CD’s as…; (2) link fractional thinking and whole number 

thinking; (3) use estimation and (4) construct models of fractional ideas In particular, 

learners should be encouraged to find and invent their own informal models and 

approaches to make sense of and anticipate what the outcome of a particular fractional 

computation might be: fraction circles, fractional strips, area models and number lines 

are commonly used to visualise fractional thinking. (Van de Walle, Karp and Bay-

Williams, 2010). In this way, understanding is built into the learners’ early experiences 

of fractional thinking and computation.  

All of the above considerations informed my reflexive planning. In the context of this 

research, it is fair to conjecture that having matriculated from school and having 

completed a first degree in a university environment, all of the participants would have 

encountered fractional work and thinking in previous learning experiences. It is also 

fair to suggest that my own mathematics teaching knowledge, coupled with the data 

captured from the participants Thinkboards (4.2), pointed to less than satisfactory 

perceptions and understandings in mathematics. My difficulty in negotiating starting 

points was that the prior knowledge assignments uncovered many misunderstandings 

– many of these at a foundational level – so, finding the most beneficial ways to support 

the participants, in the limited time that was available to me, was, I realised, going to 

be challenging. 

As happened with the arithmetic task and the discussion on multiplicative thinking 

discussed in (4.1.6) above, when I scrutinised the word problems assignments, I was 

alerted to problematic fractional mistakes that were made by the participants. 

However, it was only in early March 2016, when we reviewed their assignments 

together, that I began to realise how profoundly low the levels of misunderstanding of 

fractional work really were. As was found in (4.1.6), I realised that my initial belief that 

the participants simply needed to brush aside cobwebs was incorrect. Although I had 

planned to work through the review of the word problems with the participants in only 

one lesson, instead, the review spanned three lessons. During these lessons, it 

became clear that many intersecting fractional facts, ideas and vocabulary would have 
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to be relearned. The review of the fractional work was part of a bigger enterprise, 

namely, a review of the entire word problems assignment. 

For purposes of the review, the marked prior knowledge tasks were returned to the 

participants and I issued a new photocopied, word problems review assignment to the 

students. Notable features of the review assignment were that (1) it contained 

questions that were similar to the original tasks, and that (2) the order of the questions 

was reassigned to reflect the most-commonly correctly answered question first, 

followed, in descending order to the most problematic cases. Alongside each question, 

I introduced as a percentage, the success rates that had been found in the original 

assignments. 

The rationale for the reordering of the questions in the review papers was that I felt 

that, by first working through questions that mostly, were well-answered, I would be 

able to iron out small problems and use their discussions and explanations as stepping 

stones towards forming connections with the more troublesome questions.  

Thus, for example, because Q1 enjoyed the highest success rate (64%) in the prior 

knowledge task, it remained the first question in the review assignment. However, Q6, 

with an 8% success rate, was the worst answered question in the prior knowledge 

task, so it became Q10 in the review assignment. Both variants of Q6 – that is Q6 and 

Q10 –  are transcribed below. 

In the prior knowledge assignment, Q6 read: Altogether, Lulu and Irene have sixty 

new books. Irene has half the number of books that Lulu has. How many books 

does each lady have?  

In the review assignment, Q10 read: Altogether, Lulu and Irene have ninety-six 

keys. Irene has one third the number of keys that Lulu has. How many keys does 

each lady have? [8%] 

If we remain with Q6 and Q10, it can be used as an exemplar of the teaching and 

learning which occurred during the three days review of the word problems prior 

knowledge assessment task. Albeit that the review occurred in early March 2016, at 

that time, because of unfolding and stubbornly difficult working circumstances (4.1.1; 

44.1.2 and 4.1.3), I had hardly begun to interact with and know the participants, thus, 
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much of what was revealed through the review required spontaneous reactive support 

and guidance.  

A feature of the review of was that, in the review document, was we moved from Q1 

to Q2, etcetera, we would first look at its companion in the prior knowledge task. I 

would try to discover the various mis-understandings that had resulted in the mistakes 

in the questions – these were jotted down on the chalkboard – and then, on the fly, I 

would work through and try to massage a cogent reply.  

Typically, for each question, such negotiations of understanding would enjoy some 

debate, some directed teaching and thinking, some visual modelling of ideas with 

manipulatives, iconic and symbolic representations, some development of 

understanding of problematic vocabulary and turns of phrase and some consolidation 

of ideas and skills. Such interactions, done to try to develop content knowledge (CK), 

pedagogical content knowledge (PCK), conceptual understanding and compression 

would find favour with authors such as Bruner (1966), Ausubel (1968), Shulman 

(1987), Gardner (1993), Bedrova and Leong (1996), Gray and Tall (2007), Ball (2009), 

Presmeg (2009), Ma (2010), Department of Basic Education (2011), Tipps, Johnson 

and Kennedy (2011), Siemon et al. (2012), Friedrick et al. (2013); Clements (2014), 

Haylock and Manning (2014), Gonnerman, O’Rourke, Crowley, & Hall (2015), 

Sherman & Gabriel (2016), Rellensmann, Schukajlow and Leopold, (2017), Hartanto, 

Yang and Yang (2018), and others. I list this long string of authors to demonstrate that 

there is a long history of academics drawing together various facets of fractional and 

mathematical thinking so as to encourage meaning-making and understanding rather 

than rote learning. 

In Q6: Altogether, Lulu and Irene have sixty new books. Irene has half the number 

of books that Lulu has. How many books does each lady have? it rapidly became 

apparent that the sticking points were altogether and has half the number of. Many 

participants either misunderstood one or both of these turns of phrase. The context – 

two ladies sharing books and the number, 60 books, was not problematic – it was the 

relationship of how the books and the ladies were understood to have these books that 

was problematic. 

Of the two sticking points, altogether was dispensed with quite easily. I used bottle-

tops to convey understanding. The bottle-tops were placed on a demonstration table 
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in two uncounted piles, and then, literally, pulled into one larger grouping. Similarly, 

different, smaller groupings were combined to form the larger group. Simultaneously, 

I explained how the smaller groups contributed to make the larger whole - the full 

amount – and how the smaller groups contained parts which, when combined together 

– altogether – implied the total number of available bottle-tops, and by extension, 

books.  

At the back of their books, or on a notepad, the participants were encouraged to 

construct a personal dictionary of problematic vocabulary and turns of phrase, to 

provide explanations of these terms for themselves.  

Further, as mentioned earlier in (4.1.7), I also encouraged the participants to make use 

of a user-friendly web-site, https://www.mathsisfun.com/ to make use its dictionary and 

explanations, to use other online resources such as Google© and Youtube©, and our 

university online management system, Blackboard©.  

In Blackboard©, I had previously constructed, and consequently continuously updated, 

many support documents that I inserted into numerous folders into the IPS 413 E 

module contents page. These folders included a (1) Learning Guide folder; a (2) 

Letters from Peter folder, (3) CAPS documentation, (4) Reading Articles, (5) 

Slideshows, (6) Mathematical Infographics, (7) Pencasts, (8) Past Tests and Exam 

Papers, (9) Test and Exam Preparation, (10) Year marks, and (11) an Announcements 

page.  

My Blackboard© repository was developed to provide asynchronous support to my 

participants. In it, for example, within the Letters from Peter folder, is the file: Letter 2 

– Setting out Rules for Math that was discussed in (4.1.6) above; in the Articles folder, 

the participants had access to numerous user-friendly readings on fractions, word-

problems, blended learning, learning theory, math anxiety and so forth, and in the 

Slideshows folder, comprehensive slideshows on setting out, number patterns, 

teaching mathematics, and fractions among others. Each slideshow might contain 100 

to 200 slides. The Pencasts folder contained numerous audio-visual micro-lessons 

that I created using an Echo Smartpen and Livescribe software. Thus, while some 

of the resources were developed for generic use, others, such as the Slideshow on 

fractions were reconfigured to suit the purposes of the IPS 413 E participants’ 

problems with fractions, and yet other resources, such as the setting out document 

https://www.mathsisfun.com/
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and slideshow, were constructed to specifically address problems that were uncovered 

by the action research data. 

The second sticking point in Q6, has half the number of, proved move vexing to solve. 

Although it received careful attention, the data captured at the end on the first quarter 

in 2016 demonstrated that the re-evaluation task showed only modest improvement, 

(8% rises to 22%), and this, in a question – the actual question - that had been seen 

numerous times in the period leading up to the re-evaluation.  

It has to be acknowledged that the sentence, Irene has half the number of books that 

Lulu has, can be written in different ways. More explicitly, one might write, For every 

two books that Lulu has, Irene has only one. Alternatively, one might write, Lulu has 

twice the number of books as Irene. Or, perhaps, Lulu has double the number that 

Irene has, or For every one book Irene has, Lulu has two, and so forth. And indeed, in 

class, as a first explanation, the question was repackaged into these shapes. 

Nonetheless, I was left with a distinct feeling that many participants continued to hold 

onto an incorrect conception of the explanation, that the participants held to a view that 

the sharing was half and half. 

In order to get over this sticking point, as a second step, I rewrote Q6 on the 

chalkboard, but reduced the total from 60 books to 18 books. The smaller number, I 

felt, would enable me to use visual scaffolding demonstration that would focus on the 

unpinning concepts in play rather than the numbers. Indeed, Van de Walle, Karp and 

Bay-Williams (2010), support such actions, stating that these smaller quantities make 

it easier for learner’s to understand, analyse and come to grips with their problems, 

and often lead to insights which can then be transferred back into their original 

calculations. 

Next, at a demonstration desk, I counted out 18 bottle-tops, and then, with an onus on 

informal explanation, I tried to convey through sharing, that every time Irene was given 

one bottle-top, Lulu was given two. In other words 
1

3
 ’s not 

1

2
 ’s were in play, or 

alternatively the ratio of parts was 1 : 2. However, I did not introduce common fractions 

nor a formal explanation of ratios into the discussion. In effect, the demonstration could 

be aligned with Piaget’s concrete operations stage, in which hands-on experience 

heightens understanding (Ojose, 2008), and further, the demonstration could be 
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understood to be an exhibition of embodied cognition (Boaler, et al., 2016) which are 

both concepts and skills which the participants were encouraged to assimilate. 

After we completed the chalkboard-based activity, the participants returned to Q6 and 

seemed to easily solve it. When we then focused on Q10 in the review task, my 

immediate sense was that the participants easily perceived the sharing in terms of 1 

for me and 3 for you. Notwithstanding the fact that some participants struggled to divide 

96 by 4 – missing multiplicative facts –  most of the students seemed to ease with the 

problem. 

A confluence of other mathematical considerations, problematic on-the-ground 

developments, and the imminent end of term 1 of 2016 precluded any further in-class 

discussions on this type of problem in the first quarter. 
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4.1.8 DISCUSSION – IFI, VP AND VISUALISING REASONING 

Because this part of the chapter reflects upon fieldwork experiences, and in light of the 

importance I have attached to the use of manipulatives and iconic stimuli, it is well-

worth reflecting on some of their attributes before I present two exemplars of the 

Interpreting Figural Information (IFI) and Visual Processing (VP) techniques that were 

used within the IPS 413 E Mathematics module. After that, I present exemplars of how 

IFI and VP were applied in the research. Siew Yin (2010) has identified seven roles 

that visualisation plays in assisting math students to solve problems: 

 

1. To understand the problem. By representing the problem visually, 

students can understand how the elements in the problem relate to each 

other. 

2. To simplify the problem. Visualization allows students to identify a 

simpler version of the problem, solving the problem and then formalizing 

the understanding of the given problem and identifying a method that 

works for all such problems. 

3. To see connections to a related problem. This involves relating the given 

problem to previous problem-solving experiences. 

4. To cater to individual learning styles. Each student has his or her own 

preference when it comes to the use of visual representations when 

solving problems. 

5. As a substitute for computation. The answer to the problem can be 

obtained directly from the visual representation itself, without the need for 

computation. 

6. As a tool to check the solution. The visual representation may be used 

to check for the reasonableness of the answer obtained. 

7. To transform the problem into a mathematical form. Mathematical forms 

may be obtained from the visual representation to solve the problem. 

Siew Yin (2010) 
 

Further, Bishop’s (1983) explanation of Interpreting Figural Information (IFI) and Visual 

Processing (VP), (2.6.3.7), and similarly, the explanation Siemon et al. (2012), present 

on spatial orientation and spatial imagery (2.6.3.8), demonstrates that visual skills and 

scaffolds represent more than a remembered image of an event or object. Zimmerman 
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and Cunningham (1991), in Siemon et al. (2012 p. 223), have defined visualisation as, 

“the process of forming images (mentally, or with pencil and paper or with the aid of 

technology) and using such images effectively for mathematical discovery and 

understanding.” But, in practice, what does all of the above mean?  

 

Below, in Figures 4.8 and 4.9, I have presented examples of problems that were 

presented in my lessons; these and other exemplars were used to connect 

mathematical ideas (Haylock and Mann, 2014), and were linked to mathematical 

teaching practice (Muir, 2008). In the first example, I will unpack an IFI solution; 

following that, I will present a problem which will be solved by using VP strategies. In 

each example, Siew Yin’s (2010) visualisation roles will be linked to the solutions.  

 

 

 

 

 

 

 

 

Figure 4.8. An application of a visually mediated IFI solution to a problem 

 

Above, our task is to establish the number of the smallest square that are needed to 

completely cover – to tile – the surface of ABCD. In this question, the answer is quite 

simple to achieve, but it also enables me to explain the role that IFI plays in achieving 

the answer. The properly prepared mind will look carefully at the visual information that 

is presented in the sketch. That mind will look for patterns in the sketch – gestalts – 

and having established those patterns, will use that understanding to solve the 

problem.  

 

Below, I will use text to support my explanation of a visual solution, but for many 

students, the visual presentation in the sketches that I draw rapidly become internal 

constructs of the mind. 
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STEP 1 

Because the original sketch is drawn neatly and in fair-proportion, 

it is relatively easy to deduce that there are four congruent 

squares enclosed in the first level of visual stimuli – in this 

example, I have presented the original square in red and its three 

congruent siblings in orange. 

 

STEP 2 

Additional squares are revealed to us and our IFI capacity 

enables us to see that there are four larger congruent squares. 

This is, in-effect, a visual stepping-stone. Already, the brain is 

constructing connections between previous and subsequent 

steps in the solution. The computation 1 x 4 x 4 = 16 occurs 

visually. 

 

STEP 3 

The pattern logically repeats itself. As in previous steps, the 

visual clues that enter our eyes enable us to see that there are, 

yet again, four larger congruent squares. Different people will 

achieve the final answer in different ways, but will generally 

detect an answer of 64 squares. 

 

SUMMARY 

Siew Yin (2010) suggests that one of the roles of visualisation 

is that it enables students to transform visual stimuli into 

mathematical equations and to generate an algorithm to solve 

the problem. In this case, the algorithm has revealed itself as 1 

x 4 x 4 x 4, or 40 x 41 x 42 x 43 and has also provided a visual 

representation of consecutive powers of four or 43. 

 

A second problem is presented below. It is a bit more challenging and is an exemplar 

of the application of Visual Processing. Although primary school children in other 

countries routinely solve this sort of problem, it stumped many of my participants who 

could find neither a symbolic nor visual technique to achieve the answer. 
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Figure 4.9. An application of a visually mediated VP solution to a word problem 

 

The intent of sentence-structure is to enable students to succeed. But many don’t! 

Often, especially second-language English speakers are excluded from success 

because they do not understand the story. In this example, we will invoke Bishop’s 

(1983) concept of Visual Processing (VP). We want to know: How many hotdogs did 

Bongani bring to school? 

 

STEP 1 

We do not know how many hotdogs Bongani brought 

to school, but previous experiences with the concepts 

of parts and whole enable us to imagine that the blue 

bar represents all of his hotdogs. 

 

STEP 2 

The text tells us that Bongani sold 2/3 of his hotdogs 

to the children in his school, so we can imagine and 

then sub-divide the whole into three equal pieces.  

 

In this sketch, above, the hotdogs that were sold to the children are presented as two 

fairly-proportioned yellow rectangles.  
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STEP 3 

After selling his wares to the children, Bongani still 

has some hotdogs. The blue bar on the right 

represents the third, ⅓, that is, the remainder.  

 

STEP 4 

½ of the remainder was sold to the teachers in the 

school, thus the remainder is sub-divided into two 

equal parts.  

 

The green rectangle, above, represents the hotdog sold to the teachers. The other ½ 

of the remainder, that is, 53 hotdogs, were given to a charity.  

 

STEP 5 

If 53 hotdogs were given to a charity, that means that 

similarly, 53 hotdogs were sold to the teachers. We 

can deduce the remainder is 53 + 53 = 106. 

 

STEP 6 

The remaining hotdogs, that is 53 + 53 = 106, also 

represents 1/3 of the total number of hotdogs. Our 

understanding of fractions and fraction walls 

reminds us that each ⅓ must represent a constant 

unit size, thus each ⅓ must have a value of 106. 

 

STEP 7 

If the remainder 1/3 is worth 106 hotdogs, each 1/3 

is also worth 106 hotdogs. From this realisation, we 

can deduce that Bongani brought 318 hotdogs to 

school. 

 

In this example, links are forged between a visual methodology and Siew Yin’s 

conception of the roles that visualisation plays in supporting the construction of its 

solution. The logical progression of the steps (1) help us to understand the problem; 
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(2) enables us to simplify the problem; (3) allows us to see connections – in this case, 

between the parts of this problem and the whole; and, (4) allows us to substitute a 

visual model for an algorithm (Siew Yin, 2010). No visually-solved mathematical word-

problem is necessarily exclusively an IFI or VP problem, nor will every visualised-

problem invoke all of Siew Yin’s (2010) visualising roles. However, visualisation and 

visualisation strategies enable us to free up cognitive space so that we can attend to 

procedural and intellectual aspects of mathematical problems (Siemon et al. 2012). 

 

Action Cycle 1 had revealed many misunderstandings and it is acknowledged that 

many extraneous factors prevented our contact classes from attending to much more 

than trying to make sense of the mistakes that were found in the first pair of prior 

knowledge tasks. Action Cycle 2, building on experiences in Action Cycle 1, attempted 

to assist the participants to construct more cogent conceptions of mathematics. In both 

action cycles, the re-evaluation tasks did show some improvement, see Table 4.1 

below, but generally the rates of return continued to be low; these data are discussed 

fully in (4.3 – 4.10) in this chapter. 

 

Table 4.1  

Summary of quantitative results for Action Cycle 1 and Action Cycle 2 

 

 

 

 

 

 

 

 

 

 

 

 

Action Cycle 2 was handled in a different manner to Action Cycle 1. The prior 

knowledge assessments in Action Cycle 1 had demonstrated many 

misunderstandings of foundational arithmetic competences. The data captured in the 

Q1 Q2 Q3 Q4

Piror Knowledge 63% 36% 38% 12%

Re-evaluation 88% 63% 52% 33%

Q1 Q2

Piror Knowledge 45% 38%

Re-evaluation 56% 44%

Q1 Q2 Q3

Piror Knowledge 53% 24% 30%

Re-evaluation 60% 42% 66%

Q1

Piror Knowledge 16%

Re-evaluation 71%

Action Cycle 1

Foundational Artithemtic Concepts

Word Problems

Action Cycle 2

Fractions and Ratios Concpets

Word Problems
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re-evaluation tasks demonstrated that overall, the activities in Action Cycle 1 did not 

lead to any great improvements.  Thus, in Action Cycle 2, I concentrated my efforts 

into conceptualising and constructing a teaching and learning programme that would 

assist the participants to develop a deeper understanding of the mathematics they 

were doing.  

 

Beginning with the prologue to this thesis, at many places in chapters 1 and 2 and in 

preceding parts of this chapter, I have identified how rote learning stifles cognitive 

development whereas activities-based, liberal teaching and learning practices promote 

relational understanding, the formation of robust schema, and the compression of big 

mathematical ideas. I will not repeat all of these considerations here, but I knew that I 

wanted these more dynamic perspectives to wash through the participants 

experiences of mathematics. Thus, in fashioning a plan of action for Action Cycle 2, 

the experiences of Action Cycle 1 and all of the benefits and limitations of these ideas 

were used to inform the thrust of the work. 

 

For Action Cycle 2, two prior knowledge assessment tasks were prepared for the 

participants (Appendix L). Careful scrutiny of these tasks will show that the whole 

gamut of stratums that have been discussed in this thesis and that are considered to 

facilitate deep mathematical thinking, representation and understanding were 

introduced into the questions. Within the tasks, I have placed a strong emphasis upon 

visualisation and informal, intuitive problem-solving, these as applications of IFI and 

VP, (Bishop, 1983), as discussed earlier in this section. There is also some carry over 

to more formalised mathematical computations. In part, the questions were 

constructed as an addendum to the findings in Action Cycle 1, in part, they offer 

evidence of my perception of the skills-sets and ideas that might prove most beneficial 

for the participants cognitive development. A full description of the data for these Action 

Cycle 2, prior knowledge tasks is found in (4.7) and (4.8). 

 

Within the tasks, one will find questions that encourage the participants to examine 

part-shaded-in areas and alternatively, shapes to be shaded, as visual representations 

of common fractions, decimal fractions and ratios. Number lines, fraction circles, area 

rectangles and squares, arrays, fraction ribbons, comparative iconic images and 

contextualised word problems are found in abundance. The visual stimuli are 
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presented to assist the participants to estimate, to model, and to conceive solution 

strategies and answers. The use of these techniques finds favour with authors such 

as Bruner (1966), Shulman (1987), Gray and Tall (2007), Ball (2009), Presmeg (2009), 

Ma (2010), Petit, Laird and Marsden (2010), Tipps, Johnson and Kennedy (2011), 

Siemon et al. (2012), Clements (2014), Haylock and Manning (2014), Boaler et al. 

(2016), and others. 

 

In the context of this thesis, it is not possible to discuss all of the activities that occurred 

during the research period, but, Q2.8, by way of example, can be used to demonstrate 

the manifold hurdles that the participants encountered. In that question, the 

participants had to determine the product of 
4

5
 × 2, and, having achieved that answer, 

plot its position onto a number line – the number-line was presented with units 

partitioned into fifths. For participants in which appropriate compression might have 

occurred, an intuitive solution would have been to refer to the sketch of the number 

line, count out four spaces, and then, four spaces again, to achieve a touchdown point 

on 1
3

5
. However, this was not the norm; in the prior knowledge and re-evaluation tasks, 

Q2.8 enjoyed success rates of 14% and 18% respectively. The 18% score in the re-

evaluation assignment, was the second but lowest return. 

 

Q2.8, and others like it, was discussed, unpacked and reformulated in a number of 

ways. First, as an application of multiplicative and fractional thinking, the participants 

were encouraged to estimate the size of the product – did they perceive that the 

answer would be bigger or smaller than four-fifths; bigger or smaller than one; what 

did they believe happens when a common fraction such as 
4

5
 is multiplied by a whole 

number such as 1, 2, 3, 4; does multiplication always make a bigger number, etcetera? 

 

Second, fractional circles and rectangular areas were brought to bear on the problem. 

The fractional circles were used as a visual representation of repeated addition, that 

is 
4

5
  of a whole in one circle, plus 

4

5
 of a whole in a second circle, describes 8 equal 

sectors in 10. A rectangular area-model was used to demonstrate a similar outcome, 

but this time by partitioning first the larger rectangle into two congruent rectangular 



 

186 

 

parts (the two wholes), and then by partitioning the wholes into smaller, congruent 

fifths. Each whole was then shaded to cover four of five parts.  

 

While structured and unstructured number lines seem well-positioned to assist in 

exemplification of many mathematical ideas, a basic understanding of number lines 

and place value must first be in place in order to derive that benefit. In the early stages 

of the research and continuing throughout the research period, it was evident that 

many participants, at some or other stage in their mathematical development, had 

either misunderstood or adopted an incorrect understanding of number lines. Indeed, 

this persistent mal-understanding extended to their use of the ruler, where often, 

participants might incorrectly construct a measured dimension, say 9cm, but draw it at 

8cm, in other words, 1cm less than the desired outcome.  

 

When using a ruler, the participants often began measurements from the 1cm mark, 

thereby ignoring the space between 0cm and 1cm. On the number line, perceiving 

fractional positions in the empty spaces between the units, was found to be 

problematic.  

 

I used a clothes-line activity to try to bring some clarity to the participants 

understanding of number lines. On a three to four meter long string, I used pegs, pen 

and paper to identify 0, 2, 4, 6. These positions were set out in fair proportion on the 

clothes line. As a short, first task, the participants were invited to populate the clothes-

line with 1, 3 and 5. They did so, but invariably did not concentrate much attention on 

the positionality of the numbers – thus instead of placing, for example 3, equidistant 

from 2 and 4, it might have been skewed left or right. I used these misrepresentations 

to explain the obvious IFI nature of the mistakes. However, throughout the duration of 

this activity, to the point where we were placing thirds or fifths or mixed numbers onto 

the clothesline, the perception of fair proportion remained elusive for some of the 

participants. 

 

Thus, although we did establish the correct touchdown point on the number line, it was 

clear to me that some participants simply waited for me to complete the task and then 

copied my solution into their exercise books. 
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With a score of 0% in the Action Cycle 2 prior knowledge assessment and 80% in the 

re-evaluation, Q4.4 returned the most spectacular result difference in the two 

assignments. However, to be fair, Q4.4 was a carryover from Action Cycle 1, that is, it 

was very similar to Q6 in the prior knowledge and re-evaluation tasks, where it scored 

8% and 22% respectively in the two tasks. So, while the 0% score in the prior 

knowledge task was disconcerting, the continued attention to this type of question no 

doubt influenced the positive outcome in the Action Cycle 2 re-evaluation.  

 

Q4.4 in Action Cycle 2 read: Altogether, Noludwe and Karin have 96 books. 

Noludwe has one third the number of books that Karin has. How many books 

does each lady have? Clearly, this was similar to Q6, as discussed earlier in (4.1.7).  

What changed however, between the first action cycle and the second, and between 

the prior knowledge task and re-evaluation task in the second action cycle was that 

during Action Cycle 2, I actioned a deliberate IFI and VP methodology into the teaching 

and learning programme. 

 

In Action Cycle 2, the participants were encouraged to construct visual scaffolds to 

assist them to make sense of the word problems. But, in order for this to be effected, 

I had to first create a framework to which they might connect their ideas. This is outlined 

below. 

 

In our class, I spent some time negotiating an understanding of fraction walls and I 

used that opportunity to point out fractional facts such as the uniform size/value of 

parts of fractions holding the same denominator, the equivalence of some fractions 

with others holding different denominators, vis-à-vis, for example 
2

6
=  

1

3
=  

3

9
 , and the 

roles played by numerators and denominators in fractions, etcetera.  

 

I also gave the participants many congruent paper strips so as to enable them, by 

folding in half and half again, to construct ribbons of halves, quarters, eighths, or 

alternatively, by folding in thirds and then in halves, to produces strips of thirds and 

sixths, etcetera. These strips were used to create mixed numbers and to add together 

various couplings of the strips such as 
1

2
+  

1

4
 or 

3

4
+  

1

2
 etcetera. Incrementally, we 
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adjusted these couplings to include slightly move advanced pairings such as 
1

2
+  

2

3
 and 

so on.  

 

With the experience of the tactile models in place, I then encouraged the participants 

to use the blue lines in their exercise books to construct representative ribbons of their 

paper models. The sketches had to be drawn as fair-proportional representations of 

common and decimal fractions which were then used to visually add various 

combinations of fractions together.  

 

Finally, the IFI and VP directed activity was tied into an introduction to the more 

routines that are associated with the formal addition of common fractions, which is, 

seeking a common denominator, establishing equivalent fractions, adding the 

numerators and simplifying.   

 

Similar, compatible techniques were used to unpack fractional understanding with the 

other operations. 

 

Paper ribbons, arrays and sketches were also used to introduce ratios to the 

participants. The visual models produced a big breakthrough when the participants 

made the connection that in a fractions driven word problem, when for example 
3

5
 is in 

play (and thereby 
2

5
 as well), the ratio 3 : 2 is derived from the numerators, not, as was 

often thought 3 : 5 or alternatively 2 : 5.  

 

The background discussed above, contributed to success with ratios questions such 

as Q4.4. When the participants folded or drew a representative strip in three parts and 

made the link that for every one book Noludwe received, Karin got three, this set up 

the opportunity to construct a fair ratio (1 : 3), which logically produced 4 parts in play 

or 
1

4
  and 

3

4
  .  

 

Once that was understood, division, in this case of 96 by 4, produced a quotient of 24, 

this being the unit size that populated each smaller, congruently drawn rectangle in 

the ribbon and thereby led to answers of 24 and 72, the sum of which was 96. 
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 4.1.9  SUMMARY OF FIELDWORK 

The fieldwork experiences have revealed three problems, (1) the fragmentation of the 

module by disruptive circumstances, (2) the difficulty obtaining an ethical clearance 

certificate, and (3) a threat to invalidate the PGCE qualification, which, taken together, 

have demonstrated that life is messy and one has to deal with it.  

 

On a more positive note, explanations of actions that I took to improve the participants’ 

mathematical understanding, that is, the (1) discussions regarding the planning, 

design and application of the activities, the (2) reflections on a typical lesson, and (3) 

the exemplars on the development of multiplicative and fractional conceptions and 

construction of visual scaffolds, all attest to a module that was cogent, comprehensive 

and liberating in design. 

 

4.2 TRENDS FOUND IN THE THINKBOARDS 

On Wednesday, 10 February 2016, I met with the IPS 413 E – Mathematics cohort for 

the first time. After a brief welcome and a short introduction to the IPS 413 E – 

Mathematics course, I asked the participants to complete a four-field Thinkboard.  

 

 

 

 

 

 

 

 

 

Figure 4.10. An unpopulated, four-field Thinkboard, as used in the IPS 413 

E - Mathematics class  

 

The Thinkboard, Figure 4.10 above, demonstrated to the participants that they could 

anticipate a great deal of interaction, sharing and participation in my classes. Further, 

although it was a novel activity to them, to a person they responded enthusiastically to 

the task.  
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As Figure 4.11 below demonstrates, Thinkboards can explore various perspectives on 

many matters. Depending on what is sought, a page is organised into fields with each 

field being allocated a title, and possibly a descriptor. Three or four fields work best.  

 

While the fields can be populated in different ways, my experience has taught me that 

my students are most comfortable writing, but one might also use symbols, patterns, 

images, etcetera. Typically, to get the right-brain (R-mode) working (Edwards, 2008), 

I always incorporate at least one drawing field into the Thinkboard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11.  An example of a Thinkboard as constructed by a participant in 

the IPS 413 E Mathematics module on 10 February 2016 

 

In part, the findings have assisted me to construct an answer for the second sub-

research question, namely: What barriers to solving word-problems do the students 

perceive that they hold?  

 

The qualitative data that was contained in the Thinkboards was recorded into MS 

Excel©. Each field was analysed separately. As various themes within each field 

revealed themselves, I colour-coded the individual cells so as to visually explore 

commonly reported opinions and their quantitative frequency.  
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In Table 4.2 below, I have produced a representative part of the spreadsheet. Because 

the spreadsheet contains primary data, I have masked the students’ names and 

student numbers. The representation is of three of the fields; the field containing the 

students’ drawings is not presented. The various colours contained in the cells pertain 

to a qualitative theme which was revealed through the analysis of the raw data. The 

complete spreadsheet is found in Appendix E. 

 

Table 4.2  

A representative part of the Thinkboard primary data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each student was encouraged to supply three responses per text field. Thus, if we 

focus on Field 1, we see Students 1 and 3 supplied three inputs for each field: these 

are entered into individual cells. Student 2 supplied 1 response for Field 1, hence two 

cells remain unpopulated. Below, I will reflect upon the trends that have been 

uncovered in the data. 

 

 

 

Field 1 Field 2 Field 3

Student 

Number

Student 

Name
My view of Mathematics My Biggest hopes for Mathematics My Biggest fears for Mathematics

1

it's a great course to do to be easy to understand I fear the fact that technology has 

made me not to use my mind often 

and especially when calculating

it's practical and improves memory maths must not be feared subject I want to be able to transfer 

positive attitude towards math

maths is part of our daily lives todays's learners to be eager to do 

it

to fail

2

during my time at high school I did 

not have much problem because I 

was young and active in class,asked 

question if I don't understand

My biggest hope is to not 

disappoint myself

my biggest fears is the changing of 

curriculum system

to be able to cope its more than 10 years now of being 

not involved in mathematics

to pass another fear is the pace, too much 

to cover in a short space of time

3
Intricate and often seen as difficult younger generation to get over ther 

fear of the level of difficulty

More professionals in this field 

imported

needs regular practice to master teachers who inspire and motivate dying out of pure maths and more 

students opting for math literacy

is a big part of our daily lives willing or positive attitude from 

learners

students or applicants unable to 

pursue a course of their choice due 

to not having maths

4

It is a global and demanding course 

that needs to be done no matter 

how difficult it might be in order to 

test/train mentality and career 

opportunities in life.

To meet other people around the 

world through mathematics 

activities.

To fail

For people like me who are poor in 

terms of mathematics - I think more 

practice should be done at least 4 

times a week

I wish the National television shall 

at least display more activities 

every day

Practice and forget how you got to 

the right answers the following day

To gain knowledge I hope more teachers in govt 

disadvantaged schools especially in 

Eastern Cape in mathematics field

Challenge

THINKBOARD - TEXTUAL RESPONSES



 

192 

 

4.2.1   THINKBOARD – FIELD 1: MY VIEW OF MATHEMATICS 

Field 1 was given the title, ‘My view of mathematics.’ Deliberately short, the title was 

designed to be as open-ended as possible. 33 participants applied their minds to this 

field, and in total it garnered 97/99 possible responses or a 98% return.  As seen in 

Table 4.3 below, Field 1 of the Thinkboard produced eight major trends.  

Table 4.3  

Summary of Thinkboard data: Field 1 

THINKBOARD ACTIVITY - 10 FEBRUARY 2016 
  Field 1:  My View of Mathematics 
  Number of Participants 33 

  Number of Responses 97/99 

  Return Rate 98% 

  Major trends Number of submissions 
1 Maths is integrated into daily life 17 

2 Practice makes perfect 15 

3 It is interesting but challenging 13 

4 Maths promotes brain activity 12 

5 Maths is perceived as just calculations 11 

6 A tricky, complicated and confusing subject 9 

7 Maths prepares one for success in life 8 

8 Keep away from this subject 7 

 

4.2.1.1 POSITIVE TRENDS 

Five major trends reveal a neutral to optimistic disposition towards mathematics. 17 

submissions suggested that mathematics is integrated into their daily lives and 

perceive that mathematics has wide applications in the working world. However, one 

participant wrote, “even though I don't see it being applied in real situations, but I think 

it is important.” 15 submissions suggested that the students are aware that 

mathematics needs much practice and they acknowledge the importance of working 

continuously at the subject. 13 submissions suggest that mathematics is an interesting, 

if challenging, and enjoyable subject. Comments such as, “it's a great course to do,” 

and “Mathematics is a very interesting subject,” exemplify this trend. However, one 

student describes an interesting paradox, “it is very much enjoyable when understood 

and devastating when not.” 12 submissions believe mathematics encourages brain 

activity, broadens the mind and causes one to think a lot. One student wrote, “I love it 

because you become a fast thinker and can think out of the box.” Another suggested, 

“I view mathematics as a very important subject or learning area that keeps the whole 
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head move around.” 8 submissions suggest that, in the modern world, it is very 

important to be numerate and that a good understanding of mathematics facilitates 

future success in life. The following comment demonstrates how deeply that 

submission was considered: 

 

If I understand mathematics, I will be able to explain to kids how important 

to have mathematics so that even in high school they can choose to shape 

their careers in future since there is a lot of opportunities in mathematics and 

in South Africa we have a shortage of students who have mathematics as a 

subject. 

 

4.2.1.2 NEGATIVE TRENDS 

Three other trends, all less optimistic, were also revealed. 11 submissions suggest 

mathematics is driven by calculations: what is not clear is whether the participants 

perceive this type of activity positively or negatively. 9 submissions make the point that 

mathematics is difficult, tricky, complicated and confusing. 7 submissions suggested 

that mathematics is not an interesting subject and is best left to bright people only. The 

comments carry an undertone of rejecting the subject. Below, I include all 7 of the 

comments: 

 

1. “Many people are not interested in it anymore”; 

2. “Most people don't like it”;  

3. “I don't feel like”;  

4. “people fail mathematics all the time”;  

5. “if you never understood mathematics when you were little than there is no   

chance for you when you older”;  

6. “one is either good at it or bad, there's no in between”; and  

7. “requires really smart people to pass above average.”  

 

4.2.1.3 COMMENTARY ON TRENDS FOUND IN FIELD 1 

Although this data was captured early in this first action cycle of the action research, 

the major trends reveal that largely the participants are neutral to optimistic about the 

roles of mathematics in the classroom and outside world. Given the perilous nature of 

mathematical performance in South Africa, this is a pleasing outcome. However, the 

data also reveals undercurrents of fear and resistance. These negative dispositions 

seem to talk to matters of previous encounters that were saturated with symbolic 



 

194 

 

representations of mathematics (Bruner – 2.7.5.4) and traditional, banking models of 

education (Freire – 2.1.2.3) 

 

4.2.2 THINKBOARD – FIELD 2: MY BIGGEST HOPES FOR 

MATHEMATICS 

The second field in the Thinkboard activity was given the heading, ‘My biggest hopes 

for mathematics.’ The students supplied 97/99 or 98% of all the available spaces for 

submissions. In Table, 4.4 below, 4 major trends were revealed. 

