

Código	FDE 089
Versión	03
Fecha	2015-01-27

DISEÑO DEL SISTEMA DE CONTROL AUTOMATIZADO PARA UNA TEXTURIZADORA DE HILO MEDIANTE UN CONTROL LÓGICO PROGRAMABLE Y HMI

ANDRÉS FELIPE PULGARIN CORREA

INGENIERÍA ELECTROMECÁNICA

Director: Santiago Gómez Arango

Código	FDE 089
Versión	03
Fecha	2015-01-22

RESUMEN

El presente trabajo de grado presentará el diseño del sistema de control automatizado para una texturizadora de hilo, mediante un control lógico programable y HMI.

Dicho trabajo es producto de un previo análisis sobre el funcionamiento de la máquina texturizadora FK6 600, lo que permitió plantear otras alternativas de funcionamiento para incrementar la productividad de la misma, por medio de la optimización de su sistema de control y monitoreo.

El proyecto implementó un PLC como controlador y enlace con los instrumentos de medida y comunicación con la HMI, enfocándose en el control de la temperatura de placas y cajas de calefacción, inyección de aire comprimido y operación del mecanismo de formación del paquete de hilo.

El desarrollo mediante HMI, permite al usuario visualizar y manejar los datos que intervienen en el proceso, establecer un sistema de alarmas con sus respectivos mensajes y por lo tanto se convierte en una herramienta eficaz para el personal de mantenimiento.

Palabras clave: Diseño, Automatización, control, monitoreo, PLC, HMI, Texturizadora de hilo.

Código	FDE 089
Versión	03
Fecha	2015-01-22

RECONOCIMIENTOS

A mi familia quienes apoyaron mi labor académica y me guiaron respecto a la toma de decisiones importantes.

Al profesor Santiago Gómez Arango, asesor metodológico, por su apoyo brindado en el desarrollo del proyecto.

A todos los que colaboraron durante el proceso investigativo en este trabajo de grado.

Código	FDE 089
Versión	03
Fecha	2015-01-22

ACRÓNIMOS

Los acrónimos encontrados en este documento se definen a continuación:

- 1. A: Amperios.
- 2. AC: Corriente Alterna.
- 3. AWG: American Wire Gauge (Calibre de Cable Americano).
- 4. °C: Grados Celsius.
- 5. DC: Corriente Directa.
- 6. DHS: Number of traverse cycles (Número de ciclos transversales).
- 7. HMI: Human Machine interface (Interfaz Usuario Máquina).
- 8. IEC: Internacional Electrotechnical Commision (Comisión Electrotécnica Internacional).
- 9. ISA: Instrument Society of America (Sociedad de Instrumentos Americana).
- 10. kW: Kilowatios.
- 11. kVA: Kilovoltio-Amperio.
- 12. mA: Miliamperios
- 13. NH: Niederspannungs Hochleistungs (Baja tensión y alta potencia).
- 14. NTC: Norma Técnica Colombiana.
- 15. PLC: Programmable Logic Controller (Controlador Lógico Programable).
- 16. PID: Estrategia de control Proporcional, Integral y derivativo
- 17. POY: Partially Oriented Yarn (Hilo Parcialmente Orientado).
- 18. P&ID: Piping and Intrumentation Diagram (Diagrama de Tubería e Instrumentación).
- 19. Ohms: Ohmios.
- 20. RPM: Revoluciones por minuto.
- 21. SFC: Diagrama de funciones secuenciales.
- 22. THHN: Thermoplastic High Heat Nylon (Nylon Termoplástico de Alta Temperatura).
- 23. UV: Ultra violeta.

Código	FDE 089
Versión	03
Fecha	2015-01-22

TABLA DE CONTENIDO

1.	INTRODUCCIÓN	6
1	I.2. Objetivo general	6
	1.2.1. Objetivos Específicos	7
2.	MARCO TEÓRICO	8
2	2.1. Proceso de texturizado	10
2	2.1.1. Texturizado por falsa torsión.	11
2	2.2. Automatización	17
	2.2.1. PLC	18
	2.2.2. HMI	18
3.	METODOLOGÍA	20
3	3.1. Diseño del sistema eléctrico	21
3	3.2. Diseño del software para el sistema de control	25
4.	RESULTADOS Y DISCUSIÓN	33
5.	CONCLUSIONES, RECOMENDACIONES Y TRABAJO FUTURO	41
REF	FERENCIAS	42
ΑPI	ÉNDICE	44
Ар	éndice A. Planos eléctricos y de control	44
Ар	éndice B. P&ID de texturizadora de hilo	58
Ар	éndice C. Algoritmo de programación del arranque general	60
Ар	éndice D. Algoritmo de programación para el manejo de aire comprimido	62
	éndice E. Algoritmo de programación para el sistema de calentamiento de ca	
Δη	éndice F. Algoritmo de programación del sistema Vaivén	70

Código	FDE 089
Versión	03
Fecha	2015-01-22

1. INTRODUCCIÓN

Las empresas del sector textil en su afán de ser más competitivas, han enfocado sus esfuerzos hacia el mejoramiento de procesos productivos mediante la implementación y adaptación de nuevas tecnologías (TAVERA, 2014). Las texturizadoras Barmag FK6 600 son máquinas antiguas que son susceptibles a fallas provocadas por el desgaste de los elementos electromecánicos como temporizadores, relevadores y tarjetas electrónicas que conforman su sistema de control (Barmag, 2006). Estas máquinas cuentan con un sistema mecánico robusto, en buenas condiciones el cual permite una actualización constante, lo cual justifica la automatización basada en la relación costo beneficio que brinda el equipo.

Atendiendo a la necesidad, se diseñó un sistema automático que permite supervisar y manipular los diferentes sistemas que componen la texturizadora (arranque general, calentamiento del hilo, inyección de aire comprimido y la formación de la bobina de hilo), por medio del levantamiento de diagramas de tubería e instrumentación, planos eléctricos de control y potencia eléctrica. Adicionalmente, se elaboraron los algoritmos de control teniendo en cuenta las variables que intervienen en cada sistema y se diseñó la texturizadora de hilo a través de interfaz gráfica o HMI, donde se visualiza el funcionamiento del proceso y las posibles fallas que pueda presentar.

Es importante resaltar que las variables temperatura, inyección de aire y el sistema de formación del paquete de hilo se deben intervenir sin afectar su funcionamiento, por medio del PLC y el HMI se puede lograr una adecuada automatización que optimice el desempeño de la máquina tanto a nivel operativo como de control.

1.2. Objetivo general

Diseñar un sistema de control automatizado para una texturizadora de hilo mediante un control lógico programable y HMI.

Código	FDE 089
Versión	03
Fecha	2015-01-22

1.2.1. Objetivos Específicos

- Evaluar los diferentes sistemas de una texturizadora de hilo y sus principales características.
- Diseñar el sistema eléctrico de potencia y control para una texturizadora.
- Generar el algoritmo de programación en lenguaje Ladder para el PLC y la comunicación por medio de HMI para la texturizadora.

1.3. Organización del trabajo

El siguiente trabajo está estructurado en cinco secciones, que presentan detalladamente el proceso de diseño de automatización de una texturizadora de hilo mediante un control lógico programable y HMI.

La primera sección corresponde a la introducción, que da cuenta de las necesidades del diseño de la automatización, para establecer las mejoras y suministrar datos relevantes a desarrollar en el trabajo.

La segunda sección presenta el marco teórico, cuyo propósito es apoyar y dar base teórica a los conceptos planteados para el desarrollo del proyecto.

La sección tres da cuenta de la metodología implementada en el trabajo para la realización del diseño del sistema eléctrico de potencia y el dimensionamiento de los componentes electromecánicos, al igual que el diseño y desarrollo del software para el sistema de control.

En la cuarta sección se presentan los resultados obtenidos en el trabajo de grado y la manera en que se alcanzaron cada uno de los objetivos propuestos.

Finalmente se exponen las conclusiones que resultan del trabajo realizado, y a su vez se propondrán futuras intervenciones para realizar mejoras de la máquina texturizadora.

Código	FDE 089
Versión	03
Fecha	2015-01-22

2. MARCO TEÓRICO

El proceso de texturizado compensa las deficiencias características de un hilo, variando su carácter textil original brillante, plano, paralelo y liso, entregándole nuevas propiedades como volumen, elasticidad, tacto suave, absorción de humedad y facilidad de procesamiento. En otras palabras, adquiere propiedades que lo hacen similar al algodón o a la lana (Lockuán Lavado, 2013).

El proceso requiere un procedimiento de control con sistema de programación flexible, fiable, robusto y rentable. En (Alphonsus & Abdullah, 2016), plantean como el PLC se caracteriza por ser una opción de control, debido a su integración en áreas de sensores, monitoreo, automatización y control. Adicionalmente, se muestran ventajas en su adaptación para cualquier investigación, aplicación en la industria y control de sistemas simples o avanzados.

Por otra parte, en (lovev & Yakimov, 2015) indagan como usar el PLC como enlace en una red de sensores inteligentes, para el cálculo de parámetros y monitoreo en líneas eléctricas. Los resultados evidencian como el sistema puede adaptarse con facilidad para la recolección de datos y puede ser utilizado en investigaciones adicionales para el manejo de energías.

La automatización de maquinaria mediante PLC tiene una gran acogida en el medio industrial, ya que predomina sobre la lógica cableada debido a sus múltiples beneficios, por ejemplo en (Avilés Bautista & Tapia Claudio, 2015) diseñan un sistema de control para optimizar la producción de envases plásticos en una sopladora, donde un PLC controla la implementación del proceso y la HMI supervisa el correcto funcionamiento del sistema.

Igualmente en (Poma Alejandro, 2014) diseñan un sistema de control para una texturizadora de hilo, donde su investigación se enfoca en el control de temperatura y formación del paquete de materia prima. Como controlador usa un PLC que se encarga de

Código	FDE 089
Versión	03
Fecha	2015-01-22

recibir y enviar las señales desde los instrumentos de medida y la comunicación con un computador.

