Self-heating Effects in GaN High Electron Mobility Transistor for Different Passivation Material

Subhash Chander^{#,*}, Partap Singh[@], Samuder Gupta[#], D.S. Rawal[#], and Mridula Gupta[!]

[#]DRDO-Solid State Physics Laboratory - 110 054, Delhi, India

[®]Department of Electronic Science, Kurukshetra University, Kurukshetra - 136 119, India ^bDepartment of Electronic Science, University of Delhi, South Campus, Delhi - 110 021, India

*E-mail: subum1968@yahoo.co.in

ABSTRACT

In this paper effect of self-heating has been studied of AlGaN/GaN high electron mobility transistor (HEMT) for different passivation layers which is promising device for high power at high frequencies. The different passivation layers used are aluminium oxide (Al_2O_3), silicon nitride (SiN) and silicon dioxide (SiO₂). The device GaN HEMT has been simulated and characterised for its thermal behaviour by the distribution of lattice temperature inside the device using device simulation tool ATLAS from SILVACO. The transfer and output characteristics with and without self-heating has been studied for electrical characterisation. The channel temperature for different passivation observed is 448 K, 456 K and 471 K for Al_2O_3 , SiN and SiO₂ respectively. The observed different temperatures are due to difference in their thermal conductivity. This channel temperature information is critical to study the reliability of the device at high power levels.

Keywords: GaN HEMT; Self-heating effect; Passivation material; Numerical simulation

1. INTRODUCTION

Silicon technology has dominated the semiconductor device industry with its established CMOS process since 1960s¹. But there are some applications like light emitting diodes (LEDs), radio frequency (RF) devices, high temperature and high power electronic devices where III-V nitride compound semiconductor have attracted intense interest²⁻⁴. These compound semiconductors have excellent performance at high temperature and at high power operations in the microwave frequency range. The AlGaN/GaN HEMT's having wide energy band-gap are emerging as new promising candidates and attracting lot of attention in last decade for next generation RF/ microwave sub systems. The AlGaN/GaN HEMT's have much better performances than that of conventional AlGaAs/GaAs HEMT's as these have demonstrated ten times greater output power density⁵⁻⁸. Table 1 shows the comparison of some of the important material properties for GaN and other conventional semiconductors materials. Higher current densities which are responsible for higher frequencies and high power performance shift the operating quiescent point of a transistor, results in self heating effects9-10. As the current densities increases the channel temperature also rises several hundred degrees above ambient temperature which reduces the reliability and lifetime of the device. Due to self-heating effect thermal resistance increases (R_{a}) which in turn raises the channel temperature. Self-heating is one of the critical factor that reduces device lifetime and reliability as channel temperature can reach much above the ambient base temperature. This effect can burn metal wires

connecting the chip to the package, and hence result in device failures and reliability issues.

There are different experimental methods for analysing the device channel temperature such as IR thermal imaging, Raman spectroscopy, thermo-reflectance, infrared microscopy and thermography. The experimental methods are very costly and time consuming, to reduce the cost and time numerical simulation methods are preferred. These are more useful and can be calibrated with any experimental method. The numerical simulation methods are more efficient and alternate approach to study the thermal analysis of high power devices¹¹⁻¹².

The finite element method (FEM) is used for simultaneously electrical and thermal simulations though it is time consuming and complex.

In the present work ATLAS from SILVACO has been used for simulation of the devices for thermal analysis and electrical behaviour of the GaN based HEMT's using passivation layers of different material.

Table 1. Semiconductor material properties at 300K

Property/Units	GaN	GaAs	Si
Band Gap, Eg(eV)	3.4	1.4	1.1
Electron Mobility (cm ² /Vs)	800	8500	1500
Saturation velocity 107 cm/s	2.7	2	1
Breakdown Field (MV/cm)	3.3	0.4	0.3
Thermal conductivity (W/cm-K)	1.3	0.5	1.5
Melting point (°C)	2773	1510	1690
Dielectric constant	9.0	12.8	11.8

Received : 22 September 2019, Revised : 13 March 2020 Accepted : 19 June 2020, Online published : 08 October 2020