 

Table 4.4  

Summary of Thinkboard data: Field 2 

THINKBOARD ACTIVITY - 10 FEBRUARY 2016 
  Field 2:  My Biggest Hopes for Mathematics 
  Number of Participants 33 

  Number of Responses 97/99 

  Return Rate 98% 

  Major trends Number of submissions 
1 A desire to be a great mathematics teacher 23 

2 A need to understand mathematics 27 

3 Committed to overcoming a fear of maths 22 

4 I just want to pass 19 

 

 

4.2.2.1 POSITIVE TRENDS  

Two trends are optimistic. 23 submissions indicated that in their future careers as 

teachers the participants want to be able to teach mathematics well to South African 

pupils. Comments such as, “to be able to teach it in an excellent manner,” and, “making 

it fun for myself and others,” and, “I want my students to be very good at maths 

because of me,” serve to indicate to me that this cohort of PGCE participants are keen 

to improve mathematics teaching and learning in our country.  

 

20 of the submissions make the point that the students are keen to understand their 

mathematics. The participants suggest that they want, “to acquire more understanding 

about it,” and “I hope as a person I can know more in mathematics,” and, “is to 

understand it and at least know it better.” The nature of the writing indicates two strands 
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of thought. One strand reveals a fear of not coping with the mathematics, the other is 

a desire to understand the module course-materials.  

 

4.2.2.2 NEGATIVE TRENDS 

Two trends are pessimistic. 19 submissions write directly about the fears that 

participants  hold of the subject and of their determination to get past that fear. One 

student wrote, “I hope that mathematics could be taught in such a way that it creates 

excitement within me and not to instil fear,” while another student stated, “to have a 

great attitude towards it.”  

 

Thus, it would appear that, while the submissions acknowledge fear of the subject, the 

participants are committed to working through and overcoming those fears. 13 

submissions speak honestly about a desire to simply pass the module with students 

writing comments such as, “to pass,” or, “I hope to know and pass mathematics.” 

Contained within that trend are some students who write a bit more optimistically, and 

make statements of the order, “I want to pass the maths in distinction” and “to pass it 

at least by 70% and above” and “I will enjoy and pass it.” Collectively, the comments 

read more optimistically rather than pessimistically.  

 

4.2.2.3 COMMENTARY ON TRENDS FOUND IN FIELD 2 

Given that Field 2 had as its heading, My biggest hopes for mathematics, trends 1 and 

2 suggest that many participants carry a positive disposition towards this subject and 

a desire to teach the subject in ways that will inspire their pupils to do well in 

mathematics.  

 

However, trends 3 and 4, almost as a counterpoint, suggest that students hold deep-

seated fears of this subject and would be happy to simply pass it. This negative 

circumstance is often found in PGCE students. From the perspective of this action 

research, educational activities and a teaching and learning spirit which is inspired by 

Plato’s two realms of knowing (2.1.1.2) and the allegory of the cave (2.1.1.3) may offset 

these negative sentiments. 
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4.2.3 THINKBOARD – FIELD 3: MY BIGGEST FEARS FOR 

MATHEMATICS 

The third field, “My biggest fears for mathematics,” garnered 93/99 or 94% 

submissions made by the participants. As demonstrated in Table 4.5, below, 5 major 

trends were revealed. 

 

Table 4.5  

Summary of Thinkboard data: Field 3 

THINKBOARD ACTIVITY - 10 FEBRUARY 2016 
  Field 3:  My Biggest Fears for Mathematics 
1 Number of Participants 33 

2 Number of Responses 93/99 

3 Return Rate 94% 

  Major trends Number of submissions 

1 A deep-seated fear of calculations 28 

2 A fear of not teaching mathematics well 23 

3 Memories of past failures in mathematics 15 

4 A fear of failing the IPS 413 E module 11 

5 A fear of giving up on the subject 9 

 

4.2.3.1 NEGATIVE TRENDS 

The data revealed five negative trends. 28 submissions write of a deep fear of 

mathematics. Participants worry about the calculations, the formulae and the types of 

mathematical problems that they will encounter in the IPS 413 E module. They ask of 

themselves whether they will be up to the task. Some of their comments include, “You 

have to know and use correct methods in order to have right answer when calculating,” 

and, “being lost in the steps, of never find the solution in a problem given,” and, “all 

those calculations that we are going to do in tests and assignments.” 

 

23 submissions suggest the participants worry that they will not be able to teach 

mathematics in effective ways to South African children. Although they voice it as a 

concern, this trend can be treated as a compliment to the participants. None of them 

has any formal teaching experience and yet, looking to the future, they (1) anticipate 

that they will teach mathematics and (2) hope to teach it well.  
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The following comment captures the spirit of many views, “My biggest fear is that I am 

wondering if I can be able to explain it better or to view it on a way that kids can 

understand.” A second participant suggested, “I fear that there are many maths 

teachers who are negligent to the students that are struggling to grasp a lesson as 

quick as others.” While this comment is ambiguous, in that it might be directed either 

at university staff or teachers in schools, it demonstrates that the students have applied 

deep insight and reflective thinking in their writing. 

 

15 submissions write to a fear that the students have they will fail this course. 

Comments such as, “that I'll never be good at it” and, “when I was in high school I was 

not good in it, so I fear that what if I can be like that again” and, “that I'll probably fail 

every time, like I did in high school” get to the very essence of the problem of the fear 

that confronts so many students. It is as if a millstone has been placed over their necks 

and so, in attending the IPS 413 E – Mathematics class, yet again this debilitating load 

will be set upon them.  

 

11 submissions get directly to the point: “to fail” or, “I am scared of failing because I 

hate failing,” or, “to fail it,” or, “to fail mathematics,” and, “My biggest fear is to fail 

maths,” and 9 submissions stated that because of their own prejudices, boredom, not 

being interested, or a history of giving up too easily, they might not receive the full 

benefit of this module. They wrote comments such as, “I have a tendency to ‘cut off’ 

when I see numbers,” and, “I have no interest what so ever for mathematics.”  

 

4.2.3.2  COMMENTARY ON TRENDS FOUND IN FIELD 3 

While somewhat anticipated, nonetheless, many of the comments located in Field 3 

give cause for concern. That competent and able university students should hold these 

fears is an indictment on all of us who teach mathematics.  

 

In large part, these trends talk to a mismatch between the philosophical, ontological, 

pedagogical and epistemological aspirations of this thesis and validate the liberating 

positions that were adopted throughout the literature review. 
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4.2.4 THINKBOARD – FIELD 4: HOW I FEEL AT THIS MOMENT 

This field garnered 44/44 or 100% submissions, made by the participants. As seen in 

Table 4.6, below, 3 major trends were revealed. 

 

Table 4.6  

Summary of Thinkboard data: Field 4 

THINKBOARD ACTIVITY - 10 FEBRUARY 2016 
  Field 4:  A Drawing of how I Feel at this Moment 
1 Number of Participants 33 

2 Number of Responses 33 

3 Return Rate 100% 

  Major trends Number of submissions 
1 So many faces 33 

2 
Happy/ambivalent/anxious/shocked/        
crying/angry 

20/5/3/3/1/1 

3 Simplistic representations mostly 

 

4.2.4.1 TRENDS IN THE FACES 

Every student drew a face to express their emotions. 14 attached a body to the face, 

while the rest, simply drew a head. The facial features were used to express emotion. 

I interpreted 20 of the faces as being drawn to express happiness and joy. Of the rest, 

my interpretation was that 5 students were ambivalent and/or resigned, 3 students 

were anxious, 3 shocked, and 1 each were either crying or angry.  

 

Figure 4.12. Sketches drawn by students in Field 4 of Thinkboard 
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Above, in Figure 4.12, I have included some of the pictures that were drawn by the 

students. They are indicative of the range of feelings that were coursing through the 

students while they were doing this Thinkboard activity. 

 

4.2.4.2  COMMENTARY ON TRENDS FOUND IN FIELD 4 

I acknowledge there can be some contestation of my interpretations of the sketches. 

Most of the drawings are cartoon-like, simplistic and often drawn to a very low order. 

Largely, the sketches were unsophisticated and ill-proportioned. In my classroom 

observations, my sense was that very little attention to detail was considered in the 

compositions and that many of the participantss completed this aspects of the 

thinkboard just to get it done.  

 

While about three quarters of the participants present images which suggest they are 

comfortable being in the IPS 413 E – Mathematics class, the remainder appear to be 

ill-at-ease and may feel somewhat threatened by the subject.  

 

4.2.5  SUMMARY OF THINKBOARD ACTIVITY 

The Thinkboard activity revealed two major themes in the participants’ conceptions of 

mathematics and studying it in the IPS 413 E Mathematics module. 

 

On a positive footing, the participants repeatedly reflect upon their desire to do well in 

this subject, to become great ambassadors of the subject, and to positively contribute 

to improving school pupils’ success in this subject. 

 

On a negative footing, many participants have suggested that they are fearful of 

mathematics. They fear failure and, in their writing, they imply that mathematics has 

damaged them psychologically. Some comment that they do not know how to proceed 

through mathematical problems and that, in as much as they feel that the subject 

abandoned them in favour of smarter people. They suggest that having been 

abandoned by the subject, they would be happy to either dispense with mathematics 

altogether or, hopefully, simply pass it. 
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4.3 FOUNDATIONAL ARITHMETIC CONCEPTS, ACTION 

CYCLE 1, PRIOR KNOWLEDGE ASSESSMENT 

Between the 10th and 14th February, I marked the Foundational Arithmetic Concepts, 

Action Cycle 1, prior knowledge tasks, then transcribed the results into MSExcel©, and 

identified trends in the primary data. The task is appended (Appendix F). Four main 

questions were created for the evaluation. Each main question had five sub-questions. 

I will refer to the various main and sub-questions in the following manner, for example: 

Q4.2 means main question 4, sub-question 2. One mark was awarded to each sub-

question. I have supplied a representative part of the primary data in Table 4.7, below. 

The full spreadsheet is appended (Appendix G).  

 

Table 4.7  

Illustrative example of raw data as captured in the Foundational Arithmetic 

Concepts, Action Cycle 1, prior knowledge assessment tasks 

 

In each cell, 1 means that a correct answer was supplied; 0 means it was incorrect. 

The participants’ marks are presented horizontally in rows. Each main question and its 

sub-questions are presented left to right, with totals per student on the far right.  

 

I applied the revised, verb-driven, Bloom’s taxonomy to the Foundational Arithmetic 

Concepts task. The questions were based on content-knowledge requirements for the 

Intermediate Phase. The questions were designed to ascertain, at the lowest level of 

the taxonomy, Remembering and one stage up, Understanding. Questions 1 and 2 

elicit Remembering and Questions 3 and 4 form a bridge that links Remembering and 

Understanding. Questions 1 and 3 require True/False and Multiple Choice responses 

respectively. Questions 2 and 4 require students to show their working. Below, I will 

TOTALS

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 20

1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 7
2 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4
3 1 0 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 8
4 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 11
5 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 6
6 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 15

Question 1 - REMEMBERING Question 2 - REMEMBERING
Question 3 - REMEMBERING & 

UNDERSTANDING

Question 4 - REMEMBERING & 

UNDERSTANDING

FOUNDATIONAL ARITHMETIC CONCEPTS - ACTION CYCLE 1 - PRIOR KNOWLEDGE ASSESSMENT (10/2/2016)

UPDATED TO REFLECT ONLY DATA CAPTURED FROM THE PARTICIPANTS WHO WERE PRESENT FOR THE ASSESSMENT
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recount 10 major trends that this first prior knowledge assessment tasks has revealed 

to me. 

 

4.3.1 TREND 1: POOR HANDWRITING AND SETTING OUT  

Many students have appalling handwriting and set out worked solutions very poorly.  

 

 

 

 

 

 

 

 

   

Figure 4.13. An example of poor setting out in the Foundational Arithmetic 

Concepts, Action Cycle 1, prior knowledge assessment tasks 

 

Figure 4.13, demonstrates how poor writing and setting out exacerbates mathematical 

difficulties for struggling participants. If one discards computational ineptitude, it is 

clear that the poor presentation of the written solutions creates obfuscation and 

additional cognitive burdens for the student. Because of the visual mess, the student 

never gets to see the unfolding of a solution. Further, because of the poor setting out, 

the student does not create an opportunity to judge the feasibility of the answer.  

 

4.3.2       TREND 2: LOW PROCEDURAL KNOWLEDGE 

Generally, each student did best in Questions 1 and 3, with adjacent drops in 

Questions 2 and 4 respectively. In the sample piece of the spreadsheet provided 

above, (Table 4.2), participant 4 demonstrates this trend, having scored 4/5 and 4/5 

for Questions 1 and 3 respectively, and then scored 2/5 and 1/5 for Questions 2 and 

4, respectively. In Questions 1 and 3, the subtle cues found in true/false and multiple-

choice questions guide students towards best guesses. This can skew marks upwards. 

However, this benefit is not available in Questions 2 and 4. 
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Many students performed poorly in single-operations calculations in Main Question 2: 

 

1. Q 2.1:   25 456 + 4 719    Only 27/34 or (79%) of the students correctly 

 added a five digit and four digit number together. 

2. Q 2.2:   23 456 – 4468   Only 14/34 or (41%) correctly subtracted a four  

digit number from a five digit number.  

3. Q 2.3:    2 658 × 52    Only 8/34 or (24%) successfully multiplied a four 

    digit by a two digit number 

4. Q 2.4:    5 392 ÷ 8   Only 3/34 or (9%) of the students achieved the 

      correct quotient.  

 

Although the data above shows poor returns, Table 4.8, below, demonstrates that the 

operations questions found in Main Question 2 are typical of exercise-calculations 

offered to Grade 4, 5 and 6 pupils and are well within the prescribed minimum 

requirements for the Intermediate Phase. Thus, it is of great concern that the 

participants fared badly in these routines-based tasks. 

 

Table 4.8 

Content Knowledge requirements for Intermediate Phase. Source: Department of 

Basic Education, 2011, p. 9 

Numbers, Operations and Relationships  

Topic 1.1 – Whole Numbers 

Grade 4 Grade 5 Grade 6 

Number Range for 
Calculations 

Number Range for 
Calculations 

Number Range for 
Calculations 

Addition and subtraction 
of whole numbers of at 
least 4 digits 

Addition and subtraction 
of whole numbers of at 
least 5 digits 

Addition and subtraction 
of whole numbers of at 
least 6 digits 

Multiplication of at least 
whole 2-digit by 2-digit 
numbers 

Multiplication of at least 
whole 3-digit by 2-digit 
numbers 

Multiplication of at least 
whole 4-digit by 3-digit 
numbers 

Division of at least a 
whole 3-digit by 1 digit 
number 

Division of at least a 
whole 3-digit by 2 digit 
number 

Division of at least a 
whole 4-digit by 3 digit 
number 

  Multiple operations on 
whole numbers with or 
without brackets 
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4.3.3       TREND 3: MAINLY REMEMBERING SKILLS 

Most students’ scores dropped as they delved deeper into the task. The trend showed 

strong Remembering competence contrasted with low Understanding. Table 4.9, 

below, will demonstrate this correlation vividly. 

 

Table 4.9 

Summary of data captured in the Foundational Arithmetic Concepts, Action Cycle 1, 

prior knowledge assessment tasks 

 

 

In the ‘Correct responses per Sub-Question’ row, I have provided totals of the correct 

responses per sub-question. Thus, for example, for Question 1 – Remembering, the 

sub-question scores are 32/34; 25/34; 16/34; 14/34 and 20/44 respectively. Below 

these raw scores, I have calculated their respective percentage values. 

 

Further, referring to Question 1 – Remembering, the students supplied 107/170 

correct responses for the five sub-questions: this translates into a 63% correct 

response rate. Reading left-to-right across the table, by the time we get to Question 

4 – Remembering and Understanding, the correct responses for the entire class 

crashes to 21/170 or 12%. 

 

4.3.4       TREND 4: LACK OF COMPRESSION 

Sub-question Q1.1 required participants to identify the acronym BODMAS as being a 

mnemonic device that is used to sequence solutions of multi-operations calculations. 

32/34 participants or 94% of the participants achieved the correct answer. Two 

questions later, in Q1.3, they were required to provide a True/False response to the 

question:  

 

  Q1.3:   In the calculation: 19 + 16 x 17 – 15, the first step would be to 

     add the 19 and 16 together.  

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

32 25 16 14 20 27 14 8 3 9 3 29 6 11 16 8 3 1 8 1

94 74 47 41 59 79 41 24 9 26 9 85 18 32 47 24 9 3 24 3

65 21

Main Question Averages (%) 63 36 38 12

Correct responses per Sub- Question

Sub-question Averages (%)

Correct responses per Main Question 107 61

ACTION CYCLE 1 - PRIOR KNOWLEDGE           

34 PARTICIPANTS                               

ARITHMETIC CONCEPTS

Question 1 - REMEMBERING Question 2 - REMEMBERING
Question 3 - REMEMBERING & 

UNDERSTANDING

Question 4 - REMEMBERING & 

UNDERSTANDING
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Only 16/34 or 47% of the participants provided the correct answer (False). Thus, 

comparing data from Q1.1 and Q1.3, we learn that albeit that the BODMAS mnemonic 

is used to solve Q1.3, 23 of the students who correctly answered Q1.1, also incorrectly 

answered Q1.3. Further, 2 students incorrectly answered Q1.1, but correctly answered 

Q1.3. The inconsistency between Q 1.1 and Q1.3 suggests that many students hold 

fragile and discontinuous mental constructs of the BODMAS mnemonic. If we treat 

Q1.1 and Q1.3 as a truth-test pairing, we must accept that participants lack 

compression of BODMAS and may have guessed answers.  

 

4.3.5     TREND 5: LACK OF FOUNDATIONAL KNOWLEDGE OF BASES 

AND POWERS 

Sub-questions Q1.2, Q1.4, Q3.1 and Q4.3 test the students’ recall and understanding 

of bases and powers. The students demonstrated low recall and understanding of this 

foundational mathematical prerequisite.  

 

1. Q1.2:  In the pattern, 1;  4;  9; 16;   25, ____; ____; etc., the next two 

numbers  are 34 and 43   (T/F).  

25/34 or 74% of the students answered the question correctly. 

 

2. Q1.4:   43 = 12    (T/F)  

14/34 or 41% of the students answered the question correctly. 

 

3. Q3.1:  The number sequence:  1,  3,  9,  27, 81, etc., is a list of:  

A.  Prime Numbers;  

B.  Perfect Cubes;  

C.  Powers of a number;  

D.  Perfect Squares.  

3/34 or 9% of the students answered the question correctly 

 

4. Q4.3:   If the area of a square is 169cm2, what is the perimeter of the 

square?  

1/34 or 3% of the students answered the question correctly. 

 



 

205 

 

4.3.6 TREND 6: A FRACTIONS META-CONCEPT IS MISSING 

In main question 3, Q 3.4 required students to select one of four options: 

 

Q 3.4:  As a number value,  2
𝟏

𝟒 
   is:  

A.  smaller than 220%;    

B.  equal to  
𝟗

𝟒
;  

C.  greater than 2,3;    

D.  none of the above answers is correct. 

 

The correct response is B. Only 11/34 or 32% of the students answered the question 

correctly. This raises at least two red flags. Firstly, had nomenclature such as <; =; >

, been introduced, the results might have been shifted even more downwards. 

Secondly, meta-concepts hold together the fabric of many smaller, intersecting 

concepts. A meta-concept of fractions would contain visualizations of fractions, 

equivalence, vocabulary, procedures, etcetera. The incorrect answers for Q3.4 

suggest that compression and the construction of a robust fractions meta-concept are 

not in place.  

 

4.3.7 TREND 7: AN INABILITY TO VISUALLY REPRESENT A 

FRACTION 

In Q 4.4 only 8/34 or 24% of the students could correctly shade in 
5

8
 of a large square 

which contained 16 smaller, congruent squares. It is difficult at this early stage of the 

research to provide more than a hunch regarding the answers submitted for this 

‘seemingly easy’ question. Where compression has not taken place, configuration of 

the fraction  
5

8
  might lead students to shade in 5 squares, (based on the value of the 

numerator), and indeed, six students did do just that.  

 

Also, in the absence of compression, an ‘educated’ guess might suggest that one 

should fill in thirteen squares – thereby leaving 3 open squares, (that is, the missing 3 

parts in 
5

8
 ) (maybe) and indeed, five students did so.  
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Many of the answers demonstrate no application of understanding of fractions and 

their visual representations. Three examples of the submissions are presented in 

Figure 4.14, below: of these, possibly the top-right image is most interesting. It appears 

that the student identified 5 parts (of 8) in black, three parts (of 8) in white, and then in 

grey, 8 parts of 8. In effect, the student might be seeing the large square as 

representing two wholes. 

  

Figure 4.14.  Students’ attempts to answer Q4.4 in the Foundational 

Arithmetic Concepts, Action Cycle 1, prior knowledge assessment task 

 

But many of the other answers, where the shading of squares included, for example 1 

or 14 squares shaded, etcetera, suggest a much bigger misunderstanding of symbolic 

value of 
5

8
 and visual representations.  

 

4.3.8 TREND 8: A RATIOS META-CONCEPT IS MISSING 

Q 4.5 is a ratios-based question. The question itself reads:  

Q 4.5: A stick which is 2,5m long is cut into three parts using the ratio 2:3:5. 

How long are each of the three parts?   

 

Only 1/34 or 3% of the participants managed to correctly answer this question. To be 

fair, two students correctly achieved the numerical answers of 0,5; 0,75 and 1,25 but 

these students left out the units, m. I felt that at university level, the insertion of units 

should be a prerequisite so I marked the answers as incorrect. This understanding 

question is quite easy to solve if the compression of fractions and ratios concepts has 

occurred. Clearly, that has not happened. However, the poor response rate amplifies 

the problem with fractions, outlined in TREND 6, above. 
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4.3.9  SUMMARY OF QUANTITATIVE DATA FOUND IN 

FOUNDATIONAL ARITHMETIC CONCEPTS, ACTION 

CYCLE 1, PRIOR KNOWLEDGE ASSESSMENT 

Many students may not have studied mathematics for a while; this might explain why 

many performed poorly in the task. The results suggest that much procedural and 

skills-based remedial work will have to be undertaken. Foundational concepts and 

skills-sets need to be put in place so as to generate understanding-filled intersections 

between visual and symbolic representations. Below, in Figure 4.15, I reveal the 

overall picture of the test. I have used a box and whisker plot because I believe that 

(1) it is a visually interesting graph; (2) it is rich in data, and (3) it is easy to read. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Summary of data capture in Foundational Arithmetic Concepts, 

Action Cycle 1, prior knowledge assessment tasks. 

 

The box-and-whisker plot and data-table reveal that one quarter of the students 

achieved scores of 3/20 through 5/20, that is, the red whisker on the left side of the 

plot. Half of the students, those found between quartiles 1 and 3, scored at between 

5/20 and 9/20, that is, the two boxes. The top quarter of the students achieved marks 

of 9/20 through 16/20, that is, the right whisker. There were 34 participants; the mean 

was 7/20; the mode was 4; the median was 7; the range of marks was between 3 and 

16 (range 13); the quartile indicators were found at 5, 7, and 9 respectively; and the 

interquartile range ran between 5 and 9, that is, an interquartile range of 4.  
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Thus, as a part answer to the first sub-research question: What existing word-problem, 

problem-solving strategies do the students hold? it is clear that many of the 

foundational knowledge and skills sets which are used by students to solve word-

problems are not in place. On Bloom’s Revised Taxonomy, at an understanding level, 

the students falter badly. Indeed, already, it is clear that meta-concepts of fractions 

(4.3.4 and 4.3.6), of bases and powers (4.3.5) and ratios (4.3.8) are not in place. In 

other words, compression of these mathematical ideas has not occurred. 

 

4.4 WORD-PROBLEM CALCULATIONS, ACTION CYCLE 1, 

PRIOR KNOWLEDGE ASSESSMENT TASK 

On 22 and 23 February, I marked, captured and collated the marks for the Word-

Problem Calculations, Action Cycle 1, prior knowledge assessment tasks (Appendix 

H). Below, I disclose important trends that were found in the tasks. 

 

4.4.1 TREND 1: POOR HANDWRITING AND SETTING OUT  

Congruent with the reflections for the Foundational Arithmetic Concepts, Action Cycle 

1 prior knowledge assessments, poor handwriting and untidy setting-out seem to 

conspire against success for many students.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. An unsuccessful attempt to solve Question 2 in the Word-

Problem Calculations, Action Cycle 1, prior knowledge assessment tasks 
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A Question 2 solution, as presented in Figure 4.16, above serves as an exemplar of 

the phenomenon. The messiness in Figure 4.16 indicates more than simply poor 

setting out capability; it points to a lack of cogence, conceptualisation and visual clarity. 

The presentation indicates that mal-formed concepts and misunderstandings underpin 

the construction of the incorrect solution for this low-order word-problem.   

 

The student is unable to engage confidently with the problem. The initial starting point 

of 120 multiplied by 
3

8
 looks favourable, but then, mysteriously, the 120 acquires a 

denominator of 2 with the abbreviation LCD (lowest common denominator?) written to 

the far left. I write mysteriously because often one is left wondering from where 

students conjure up the information they put on paper. The 8 (not the 3) is then 

multiplied with the 120, generating 960, and the 960 is divided by 6, which is the 

product of 2 and 3. And so it continues…  Arithmetically, 8 x 120 = 960, and 2 x 3 = 6. 

However, procedurally, the computation is wrong. I get a sense that the underpinning 

long-term memories of the routines that are required to solve this arithmetic problem 

are not in place. I also have a hunch that, intuitively, the student perceived that the 

correct answers would be 40 and 80 respectively, and then tried to construct a solution 

strategy that would fit that pairing of incorrect answers. 

 

Indeed, many other students have supplied poorly constructed and ill-conceptualised 

solutions. As suggested by Bukatko and Daehler (1995, p. 348-9), they too seem 

unable to represent their problems in ways that enable them to plan and implement a 

successful path to follow.  

 

The solutions for all the questions in the Word-Problem Calculations prior knowledge 

assessment tasks sit comfortably within Zanele’s (2015), conception of highly 

structured problems. Such problems are said to invoke low cognitive demands, follow 

standardised routines, and generate single, right answers. They are standard fare 

exercise questions. Largely, is seems that the mistakes can be attributed to a lack of 

compression (Gray and Tall, 2007), The poor quality of the setting-out and construction 

of solutions and answers – as manifestations of their thinking – support Gray and Tall’s 

(2007) view that many students failed to construct thinking meta-concepts of the 

problems they encountered. Rather, they seem to have pulled up into working memory 
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fragmented and disjointed sprinklings of ill-formed long-term memories of 

mathematical processes and procedures. It appears that they then tried to weave all 

of this together – they fudged it together – in the vain hope the central mass of their 

creation would hold. But, of course, it did not. 

 

4.4.2 TREND 2: LOW LEVELS OF BLOOM’S UNDERSTANDING, 

APPLYING AND ANALYSING CAPABILITIES 

Bloom’s Revised Taxonomy was used to construct the questions in the Word-Problem 

Calculations prior knowledge assessment tasks. Questions 1 through 5 were designed 

to elicit Understanding and Applying. Questions 6 through 10 were constructed to 

investigate Applying and Analysing.  

 

Table 4.10 

Summary of data captured in the Word Problems Calculations, Action Cycle 1, prior 

knowledge assessment tasks 

 

 

The data-table, Table 4.10 above, reveals that 37 participants completed the test 

(Appendix I). The class achieved 249/555 correct responses or 45% for the first five 

questions. The return for Questions 6 - 10 was lower, at 211/555 or 38%. Hindsight 

shows that Questions 8, 9 and 10 really belonged in the first category in the test, 

namely Understanding and Applying. Thus, Table 4.10, shows that my questions 

actually skewed the marks in questions 6 – 10 upwards quite a bit.  

 

Overall, all the word problems achieved relatively low returns. The high point was a 

64% return for Sub-Question 1, but even that must be reflected upon in the light that 

all of the questions were low-level Intermediate Phase arithmetic word problems. Table 

4.9 also reveals the skewing effect in Questions 8, 9 and 10. Further, the table reveals 

1 2 3 4 5 6 7 8 9 10

71 19 41 52 66 9 18 64 64 56

64 17 37 47 59 8 16 58 58 50

ACTION CYCLE 1 - PRIOR KNOWLEDGE                                           

37 PARTICIPANTS                                        

WORD PROBLEM CALCULATIONS

UNDERSTANDING AND APPLYING APPLYING  AND ANALYSING

Correct responses per Sub Question

Sub-question Averages (%)

Correct responses per Main Question 249 211

Main Question Averages (%) 45 38
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that Questions 2, 6 and 7, achieved particularly low returns; next, I will specifically turn 

to these problematic questions. 

 

4.4.3  TREND 3: INTERESTING RESPONSES TO QUESTION 2 

Question 2, is transcribed below:  

 

Q 2. Altogether Shirley and Jean have 120 teaspoons. Shirley owns ⅜ of 

the teaspoons. How many teaspoons does Shirley have? How many 

teaspoons does Jean have?      (3 marks) 

 

Mathematically speaking, the participants had to establish the numerical values of  
3 

8
 

and 
5

8
  of 120, namely 45 and 75 respectively. 30/37 or 81% of the respondents scored 

0 for this 3 mark question. 1/37 or 3% of the class scored 1 mark. The remaining 6/37 

or 16% of the students scored the full three marks. In other words, the students either 

got it, or they did not. Among those students who did not achieve three marks for 

Question 2, three categories of answers appeared. Next, I will unpack general features 

that I found within these categories of incorrect answers. 

 

4.4.3.1 CATEGORY 1: MESSAGES 

11 students did not provide a calculated answer for Question 2. 8 of these students 

did write short messages in the answer area for Question 2. As per the exemplar, 

Figure 4.17, below, such students suggested that they struggled to do calculations that 

incorporated operations and fractions. 

  

 

 

 

 

 

Figure 4.17. A participant’s response to Question 2 in the Word Problems 

Calculations, Action Cycle 1, prior knowledge assessment task 
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4.4.3.2 CATEGORY 2: PROCEDURAL INEPTITUDE 

Many participants produced answers that, while incorrect, at least generated a 

plausible answer in that the two parts of their answers added up to 120 teaspoons. 

Some suggested the teaspoons were divided equally, that is 60 and 60 to each lady, 

while others offered 40 and 80 as the split – in effect 
1

3
 and 

2

3
 respectively. Yet other 

participants offered 30 and 90 or 
1

4
 and 

3

4
 respectively, and other answers included 100 

and 20; 5 and 115, 65 and 55, and 49 and 71.  

 

Figure 4.18, below, is interesting because if the student had constructed groups of 8 

rather than 5, the visual solution had the potential to work. The group-bundles of 8 

might then be redistributed into new, larger sets of 3 and 5 that would be tallied up to 

achieve the correct answers. 

 

 

 

 

 

 

 

 

 

Figure 4.18. A student’s unsuccessful visual solution to Question 2 in the 

Word Problems Calculations, Action Cycle 1, prior knowledge assessment 

 

Albeit these participants displayed a sense of what to do, procedurally and/or 

conceptually, they could not create appropriate algorithms to achieve correct answers. 

Question 2 required the students to understand and apply previously learned skills, 

concepts and routines, learned while in school; in effect, they were required to display 

aspects of instrumental and relational understanding (Siemon et al., 2012, p. 71), but 

clearly they struggled to do so. 

 

When held up for examination, answers of the order of 5 and 115 cannot be conceived 

to be representative of 
3 

8
 and 

5

8
  of 120: such answers suggest that many participants 
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did not perceive the equivalence of a fractional unit for a given whole, a given 

denominator and its proportional size.  

 

On many occasions I have come across a misunderstanding of the roles of numerators 

and denominators in common fractions. The misunderstandings play out clearly in 

activities where students are required to construct fractions walls. On occasion, 

students will construct, for example, an eighths fraction-ribbon, but subdivide it into 

seven parts. On other occasions, students will create eight sub-divisions but the cells 

will be unevenly distributed by size. Nor are these mistakes, in my experience, simply 

a result of mere carelessness and/or untidiness. At a very foundational level, a very 

basic conceptual framework of common fractions, and the equivalence of congruent 

parts is not in place. 

 

4.4.3.3 CATEGORY 3: IMPLAUSIBLE ANSWERS 

Some participants provided implausible answers such as 60 and 40. Here, two 

problems manifest. First, the sum of 60 + 40 ≠ 120. Second, in terms of the sharing, 

Shirley - the first-mentioned name - owns fewer teaspoons than Jean. Also, one 

student supplied 94 and 60, and another suggested the split was 40 and 40.  Albeit 

that the salient mathematical competences were unavailable to these participants, 

they did perceive sharing occurred between the two ladies. However, in the absence 

of understanding and compression, they did not comprehend that the sum of the two 

parts had to add up to the original total of 120 teaspoons. 

  

Figure 4.19. An incorrect solution to Question 2 in the Word Problems 

Calculations, Action Cycle 1, prior knowledge assessment task 
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The remaining students in this category demonstrated a deep misunderstanding of the 

task at hand. The solution in Figure 4.19, above, demonstrates that, in this problem at 

least, the participant operated off a deeply flawed misunderstanding of mathematical 

processes and procedures. Six students correctly answered Question 2, and, as seen 

in Figure 4.20, below, three of them used three used visual tools. Each of these 

solutions demonstrates a deep grasp of the concept of fractions as equal parts of a 

whole. It is worth mentioning that, in other answers to other questions, some students 

used a visual scaffold to support their thinking, but this practice was not commonly 

found; indeed, the overall use of visual strategizing is sporadic. 

 

Figure 4.20. Three visual scaffolds, as constructed by the PGCE students, 

when answering Question 2 in the Word Problems Calculations, Action 

Cycle 1, prior knowledge assessment task 

 

4.4.4  TREND 4: LANGUAGE AS A BARRIER 

Question 6 reads:  

 

Q 6. Altogether, Lulu and Irene have sixty new books. Irene has half the 

number of books that Lulu has. How many books does each lady have?  

 

Only 3/37 or 8% of the students got the correct answer. All the others got it completely 

wrong. Previous experiences with this sort of question have taught me that often the 

poor performance lies with the wording of the question. Many students are confounded 

by the subtleties and turns of phrase found in the English language.  

 

Thus, it became quite clear that these words and their impact on our thinking would 

have to be reviewed. Words such as altogether and the implied meaning in the phrases 

such as, has half the number of, would have to be carefully unpacked. Nor, with skilful 
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adjustment, might/should one avoid the use of these terms – they are everyday, 

operationalised terms which are used in countless applications in mathematics. 

However, once explained and consolidated into their schema of this type of question, 

I anticipated that a positive turnaround would be effected for the research participants.  

 

Drilling into the answers to the question, most of the cohort provided 30 and 30 as the 

two answers, the sum of these numbers returning us to 60 books. In these cases, it is 

conceivable that text was incorrectly understood to suggest the Irene had half of the 

total amount.  Other participants provided 45 and 15 as their answers. Yet other 

students provided answers which, like in my exposition for Question 2 (4.4.3.3), 

suggested deeper problems were in play. Some participants provided 60 and 30, and 

other answers included 30 and 90; 30 and 15; 3 and 3; 60 and 
1

2
 ; and 90 and 80.                                                                 

 

4.4.5 SUMMARY OF QUANTITATIVE DATA FOUND IN WORD-

PROBLEM CALCULATIONS, ACTION CYCLE 1, PRIOR 

KNOWLEDGE ASSESSMENT TASKS 

Four major trends were discovered. Collectively, inability to set out word problems 

(4.4.1); limited ability to solve understanding based word problems and low ability to 

solve applying and analysing problems (4.4.2); manifestations of Gooding’s (2009) 

barriers as found in Question 2 (1.2.2.3 and 4.4.3); and language as a barrier (4.4.4) 

suggest that adjoined to the findings for the Foundational Arithmetic Concepts, Action 

Cycle 1, prior knowledge assessment tasks, (4.3), a full answer emerges to the sub-

research question: What existing word-problem, problem-solving strategies do the 

students hold?  

 

It seems that, albeit many dormant skills may simply require a re-awakening, at the 

beginning of the IPS 413 E module in 2016 most members of the cohort held only 

scatterings of remembered foundational mathematical routines and, typically, were 

unable to apply these skills to LOT, highly structured word problems. With few 

exceptions, no evidence of cogent strategizing was presented. 

 

The Box and Whisker plot, Figure 4.21, below, demonstrates a large variance between 

lowest performers (1/30) and highest performers (29/30) in the test. 
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Figure 4.21. Summary of data capture in Word-Problem Calculations, Action 

Cycle 1, prior knowledge assessment tasks 

 

The lowest performing quarter of the cohort scored 1/30 through 8/30. Half of the class 

scored 8/30 through 18/30, that is, between quartiles 1 and 3. The top quarter of the 

class achieved marks between 18/30 and 29/30. The class mean was 12 and the 

median was 11.  

 

Next, I will discuss the data that was captured in the Foundational Arithmetic Concepts, 

Action Cycle 1, re-evaluation tasks.  

 

4.5 FOUNDATIONAL ARITHMETIC CONCEPTS, ACTION CYCLE 

1, RE-EVALUATION TASKS 

4.5.1   TREND 1: SMALL IMPROVEMENTS 

Below, in Tables 4.11 and 4.12 respectively, I have supplied summaries of quantitative 

data for the Action Cycle 1, Foundational Arithmetic Concepts, Prior knowledge and 

re-evaluation tasks. The full data-set is appended (Appendix J) 
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Table 4.11 

Summary of data captured in the Foundational Arithmetic Concepts, Action Cycle 1, 

prior knowledge assessments 

 

 

Table 4.12 

Summary of data captured in the Foundational Arithmetic Concepts, Action Cycle 1, 

re-evaluation assessments 

 

 

Table 4.11 and Table 4.12, above, demonstrate that quantitatively, microgenisis has 

occurred and that the impact of the teaching and learning activities in Action Cycle 1 

were quite successful. With the exceptions of Q3.1 and Q3.2 which achieved reduced 

success rates in the re-evaluation, all the other main and sub-questions enjoyed 

positive growth. In Main Question 1, the overall class average moved from 63% to 

88%, a jump of 25% or, in effect, a 40% improvement on the original result. Main 

Question 2, with 36% as a class average in the prior knowledge tasks, the average 

moved to 63%, a jump of 27%, or a 75% improvement in the re-evaluation. For Main 

Question 3, with 38% achieved in the prior knowledge assessment, the re-evaluation 

moved to 52%. This was a jump of 14%, or an overall improvement of 37%. For Main 

Question 4, the prior knowledge came in at a class average of 12%, and in the re-

evalaution it climbed to 33%, a positive jump of 21%, or 275% improvement.  