Además en (Rojas Segarra & Correa Anchundia, 2015) diseñan e implementan el sistema de control y supervisión HMI para una máquina barnizadora, el PLC se encarga de controlar la aplicación de barniz ultra violeta (UV) por medio de un PID, su estudio indica mejoras en el acabado del producto y menor consumo energético del equipo. Recomiendan implementar un stock de componentes para ejecutar el programa de mantenimiento preventivo.

También en (Priyanka, Maheswari, & Meenakshipriya, 2016) diseñan un sistema de control para bombear petróleo en plataformas submarinas. En la investigación, el PLC se utiliza para regular automáticamente el flujo y la presión durante el transporte del producto petrolífero, controlando el porcentaje de apertura de las válvulas de control y las bombas respectivamente por medio de un PID. Los estudios de simulación los realizan en la plataforma SIMULINK en Matlab y su implementación en el laboratorio para garantizar el rendimiento del controlador.

De la misma forma en (Quezada, Flores, Quezada, & Bautista, 2014) investigan cómo extraer agua potable para abastecer una comunidad. Diseñan e implementan el sistema en un banco de pruebas, en el que usan *Interfaces Gráficas de Usuario* (GUI, por sus siglas en *inglés*) para interactuar con el operador. La velocidad del conjunto de motor-bomba y las variables del agua son controladas por medio de un PLC y HMI con lo que garantizan la calidad del agua.

Por otra parte en (Vagia, Transeth, & Fjerdingen, 2016) presentan un estudio sobre la evolución de los niveles de autonomía industrial desde los años cincuenta hasta el presente, en éste estudian la clasificación de la automatización y analizan la automatización flexible, lo que demuestra el gran interés por parte de la industria en la implementación de modelos de automatización basados en PLC y proporciona una ventana a nuevas aplicaciones futuras.

Código	FDE 089
Versión	03
Fecha	2015-01-22

2.1. Proceso de texturizado

En el texturizado, un hilo sintético se somete a un cambio importante en su aspecto físico, al pasar de una estructura lisa y plana a una rizada o bucle en toda su longitud donde se le concede propiedades que lo asemejan a las fibras naturales. Este proceso puede llevarse a cabo de diferentes formas y pueden ser clasificadas en tres grupos (ver Figura 1), según los medios que se empleen. En este caso, el proceso de falsa torsión es el que se ajusta a la texturizadora automatizada. (Ver Figura 1).

Figura 1. Clasificación de los métodos de texturizado. Fuente: (Lockuán Lavado, 2013).

Código	FDE 089
Versión	03
Fecha	2015-01-22

2.1.1. Texturizado por falsa torsión.

El texturizado por falsa torsión es el proceso que aprovecha las propiedades físicas y termoplásticas del Hilo Parcialmente Orientado (por sus siglas en inglés POY), combinando una acción térmica y mecánica para modificar las características de la superficie y crear espacios entre las fibras para proporcionar mayor volumen y/o elasticidad.

En (Hearle, Hollick, & Wilson, 2001) se describen las diferentes etapas del proceso de texturizado por falsa torsión, donde el POY se distribuye en el proceso por medio de tres ejes. En la primera etapa el hilo de suministro simultáneamente se somete a un proceso de temperatura y elongación, luego en una segunda etapa se climatiza por medio de una placa de enfriamiento; posteriormente, en una tercera etapa se torsiona para mejorar sus propiedades físicas. En la cuarta etapa es calentado nuevamente para estabilizar la elasticidad del hilo y finalmente se hace pasar por una mezcla de aceite de enconado para realizar la formación del paquete de hilo (Ver Figura 2).

Figura 2. Proceso de texturizado por falsa torsión. Fuente: (Hearle et al., 2001).

Código	FDE 089
Versión	03
Fecha	2015-01-22

Paquete de suministro o POY

Son hilados parcialmente orientados arrollados a una velocidad de 2400-4000 m/min sobre un soporte cilíndrico, son conocidos como poliéster POY y se utiliza como materia prima para producir hilos texturizados (Ver Figura 3).

Figura 3. Bobinas de POY. Fuente: (Xiame, 2016)

Sistema de transporte de hilo

Esta etapa del proceso es la que traslada el hilo a través de la máquina sin fricción. El sistema consiste en ejes accionados por leva, que corren a lo largo de la máquina con unidades guías de metal brillante de cromo y una plataforma de goma o rodillo de presión que atraviesa el hilo hacia adelante y hacia atrás a lo largo de su superficie. El eje de entrada es el componente que transporta el POY hasta la zona de estiramiento o eje central y el eje de salida es el que se encarga de conducir el hilo por el segundo calentador y llevarlos a la zona de formación de bobina (Ver Figura 4).

Código	FDE 089
Versión	03
Fecha	2015-01-22

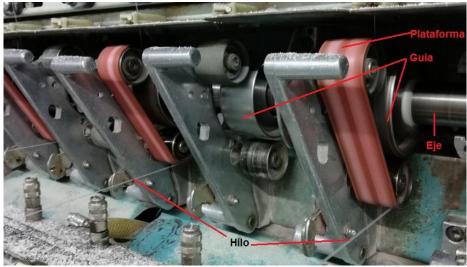


Figura 4. Unidades de transporte de hilo. Fuente: Autor.

Termoresistencia tipo PT100

La PT100 es un sensor de temperatura hecho de platino, que a 0 °C tiene 100 ohms (Ver Figura 5) y su resistencia aumenta con el incremento de temperatura según su curva característica. La relación de temperatura y resistencia se establece por medio de tabulaciones presentadas por los fabricantes de este tipo de sensor (Arian, 2006).

Figura 5. Sensor de temperatura PT100. Fuente (Arian, 2006).

Placa de calentamiento

Son dispositivos encargados de calentar el hilo para que se deforme y hacerlo más maleable. Los calentadores son cajas llenas de aceite térmico con un elemento de calentamiento eléctrico en la base y una termoresistencia tipo PT100 para medir la temperatura.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Placas de enfriamiento

Este elemento permite que el hilo se enfríe y proporciona estabilidad al haz de hilos altamente retorcidos. La placa de enfriamiento está hecha de acero nitrurado y tiene un perfil curvo (Ver Figura 6).

Figura 6. Placas de enfriamiento. Fuente: Autor.

Unidad de texturización

Es el mecanismo que inserta la falsa torsión, sirve para realizar el rizado particular y dar volumen al hilo. En ésta es donde se produce propiamente el texturizado, debido a la fricción de los discos. Los discos pueden ser de poliuretano o cerámicos. (Ver Figura 7).

Código	FDE 089
Versión	03
Fecha	2015-01-22

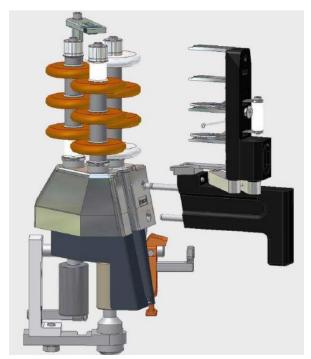


Figura 7. Unidad de texturización. Fuente: (Oerlikon, 2011).

Cajas de calentamiento

Son elementos que se usan para estabilizar la elasticidad del hilo y relajar las tensiones impuestas en la zona de texturización. El calor se transfiere al hilo por la radiación de la superficie interna del calentador y por convección del aire caliente.

Avivaje

Es un aceite de ensimaje muy fluido, biodegradable y humectante formulado para la lubricación de los hilos que son sometidos a un proceso de enconado o embobinado, se aplica para mejorar sus propiedades textiles como tacto suave y disminución de la carga electrostática.

Rodillo de Aceite

Este componente lubrica el hilo mediante la aplicación de aceite de enconado y avivaje (Ver Figura 8), lo cual permite que se procese de manera más eficiente durante la formación del paquete y así reducir la fricción entre el hilo y los componentes metálicos de la máquina.

Código	FDE 089
Versión	03
Fecha	2015-01-22

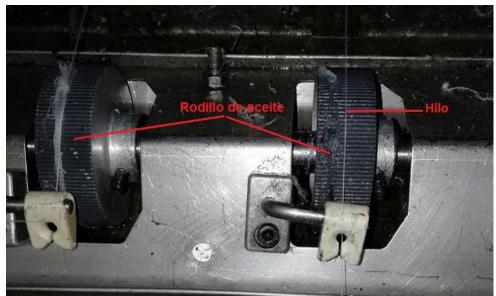


Figura 8. Rodillos de aceite. Fuente: Autor.

Bobina

Una bobina o paquete de hilo es un cilindro de hilo que se encuentra arrollado sobre un tubo de cartón u otro material, puede ser utilizada para fabricar diferentes prendas y telas (Ver Figura 9).

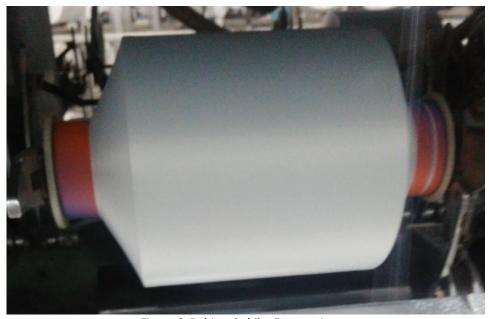


Figura 9. Bobina de hilo. Fuente: Autor.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Sistema de formación o vaivén.

Es el sistema mecánico que genera la bobina y da su forma bicónica o cilíndrica. Se compone de dos subsistemas llamados respiración y modificación de vaivén, los cuales se encargan de que las capas de hilo no se entrelacen entre sí durante la formación del paquete. El vaivén es una leva de nylon que se impulsa hacia adelante y hacia atrás a lo largo de cada plataforma de recogida mediante un husillo giratorio (Ver Figura 10).

