Economic analyses and policy implications for microalgae biofuels in Australia.

Amar Doshi

School of Economics and Finance, QUT

Sean Pascoe

Oceans and Atmosphere Flagship, CSIRO

Louisa Coglan School of Economics and Finance, QUT

Thomas Rainey

School of Chemistry, Physics and Mechanical Engineering, QUT

CRICOS No. 00213J

Current microalgae biofuel literature

- Dominated by science and engineering literature
 - Techno-economic and sensitivity analyses
 - Life-cycle accounting
 - Energy ratio studies
- Gap in broader economic literature
 - Feasible complementary industries
 - Consumer preferences
 - Potential in policy framework

Expanding techno-economic analysis

- Model incorporates production of agricultural fertiliser and aquaculture feed
 - Working off Darzins et. al. (2010)

Baseline valuation - Costs

Annual operating costs

Baseline valuation – Revenue & NPV

Output	Output a	Cost	Uni t	
	Primary	Residue		
Biodiesel	0.4		1.50	\$/I
Fertiliser	0.3	0.5	12.00	\$/kg
Feed	0.3	0.5	12.00	\$/kg
NPV (US\$)			5,011	,000
IRR (%)				10%
Payback period (years)				20.2

Sensitivity analysis

Baseline	Range		
20 g/m ² /day	10 - 60		
40 %	10 - 60		
40 %	25 - 60		
20 y	10 - 50		
100 %	0 - 100		
580.2	555.79 - 609.99		
US\$ 750 /t	121.46 - 870.49		
AUD\$ 1.50 /I	1.30 - 2.30		
US\$ 550.89 /t	227.39 - 1409.90		
AU\$ 7.99 /GJ	5.02 - 11.56		
AU\$ 0.51 /kW	0.34 - 0.57		

Findings and further analysis

- Growth rate has largest potential impact on feasibility and return of production
- Cost of biodiesel production equipment a major drawback even with co-product revenues
- Monte-Carlo simulations NPV/Profit function
 Squires (1987) profit function for multi-product firms
 - Efficient output allocation given input/output prices

Consumer willingness to pay

- Estimate the economic value of benefits of alternative biofuels over conventional biofuels using consumer willingness to pay values.
- Determine socio-demographic and psychographic characteristics of likely supporters of alternative biofuels.

Discrete choice experiment methodology

- Based on economic principles of utility maximisation
- Individual choses from a given set of alternative based on non-market attributes of each alternative
- Choices are modelled using multinomial logit regressions

Survey design

Attribute	Description	Levels
Emissions	Change in net emissions taking into account cultivation and processing relative to Biofuel C.	50% reduction, 25% reduction No change, 25% more, 50% more
Source	Indicator of the source of the fuel, either being completely produced in Australia or partially imported.	Local, Imported
Food price	Estimated impact on food prices from the increased production of the fuel and competition for agricultural resources relative to Biofuel C.	20% cheaper, 10% cheaper, No change, 10% more expensive, 20% more expensive
Biodiversity	Impact on species richness as a result of production of the fuel relative to Biofuel C.	50% loss, 25% loss No change, 25% gain, 50% gain
Price	Price of fuel sold relative to Biofuel C.	20% cheaper, 10% cheaper, No change, 10% more expensive, 20% more expensive

Biofuel C attributes

Example of choice scenario

Scenario 1:

Consider the following three biofuel options. Assuming these are the only options available to you, which one would you choose?

Attribute		Biofuel A	Biofuel B	Biofuel C	
Emissions	<u>_</u>	25% Reduction	25% More	No change	
Source		Imported	Local	Imported	
Food price) Let	10% Cheaper	No change	No change	
Biodiversity		25% Loss	25% Gain	No change	
Fuel price		10% More expensive	10% Cheaper	No change	

Base choice model

Variable	Coeff.		Std. Error	95% Confiden	ce Interval
Choice attributes					
Emissions	-1.923	***	0.111	-2.140	-1.707
Source	0.903	***	0.084	0.738	1.068
Food price	-4.366	***	0.269	-4.893	-3.839
Biodiversity	1.368	***	0.103	1.166	1.569
Price	-4.245	***	0.258	-4.752	-3.739
Socio-demographic variables					
Age	0.097	***	0.027	0.043	0.151
Gender (Male=1)	-0.211	**	0.091	-0.389	-0.032
Fuel Industry Assoc.	-0.849	***	0.288	-1.415	-0.284
Other tertiary	0.305	***	0.098	0.113	0.497
Income	-0.115	***	0.022	-0.157	-0.072
Psychographic variables					
Fossil user	0.284	**	0.125	0.038	0.530
Member of environmental group	-0.681	***	0.212	-1.097	-0.265
ASC	0.844	***	0.246	0.361	1.327
Ν	556				
Num of obs.	4448				
Adj. R2	0.190				
LL	-4886.6				
AIC	1.785				

Note: * significant at 10%, ** significant at 5%, *** significant at 1%

Marginal Willingness to Pay

$$MWTP_{a_n} = -\frac{\beta_{a_n}}{\beta_{p_n}}$$

- If made aware, **reducing impacts to food price** will make consumers pay **more than double** for fuel.
- On average, consumers are **least concerned** about if their fuel is produced locally (in Australia).

Attribute	MWTP		
Emissions (25%)	-45.3%		
Source (Local=1)	21.3%		
Food price (10%)	-102.8%		
Biodiversity (25%)	32.2%		

Policy implications

- Biofuel have received policy attention both in state and national legislation
 - Biofuel mandate in NSW
 - Potential mandate in QLD
 - Discussion of national ethanol mandate
- How would microalgae-specific policies fit into a policy framework?

Microalgae in a biofuel policy framework

- Techno-economic modelling reveals the potential of complementary production systems
 - Aquaculture farms in QLD, NSW
 - Subsidising of fuel production equipment can improve feasibility
- Choice modelling illustrates that consumers are willing to pay/support alternative biofuels with external benefits
 - Could justify efficiency of subsidy/mandate policies

To conclude...

- Producers and consumers are responsive to policy support for biofuels e.g. Brazil
- Right policy mix to incentivise transition to most efficient biofuel options while managing risk
- Advancement in technology and costs of production can justify policy support

Amar Doshi School of Economics and Finance, QUT a1.doshi@qut.edu.au

CRICOS No. 00213J