 

In the re-evaluations, moving from Main Question 1 through 4, the overall percentages 

dropped from 88% to 63% to 52% to 33%. This was consistent with the increasing 

asking complexity of the questions. Main Question 1, with success returns for the five 

sub-questions of 95%, 82% 97%, 87% and 82% seemed well understood. However, 

in the other main questions, some arithmetic skills continued to cause trouble.  

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

32 25 16 14 20 27 14 8 3 9 3 29 6 11 16 8 3 1 8 1

94 74 47 41 59 79 41 24 9 26 9 85 18 32 47 24 9 3 24 3

65 21

Main Question Averages (%) 63 36 38 12

Correct responses per Sub- Question

Sub-question Averages (%)

Correct responses per Main Question 107 61

ACTION CYCLE 1 - PRIOR KNOWLEDGE           

34 PARTICIPANTS                               

ARITHMETIC CONCEPTS

Question 1 - REMEMBERING Question 2 - REMEMBERING
Question 3 - REMEMBERING & 

UNDERSTANDING

Question 4 - REMEMBERING & 

UNDERSTANDING

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

36 31 37 33 31 33 31 21 15 19 3 25 22 22 27 11 14 12 23 3

95 82 97 87 82 87 82 55 39 50 8 66 58 58 71 29 37 32 61 8

Main Question Averages (%) 88 63 52 33

Sub-question Averages (%)

Correct responses per Main Question 168 119 99 63

ACTION CYCLE 1 - RE-EVALUATION                 

38 PARTICIPANTS                                                   

ARITHMETIC CONCEPTS

Question 1 - REMEMBERING Question 2 - REMEMBERING
Question 3 - REMEMBERING & 

UNDERSTANDING

Question 4 - REMEMBERING & 

UNDERSTANDING

Correct responses per Sub- Question
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4.5.2  TREND 2: LOW PROCEDURAL KNOWLEDGE 

Many participants are precluded from success because they cannot compute 

foundational arithmetic operations tasks; they lack the procedural knowledge for this 

work. The underlying problems include a lack of knowledge of the times-tables, of how 

to set out solutions and an inability to easily apply often-used routines: evidence of this 

is presented in Figure 4.22, below.  

 

 

 

 

 

 

 

 

Figure 4.22.  Evidence of poor setting out and misapplication of arithmetic 

operations routines 

 

Q2.3 and Q2.4 were low-order, routines-based calculations. For Q2.3, of which Figure 

4.22, above, is an exemplar, the prior knowledge tasks returned 8/34 or 24% while the 

pre-evaluation returned 21/37 or 55% success. Further, in the prior knowledge task, 

only 3/34 or 9% of the cohort managed to complete Q 2.4 correctly. The re-evaluation 

return was 15/37 or 39% which was a significant jump, but at 39% was still a low 

performing question.  

 

4.5.3   TREND 3: INABILITY TO WORK WITH MIXED OPERATIONS 

In the prior knowledge assessment, the participants returned a 9/34 or 26% success 

rate while, in the re-evaluation, the same question returned 19/38 or 50%. The re-

evaluation result, applied as it was after a great deal of teaching and learning, was 

somewhat disappointing. Q 2.5 was a routines-based calculation.  

However, largely, the participants failed to conceptualise the order of operations nor 

could they apply the BODMAS routine to the calculation. 
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Q 2.5, is transcribed: Q 2.5:  Simplify:   7(16 + 9 – 4 (3 + 2))  

 

 

Figure 4.23.  Evidence of lack of compression 

 

As per the exemplar, Figure 4.23, above, many participants constructed the times-

tables on paper, as a strategy for dealing with multiplication. The technique is ill-

effective and time-consuming. It exhausts cognitive space and reduces the students’ 

capacity to focus on a strategy for simplifying the arithmetic expression. In Figure 4.23, 

subsumption of low-order but important routines and skills did not take place, 

compression did not occur, and the participant quickly made computational errors.  

 

4.5.4    TREND 4: LACK OF COMPRESSION OF POWERS AND 

BASES 

Like the other four sub-questions in Main Question 3, Q 3.1 provided a statement with 

a choice of four possible solutions attached to it. Q 3.1 is transcribed below: 

Q 3.1 The number sequence:  1,   3,   9,   27, 81, etcetera, is a list of:  

A. Prime Numbers 

B. Perfect Cubes 

C. Powers of a Number 

D. Perfect Squares 

 

 

 

A        B      C       D 
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In the first quarter of 2016, that is when the first action cycle was in play, the lessons 

presented to the participants were saturated in activities, explanations and discussions 

which were aimed at assisting the students to assimilate basic number concepts and 

number patterns, but, clearly, they offered little benefit. In the prior knowledge 

assessment, the class scored 3/34 or 9%; in the re-evaluation, 3/38 or 8%. Albeit 

marginal, the students did worse after instruction than before it. 

 

Figure 4.24. Part of a slideshow that was designed for and presented to the 

2016 – IPS 413 E Mathematics cohort. 

 

4.5.5  TREND 5: LACK OF COMPRESSION OF RATIOS 

Q4.5 is transcribed below: 

 

Q 4.5 A stick which is 2,5m long is cut into three parts using the 

ratio 2 : 3 : 5.   How long are each of the three parts? 

 

 

 

Generally, the participants did not do well with any of the sub-questions in Main 

Question 4. In particular, Q 4.5, presented the cohort with many difficulties. In the prior 

knowledge assessment the return was 1/34 or 3% of the students got it correct, and in 

the re-evaluation, the score rose to only 3/38 or 8%. 
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4.5.6 TREND 6: INABILITY TO CONCEPTUALISE LARGE 

NUMBERS 

Q 4.1 returned 8/34 (24%) in the prior knowledge assessment and 11/38 (29%) in the 

re-evaluation. The sub-question required the students to write a numerical equivalent 

for a textually composed number. As seen in the exemplars in Figure 4.25, below, 

many students struggled to change text into digits.  

Figure 4.25.  Examples of misconstruction of numerical representation of 

large numbers. 

 

While language barriers may have played a role in the ill-successes with this question, 

the shapes of the answers often demonstrated a complete absence of number 

understanding, grouping, decimals, etcetera.  

 

4.5.7 TREND 7: LACK OF COMPRESSION OF CONCEPTS 

LINKED TO SQUARES 

Below, Q 4.3 is transcribed in full: 

 

Q 4.3   If the area of a square is 169cm2, what is the  

perimeter of the square? 

_____________________________________________ 
 
_____________________________________________ 
 

 
In the prior knowledge assessment, participants achieved 1/34 (3%) success; in the 

re-evaluation, the return was 12/38 (32%). A far higher return was anticipated for the 
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re-evaluation. The concepts of length, perimeter and area, squares and square-roots, 

as a two dimensional shape and in the form of x2 and √x2, were key foundational 

arithmetic concepts that students needed to assimilate and accommodate during the 

course of Action Cycle 1. A great deal of time and energy was expended on that work. 

The participants were given opportunities to construct sketches, physically measure 

squares, discuss and construct their own understanding of this work.  

 

These methodologies are indicative of a visualising, constructive and liberalising 

pedagogy. Without such knowledge, very little progress can be made. That 

notwithstanding, the exemplar in Figure 4.26, below, is indicative of the wide range of 

mis-concepts and arithmetic ineptitude that prevailed after the completion of the first 

action cycle. It is taken from an answer which a participant produced in the re-

evaluation task. 

 

 

 

 

 

 

 

 

Figure 4.26. An exemplar which demonstrates a lack of compression of the 

meta-concept of perfect squares and square roots, area and perimeter 

 

4.5.8   TREND 8: LACK OF COMPRESSION OF FACTORISATION 

Q4.2 required participants to compile a list of the factors of 28. These are: 1; 2; 4; 7; 

14 and 28, that is, the natural numbers that exactly divide into 28. In the prior 

knowledge assessment, the students achieved a 3/34 or 9% success rate while in the 

re-evaluation, success climbed to only 14/38 or 37%.  

 

Further, deriving from their study of factors in the IPS 413 E class, the participants 

learned about factor pairs: 1 x 28; 2 x 14, etcetera; prime factors of numbers which, in 

the case of 28 are 2 and 7; and the prime factor form of numbers, which for 28 is 28 = 

22 x 7. Thus, it can be seen that the factors of 28 constitute a low level LOT arithmetic 
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skill, but much is built upon it. Thus, poor performance in establishing factors of natural 

numbers implies that the abilities to construct factor pairs and find prime factors is also 

compromised. 

 

4.5.9 TREND 9: POOR COMPUTATION AND SETTING OUT 

SKILLS 

In my teaching, I encourage students to use a scribble pad. It provides a wonderful 

space in which to trial ideas, quickly set out a solution strategy, test a solution. The 

scribble pad can also provide visual evidence of mathematical ineptitudes.  

 

Below, in two sets of photographs, in Figure 4.27 and Figure 4.28 respectively, I 

present scribblings that were found in the re-evaluation scripts. I think that these 

exemplars offer much evidence of the perilous state of foundational mental arithmetic 

structures that were held by students in the PGCE cohort 

 

4.5.9.1       CATEGORY 1: AN INABILITY TO MULTIPLY  

The images presented in Figure 4.27, below, attest to students’ weak capacity to 

perform basic multiplication calculations. The methods used by the students to 

circumvent their shortfall of knowledge of the times-tables and the procedural routines 

used in multiplication are seen to be laborious, time-consuming and ill-effective.  

 

Within these exemplars, we find that incorrectly, 3 x 3 = 6; 3 x 12 = 32; and 3 x 13 = 

41. Indeed, when constructing a list of multiples of 3, one student even listed 3 x 10 = 

31, which demonstrates a complete misunderstanding of the concept of multiplying, 

and by extension, dividing by 10 
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 Figure 4.27.  Exemplars of rough work carried out by participants in the Foundational 

Arithmetic Concepts, Action Cycle 1, re-evaluation task 

 

In Figure 4.27, the two images on the right provide an example in which, on top, instead 

of multiplying 17 x 25, a participant correctly adds 25 to itself 17 times to achieve 425, 

then, on the bottom, checks the addition and achieves an incorrect answer of 445. 

Albeit multiples of 25 go up in 25, 50, 75, etcetera, the student then accepts 445 as 

the correct answer. Further, bottom-middle, a student wrote 1 x 1 = 1; 1 x 2 = 2, 

etcetera.  This was an absolutely fruitless enterprise: a best-case scenario might be 

that the student was doodling. Taken with the other exemplars presented in Figure 

4.27, it would seem that in terms of their ability to multiply, many students were 

operating off a very low multiplication facts and skills knowledge base. 

 

4.5.9.2 CATEGORY 2: POOR COMPUTATIONAL AND SETTING OUT SKILLS 

The second set of photographs in Figure 4.28, below, highlights a second endemic 

feature, one of poor computation and poor setting out skills which, taken together, 

collude and conspire against success in simple arithmetic tasks. 
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Figure 4.28. Exemplars of poor computation and setting out, in the 

Foundational Arithmetic Concepts, Action Cycle 1, re-evaluation tasks 

 

In their classwork and tests the students were encouraged to set out their solutions 

neatly. This position was informed by a view that the neat patterning of the routines 

used in foundational operations-related calculations could act as visual scaffolds that 

might assist students to work cogently through their calculations. 

  

4.5.10  SUMMARY OF QUANTITATIVE DATA FOUND IN 

FOUNDATIONAL ARITHMETIC CONCEPTS, ACTION 

CYCLE 1, RE-EVALUATION TASK 

Below, in Figure 4.29, I have submitted a summary of the quantitative data that was 

collated from the Action Cycle 1 – Foundational Arithmetic Concepts – re-evaluation 

task. The graph shows that the scores in the test range from 3/20 through 20/20. 

Students with final scores of 3 through 8,5 marks reside to the left of quartile 1; half of 

the students, which is those found between quartiles 1 and 3, scored between 8,5 and 

14 marks; and the top quarter of students earned marks between 14 and 20. The mean 
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was 12, the mode (there were 5 occurrences) was 14, and the interquartile range was 

between 8,5 and 14, that is, 5,5. 

 

 

 

 

Figure 4.29. Summary of data capture in Foundational Arithmetic Concepts, 

Action Cycle 1, re-evaluation tasks 

 

Largely, the data findings are disappointing. Informed as it was by Bruner’s three-

phase theory of learning (2.7.4), the liberating-oriented, visually-rich, activities-based 

lessons had brought scant reward for the participants. Many of the tasks had been 

designed to offset misunderstandings of LOT routines and low order procedural 

knowledge. With few exceptions, compression of mixed operations, powers and 

bases, ratios, number sense, squares, and factorisation has proved elusive for many 

of the participants. 
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4.6       WORD-PROBLEM CALCULATIONS, ACTION CYCLE 1 – 

RE-EVALUATION TASKS 

4.6.1       TREND 1: SMALL IMPROVEMENTS 

Summarised data for the prior knowledge and re-evaluation of the Word Problem 

Calculations in Action Cycle 1 are presented in Table 4.13 and Table 4.14 respectively, 

below. Further, the full data-set is appended (Appendix K). 

 

Table 4.13 

Summary of data captured in Word Problem Calculations, Action Cycle 1, prior 

knowledge assessment 

 

 

Table 4.14 

Summary of data captured in Word Problem Calculations, Action Cycle 1, re-

evaluation task 

 

 

A comparison between the assessments shows that the overall results in the re-

evaluation indicate some improvement. In Understanding and Applying questions, the 

class average climbed from 45% to 56%, a numerical jump of 11% or, as an 

improvement on the prior knowledge result, 24%. The Applying and Analysing 

1 2 3 4 5 6 7 8 9 10

71 19 41 52 66 9 18 64 64 56

64 17 37 47 59 8 16 58 58 50

ACTION CYCLE 1 - PRIOR KNOWLEDGE                                           

37 PARTICIPANTS                                        

WORD PROBLEM CALCULATIONS

UNDERSTANDING AND APPLYING APPLYING  AND ANALYSING

Correct responses per Sub Question

Sub-question Averages (%)

Correct responses per Main Question 249 211

Main Question Averages (%) 45 38

1 2 3 4 5 6 7 8 9 10

76 40 65 56 73 24 47 59 58 57

68 36 59 50 66 22 42 53 52 51

Main Question Averages (%) 56 44

ACTION CYCLE 1 - RE-EVALUATION                              

37 PARTICIPANTS                                            

WORD PROBLEM CALCULATIONS

UNDERSTANDING AND APPLYING APPLYING  AND ANALYSING

Correct responses per Sub  Question

Sub-question Averages (%)

Correct responses per Main Question 310 245
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questions fared less well, starting at 38%, and moved to 44%, a jump of 6%, or a 16% 

improvement in the re-evaluation compared to the prior knowledge assessment.  

 

4.6.2  TREND 2: LACK OF COMPRESSION OF FRACTIONS 

In the prior knowledge assessment task, the participants returned a 17% success rate 

for Q.2; in the re-evaluation, the class-score rose to 36%, which was a 19% numerical 

rise and a 212% improvement on the first attempt. But, realistically, a 36% return was 

not good. My efforts to improve the low success rate in Q.2 did not result in the 

compression of the requisite concepts and skills. The question read:  

 

Q 2: Altogether Shirley and Jean have 120 teaspoons. Shirley owns ⅜ 

of the teaspoons. How many teaspoons does Shirley have? How many 

teaspoons does Jean have?  

 

Q.2 was discussed previously (4.4.3): because of that finding, scaffolding was 

introduced to ameliorate the difficulties that the participants had with the problem. 

Teaching methods included the use of tactile, iconic and symbolic modes of 

representation and discussed the big ideas around which such problems are solved. 

An example of a visually-mediated, paper and pencil solution is presented in Figure 

4.30, below. 

 

 

 

 

 

 

 

Figure 4.30. A visual solution for Q 2 in Word-Problems Calculations, Action 

Cycle 1, re-evaluation task 

 

In the first step, the participants were taught to construct a ribbon – some call it a box, 

others a model – which was sub-divided in to 8 equal parts. The full length of the 

rectangle represented the whole while the 8 parts represented the total number of parts 
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in play – that is, the denominator in the fractions. In effect, all that the participants were 

really doing was constructing an eighths-based fraction wall. The methodology 

required them to glean information from the word-problem and to use that information 

to populate and give meaning to the ribbon drawing. In the second step, students 

should have used the visual cues provided by the 120 teaspoons and 8 equal parts in 

the ribbon to deduce that, by division, they could establish the size of each of the equal 

parts, namely 15. From that, they should have been able to populate the parts and 

thereby establish the number of spoons that were owned by each of the two ladies. 

Whether by enactive or iconic or symbolic means, many students could not solve this 

Understanding and Applying task. 

 

4.6.3  TREND 3: LANGUAGE AS A BARRIER 

In the Word-Problems Calculations prior knowledge assessment, Q.6 delivered an 8% 

success rate. In the re-evaluation, this figure rose to 22%. Thus, the participants 

scored better by 14%, with a (somewhat misleading) improvement in the re-evaluation 

over prior knowledge task of 275%. Q.6 question reads as follows:  

 

Q 2.  Altogether, Lulu and Irene have sixty new books. Irene has half the 

number of books that Lulu has. How many books does each lady have?   

 

This question, like Q.2 in 4.6.2 above, was discussed in my analysis of the prior 

knowledge assessment tasks data for Action Cycle 1 (4.4.4.). However, subsequent 

to writing the first test and in spite of the in-class activities, very little changed. 

 

Figure 4.31. Example of an incorrect solution to Q.6 in Word-Problems 

Calculations, Action Cycle 1, re-evaluation 

 

As seen in Figure 4.31, above, the sentence structure of the word-problem might have 

tripped up the participants, who may have interpreted this question to read that each 

girl has one half of the total of 60, that is, 30 books each. Turns for phrase such as half 
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the number of are stock-in-trade in mathematics, thus, rather than avoid their use, it is 

appropriate that the participants learn to use them meaningfully. 

 

4.6.4  TREND 4: LACK OF COMPRESSION OF RATIOS 

Q.7 was a ratios-based question. The prior knowledge tasks returned 16% success; 

the re-evaluation, 42%. That was a growth of 26% or, compared to the prior knowledge 

assessment tasks, a 263% increase. Using visualising strategies, I had hoped that 

even students who might not be able to attend to the solution symbolically, would easily 

cope with the requirements of the question. However, I was incorrect. The question is 

transcribed below, in Figure 4.32, and as an indication of one methodology that was 

used, I have also provided a paper and pencil, visual solution for the problem. 

 

Q 7.  Shirley collects red, blue and yellow 

coffee mugs in the ratio 5:3:4. She owns 12 

yellow coffee mugs. Use this information to 

answer the following questions. 

 

7.1 How many red mugs does Shirley have?  

7.2 How many more red mugs than blue mugs 

does Shirley have?  

7.3 Altogether, how many red, blue and yellow 

mugs does she have?  

 

In Step 1, the ratio – the parts – are all drawn in fair 

proportion and the representation of 12 yellow mugs 

is inserted on the sketch.  

 

In Step 2, we use the visual cues to deduct that if the 

12 mugs span 4 yellow cells, each yellow cell must 

have a unit value of 3. 

 

In Step 3, we populate the cells which must have 

equivalent unit value; we use the visual information to 

answer the various questions in Q.7.  

 
Figure 4.32. A visual solution for Q 7, Word-Problems Calculations, Action Cycle 1, 
re-evaluation 
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4.6.5 SUMMARY OF QUANTITATIVE DATA FOUND IN WORD-

PROBLEMS CALCULATIONS, ACTION CYCLE 1, RE-

EVALUATION TASKS  

The box and whisker plot, Figure 4.33, below, summarises the data captured from the 

Word-Problems Calculations, Action Cycle 1, re-evaluation tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33. Summary of quantitative data captured in Word-Problem 

Calculations, Action Cycle 1, re-evaluation tasks. 

 

37 participants wrote the test. The lowest and highest scores achieved were 0/30, (2 

students), and 30/30, (1 student), respectively. The class average was 15/30. A bi-

modal condition (4 each) of 11 and 25 occured and the median was 16. The range was 

30. Students below quartile 1 scored between 0 and 8; half of the students achieved 

scores between 8 and 223, and the top performing quarter of the class scored between 

23 and 30. The interquartile range placed 50% of the students within a range of 15 

marks, between 8 and 23.Compared to the prior knowledge assessment, the overall 

range in the re-evaluation expanded rather than contracted and the boxes shifted 

marginally to the right.  

 

Overall, the first action cycle did not yield much benefit to the PGCE cohort. In the re-

evaluation, at least four of Gooding’s (2009) barriers occurred frequently. The 

participants have shown that they (1) struggled to read and understand word-problems 
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(4.6.3), and (2) struggled to form mental (nor physical) images of the contexts of word 

problems (4.6.2). Further, they (3) found it difficult to construct number sentences or 

algorithms (4.6.2 and 4.6.4), nor could they (4) carry out mathematical calculations 

(4.6.2 and 4.6.4). 

 

4.7 VISUAL FRACTIONS AND RATIO CONCEPTS, ACTION 

CYCLE 2, PRIOR KNOWLEDGE ASSESSMENT 

On April 20, 2016, the participants wrote the Action Cycle 2 Visual Fractions and Ratios 

Concepts prior knowledge assessment tasks. 30 marks were allocated to the 

arithmetic work (Appendix L). There were 36 participants. Below, I discuss trends 

found in the Visual Fractions and Ratios Concepts tasks.  

 

4.7.1 TREND 1: LOW SCORES IN PRIOR KNOWLEDGE 

ASSESSMENTS 

Table 4.15, below, shows that as the cognitive demand became more complex from 

Main Question 1 – Remembering Fractions and Ratios to Main Question 2 – 

Remembering and Understanding Fractions, so too, correct responses declined from 

53% to 24%. Main Question 3 – Understanding and Applying, achieved a 30% success 

rate. The primary data is appended (Appendix M).  

 

Table 4.15 

Summary of data captured in the Visual Fractions and Ratios Concepts, Action Cycle 

2, prior knowledge assessment tasks 

 

 

In Main Question 1, the participants struggled particularly with sub-questions Q 1.10; 

Q 1.8 and Q 1.9. In Main Question 2, the worst-answered questions were Q 2.6; Q and 

2.8.In Main Question 3, the biggest problems lay in Q 3.3; Q 3.2 and Q 3.7 respectively.  

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

36 29 26 18 18 24 14 11 12 1 13 8 7 8 13 3 18 5 6 6 25 2 0 12 22 13 2 8 8 15

100 81 72 50 50 67 39 31 33 3 36 22 19 22 36 8 50 14 17 17 69 6 0 33 61 36 6 22 22 42

30

Correct responses per Sub Question

Sub-question Averages (%)

Correct responses per Main Question 189 87 107

ACTION CYCLE 2  - PRIOR KNOWLEDGE             

36 PARTICIPANTS                              

FRACTIONS AND RATIOS

REMEMBERING  FRACTIONS AND RATIOS

Main Question Averages (%) 53 24

REMEMBERING & UNDERSTANDING UNDERSTANDING AND APPLYING
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4.7.2 TREND 2: LACK OF RELATIONAL UNDERSTANDING OF 

FRACTIONS 

Only one student in the cohort (1/36 or 3%) managed to answer sub-question Q 1.10 

correctly. Most answers were similar to those found in Figure 4.34, below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34. Two incorrect interpretations and solutions to Q.10 in the Visual 

Fractions and Ratios Concepts, Action Cycle 2 prior knowledge task 

 

As demonstrated in Figure 4.34, above, 2 participants interpreted the two boxes as 

being linked separately to 1
2

3
 and 

1

6
 respectively. Many of the supplied answers followed 

no discernible pattern, and included 1’s, 2’s, 3’s, etcetera, and many variations on 

different fraction combinations  
2

6
;    

9

6
;   1 

3

9
, etcetera.  

 

Sometimes it is difficult to interpret what students might be thinking, but, clearly, they 

found this task vexing. Although the two squares were sub-divided into thirds, that clue 

offered no useful visual pivot. The students could not make any sense of their possible 

contribution to a viable solution for this question.  

 

Further, in many cases the answers demonstrated that albeit that deep thinking about 

the problem did occur, no cognitive linking up of any relational understanding of 

fractions and the equivalence of fractions was in place. 
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4.7.3 TREND 3: INABILITY TO PLOT A MIXED NUMBER ON A 

NUMBER LINE 

In their answers for Q 1.8, as seen in Figure 4.35, below, many participants were 

unable to precisely plot 2
3

8
 on a number line. Only 11/36 or 31% of the students 

managed to achieve the answer. Similarly, in Q 1.7, the students had to plot 1
7

10
 on a 

number line: there, they achieved only marginally better results, with 14/36 or 39% of 

the students being able to correctly identify that point.  

 

 

 

 

 

 

 

 

Figure 4.35. Two incorrect solutions for Q 1.8 in the Visual Fractions and 

Ratios Concepts, Action Cycle 2, prior knowledge task 

 

The two exemplars above display ill-coherence in transferring a mixed-number, in this 

case, 2
3

8
 , onto a number line. While many different misunderstandings may contribute 

to this situation, my experience suggests two probable reasons: 

 

1. Often, students cannot conceptualize that in a fraction such as 
3

8
, the 

denominator implies the fracturing of a whole into 8 equal parts. Indeed, the 

conception that the parts are equal proves somewhat evasive.  

2. Many students seem to have little previous experience of number lines, have 

difficulty with the concept of 1, struggle with understanding how to use the linear 

space between 0 and 1 and, overall, have poor measurement skills. These 

missing skills-sets manifest in many ways. Many students will consistently 

measure dimensions at 1cm less than the true length: they ignore the linear 

distance between 0 and 1 on their rulers or steadfastly measure off from the 

1cm graduation mark on the ruler.  
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4.7.4 TREND 4: INABILITY TO VISUALISE A FRACTION 

Only 12/36 or 33% of the participants managed to correctly answer Q 1.9. The 

exemplars found in Figure 4.36, below, demonstrate that some students (1) intuitively 

knew the answer, and (2) others were able to construct visual representations that 

assisted them to answer the question. 

 

 

 

 

 

 

 

 

 

Figure 4.36. Two correct solutions for Q 1.9 in the Visual Fractions and 

Ratios Concepts, Action Cycle 2 prior knowledge task 

 

However, for the most-part, as seen in the exemplars found in Figure 4.37, below, 

participants were unable to apply prior knowledge of fractions nor relational 

understanding nor use the visual scaffolds to achieve the correct answer. In the 1st 

quarter, our conversations about fractions had included the sharing of biscuits and 

pizza, and links to pie charts, thus this low return gives pause for thought. 

 

 

 

 

 

 

 

 

 

Figure 4.37. Two incorrect solutions for Q 1.9 in the Visual Fractions and 

Ratios Concepts, Action Cycle 2 prior knowledge task 
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4.7.5 TREND 5: INABILITY TO INTERPRET FIGURAL 

INFORMATION (IFI) IN A VISUAL REPRESENTATION OF 

A COMMON FRACTION 

Main Question 2, Q 2.6 required the participants to identify shapes in which 
2

5
  of those 

shapes where shaded in, in grey. Only 3/36 or 8% of the students correctly answered 

the question. Among the other respondents, different incorrect answers were 

presented. In many cases, it seemed that the students simply took a stab at the 

answers. Figure 4.38, below, shows two interesting examples of incorrect solutions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38. Two students’ misinterpretations of 
2

5
 of a whole as found in Q.9 

in the Visual Fractions and Ratios Concepts, Action Cycle 2, prior 

knowledge task 

 

Most of the participants incorrectly selected the triangles within the square as a visual 

representation of 
2

5
 of a whole. It would seem that they perceived that because the 

square contained five parts with two parts shaded in grey; such a configuration would 

imply 
2

5
 of a whole. However, selecting the square in this task indicated that 

compression of the concept of fractions had not occurred and suggested that the 
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foundational notion that the visual representation of fifths, as combinations of spaces 

of congruent area, had not been accommodated. 

 

4.7.6 TREND 6: FURTHER EVIDENCE OF AN INABILITY TO 

PLOT A NUMBER ON A NUMBER LINE 

Q 2.8 proved problematic. In similar fashion to Q 1.7 and Q 1.8 before it, this sub-

question required the participants to plot:   
4

5
 × 2, that is, 1

3

5
, onto a number line. Only 

5/36 or 14% of the students correctly answered the question. As per Figure 4.39, 

below, many participants either wrote words to the effect that they did not know what 

to do, or simply did not attempt to produce an answer. 

 

Figure 4.39. A textual response as found in in Q 2.8 in the Visual Fractions 

and Ratios Concepts, Action Cycle 2. prior knowledge assessment tasks 

 

Others produced incorrect solutions in which they (1) could not plot the correct position 

or they (2) carried out their computations incorrectly. In Figure 4.40, below it appears 

that the student treated the incremental notch above the zero as one, and then 

counted-on until 8, thereby ending up at 1
2

5
 .  

 

Figure 4.40. A response as found in Q 2.8 in the Visual Fractions and Ratios 

Concepts, Action Cycle 2 prior knowledge task 
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Others unsuccessfully plotted a point on the number line. As seen in the exemplar in 

Figure 4.41, below, it was hard to interpret if they thought that they had registered the 

correct point on the number line, or if they were simply guessing. 

Figure 4.41. An incorrectly plotted response as found in Q 2.8 in the Visual 

Fractions and Ratios Concepts, Action Cycle 2 prior knowledge task 

 

4.7.7  TREND 7: INABILITY TO ADD MIXED NUMBERS 

In Q 2.9, only 6/36 or 17% of the participants identified that:  1
1

4
 +  1 

3

8
 =   2

5

8
. Visual 

scaffolds were inserted into the question. Of the 6 students who correctly answered 

the question, only 2 made use of the visual scaffold. The other 4 correct answers were 

completed without referring to the sketch. An exemplar of a visually mediated solution 

is provided in Figure 4.42, below. 

 

 

 

Figure 4.42. A visually mediated solution for Q 2.9 in the Visual Fractions 

and Ratios Concepts, Action Cycle 2. prior knowledge assessment tasks 

 

Most participants were unable to add the two mixed numbers together by either visual 

or computational means. Indeed, 4 students did not attempt an answer, while 8 others, 

see Figure 4.43, used the visual scaffold, but interpreted its use incorrectly. Every other 

incorrect answer – 18 in total – either misapplied arithmetic techniques or simply 

supplied a fraction or mixed number.  

 

Figure 4.43. An incorrect, visually mediated solution for Q 2.9, found in the 

Visual Fractions and Ratios Concepts, Action Cycle 2 prior knowledge task 
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4.7.8  TREND 8: INABILITY TO APPLY THE GRID METHOD 

In Main Question 3, sub-question Q 3.3, the participants were required use the Grid 

Method to multiply 14 x 7. The cohort scored a 0/36 or 0% success rate. This did not 

alarm me: I was aware that prior to the task, the students had probably not used the 

technique or might be unfamiliar with the term grid-method. I knew this problem would 

be resolved in the course of Action Cycle 2 . The Grid Method is derived from the 

distributive law: 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐. The multiplicands are explored and reconstructed 

as suitable groupings of addends, so as to make multiplying easier. The purpose of 

this technique is not to speed up calculating, but rather to assist in predicting and 

judging the correctness of the product. 14 could be reconstructed as 10 + 4 or 5 + 5 + 

4, etcetera, and 7 might become 4 + 3 or 5 + 2 or simply remain as 7. Below, in Figure 

4.44, I have constructed some possible answers.    

 

 

 

 

 

 

 

 

Figure 4.44. Two different solutions for Q 3.3 as found in the Visual 

Fractions and Ratios Concepts, Action Cycle 2 prior knowledge task 

 

Past cohorts of students have found this technique very user-friendly It made it easier 

for them to multiply – many were notoriously bad at multiplying – and I predicted a 

similar outcome for the participants. 

 

4.7.9 TREND 9: LACK OF COMPRESSION OF PRIME 

NUMBERS 

Q 3.2 required participants to plot the prime numbers found between 0 and 18 onto a 

number line. This sub-question delivered a result of 2/36 or 6%. However, unlike the 

Grid Method multiplications, above (4.7.8), prime numbers and factors were 

extensively covered within Action Cycle 1. So, that left me feeling a bit perturbed. 
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Figure 4.45. Two different incorrect solutions for Q 3.2 as found in the Visual 

Fractions and Ratios Concepts, Action Cycle 2 prior knowledge task 

 

The two exemplars in Figure 4.45, above, were indicative of the answers that were 

received for Q 3.2. They demonstrate that largely, there was a complete absence of 

conception of prime numbers. In their answers, the participants presented all the usual 

culprits of misunderstanding; they circled the 0, and the 1, but not the 2; they filled in 

multiples of 3, and filled in all the odd numbers. The only constant was that they were 

all wrong. It was all quite disheartening!  

 

At the time, I could not say where the problem lay; it might have been in my 

explanation, or the students might be distracted, or something else. But I also knew 

that the conceptual up-take and recall of prime numbers, after full explanations, 

scaffolding and accompanying activities exercises, should not have generated only 

2/36 correct replies for this L-mode, LOT, low cognitive demand requirement. 

 

4.7.10 TREND 10: LACK OF COMPRESSION OF ARRAYS 

The results for Q 3.7 were particularly worrying. The question required participants to 

construct a visual solution, an array, to demonstrate that 3 x 5 = 5 x 3. In effect, I 

anticipated that the students would either draw appropriate arrangements of circles, 

as a discrete representation, or similarly, would employ square grids, as a continuous 

representation (Siemon et al., 2012), and that they would all get this right. However, 

only 2/36 or 6% of the students managed to correctly answer this question.  
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Figure 4.46. A reconstruction of the use of bottle tops to construct an array 

and thereby visualise the commutative law 

 

The poor result was very worrying, given that within Action Cycle 1 classes and as 

presented in Figure 4.46, above, in almost every lesson and in different ways, I had 

made use of bottle-tops, buttons, biscuits, etcetera, as tactile and visual apparatus to 

represent arrays, the four operations, fractions and ratios. Indeed, within the confines 

of the IPS 413 E module, the participants had completed many activities that were 

conceived to assist them to construct robust memories of big mathematical ideas  like 

arrays. The data captured from Q 3.7, suggested that, in large part, the activities with 

arrays had not proved to be of much educational benefit to the students and suggested 

that the students had not constructed any meaning-filled, long-term memories of our 

classroom-based activities with arrays. This was very disheartening.  

 

4.7.11 SUMMARY OF QUANTITATIVE DATA FOUND IN VISUAL 

FRACTIONS AND RATIO CONCEPTS, ACTION CYCLE 2, 

PRIOR KNOWLEDGE TASK  

A summary of the quantitative data that was captured by the Visual Fractions and 

Ratios Concepts, Action Cycle 2 prior knowledge tasks is provided by Figure 4.47, 

below. 
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Figure 4.47. Summary of quantitative data captured in the Visual Fractions 

and Ratios Concepts, Action Cycle 2 prior knowledge tasks 

 

36 students completed the test. One participant each got the lowest mark, 2/30, and 

highest mark, 25/30, respectively. The left whisker, representing the lowest performing 

quarter of the students, was narrow, between 2 and 6,5; half of the students, that is, 

scores between quartiles 1 and 3, scored between 6,5 and 14 marks, and the top 

quarter, in the right whisker, scored between 14 and 25. The mean was 11, the median 

was 10 and a bi-modal situation saw occurrences each of students scoring 6 and 9. 

The range was 23, (25 – 2), and the interquartile range was quite narrow at 7,5 marks 

(14 – 6,5). This meant that 75% of the cohort achieved marks of 14 or less out of 30.  

 

Action cycle 1 had been saturated in doing and seeing activities, and thereby, should 

have at least partly prepared the students for the action cycle 2, prior knowledge tasks, 

but largely, this did not happen. The scripts produced little evidence of memories of 

mathematical ideas that were applied in earlier lessons being transferred into the task.  

These discouraging results reinforced a view that I was developing that the aspirations 

of the action research might need to be subjugated by a far more pressing requirement 

for the students in that they needed to acquire a robust foundation of arithmetic 

conventions, skills, concepts, and vocabulary.   
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4.8 WORD-PROBLEM CALCULATIONS, ACTION CYCLE 2, 

PRIOR KNOWLEDGE ASSESSMENT 

In the Action Cycle 2 prior knowledge assessment task, the word problems were set 

at Applying and Analysing on Bloom’s Revised Taxonomy. I created problems that 

used low level arithmetic facts and skills in novel situations, hence the applying aspect. 

Further, by setting the questions within stories, the students were required to analyse 

textual information.  

 

4.8.1 TREND 1: LOW LEVELS OF BLOOM’S APPLYING AND 

ANALYSING CAPABILITIES 

Overall, the Word Problems Calculations, Action Cycle 2, prior knowledge assessment 

task delivered a poor set of returns. The questions fell within the scope of arithmetic 

word-problems for the Intermediate Phase; however, many participants struggled to 

make sense of any of the questions. The main question contained 5 sub-questions 

and each sub-question was worth 4 marks: thus, with a gross score of 118/720, the 

overall average was 16%. A summary of the quantitative data is presented below, in 

Table 4.16. The full data-set is appended (Appendix N). 