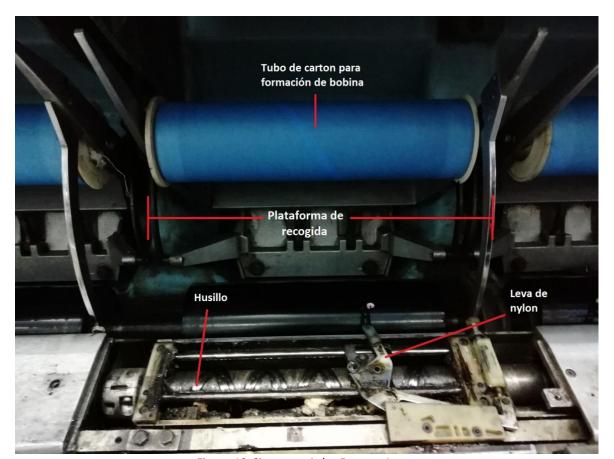


Figura 10. Sistema vaivén. Fuente: Autor.

2.2. Automatización

La automatización consta de tomar procesos mecánicos o manuales y adaptarlos a sistemas de control que garanticen un buen desempeño en la realización de tareas definidas. Por medio de sistemas autómatas y sistematizaciones precisas, se disminuyen los costos y reprocesos que generan agilidad en la obtención de resultados para el producto final.

Código	FDE 089
Versión	03
Fecha	2015-01-22

2.2.1. PLC

Los controladores lógicos programables, son dispositivos electrónicos de alta precisión y alta protección a ruidos electromagnéticos, similares a una computadora en su arquitectura interna. Son eficientes y fiables en aplicaciones que implican el control secuencial y la sincronización de procesos con elementos auxiliares en las industrias de fabricación, química y de procesos (Alphonsus & Abdullah, 2016).

El PLC viene equipado con terminales modulares que manipulan señales de entrada y salida de tipo digital como análogas, con el fin de realizar una comunicación de elementos tanto eléctricos como mecánicos (Ver Figura 11).

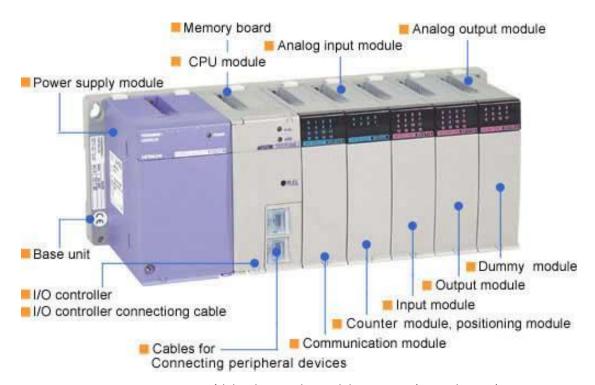


Figura 11. PLC con módulos de entradas y salidas. Fuente: (Rocatek, 2010).

2.2.2. HMI

La interfaz hombre máquina ha tomado mucha reputación en la industria, debido a su gran versatilidad y fácil manejo para operar los procesos. Una HMI consiste básicamente en una pantalla, por lo general de tipo táctil con conexión a diferentes redes para realizar la

Código	FDE 089
Versión	03
Fecha	2015-01-22

comunicación con el controlador. Esta posee su propia unidad de procesamiento para enviar señales según los requerimientos y así permitir el monitoreo del proceso en tiempo real, de forma remota o local (Ver Figura 12).

Figura 12. Pantalla táctil HMI. Fuente: (Unitronics, 2017)

Código	FDE 089
Versión	03
Fecha	2015-01-22

3. METODOLOGÍA

Para realizar el diseño de automatización de la texturizadora, se hizo una revisión general del proceso a través de diversas fuentes de investigación. Es así como se identifican los siguientes sistemas o elementos a controlar.

En el funcionamiento de la máquina es indispensable que la bomba de lubricación esté trabajando, ya que sin la adecuada lubricación los sistemas de trasmisión son susceptibles a sufrir averías. El proceso inicia accionando el motor principal, que se encarga de maniobrar las unidades de texturización y los ejes de transporte de hilo, además de dar la señal para iniciar los procesos de vaivén, extracción de humo, cerchas y avivaje.

Las resistencias de los calentadores de placas deben permanecer encendidas, aun cuando la máquina no esté operando, deben asegurar un rango de temperatura de 100°C para evitar choques térmicos en los elementos y elevados tiempos de calentamiento del aceite térmico. Para fabricar algunos tipos de hilos no se utilizan las cajas de calentamiento y se debe desactivar el suministro de energía para que no hagan parte en el proceso.

El sistema de formación de la bobina se debe acelerar y desacelerar con un tiempo de perturbación determinado para que no se entrelacen las capas de hilos unas con otras. Se debe realizar un método de visualización para realizar ajustes en el sistema de modificación y respiración del vaivén.

El sistema de aire comprimido es maniobrado por indicadores de presión mecánicos con transmisor y no cuentan con visualizaciones de ajuste. Se debe cerrar la válvula de suministro general de la máquina para evitar pérdidas en el sistema que genera el aire, cuando se trabajan otros procesos.

Código	FDE 089
Versión	03
Fecha	2015-01-22

3.1. Diseño del sistema eléctrico

Para diseñar el sistema eléctrico de la máquina se realizó un levantamiento y comprobación de los planos eléctricos y de control existentes en la texturizadora de hilo. De esta manera se identifica un circuito de potencia trifásico de 440V AC con una capacidad de 250 amperios, el cual suministra energía a los elementos que se encuentran dentro de los tableros (Ver Tabla 1).

Tabla 1. Datos de placa elementos de potencia de texturizadora.

Dispositivo	Tensión de alimentación (V)	Fases	Corriente nominal (A)	Potencia (kW-kVA)	Tensión de salida (V)
Motor principal	440V	3	70A	37kW	
Motor del extractor de gases	440V	3	12A	8.5kW	
Motor de la Bomba de lubricación	440V	3	1.07A	0.43kW	
Motor cerchas	440V	3	0.57A	0.13 kW	
Motor del modificador	440V	3	7.2A	5.4kW	
Motor de rodillo de avivaje	440V	3	0.6A	0.09 kW	
Motor de DHS	440V	3	14.8A	7.5kW	
Transformador de control	440V	2	9A	4kVA	110V/24V
Transformador corta hilos	440V	3	5.58A	4kVA	24V
Transformador zonas de calentamiento	440V	3	98A	75kVA	440V

Con base en las características mostradas en la placa de funcionamiento de los elementos (Tabla 1), se calculó la corriente de sobrecarga de acuerdo a las secciones 430-22 y 450-3 de la NTC2050. Según la norma los conductores que alimenten un solo motor o transformador deben tener una capacidad no menor al 125% de la corriente nominal (Ver Tabla 2).

Código	FDE 089
Versión	03
Fecha	2015-01-22

Tabla 2. Valores de corriente de sobrecarga.

Dispositivo	Corriente nominal (A)	Corriente de sobrecarga (A)	Tipo de carga
Motor principal	70A	87.5A	continua
Motor del extractor de gases	12A	15A	continua
Motor de la Bomba de Iubricación	1.07A	1.33A	continua
Motor cerchas	0.57A	0.71A	continua
Motor del modificador	7.2A	9A	continua
Motor de rodillo de avivaje	0.6A	0.75A	continua
Motor de DHS	14.8A	18.5A	continua
Transformador de control	9A	11.25A	continua
Transformador corta hilos	5.58A	6.97A	continua
Transformador zonas de calentamiento	98A	122.5A	continua

A partir de los datos de corriente de sobrecarga dados por la Tabla 2, se procedió a escoger el calibre del cable. Para ello se utiliza la tabla 310-16 de la NTC2050, esta indica el calibre del cable según la cantidad de corriente que conduce, la temperatura máxima de funcionamiento y el tipo de cable (Ver Tabla 3).

Tabla 3. Calibre y tipo seleccionado para cables.

Dispositivo	Corriente de Sobrecarga (A)	Calibre del cable AWG	Tipo
Motor principal	87.5A	2 AWG	THHN – 75°C
Motor del extractor de gases	15A	12 AWG	THHN – 75°C
Motor de la Bomba de Iubricación	1.33A	14 AWG	THHN – 75°C
Motor cerchas	0.71A	14 AWG	THHN – 75°C
Motor del modificador	9A	14 AWG	THHN – 75°C
Motor de rodillo de avivaje	0.75A	14 AWG	THHN – 75°C
Motor de DHS	18.5A	12 AWG	THHN – 75°C
Transformador de control	11.25A	14 AWG	THHN – 75°C
Transformador corta hilos	6.97A	14 AWG	THHN – 75°C
Transformador zonas de calentamiento	122.5A	1/0 AWG	THHN – 75°C

Código	FDE 089
Versión	03
Fecha	2015-01-22

Según las notas de la tabla 310-16 de la NTC2050 no se permiten utilizar cables con calibre menor a 14 AWG, por esto para los motores de bajo consumo se selecciona dicho calibre. Además se escoge cable THHN por tener aislamiento de alta temperatura y ser adecuado para usos industriales en la conexión de motores y tableros de control.

Para la protección del cable del motor principal se eligieron fusibles tipo cuchilla NH de 125A acorde a la corriente del conductor, además se seleccionó un disyuntor termomagnético para proteger el motor y generar señales de sobrecarga para el sistema de control. Luego se procedió a designar los elementos de protección de los demás elementos (Ver Tabla 4).

Tabla 4. Protecciones para elementos de potencia.