2. DEVICE STRUCTURE AND PHYSICAL MODELS

The device structure used for simulation ofAlGaN/GaN HEMT's schematic is shown in Fig. 1¹³. It consists of field plate, passivation layer, GaN cap layer, barrier layer and buffer layer grown on silicon carbide substrate. The mole fraction of aluminium in AlGaN barrier layer is 0.2. The gate-drain spacing, gate length and gate-source spacing are 2.7 μ m, 0.25 μ m and 0.8 μ m, respectively. The doping concentration in GaN and AlGaN channels is 1e15 cm⁻³ and 1e16 cm⁻³ respectively. GaN HEMT is grown on silicon carbide substrate because of its higher thermal conductivity. Self-heating effect depends on the thermal resistance and thermal conductivity of material. In this work we considered Al₂O₃, SiN and SiO₂ as passivation materials and there corresponding thermal conductivities are 0.29 W/cmK, 0.185 W/cmK and 0.014 W/cmK, respectively¹⁴⁻¹⁵.

Figure 1. Schematic of AlGaN/GaN HEMT using SiO₂ passivation material.

Various passivation material are studied to improve the performance of HEMT¹⁶⁻¹⁷. Different models are used in device simulator for simulation of devices and these models consists of many equations such as Maxwell's equations, continuity equation, Poisson's equation and drift-diffusion transport equations¹⁸. These equations solve the intricacies of the device operation. Different numerical methods are also used to solve these equations for the device structure of different shape and size. The model used in this paper is field dependent mobility model and lattice heating model through GIGATM. High field mobility models are used to examine the alloy scattering effects on electron transport physics. Lattice heat model is used to include the lattice heat flow equation in ATLAS simulation.

$$C = \frac{\partial TL}{\partial t} \nabla (k \nabla TL) + H$$

where

C= heat capacitance per unit volume

 $\kappa =$ the thermal conductivity

H = the heat generation

 T_{I} = the lattice temperature

The above heat equation is solved by Block algorithm which solves this as Newton solution which further solves a decoupled solution of this heat equation. The four equations are solved in a coupled manner by Newton algorithm. Block and Newton are used for low and high temperature respectively. However the combination of both BLOCK and NEWTON methods are used for better efficiency.

3. RESULT AND DISCUSSION

In this section both transfer, output characteristics and channel temperature are analysed for different passivation material. The transfer characteristic are between output drain current and gate voltage of AlGaN/GaN HEMT as shown in Fig. 2 for $V_{\rm DS}$ =6 V. The gate voltage sweeps from -4.0 V to 1.0 V with different passivation material layers. The application of a gate bias greater than the threshold voltage induces a 2DEG concentration in the channel of HEMT. As shown in figure, there is minor effect on drain current of transfer I-V characteristic of different passivation materials i.e. Al₂O₃, SiN and SiO₂.

The output I-V characteristics have been shown in Fig. 3 for different gate bias voltages Vgs=0.0 V, -1.0 V and -2.0 V, for drain voltage V_{DS} is ramped from 0.0 V to 20.0 V. The device is biased at a gate voltage greater than the threshold voltage to

Figure 2. I_{DS} - V_{GS} (transfer characteristics) of AlGaN/GaN HEMT at V_{DS} =20V with and without self-heating.

Figure 3. Comparison output I-V curve for AlGaN/HEMT with self-heating and without self-heating.

induce a channel at a constant drain bias. In Fig. 3 SiN material is used for passivation for nonisothermal simulation of output I-V characteristic of device structure. The decrease in drain current at $V_{ds} = 20$ V with self heating is 28 percent for V_{gs} = 0.0 V. The drain current decreases less for lower gate voltages and 16 percent for $V_{gs} = -2.0$ V.

Figure 4 show the lattice temperature for gate bias $V_{gs} = 0$ V and the drain bias $V_{ds} = 20$ V for AlGaN/GaN HEMT for SiN passivation material layer. The lattice temperature profile shows that the hotspot occurs at gate edge towards drain. Another observation is that these hotspots are closer to the AlGaN/GaN interface which means that most of the hot electrons are restricted to the AlGaN/GaN interface. The mobility degrades rapidly due to high electric fields. The drain current is reduced due to degradation in mobility as shown in Fig. 4. The maximum temperature around the hot spot observed is 456 K at drain voltage $V_{ds} =$ 20 V with SiN passivation material.

The simulations have been carried out for aluminium oxide and silicon dioxide as passivation material, the channel temperature observed is 448K and 471 K for Al_2O_3 , and SiO_2 respectively. Figure 5 shows the channel temperature of AlGaN/

GaN HEMT by using different passivation material layers with isothermal simulation.