 

Table 4.16 

Summary of data captured in the Word Problem Calculations, Action Cycle 2, prior 

knowledge assessment task  

 

 

 

 

 

 

 

 

Next, I will discuss the low level of visual problem-solving ability as exemplified in the 

tests and after that I will discuss the three worst performing sub-questions in the Word 

Problems Calculations, Action Cycle 2, prior knowledge assessment task 

 

1 2 3 4 5

42 27 24 4 21

29 19 17 3 15

Main Question Averages (%) 16

ACTION CYCLE 2    PRIOR KNOWLEDGE            

36 PARTICIPANTS                                        

WORD PROBLEM CALCULATIONS

APPLYING AND ANALYSING

Correct responses per Sub Question

Sub-question Averages (%)

Correct responses per Main Question 118
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4.8.2 TREND 2: INABILITY TO CONSTRUCT BENEFICIAL 

VISUAL REPRESENTATIONS OF WORD PROBLEMS 

In order to assist the students to better understand the word-problems calculations 

under the Question 4 heading, I gave the advice: In each problem, use a simple 

drawing of a fraction or ratio to show how you see the problem – how you solved the 

problem. I wanted the students to use those sketches as scaffolds to construct viable 

solution strategies. Most of the students did not or could not fulfil this requirement.  

 

While some initial resistance to drawing a mathematical model could be understood in 

light of the fact that it was a prior knowledge assessment task, contradicting this 

position, I also reminded myself that I had been working with visual models of ideas 

with the participants for the duration of the first quarter of 2016. In my classes, the 

students had seemed quite taken with the visual approaches and had begun to use 

such techniques themselves. 

 

Most participants did not construct a single iconic representation or idea for any of the 

five sub-questions. The images presented in Figure 4.48, below, are indicative of the 

types of sketches that were drawn by those few students who did try to construct a 

visual scaffold. 

 

Figure 4.48. Examples of mathematical sketches as found in the Word 

Problem Calculations, Action Cycle 2, prior knowledge assessment task 

 

The four photos in Figure 4.48, above, show that in their conception and construction 

of these drawings, some limited uptake - some transfer - of the visualising methodology 
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that was used earlier in the IPS 413 E module had occurred. The top-left photograph 

taken from Q 4.1 was a simple pictorial interpretation of two children sharing money; 

however, by introducing a third person into the sketch, it was poorly conceptualised. 

The top-right photograph, as a visual scaffold for Q 4.2, reversed the fractional 

amounts accruing to Peter and Trevor. The bottom left and right photos demonstrated 

incorrect or incomplete applications of ribbon and array visualising techniques as used 

to identify the number of bottles of beer held by three persons. As was reported in the 

visual fractions and ratio concepts prior knowledge assessment tasks (4.7.11), a 

pattern was emerging which suggested that, albeit that the IPS – 413 E lessons 

contained visually strong activities, the uptake of the visual methodology was not 

bearing fruit. 

 

4.8.3 TREND 3: FURTHER EVIDENCE OF LANGUAGE AS A 

BARRIER 

Only two students achieved any marks for Q 4.4, and in each case each student was 

awarded 2 marks out of 4. So, Q 4.4 proved very problematic for the participants. 

Figure 4.49, below, succinctly summarizes the lot of the cohort. 

 

Figure 4.49. A typical response for Q 4.4 as found in the Word Problem 

Calculations, Action Cycle 2, prior knowledge assessment task 

 

Many students perceived Noludwe as having ⅓ of the total, that is 32 books, but in fact 

she has ¼ of the books, that is 24 books, and Karin has ¾ of the books, or 72 books. 

In Figure 4.50, below, it is useful to note that (1) the student reversed the order of box 

representations and the legend below it, and (2) did not perceive that the visual 

representation that had been generated suggested that Karin had half the number of 

books held by Noludwe.  
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Figure 4.50. Example of misunderstanding in Q 4.4 in the Word Problem 

Calculations, Action Cycle 2, prior knowledge assessment task 

 

Phrases such as, “Noludwe has one third of the number of books” unsettled many 

participants. Here, mathematics is not tested, but rather, one’s proficiency in 

understanding the quirks found in the English language. A simpler account for the 

same question might read, “For every three books that Karin has, Noludwe has one.”   

 

4.8.4 TREND 4: FURTHER EVIDENCE OF DIFFICULTIES WITH 

RATIOS 

 

 

 

 

 

 

 

 

 

 

Figure 4.51. Example of a student’s profound misunderstanding of 

mathematical concepts and routines as found in Q 4.5 in the Word Problem 

Calculations, Action Cycle 2, prior knowledge assessment task 

 

In Q 4.5, 24/36 scored 0 for this question, 3/37 scored 1 mark and 9/37 scored 2 marks. 

Nobody scored either 3 or 4 marks. The class average was 15%. Only 5/36 students 
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produced a visual scaffold for Q 4.5: of these, 3 got it wrong and 2 students achieved 

2 marks out of 4. In Figure 4.51, above, for example, the exemplar shows that a student 

first divided 5 by 12 to achieve a quotient of 2, and then multiplied 5 by 2 to achieve 

10. Thus, (1) the participant did not perceive that 5 ÷12 = 
5

12
 , and (2) did not perceive 

that, should 5 ÷12 = 2 (it does not), then 2 x 5 = 12 (it is not).   

 

4.8.5 TREND 5: FURTHER EVIDENCE OF DIFFICULTIES WITH 

FRACTIONS 

 

Q 4.2   Altogether Trevor and Peter have 72 rabbits. Trevor owns ⅚ of the 

rabbits. How many rabbits does Trevor have? How many rabbits does Peter 

have? 

 

While the challenge of Q 4.2 did not seem particularly onerous, the participants fared 

badly with this word-problem and returned a 19% success rate. 26/36 scored 0; 6/36 

got 2; 1/36 got 3 and 3/36 students achieved 4 marks for this task. Only 8 participants 

attempted to construct a visual scaffold. Of these participants, 3 scored 4 marks, that 

is, full marks, while 1 student obtained 3 marks and 4 students got it completely wrong.   

 

4.8.6  SUMMARY OF QUANTITATIVE DATA FOUND IN 

WORD-PROBLEM CALCULATIONS, ACTION CYCLE 2 PRIOR 

KNOWLEDGE ASSESSMENT TASK 

Figure 4.52, below, demonstrates that the participants scored poorly in this prior 

knowledge assessment task. 36 participants completed the 20 marks assignment, but 

no one scored more than 10 marks. On the low end, 9/36 participants scored 0; 2/36 

got 1, and 7/36 students scored 2 marks each. On the high end, 1/36 got 7 marks; 3/36 

participants got 8, and 1/36 achieved 10 marks. The bottom 25% of the students scored 

between 0 and 1 marks, 50% scored between 1 and 0,5 marks, and the top-performing 

25% scored between 6 and 10 marks.  The class average for the word-problems part 

of the test was 3/20 or 15%. With 9 responses, the mode was 0. The median was 2,5; 

the range was 10, and the interquartile range was 5,5. The box and whisker plot 

visually demonstrates that the graph was strongly shifted to the left and that three-

quarters of the students scored 5 marks or less for this 20 mark test. 
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Figure 4.52. Summary of quantitative data captured in the Visual Word 

Problem Calculations, Action Cycle 2, prior knowledge assessment tasks  

 

Five major trends were revealed: the participants (1) struggled to solve highly-

structured, Intermediate Phase word-problems that were set at applying and analysing 

on Bloom’s Revised Taxonomy, (2) were unable to construct visual representations of 

word-problem scenarios, (3) idiosyncrasies in English language use created confusion, 

and the arithmetic skills and conceptions that are used in conjunction with (4) ratios 

and (5) fractions based word-problems were not in place.  

 

Thus, as part answer to sub-research question 1: What existing word-problem, 

problem-solving strategies do the students hold, a meta-trend had begun to develop. 

Albeit that the questions were designed to review the problem-solving strategies held 

by the students at the beginning of the research, a continuing pattern of illogical 

solutions demonstrated that the participants had not developed a cogent tool-set of 

cognitive and practical skills to assist them to solve such problems.  
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4.9  VISUAL FRACTIONS AND RATIO CONCEPTS, ACTION 

CYCLE 2, PRIOR KNOWLEDGE ASSESSMENT 

4.9.1  TREND 1: SMALL IMPROVEMENTS 

Below, I have presented summaries of the Visual Fractions and Ratio Concepts, Action 

Cycle 2 prior knowledge assessment task, in Table 4.17, and re-evaluation, in Table 

4.18. The full data-set for the re-evaluation s is appended (Appendix O) 

 

Table 4.17 

Summary of data captured in the Visual Fractions and Ratio Concepts, Action Cycle 2 

prior knowledge assessment task 

 

 

Table 4.18 

Summary of data captured in the Visual Fractions and Ratio Concepts, Action Cycle 

2, re-evaluation tasks 

 

 

A comparison between Table 4.17 and Table 4.18 demonstrates that in the re-

evaluation task, the results improved, but only marginally so. In Main Question 1, 

Remembering Fractions and Ratios, the class average moved from 53% to 60%, a 

jump of 7% or a 13% improvement on the original result. Main Question 2, 

Remembering and Understanding, started at 24% and moved to 42%, a jump of 18%, 

or a 75% improvement on the prior knowledge. Main Question 3, Understanding and 

Applying, moved from 30% to 66%, generating a jump of 36% or an improvement of 

220% on the prior knowledge assessment tasks result. 

 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

36 29 26 18 18 24 14 11 12 1 13 8 7 8 13 3 18 5 6 6 25 2 0 12 22 13 2 8 8 15

100 81 72 50 50 67 39 31 33 3 36 22 19 22 36 8 50 14 17 17 69 6 0 33 61 36 6 22 22 42

30

Correct responses per Sub Question

Sub-question Averages (%)

Correct responses per Main Question 189 87 107

ACTION CYCLE 2  - PRIOR KNOWLEDGE             

36 PARTICIPANTS                              

FRACTIONS AND RATIOS

REMEMBERING  FRACTIONS AND RATIOS

Main Question Averages (%) 53 24

REMEMBERING & UNDERSTANDING UNDERSTANDING AND APPLYING

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

38 8 15 15 28 36 36 21 12 18 20 8 11 14 20 5 26 7 16 32 36 24 3 16 29 23 22 34 33 30

100 21 39 39 74 95 95 55 32 47 53 21 29 37 53 13 68 18 42 84 95 63 8 42 76 61 58 89 87 79

Main Question Averages (%) 60 42 66

Sub-question Averages (%)

Correct responses per Main Question 227 159 250

ACTION CYCLE 2  - RE-EVALUATION                                

38 PARTICIPANTS                              

FRACTIONS AND RATIOS

REMEMBERING  FRACTIONS AND RATIOS REMEMBERING & UNDERSTANDING UNDERSTANDING AND APPLYING

Correct responses per Sub Question
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4.9.2  TREND 2: A SIGNIFICANT DECLINE 

In Main Question 1, the result for Q 1.2 dropped from 29/36 (81%) to 8/38 (21%). While 

this reversal was initially startling, in truth, it occurred because I marked the question 

according to two different standards. In the prior knowledge task, I accepted 3/12 as a 

correct answer, but, by the time the class wrote the re-evaluation, I had worked through 

many ideas and examples of equivalence of fractions and the standardised 

requirement to always reduce fractions to their simplest form. Thus, in the re-

evaluation, only  
1

4
  as a final answer was marked correct. 

 

4.9.3 TREND 3: MORE EVIDENCE OF LACK OF 

COMPRESSION OF FRACTIONS FACTS AND CONCEPTS 

The prior knowledge assessment results for Q 1.10 were 1/36 (3%); the re-evaluation 

achieved 18/38 (47%).  In Q 1.10, participants were required to establish how many 

times bigger 1⅔ was than ⅙. The answer was 12. A visual clue, in the form of two 

boxes was presented. Each of the boxes was sub-divided into thirds.  

 

 

 

 

 

Figure 4.53. An exemplar which demonstrates an inability to use the 

supplied visual cues to solve Q 1.10 in the Visual Fractions and Ratio 

Concepts, Action Cycle 2, re-evaluation 

 

I had hoped that the students would perceive the gestalt cues in the boxes and would 

use them as a visual-mental bridge to reconstruct the thirds as sixths. I anticipated that 

they would construct a robust visual representation of 1⅔ in ten of twelve equal parts. 

However, as seen in Figure 4.53, above, when the re-evaluation was written, many 

students had not assimilated, accommodated and compressed a fractions meta-

concept.  This meant that after two action cycles, the students were unable to form 

either mental or physical images of routine arithmetic situations. Further, in the 

absence of the use of a visual solution, they could not construct an arithmetic algorithm 

nor carry out a simple mathematical calculation. 
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4.9.4  TREND 4: ANOTHER, SOMEWHAT PUZZLING, DECLINE  

The prior knowledge assessment result for Q 1.4 was 18/36 or 50%. In the re-

evaluation, this score dropped to 15/38 or 39%. While I was not too sure why the return 

for Q 1.4 slumped at all, I believe that the newly acquired visualising techniques had 

not been properly assimilated, thus a cognitive dissonance – a disequilibrium –  was 

in place. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.54. Two exemplars which demonstrate an inability to construct a 

visual presentation of a decimal fraction as required in Q 1.10 in the Visual 

Fractions and Ratio Concepts, Action Cycle 2 re-evaluation 

 

The task required the students to colour in 3,25 circles.  However, as seen in Figure 

4.54, above, most students coped with colouring three wholes, but struggled with the 

display of decimal aspect of the construction. 

 

Some students struggled with the concepts of fractions and ratios in general, thus, 

although it was disappointing to see a drop in the class mark, it restated a requirement 

to work continually at eliminating all foundational misunderstandings with fractions. In 

quiet reflection, I also conceded that it was possible that I had over-explained or over-

simplified this work, thereby inadvertently obfuscating the very knowledge and skills 

bases needed to solve these simple questions. Nonetheless, the low return on 

investment proved a bitter pill to swallow. 
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4.9.5 TREND 5: MORE EVIDENCE OF INABILITY TO 

INTERPRET FIGURAL INFORMATION (IFI) IN A VISUAL 

REPRESENTATION  

In Main Question 2, Q 2.6 attracted the lowest return. In the prior knowledge 

assessment, the return was 3/26 (8%) while the re-evaluation returned 5/38 (13%). 

Although there were many combinations of mistakes made in this sub-question, almost 

without fail the participants who got it wrong incorrectly selected the image of the 

square as representative of ⅖. 

 

 

 

 

 

 

 

Figure 4.55. Misidentification of visual representations of 
2

5
 in Q 2.6 in the 

Visual Fractions and Ratio Concepts, Action Cycle 2 re-evaluation 

 

This particular question, its answer and many questions similar to it, was extensively 

covered in the IPS 413 E Mathematics module. However, Figure 4.55, above, showed 

that while the student had correctly identified one of the circles as representative of 
2

5
, 

a second circle and two rectangular strips were ignored.   

 

Sadly, the evidence captured from the responses to Q 2.6 suggested that many 

participants were not able to interpret the figural information that was presented to 

them in the sketches (IFI), that foundational low order thinking (LOT) was not  applied, 

that simple remembering skills were not available to the students, that intuition and a 

combination of L-mode and R-mode thinking did not occur and that the compression 

of the concepts of equal-parts and equivalence, (
4

10
=  

2

5
) in fractions had not been 

accommodated  into a meta-concept of fractions. Further, it has to be remembered 

that this actual question was revised on a number of occasions, thus the poor return 

is difficult to understand. 



 

253 

 

4.9.6 TREND 6: MORE EVIDENCE OF AN INABILITY TO PLOT A 

NUMBER ON A NUMBER LINE 

For Q 2.8, the prior knowledge assessment returned a score of 5/36 (14%); in the re-

evaluation, it crept up slightly to 7/38 (18%). 

 

Albeit that the class had been immersed in mathematical routines linked to operations 

with fractions throughout the semester, as seen in Figure 4.56, below, the calculation 

of a product of a fraction and whole number and the plotting of that product onto a 

number line continued to prove difficult for this cohort. 

 

 

 

 

 

 

 

 

 

 

Figure 4.56. Incorrectly plotted representations of  
4

5
 × 2 as found in Q 2.8 

in the Visual Fractions and Ratio Concepts, Action Cycle 2 re-evaluation 

 

4.9.7 TREND 7: MORE EVIDENCE OF POOR UNDERSTANDING 

OF RATIOS 

The returns on Q 2.2, with 8/36 (22%) in the prior knowledge assessment and a result 

of 8/38 (21%) in the re-evaluation, gave rise to great concern. This poor uptake, as 

seen in Figure 4.57, below, was problematic for a number of reasons: (1) the actual 

asking requirement, cognitively speaking, was of a low order; (2) the identical question 

was offered in the prior knowledge assessment task and was subsequently carefully 

scaffolded in the classroom so as to give experiential and cognitive access to the 

problem; and (3), in class-time, using actual biscuits and other manipulatives and 

iconic stimuli, I spent a great deal of time exemplifying fractions and ratios in 

numerous, contextualised, sharing situations. 
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Figure 4.57. An incorrect interpretation of a ratio as found in Q 2.2 in the 

Visual Fractions and Ratio Concepts, Action Cycle 2 re-evaluation 

 

Indeed, the participants used found materials to construct visual representations of 

fractions and ratios. I found that some participants did not simplify 6 : 9 : 15 into the 

ratio 2 : 3 : 5, and thereby did not obtain the mark. Many others, however, could not 

construct any form of cogent solution. Indeed, many students constructed two-part 

ratios and ignored the fact that the relationship was between three parties. 

 

4.9.8 TREND 8: MORE EVIDENCE THAT STUDENTS CANNOT 

APPLY THE GRID METHOD FOR MULTIPLICATION 

In the prior knowledge assessment, all of the students incorrectly answered Q 3.3; 

however, at that time the participants had not used the Grid Method as an application 

of the distributive law for multiplication. By the time the re-evaluation was applied, that 

situation had been corrected and yet, in the re-evaluation, achievement was only 3/38 

(8%).  Below, in Figure 4.58, I have included one exemplar of a correct set of possible 

solutions. 

 

 

 

 

 

 

 

Figure 4.58. A set of correct responses to Q 3.3 in the Visual Fractions and 

Ratio Concepts, Action Cycle 2 re-evaluation 
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That so many students could not correctly complete this sub-question was problematic 

on at least two levels. First, the technique was presented to the students as a method 

for teaching; clearly, many would not be able to use this multiplication methodology in 

a classroom. Second, a further distress was that the participants continued to not be 

able to multiply accurately, nor could they judge the validity of their solutions.  

 

This perplexing situation reinforced my view that the participants were doing little 

continuous self-study and instead might be cramming or learning by rote, and thereby 

overloading working memory. 

 

4.9.9 TREND 9: MORE EVIDENCE OF LACK OF 

UNDERSTANDING OF POWERS AND BASES 

Q 3.4 was presented as a number line onto which the numbers 1; 2; 4 and 8 had been 

encircled. Each of these numbers are consecutive powers: 20; 21; 22 and 23 

respectively. I anticipated that the students would use the visual clues presented by 

the numbers on the line to establish 16, that is, 24, as the next number to circle.  

 

 

 

 

 

 

Figure 4.59. An incorrect response to Q3.4 in the Visual Fractions and Ratio 

Concepts, Action Cycle 2 re-evaluation 

 

In Figure 4.59, above, the student appears to have no conception of number patterns 

and seemed to have arbitrarily inserted responses. Only 16/38 (42%) of the students 

managed to achieve the correct answer. While this was an improvement on the prior 

knowledge assessment, which came in at 12/36 (33%), the re-evaluation results 

suggested that the compression of important foundational arithmetic concepts was 

proving elusive. 
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4.9.10 TREND 10: MORE EVIDENCE OF ABSENT 

INTERPRETING FIGURAL INFORMATION CAPABILITY 

In the prior knowledge assessment, the return for Q 3.6 was 13/36 (36%). In the re-

evaluation, it was 23/38 (61%). Q 3.6, required participants to apply IFI skills to 

visualise powers of 4, namely 40, 41, 42, 43  to achieve the answer, that is, 44 or 256.  

 

 

 

 

 

 

 

 

 

 

Figure 4.60. Two incorrect solutions to Q 3.6 in the Visual Fractions and 

Ratio Concepts, Action Cycle 2, re-evaluation tasks 

 

In the upper solution in Figure 4.60, above, a participant constructed an appropriate 

visual scaffold but incorrectly provided 250 as either the product of 16 x 64 or 64 x 4 

or the sum of 64 + 64 + 64 +64. In the lower solution, the participant shows some 

sense of an IFI strategy, but failed to add or multiply correctly and achieved an incorrect 

answer of 128.  

 

4.9.11 SUMMARY OF QUANTITATIVE DATA FOUND IN VISUAL 

FRACTIONS AND RATIO CONCEPTS, ACTION CYCLE 2, 

RE-EVALUATION 

Overall, if not pleased, I was somewhat relieved with the summary of the data set for 

the Visual Fractions and Ratios – Action Cycle 2 – re-evaluation, as presented in 

Figure 4.61, below. When compared to the prior knowledge assessment tasks, the box 

and whisker plot for the re-evaluation shifted a long way to the right and that was good 

news. It suggested that the effects of the module and the visualising scaffolds that I 
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had been using in the IPS 413 E Mathematics classes were beginning to bear fruit. 

Finally! 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.61. Summary of quantitative data captured in the Visual Fractions 

and Ratios Concepts, Action Cycle 2 re-evaluation 

 

38 participants completed the 30 mark re-evaluation task. Low performing students, 

that is, the bottom 25% of the students, scored between 7 and 12 marks. 50% of the 

students obtained between 12 and 20 marks, and the top 25% scored between 20 and 

27 marks out of a possible 30. The class average, the mean, was 17 marks. The data 

was bi-modal, 12 and 19 (4 occurrences each). The median was 16. The range was 

wide, coming in at 20 (27 – 7), and the interquartile range, at 8 (20 – 12) placed the 

middle 50% of the students within 8 marks of each other or a 38% spread. 

 

However, with a median of 16 and a mean of 17, in a re-evaluation of mathematical 

content that was previously presented and which received considerable remedial 

attention, is problematic. Philosophically and ontologically, I had tried to create a 

nurturing and liberating teaching and learning environment. Pedagogically, 

methodologically and epistemologically, I had tried to create multi-pronged, activities-

based, enactive and ironically rich learning experiences. The students had appeared 

to really appreciate these approaches, but the quantitative data above stubbornly 

portrays only limited improvements. 
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4.10  WORD-PROBLEM CALCULATIONS, ACTION CYCLE 2, 

RE-EVALUATION TASK 

4.10.1 TREND 1: SOME BIG GAINS 

For clarity and comparison, I have inserted a summary of the data-set for the prior 

knowledge assessment task, Table 4.19, and the re-evaluation, Table 4.20, of the 

word-problems calculations, below. The full data-set are appended (Appendix P). 

 

Table 4.19 

Summary of data captured in the Word-Problem Calculations, Action Cycle 2, prior 

knowledge assessment 

 

 

 

 

 

 

Table 4.20 

Summary of data captured in the Word Problem Calculations, Action Cycle 2, re-

evaluation 

 

 

 

 

 

 

 

The prior knowledge assessment returned a success rate of 16% while the re-

evaluation delivered 71%. I am overjoyed by this result. It constitutes a numerical jump 

of 55% or, compared with the prior knowledge assessment tasks, an overall 

improvement of 444%. In the prior knowledge assessment, the worst-answered 

question, Q 4.4, attracted a 3% success rate; when re-evaluated, this shot up to 80%. 

Similarly, in the prior knowledge assessment Q 4.5 returned 15% while, when re-

evaluated, the success rate jumped to 59%.  

1 2 3 4 5

116 110 100 122 90

76 72 66 80 59

Main Question Averages (%) 71

ACTION CYCLE 2 - RE-EVALUATION             

38 PARTICIPANTS                                       

WORD PROBLEMS

APPLYING AND ANALYSING

Correct responses per Sub Question

Sub-question Averages (%)

Correct responses per Main Question 538

1 2 3 4 5

42 27 24 4 21

29 19 17 3 15

Main Question Averages (%) 16

ACTION CYCLE 2    PRIOR KNOWLEDGE            

36 PARTICIPANTS                                        

WORD PROBLEM CALCULATIONS

APPLYING AND ANALYSING

Correct responses per Sub Question

Sub-question Averages (%)

Correct responses per Main Question 118
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4.10.2 TREND 2: LOW LEVELS OF CONSTRUCTION OF VISUAL 

SCAFFOLDS 

The data-sets for Q 4.1 show that in the prior knowledge assessment, the participants 

achieved a 29% success rate. When re-evaluated, this figure rose to 76%. Below, Q 

4.1 is transcribed and Figure 4.62 presents an incorrect solution. 

 

Q 4.1: Alexander and Gabriel found money in the fields. Alexander 

found R 155,00 and Gabriel found R 60,00 more than Alexander.  

Altogether, how much money did the two boys find in the field? 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.62. An incorrect response to Q 4.1 as captured in the Word-

Problem Calculations, Action Cycle 2 re-evaluation 

 

Figure 4.62, above, presents at least two causes for concern, those being that (1) 

although it was required, the participant, like others in the cohort, either did not or could 

not draw a visual representation of the word-problem, and (2) the computation 

suggests a misunderstanding of adding and subtracting with rands and cents.  

 

Indeed, in one of a number of errors, as seen on the right side of Figure 4.62, it appears 

that the participant incorrectly subtracted R60,00 from R155,00 to achieve R154,40. 

Following this mistake, it can be seen that the participant then constructs a calculation 

in which 154,40 - 60 to–achieve 153,80.  
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4.10.3 TREND 3: SOME WELL CONSTRUCTED VISUAL 

REPRESENTATIONS 

In the course of the semester, the participants encountered many visualising scaffolds 

– novel for many of them – so as to bring some clarity and understanding into their 

world-view of mathematics. An overview of their scripts suggested that this approach 

was gaining some success. In answering Q 4.4, most of the participant drew a 

visualising scaffold. Some students applied their visual scaffolds very fruitfully, while 

others were not as successful. 

 

 

Figure 4.63. Two well-constructed responses to Q 4.4 as captured in the 

Word-Problem Calculations, Action Cycle 2 re-evaluation 

 

In the prior knowledge assessment task, Q 4.4, achieved only a 3% success rate, but 

in the re-evaluation, the question achieved a much more respectable 80% return. I 

believe that the overall success can be attributed, in part, to the use of the visualising 

scaffolds that the students used in the classroom.  

 

The correct solutions to Q 4.4, as seen in Figure 4.63, above, demonstrated the 

compression of ratios, fractions, multiplication and a capacity to represent a word-

problem in a cogent, visual manner, such that the visual clues offered in the sketches 

were easily understood by self and others. By taking the time to quietly contemplate 

and then construct a visual scaffold, the students opened up cognitive space to 

facilitate cogent and logical thinking. For many, the approach paid off handsomely. 
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Figure 4.64. A novel response to Q 4.4 as captured in the Word-Problem 

Calculations, Action Cycle 2, re-evaluation 

 

In Figure 4.64, above, a participant applied a different and novel visual solution 

strategy. And that was really exciting. This suggests that, in this student at least, the 

learning of fractions and ratios has been assimilated and accommodated, a robust 

meta-concept of fractions has been conceptualised, compression effected, and that 

the student was capable of evaluating and creating personalised visual solutions. 

 

4.10.4 SUMMARY OF QUANTITATIVE DATA FOUND IN WORD-

PROBLEMS CALCULATIONS, ACTION CYCLE 2, RE-

EVALUATION TASK 

Of all the box and whisker plots that I constructed for this action research, the graph 

below was the most satisfying. Although the bottom 25% of the students, that is, the 

lower whisker in Figure 4.65, below, continued to doggedly present low marks, many 

of the students were starting to show marked progress in the IPS 413 E Mathematics 

module and the graph was shifted markedly to the right. However, while the 

quantitative data presented a somewhat optimistic view of performance, I was also 

cognisant of the fact that the test was a repetition of the prior knowledge assessment 

tasks – any novelty in the questions had been eliminated by the action research – and 

the test questions were offered at an Intermediate Phase level. 
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Figure 4.65. Summary of quantitative data captured in the Word Problems-

Calculations, Action Cycle 2, re-evaluation tasks 

 

In total, 38 participants completed the 20 mark, re-evaluation task. Three-quarters of 

the participants scored at least half marks, and that was important because these 

marks contributed to the Duly Performed mark. The lowest 25% of the class obtained 

between 2 and 10 marks; 50% of the students achieved marks between 10 and 18, 

and the top-performing 25% of the students achieved 18 to 20 marks out of a possible 

20 marks.  

 

In terms of the extremes, on the low side, 1 student each scored 2/20 and 6/20 

respectively, while 7 students scored 18/20, 1 got 19/20, and 5 students achieved 

20/20 on the high side. The class mean was 14; a bi-modal effect was found at 14 and 

18 (7 occurrences each), and the median was 14,5. The range was 18 (20 – 2), and 

the interquartile range was 8 (18 – 10). As part answers to sub-research question 1 

(1.5), this data suggests that, through the auspices of the action research and the 

construction of underpinning arithmetic skills, relational understanding, compression 

of meta-concepts of fractions and ratios and visualisation, the students were able to 

offset Gooding’s (2009) barriers and thereby enjoy a modicum of success in solving 

word-problems.  
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4.11  QUESTIONNAIRE 1 

I planned to administer Questionnaire 1 in the first week of semester 1 in 2016. 

However, my ethical clearance certificate and number were not made available to me 

until 22 March 2016. After the Easter holidays and two weeks of practicums, the 

questionnaire was presented to participants on 22 April 2016.  

 

The questionnaire contained two sections. Part A explored biographical and language 

information, and personal attitudes towards mathematics and English as the medium 

of instruction when learning mathematics. Part B answered to the 2nd sub-research 

question: What barriers to solving word-problems do the students perceive that they 

hold? Questionnaire 1 is appended (Appendix Q). The primary data is also appended 

(Appendix R). Albeit that there were 60 registered students in the IPS 413 E 

Mathematics class, at the time the questionnaire was administered only 33 students 

had become participants in the research, and so the data was confined to information 

gleaned from those participants. 

 

4.11.1 QUESTIONNAIRE 1 – PART A  

4.11.1.1 PART A – A1 - BIOGRAPHICAL AND LANGUAGE INFORMATION 

Part A – A1, contained four sub-strands, namely gender, home language, current age 

and highest pass in school in either mathematics or mathematical literacy. A summary 

of the data is presented in Table 4.21, below. 

 

Table 4.21 

Summary of data captured for Part A – A1 of Questionnaire 1 

 

 

In Table 4.21, above, it can be seen that mostly the participants were female (24/33); 

were isiXhosa speaking (27/33), were between 20 and 25 years old (15/33), and had 

passed mathematics or mathematical literacy at a Grade 12 level (24/33). 

female male Afrikaans English isiXhosa other 20-25 26-30 31-35 36-40 older Grade 8 Grade 9
Grade 

10

Grade 

11

Grade 

12

24 9 0 2 27 4 15 9 8 0 1 0 1 5 2 24

PART A - A1 - BIOGRAPHICAL AND LANGUAGE INFORMATION

1                               

I am:

2                                                            

My home language is:

3                                                                                   

My current age is:

4                                                                                   

My highest school pass in math or math 

literature is:
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4.11.1.2 PART A – A2 – PERSONAL ATTITUDE TOWARDS MATHEMATICS 

AND IPS 413 E - MATHEMATICS 

Part A – A2 contained three Likert scale questions which were designed to provide 

some insights into the students’ own perceptions of mathematics and of being in the 

IPS 413 E – Mathematics class. Table 4.22, below, presents a summary of that data. 

 

Table 4.22 

Summary of data captured for Part A – A2 of Questionnaire 1 

 

 

It can be seen that, mainly, the participants were happy to be doing mathematics 

(15/33), were ambivalent about their own mathematical competence (18/33), and were 

very pleased to be in the IPS 413 E – Mathematics class (14/33).  

 

Two distortions affected the data: (1) only 33 of the 60 strong cohort participated in the 

questionnaire – thus the attitude of the other students was unknown, and (2) instead 

of being issued in the first week of the semester, the questionnaire was administered 

in the second quarter of 2016. This meant that the contact sessions in the first quarter 

would have influenced the replies.  

 

4.11.1.3 PART A – A3 – FLUENCY IN ENGLISH WHILE DOING 

MATHEMATICS 

In 4.11.1.1, I have established that 27 of the participants and, in all likelihood, others 

who were not participating in the research, were isiXhosa speakers. Only 2 participants 

indicated English as a home language. 

 

Part A – A3, asked three questions, each designed to elicit a sense of how well the 

participants might cope with instruction in English while studying mathematics. The 

primary data is summarised in Table 4.23, below. 

 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

1 1 10 15 6 1 6 18 6 2 0 1 5 13 14

PART A - A2 - STUDENTS' PERCEPTIONS OF MATHEMATICS AND IPS 413 E

5                                                                                       

Generally, I enjoy doing mathematics

6                                                                                      

Generally, I am good at doing mathematics

7                                                                                                     

I am excited to be doing IPS 413 E
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Table 4.23 

Summary of data captured for Part A – A3 of Questionnaire 1 

 

The data revealed that the students felt comfortable listening to and understood 

English instructions about mathematics (12/33); many indicated that they could read 

and understand English instructions about mathematics quite well (18/33), and many 

also suggested that they found it quite easy to talk about mathematical ideas (13/33). 

 

4.11.2  QUESTIONNAIRE 1 – PART B  

Part B contained five questions: each question contained two Likert scale questions 

and one specified-response component. The questions probed the barriers Gooding 

(2009, p. 5) suggested students might have when they solve word-problems. 

 

4.11.2.1 PART B – B1 – READ AND UNDERSTAND WORD-PROBLEMS 

Gooding (2009, p. 5) suggests that some students may not be able to read and 

understand word-problems. By default, this would preclude them from success. In Part 

B – B1, two questions asked the students to provide their own views of their reading 

and understanding competences. Table 4.24, below, provides a summary of the 

answers obtained from Likert scale questions 11 and 12. 

 

Table 4.24 

Summary of data captured for Part B – B1 of Questionnaire 1 

 

 

 

 

 

In Q 11, it can be seen that, while a few students struggled (3/33) to read word 

problems, most students (19/33) were ambivalent regarding their understanding of 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

1 3 10 12 7 0 4 8 18 3 0 5 7 13 8

8                                                                                                            

I find it easy to listen to and understand English 

instructions about mathematics

9                                                                                                           

I find it easy to read to and understand English 

instructions about mathematics

10                                                                                                         

I find it easy to talk to and understand English 

instructions about mathematics

PART A - A3 - FLUENCY IN ENGLISH LANGUAGE WHEN DOING MATHEMATICS

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

0 3 19 10 1 2 5 16 9 1

PART B - B1 - READ AND UNDERSTAND WORD PROBLEMS

11                                                                                   

I find it easy to read word problems

12                                                                                   

I find it easy to understand what word problems 

require me to do
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what they read, while 10/33 suggested that were quite comfortable and one student 

(1/33) was strongly capable of reading word-problems. Similar results were obtained 

for Q 12. Three students’ comments are transcribed below: 

 

1. Understanding word problems for me is sometimes confusing and I end up not 

getting what is required of me 

2. I find it hard sometimes to understand the statement of the question especially 

when it has quarters and half quarters, 3 times of quarters 

3. I find it easy to read but I lack understanding what is it that I have to do that is 

where I mess up and end up getting a zero 

 

4.11.2.2 PART B – B2 – FORM MENTAL IMAGES OF WORD PROBLEMS 

Table 4.25, below, provides a summary of data captured for Part B – B2 in the 

questionnaire. The questions tried to establish the students’ views of their ability to 

construct mental images, that is, to visualise mathematical word-problems. 

 

Table 4.25 

Summary of data captured for Part B – B2 of Questionnaire 1 

 

 

 

 

 

 

In both questions, Q 13 and Q 14, the data consolidated about the middle option. The 

comments that the students wrote indicated that they found visualising scaffolds of 

mathematical scenarios and solution strategies confusing. Below, three comments 

present a range of views on their capacity to visualise word problems. 

 

1. I think if I can be able to construct mental images it can be easy to solve some 

problem 

2. When it comes to word problems in mathematics, I just get confused and end 

up not knowing what to do. 

3. I have no clue when it comes to construct a mental image; I am in the dark. 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

2 8 12 10 1 2 11 13 6 1

13                                                                                   

I find it easy to construct a mental image of the 

requirements of word problems

14                                                                                     

I find it easy to imagine a solution strategy for 

solving word problems

PART B - B2:  FORM MENTAL IMAGES OF WORD PROBLEMS
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4.11.2.3 PART B – B3 – SUCCESSFULLY CONSTRUCT A NUMBER 

SENTENCE OR FORMULA TO START TO SOLVE WORD-

PROBLEMS 

Table 4.26, below, demonstrates that the students’ perceptions of their ability to find 

starting points and to construct a number sentence or formula to solve word problems 

was somewhat cautious. Their caution was well-founded. In this chapter, (4.3; 4.4; 4.5 

and 4.6) many trends in Action Cycle 1 attested to numerous underlying glitches that 

were connected with setting-out and an inadequate capacity to construct logical 

starting points for mathematical problems. 

 

Table 4.26 

Summary of data captured for Part B – B3 of Questionnaire 1 

 

 

 

 

 

 

Mostly, students suggested that they did not know where to begin to start to solve a 

problem, and many confessed that they were not able to construct algorithms and 

formulae. Three students’ comments are presented below. 