Dispositivo	Corriente de Sobrecarga (A)	Elemento de protección	Rango de corriente (A)	Serie elemento
Motor principal	87.5A	fusibles NH00 Gg / Guardamotor	125A / 70A	3NA3832
Motor del extractor de gases	15A	Fusibles Gg A27/ Guardamotor	25A / 14 – 20A	5SB271
Motor de la Bomba de Iubricación	1.33A	Guardamotor	1.1 – 1.6A	3RV1011- 1AA10
Motor cerchas	0.71A	Guardamotor	0.55 – 0.8A	3RV1011- 0HA10
Motor del modificador	9A	Guardamotor	6.3 – 10A	3RV1011- 1JA10
Motor de rodillo de avivaje	0.75A	Guardamotor	0.55 – 0.8A	3RV1011- 0HA10
Motor de DHS	18.5A	Guardamotor	11 – 16A	3RV1031- 4AA10
Transformador de control	11.25A	Fusibles Gg A27	10A	5SB251
Transformador para corta hilos	6.97A	Fusibles Gg A27	6A	5SB231
Transformador zonas de calentamiento	122.5A	Fusibles NH00 Gg / Interruptor automático	160A / 160A	3VT1716- 2DC36-0AA0

Código	FDE 089
Versión	03
Fecha	2015-01-22

Seguidamente para realizar el arranque del motor principal se seleccionaron contactores de la marca Siemens, que soportaran las corrientes y potencia nominal del motor en categoría AC3. De igual forma se eligieron los contactores para maniobrar los motores del extractor de gases y la bomba de lubricación, adicional se designó un contactor para energizar el transformador trifásico de 4kVA que activa los cortadores de hilo de la máquina.

Por otra parte los motores de los sistemas cerchas, rodillo de avivaje, modificación y el sistema de vaivén requieren variar su velocidad, por esto se seleccionaron variadores de frecuencia de la marca Yaskawa acorde a la placa característica de cada motor (Ver Tabla 5).

Tabla 5. Contactores y variadores seleccionados.

Dispositivo	Corriente nominal (A)	Potencia (kW-kVA)	Elemento de accionamiento	Marca	Serie de elemento
Motor principal	70A	37kW	2 Contactores 2 Contactores	Siemens	3TB50 3TB48
Motor del extractor de gases	12A	8.5kW	Contactor	Siemens	3RT1026- 1AG20
Motor de la Bomba de Iubricación	1.07A	0.43kW	Contactor	Siemens	3RT1015- 1AF01
Motor cerchas	0.57A	0.13 kW	Variador de frecuencia	Yaskawa	GPD305/J7
Motor del modificador	7.2A	5.4kW	Variador de frecuencia	Yaskawa	A1000
Motor de rodillo de avivaje	0.6A	0.09 kW	Variador de frecuencia	Yaskawa	GPD305/J7
Motor de DHS	14.8A	7.5kW	Variador de frecuencia	Yaskawa	V1000
Transformador para corta hilos	5.58A	4kVA	Contactor	Siemens	3RT1016- 1AF01

Código	FDE 089
Versión	03
Fecha	2015-01-22

Para el cableado de control se elige cable calibre 18 AWG según la tabla 402-5 de la NTC2050. Además se seleccionó una fuente de alimentación de 120VAC con salida de 24VDC y 6.5A que provee la energía para el PLC, el sensor inductivo (posición del modificador) y los trasmisores 4-20mA para el aire comprimido.

También se eligen ocho interruptores automáticos o breakers para proteger los elementos de control. Finalmente se escogen once relés de control de 24VDC de marca Finder para facilitar la interfaz de las salidas PLC y los contactores de potencia.

3.2. Diseño del software para el sistema de control

Para desarrollar el algoritmo de control, se realizó un análisis de las etapas de funcionamiento de la máquina, además de las opciones que surgieron y que podían mejorar el desempeño de la texturizadora.

Luego se plantearon diagramas de funciones secuenciales (SFC) para cada sistema de la máquina y a partir de ellos comenzar con la programación. En primera instancia se realizó la secuencia para el arranque de la máquina, en la cual se verifica que no exista ninguna falla en los variadores de frecuencia y en los disyuntores termomagnéticos, además se comprueba que no se presenten alarmas en el sistema de aire comprimido.

Al no existir ninguna situación anómala, se enciende la bomba de lubricación y pasado un tiempo programado se comprueba que haya flujo de aceite. Tras obtener las condiciones anteriores, se da comienzo al arranque del motor principal.

Debido a que se utiliza un arranque estrella delta, cuando el motor conmuta a su conexión en delta, se da la señal para que inicie el extractor de humo, se activen los inversores de avivaje y cerchas, además se active la válvula de avivaje y los cortadores de hilo (Ver Figura 13).

Código	FDE 089
Versión	03
Fecha	2015-01-22

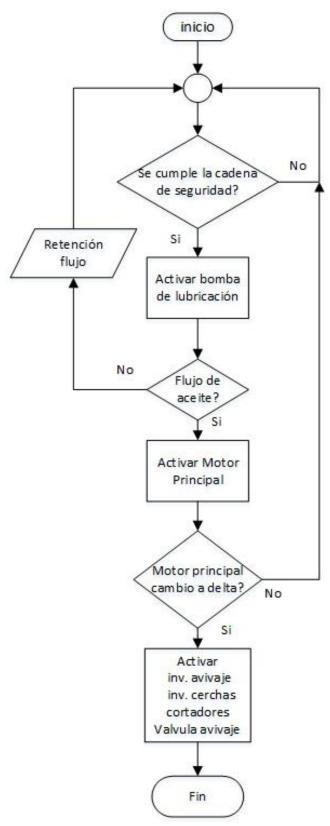


Figura 13. Diagrama de flujo del arranque general. Fuente: Autor.

Código	FDE 089
Versión	03
Fecha	2015-01-22

A continuación se elaboró la lógica para maniobrar el aire comprimido, se ingresa un punto de consigna para la variable, luego el sensor de presión mide la señal eléctrica de corriente y la envía al controlador, el cual se encarga de manipular la válvula de suministro (Ver Figura 14).

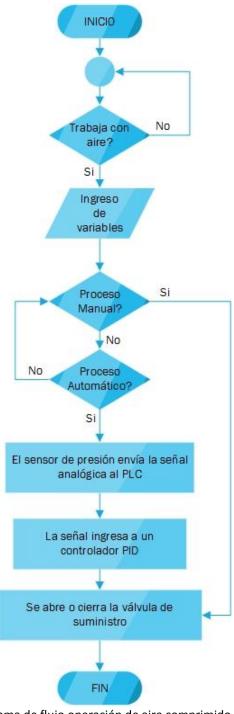


Figura 14. Diagrama de flujo operación de aire comprimido. Fuente: Autor.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Además para el control de temperatura, se construyó una rutina en la que se utilizó un bloque PID con salida de modulación de ancho de pulso (PWM) para maniobrar el elemento de calentamiento (Ver Figura 15).

Figura 15. Diagrama de flujo control de temperatura. Fuente: Autor.

Finalmente se plasmó la lógica para el sistema de vaivén, la secuencia realiza la inversión de giro de un motor por medio de un inversor de frecuencia y la señal analógica de un sensor inductivo, para realizar las rampas que conforman el sistema (Ver Figura 16). Los algoritmos de control en leguaje ladder de cada sistema los puede encontrar el lector en los apéndices C al F, para evidenciar su funcionamiento.

Código	FDE 089
Versión	03
Fecha	2015-01-22

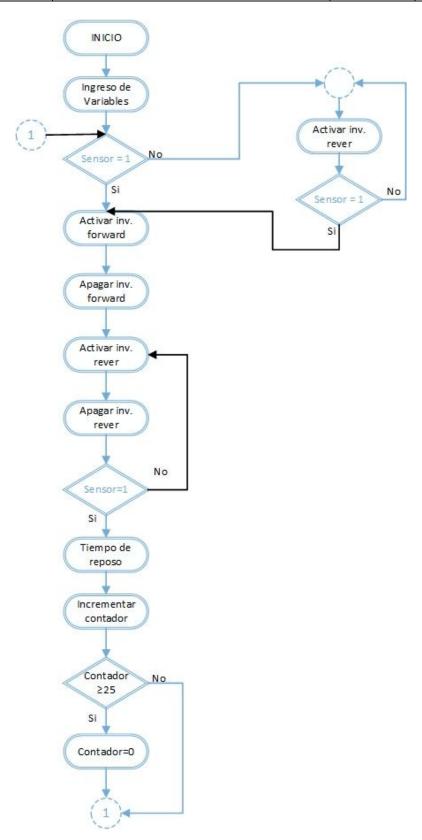


Figura 16. Diagrama de flujo del sistema de vaivén.

Código	FDE 089
Versión	03
Fecha	2015-01-22

De acuerdo a la información del sistema anterior y las necesidades del nuevo sistema, se requieren once entradas digitales, doce salidas digitales de tipo relé (Ver Tabla 6), cuatro entradas análogas y cuatro salidas análogas de 4-20mA y/o 0-10V para los sensores y transmisores.

Además son indispensables veintisiete entradas especiales tipo termopar o termosonda para los sensores de temperatura y así mismo veintisiete salidas digitales tipo transistor para la activación de los relés de estado sólido.

Tabla 6. Entradas y salidas digitales.

Nombre de la variable	Dirección del puerto de entrada	Nombre de la variable	Dirección del puerto de salida
Posición inicial	% 10	Inversor modificador forward	% O0
Suiche de seguridad	% I1	Inversor modificador rever	% O1
Modificador Estrellado adelante	% I2	Inversor modificador (start/stop)	% O2
Modificador Estrellado atrás	% I3	K7 Bomba de lubricación	% O3
Flujo de aceite	% 14	K1 normal motor principal	% O4
Cadena de seguridad TH	% I5	K2 estrella motor principal	% O5
Falla inversor de modificación	% 16	K3 ½ delta motor principal	% O6
Falla inversor vaivén (DHS)	% 17	K4 delta motor principal	% 07
Relé térmico motor de avivaje	% I8	K5 motor extractor de humo	% O8
Falla inversor de avivaje	% 19	K6 cortadores de hilo	% O 9
TH motor principal	% I10	K8 válvula de avivaje	% O10
Falla inversor cerchas	% I11	Run inversor rodillos de avivaje	% O11
		Run inversor de cerchas	% O12

En relación con las entradas y salidas necesarias, se seleccionó un PLC visión 280 de marca unitronics, por su confiabilidad, sencillez de programación y competitividad. Además al tener incluidos el PLC y HMI se genera un acoplamiento eficiente para la elaboración del proyecto para la texturizadora. En la Tabla 7 se pueden observar las características del hardware.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Tabla 7 Hardware PLC visión 280.