Figure 5. Comparison between the channel temperatures of different passivation materials.

4. CONCLUSION

The rigorous simulations have been carried out for three passivation materials i.e. aluminium oxide, silicon nitride and silicon dioxide of same thickness approximately 400 nm. The transfer characteristics have little effect of isothermal simulation while output characteristics have significant reduction in output current due to self-heating. The channel temperature of AlGaN/GaN HEMT has been observed for different passivation materials and it observed as 448 K, 456 K and 471 K for Al₂O₃, SiN and SiO₂ respectively. The lowest

Figure 4. Lattice temperature profile for AlGaN/GaN HEMT with SiN passivation material.

temperature is for aluminium oxide. This study will be useful to evaluate the device reliability and its performance.

REFERENCES

- Frank, D.J.; Dennard, R.H.; Nowak, E.J.; Solomon, Paul & Taur, Yuan. Device scaling limits of Si MOSFETs and their application dependencies. *In* Proceedings of the IEEE, 2001, 89(3). doi: 10.1109/5.915374
- Chow, T.P. & Tyagi, R. Wide bandgap compound semiconductors for superior high voltage unipolar devices. *IEEE Trans. Electron Devices.*, 1994, 41, 1481-1483. doi: 10.1109/16.297751
- Wu, Y.F.; Kapolnek, D.; Ibbeston, J.P.; Parikh, P.; Keller, B.P. & Mishra, U.K. Very high power density AlGaN/ GaN HEMTs. *IEEE Trans. Electron Devices*, 2001, 48, 586-590.

doi: 10.1109/16.906455

- Tilak, V.; Green, B.; Kaper, V.; Kim, H.; Prunty, T.; Smart, J.; Shealy, J. & Eastman. L. Influence of barrier thickness on the high power performance of AlGaN/GaN HEMTs. *IEEE Electron Device Lett.*, 2001, 22, 268-270. doi: 10.1109/55.962644
- M. Meneghini, N. Ronchi, A. Stocco, G. Meneghesso, U. Mishra, K.; Pei, Y. & Zanoni. E. Investigation of trapping and hot-electron effects in GaN HEMTs by means of a combined electro-optical method. *IEEE Trans. Electron Devices*, 2011, 58(9), 2996–3003. doi: 10.1109/TED.2011.2160547
- Santhakumar, R.; Thibeault, B.; Higashiwaki, M.; Keller, S.; Chen, Z.; Mishra, U.K. & York, R.A. Two-stage highgain high-power distributed amplifier using dual-gate

GaN HEMTs. *IEEE Trans. Microwave Theory Tech.*, 2011, **59**(8), 2059–2063. doi: 10.1109/TMTT.2011.2144996

- Felbinger, J.G.; Fagerlind, M.; Axelsson, O.; Rorsman, N.; Gao, X.; Guo, S. P.; Schaff, W. J. & Eastman, L. F. Fabrication and characterization of thin-barrier Al0.5Ga0.5N/AlN/GaN HEMT. *IEEE Electron Device Lett.*, 2011, **32**(7), 889–891. doi: 10.1109/LED.2011.2143384
- Kasahara, K.; Miyamoto, N.; Ando, Y.; Okamoto, Y.; Nakayama, T. & Kuzahara. M. Ka-band 2.3 W power AlGaN/GaN hetero junction FET. *IEDM Tech. Dig*, December 2002, 667–680.
- 9. Patni, Nishchal; Dwivedi, A. D.D.; Kumar, Deepak ; Bothra, Rahul & Kumar, Anjali. Modelling and simulation of self heating in GaN based high electron mobility transistors (HEMTs). *Int. J. Adv. Appl. Phy. Res.*, 22-27 December 2017.

doi: 10.15379/2408-977X.2017.04.02.01

- 10. Chowdhury, Towhid Adnan. Self-Heating Outcomes in AlGaN/GaN HEMTs. Int. J. Emerging Technol. Adv. Eng., 2014, 4(2).
- Bertoluzza, F.; Delmonte, N. & Menozzi, R. Threedimensional finite-element thermalsimulation of GaNbased HEMTs. *Microelectronics Reliability*, 2009, 49(5), 468–473.