 

1. I sometimes need an example that would unlock my thinking 

2. No, I am struggling to begin in solving word problems 

3. I am clueless, I am lost, and I am really in the dark 

 

4.11.2.4 PART B – B4 – CAN DO THE ACTUAL CALCULATIONS NEEDED TO 

SOLVE WORD PROBLEMS 

The data in Table 4.27, below, demonstrated that, generally, the students were 

undecided to slightly optimistic about their own capacity to work with numbers and 

mathematical operations and perform calculations. However, the data captured by the 

prior knowledge assessments and re-evaluation tasks in Action Cycle 1 (4.3; 4.4; 4.5 

and 4.6) contradicted this position very strongly. That data demonstrated that most of 

the students were not able to do low-level, routines-based arithmetic.  

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

1 10 16 5 1 2 8 18 4 1

15                                                                                     

I find it easy to find a starting point to begin to 

solve work problems

16                                                                                     

I find it easy to construct an appropriate number 

sentence or formula to solve problems

PART B - B3:  SUCCESSFULLY CONSTRUCT A NUMBER SENTENCE OR FORMULA TO START 

TO SOLVE  WORD PROBLEMS
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Table 4.27 

Summary of data captured for Part B – B4 of Questionnaire 1 

 

 

 

 

 

 

The students’ comments, as seen below, were indicative of the true situation and 

buttressed the trends in the quantitative data that was captured in Action Cycle 1. 

 

1. When I am given a normal sum it is easier for me to understand and complete. 

And when doing the calculations for word problems I am never sure due to the 

fact that I am not sure if I am doing the correct thing or not. 

2. With operations especially mixed I end up confused, I would do better if its one 

operation problem at a time 

3. The operation of times I find it a bit workable however the square root or this √ 

it’s a nightmare 

 

4.11.2.5 PART B – B5 – ABILITY TO JUDGE THE VALIDITY OF A 

CALCULATED ANSWER 

As seen in Table 4.28, below, most of the participants (12/33) could not easily judge 

what the size and shape of the final answer of word-problems would look like. 

However, many (12/33) believed that once they achieved an answer, they were 

moderately secure that they would know if the answer was acceptable.  

 

Table 4.28 

Summary of data captured for Part B – B5 of Questionnaire 1 

 

 

 

 

 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

0 3 12 12 5 0 5 12 11 3

17                                                                                    

I find it easy to work with numbers and 

operations (+ - x / √, etc.)

18                                                                                          

I find it easy do to the calculations which are 

needed to solve word problems

PART B - B4:  CAN DO THE ACTUAL CALCULATIONS NEEDED TO SOLVE THE WORD 

PROBLEMS

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

3 9 12 7 1 2 6 10 12 1

19                                                                                            

I find it easy to judge approximately what my 

final answer will be

20                                                                                       

I find it easy to look at my answers and judge if 

they look okay

PART B - B5: ABILITY TO JUDGE THE VALIDITY OF A CALCULATED ANSWER
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Many participants did not provide short-response answers for Q19 and Q20. Those 

that did, spoke to an inability to perceive the validity of a calculated answer. Three 

student responses are provided below. 

 

1. When it is a normal sum then yes but not with word problems as I am never 

sure if I am doing the correct thing. 

2. When I am judging the validity of my it depends on how much I know the 

problem. When I am sure about it, I can reverse it and prove it. But if I am not 

sure, I just calculate and sometimes get it right. When a have no idea, I calculate 

and assume that it is correct. 

3. I have to calculate before I get correct answer, no I cannot estimate. 

 

4.11.3 SUMMARY OF QUESTIONNAIRE 1 

Part A of the questionnaire demonstrated that most of the participating students were 

female, isiXhosa speaking, 20 to 25 years old and had passed either Mathematics or 

Mathematics Literacy at a Grade 12 level. Many participants professed to enjoying and 

doing mathematics and were pleased to be in the IPS 413 E Mathematics module. 

Most participants indicated that they felt secure in listening, reading and talking about 

mathematics with understanding. 

 

In Part B, Gooding’s (2009, p. 5) five barriers were used to frame questions regarding 

the students’ perceptions of their capability to attend to and solve word problems. The 

Likert scale tables suggested that the participants were ambivalent to moderately 

secure in their mathematical capabilities. The short specified responses provided a 

sober overview of the participants’ insecurities, mixed feelings towards mathematics 

and reflections on their own mathematical capabilities. The textual responses 

triangulate closely with the quantitative data that was captured in the Action Cycle 1 

prior knowledge and re-evaluation tasks.  
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4.12  QUESTIONNAIRE 2 

Questionnaire 2 was designed to be administered towards the end of Action Cycle 2, 

that is, after the students had received instruction on visual scaffolds as a teaching 

and learning methodology. Questionnaire 2 was designed to address the 3nd sub-

research question of the thesis, namely: How effective do the students perceive the 

visualisation strategies to be?  

 

The participants received the questionnaire on 13 May 2016.  It contained two main 

sections. Part 1 explored their views on the personal benefit that they perceived the 

visualising strategies they had learned about offered to them. Part 2 required the 

participants to consider whether, in the future, they might use visualisation as a 

methodology when dealing with word-problems in their own classes.  

 

Part 1 contained 5 themes which addressed the five main concerns that students have 

when solving word-problems (Gooding, 2009, p. 5). Each theme contained two Likert 

scale questions and a specified response field. Part 2 contained five Likert scale 

questions and one specified response field. Questionnaire 2 is appended (Appendix 

S). The primary data is also appended (Appendix T). 

 

There were 60 students in the IPS 413 E Mathematics class. By the time this 

questionnaire was written, 38 students had become participants in the research. 

However, because of ongoing absenteeism, only 34 received the questionnaire, and 

of these 34 students, 4 did not do Part 2 of the questionnaire. 

 

4.12.1 QUESTIONNAIRE 2 – PART 1 – PERSONAL BENEFIT – 

UNDERSTANDING AND SOLVING WORD-PROBLEMS 

4.12.1.1 PART 1 – 1 – READ AND UNDERSTAND WORD-PROBLEMS 

In Table 4.29, below, is can be seen that the participants felt that the use of objects 

and images enabled them to read and understand word-problems. Indeed, most 

participants (18/34) strongly agreed that objects and images made it easier for them 

to read problems, while slightly less (17/34) agreed that using such scaffolds made it 

easier for them to understand what word-problems required of them. 
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Table 4.29 

Summary of quantitative data captured for Part 1 – 1 of Questionnaire 2 

 

 

 

 

 

 

Approximately half (18/34) of the students supplied a specified response. Three 

positive responses are provided below. 

 

1. We did the first test arithmetic well it was or has been more than ten years of 

not doing maths and it was a bit difficult to grasp the concepts, however this 

images and objects has brought understanding and I wish I was taught maths 

this way from my elementary school. 

2. If the use of objects and images in mathematics widely continues as a full time 

teaching in South Africa every learner will highly pass maths without any doubts 

3. The visualisation method is just going to work for everyone, it is perfect 

especially for the young children, it will be a good foundation to their maths 

knowledge 

 

4.12.1.2 PART 1 – 2 – FORM MENTAL IMAGES OF WORD-PROBLEMS 

The storyline in a word-problem can, for the prepared mind, offer opportunities to 

imagine scenarios and thereby provide a context for problem-solving.  

 

The data in Table 4.30, below, suggested that, generally, most of the cohort (19/34) 

agreed that objects and images assisted the participants to form a mental image of 

word-problems, and most students (22/34) agreed that they could use said images to 

assist them to imagine a problem-solving strategy for word-problems.  

 

 

 

 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

0 0 1 15 18 0 0 3 17 14

PART 1 - 1: READ AND UNDERSTAND WORD PROBLEMS

1 I have found that the use of objects and 

images makes it easy for me to read word-

problems

2 I have found that the use of objects and 

images makes it easy to understand what word-

problems require me to do
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Table 4.30 

Summary of quantitative data captured for Part 1 – 2 of Questionnaire 2 

 

 

 

 

 

 

 

Very few participants (13/34) constructed a written comment for Part 1 – 2. Mostly, 

those comments suggested that the participants used visualising techniques to 

conceptualise potential solution strategies for solving word-problems. Three such 

comments are presented below. 

 

1. The ribbon method and the pie-chart drawing is great to help imagine a solution. 

2. Yes, I form mental image and try to draw them and try to find the answer. 

Images are a perfect guide to what is required. 

3. By just having the picture on your mind, you do see which one will be bigger 

even though you don't know the actual outcome. 

 

However, as indicated below, some of the participants did not view the use of 

visualising techniques favourably. 

 

1. Sometimes I would know what the question ask for but it is difficult to construct 

the image using the given question. 

2. I imagine wrong solutions. 

3. Unfortunately I don't have the same sentiment. To me it’s all about the numbers 

given nothing more. 

 

 

 

 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

1 0 4 19 10 1 1 0 22 10

PART 1 - 2: FORM MENTAL IMAGES OF WORD PROBLEMS

3 I have found that the use of objects and 

images assists me to form a mental image of 

the requirements of word problems

4 I have found that the use of objects and 

images helps me to imagine a solution strategy 

for solving word problems



 

273 

 

4.12.1.3 PART 1 – 3 – SUCCESSFULLY CONSTRUCT A NUMBER 

SENTENCE TO START TO SOLVE THE PROBLEM 

Gooding (2009, p. 5) suggests that many students struggle with word-problems 

because they are unable to construct a number sentence to solve the problem.  Below, 

in Table 4.31, the data suggests that most participants (18/34) agreed that visual 

scaffolds enable them to find starting points; and similarly (16/34) students agreed that 

visualising techniques enabled them to construct number sentences. 

 

Table 4.31 

Summary of quantitative data captured for Part 1 – 3 of Questionnaire 2 

 

 

 

 

 

 

 

The students delivered 14/34 written replies to this part of the questionnaire. The three 

comments below are indicative of the perspective that most students held. 

 

1. How to find a starting point to begin to solve word problems. Now images makes 

it easy for me to construct an appropriate number sentence or formula to solve 

word problems. 

2. Use of objects and images gives one a direction of how to solve a problem. 

3. The images are very helpful because you get to see what is required of you, 

and also it gives a direction of where to start. 

 

However, the optimistic views listed above were not universally held by all of the 

participants. Two contradictory viewpoints are presented below. 

 

1. They just complicate everything and sometime I feel they are a waste of time. 

2. It is difficult for me to find the starting point, although I have an idea/solution in 

mind. It is challenging using objects/images. 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

1 0 6 18 9 1 1 5 16 11

PART 1 - 3: SUCCESSFULLY CONSTRUCT A NUMBER SENTENCE TO START TO SOLVE THE PROBLEM

5  I have found that the use of objects and 

images makes it easy for me to find a starting 

point to begin to solve word problems

6  I have found that the use of objects and 

images makes it easy for me to construct an 

appropriate number sentence or formula to 

solve word problems
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4.12.1.4 PART 1 – 4 – CAN DO THE ACTUAL CALCULATIONS NEEDED TO 

SOLVE THE WORD-PROBLEM 

Albeit that Table 4.32, below suggested that the participants’ perceptions of their own 

ability to perform arithmetic computations were quite buoyant, the quantitative 

evidence captured in two action cycles suggested that, mostly, deep understanding, 

relational understanding, HOT skills, and compression had not occurred.  

 

That notwithstanding, most of the participants (18/34) agreed that objects and images 

had made it easier to work with numbers, and 22/34 of the participants agreed that 

visual scaffolds assisted them in doing the calculations for solving he word problems. 

 

Table 4.32 

Summary of quantitative data captured for Part 1 – 4 of Questionnaire 2 

 

 

 

 

 

 

 

Roughly one third of the participants (12/34) provided a written comment. All of those 

comments were positive. 

 

1. Able to do the maths problem better when I work with images and objects. 

2. I have established a solid link between numbers and objects and this makes 

me feel comfortable in my understanding. 

3. With maths being my weakest subject since high school I have come to find 

working with numbers a lot easier because of images and objects used. 

4. They help me solve problems. They make fractions look easier than just using 

numbers and symbols. 

5. Do the maths problem better when I work with images and objects. 

 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

0 1 2 18 13 1 0 3 22 8

PART 1 - 4: CAN DO THE ACTUAL CALCULATIONS NEEDED TO SOLVE THE WORD PROBLEM

7  I have found that the use of objects and 

images makes it easy for me to work with 

numbers

8  I have found that the use of objects and 

images makes it easy for me to do the 

calculations which are needed to solve word 

problems
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4.12.1.5 PART 1 – 5 – ABILITY TO JUDGE THE VALIDITY OF A 

CALCULATED ANSWER 

In Table 4.33, below, it can be seen that almost half the students (15/34) agreed that 

visualisation assisted them to anticipate the size and shape of final answers for word 

problems, and 19/34 agreed that visual scaffolds assisted them to review whether or 

not their final answers looked to be correct. 

 

Table 4.33 

Summary of quantitative data captured for Part 1 – 5 of Questionnaire 2 

 

 

 

 

 

 

Only 12/34 students provided a textual reply. Some positive comments are presented 

below. 

 

1. Even though I might not know the final answer, but it is just easy to judge. 

2. LOL I used to just write just for the sake of writing and finishing but now I look 

back and see what I might have done wrong, I can easily note my mistakes and 

correct them, unlike when I used to just write numbers which I did not even 

understand myself. 

3. I know if I practice more I will do best, I know I am one of the people who are 

very careless and lazy but this technique has become more easier and it make 

counting faster, e.g. The grid method, in it you come up with a solution more 

faster you don't have to memorise everything. Thank you Mr Shaw. 

4. As a learner you are able to know when your answer is not correct even before 

the teacher tells you. 

 

One student, however, rallied against visualisation. 

 

1. They don't assist me because I have my simple ways of validating my answer. 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

1 0 7 15 11 1 0 3 19 11

PART 1 - 5: ABILITY TO JUDGE THE VALIDITY OF A CALCULATED ANSWER

9  I have found that the use of objects and 

images makes it easy for me to approximately 

judge what my final answer will be

10  I have found that the use of objects and 

images makes it easy for me to look at my final 

answers and judge if they look okay
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4.12.2 QUESTIONNAIRE 2 – PART 2 – METHODOLOGICAL 

BENEFIT – USING VISUALISATION WHEN TEACHING 

CHILDREN IN YOUR CLASSES TO SOLVE WORD-

PROBLEMS 

Part 2 of the questionnaire contained five Likert scale questions. The questions were 

similar to the questions posed in Part 1 and addressed the five hurdles for solving 

word-problems as identified by Gooding (2005). However, in Part 2, the focus of the 

answers shifted from the participants’ use of visualising scaffolds – as research 

participants – to their use as a methodological teaching strategy – as teachers. A single 

field for a specified written response was included. 

 

4.12.2.1 PERCEIVED METHODOLOGICAL BENEFIT OF USING VISUALISATION AS 

A TEACHING AND LEARNING STRATEGY  

Only 30 of the 34 participants who received the questionnaire completed Part 2. As 

seen in Table 3.34, below, across the questions, the consensus was that the use of 

objects and images, as a methodological strategy for developing understanding and 

doing word-problems, was perceived to be of great importance.  

 

Table 4.34 

Summary of quantitative data captured for Part 2 of Questionnaire 2 

 

 

Just over half of the participants (17/30) constructed a short written statement. To a 

person, each of the comments carried very positive overtones. Some of the 

participants’ views are listed below. 

 

1. It has become easy for me to read and understand word-problems because I 

first visualised it and seeing it made it easier for me to solve a problem after 

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

Strongly 

disagree
Disagree

In the 

middle
Agree

Strongly 

agree

0 0 0 8 22 0 0 0 10 20 0 1 0 14 15 0 0 1 11 18 0 0 3 8 19

PART 2 - USING VISUALISATION WHEN TEACHING CHILDREN IN YOUR CLASSES TO SOLVE WORD PROBLEMS

11. I believe that the use of 

objects and images 

(visualization) will help my 

pupils to read and 

understand word problems

12. I believe that the use of 

objects and images 

(visualization) will help my 

pupils to form mental images 

of word problems

13. I believe that the use of 

objects and images 

(visualization) will help my 

pupils to successfully 

construct a number sentence 

or formula to start to solve 

word problems

14. I believe that the use of 

objects and images 

(visualization) will help my 

pupils to do the actual 

calculations needed to solv 

word problems

15. I believe that the use of 

objects and images 

(visualization) will help my 

pupils to judge the validity of 

their calculated answers
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struggling for a long time. If it worked for me surely it will work for my pupil: 

things are much clear now; if maths was taught in images we would have 

perhaps continued with maths to matric level. I dropped math because it was a 

nightmare. My belief is that if mathematics is taught this way the love of 

numbers will be revived. 

2. I tutor Grade 4 and 5 pupils and have tried a few of these methodologies and 

they seem to enjoy visualisation more and understand concepts more (faster) 

with the use of colours. So I would like you to know that visualisation has the 

potential to work in schools. With this from a young age, they are able to form 

mental images and predict answers. Compared to our generation who weren’t 

taught these techniques from a young age. 

3. I strongly agree with all of the above sentences because I do not see any easier 

way that my pupils would understand (in their age) without the use of images 

and objects. Thank you Mr Shaw, your lessons, all of them, showed that you 

are really passionate not just about maths but also making sure that the rest of 

the class understands. :) 

4. I the prospective teacher will make sure I use visualisation when teaching my 

pupils so that they can read and understand word-problems. And this will also 

help my pupils to do the calculations needed to solve word-problems. Therefore 

at the end they can judge the correctness of their calculated answers. 

 

4.12.3  SUMMARY OF QUESTIONNAIRE 2 

Offered at the end of Action Cycle 2, Questionnaire 2 was positioned to provide an 

answer to the third, sub-research question. In Part 1, Gooding’s (2009, p. 5) barriers 

were used as pivots in five pairs of Likert scale questions and five specified responses. 

The participants were requested to share how effectively they had perceived the 

visualisation strategies that they were taught had been in assisting them to solve word-

problems. Overwhelmingly, their replies were positive. Part 2 was similar to Part 1, but 

in this case, the participants were asked if, as teachers, they might find any use for 

visualisation in their own mathematics classes. As in Part 1, again, the responses were 

very positive. 
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4.13 FOCUS GROUP INTERVIEW 

On Thursday 5 May 2016, at about 12h45, seven participants presented themselves 

at our faculty boardroom; they had been invited to take part in a focus group interview. 

I had arrived at my final selection of participants by drilling through my research data 

sets in the following way: 

 

1. I identified all the students who had agreed to participate in the research; 

2. I identified participants who had completed all the research tasks; 

3. I interrogated the data from the first action cycle Foundational Arithmetic 

Concepts prior knowledge assessment tasks. In that test, the class average 

was 7 out of 20.  

4. I used items 1, 2 and 3, above, as foci to construct a homogenous group of 12 

potential student-participants, clustered around that average of 7.  

 

In the end, as seen in Table 4.35, below, 12 participants were considered. Of these 

candidates, 7 agreed to take part in the exercise. 

 

Table 4.35 

Potential participants for Focus Group Interview 

Score  
(out of 20) 

Potential 
Participants 

3 1 

4 3 

5 1 

6 1 

7 3 

8 1 

9 1 

10 1 

 

On the 5th May, I had a discussion with the interviewer; she was an academic, a 

mathematical expert and was fluent in isiXhosa and English. We discussed the six 

leading questions in the interview questions and tried to consider potential issues, 

conflicts and solutions for matters that might manifest in the meeting. At midday, I set 

up the meeting venue and welcomed the 7 participants. The interviewees were invited 

to enjoy a light luncheon, and were then each given a copy of the interview guide, 
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attached (Appendix U). I introduced the participants to the interviewer, switched on the 

audio recorder and exited the meeting. I scheduled 30 to 40 minutes for the interview, 

but, in fact, it was almost one hour long. At its conclusion, the interviewer presented 

me with the audio recording, which I transcribed (Appendix V). The formal introduction 

for the interview took about three and a half minutes. After that, the focus group 

questions were presented to the group. Below, I recount some of the important 

viewpoints which were raised in the meeting.  

 

4.13.1  ENGAGEMENT QUESTION: 1. SO, HOW IS IT GOING IN 

YOUR IPS 413 E- MATHEMATICS MODULE? 

The engagement question was an icebreaker. Responses suggested the participants 

came from a wide range of homesteads: Amalinda and Quigney in East London, Cape 

Town and Lady Frere were mentioned. Three of the participants suggested that they 

liked reading to stay informed; two suggested they liked being with and helping others, 

two liked attending church, and three enjoyed cooking and baking. Three participants 

spoke of physical activity, going to a gym, walks, and swimming. 

 

4.13.2  EXPLORATION QUESTION: 2. IN WHAT WAYS HAS THE 

REVISION OF BASIC ARITHMETIC SKILLS AND 

CONCEPTS HELPED OR NOT HELPED YOU TO COPE 

WITH THE IPS 413 E – MATHEMATICS MODULE? 

The participants, rather than answering the exploration question directly, took their 

lead from the response offered by Number 5 who was the first student to respond. 

Indeed, throughout the interview, Number 5 was often the first voice.  

 

Number 5.      Um, from the first instance, when I was working for Mr Shaw’s class, 

um, the way, or the manner in which he gives things is very different.  

Um, it was new, it was vibrant, and it was to, my knowledge, it made me 

think as well, like, this is a creative man, um, using creative ways in 

order to attain what he wants to attain, and that is for us to know and 

love mathematics, um, as far as like, the class, um, how it’s going right 
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now, for me, personally, I, at first, I, I’m not a person who real likes 

mathematics, necessarily likes mathematics.   

The response above served as a rallying point for subsequent replies with other 

students suggesting a historic fear of mathematics, of finding the introductory lessons 

to this module interesting and completely different to their school-based methodologies 

and experiences, and of finding the lecturer (me) for the IPS 413 E – Mathematics 

module easily approachable. Some comments are presented below. 

 

Number 5 …I have never experienced anything like that before in my life… 

Number 6  …and he used different teaching strategies to, like, accommodate the 

whole class… so at first it was fearful and scary, but now it’s… we’re 

getting there… 

Number 2 When, when you are in Mr Shaw’s class it not like, you don’t feel dumb 

because you don’t understand something because you know he is going 

to explain it further and he, he takes his time to explain so that we 

understand properly… he doesn’t make you feel scared of anything of 

the subject, not him, you actually enjoy going to his class. 

Number 3 …because Peter tries to accommodate everyone by using resources like 

bottle tops, biscuits to explain something, and at first I normally, don’t 

understand what he is saying but by the time he is using resources… 

Yes, yes, I understand by the use of resources. 

 

Albeit that the interviewer restated the question, the students did not offer much to 

support a direct answer to the question other than to express interest in the use of 

tactiles and other resources as a novel, interesting and accessible teaching and 

learning methodology. An exemplar discussion is provided below. 

 

Number 4.  Ja! I can say that it has helped me a lot that, that, ah, revision of the 

mathematics because I also had a problem; I didn’t like maths, so by him 

explaining and using some examples that were practical sometimes I did, 

I end up, um, being more interested in mathematics. 

Interviewer So in a way you are saying those practical examples can help somebody 

to understand mathematics? 

Number 4 Yes 
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Interviewer Do you think that by using practicality when we teach mathematics it can 

help in all topics of mathematics? 

Number 4 Yes, I think so. [inaudible] because maths is is is is kind of difficult  

 

Further, a theme of being enabled to understand their mathematics in the IPS 413 E 

class came through; an exemplar of this often stated view is presented below. 

 

Number 2   And when he explains it, he makes you feel like, I do know this, it’s not 

like I don’t know what I’m doing, I’ve just forgotten what it is that I have 

to do.  And the way that he does this is he uses that, I don’t know what 

you call it, that camera that he connects to his laptop and then [inaudible] 

you can see everything that he’s doing, so he’s busy writing here and is 

explaining, and you can see what he’s actually explaining.  It’s not like 

he’s just explaining and you can’t see what he’s doing, and that also 

made it a lot easier for all of us to understand the work.  

 

The focus group strongly endorsed the visualising techniques that were used to 

liberate memories of arithmetic skills and processes. This contradicted my classroom 

based experience with the cohort in which I had constantly implored students to 

actively participate in constructing their own understanding. Many students had 

resisted using the opportunities made available to them to use tactiles and visual aids 

and had preferred to be lectured to, that is, to be recipients of Freire’s (2007) 

transmission-mode, banking method of education. 

 

4.13.3  EXPLORATION QUESTION: 3. HOW DO YOU FEEL 

ABOUT THE NEW TECHNIQUES AND SUPPORT THAT 

WERE GIVEN TO YOU IN THE IPS 413 E – 

MATHEMATICS MODULE? 

Initially, the responses to this question referred to negative, past, school-based 

experiences of mathematics with some small, but positive, reference to the visualising 

methodology used in the IPS 413 E – Mathematics classroom.   
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Number 6  …when we get to high school, we say, “Oh my God, I hate Maths,” and 

you have that bad attitude… this new technique, is going to change the, 

the understanding of mathematics… 

One of the participants held a view that served as a counterpoint to the general view 

that the support and visualising techniques assisted understanding. 

 

Number 2.  I, I agree with the fact that there’s a new approach that we’re being taught 

and stuff, but I’m not a big fan of it.  I don’t know if it’s because I don’t 

understand it quite yet, or I don’t grasp it, grasp it yet, or whatever it is, 

but I still prefer the older techniques.  Maybe it’s because of what I know 

and what I understand… not that the change is bad, but for me 

personally, I’m not a big fan of it.  

 

The interviewer, noting the continuing commentary on past experiences, made the 

following adjustment: 

 

Interviewer: You are all talking about your experiences with high school; why don’t 

we look at these techniques and see if we will be able to apply them into 

the primary school? 

 

The first response to this altered perspective was that a student tried to explain the 

rationale for the continuing references to past experiences. An excerpt of that response 

is transcribed below.  

 

Number 5 I believe the reason my responses have been about high school have 

been because we have received a lot of those bad experiences in high 

school… I would go to use the word dictatorship kind of attitude, ummm, 

because, because what I found in high school is that, it was, it was for 

the teachers it was my way or the highway. 

Interviewer I wonder why. 

Number 5 I wonder why. And and and, but ahhh [Laughter] 

Number 6 Number 6 

Number 5 I see. [laughter] ahh, Number 6 made a very important point in the fact 

that um if, if, if, if, we, the people who are in the IPS 413 class get to 
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absorb, um, understand what Mr Shaw, Mr Shaw is trying to do, we will 

become better teachers and a result of that, mam, is, is there will be 

better mathematics students in primary school, in high school, where 

ever you want to go. It is with the, the attitude, it is with the approach, 

umm, that has that has failed us, um, and predominantly in our higher 

levels of education. 

 

Participant Number 5 continued to speak for some time on this matter, so clearly, for 

this participant, many negative past experiences of mathematics continued to haunt 

his perception of the subject. Participant Number 7, however, did respond directly to 

the exploratory question.  

 

Number 7 …I’m very, I’m really looking forward to the strategies that he is going to 

use for this term with us because now that I know that he is someone 

who is creative he doesn’t leave anyone without understanding the 

content. He will even try different strategies, for example he introduced 

us, he introduced the topic of fractions, ne, he gave us the examples with 

bottle tops and then he, he feeled that no, we are not we are not 

understanding this thing, he changed and gave out the different example, 

and then he introduced another thing like, he introduced the coins and 

then, even from there, he changed from that one… 

 

This response, above, the only direct response to the question, spoke to the many 

concrete and iconic visual scaffolds that had been a part of the teaching and learning 

process in the IPS 413 E – Mathematics module. 

 

4.13.4  EXPLORATION QUESTION: 4. HOW DO YOU FEEL 

ABOUT THE VIEW THAT TEACHING AND LEARNING TO 

SOLVE WORD-PROBLEMS IS IN PART DEPENDENT 

UPON THE APPLICATION OF BASIC ARITHMETIC 

KNOWLEDGE? 

Participant Number 1 enunciated a response that I commonly hear to the question. 
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Number 1 Yoh, I struggle with this one. I, I don’t know the problem is there. Now 

which, I don’t know where to start when I am faced with word-problems. 

I see them, but I struggle to figure out where do I start. When Mr Shaw 

is explaining I understand, oh it’s very easy to understand it when he is 

explaining, but when I’m, he given the question, I don’t know where to 

start with it. 

 

In the short, in the light-hearted discussion which followed this statement, it was agreed 

that more practice would be of benefit to the students. Participants Number 5 and 

Number 1 spoke to the complexity of understanding the nuances found in the structure 

of English sentences. Number 5 suggested that English posed no barrier; however, 

reading for context and imagining the story, he suggested, would make it easier to 

negotiate the arithmetic requirements of word-problems. When prompted for a 

response by the interviewer, Number 1, as seen below, suggested that her inability to 

understand the English sentences acted as a barrier to her success. 

 

Number 1 …I would say it’s a English in in the way the question, a story is structured 

to understand what is said in the story. I would say it is English, yes. 

  

Participant Number 5 endorsed Number 1. 

 

Number 5 … I believe that English and Mathematics find a meeting place in word-

problems. They find a very distinct meeting place and if one is lacking, 

then the application of mathematics will not suffice. If there is, I don’t 

know, maybe, lack in English, then the mathematical application will 

suffice. It, it does not really mean that one does not know mathematics 

or one does not know English, but the [inaudible] can throw people off 

sometimes. But if one has better understanding of English and the 

English language, I think they are able to deal with it from my 

experiences and word-problems better. 

 

This, too, was supported by comments from other students. 
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Number 2 Okay. Number 2. I don’t think it’s a problem with the language, but it’s a 

problem with the wording... so, word-problems is difficult, I never liked 

word-problems but it’s the way that they structure the sentence, 

regardless of the language that makes it a problem because that is also 

when you don’t know where to start, you don’t know do you start in the 

middle, or do you start at the end or start at the beginning. 

 

At this point, the words mathematics and language were interrogated, with various 

positions being advanced.   

 

Number 5 …I met another gentleman who said to me, a very old gentleman, I 

forgot his name who said to me that mathematics is the language of 

God, that’s how he, that how God speaks, that’s how God understands 

things… 

 

Consequently, Number 2 clarified her position and Number 7 offered an opinion: 

 

Number 2 Number 2, sorry, um, I don’t think my, my point was made quite clear 

because, its, I didn’t mean language as in the language that we speak, it 

could be English, it could be Afrikaans, it could be Xhosa whatever, it 

doesn’t matter what that specific language, what the sentence is written 

out in… 

Interviewer  Okay 

Number 2    …it’s the way that the words are put in different languages that would still 

confuse a person about the word sum. 

Number 7  [beeping from reversing truck in the background]. Number 7 Yes [pause] 

ahhh [pause] I understand that mathematics is a language on its own, 

ne, because we find that and that’s where our problem lies, in word, in 

word-problems, ne, because we are given that text and then you have to 

read it and you find there are, there are two thirds, at first I didn’t even 

know what is a third, [laughter] I have think first, what is a third and here 

it is said that there are two thirds, so I think the problem lies, inyani, in 

mathe…, in language yaba-mathematics… 
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The various excerpts presented above demonstrated that, in this focus group at least, 

most of the students perceived language, and particularly the idiosyncrasies of the 

English and mathematical forms of it, to be a barrier to their success.  

 

4.13.5  EXPLORATION QUESTION: 5. HOW DO YOU FEEL 

ABOUT THE USE OF VISUALISATION PRACTICES AS A 

METHODOLOGY USED TO ASSIST STUDENTS TO 

UNDERSTAND WORD-PROBLEMS? 

The initial responses to this question were light-hearted and somewhat ambivalent. 

Participant Number 6, for example, suggested that, while she found the visualisation 

approach exciting, there might be some resistance to using visualisation as a teaching 

and learning methodology. 

 

Number 6 We not flexible, not all of us are keen to change, or not all of us are want 

to change… 

 

Answering the same question somewhat obliquely, Number 5 referred to an IPS 413 

E – Mathematics lesson in which we had discussed the construction of memory, of 

how we learn and recall that which is learned. He referred to the school-based practice 

of not being allowed to use hands as tactile scaffolds and contrasted this with his IPS 

413 E experiences. 

 

Number 5 …like we were told, I am sure Mr Shaw mentioned this as well, don’t 

count with your hands, you are geared to be like a child, you know, don’t 

count with your hands, you are geared as if someone who does not know 

how to count, don’t use your hands when you count, hide those hands 

away. Um, I think that culture has, has done us a world of wrong because 

that is, that is the culture that I also absorbed as well, that, you know 

what, I should not count with my hands, I’m doing Grade 6 now, we are 

not in Grade 2 anymore, you know. Whereas Mr Shaw revealed to us 

that the way in which our minds work, they use our hands, our hands are 

very important when we count, um, because there, there are hands that 



 

287 

 

are mapped in our heads. My hand is a part of my body so my brain 

understands my hand better than anything else [laughter] 

 

While this explanation was not a perfect paraphrase of our lesson, what was pleasing 

was that he had formed links between the external and physiological world and the 

inner psychological and conceptual world. Participant Number 7 stated that: 

 

Number 7 …when you see something, ne, it’s easy for you to remember it, when, 

even though you are no longer seeing it, so I think this approach is going 

to help us a lot and I am really hoping that Mr Shaw, ne, is going to bring 

it like that, even in the exams. 

 

And Number 2 suggested that she had witnessed an ex-PGCE student successfully 

using visualisation methodologies in a local primary school. 

 

Number 2  …because it was a very young teacher as well that also graduated from 

doing or did a PGCE last year, she finished last year, so I don’t know if, 

but, if the approach seems to be working with those children also and for 

us as … 

 

As a final comment on the question, Number 6 had the following to say: 

 

Number 6  … so now when you do, when like with yesterday when we did maybe 

the grid method or we had to, we had to section out a quarter, a quarter, 

a quarter and things like that, you will be able to see what you are doing 

and you’ll also be able to estimate but something doesn’t look right here 

or something, somethings not, doesn’t seem okay and you will be able 

to check what you can do… 

 

These comments suggest that, after some initial misgivings, this group had strongly 

embrace visualisation as a scaffold for solving mathematical word-problems. 
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4.13.6  EXIT QUESTION: 6. IS THERE ANYTHING ELSE THAT 

YOU WOULD LIKE TO SAY THAT MIGHT ADD TO OUR 

UNDERSTANDING OF YOUR EXPERIENCES OF  

IPS 413 E MATHEMATICS? 

A first answer to this question was offered by Number 5 who suggested that he would 

like to have full-class attendance in the IPS 413 E lessons. No doubt, as discussed in 

4.1.1, this was a veiled reference to the swathes of students who often missed classes. 

He also suggested that he would have appreciated more contact time for the IPS 413 

E class and concluded: 

 

Number 5 Ah, I hope Mr Shaw, I hope, um, I hope whatever data he is collecting 

through this work, I, what I have experienced, you know, what I, what I 

feel, and what I’ve seen worked for me, you know, that, you know when 

I see it, I become better at it, you know when you see it, I, it becomes 

very, very applicable, I apply all that I know when I see things better so I 

would like Mr Shaw to continue, um, with, this method of teaching. 

 

Below, I have transcribed the last few interactions in the focus group interview. 

 

Interviewer Okay. [pause] Any other end? [long pause] Anybody wants to add, say 

anything? 

Number 4 Number 4. Well, um, I can say that I loved being in this class of IPS and 

I would love to teach like Mr Shaw when I go out to school, he’s very 

good. 

Interviewer Okay. Any other persons? 

Number 6 Number 6. I am just going to say I hope this new technique works. 

[laughter] I am just praying for that because it’s, it’s going to make things 

simpler for some of us… 

Interviewer Okay [mumble] 

Number 6 Maybe, it’s going to create [inaudible] for us [unknown - let’s hope] let’s 

hope [laughter] that’s all. 

Interviewer Okay 

Number 6 Not forgetting though to accommodate all of us [laughter] 
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Interviewer To accommodate everybody, ne, in the class, okay. Okay guys, thank 

you very much, Thank you. 

Number 5 Are we allowed to take the eats? 

Interviewer  Yes 

END 

4.13.7 SUMMARY OF FOCUS GROUP INTERVIEW  

The narrative between the interviewer and the focus group participants was conducted 

in a cordial and professional manner. The students seemed to be at ease and seemed 

to answer the six questions freely and honestly. My interpretation of the qualitative 

data suggests that the students enjoyed coming to my classes and felt that their 

lessons in the IPS 413 E module had proved beneficial. 

 

The focus group commented positively on the novelty and accessibility of the 

visualisation strategies, suggesting that the approach caused them to think about their 

working and thereby improved their understanding in solving word-problems 

 

It is important, however, to recall that the use of visual scaffolds did not meet with 

universal approval and it is also important to note that the use of English, used to teach 

and learn mathematics, and used to compose word-problems, was repeatedly flagged 

by the students as a significant barrier to their success in this subject. 

 

4.14 QUESTIONNAIRE 3 

In term four of 2016, I asked the participants to complete one last questionnaire. 

Although I was no longer teaching them, I felt that the questionnaire might offer closure 

for the research. The questionnaire, appended (Appendix W), contained five 

questions. Questions 1 through 4 contained selected responses. Question 5, 

contained four cross-referenced sub-questions.  

 

13 of the participants completed the questionnaire. Their responses are appended 

(Appendix X). Below, I recount some of the reflective, qualitative data gleaned from 

their responses.  
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4.14.1 QUESTION 1 - HAS THE IPS 413 E MATHEMATICS 

MODULE IN ANY WAY CHANGED YOUR ATTITUDE 

TOWARDS MATHEMATICS, AND IF SO, HOW? 

The question garnered 13 responses, all endorsing the IPS 413 E – Mathematics 

module as an effective and liberating experience. Some comments are listed below: 

 

1. It has greatly, because I "hated" Mathematics because of a bad experience 

during my school years but now I got the chance to enjoy maths as a subject 

and be able to understand it. 

2. Yes, I have seen that mathematics can be fun if you take time to understand it 

and work on it with other people. It made me realise that it can help in critical 

thinking and problem solving. 

3. Mathematics has been a nightmare and scared to do it, however after the ten 

years gap without doing mathematics from the poor background of the subject, 

in IPS 413 E with Mr Peter Shaw it was like doing Maths for the first time the 

wall between me and maths was removed and my hatred and attitude has 

change for the better towards maths. 