Visión 280		
Opciones de I/O		
Snap-in IO módulos	Snap-in V218-E3XB Entradas: 18 digitales pnp/npn – 4 análogas – 2 de alta velocidad Salidas: 15 de relé y 2 de transistor pnp/npn – 4 análogas - 2 PWM/HSO ² .	
I/O expansión	Las I/Os locales o remotas pueden agregarse a través del puerto de expansión o vía CANbus. Expandir hasta 316 I/Os	
Memoria de aplicación	1MB	
Tiempo de escaneo	30μseg por 1K de aplicación típica	
Operandos de memoria	4096 bobinas, 2048 registros, 256 enteros largos (32 bits), 64 palabras dobles (32 bits sin signo), 24 memorias flotantes, 192 temporizadores, 24 contadores	
Tablas de datos	Datos RAM dinámicos de 120K (parámetros de receta, registros de datos, etc.), hasta 192K de datos fijos	
	Panel del operador	
Tipo	Gráfica LCD en blanco y negro FSTN	
Resolución y tamaño de pantalla	320 x 240 píxeles (QVGA), área activa de 4.7 "	
Pantalla táctil	Resistivo, Analógico	
	Teclado	
Numero de teclas	27 teclas etiquetadas por el usuario	
General		
Fuente de alimentación	12/24 VDC	
Batería de reserva	7 años típicos a 25 ° C, respaldo para todas las secciones de memoria y reloj en tiempo real (RTC)	
Ambiente	IP65 / NEMA4X (para panel, cuando está montado)	
Estándar	CE, UL	

Fuente: (Unitronics, 2017).

El snap-in elegido con este controlador tiene incorporadas entradas y salidas como se muestra en los datos relacionados en la tabla 7 por lo tanto fue necesario agregar módulos de entradas de temperatura y salidas digitales para cubrir los requerimientos del sistema (Ver Tabla 8).

Código	FDE 089
Versión	03
Fecha	2015-01-22

Tabla 8. Módulos de expansión para el PLC seleccionado.

Módulo	# de módulo	Tipo	Descripción
IO-PT400	7	Entradas de temperatura	4 entradas de medición de temperatura por PT100
IO-TO16	2	Salida digital	16 salidas digitales de transistor pnp
EX – RC1	1	Interface	Interface OPLC y módulos de expansión
EX – A2X	1	Interface	Interface entre OPLC y módulos de expansión

Código	FDE 089
Versión	03
Fecha	2015-01-22

4. RESULTADOS Y DISCUSIÓN

En la evaluación de los sistemas fue importante discriminar todos sus componentes, ya que esto permitió la identificación de todos los factores que intervienen en el proceso y su relevancia, con esto se determinó que el sistema más importante es el arranque general, ya que este con ayuda la bomba de lubricación define la vida útil del sistema mecánico. Además con la separación de los procesos se obtuvo un panorama general de las variables a controlar por medio del PLC, para luego proceder a la programación.

El diseño del sistema eléctrico de potencia fue desarrollado haciendo uso de la NTC2050, con esto fue posible obtener los dispositivos de protección, calibre y tipos de cables a usar para la alimentación de los motores y transformadores. Además se eligieron los elementos de maniobra convenientes para un funcionamiento adecuado del sistema.

Se utilizaron relés para el control de los contactores de potencia, por lo que la salida del PLC controla la bobina del relé y este activa la bobina de los contactores de potencia (Ver Figura 17).

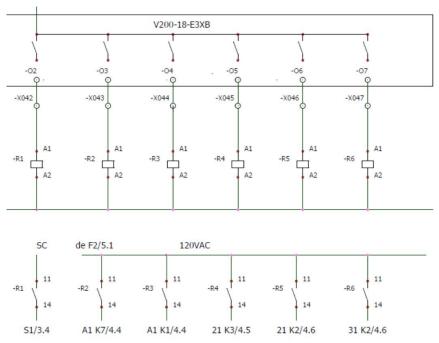


Figura 17. Conexión de las señales de salida desde el PLC. Fuente: Autor.

Código	FDE 089
Versión	03
Fecha	2015-01-22

Los planos eléctricos de control y de potencia fueron planteados a mano alzada y posteriormente digitalizados en solidworks electrical, de acuerdo a la norma IEC y los diseños eléctricos realizados previamente (Ver Figura 18).

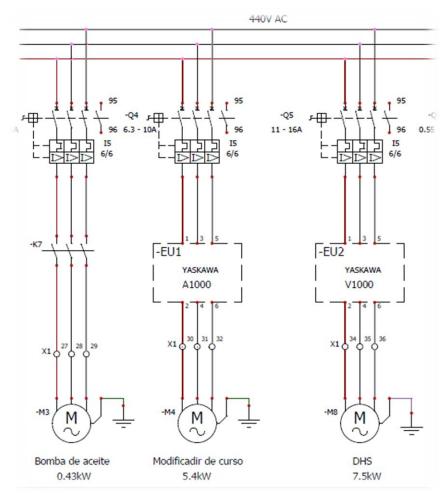


Figura 18. Planos de potencia del sistema vaivén y bomba de lubricación. Fuente: Autor.

De igual forma se plantearon los Diagramas de Tubería e Instrumentación (por sus siglas en ingles P&ID), los cuales fueron digitalizados en el software Visio teniendo en cuenta la norma ISA (Ver Figura 19) y de esta manera tener una base para desarrollar los esquemas de control del sistema. Los planos eléctricos de potencia y control que se realizaron para este proyecto se encuentran el apéndice A y los P&ID completos se encuentran el apéndice B donde se pueden visualizar con mayor claridad.

Código	FDE 089
Versión	03
Fecha	2015-01-22

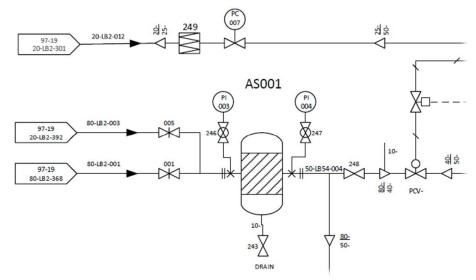


Figura 19. P&ID de texturizadora de hilo.

El programa de control y la interfaz fueron desarrollados mediante el software visilogic, por medio de éste, se configuró el hardware a utilizar y los módulos de expansión elegidos (Ver Figura 20). Seguidamente se programaron las entradas y salidas planteadas en el snap-in y se configuraron las entradas de temperatura y las salidas para los relés de estado sólido en los módulos de expansión (Ver Figura 21).

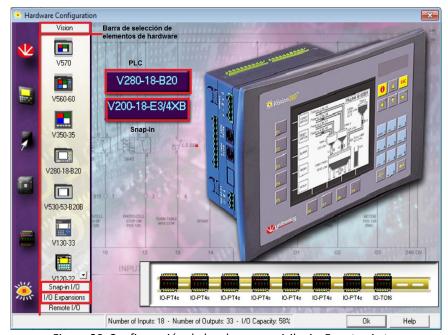


Figura 20. Configuración de hardware en visilogic. Fuente: Autor

Código	FDE 089
Versión	03
Fecha	2015-01-22

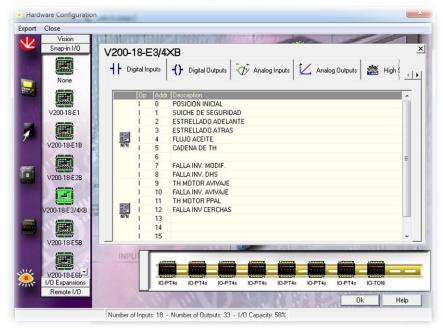


Figura 21. Configuración de entradas. Fuente: Autor.

Con la configuración terminada se realizó la conexión entre la pantalla y el PLC, lo cual se visualiza en la Figura 22, con el fin de vincular las variables usadas en la programación ladder con las variables locales de la pantalla.

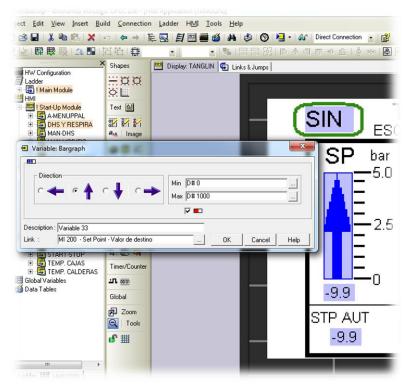


Figura 22. Configuración de variables de pantalla en visilogic. Fuente: Autor.

Código	FDE 089
Versión	03
Fecha	2015-01-22

El resultado final de la propuesta corresponde a la unión del algoritmo de control y la interfaz de usuario, exponiendo el comportamiento generado por las variables controladas. A continuación, se describe el software desarrollado para la operación de la texturizadora.

Al acceder a la máquina se muestra la pantalla de inicio (Ver Figura 23) la cual contiene la hora y fecha, además de los botones que lo trasladara a las pantallas siguientes de trabajo. El botón F7 transfiere a la pantalla donde se encuentran alojados los botones inicio y paro, además muestra el estado en el que se encuentra la máquina (Ver Figura 24).

Figura 23. Pantalla inicial del programa. Fuente: Autor.

Figura 24. Start/stop de texturizadora. Fuente: Autor.

Código	FDE 089
Versión	03
Fecha	2015-01-22

En la pantalla de tangling o chorro de aire, permite seleccionar el modo de operación (manual o automático), además permite elegir si se va a ser uso o no del aire comprimido (Ver Figura 25).

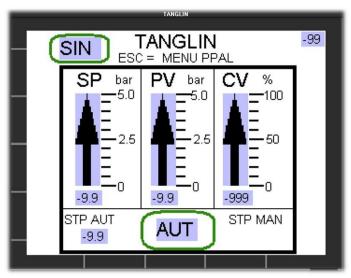


Figura 25. Control de aire comprimido. Fuente: Autor.