doi: 10.1016/j.microrel.2009.02.009

- Chvala, A.; Donoval, D.; Satka, A.; Molnar, M.; Marek, J. & Pribytny, P. Advanced methodology for Fast 3-D TCAD device/circuit electrothermal simulation and analysis of power HEMTs. *IEEE Trans. Electron Devices*, 2015, **62**(3), 828–834. doi: 10.1109/TED.2015.2395251
- Chander, Subhash; Gupta, Samuder; Ajay & Gupta, Mridula. Enhancement of breakdown voltage in AlGaN/ GaN HEMT using passivation technique for microwave application. *Superlattices Microstructures*, 2018, **120**, 217–222.

doi: 10.1016/j.spmi.2018.05.039

 Lenka, T.R. & Panda, A.K. AlGaN/GaN-based HEMT on SiC substrate for microwave characteristics using different passivation layers. *Pramana - J. Physics*, 2012, 79(1), 151–163.

doi:10.1007/s12043-012-0290-9 July 2012.

- Xu, Dong; Chu, Kanin; Diaz, Jose; Zhu, Wenhua; Roy, Richard; Pleasant, Louis Mt.; Nichols, Kirby & Chao, Pane-Chane. AlGaN/GaN high electron-mobility transistors with atomic layer deposition Al2O3 passivation. *IEEE Trans. Electron Devices*, 2013, **34**(6). doi: 10.1109/LED.2013.2255257
- Arora, Henika; Madan, Jaya & Chaujar. Rishu. Impact on analog and linearity performance of nanoscaleAlGaN/ GaN HEMT with variation in surface passivation stack. Science Direct Materials Today: Proceedings. ANM 2017.

doi: 10.1016/j.matpr.2018.06.050

17. Madan, Jaya; Arora, Henika & Chaujar. Rishu. Analysis of varied dielectrics as surface passivation on AlGaN/ GaN HEMT for Analog Applications. WECON 2018 - 6th IEEE International Conference on Wireless Networks & Embedded Systems at Chitkara University dated 16-17th November 2018.

doi: 10.1109/WECON.2018.8782074

18. Atlas user manual 30 August 2016.

CONTRIBUTORS

Mr Subhash Chander received MTech (Microwave Electronics) and PhD (Electronic Science) from Department of Electronic Science, University of Delhi, India, in 1995 and 2019 respectively. Currently he is a scientist at DRDO-Solid State Physics Laboratory, Delhi, working in the area of design, simulation and modelling of active and passive components for monolithic microwave integrated circuit.

Contribution in the current study, he conceived the concept and guided the simulation work.

Mr Pratap Singh received his BSc (Electronics) from Sanatan Dharma college Ambala and MSc (Electronics) Kurukshetra University Kurukshetra, in 2015 and 2019, respectively. Currently pursuing his MTech (VLSI design) from Thapar Institute of Engineering and Technology, Patiala.

Contribution in the current study, he simulated the device for different parameters with new ideas.

Mr Samuder Gupta did his post graduation in electronics and communication from Delhi College of Engineering, in 1998. Presently working as Scientist at DRDO-Solid State Physics Laboratory, Delhi. He is mainly working on design, simulation and modelling of mm wave discrete devices such as GaAs/GaN HEMTs, active and passive components for GaAs/GaN MMICs.

Contribution in the current study, he has given constant support for doing this work by many valuable inputs.

Dr D.S. Rawal received his MSc (Physics) and MTech (Electronics and Communication Engineering) from University of Roorkee, Roorkee, India (Now IIT Roorkee), in 1988 and 1990, respectively and PhD in from IIT Delhi. Presently working as an Associate Director at DRDO-Solid State Physics Laboratory, Delhi, working in III-V Device Technology. Presently, he is heading Fabrication team for the development of GaN based MMIC Technology. He has published more than 70 research papers in various international journals and conferences.

In the current study, he has supported reviewed the incremental work and provided various valuable inputs.

Dr Mridula Gupta received PhD (optoelectronics) from the University of Delhi, India, in 1998. She is currently working as a Professor and Head Department of Electronic Science, University of Delhi, South Campus. She has authored or coauthored more than 390 publications in international and national journals and conference proceedings. Her current research interests include modeling and simulation of MOSFETs, MESFETs, HEMTs, for microwave applications, and Tunnel Field-Effect transistor for Biosensing application.

In the current study, she has given the improved idea, continuously provided the guidance and given many valuable inputs.