 

4.14.2 QUESTION 2 - DID YOU FIND THE KNOWLEDGE, 

ACTIVITIES AND METHODS USED IN THE IPS 413 E 

MATHEMATICS MODULE USEFUL TO YOU AND, IF SO, 

HOW? 

This question also received 13 responses. The written replies endorsed the visual 

approaches used in the module. Three students’ personal views are presented: 

 

1. Yes, it helped me a lot, especially the visualisation method it made it easier to 

understand what was required of me. 

2. Yes, very. They were simpler making it easier to comprehend and I could use 

my hands to count something my past school teachers hated and did not allow. 

3. Yes, I love it. It made it easier for me to be able to explain to learners in school 

experience. 
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4.14.3 QUESTION 3 - DID YOUR EXPERIENCES IN IPS 413 E 

MATHEMATICS HELP YOU TO TEACH MATHEMATICAL 

IDEAS TO CHILDREN DURING SCHOOL EXPERIENCE 

AND, IF SO, HOW? 

13 responses were received: 1 was negative, 2 cautious and 10 suggested that the 

experiences in the IPS 413 E module were beneficial. The question was aimed at the 

broad experience of the IPS 413 E module; however, the responses mainly spoke to 

the visualisation methodology. In the case of the negative response, the response 

indicates that a practicum host teacher followed a prescriptive programme: 

 

Not really, because my host teacher was not welcoming to anything that was 

different from CAPS and did not allow me to let the learner experience another 

way of doing maths and I only did limited lessons. 

 

While I cannot be certain why the host teacher would hold such a position, in 1.2.1.10 

and in 2.3.1, this thesis has demonstrated that the CAPS curriculum (Department of 

Basic Education, 2011) embraces visualising methodologies. Intuitively, I imagine that 

the host teacher might have been worried that, in applying a novel strategy for at most 

four or five weeks and then leaving, the student might disrupt the processes of teaching 

and learning in the host teacher’s class. 

 

 One of the two hesitant responses is transcribed below. It does not demonstrate 

antipathy towards the IPS 413 E module but, rather, lack of self confidence: 

 

Yes, but I was not confident enough on myself to teach although I did teach a 

few. 

The other replies all suggested that the application of skills and ideas that they have 

learned in the IPS 414 E module proved beneficial in their practicums.  

 

1. Yes especially the ratio and fractions which learners had problem differentiating.  

2. Yes, definitely. I bought sweets, biscuits, bottle-tops and stones for topics such 

as fractions and ratios. The learners participated because of tangible resources.  
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3. With the method of visualisation I first used the Mr Peter Shaw biscuits methods 

and it worked as the learners did understand. They learn more with what they 

see rather than me talking to them. 

 

4.14.4 QUESTION 4 - DID YOU FIND THE USE OF APPARATUS 

(E.G. BISCUITS) AND IMAGES (E.G. DRAWINGS OF 

MATHEMATICAL IDEAS) USEFUL AND, IF SO, HOW? 

All 13 responses to this question were supportive of and endorsed the use of 

apparatus. Variously, different responses spoke to the PGCEs’ own improvement in 

understanding, better understanding through visualisation for their pupils, and the 

capacity this technique has to offset language barriers. 

 

1. Yes, they were VERY useful because they made me understand the lesson 

content better. They helped me more on ratios, with the use of them I am happy 

to say that I now have an understanding of ratios. 

2. Yes, this made it easy for learners to understand the work because they could 

visualise it and also the examples. This made activities to be fun for learners 

and it did not feel like they were doing mathematics. 

3. Yes, mathematical language can be confusing. Using apparatus especially at 

different colours helps in solving the problem step-by-step. 

 

 

4.14.5 QUESTION 5 

Question 5 contained multiple parts – these are discussed below. 

 

 

4.14.5.1 QUESTION 5.A - DURING SCHOOL EXPERIENCE, DID YOU TEACH 

CHILDREN TO SOLVE MATHEMATICAL WORD-PROBLEMS? 

(YES/NO) 

Eleven students suggested that they did teach children to solve word-problems during 

their school experience practicums. Two others replied that they did not. 
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4.14.5.2 QUESTION 5.B - IF YOUR ANSWER TO 5.A. IS YES, DID YOU USE 

VISUALISING TECHNIQUES (E.G. BISCUITS, DRAWINGS, ETC.)? 

(YES/NO) 

Eleven responses were received; all of then suggested that they had used visualising 

techniques to assist pupils to solve word-problems. 

 

4.14.5.3 QUESTION 5.C - IF YOUR ANSWER TO 5.B. IS YES, PLEASE 

EXPLAIN THE VISUAL METHODS THAT YOU USED. 

Unfortunately, the eleven responses were typically very short, each containing a few 

words, rather than any deep explanation. However, the use of apparatus and iconic 

stimuli are repeatedly presented in the responses. 

 

1. I used bottle tops and drawings to calculate, visual pictures; visual strips 

2. I used bottle tops to teach ratios and fractions which they were struggling with 

when it comes to solving word problems.  

3. I used charts, sweets, bottle tops, biscuits and match sticks  

 

4.14.5.4 QUESTION 5.D - IF YOUR ANSWER TO 5.B. IS YES, DID THE 

CHILDREN IN YOUR CLASS LIKE THE APPROACH? 

Possibly, this last question, squeezed in as it is at the end of the last data-collection 

instrument, is the most important question in the entire data collecting exercise of this 

thesis. If the ultimate recipients of this visualising methodology reject it, all of the work, 

no matter its good intentions, comes to nought. However, as seen in the exemplars 

below, the responses to this question suggest that the pupils who were exposed to 

visualisation scaffolds were enthusiastic about the methodology. 

 

1. They loved the approach and understood the content. 

2. They enjoyed it a lot and wanted more mathematical word problems. 

3. Yes, because children, I think, learn best from seeing and visual methods work 

well for them. 

4. Yes, they liked the approach because they were active during the lesson and 

able to answer questions based on visual that I brought in class. 
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4.14.6 SUMMARY OF QUESTIONNAIRE 3 

Only 13 participants responded to the request to complete this questionnaire and of 

these students 2 did not answer all of the questions. The responses generally 

supported the epistemological and methodological approaches that were used within 

the IPS 413 E Mathematics module. Some students suggested that the techniques 

that had been used in our classroom had been influential in breaking down mental 

barriers that they had carried of mathematics. The participants strongly endorsed the 

use of visualising scaffolds, suggesting that such scaffolds made their school 

experience practicum work enjoyable and made their explanations to pupils effective. 

In this regard, they spoke to the use of concrete apparatus – enactive representation 

– rather than the construction of enabling sketches – iconic representation. The 

participants suggested that in their practicum classes pupils embraced the visual and 

liberating approaches that they used in the mathematics periods.  

 

4.15  SUMMARY OF CHAPTER 4 

The field notes were presented so as to give some sense of highs and low, frustrations 

and breakthroughs, which occurred within the 2016, IPS 413 E Mathematics module.  

The Thinkboard activity provided a wealth of qualitative data which demonstrated that 

members of the PGCE cohort, while often fearful of mathematics, also attached great 

importance to the subject and were keen to become great mathematics teachers.  

 

Analysis of the prior knowledge and re-evaluation tasks for both action cycles showed 

that, for the duration of the semester, many low order facts, routines and concepts 

remained uncompressed into schema of meta-concepts of fractions and ratios and 

thus precluded the construction of relational knowledge. Some uptake of the use of 

enactive and iconic visual scaffolds did liberate understanding, but this was a hard-

won prize. Participants struggled to apply cogent visual scaffolds to word-problems; in 

such situations, illogically constructed visualisations impeded understanding. For 

some, the English language and phrasing in the word-problems constituted a barrier. 

 

Questionnaires 1 and 2 produced rich biographical information and provided insights 

regarding the students’ perceptions of mathematics. The focus group interview 

provided thick, personal accounts of their opinions of the IPS 413 E module, of the 
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methodologies used and of the use of visualising scaffolds in arithmetic work and word-

problems. These accounts endorsed the content, methodology and pedagogy used in 

the module and suggested that the programme had liberated many suppressed skills 

and had improved the students’ dispositions towards mathematics. 

 

Upon their return from their second semester practicums, participants were invited to 

complete a final questionnaire. The qualitative data showed that the students 

continued to endorse the methodological and pedagogical approaches that had been 

used in the IPS 413 E module. The students reported that they had found the 

methodologies and liberating pedagogy that was infused into the module, highly 

beneficial in their own teaching and suggested that children in their practicums 

embraced these novel and liberating epistemological approaches. 

 

Next, in Chapter 5, I will consolidate all of the trends that were discussed in Chapter 4 

and I will raise implications that these findings have revealed to me. I will discuss 

problems which occurred in the action research and indicate recommendations for 

further research. I will also indicate the contributions made by this research and I will 

present a short autobiographical account of my experience of the thesis. I will close 

the chapter with a conclusion to the work.  
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CHAPTER 5 – REVIEW, IMPLICATIONS AND CONCLUSION 

5.0 SUMMARY OF THESIS  

Chapter 1 opened with a prologue to the thesis. It described my first memory of 

purposefully using visualisation as a learning scaffold, in the 1970s, in an English 

language classroom. In that class, colourful pencil icons were used to assist children 

to assimilate and accommodate parts of speech. The prologue is important because it 

provides a context for my life-long passion for making the obscure, tangible; the 

invisible, visible. Visualisation has influenced all aspects of my teaching and learning 

career and its application in solving mathematical word-problems has become a 

central focus of this thesis. Indeed, the purpose of the thesis was to evaluate how the 

use of visualisation strategies, applied in a university classroom setting, would assist 

PGCE students to better understand and solve mathematical word-problems. 

 

I demonstrated that, in principle, South Africa, like many countries, has adopted an 

understanding-based approach for teaching and learning mathematics. However, 

many PGCE students, that is, students who have matriculated through South Africa’s 

education system and are university graduates in different fields, are often perplexed 

by the low order arithmetic procedural requirements and linguistic complexities that 

are characteristics of Intermediate Phase (Grade 4 – 6) word-problems.  

 

Word-problems petition the use of many interwoven skills and understandings. 

However, where deeply conceptualised understanding is not available, cognitive 

overload can thwart success. As a remedial measure, I suggested that the purposeful 

use of visualisation methodologies can assist students to solve word-problems. In this 

thesis, my contention has been that a strongly visual approach – one which is rich in 

the use of concrete and iconic stimuli – can offset some of the barriers which preclude 

students from success and can facilitate better understanding of word problems.  

 

Because action research requires one to become contemplative, reflective and 

reflexive, in the first section of Chapter 2 I have articulated my deeply held view that 

the purpose of a good education must be to liberate human potentials. I referred to 

Plato and Freire to construct an argument that suggests that, where human potentials 

are inhibited, psychological damage is done to people and societies.  
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In Plato’s allegory of the cave, I found a philosophical foothold for my work: the allegory 

is used to outline a dual-level state of reality. Plato posits that humans often limit their 

view of the world to day-to-day experiences, sensory stimulation and naive belief 

systems that are found in the lower-level realm of sensations. But, he suggests, true 

emancipation only occurs on a higher plain, in the realm of forms, when meta-cognitive 

thinking is brought to bear on our conceptions of the world. Plato suggests that 

although our progression towards deep understanding and emancipation is largely 

driven by personal intrinsic motivations, teachers can act as conduits to facilitate the 

liberalization of latent potentials in their students. Teachers do this by engaging with 

students and encouraging them to think deeply, to be morally upstanding, to take 

calculated risks and to strive to conceptualise relationships and big, overarching ideas.   

 

Freire suggests that because the ontological disposition of humans is to become more 

human, any oppressive practices which thwart that desire will result in conflict. Further, 

in any society in which an elite few subjugate others, the oppressor’s violence will 

always result in some form of reciprocation. Oppressors will work to maintain the status 

quo but as oppressed people become aware of their own dehumanisation, they will 

agitate for their liberation. Oppressed people cannot initiate violence; they can only 

react to it. Freire suggests that although teachers are often unaware of their benevolent 

oppression, educators who use transmission mode teaching practices disenfranchise 

students, turning them into receivers of educational titbits, facts and routines. Freire 

rejects transmission mode, tabula rasa teaching practices – he calls this a banking 

model of education – in favour of a liberating model for education which in turn opens 

up possibilities for action, problem-solving and critical thinking. 

 

Building on the above, I have demonstrated that South Africa’s school-going pupils, 

measured against international and regional mathematical benchmarks, fare badly. In 

our country, poorly qualified teachers continue to use out-dated transmission-mode 

teaching practices. These practices have done a lot of damage to otherwise competent 

people. Because our teachers continue to use banking models of education, we have 

not delivered on the liberating promise that is contained within the definition of 

mathematics as espoused within the CAPS curriculum for mathematics. 
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In Chapter 2, aspects of mathematical problem-solving and word-problems, attributes 

of good versus poor problem-solvers, problem-solving techniques, hierarchies of 

problems, foundational and relational knowledge and compression were discussed. 

Foundation mathematical knowledge, on its own, limits students to working at a rote 

and instrumental level in mathematics. For more advanced work, relational 

understanding enables students to cogently apply a variety of mathematical abilities to 

multi-step, non-routine mathematical problems. Compression indicates automated 

mastery of interrelated mathematical skills and knowledge, of knowing not just a fact 

or skill, but knowing its relationship and applicability to other aspects of mathematics. 

 

The literature review also investigated salient features of mathematics teacher 

education and looked at how we construct our conceptions of mathematics, a 

requirement for specialised teaching knowledge for mathematics and principles which 

inform effective mathematics teaching practice. As exemplars of PCK applied to 

mathematics teaching, multiplicative and fractional reasoning were explored. 

 

Visualisation is a strategic teaching and learning tool in mathematics. Visualisation 

mediates: it acts as an intermediary scaffold between phenomena and symbolic 

representations of the world. Because it plays a pivotal role in my thesis, I unpacked 

many features of visualisation so as to make a sober case that demonstrates that 

pedagogically, while it may not prove to be a best fit for all students, visualising 

scaffolds do offer many significant benefits for many students. 

 

All of the above brought me to the theoretical framework for this thesis which draws 

broadly on Jerome Bruner’s opinions about the processes of education and specifically 

on his three-phase theory of deep learning. In unpacking my understanding of Bruner’s 

work, I have tried to demonstrate its potential for practical application in classrooms. 

Bruner believed that knowledge construction requires active participation by the 

learner. He suggested that deep learning occurs when we link new ideas and 

information to our existing knowledge structures. He supported socially-mediated, non-

routine, problem-solving based and intrinsically-motivated discovery learning. He 

proposed that teachers should apply a spiral approach in their educational 

programmes and suggested that structured, sequenced and embodied iterations of 

mathematical skills and ideas would facilitate deep understanding. To achieve the goal 
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of deep understanding, Bruner suggested that all learning should begin in the world of 

enactive representations, followed by visual or iconic modes of representation, and 

finally, subsuming the others, by symbolic notations of our understanding. He 

perceived that a strength of his three-phase learning theory was that students would 

loop-back through these different forms of representations so as to pick a most suitable 

scaffold to make sense of a particular problem. Indeed, all of the teaching and learning 

in the research was deeply informed by Bruner’s views. 

 

I began Chapter 3 with an explanation about the strengths and limitations of action 

research. I unpacked the epistemological qualities that are found in action research 

and introduced my research approach, mixed methods. I explained that I wanted to 

combine different data sources to construct a rich tapestry of the benefits and 

limitations, highlights and low-points which might occur during the actual action 

research exercise. Following this, I explained the action research paradigm as being 

interpretive and I suggested that my research adopted a naturalistic perspective and 

was driven by a relativist ontology.  

 

In Chapter 4, even after multiple edits and refinement of the primary data, the 

consolidated summaries of data remained a large and somewhat unwieldy challenge 

to put down onto paper. Because it covered so much ground, the captured data was 

discussed in a number of sequenced revelations of qualitative and quantitative data-

sets. Qualitative data was quantitized; similarly, quantitative data was qualitized. From 

my fieldwork notes, I constructed a narrative which included features of important day-

to-day events which occurred during the action research. I presented three problematic 

issues which conspired against progress in the research and, as exemplars of praxis, 

I constructed five explanations of educational actions that were taken within the 

interventions. This section was followed by an in-depth discussion of the qualitative 

findings from the Thinkboard activity. 

 

In Action Cycle 1, quantitative data was captured via two prior knowledge tasks and 

two re-evaluations. That data was grouped together and interrogated. Trends which 

manifested were accounted for and often iconic exemplars of problems and solutions 

were inserted into the text so as to construct a strong evidence trail. The data in Action 

Cycle 2 was attended to in the same way as Action Cycle 1. Qualitative data was 
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captured from two questionnaires. That data was interrogated and consolidated and 

the most important features were presented as trends. I then moved on to a discussion 

of the findings that were obtained from the focus group interview. I included quotations 

of the opinions and ideas of the participants’ answers to a number of semi-structured 

questions that were posed to them by an interviewer.   

 

In the fourth quarter of 2016, I asked the participants to give a retrospective account 

of their experiences of the IPS 413 E module: I did this by inviting the participants to 

complete one last questionnaire. The data was consolidated to establish important 

trends, and the trends were introduced into the chapter. 

 

5.1   SUMMARY OF RESEARCH DATA 

Below, the research data is consolidated in two ways. First, in 5.1.1, I have presented 

a series of box and whisker plots, which act as a summary of the quantitative data that 

was captured in the two action cycles. I have also constructed a statistical analysis of 

the quantitative data, and in 5.1.2 I have constructed summaries of qualitative data 

that was captured from the three questionnaires that the research participants returned 

to me. Second, in 5.1.3 – 5.1.6, I have linked the data findings to the three sub-

research questions and to the main research question. 

 

5.1.1  SUMMARY OF QUANTITATIVE RESULTS  

The graphs below already exist in Chapter 4 (4.3.9; 4.4.5; 4.5.10; 4.6.5; 4.7.11; 4.8.6; 

4.9.11; 4.10.4; 4.14.6); however, I believe that when they are read in conjunction with 

each other, the visual displays offered by the various box and whisker plots provide a 

succinct and powerful summary of the slow but steady progress that was made by the 

participants who competed their studies in IPS 313 E – Mathematics, in June 2016. In 

Figures 5.1, and 5.2 below, I have combined the data for the prior-knowledge and re-

evaluation tasks for each action cycle into a series of four graphs. 
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Action Cycle 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.1.  Summary of quantitative data captured in Action Cycle 1 
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Action Cycle 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.  Summary of quantitative data captured in Action Cycle 2 
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Four, inferential t-Test: Paired Two Sample of Means analyses were used to compare 

the four prior knowledge tasks with their corresponding re-evaluation tasks.  

 

When one conducts t-Tests, a sample size of 10 is regarded as being the minimum, 

thus, with data sets of 34 to 37 natural pairings and df’s of 33 to 36, the data used in 

the t-Tests would be considered as stable representations. In the analyses, in cases 

where a participant did not complete one of the two assessments, the data for that 

participant was excluded from the analysis. MS Excel© was employed to compute the 

statistical analyses. 

 

The t-Tests were driven by two competing hypotheses, those being a null hypothesis 

which assumed that the mean differences between the pairings was zero, and an 

alternate hypothesis, which assumed that the mean differences between the pairings 

was not zero. In this research, a two-tailed test was used, thus the two competing 

hypotheses can be defined as: 

 

Ho: μo = 0 that is, there will be no change between the means in the data sets 

Ha: μo  0     that is, there will be a change between the means in the data sets. 

 

While a simple comparison of the means of two sets of data, for example 78% and 

83% might show that 83% is indeed larger (better) than 78%, the t-Test: Paired Two 

Sample of Means eliminates the skewing effects that factors such as outliers might 

effect on the findings.  

 

Although MS Excel© generates a comprehensive set of results for the t-Test: Paired 

Two Sample of Means, for purposes of analysis: 

 

1. the alpha level (0,05) is compared with the P(T,=t) two-tail value. If the P(T,=t) 

two-tail value is less than alpha (0,05) the null hypothesis can be rejected.  

2. Further, if the t Stat-value is larger than the t Critical two-tail value, the null 

hypothesis can be rejected.  

3. The outcomes of both conditions must correlate in order to reject the null 

hypothesis.  

Table 5.1 
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Summary of statistical analysis of Action Cycle 1 – Foundational Arithmetic Concepts 

 

In Table 5.1, above, the P(T,=t) two-tail value (0,000) is less than alpha (0,05). Also, 

the t-Stat value (9,854) is larger than the t Critical two-tail value (2,035). Therefore, the 

null hypothesis is rejected. 

 

Table 5.2 

Summary of statistical analysis of Action Cycle 1 – Word Problems 

 

In Table 5.2, above, the P(T,=t) two-tail value (0,006) is less than alpha (0,05). Also, 

the t-Stat value (2,937) is larger than the t Critical two-tail value (2,030). Therefore, the 

null hypothesis is rejected. 

 

 

RE-EVAL PRIOR

Mean 12,265 7,471 Mean Difference 4,794

Variance 14,928 10,499 Standard Deviation of difference 2,837

Observations 34,000 34,000 Standard Error of difference 0,487

Pearson Correlation 0,694 T alpha half 95% Confidence Interval 2,035

Hypothesized Mean Difference 0,000 Lower Confidence Level 3,804

df 33,000 Upper Confidence Level 5,784

t Stat 9,854 α 0,05

P(T<=t) one-tail 0,000

t Critical one-tail 1,692

P(T<=t) two-tail 0,000 Ho: μo = 0

t Critical two-tail 2,035 Ha: μo  0    

ACTION CYCLE 1 - FOUNDATIONAL ARITHMETIC CONCEPTS

t-Test: Paired Two Sample for Means

RE-EVAL PRIOR

Mean 15,556 13,056 Mean Difference 2,500

Variance 75,625 50,454 Standard Deviation of difference 5,107

Observations 36,000 36,000 Standard Error of difference 0,851

Pearson Correlation 0,809 T alpha half 95% Confidence Interval 2,030

Hypothesized Mean Difference 0,000 Lower Confidence Level 0,772

df 35,000 Upper Confidence Level 4,228

t Stat 2,937 α 0,05

P(T<=t) one-tail 0,003

t Critical one-tail 1,690

P(T<=t) two-tail 0,006 Ho: μo = 0

t Critical two-tail 2,030 Ha: μo  0    

t-Test: Paired Two Sample for Means

ACTION CYCLE 1 - WORD PROBLEMS
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Table 5.3 

Summary of statistical analysis of Action Cycle 2 – Visual Fractions and Ratios 

 

 

In Table 5.3, above, the P(T,=t) two-tail value (0,000) is less than alpha (0,05). Also, 

the t-Stat value (-12,478) is larger than the t Critical two-tail value (2,030). Therefore, 

the null hypothesis is rejected. 

 

Table 5.4 

Summary of statistical analysis of Action Cycle 2 – Word Problems 

 

In Table 5.4, above, the P(T,=t) two-tail value (0,000) is less than alpha (0,05). Also, 

the t-Stat value (15,477) is larger than the t Critical two-tail value (2,028). Therefore, 

the null hypothesis is rejected. 

 

It can therefore be inferred that a statistically significant improvement occurred in each 

pair of prior knowledge and re-evaluation assessments. 

PRIOR RE-EVAL

Mean 17,111 10,639 Mean Difference 6,132

Variance 29,930 28,409 Standard Deviation of difference 3,363

Observations 36,000 36,000 Standard Error of difference 0,560

Pearson Correlation 0,834 T alpha half 95% Confidence Interval 2,030

Hypothesized Mean Difference 0,000 Lower Confidence Level 4,994

df 35,000 Upper Confidence Level 7,269

t Stat 12,478 α 0,05

P(T<=t) one-tail 0,000

t Critical one-tail 1,690

P(T<=t) two-tail 0,000 Ho: μo = 0

t Critical two-tail 2,030 Ha: μo  0    

t-Test: Paired Two Sample for Means

ACTION CYCLE 2 - VISUAL FRACTIONS & RATIOS

RE-EVAL PRIOR

Mean 14,486 3,189 Mean Difference 11,000

Variance 21,146 8,324 Standard Deviation of difference 4,748

Observations 37,000 37,000 Standard Error of difference 0,781

Pearson Correlation 0,368 T alpha half 95% Confidence Interval 2,028

Hypothesized Mean Difference 0,000 Lower Confidence Level 9,417

df 36,000 Upper Confidence Level 12,583

t Stat 15,477 α 0,05

P(T<=t) one-tail 0,000

t Critical one-tail 1,688

P(T<=t) two-tail 0,000 Ho: μo = 0

t Critical two-tail 2,028 Ha: μo  0    

t-Test: Paired Two Sample for Means

ACTION CYCLE 2 - WORD PROBLEMS
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5.1.2  SUMMARY OF QUALITATIVE RESULTS  

A Thinkboard and three questionnaires provided useful insights into the views that 

were held by the participants. While Questionnaire 1 provided a mix of quantitative and 

qualitative data, in the main, the Thinkboard and the questionnaires were designed to 

extract qualitative data.  

 

That data has been discussed extensively in Chapter 4 and is now summarised in a 

series of tables (Table 5.5 - Table 5.10), below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5 
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Summary of Thinkboard data 

THINKBOARD ACTIVITY - 10 FEBRUARY 2016 
  Field 1:  My View of Mathematics 
  Number of Participants 33 

  Number of Responses 97/99 

  Return Rate 98% 

  Major Trends Number of submissions 
1 Practice makes perfect 15 

2 Maths is integrated into daily life 17 

3 Maths is perceived as just calculations 11 

4 Maths promotes brain activity 12 

5 It is interesting but challenging 13 

6 A tricky, complicated and confusing subject 9 

7 Maths prepares one for success in life 8 

8 Keep away from this subject 7 

  Field 2:  My Biggest Hopes for Mathematics 
  Number of Participants 33 

  Number of Responses 97/99 

  Return Rate 98% 

  Major Trends Number of submissions 
1 A desire to be a great mathematics teacher 23 

2 A need to understand mathematics 27 

3 Committed to overcoming a fear of maths 22 

4 I just want to pass 19 

  Field 3:  My Biggest Fears for Mathematics 
1 Number of Participants 33 

2 Number of Responses 93/99 

3 Return Rate 94% 

  Major Trends Number of submissions 
1 A deep-seated fear of calculations 28 

2 A fear of not teaching mathematics well 23 

3 Memories of past failures in mathematics 15 

4 A fear of failing the IPS 413 E module 11 

5 A fear of giving up on the subject 9 

  Field 4:  A Drawing of how I Feel at this Moment 
1 Number of Participants 33 

2 Number of Responses 33/33 

3 Return Rate 100% 

  Major Trends Number of submissions 
1 So many faces 33 

2 
Happy/ambivalent/anxious/shocked/        
serene/ crying/angry 

20/5/3/3/1/1 

3 Simplistic representations mostly 

 

 



 

308 

 

Table 5.6 

Summary of Questionnaire 1 – Part A – A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QUESTIONNAIRE 1 - 22 APRIL 2016 
Part A - A1 - Biographical and Language Information 

  Number of Participants 33 

1 I am:   
  Female 24 

  Male 9 

2 My Home Language is:   

  Afrikaans 0 

  English 2 

  isiXhosa 27 

  Other 4 

3 My Current Age is:   

  20 – 25 15 

  26 – 30 9 

  31 – 35 8 

  36 – 40 0 

  Older 1 

4 My highest school pass in math or math literature is:   

  Grade 8 0 

  Grade 9 1 

  Grade 10 5 

  Grade 11 2 

  Grade 12 24 
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Table 5.7 

Summary of Questionnaire 1 – Part A – A2 and Part B – B1-5 

QUESTIONNAIRE 1 - 22 APRIL 2016 
Part A - A2 - Students' perceptions of mathematics and IPS 413 E 

    
Strongly 
disagree 

Disagree 
In the 

middle 
Agree 

Strongly 
agree 

5 Generally, I enjoy doing mathematics 1 1 10 15 6 

6 Generally, I am good at doing mathematics  1 6 18 6 2 

7 I am excited to be doing IPS 413 E 0 1 5 13 14 

              

Part A - A3 - Fluency in English Language when doing mathematics 

8 
I find it easy to listen to and understand 
English instructions about mathematics 

1 3 10 12 7 

9 
I find it easy to read to and understand 
English instructions about mathematics 

0 4 8 18 3 

10 
I find it easy to talk to and understand 
English instructions about mathematics 

0 5 7 13 8 

Part B - B1 - Read and Understand Word Problems 
11 I find it easy to read word-problems 0 3 19 10 1 

12 
I find it easy to understand what word-
problems require me to do 

2 5 16 9 1 

Part B - B2 - Form Mental Images of Word Problems 

13 
I find it easy to construct a mental image of 
the requirements of word-problems 

2 8 12 10 1 

14 
I find it easy to imagine a solution strategy 
for solving word-problems 

2 11 13 6 1 

Part B - B3 - Construct a Number Sentence or Formula to start to solve a Word Problem 

15 
I find it easy to find a starting point to begin 
to solve word-problems 

1 10 16 5 1 

16 
I find it easy to construct an appropriate 
number sentence or formula to solve word-
problems 

2 8 18 4 1 

Part B - B4 - Can do the Actual Calculations needed to solve the Word Problems 

17 
I find it easy to work with numbers and 
operations ( +  -  x  / √) (1 response missing) 

0 3 12 12 5 

18 
I find it easy to do calculations which are 
used to solve word-problems (2 responses 
missing) 

0 5 12 11 3 

Part B - B5 - Ability to Judge the Validity of a Calculated Answer 

19 
I find it easy to judge approximately what my 
final answer will be 

3 9 12 7 1 

20 
I find it easy to look at my answers and judge 
if they look okay 

2 6 10 12 1 
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Table 5.8 

Summary of Questionnaire 2 – Part 1 

QUESTIONNAIRE 2 - 13 MAY 2016 

  Number of participants         34 

Part 1 - Personal Benefit - Understanding and Solving Word Problems 

Part 1 - 1 - Read and understand word problems 

    
Strongly 
disagree 

Disagree 
In the 

middle 
Agree 

Strongly 
agree 

1 
I have found the use of objects & images 
makes it easy for me to read word-
problems 

0 0 1 15 18 

2 
I have found that the use of objects and 
images makes it easy to understand what 
word-problems require me to do 

0 0 3 17 14 

Part 1 - 2 - Form mental images of word problems 

3 
I have found that the use of objects and 
images assists me to form a mental image 
of the requirements of word-problems 

1 0 4 19 10 

4 
I have found that the use of objects and 
images helps me to imagine a solution 
strategy for solving word-problems 

1 1 0 22 10 

Part 1 - 3 - Successfully construct a number sentence to start to solve the problem 

5 

I have found that the use of objects and 
images makes it easy for me to find a 
starting point to begin to solve word-
problems 

1 0 6 18 9 

6 

I have found that the use of objects and 
images makes it easy for me to construct an 
appropriate number sentence or formula to 
solve word-problems 

1 1 5 16 11 

Part 1 - 4 - Can do the actual calculations needed to solve the word problem 

7 
I have found the use of objects & 
images makes it easy for me to work 
with numbers 

0 1 2 18 13 

8 

 have found the use of objects & images 
makes it easy for me to do the 
calculations which are needed to solve 
word-problems 

1 0 3 22 8 

Part 1 - 5 - Ability to judge the viability of a calculated answer 

9 

I have found the use of objects & 
images makes it easy for me to 
approximately judge what my final 
answer will be 

1 0 7 15 11 

10 

I have found that the use of objects and 
images makes it easy for me to look at 
my final answers and judge if they look 
okay 

1 0 3 19 11 
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Table 5.9 

Summary of Questionnaire 2 – Part 2 

QUESTIONNAIRE 2 - 13 MAY 2016 

  Number of participants (4 did not complete this part of the questionnaire) 30/34 

Part 2 - Methodological Benefit - Using Visualisation when                                                       
Teaching Children to Solve Word Problems 

    
Strongly 
disagree 

Disagree 
In the 

middle 
Agree 

Strongly 
agree 

11 

I believe that the use of objects and 
images (visualization) will help my 
pupils to read and understand word-
problems 

0 0 0 8 22 

12 

I believe that the use of objects and 
images (visualization) will help my 
pupils to form mental images of word-
problems 

0 0 0 10 20 

13 

I believe that the use of objects and 
images (visualization) will help my 
pupils to successfully construct a 
number sentence or formula to start to 
solve word-problems 

0 1 0 14 15 

14 

I believe that the use of objects and 
images (visualization) will help my 
pupils to do the actual calculations 
needed to solve word-problems 

0 0 1 11 18 

15 

I believe that the use of objects and 
images (visualization) will help my 
pupils to judge the validity of their 
calculated answers 

0 0 3 8 19 
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Table 5.10 

Summary of Questionnaire 3 

QUESTIONNAIRE 3 -  14 SEPTEMBER 2016 

  Number of participants 13 

 Completed upon return from schools-based practicums 

    
Negative 
Response 

Neutral 
Response 

Positive 
Response 

1 

Has the IPS 413 E Mathematics module (the 
first semester module) in any way changes 
your attitude towards mathematics and, if 
so, how? 

0 0 13 

2 
Did you find the knowledge, activities and 
methods used in the IPS 413 E Mathematics 
module useful to you and, if so, how? 

0 0 13 

3 

Did your experiences in IPS 413 E 
Mathematics help you to teach 
mathematical ideas to children during 
School Experience and, if so, how? 

1 2 10 

4 

Did you find the use of apparatus (e.g. 
biscuits, buttons, bottle-tops) and images 
(e.g. drawings of mathematical ideas) useful 
and, if so, how? 

0 0 13 

          

      No Yes 

5a 
During school experience, did you teach 
children to solve mathematical problems?  

  2 11 

5b 
If your answer to 5.a. is yes, did you use 
visualising techniques (e.g. biscuits, bottle-
tops, drawings, etc.)? (2 non-responses)   

0 11 

5c 
If your answer to 5.b is yes, please explain 
the visual methods that you used. (2 non-
responses) 

bottle tops, drawings, charts, sweets, biscuits 
match sticks, visual pictures, visual strips, 
stones 

5d 
If your answer to 5.b is yes, did the children 
in your class like the approach? (2 non-
responses)   

0 11 
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5.2 SYNTHESIS OF FINDINGS 

This action research was employed to answer one pivotal research question and three 

supplementary, or sub-research questions. In order to fully explain the richness of the 

findings of the data that was captured by the summary of data in 5.1.1 and 5.1.2, I will 

first reflect upon data which addresses the sub-questions and after that, I will use those 

findings to build up a case to answer the main research question.  

 

5.2.1 SUB 1: WHAT EXISTING WORD-PROBLEM, PROBLEM-

SOLVING STRATEGIES DO THE STUDENTS HOLD? 

The Word-Problem Calculations, Action Cycle 1, prior knowledge assessment task was 

specifically designed to uncover the existing problem-solving techniques that were 

employed by the participants. The assessment task was administered to the students 

before they participated in any activities in the IPS 413 E – Mathematics module. 

Further, preceding that word problems assessment task, the participants completed a 

Foundational Arithmetic Concepts assessment task.  

 

The data captured from the arithmetic assessment task provided evidence which 

suggested that many participants were unable to construct procedurally logical 

solutions to low order, routines-based, arithmetic operations work. Strong, recurring 

features of arithmetic ineptitude were found and included an inability to neatly set out 

a cogent solution to arithmetic problems (see 4.3.1); low success rates in solving single 

operations, Intermediate Phase level arithmetic tasks (4.3.2); inconsistency in applying 

the BODMAS mnemonic to multi-operations calculations (4.3.4); an inability to identify 

patterns of perfect squares (4.3.5); low understanding of fractions (4.3.6 and 4.3.7); 

and an inability to work with ratios (4.3.8). Collectively, these types of difficulties were 

consistent with at least three of the five problem-solving strategies that Gooding (2009, 

p. 5) has identified, in that, (1) the data demonstrated that the participants were unable 

to successfully construct number sentences or algorithms, (2) they could not carry out 

mathematical calculations and, (3) the participants demonstrated an inability to judge 

the validity of the answers that they had calculated. The absence of multiplicative and 

fractional thinking (2.5.3 and 2.5.4) precluded cogent instrumental understanding and 

compression of mathematical meta-ideas. 
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When I turned my attention to the word-problems assessment task, I found that many 

of the error trends in that task were consistent with the findings in the arithmetic task. 

Many solutions were messy, disorganised and procedurally incorrect (4.4.1); the 

participants had struggled enormously with fractions, often demonstrating absolutely 

no understanding of the roles of numerators and denominators in fractions and/or their 

relationship to the larger task at hand (4.4.3); very few students constructed any form 

of visual scaffold (4.4.3.3); and many solutions in the test papers demonstrated that 

idiosyncrasies in the English language had quite easily become a barrier to success 

(4.4.4). The data revealed that, in addition to the three types of difficulties that were 

revealed by the arithmetic task, in the word-problems assessment task the participants 

were (4) unable to read and understand word-problems nor (5) could they judge the 

validity of their answers. 

  

Thus, a concise answer to sub-research question 1 is that at the commencement of 

the action research, within the cohort, there was generally very little evidence of any 

consistent application of cogent or strategic problem-solving technique. Instead, the 

quantitative evidence captured from the two prior knowledge assessment tasks 

suggested that most participants seemed to have little or no access to basic arithmetic 

foundational knowledge and skills and showed that the routine arithmetic procedures 

that are used in highly structured and moderately structured problems (Zanele, 2015), 

as discussed in (2.4.4), were largely unavailable to the participants. 

 

5.2.2 SUB 2:   WHAT BARRIERS TO SOLVING WORD-

PROBLEMS DO THE STUDENTS PERCEIVE THAT 

THEY HAVE? 

Questionnaire 1 (4.11) was purposely constructed to identify the participants’ 

perceptions of the barriers that they perceived might hinder their success with 

mathematical word-problems.  