En la pantalla de temperaturas, está alojado un botón que desactiva el uso de las cajas de calefacción, también se visualizan la temperatura de las nueve cajas que conforman la texturizadora y el setpoint de trabajo (Ver Figura 26). De allí se puede dirigir oprimiendo F1 a la pantalla de temperatura calderas (ver Figura 27) o F2 para ir a setpoint donde se ingresa el punto de consigna para la variable de temperatura (Ver Figura 28).

Figura 26. Temperatura de cajas. Fuente: Autor.

Código	FDE 089
Versión	03
Fecha	2015-01-22

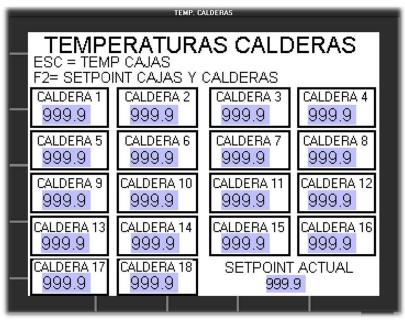


Figura 27. Temperatura de calderas. Fuente: Autor

Figura 28. Setpoint para temperaturas. Fuente: Autor

En las pantallas de modificación y respiración se ajustan los parámetros de distancias, setpoint de los DHS y tiempos con los que va a trabajar el sistema de vaivén (Ver Figura 29).

Código	FDE 089
Versión	03
Fecha	2015-01-22

Figura 29. Perturbación del vaivén. Fuente: Autor

Finalmente en la pantalla de alarmas se pueden observar las situaciones anómalas que aparecen en los sistemas que intervienen en la texturizadora de hilo (Ver Figura 30).

Figura 30. Alarmas. Fuente: Autor.

Código	FDE 089
Versión	03
Fecha	2015-01-22

5. CONCLUSIONES, RECOMENDACIONES Y TRABAJO FUTURO

- El diseño de un sistema automatizado por medio de controladores lógicos programables y HMI, permiten optimizar el control en la operación de una texturizadora de hilo.
- La discriminación de los sistemas y los elementos que los conforman, permitió identificar las variables críticas como el flujo del aceite de lubricación, la temperatura, presión de aire comprimido y los tiempos del sistema vaivén, que son susceptibles de automatizar.
- Para cada variable se plantea una interfaz de control que hace posible la comunicación entre un PLC, HMI y los componentes de una texturizadora de hilo.
- El diseño del sistema eléctrico de potencia y control permite establecer los nuevos parámetros de los componentes que fueron intervenidos y los requerimientos de funcionamiento para los diferentes componentes del sistema y así evitar fallos en la texturizadora de hilo.

5.1 Trabajo futuro

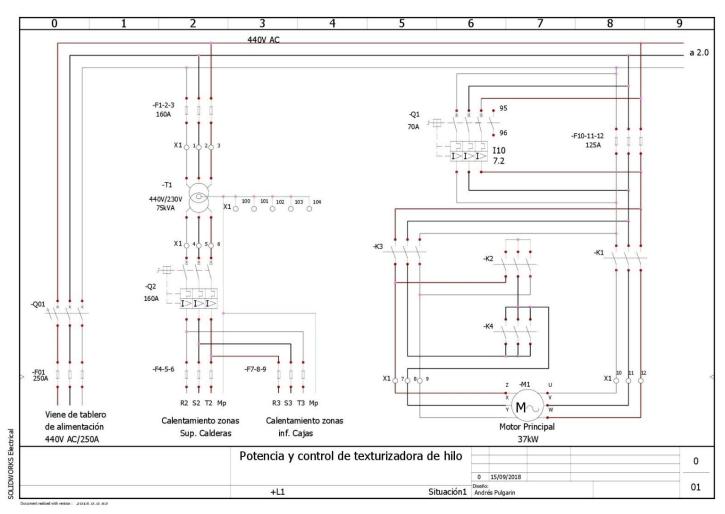
- implementar el proyecto en una texturizadora que no tenga un sistema de control automatizado, para evidenciar la mejora obtenida después de ser intervenida.
- Desarrollar un plan de mantenimiento preventivo, con el fin de comprobar el correcto funcionamiento tanto del software, como de los elementos eléctricos y de control que intervienen el proceso.

Código	FDE 089
Versión	03
Fecha	2015-01-22

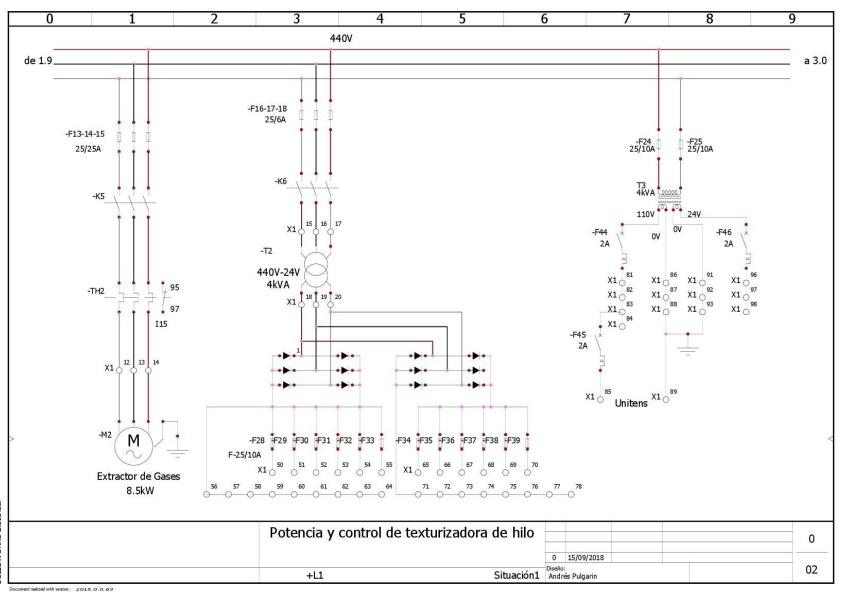
REFERENCIAS

- Alphonsus, E. R., & Abdullah, M. O. (2016). A review on the applications of programmable logic controllers (PLCs). *Renewable and Sustainable Energy Reviews, 60,* 1185–1205. https://doi.org/10.1016/j.rser.2016.01.025
- Arian, C. E. I. (2006). Pt100 su operación, instalación y tablas. Retrieved from http://www.arian.cl/downloads/nt-004.pdf
- Avilés Bautista, D. F., & Tapia Claudio, E. F. (2015). Repotenciación de una sopladora de polietileno marca magic mp en la empresa inplastico con una potencia aproximada de 40 hp, mediante la implementación de un sistema automatizado con la utilización de PLC's e interfaces HMI, en el periodo 2013-2014. LATACUNGA / UTC / 2015. Retrieved from http://repositorio.utc.edu.ec/bitstream/27000/2949/1/T-UTC-3397.pdf
- Barmag. (2006). COCOON: A new quality in manual texturing is born | TechnoFront | Features | The ITJ. *The Indian Textile*. Retrieved from http://www.indiantextilejournal.com/articles/FAdetails.asp?id=1
- Hearle, J. W. S., Hollick, L., & Wilson, D. K. (2001). Yarn texturing technology.
- Iovev, A. N., & Yakimov, P. I. (2015). Application of PLC as a Gateway in a Network of Smart Power Transducers. *IFAC-PapersOnLine*, 48(24), 95–98. https://doi.org/10.1016/J.IFACOL.2015.12.063
- Lockuán Lavado, F. E. (2013). *La industria Textil y su control de calidad Fibras textiles*. Retrieved from https://ia801708.us.archive.org/21/items/II.LITYSCDC_201305/II. La industria textil y su control de calidad.pdf
- Oerlikon. (2011). Texturing Units Temco [®] FTS61. Retrieved September 24, 2018, from www.components.oerlikontextile.com
- Poma Alejandro, M. E. (2014). *Diseño e implementación de un sistema de control automático para una máquina texturizadora en la planta de fibras textiles ENKADOR*. QUITO/EPN/2014. Retrieved from http://bibdigital.epn.edu.ec/bitstream/15000/7346/1/CD-5488.pdf
- Priyanka, E. B., Maheswari, C., & Meenakshipriya, B. (2016). Parameter monitoring and control during petrol transportation using PLC based PID controller. *Journal of Applied Research and Technology*, *14*(2), 125–131. https://doi.org/10.1016/j.jart.2016.03.004
- Quezada, J. C. Q., Flores, E. G., Quezada, V. A., & Bautista, J. L. (2014). Diseño e implementación de un sistema de control y monitoreo basado en HMI-PLC para un pozo de agua potable. Ingeniería, Investigación y Tecnología, 15(1), 41–50. https://doi.org/10.1016/S1405-7743(15)30005-6
- Rocatek. (2010). Automatizacion y Control Industrial. Retrieved September 30, 2018, from http://www.rocatek.com/forum_automatizacion_industrial.php

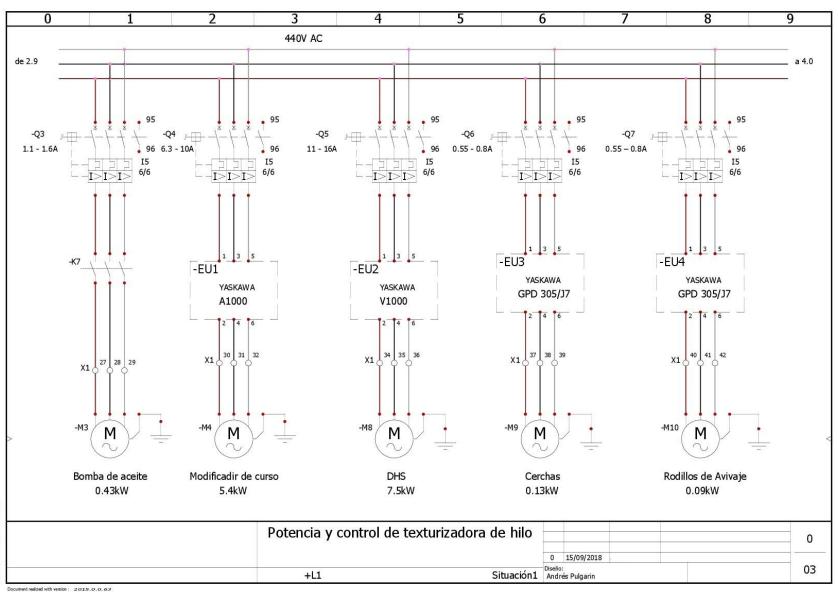
Código	FDE 089
Versión	03
Fecha	2015-01-22