 

Data captured from Part A of Questionnaire 1 (see 4.11.1, Table 5.6 and Table 5.7), 

suggested that generally the participants were female isiXhosa speakers, who were 

moderately pleased to be involved in mathematics and moderately comfortable with 

the use of English as the medium of instruction when doing mathematics. 
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In Part B of Questionnaire 1 (4.11.2 and Table 5.7), I used Gooding’s (2009, p. 5) 

classification of five types of difficulties that students encounter when they solve word-

problems to formulate my questions. Part B contained five pairs of Likert scale 

questions. Each pair of questions contained below them a short specified response 

field. The data revealed that the majority of the participants were ambivalent (in the 

middle) to moderately confident that they could read and understand word-problems 

and form mental images of word-problems. When asked to reflect upon their ability to 

construct starting points to solve word-problems, the majority of participants were in 

the middle or felt moderately incapable of creating starting-points to solve problems. 

However, when responding to questions regarding their abilities to actually do 

calculations, that is, the procedural and computational work, the majority of participants 

perceived themselves as in the middle to moderately capable of doing this work. With 

regard to their ability to judge the validity of their calculated answers, the participants 

were mainly ambivalent; a small number of participants were moderately happy that 

they could judge the validity of their answers while a slightly larger number of 

respondents were moderately unable to judge the validity of their answers. 

 

Overall, the participants’ perceptions of their problem-solving abilities were neutral to 

optimistic. However, when their perceptions were contrasted with their performance in 

the arithmetic and word-problems prior knowledge and re-evaluation assessment 

tasks in Action Cycle 1, (4.3;  4.4;  4.5;  4.6), that data painted a more gloomy picture. 

In those tasks, the participants enjoyed only a modicum of success when attending to 

remembering questions: such questions occupy the lowest level of Bloom’s Revised 

Taxonomy (Krathwohl & Anderson, 2010, Maphalala, 2016, p. 94 - 97). Indeed, the 

success rates quickly diminished as layers of understanding, applying and analysing 

from the taxonomy were introduced to the questions.  

 

Thus, the participants’ perceptions of their abilities and the quantitative data occupied 

two different planes: the participants perceived that they were fairly capable of solving 

word-problems while the quantitative data from the four assessment tasks contradicted 

their views. 
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5.2.3 SUB 3:   HOW EFFECTIVE DO THE STUDENTS 

PERCEIVE THE VISUALISATION STRATEGIES TO BE? 

Towards the end of Action Cycle 2, the participants were asked to complete 

Questionnaire 2, (4.12). That questionnaire was used to ascertain their perceptions of 

the efficacy of the visualisation strategies that they had encountered during their 

studies in the IPS 413 E – Mathematics module. Like Questionnaire 1, it employed 

questions that were based on Gooding’s (2009, p. 5) barriers that can impede success 

in solving word-problems. 

 

In Part 1 of the questionnaire (4.12.1 and Table 5.8), Gooding’s (2009, p. 5) questions 

were posed in a manner which required to the participants to reflect on their own sense 

of the efficacy of the visualisation strategies. Analysis of the data showed that, with 

only a handful of dissenting opinions, the replies found in the Likert scales and the 

short specified responses were moderately in agreement to strongly in agreement; that 

is, the participants endorsed the use of visualising methodologies as techniques 

suitable for alleviating Gooding’s (2009) barriers. This was a very pleasing outcome. 

 

In Part 2 (4.12.2), looking to the future, and again using Gooding’s (2009) classification 

of problems, the participants were encouraged to imagine the potential efficacy that 

visualisation methodologies might derive to pupils as a teaching and learning 

methodology. In congruence with Part 1, the Likert scale answers were strongly 

supportive of visualising methodologies that the participants had learned to use and 

their short, textual replies were very complimentary of this type of work.  

 

Also, towards the end of the second action cycle, a group of participants was invited 

to a focus group interview (4.13). In the interview, exploration question 5 (4.13.5), in 

particular, was constructed to ascertain the participants’ views of any benefit that they 

felt that might have accrued to them by using the visualising methodologies in the IPS 

413 E module. While some of the students indicated that initially they were 

apprehensive and doubtful of its role, in the main, the students strongly endorsed the 

visual approach.  
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Further, those participants who completed the post-action research questionnaire 

(4.14), were almost unanimous in their view that, during their school-based practicums, 

their own use of visualising scaffolds, as a teaching methodology, had enabled them 

to teach mathematics in a liberating way to their pupils. Both they and their pupils 

perceived the construction of visual scaffolds as being user-friendly and educationally 

beneficial. This was a very pleasing outcome. 

 

Thus, all in all, the PGCE students perceived the use of visualisation strategies as 

being of high benefit. 

 

5.2.4  MAIN:   HOW WILL VISUALISATION STRATEGIES ASSIST 

STUDENT-TEACHERS TO BETTER UNDERSTAND AND 

SOLVE MATHEMATICAL WORD-PROBLEMS? 

Beginning with my interrogation of the qualitative data in the Thinkboard activity, (4.2), 

and throughout the course of the research period, it become clear to me although the 

participants were generally keen to do and understand mathematics, many were fearful 

that they would not be up to the task. This deep desire within the participants to do 

better, to do good, produced an emancipatory reaction in me, one which oriented me 

towards the release of their untapped human potentials. I already held a practical 

interest in the thesis; I knew that I wanted to understand, interpret and thereby generate 

knowledge that would inform and guide the teaching and learning in our lessons. But, 

layered on top of that, I wanted to emancipate the participants from the rules and 

mindlessly learned practices, habits and self-deception (Carr & Kemmis, 1986) that 

was infused into their writing. 

 

Largely, this fear was realised in the Action Cycle 1 arithmetic (4.3), and word-problems 

(4.4), prior knowledge assessment tasks which revealed that high numbers of the 

participants suffered high levels of mathematical ineptitude. The re-evaluation tasks 

(4.5 and 4.6) contained the same questions as the prior knowledge tasks. Although the 

questions were revisited and attention was given to constructing and reconstructing 

many arithmetic skills and concepts, vis-à-vis, for example, multiplicative and fractional 

thinking, the results in the re-evaluation tasks were only marginally better than in the 

prior knowledge tasks.  
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The consolidation of the quantitative data from the first action cycle suggested to me 

that, possibly, the confluence of a novel methodology – visualisation – superimposed 

upon an existing, deeply flawed mathematical framework, might rend the research 

asunder. Essentially, it appeared as if the limited number of visualisation strategies that 

were introduced in Action Cycle 1 had offered no assistance to the participants and, in 

fact, may have obfuscated their understanding. Maybe, conceptually, it was too large 

a step for the students to take. However, I can also aware that the first quarter of the 

2016 academic year has been assaulted by numerous distractions (4.1.1; 4.1.2 and 

4.1.3), and thereby we had lost a great deal of teaching and learning time. Often times, 

because of the mischievous nature of the sporadic interruptions, the few bigger 

mathematical ideas that I was trying to help the participants to understand, had to be 

continuously revisited. Every time a kernel of understanding was being sown, whether 

it be multiplicative facts or reasoning, or fractional representations and thinking, 

etcetera, a disruptive distraction thwarted its development, and thereby conspired 

against the compression of those big mathematical ideas.  

 

With the problematic features of Action Cycle 1 uppermost in mind, I felt that it was 

important that I redouble my efforts to assist the participants to move away from the 

flawed instrumental conceptions of mathematics which had been revealed to be their 

modus operandi. I realised that I would only have a handful of lessons available to me 

for teaching and learning in the 2nd quarter of 2016, thus I concentrated my efforts on 

the operations, fractions and ratios. I also set about constructing courseware that would 

link enactive, iconic and symbolic representations of these mathematical ideas together 

(Bruner, 1966), (see 2.7.3; 2.7.4 and 2.7.5). 

 

In Action Cycle 2, in both the arithmetic (4.7) and the word-problems components (4.8), 

the prior knowledge assessment tasks delivered very disappointing sets of results. 

However, the results from the re-evaluation tasks showed good improvement for the 

arithmetic task (4.9), and great improvement for the word-problems task (4.10). Thus, 

clearly, Action Cycle 2 benefited from the introspection of Action Cycle 1 and the fit-

for-purpose courseware and visualising methodology that were incorporated into the 

second-quarter teaching and learning contact sessions. 
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Thus, in answering how the participants benefited, from an analysis of the quantitative 

data, it can be seen that the sustained use of visualising scaffolds, employed as a 

teaching and learning methodology with a cohort of IPS 413 E participants who had 

earlier demonstrated high levels of mathematical ineptitude, had proved to be 

academically beneficial to the cohort. Improvements were noted in areas of the 

operations, of which multiplicative reasoning is but one aspect, in fractional thinking 

and the compression of foundational arithmetic concepts, and the understanding of 

pertinent mathematical vocabulary and phrases. Further, the participants became quite 

adept at using visual scaffolds such as arrays, fractional circles and ribbons, and bar 

models as representations of their proportional mathematical thinking.  Enactive and 

iconic representations were linked to symbolic mathematical notations and 

computations. All of these LOT and HOT skills contributed to big improvements in the 

participants’ ability to work through word problems.   

 

Further, in answering the sub-research questions (5.1.1, 5.1.2, and 5.1.3) above, I 

found that quantitative analysis of the assessment data shows a strong correlation with 

the quantitative data that was obtained from the Thinkboard, questionnaires and focus 

group interviews. This correlation was substantiated further by the questionnaire (4.15) 

that was offered to participants in the second semester of 2016, that is, after they had 

completed their second-semester school experience practicums. By that time, they had 

had opportunities to apply the visualising methodologies in their own teaching practice. 

Overwhelmingly, in their comments in the questionnaire, the participants presented 

views that suggested that they, as teachers, had felt that (1) the exemplification of 

problems through the use of tactile and iconic devices had improved the quality of their 

teaching practice and (2) the pupils in their classes had enjoyed and benefitted by using 

visual scaffolds to solve word-problems. 

 

From a qualitative perspective, if one follows the qualitative trends that started with the 

Thinkboard activity through to the quantitative data trends that are presented in the 

post action research questionnaire, it can be seen that, in their conception of 

mathematics, the students moved away from a banking and rote-learning conception 

of mathematics, towards a more liberal, self-actualising understanding of the subject. 

I think that it is fair to suggest that when contrasting the starting points of the action 

research with the end point, the quantitative data demonstrates sustained improvement 
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in arithmetic and word-problem competences and the qualitative data demonstrates a 

healthy, positive and somewhat ebullient psychological outlook towards teaching and 

learning mathematics (4.14). In other words, the use of visual scaffolds has liberated 

the students academically and emotionally. Of these two benefits, possibly the 

emancipating benefit is of higher importance: indeed, because the students now look 

upon mathematics in a more favourable light, they might be predisposed to labour 

longer at mathematical tasks even when they are confronted with difficult or tricky non-

routine word-problems. 

 

Directly, the research data has shown that the visualising strategies that were used in 

the research have assisted the student-teachers to understand and solve mathematical 

word problems in the following ways: 

 

1. Enactive apparatus and iconic representations of word problems were used to 

negotiate a better understanding of the mathematical vocabulary and turns of 

phrase which had misdirected their interpretation of the word problems. In the 

focus group interview this novel approach, the participants suggest, (4.13.2),  

made access to the meaning that was implied in the sentence structures of the 

word problems easier to navigate. However, it has to be acknowledged that 

throughout the research period, on many occasions, language barriers 

manifested as a continuing impediment to success (4.13.4). 

2. With the benefit of a better understanding of the asking requirements implied 

by the vocabulary and turns of phrase, the visual scaffolds also made it easier 

for the participants to form mental images of the contexts within which their 

word problems were operating. As seen, for example in the focus group 

interview, (4.13.2), the participants used visualising scaffolds as practical 

exemplifications of their mental conceptions which in turn helped them to better 

understand and conceptualise their word problems. The participants mention 

the use of bottle tops, biscuits and my document camera. These devices and 

other stimuli were used to construct arrays and area models, to draw fractional 

ribbons and number lines and so forth. These visual representations facilitated 

multiplicative and fractional reasoning and made it easier for the participants to 

form mental images of the sharing situations found in word problems which 

might necessitate the use of fractions and ratio calculations, etcetera. 
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3. The participants perceived that it was important that they had to construct and 

compress many foundational arithmetic concepts and have easy access to 

them. The acquisition of such a toolbox of foundational knowledge and skills, in 

turn, made it easier for the participants to enjoy the full use of the cognitive 

benefits that the visual scaffolds provided and thereby enabled them to 

construct suitable algorithms and carry out the computational aspects of the 

word problems. The visual models also allowed the participants to make fair 

judgement calls – estimations – of the size and shape of the answers they were 

seeking (4.13.5). However, it is acknowledged that some participants did not 

perceive any benefit in using the visual scaffolds (4.13.3), preferring rather to 

rely on purely symbolic representations of mathematical ideas. 

 

The research data also revealed that the participants perceived the visualizing 

methodology which was used in the module as user-friendly, accessible, connectivist 

and capable of freeing-up potentials (4.13.5). They were able to contrast past 

experiences of routines, rules and rote inspired learning – banking models – with the 

more activities-based, socially-mediated lessons – liberating model – in the IPS 413 E 

module, and were highly complementary of their university-based lessons (4.13.5). 

They particularly enjoyed the pollinating connections model that was used – words 

linked to pictures linked to practice linked to symbols used in our lessons (Haylock & 

Manning, 2014). Comments such as, I apply all that I know when I see things better so 

I would like Mr Shaw to continue, um, with, this method of teaching and I can say that 

I loved being in this class of IPS and I would love to teach like Mr Shaw when I go out 

to school, attest to strong support for the continued use of visualising methodologies in 

assisting learners to make sense of big mathematical ideas.  

 

Further, while the participants did not use terms such as banking model, instrumental 

and rote learning as contrasted with Plato’s realms of sensation and forms, relational 

learning and compression, it was found that conceptions of these ideas were 

appropriated by the participants who mainly, now endorse the more ontologically 

liberating model that was used in the IPS 413 E classroom. Further, in our lessons, the 

participants benefited from a research experience which occurred in a natural setting 

– our classroom – and was modelled on Bruner’s theory of teaching and learning and, 

in particular, which was driven by Bruner’s conception of three phases of learning, 
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these, of course, tied to this recursive enactive, iconic and symbolic forms of 

representation. This strategy enabled the participants to use words, gestures, artefacts, 

pictures, symbols, language and life experiences to express and demonstrate 

mathematical ideas. 

 

However, I also acknowledge that, the generous support of the participants’ comments 

aside (4.13), this model was only partially successful in that all too often, I reverted to 

a teacher-tell methodology. This directed or explicit instruction (Killen, 2015), is 

recognised as having many educational benefits, but often, in quiet reflection, I also 

realised that various pressures – slow uptake of mathematical ideas, missed lessons, 

imminent exams, etcetera –  seemed to force my hand, thus, in truth, on occasion I 

reverted to unvarnished transmission mode practices. 

 

5.3  RELATIONSHIP WITH PREVIOUS RESEARCH 

Data that was captured from the Action Cycle 1, Foundational Arithmetic Concepts, 

prior knowledge assessment task, demonstrated high levels of ineptitude. Indeed, for 

the duration of the entire semester-long module, the participants typically had great 

difficulty in assimilating and accommodating low order, mathematical ideas and skills. 

The IPS 413 E participants were all products of a South African education who mostly,  

could not apply routines, rote-learned, and instrumental mathematical skills to 

numerous foundational arithmetic computations. This finding was broadly in line with 

ideas found in the literature review. Such incompetence is consistent with a banking 

model of education (Freire, 1997), and reinforces Block’s (2009) view that, in part, 

because our teachers hold low pedagogical knowledge, South African education is in 

crisis. Similarly, the data confirms international data-sets – TIMSS (Mullis et al., 2016), 

regional data-sets – SACMEQ (Spaull, 2016), local data sets – NSC (Centre for 

Development and Enterprise, 2010); matriculation pass rates (Department of 

Education, 2013); and ANA test scores (Department of Basic Education, 2014) which 

all consistently reveal our struggle to teach and learn mathematics.  

Similarly, data captured from the Action Cycle 1, Word-problems, prior knowledge 

assessment tasks demonstrated that the participants could not solve well-defined 

(Galotti, 2014) to moderately structured (Zanele, 2015) Intermediate Phase word-

problems. In part, and students attested to this, many were fearful of such problems 

(Murray, 2012, p. 55). They suggested that when confronted with word-problems, they 
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set up mental blocks (Belbase, 2013), and thereby indirectly ran the risk of 

disempowering themselves.  

 

Further, as was already discovered in the foundational arithmetic concepts prior 

knowledge assessment task, the participants did not have access to a toolbox of 

practiced instrumental mathematical skills and concepts (Skemp, 2006), and thus were 

automatically precluded from perceiving the word-problems from a heighted relational-

understanding level (Siemon et al., 2012; Reason, 2003). This meant that they could 

not draw support from any mathematical meta-concepts (Plotz, Froneman & 

Nieuwoudt, 2012). They did not have any schemata in place (Biehler & Snowman, 

1997), nor did they have access to compressed mathematical ideas (Chin, 2013).  

 

Because these features were missing from their conception of mathematics, when they 

were confronted with the word-problems, their underlying fears of mathematics, 

coupled with the flood of incoming sensory data found in the questions, may have 

caused students to lose focused-attention and may have overwhelmed their working 

memory. Lacking as they were in even foundational procedural knowledge (Mayer, 

1997; Gray & Tall, 2007), it seems likely that flawed LOT skills and an absence of HOT 

skills  (Bezuidenhout & Alt, 2011), was visited upon their attempts to solve the word-

problems. Certainly, all five of Gooding’s (2009, p. 5) barriers to success in word-

problem, problem-solving manifested in the data. The participants struggled to 

conceptualise and compute solutions to word problems for the duration of the semester 

and only began to show marked score-card improvements in the re-evaluation of the 

second action cycle.  

 

The negative impact of teaching and learning the IPS 413 E module in English – which 

was not the mother-tongue for most of the participants – was repeatedly found to be a 

barrier that obstructed their understanding of word-problems. This finding was 

consistent with previous research. Other researchers have discussed the hurdles that 

confront learners when they attend to word-problems which are written in languages 

other than their mother-tongue (Kasule & Mapolelo, 2016), and have indicated how 

language-use is perceived and applied differently in different communities (Lerman, 

1996). As revealed often in this research, (4.4.4; 4.6.3 and 4.8.3), any 

misunderstanding of a single word or phrase can alter the entire meaning of a word-
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problem (Sherman & Gabriel, 2016) and ambiguous nuances in text structure can 

restrict non-mother-tongue students from access to viable solutions (Mahofa & 

Adendorff, 2014). Barbu and Beal (2010) and Murray (2012) found that the linguistic 

complexity of word-problems directly impacts non-mother-tongue students’ 

perceptions of these problems and thereby may inhibit them and negatively impact 

upon their problem-solving capability. Indeed, Tobias (2006) questions whether it is 

even acceptable to pose mathematical word-problems, written in English, to students 

for whom, English is not their mother-tongue.  

 

Albeit that initially, some students in the IPS 413 E cohort were hesitant to get involved 

with visualisation (4.14.3), this research showed that visual scaffolds provided 

epistemological benefits for many students in the cohort (4.14.2). This finding is 

congruent with those of other researchers. Visual scaffolds – bottle-tops, pebbles, 

diagrams, etcetera (Naidoo, 2012) – presented as enactive and iconic representations 

of mathematical ideas (Bruner, 1966) act as building blocks (Novak & Tassell, 2017) 

which provide a methodological technique that facilitates cognition and effective 

problem-solving (Siemon et al., 2012; Boaler, Chen, Williams & Cordero, 2016; 

Mnguni, 2014; Fong & Lee, 2004). While it is accepted that visualisation is not a best-

fit for all students (Jordaan & Jordaan, 2013; Barmby et al., 2013), many researchers 

have suggested that visualisation supports sense-making (Rivera, Steinbring, & Aravi, 

2014) and provides students with opportunities to deeply understand mathematical 

ideas and make meaningful – relational – connections (Mhlolo et al., 2012). Such 

opportunities to integrate enactive, iconic and symbolic representations has a 

multiplier-effect on cognition (Siemens, 2006; Bruner, 1980).   

 

Further, data captured from particularly Questionnaires 2 and 3 and the focus group 

interview provide evidence that the participants derived great psychological benefit 

from the visualisation-based methodologies that were applied in the 2016, IPS 413 E 

Mathematics module. Their ebullient dispositions can be explained in terms of 

philosophical positions espoused by Plato and Freire and constructivist stand-points 

held by Bruner. Although the participants were sometimes/often hesitant to accept the 

offer to become self-actualising (Maslow, 1943), nonetheless, our classroom 

atmosphere was characterised by values of truth, beauty, social justice, 

independence, co-construction and humour.  
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I also acknowledge that we, researcher and participants alike, may not have fully 

realised Plato’s promise of a good education (Plato, as cited in Curren, 2007), nor may 

we have fully ontologically freed ourselves from our positions of oppressor and 

oppressed. I think that such turning around, such redirection, requires much more 

sustained effort than can be effected within one university semester-long module. But, 

I also believe the participants made progress towards rejecting a banking model 

(Freire, 1997) of mathematical facts and routines in favour of becoming active, inquiry-

based, discovery-oriented and intrinsically motivated problem solvers (Bruner, 1960). 

In adopting these transformational positions for themselves, the participants have 

joined me on a journey to fully liberate our human potential (Curren, 2007). 

 

5.4  IMPLICATIONS OF THE FINDINGS OF THIS RESEARCH 

In this thesis I have demonstrated that, across the world, modern approaches to 

teaching and learning mathematics are moving towards understanding-based 

conceptions of mathematics (1.1.1): evidence of this is presented in nine exemplars 

(1.2.1), and I have suggested that the characteristics of word-problems (1.2.2) make 

them appropriate mechanisms for constructing understanding-based teaching and 

learning opportunities. However, notwithstanding their educational benefits, word-

problems present at least five types of difficulties to learners which act as barriers to 

success (1.2.2.3). I have suggested that the incorporation of visualising scaffolds into 

the methodological practices of teaching and learning (1.2.2.4) might offer a beneficial 

therapy, that is, a way to offset the effects of the barriers.  

 

I have also suggested that in the preparation of new teachers, of whom graduated 

PGCEs are a prime example, universities are urged to apply considerable attention to 

the development of subject content knowledge and innovative and novel pedagogy 

and methodology practices (1.8 and 1.9). This is encouraged so as to offset the 

existing South African malaise in mathematical competence as found in both pupils 

and their teachers (2.2.1), and to provide support for the 21st century approach to 

mathematics that is espoused in the national curriculum (2.3). Through the 

operationalisation of this action research project, I have tried to apply my 

understanding of problem-solving in mathematics (2.4), teaching for understanding 

(2.5), and visualisation of mathematical ideas (2.6). Largely, all of my research really 
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seems to condense down to actualising Bruner’s (1915 – 2016) theories on good 

teaching and learning habits (2.7). 

 

With the above in mind, the data that was captured early in my study offered compelling 

evidence of the participants’ inability to work successfully through many low level 

routines and operations based arithmetic computations. At the commencement of the 

study, impediments that were experienced by large numbers of the participants 

included an inability to set out a solution, to recall the products of the times-tables, to 

work with single operations and common fractions, decimal fractions and percentages, 

identify factors, place mixed numbers onto a number line, exercise multiplicative and 

fractional thinking, construct ratios, to write large numbers, identify perfect squares 

and square roots, and so forth (4.3). That data was congruent with the literature (2.2; 

5.3) which consistently exposes South Africa’s school-going pupils as having very poor 

arithmetic skills.  

 

It follows that in cases where participants operate off a flawed understanding of routine 

arithmetical procedures, their work with word-problems would be compromised. And, 

indeed, early in the research study this view was confirmed by the data that was 

captured in the Action Cycle 1, Word Problems prior knowledge assessment task (4.4). 

Further, the participants’ solutions to the word-problems produced an abundance of 

evidence of all five of Gooding’s (2009, p. 5) hurdles. In particular, the data 

demonstrated that the subtleties of the English language that were used in the word-

problems confused many participants. And, as it turned out, for the duration of the 

research study, the English language often played a role in precluding many 

participants from gaining access to understanding the asking requirements of these 

questions (14.11; 14.12 and 14.13). 

 However, with the benefit of the passage of time, the participants progressed through 

the two action cycles and over time, the sustained application of the visualising 

methodology began to bear fruit. The research data began to produce evidence of 

gradual improvements in arithmetic and word-problem competences. Indeed, multiple 

data sets (4.5 through 4.10) provide strong and compelling evidence which supports 

my view that the deliberate application of a visualising methodology, applied iteratively 

and cogently to a limited body of mathematical competences, has the potential to 
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ameliorate the effect of Gooding’s (2009, p. 5) mathematical hurdles (4.9 through 

4.15).  

 

Thus, the implication drawn from the above suggests that, in educational settings 

where the ontological fulfilment of teachers and students is facilitated within a liberating 

teaching and learning environment, where socially-mediated and intuitive reasoning 

are welcomed and a spiral curriculum applied to the course of study, many 

mathematical potentials can be liberated. Indeed, this study has demonstrated that in 

situations where participants are provided with opportunities to use enactive and iconic 

representations of ideas, those opportunities facilitate the construction of robust and 

connected understanding that then facilitates the application of the abstraction – the 

symbolic construction – of mathematical solutions (2.7.4).   

 

This study has shown that visual scaffolds assist students to link the physical world to 

the psychological world and elevate knowledge uptake from the application of routines, 

LOT (3.6.1.1), and rote learning to understanding-based, HOT, problem-solving. And 

the fact that participants like this philosophical, methodological and epistemological 

approach is an additional windfall. 

 

5.5  LIMITATIONS OF THIS RESEARCH 

I believe that notwithstanding the successful outcome that the students enjoyed in their 

learning, these data must be treated with some circumspection. While the triangulated 

data-sets demonstrate evidence of microgenesis (3.2.4), the successes must be 

tempered against at least two truths, namely that: 

 

1. the mathematics content in the IPS 413 E module comprised only a few, 

important, cherry-picked aspects of mathematics which were drawn from the  

Numbers, Operations and Relationships, and Patterns, Functions and Algebra 

Content Areas of the CAPS, Intermediate Phase Mathematics curriculum 

(Department of Education, 2012, p. 5): there simply was not enough time in the 

university semester to cover more content, (1.9), and,  

2. albeit that the application of visualising methodologies was novel for most of the 

cohort and ultimately proved to be beneficial to many of them, some participants 

struggled with the arithmetic/visual requirements imposed upon them by the 
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module. And this, in spite of the fact that the content was limited to mostly low 

level, routines, procedures, operations and simple arithmetic computations and 

well-defined (Galotti, 2014) or highly-structured (Zanele, 2015) word-problems 

(2.4.4). 

 

In Chapter 4 of this thesis, I have produced data that shows that the computational 

and conceptual uptake of mathematical ideas and conventions proved somewhat 

elusive for many of the participants in the IPS 413 E class. The slow, incremental 

development of deep understanding of this work, as demonstrated throughout the two 

action cycles, suggests to me that many participants may still not hold compressed 

conceptions (Gray & Tall, 2007; Chin, 2013; Tall, 2014), of the big mathematical ideas 

which were used to solve the word problems.  

 

In writing the above, I do not aim to pour cold water on my participants’ efforts – indeed, 

wearing my teacher’s cap, I am rather proud of them – rather, my concern is based on 

my own intuitive and experiential knowledge, obtained as it is, through many years of 

working as a teacher.  

 

Mayer (1997, p. 387 – 398) differentiates between expert and novice problem-solvers, 

suggesting that while experts may not have greater cognitive skills than novices, 

experts in a particular field hold more specific domain knowledge of the field than 

novices, and can easily chunk together related aspects of their field into useful 

configurations. But largely, for the duration of the module, the participants did not easily 

find links between the various, linked mathematical ideas that were covered by the IPS 

413 E module.  

Further, Mayer (1997) also suggests that experts typically hold at least 50 000 chunks 

of domain-specific knowledge and he suggests that, as a minimum, such knowledge 

is rarely acquired in less than about ten years of intensive study. Thus, because they 

have accumulated large stores of factual knowledge, semantic knowledge, schematic 

knowledge, strategic knowledge and syntactic knowledge, experts excel where their 

domain-specific knowledge is required.  

 

Thus, operating as they were off the low arithmetic and word-problem, problem-solving 

bases that were uncovered by the Action Cycle 1 prior knowledge assessment tasks 
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(4.3 and 4.4), I hesitate to believe that the students can have turned around those 

deficits in the course of one, semester-long mathematics module. I think that they think 

that they know their work, but in fact, the fabric of their understanding remains thin. 

However, I also anticipate that time and the accretion of learning experiences will 

gradually propel the students towards mastery of their subject. 

 

Therefore, in short, a severe limitation of this research is an acknowledgement that it 

is not possible to turn around in one semester, manifold misunderstandings of 

mathematical ideas and word-problems. Indeed, given the problematic nature of 

particularly the first quarter of the 2016 academic year, and thereby the limited time 

that was made available for teaching and learning mathematics, I believe that a third 

action cycle, should that have been possible, would have proved very beneficial.  

 

This view finds agreement with Herr and Anderson (2005, p. xvi) who write, “In fact, it 

is often difficult to think of action research as a linear product with a finite ending, as 

successful projects can spiral on for years.” In effect, a more substantial and sustained 

investigation into the potential applicability for supporting and enhancing 

understanding of word problems would produce a more trustworthy outcome. 

 

Another limitation must be that the research was undertaken by one researcher with 

only one cohort of participants which thus brings the question of generalisability into 

focus. Further, the IPS 413 E – Mathematics cohort comprised 60 persons of whom 

only 38 became participants and of those participants, on occasion, only 13 students 

responded to the data collection instruments.   

 

So, even within the participants, it is not possible to categorically make any form of 

broad inference. Thus, clearly, the work is not generalizable. However, as discussed 

earlier (1.10 and 3.12) albeit that this research offers an account of only one action 

research project, the real strength of this type of work lies in the construction of many 

similar research undertakings, conducted in different settings and undertaken by 

different researchers, such that the whole is greater than the sum of its parts. 
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5.6  PROBLEMS ARISING DURING THE RESEARCH 

Three, somewhat calamitous problems arose during the research, and all of them 

manifested at the point of delivery, within and throughout the two action cycles. 

A first problem, one which came into sharp focus during the administration of the action 

cycles, was the hugely disruptive nature of interruptions that were visited upon our 

classes (4.1.1). Each interruption affected all university classes and thereby 

fragmented the entire teaching and learning programme: where the cause of the 

disruption was a boycott, such action brought with it various forms of intimidation, 

damage to property, and on occasion, police action. The first semester of 2016 also 

enjoyed many public holidays. And, after the Easter holidays, the students were 

unexpectedly placed into local schools for a two-week practicum experience.  

 

To place the above into a context, phase studies modules such as IPS 413 E typically 

enjoy a maximum of about 30 contact sessions per semester. In 2016, after 

discounting the Easter holidays, the semester 1 module might have had 29 lessons. 

However, the IPS 413 E module lost four lessons to class boycotts and a further five 

lessons enjoyed very low and very late attendance figures. The coincidence of public 

holidays cost the module an additional three lessons, and the school practicums 

accounted for a further four lessons away from IPS 413 E classes. In the end, only 13 

full and unimpeded lessons were retained; these were supplemented by three extra 

lessons that most students did attend. 

 

In 4.1.2, I have explained that a second big problem lay in the difficulty that I had in 

obtaining an ethical clearance certificate for the thesis. Institutional mistakes prevented 

it being released and so, other than recording day-to-day experiences with the IPS 413 

E cohort for the duration of Action Cycle 1, no formal qualitative research could be 

undertaken. The ethical clearance certificate was eventually presented to me on 23 

March 2016, but I was only able to finally get consent forms signed off by willing 

participants on 18 April 2016.  

 

A third problem, one which confronted the IPS 413 E cohort directly (4.1.3), was a 

three-way standoff between the Department of Basic Education – Eastern Cape, 

previously graduated PGCE students and some, included my own, regional 

universities. While officials from the department took a position that many of the 
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PGCEs’ qualifications were invalid, the universities held a different position. The 

previously qualified PGCE students were threatened with expulsion from their teaching 

posts while, in our classroom, the 2016, IPS 413 E participants looked on in dismay. 

This situation remained unresolved for the duration of the semester and thus weighed 

heavily on the research participants. 

 

5.7  RECOMMENDATIONS  

This thesis has demonstrated that many of the PGCE participants who registered for 

the 2016, IPS 413 E Mathematics module entered the programme holding low 

arithmetic and word-problem, problem-solving skills sets. These participants’ 

knowledge of mathematics were steeped in mathematical traditions which promoted 

transmission mode teaching, rote learning and the use of only symbolic 

representations of mathematical ideas.  

 

The thesis has subsequently demonstrated that, although initially met with some 

scepticism and misunderstanding (Barmby et al., 2013; Poch, van Garderen, & 

Scheuermann, 2015), when the participants became fully engaged in a mathematics 

module which used many manipulatives and iconic stimuli to explain mathematical 

ideas, most participants found the visual methodology refreshing, educationally 

beneficial, and accessible.  

 

Indeed, while it is tragic that something as simple as a packet of biscuits shared in a 

ratio of, for example, 2 : 5, or a sketch of a bisected circle, as a visual representation 

of 1/2, should be perceived as novel and deeply enriching by the PGCE participants, 

nonetheless, such simple apparatus have liberated arithmetic and word-problem 

mathematical potentials (Presmeg, 2009; Duval, 2013; Clements, 2014; Wilkie & 

Clarke, 2014; Mhlolo et al., 2012).  

 

I think it is fair to suggest that the participants who were registered for the 2016, 413 

E Mathematics module were typical of PGCE students found in other universities in 

South Africa. That being true, I think it is fair to suggest that students who register for 

PGCE programmes in the foreseeable future will present levels of mathematical 

distress and ineptitude which are similar to those in this research group: largely, they 

will be bound together by similar histories and experiences of mathematics.  
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If this is true, then those students might also respond well to the use of visual tools 

(Naidoo, 2012), (2.6.3.3) which foster embodied cognition (Boaler et al., 2016), 

(2.6.3.4), and can mediate for the complexity of mathematical explanations (Mudaly, 

2010), (2.6.3.5). I think that visualisation-oriented research projects which foster, for 

example, a deep relational understanding of multiple applications for number-lines or 

fractions and ratios, etcetera, may uncover liberating, novel and innovative learning 

opportunities for other PGCE students.   

 

5.8  CONTRIBUTIONS MADE BY THIS RESEARCH 

Authors such as Adler et al. (2009, p. 29 - 36) and Parker (2009, p. 19) encourage 

research into primary mathematics teacher education in South Africa and hold views 

that PGCE students may hold a key to repairing the poor state of mathematics teaching 

in our country (1.9). Such is the breadth and depth of the crisis in teaching and learning 

mathematics in South Africa that Bloch (2009, p. 58) referred to it as a “national 

disaster.” 

 

One small contribution made by this thesis is that it has demonstrated that, albeit that 

the PGCE participants may have many other skills-sets, in this cohort, and most-likely 

in others, their understanding of low-level, routines-based arithmetic and their word-

problem mathematical capacities were muddled. In fact, because of the prevalence of 

such misunderstandings, often the pivotal research task – visualisation applied to 

word-problems – had to give way to first reconstructing numerous unpinning arithmetic 

skills and conceptions. Thus, it is important that university academics do not 

underestimate the magnitude of the mathematics deficit held by PGCE students and 

take steps to ameliorate mathematical myths and misunderstanding.  

 

A second small contribution made by this thesis is that the research data has 

demonstrated that the application of visualising scaffolds as a teaching and learning 

methodology, can enhance PGCE students’ understanding and improve success 

rates in solving Intermediate Phase word-problems. The research has been shown to 

ameliorate Gooding’s (2009) difficulties with word-problems and has confirmed the 

positive views regarding the benefits of visualization as held by Presmeg (2009); 

Duval (2013); Clements (2014); and Wilkie and Clarke (2014), among others. It has 

also shown congruence with modern approaches to teaching mathematics (Mhlolo, 
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Venkat and Schäfer, 2012), and has used easily sourced visual tools, (Naidoo, 2012; 

du Toit and Kruger, 1993; and Boaler et al., 2016).  Over time, many participants 

began to embrace the visual methodology (4.15). Thus, I think that it is fair to suggest 

that this research introduced the PGCE participants to a productive methodology and 

liberating pedagogy (Adler et al., 2009). 

 

5.9  AUTOBIOGRAPHICAL REFLECTION 

The thesis has enjoyed the complementary and intertwined aspirations of 

emancipatory and practical goals, one infused into the other. The emancipatory goal 

sought to liberate new mathematical potentials for the participants while the practical 

goal sought to improve my own practice. My conception of these goals is of their being 

in harmony, one balancing with and fortifying the other; any improvement in one, 

beneficially effecting the other. 

 

The first section in Chapter 2 (2.1) was created as a consequence of my reflections 

about the Thinkboard activity which I administered in the very first lesson of the 2016 

academic year. The thinkboards presented copious evidence of much hurt in previous 

mathematics experiences. I felt that this hurt needed a comprehensive philosophical 

response. Thus, I tried to construct a robust explanatory framework of my own 

philosophy of a good education. Such a philosophy, I believe, must influence one’s 

epistemology and ontology and would also guide pedagogical and methodological 

practice and habits.  

 

This writing (and thinking) spoke to the emancipatory goal of my research and could 

be fruitfully located within the significance of the study (1.8), in which the research was 

conceived to find “productive ways for teachers [vis-à-vis, student teachers] to learn 

and/or re-learn subject content to prepare them for teaching” and would try to find, 

“ways of offering and inducting teachers [student-teachers] into new experiences of 

teaching to broaden their pedagogical imagination” (Adler et al., 2009, p. 29). Such 

productive ways and new experiences, I believed, would create liberating educational 

experiences for the participants. An additional motivation is found in the rationale of 

this thesis (1.9) which broadly, speaks to a desire to find ways to improve mathematics 

understanding in South Africa.  
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These considerations informed the writing in the literature review which came under 

the heading, Two Affective Influences on my Personal Perspective (2.1). 

 

In (2.1.1),  I reflected upon Plato’s Allegory of the Cave which was used as a metaphor 

to explain, on one hand, humankind’s often distorted perception and understanding of 

their world and their pervasive sense of helplessness and, on the other hand, the risks 

and ultimate joys and fulfilment which are encountered when one seeks out 

knowledge, liberty and self-actualization. I used the allegory to suggest that 

transmission mode teaching methods shackle students’ learning opportunities while 

liberal teaching methods encourage self-sustained effort and foster deep 

understanding. 

 

Further, from Freire, (2.1.2), I indicated that we are all ontologically driven to become 

more human. As a result of this ontological disposition, in any situation where some 

are oppressed by others, revolt by the oppressed over their oppressors will occur. 

Transmission mode teaching practices are oppressive in nature – Freire calls these 

banking mode practices – and as such they disenfranchise students: he calls for their 

overthrow in favour of a liberating model of education in which cognition supplants rote 

learning and understanding replaces the habit of low-order memorization. Thus, is can 

be seen that philosophically, Plato and Freire hold similar ambitions for the outcomes 

of the educational process. 

 

With the above in mind and now, with the benefit of having completed the face-to-face 

parts of the action research, I have come to realise that the philosophical intentions – 

the emancipatory intentions - have remained somewhat unrealised. I have had to 

acknowledge that often I/we, teacher and participants alike, stymied our own 

progression towards liberation.  In our journey we fell into the traps of our past habits: 

all too easily and all too often, the participants turned to me to seek advice on the next 

step, the next calculation, and all too effortlessly, I obliged.  

 

Notwithstanding the fact that every PGCE participant entered the programme as a 

university graduate, their prior exposure to transmission-mode teaching and banking-

mode learning approaches made it difficult for them to move forward independently. 

Typically, most participants could not or would not seek support from their peers nor a 
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text-book nor an online reference. Instead, they turned too easily to me. And, all too 

easily, I readily provided support, thereby contributing to their dependency.  Thus, 

unhappily, I have realised that often, far from stretching and liberating potentials, I have 

acted as a benevolent oppressor of deep learning. And this, a complete contradiction 

of my philosophical aspiration. 

 

In Chapter 2 (2.1.1), I wrote that Plato suggests that the, “eye that cannot be turned 

around from darkness to light without turning the whole body [my emphasis]” (Plato as 

cited in Curren, 2007, p. 22). However, when I reflect on the overall circumstance of 

the action cycles, I find that this full turning of the whole body has not occurred. I think 

that three impediments diluted that ambition. 

  

1. I think that the pressures brought to bear on the programme by the boycotts, 

partial and late attendance in class, the coincidence of public-holidays falling on 

teaching days and the unanticipated School Experience practicums put 

enormous pressure on us all to, at the very least, get through it.  

2. Further, my own ineptitude may have conspired against the liberalisation of my 

students’ potentials. I have often stated to colleagues and students that I remain 

an emerging social constructivist who, too easily, falls back on transmission 

mode teaching practices: I think, I reverted to this fall-back position too easily in 

the 2016, IPS 413 E Mathematics module. 

3. I think that some progression towards liberalisation was effected and is evident 

in the discussions contained within the focus group interview (4.13), and the 

post research questionnaire (4.15). However, my own ineptitude aside, I found 

it difficult to overcome the previously inculcated dependency habits that the 

participants had acquired and brought into our classroom. 

 

Continuing with item 3, above, and not to play around with the semantics of phrases, I 

realised that it would be inaccurate to suggest that I had partly liberated the participants 

from the yoke of banking model practices. Plato wrote of turning the whole body and 

Freire of our ontological disposition to become more human by liberating ourselves 

from oppression. One cannot be a little bit pregnant, a little bit dead, a little bit liberated. 

And so this is why I chose the words in (3) above, that we had made some progression 

towards liberalisation. 
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Albeit that I pay a great deal of attention to my teaching practice, this research 

opportunity has highlighted problematic issues which have now become foregrounded 

in my consciousness. This heightened awareness has enabled me to grow as a person 

and to thereby improve some aspects of my practice, thus enabling me to fulfil the 

practical goal of my thesis. Below, I discuss two of these problematic issues, and 

stratagems that were used to work through the problems, and after that, I also discuss 

my sense of the high and low points in attending to linking visual scaffolds, 

understanding and word-problems together. 

 

1 

I have already written about the fact that the first semester of 2016 was disrupted by 

stay-aways, intimidation, political rallies, hot and humid working environments, water 

shortages, questions raised about the status of the PGCE qualification and future 

employability, fees, queues and administration issues (4.1.1 – 4.1.3). All of these 

upsetting features talk directly to a pervasive oppression of the ontological well-being 

of the participants (Freire, 1997). However, if I set aside issues of philosophy, 

pedagogy, methodology and epistemology for a moment, common sense suggests that 

these constant threats to the participants’ well-being (Maslow, 1943), might possibly 

have constantly been uppermost in their minds. And, it is quite conceivable that for the 

greater part of the semester the participants might have been preoccupied with such 

manner of things thereby precluding focused attention on their mathematics. Below, I 

refer to issues pertaining to the development of additive reasoning in our classroom. I 

use this text to offer an example of the absentmindedness which plagued our lessons. 

By extrapolation, this exemplar can be expanded to include many other mathematical 

facts, operations, processes and ideas that proved difficult to assimilate. 

  

In our classroom meetings, I was struck by the fact that I had to repeatedly visit many 

foundational additive ideas, even to the point of demonstrating to the participants, as 

an example, how it is that we might add big numbers. The point I am trying to raise 

here is not de facto that I had to revise columns-based addition, rather, it was the fact 

that this revision extended even to the point of repeatedly negotiating the alignment of 

the digits - units in the units column, tens in the tens column, etcetera. Figure 4.13, in 

(4.3.1) provides a good example of this columns misalignment.  
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In the classroom, and from the data in the assessment tasks, it became clear that the 

poor setting out habits that the participants used, in part demonstrated a haphazard 

approach to the exposition of their thinking and also, in part, demonstrated that the 

participants did not understand why and what they were doing. Maintaining the 

example of adding large numbers for the moment, I realised that the difficulties that the 

participants had with addition in columns and of not attaching meaning to the positions 

of the digits in the columns was confirmed by their inability to rewrite a textual number 

in digits. An example is provided in Figure 4.25 in (4.5.6).  

 

In the course of the first quarter, I realised that firstly, a meta-concept of addition (and 

of the other operations) was not in place, and secondly, that the limited support that I 

had offered to brush aside cobwebs had not been effective. As the magnitude of this 

misunderstanding of addition, and many other intersecting misunderstandings of LOT 

foundational arithmetic concepts dawned on me, I had to pause to consider a route to 

follow to improve the participants’ additive understanding.  

 

At the back of my mind, I was constantly mulling over the fact that any investigation 

into word problems, whether by novel or traditional means, required first, a good 

conception of number sense and arithmetic competence. I also knew that albeit that 

informal and intuitive ways of knowing and solving mathematical word problems could 

take the participants a long way, in the end, these techniques must be absorbed into 

more formal mathematical conceptions and computations and that these computations 

were underpinned by many foundational arithmetic competences. 

 

Also, because of the shrinking number of lessons that were available to me in the first 

quarter, I had to acknowledge that most of the support I would offer would occur in the 

second quarter of 2016. And, that itself, the second quarter, was a short quarter.  

 

In the second quarter, more often that I would have wanted to, or care to admit to, I 

often adopted a direct instruction teaching strategy. I had not set out to do this – in my 

preparations for the thesis, I had envisaged a great deal of interaction and self-directed 

study – indeed, I had created many resources to support this liberating objective, but 

in class, it just did not happen.  
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Direct instruction, also called explicit instruction, offered me many benefits. These 

benefits include enabling me to (1) provide a broad overview of new areas of study; (2) 

to provide engaging and accessible demonstrations of ideas such that the participants 

would become curious to know more about a topic; (3) to teach explicit facts and skills 

to struggling participants; (4) to create a non-threatening teaching and learning 

environment in the classroom; and (5) to assist participants to learn more deeply from 

guided learning rather than self-discovery (Killen, 2015).  

 

Directed instruction is also useful in situations where teacher demonstrations can offset 

the absence of sufficient materials for the learners to use, and, directed instruction 

facilitates teacher reflection (Killen, 2015). In my own classes with the participants, a 

manifestation of this absence of sufficient materials was occasioned by the fact that 

the participants were encouraged to bring bottle tops to class (of which there are an 

abundance) but steadfastly seemed unwilling to do so (4.1.6). Thus, my own use of 

bottle tops, as a directed instruction demonstration served a purposeful role.  

However, these good points about directed learning aside, I have also indicated that 

occasionally, to move things forward, the teaching and learning reverted to a 

transmission-mode, banking model (5.2.4), which has become a bitter pill to swallow. 

 

The activities that were occasioned by the participants’ inability to add large numbers 

were handled in a manner congruent with my exposition on multiplicative reasoning 

(4.1.6) and fractional reasoning (4.1.7). For addition, (1) we explored aggregation – 

demonstrated and visualised in our class as groups of objects which are brought 

together and linked with stem questions such as, altogether, how many; (2) addition as 

augmentation, presented on structured and unstructured number lines and linked 

visually to doubling and halving and directed numbers; and (3) the commutative law. 

 

The big takeaway here is not the mathematical approach or the activities and exercises, 

but rather, the stubborn persistence of low uptake of mathematical ideas. I have stated 

before that the participants were a lovely group of seemingly committed students. 

However, their inattention to addition and the continuing issues that they had with 

addition, became a red flag in my consciousness. The participants were constantly in 

need of support – of the same issues – such that even though certain additive points 
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might be considered as LOT skills or facts, each time they encountered that particular 

arithmetic problem, it was as if it was first time that they encountered that problem. 

 

In class, the short explanations about ideas that had been unpacked in previous 

lessons were typically met with silence or obscure questions. In our classes, time 

seemed to drag, even to the point where it might take minutes for some participants to 

put pen to paper: nor was this delay because deep contemplative thinking preceded 

writing or even opening a book. These factors alerted me to the fact that very few of 

the participants were engaging in any form of self-study. And, pursuing this train of 

thought, I picked up a sense that the participants were distracted, which indeed, they 

attested to. Participants complained that the various strike actions, etcetera (4.1.1) 

were wasting a great deal of time; others, speaking about the problems with the 

Department of Basic Education, (4.1.3), questioned the viability of the PGCE 

programme. Thus, it is fair to suggest that at least in part, this distraction was an answer 

to the oppressive, ongoing problems which occurred during the action research period 

in semester 1 of 2016.  

 

Of deep concern is the fact that as I write this, in June 2018, the upheavals which were 

experienced in semester 1 of 2016, continue unabated. In my own institution, for 

example, semester 1 of 2018 began with a three-week boycott of classes by the 

students; today, 14 June 2018, many university staff have entered into their third day 

of strike action: they have closed down the university and put a halt to the mid-year 

exam processes. One can imagine the negative ramifications which extend outwards 

from this action… Further, this type of turmoil is being experienced by higher learning 

institutions across South Africa. It is conceivable that these distractions will have a 

long-term negative impact on the quality of teaching and learning. 

 

2 

While I have always been obliquely aware of the difficulties that English Second 

Language (ESL), (Nel & Nel, 2016) learners might have when they try to negotiate and 

attach meaning to English words and phrases in mathematical word problems, this 

thesis has provided me with an opportunity to closely scrutinise this obstacle.  
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Due diligence was applied to the construction of the numerous text documents that the 

participants received in the course. These documents included assessment tasks, 

questionnaires, support texts, etcetera. However, the written replies in the assessment 

tasks, (4.8.3), demonstrated to me that seeming innocent turns of phrase such as one 

third the number of, double, twice as many, etcetera, are actually heavily laden with 

meaning-filled nuances of the English language that were not easily available to 

participants who, as a matter of course, did not think and speak in English.  

 

In as much as udibaniso, uthabatho, uphinda-phindo, and ulwahlula-hlulu are 

meaningless arrangements of letters to the uninformed mind, but to isiXhosa speakers 

imply addition, subtraction, multiplication and division respectively, so too, I realised 

that unintentionally, terms such as rounding off and carrying over, could create 

cognitive havoc in ESL learners. 

Thus, I was faced with a conundrum: words such as doubling and halving, estimating 

and compensating are operationalised terms in the CAPS documents (Department of 

Basic Education, 2011). Further, in South Africa, we have adopted a learning strategy 

called additive bilingualism which suggests that while children’s home languages are 

cherished, in our schools, an additional language is introduced into their learning 

experiences (Nel & Nel, 2016). An expression of this additive bilingualism is that in the 

Intermediate Phase, teachers and learners in South African schools are required to 

conduct mathematics lessons in either English or Afrikaans. In other words, such words 

are part of the learned mathematics curriculum. 

 

In the participants assessment tasks (4.4.4), in the written replies in the questionnaires 

(4.11.2.1), in their discussion in the focus group interview (4.13.4), and in their chats 

with me in class, it became very clear that in word problems, a single word or 

misinterpreted term could throw participants off balance. Indeed, as has been 

mentioned before, the phrase has half the number of  had proved to be a sticking point. 

I knew that there were numerous other ways to describe the same situation – Thabo 

has twice the number of…; Thabo has double…; Thabo has two times as much, and 

so forth. And I knew that different turns of phrase might offer some respite. So, indeed, 

these alternatives were used in my classroom. But I also knew that there was no getting 

away from the sticky words and phrases: thus, those terms had to be scaffolded and 

worked into the participants’ vocabulary and conceptual framework of mathematical 
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understanding. To do any less, would be to short-change the participants of valuable 

mathematical knowledge.  

 

Rickard (2013, p. 3) suggests that because mathematical communication and 

reasoning is underpinned by very a specific use of vocabulary, “learning mathematics 

is somewhat akin to learning a foreign language.” Such vocabulary has to become a 

part of a metalanguage of mathematics (Killen, 2015), and opportunities have to be 

built into lessons to specifically address the mathematically-contextualised meanings 

of problematic vocabulary. Haylock (2002), suggests many student-teachers struggle 

with the technical jargon in mathematics. Killen, (2015) explains how terms such as 

integration and equality, used in mathematics and social sciences classes, in different 

contexts come to mean different things. Because the vocabulary that is used in 

mathematics is tightly linked to mathematical concepts, symbols, diagrams and 

processes, each term must be deeply understood in terms of its mathematical 

application and context (Van De Walle, Karp & Bay-Williams, 2010; Siemon, et al., 

2013).  

 

Tipps, Johnson and Kennedy, (2011), suggest that when we are teaching LEP students 

– that is, students with limited English proficiency – it is important to avoid using slang 

and colloquialisms. Further, when we discuss mathematical ideas, teachers should be 

even-paced, enunciate clearly, use gestures, facial expressions and visual scaffolds. 

They should speak and write in short sentences and offer many summaries. In such 

classrooms, of which there are an abundance in South Africa, our learners should be 

encouraged to use code-switching. Code-switching encourages ESL to seamlessly 

revert from the language of learning and teaching (LoLT) to their mother-tongue and 

back. The view we hold is that by discussing mathematical ideas in both languages, 

ESL learners can make deep connections with vocabulary and concepts (Nel & Nel, 

2016) and thereby can come to “know how, and also know why” (Ma, 2010, p. 108). 

 

With the above in mind and coupled with the other considerations and actions that were 

discussed in (4.1.6) multiplicative reasoning, and (4.1.7), fractional reasoning, I 

realised with fresh eyes that action had to be taken to assist the participants to make 

sense of problematic words and phrases. In this regard, the visualisation strategies 
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which were conceived to be worked into assisting the participants to solve word 

problems, were roped in to unpack difficult words and phrases. 

 

A handful of bottle-tops, pulled out of a pocket and dumped onto a display table, 

enabled me to explain, for example, estimation and rounding off. Similarly, a sharing 

of biscuits, in different ratios, with different numbers of participants, allowed us to 

explore vocabulary and notions of common denominators, numerators, ratios and so 

forth, and also enabled me to enjoin these ideas with phrases such as double, twice, 

one third the amount as, etcetera. Thus, with a portable chalkboard at my side, and 

many, numerous found resources at my disposal, it became quite easy to explain and 

integrate words and ideas in enactive, iconic and symbolic ways. 

 

The vocabulary and concepts linked to squares and square roots serves as example 

of how guided learning and sustained attention to problematic mathematical ideas can 

eventually bear fruit. In the first action cycle, as discussed in (4.5.7), a LOT question 

(Q4.3) on squares and square roots returned scores of 3% and 32% in the prior 

knowledge and re-evaluation tasks, respectively. In the second action cycle, a similar 

question (Q3.8) returned 22% and 89%. In each action cycle, in the periods between 

the prior knowledge and re-evaluation assessments, I discussed these problematic 

questions with the participants and demonstrated how it was that squares and square 

roots are incorporated into our mathematical thinking. I found that the words 

themselves were as problematic as the concepts they represent (4.11.2.4). Indeed, my 

directed teaching revealed two big unanticipated misconceptions that informed many 

participants misunderstanding of squares. 

  

The first misconception that was addressed was the mistaken view that some 

participants had that any rectangular quadrilateral was in fact a square. Thus, the 

defining properties of squares has to be re-established. A second misconception, 

indeed an IFI based conception, enjoined participants to perceive the unit squares 

contained within a larger square of, for example 9 units of area, as being of a congruent 

size. In order to facilitate that uptake, I literally used small, square wall tiles, to tile 

squares of 1 unit of area, 4, 9 and 16 units of area. This visual methodology enabled 

us to clarify the vocabulary that is linked to squares and square roots, and as an 
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extension, enabled the participants to conceptualise and estimate the square roots of 

for example, 7 or 15. 

 

Thus the big takeaway here was that the misunderstanding of many pieces of 

mathematical vocabulary was quite easily renegotiated for understanding through the 

application of a visually-rich directed teaching and learning mechanism. And of course, 

with this renewed understanding of pivotal mathematical vocabulary, the participants 

were empowered to concentrate more attentively on the asking requirements of the 

word problems that were presented to them.  

 

I that I believe that, as a result of reflexive practice, I managed to create a course which 

blended contact lessons and learning experiences with outside-of-class tasks; I also 

designed into the programme multiple opportunities for the participants to engage with 

the materials, discuss ideas and construct their own knowledge and all of this done 

reflexively, as practical manifestations of my attempts to improve my own practice, and 

hence, provide improved support to the participants.   

 

I also believe that in as much as many opportunities for personal growth were 

presented to us, for different reasons we all missed some of those opportunities, and 

thereby, must acknowledge that our transit must continue. I believe that, had there 

been more time to co-operate with each other – a third action cycle perhaps – we might 

have begun to make real inroads into developing a comprehensive, visualising strategy 

for solving word problems, but as it stands, that work is unfinished. 

 

3 

I first started to purposefully look at visualising word problems in Intermediate Phase 

mathematics about ten years ago. At that time in South Africa, a circumstance of new 

versions of mathematics curricula called for constant reinvention and thereby offered 

us opportunities for exploration. Further, data from international, regional and local 

assessments demonstrated the parlous state of mathematics teaching and learning in 

South Africa. And, in my geometry classes, consecutive cohorts of undergrad students 

were displaying less and less competence in perceiving three dimensional objects, 

drawn in two dimensions, in either a textbook or on a chalkboard. This visualisation 
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problem, in turn, drew me to Bishop’s (1983), conception of IFI – interpreting figural 

information and VP – Visual Processing.  

 

As such confluences of intersecting issues can do, an unintended consequence of the 

above revealed to me that countries which had successfully modernised their 

mathematics curricula had placed emphases on relational understanding and 

contextualised learning. I think, in principle, we too recognized the importance of such 

aspirations, but we were, and continue to be, less successful. Also, in those countries, 

in primary school education, enactive and iconic modes of representation were used 

to great effect to liberate learners’ mathematical understanding. Again, to be fair, I think 

that most South African mathematics teachers have always made use of some 

concrete apparatus, some posters, some chalkboard sketches. 

 

I also found that in other countries, teachers were taking the lead offered by the 

Singapore Mathematics method and applying it, in different ways, into their own work 

(Cheong, 2002; Ng & Lee, 2005; Looi & Lim, 2009; Naroth & Luneta, 2015; Dennis, 

Knight & Jerman, 2016). I found that visualisation was beginning to play an increasingly 

important part in developing mathematical reasoning and understanding. And indeed, 

I found that visual models were being used to solve arithmetic word problems. Often 

presented in the form of rectangular bars, learners constructed and used these visual 

scaffolds to solve mathematical word problems. To be fair, in South Africa, many 

teachers picked up on these novel ideas. Indeed, at one stage, my own work used a 

number of open-source Mathematics Learning and Teaching Initiative (MALATI) 

teaching ideas that were developed in South Africa. That resource too, was heavily 

oriented towards relational understanding and incorporated many visual scaffolds into 

its teaching and learning programmes. 

 

At about that time, ten years ago, the demographic in my mathematics classes started 

to change. From classes of maybe twenty to thirty undergrad students, and 

occasionally sixty, we began to move towards classes of one hundred-and-fifty to two 

hundred and often, over three hundred students. Similarly, the mathematics profile of 

the students began to change from a position where most students had had a 

satisfactory to excellent school experience of mathematics to one where many students 

now enter our classrooms holding very low, instrumentally learned, conceptions of 
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mathematics, and from students who mostly came from English speaking homes to 

now, mostly isiXhosa. 

 

With all of the above in mind, I was drawn to the potentially liberating promise that was 

offered by the visual approaches that were being used in other countries. And so I 

began to saturate myself in readings which reported on applications of these 

approaches and then began to create my own courseware for delivery in my own 

classrooms. My first big foray into the deliberate use of visual scaffolds to solve word-

problems occurred in 2011/12 when I was a member of a university/NGO collaboration 

with a mathematical group of professional teachers and academics at AIMSSEC. In 

this programme, I introduced the visual teaching and learning strategy to carefully 

selected, small groups (±25 per class) of highly talented teachers in a four-year long, 

mathematics outreach programme. The programme offered these teachers an 

additional professional qualification – the Advanced Certificate in Education 

(Mathematics)(Course Code: 50042) and carried an honour-based stipulation that the 

participants shared – we used the term, cascade – their newfound knowledge with 

other teachers in their communities.   

 

The work was very successful but I learned that some those participants perceived the 

visual approach and the vocabulary that I used as a layer on top of our CAPS informed 

studies in mathematics, so much so that it was perceived by some as – we are doing 

CAPS and Singapore Mathematics. However, (and I picked up this train of thought in 

other, university-based classes), that was not the intention, thus I backed off a bit. I had 

introduced my explanations about Singapore Mathematics and the use of terms such 

as Part-Whole, Comparison, Change and Remainder Concepts, etcetera, into our 

lessons to contextualise our work, but for some students, the strategy was perceived 

to usurp CAPS. But that was not the intention so I backed off.  

 

However, I was very taken with the way that the visual models could be tied into fraction 

walls and fraction ribbons – in fact, in many foundational applications of the model 

method that is all that the bars really are. Further, in the Intermediate Phase, arithmetic 

word problems typically invoke the use of the operations, common and decimal 

fractions, percentages and ratios.  I knew that these types of computations lent 

themselves to visual representations and my experiential knowledge showed me that 
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students in different classes had found visual conceptions of fractions and the 

operations novel and invigorating. So, I remained confident that visual stimuli, in the 

forms of found resources and suitable diagrams – enactive and iconic representations 

– could assist students to solve word problems. 

 

So, largely, I backed off making a thing of Singapore Mathematics, the model method 

and the attendant turns of phrase. But, with renewed understanding, I began to invest 

a lot of energy into reconstructing my own coursework and introduced activities which 

contained layers of found resources, arrays, number lines, area models, fraction wall 

and ribbons and so forth into my conversations with my students. And this thesis, and 

its aspirations, are a product of that work. What I have tried to do is find out what works, 

is problematic, and so forth so that the participants and researcher/teacher alike, 

benefit from the this new knowledge.  

 

At the very beginning of Action Cycle 1, the evidence that was presented to me in the 

thinkboards and prior knowledge assessment tasks suggested that many previously 

learned but misremembered foundational facts and processes would need to be 

repaired. I was aware that the successful solution of the arithmetic word problems 

rested on the foundational skills and knowledge. Thus, it suited my purposes to invest 

time and energy in assisting the research participants to deeply understand the 

operations, common fractions, ratios and so forth. And that work, in turn, enabled me 

to link many enactive and iconic representations of mathematical ideas and processes 

to the participants’ flawed symbolic understanding. 

 

Because the problems that were encountered in this work have been discussed at 

many points in the thesis, I will not discuss them at length here. Rather, it is important 

to comment on the slow, but certain, uptake of the visual scaffolds by the participants. 

Their understanding of fraction walls, fraction ribbons, equivalence and the like took a 

long time to form, much longer than I had anticipated. However, as their embryonic 

understanding produced more sustainable schema, and as their instrumental learning 

gave way to a more relational understanding of their mathematics, so too, their ability 

to construct beneficial visual scaffolds moved from mimicry to the conception and 

construction of thought-filled representations. Of course, I am very pleased that this 

happened, and indeed, the data demonstrates these improvements nicely, but I am 
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always cognisant of the low level at which we work working and the limited number of 

mathematical ideas that were applied to our studies. 

 

In the early stages of this research, when I was assisting the participants to make sense 

of and draw visual representations – for example, as an array, area model or fraction 

strip – I was insistent that they work neatly and drew the representations in fair 

proportion.  In adopting this requirement, I was informed by (1) my previous geometry 

work with many other students who had been found to not be able to perceive, for 

example, a pyramid within a wire-frame isometric drawing, and (2) by my realisation 

that many participants held incorrect conceptions of fractional equivalence, that is, that 

there are eight eights in a whole and each eighth is the same size as the others. Indeed, 

Cheong (2002, p. 62), suggests that learners need to understand that “a mathematical 

model –  an ‘accurate diagram’ – provides a powerful visual aid,” so bar models should 

realistically represent ideas in sensible proportions. Petit, Laird and Marsden (2010), 

found that drawing inaccuracies are often due to misunderstanding of wholes and 

fractional reasoning. Like Siemon, et al. (2013), I wanted the structures of the visual 

scaffolds to reveal meaning-filled relationships and patterns. I wanted to bed these 

ideas down and I felt that neat representations would facilitate cognitive uptake. I also 

believed that these IFI skills would foster VP reasoning that would be useful later, in 

the word problems calculations.  

 

When I introduced the participants to this work, typically I used models and directed 

teaching methods to unpack the requisite skills and ideas. In the initial stages, the 

participants used apparatus such as small boxes of Smarties©, grid paper, pencils, 

highlighters and rulers to make sense of area and bar models. For example, in one 

early activity, using direct correspondence, the participants constructed bar models 

which contained the same number of cells as there were in the contents of their 

Smarties© boxes. These cells were shaded in, to accurately represent the colourful 

contents of the Smarties© box. Extensions on this work included drawing sketches of, 

for example, adding the yellow and the red Smarties© together, or subtracting the green 

ones from the whole box, or comparing the number of blue with the number of orange 

Smarties©, etcetera. Because the sort-size was small and the context – Smarties© – 

well understood, this early work was quickly and easily linked to common fractions, 

ratios and so forth.  
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Building on the above, when it became obvious that the direct correspondence of items 

and cells within bars would be ineffective with larger numbers, proportional reasoning 

enabled the participants to assign congruent groups to representative cells. Thereafter, 

as the meaning attached to the bars became better understood, and the prescriptive 

neatness and proportional accuracy of the bars found in our earlier work retreated, the 

cells within the bar came to represent many larger and/or smaller amounts. All of this 

work was analogous with model methods that are used in other countries (Ng & Lee, 

2005; Naroth & Luneta, 2015; Dennis, Knight & Jerman, 2016). 

 

However, even in situations where, for example, I presented the participants with grid 

paper and boxes of Smarties©, very often, I found it difficult to get all of the participants 

to fully engage with their activities. Nor could I push this too hard. From an ethical 

perspective, I did not want to be perceived as being exploitative, of using the 

participants for my own means (Robson, 2002), but as their teacher, I wanted to 

encourage the participants to engage with the activities. Thus, I did not go beyond a 

quiet nudge here, a gentle suggestion there, to suggest more involvement.  But often, 

reticent participants did not sustain their efforts. And so this presented me with 

conundrum that I never did completely unravel. Although the foot dragging to class, 

rates of absenteeism, and some of the body-language and gestures that the 

participants used in class, indicated some (internal) resistance, they were always polite 

and cooperative – it was not in the nature of this group of students to be otherwise – 

but, for some, the suggestion that they immerse themselves in their mathematical 

activities, was possibly just a step too far for them to take.  

 

Q4.2, taken from the word problems calculations assessment task in the second action 

cycle can serve as an example to show how visual scaffolds can assist learners to 

solve word problems: Altogether Trevor and Peter have 72 rabbits. Trevor owns 
𝟓

𝟔
 

of the rabbits. How many rabbits does Trevor have? How many rabbits does 

Peter have? It was accompanied by a photograph of rabbits. 

 

In the prior knowledge assessment it achieved an 18% success rate; upon re-

evaluation this improved to 72%. This question, and others like it, was plagued by 

language and arithmetic issues, discussed earlier in the thesis: these problems 
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included making sense of the word altogether and linking the word to a concept of 

whole; of understanding the common fraction and proportional reasoning, and of 

computing verifiable answers. However, those problems notwithstanding, the question 

itself lent itself to many visual interpretations.  

 

Visually, as a drawn representation of the word problem Q4.2 lends itself to being 

constructed as a fraction circle. It would contain six congruent sectors; five of these 

sectors might be shaded. The circle would represent the whole – 72 – while each sector 

would represent a equivalent proportion – 
1

6
 – of the whole. By deduction, the observer 

then perceives that 72 ÷ 6 = 12, and that releases the answers, one 12 to Peter and 

five 12’s to Trevor, etcetera.  

Instead of using a fraction circle, a sixth’s fraction strip might be constructed and the 

word problem could be solved in the same fashion. Alternatively, a comparison – a 

ratio – might be conceived. If this is the case, the participants had been taught to draw 

two bars, one above the other, and in fair proportion, such that in this example, one bar 

would contain five congruent sub-sections, and the other bar, one cell of congruent 

size to the sub-sections in the first bar. The ratio that this visual representation 

presents, reveal 6 parts in the ratio, which encourages division of 72 by 6, and so forth. 

 

The big takeaway for the participants was that as these visualisations began to make 

sense and were understood, their compression and relational understanding could be 

transferred into similar word problems. The numbers and contexts might change, and 

the computations might be different, but the meta-idea would remain intact. Further, it 

then became possible for the participants to integrate enactive and iconic conceptions 

with into symbolic ways of knowing mathematics. Initially, the visual scaffolds were 

used to prop up symbolic understanding, and later, to consolidate it.  

 

Time constrains within the research period precluded properly establishing the 

successful uptake of the ideas, however, from the data in the questionnaire that the 

participants completed after their school-based practicums, I got  the sense that the 

participants had found the use of the visual representations useful for themselves and 

their learners. But, the sustainability of this novel approach has not been established. 
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5.10  CONCLUSION 

In the prologue in this thesis, I acknowledged my own positive inclination favouring the 

use of visualisation as a powerful exemplification tool. Further, in teaching and learning 

mathematical ideas in general and understanding and solving mathematical word-

problems in particular, I hold an opinion that visualisation is an especially useful 

expository ally to both teacher and student. Indeed, in mathematics, I believe that 

properly conceptualised visual representations foster deep, relational understanding 

and can offset barriers which might otherwise preclude students from success. Such 

scaffolds might be constructed by using objects, by drawing representative sketches 

or by conjecturing mental images in the mind. However, I have not set out to prove the 

efficacy of visual scaffolds, that benefit has long been established. Rather, I wanted to 

(1) understand how PGCE participants perceived this, for them, novel approach, to 

perhaps liberate untapped potentials, and (2) through reflexive action, I wanted to 

improve my own understanding.  

 

From an emancipatory and liberating perspective, the data has revealed that the 

participants found the mathematics classes helpful and learning oriented; they enjoyed 

the supportive roles offered by the enactive and iconic representations of mathematical 

ideas and the links that these scaffolds made to symbolic representation; they enjoyed 

the activities-based approaches, explanations and discussions that were the stuff of 

our lessons, and for some participants, a negative predisposition towards mathematics 

was changed to a more optimistic view.   

 

Similarly, the quantitative data has shown that, while it was slow, progress was made 

in assimilating and accommodating many foundational arithmetic skills and processes. 

The participants made inroads into constructing relational understanding of these LOT 

skills and were able to apply this knowledge to solve word problems. 

 

My own work had been improved in many subtle ways. Teaching is a lot more difficult 

than lecturing! Because I was trying to teach the participants how to make sense of 

foundational arithmetic concepts, use visual scaffolds and so forth, often I had to set-

aside my quiet thoughts that – it’s obvious – so as to try to properly understand their 

problems. In effect, their problems become my/our problems.  
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In my activities and in my written correspondence with the participants, I set the 

language and vocabulary levels at the upper end of our Intermediate Phase and lower 

end of our Senior Phase. Somewhat nonchalantly, I believed that this covered the 

bases. However, through the auspices of the thesis, I have learned that I made a 

mistake – I found that seemingly safe English words and phrases and mathematical 

jargon, are in fact saturated in meanings which are not easily understood by 

participants who do not use English as a home language. Because of this revelation, 

I have developed a deep respect for the participants who, daily and without complaint, 

negotiated this mountain. And, I have relooked my own use of the problematic words 

and phrases, not so much to avoid their use, but so as to make sure that they are 

flagged in my consciousness and unpacked in my classrooms. 

 

I am pleased that the participants made sense of our discussions on multiplicative and 

fraction reasoning and could link them to different visual scaffolds that were introduced 

to the lessons. By the end of the semester, were able to use them to good effect. But 

the journey to that end point revealed many conceptual errors which have required me 

to rethink what it is that one can take for granted in my classes.  

 

The facts that initially, the participants could not multiply three digit numbers nor add 

mixed numbers together, etcetera, required a shifting of position within me. These 

foundational problems caused me to more precisely demonstrate/construct-meaning 

with the participants. In many of my courses, I rely mainly on slideshows and a 

document camera but do not use a chalkboard at all. Slideshows and the document 

camera were used for exposition in this research, but in our lessons the chalkboard 

became a constant source of support, a place where we unpacked and discussed 

ideas. The chalkboard offered me a focus and rallying point which is not available to 

me when I use the other expository tools, and thus suggested to me that I should, in 

future classes, make use of its immediacy more often.  

 

Through the academic lens of the Literature Review (Chapter 2) which informed this 

thesis, I have demonstrated that there is now much support for methodologies which 

cast aside tabula rasa teaching and learning methods in favour of techniques which 

liberate meaningful mathematical understanding. Visualisation facilitates such 

liberation: visualisation assists students to construct deep, connected understandings 
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of mathematics. Indeed, within this thesis, evidence of the intellectual beneficiation 

offered by visualising is evidenced in modern-day international and regional 

mathematics curricula and the South African CAPS curriculum, in academic research 

conducted by others, in understanding how we come to know mathematics, and in a 

theory of teaching and learning espoused by Bruner.  

 

The qualitative and quantitative research data, as presented in the Data Collection and 

Analysis chapter (Chapter 4), has revealed that there was some initial hesitation, even 

reluctance, and ineptitude in using visualisation scaffolds by the research participants 

at the beginning of the action research. However, the participants developed an 

emancipating understanding of the methodology and were able to cogently 

demonstrate this understanding in re-evaluation assessment situations.  And, of their 

own accord, the participants introduced visualisation scaffolds as a teaching and 

learning methodology into their practicum school experience praxis. In turn, they 

reported that their pupils warmly embraced the visualisation methodology. 

 

This thesis does not make a claim that visualisation, by itself, is a silver bullet, a 

panacea for all of the ills which may befall student-teachers’ attempts to understand 

and teach mathematical word-problems. Nor do I believe that one six-month long 

intervention can offset years of accumulated myths and misunderstandings of 

mathematical practices and conceptions. However, in broad agreement with the 

literature which informed the research and was actualised using Bruner’s (1980) theory 

of learning (2.7.4), this research has demonstrated that visualisation offers a liberating 

starting point, and in the context of the participants’ previous experiences of 

mathematics, it offers a novel teaching and learning methodology. Crucially, 

visualisation engages both low order thinking (LOT) and high order thinking (HOT), 

(Bezuidenhout & Alt, 2011; Mohammadi et al., 2015); it facilitates instrumental and 

relational thinking; and it promotes deep understanding and compression. 

 

For the duration of the action research, the assimilation and accommodation of visually 

mediated representations of mathematical ideas did not come easily to many of the 

participants in the research. However, with practice and sustained effort, initial, 

floundering attempts and, by implication, misunderstanding, incrementally gave way 

as deeper and more cogent conceptions of arithmetic ideas such as multiplication, 
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fractions and ratios were formed. Further, the confluence of the quantitative and 

qualitative data converge – triangulate – positively, thus it is fair to suggest that within 

the observed period of research, microgenesis occurred. In the end, the main research 

question is answered: Visualisation assisted the student-teachers to better understand 

and solve mathematical word problems by improving their mental disposition to 

mathematics, by applying liberating conceptions of teaching and learning 

mathematics, by introducing novel, visual ways of knowing mathematics, by improving 

foundational arithmetic skills, by assisting participants to construct relational meta-

concepts – compression – of big mathematical ideas.  
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