- Rojas Segarra, X. A., & Correa Anchundia, G. A. (2015). *Diseño e implementación de un sistema de control y supervisión HMI para máquina barnizadora de la empresa El Telégrafo.* Universidad Politécnica Saleciana. Retrieved from http://dspace.ups.edu.ec/bitstream/123456789/10403/1/UPS-GT001448.pdf
- Tavera, A. G. C. (2014). *EL SECTOR TEXTIL EN COLOMBIA: ¿COMO SER MÁS COMPETITIVOS?* universidad militar nueva granada. Retrieved from https://repository.unimilitar.edu.co/bitstream/10654/12920/1/Ensayo Especializacion. EL SECTOR TEXTIL EN COLOMBIA ¿COMO SER MÁS COMPETITIVOS.pdf
- Unitronics. (2017). PLC controller- Vision560 with integrated HMI. Retrieved September 24, 2018, from https://unitronicsplc.com/vision-series-vision560/
- Vagia, M., Transeth, A. A., & Fjerdingen, S. A. (2016). A literature review on the levels of automation during the years. What are the different taxonomies that have been proposed? *Applied Ergonomics*, *53*, 190–202. https://doi.org/10.1016/j.apergo.2015.09.013
- Xiame. (2016). POY. Retrieved October 4, 2018, from http://spanish.textilesyarn.com/sale-8540260-high-tenacity-polyester-core-spun-yarn-poy-150d-48f-for-weaving-fabric.html

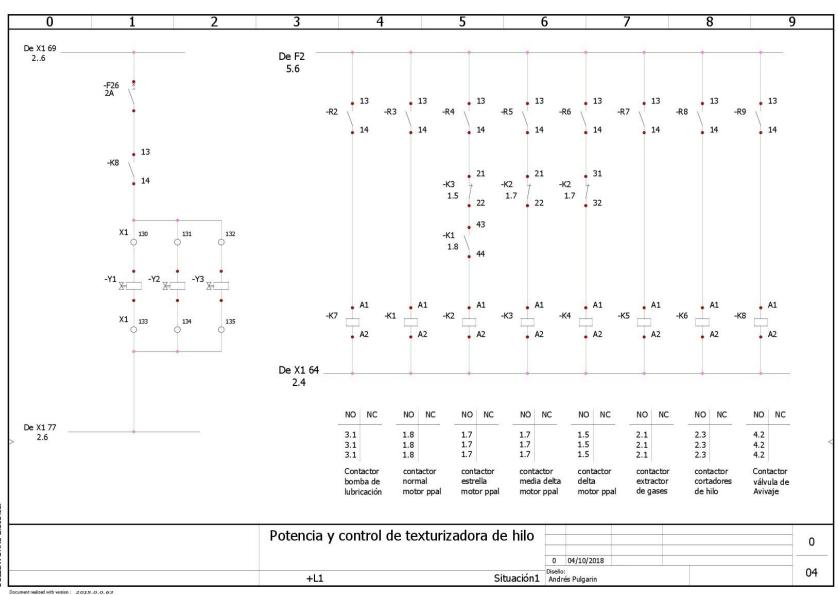
Código	FDE 089
Versión	03
Fecha	2015-01-27


APÉNDICE

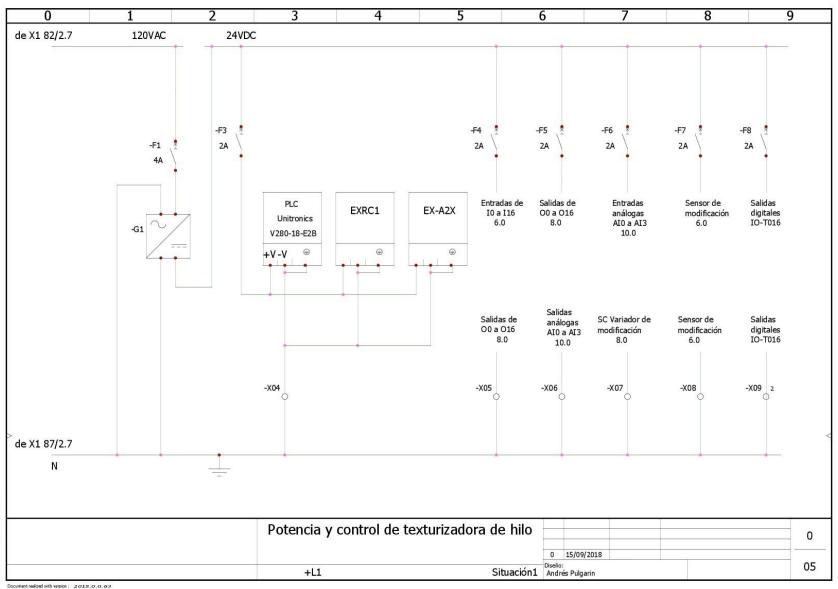
Apéndice A. Planos eléctricos y de control



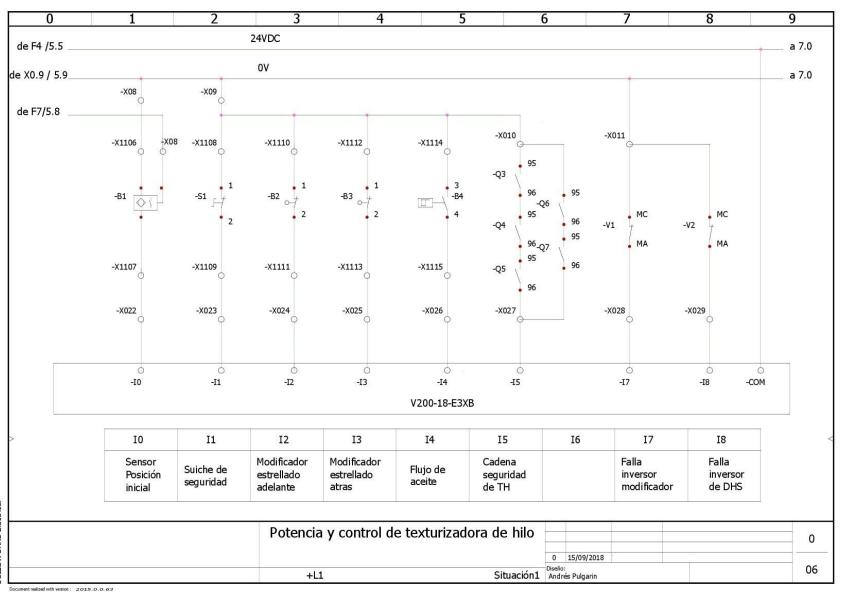
Código	FDE 089
Versión	03
Fecha	2015-01-22



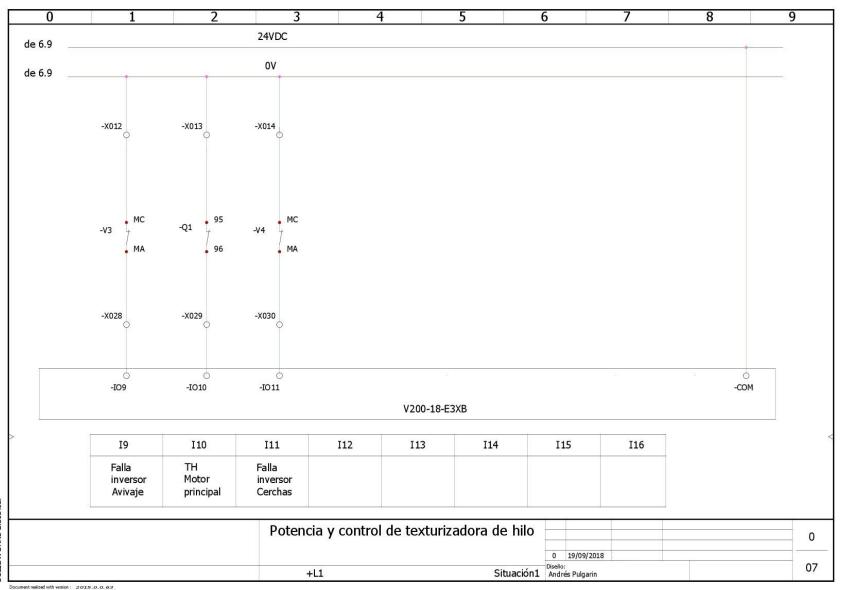
Código	FDE 089
Versión	03
Fecha	2015-01-22


Código	FDE 089
Versión	03
Fecha	2015-01-22

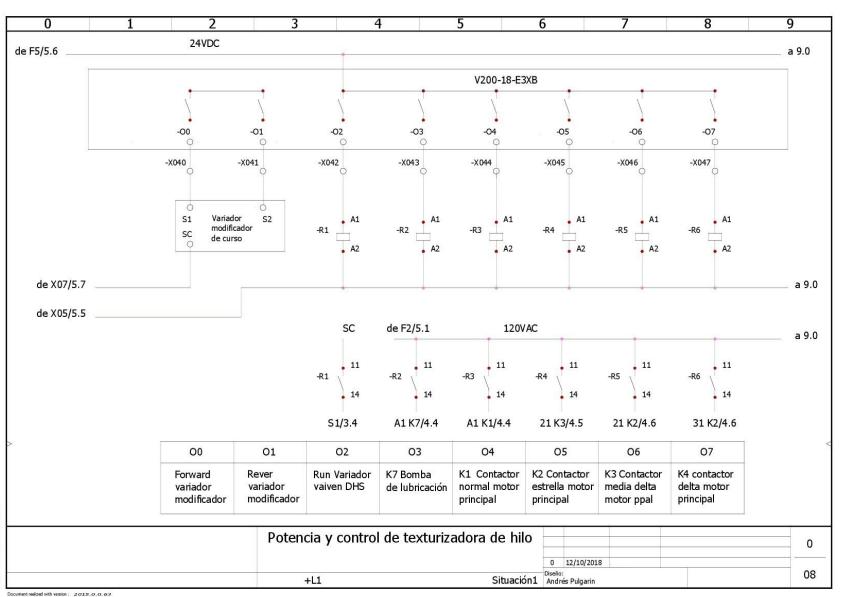
SOLIDWORKS Electrical



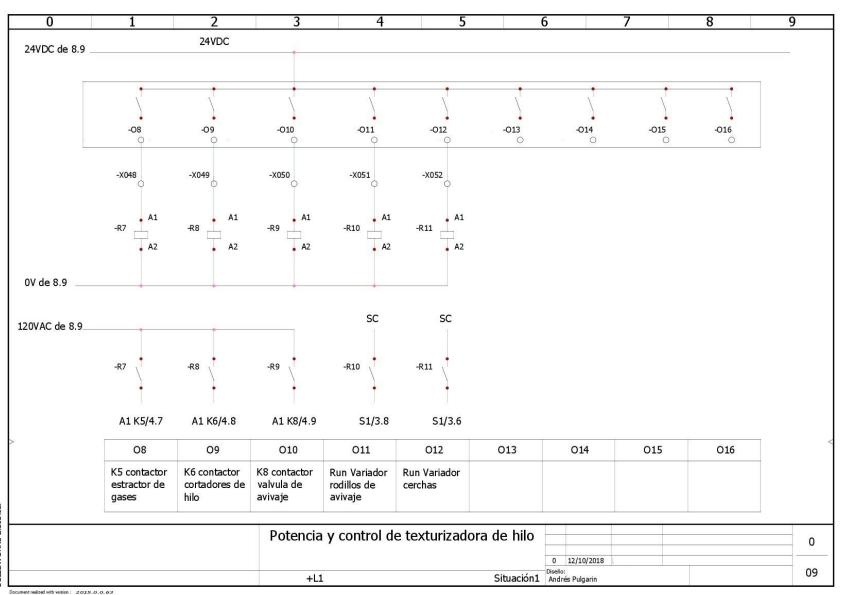
Código	FDE 089
Versión	03
Fecha	2015-01-22



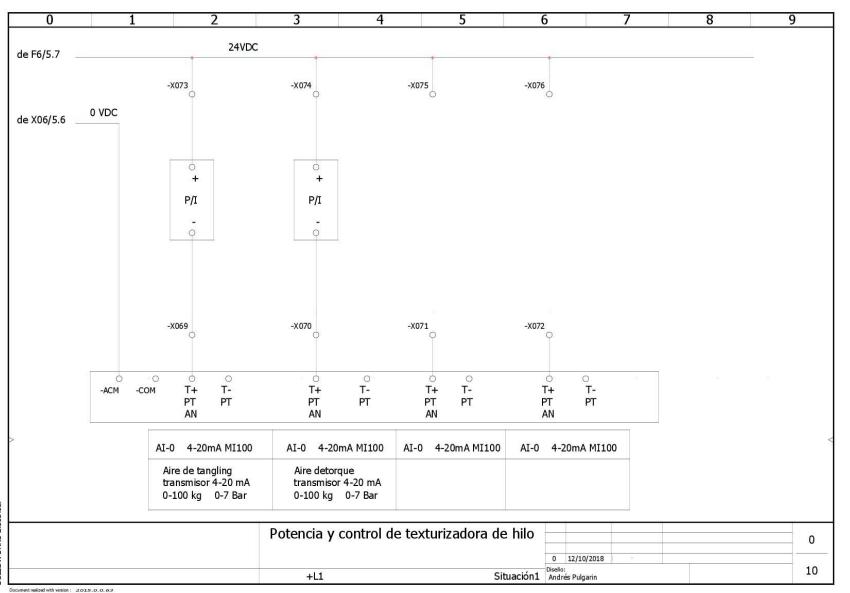
Código	FDE 089
Versión	03
Fecha	2015-01-22



Código	FDE 089
Versión	03
Fecha	2015-01-22

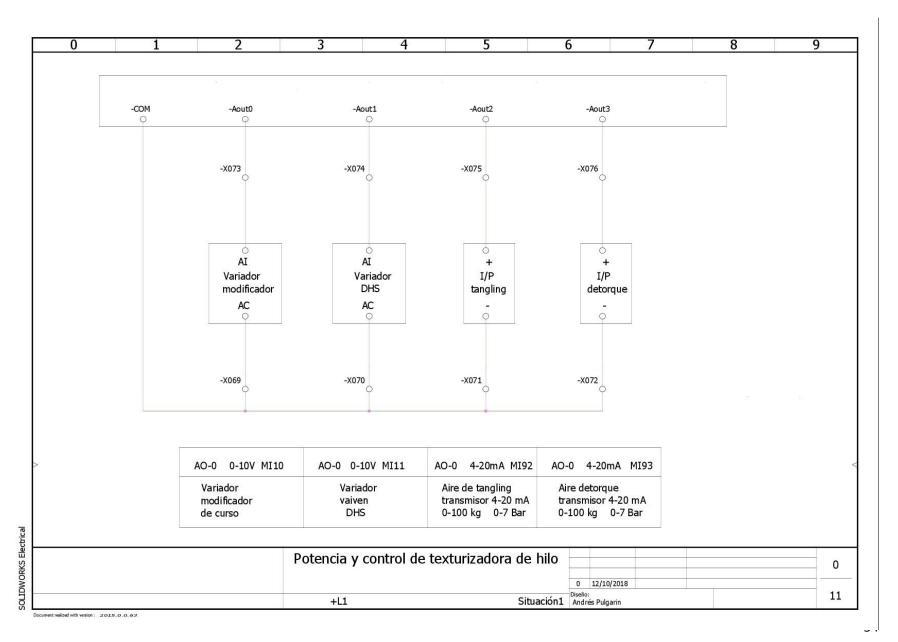


Código	FDE 089
Versión	03
Fecha	2015-01-22



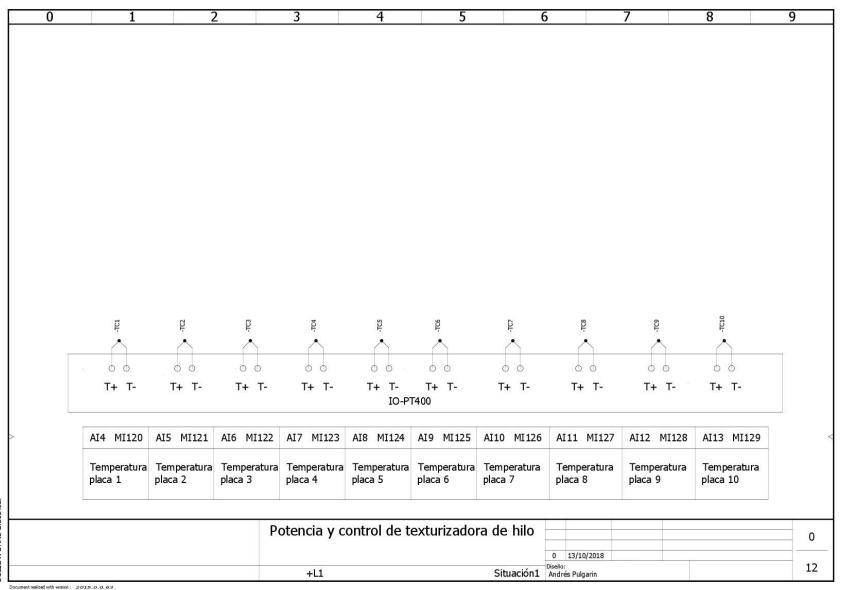
Código	FDE 089
Versión	03
Fecha	2015-01-22

Código	FDE 089
Versión	03
Fecha	2015-01-22



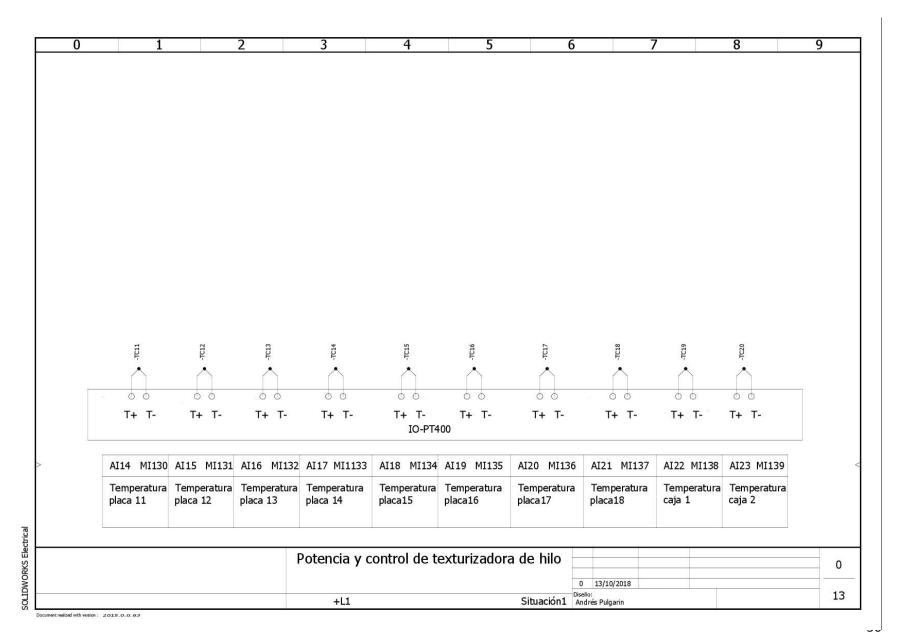
SOLIDWORKS Electrical

اب ر



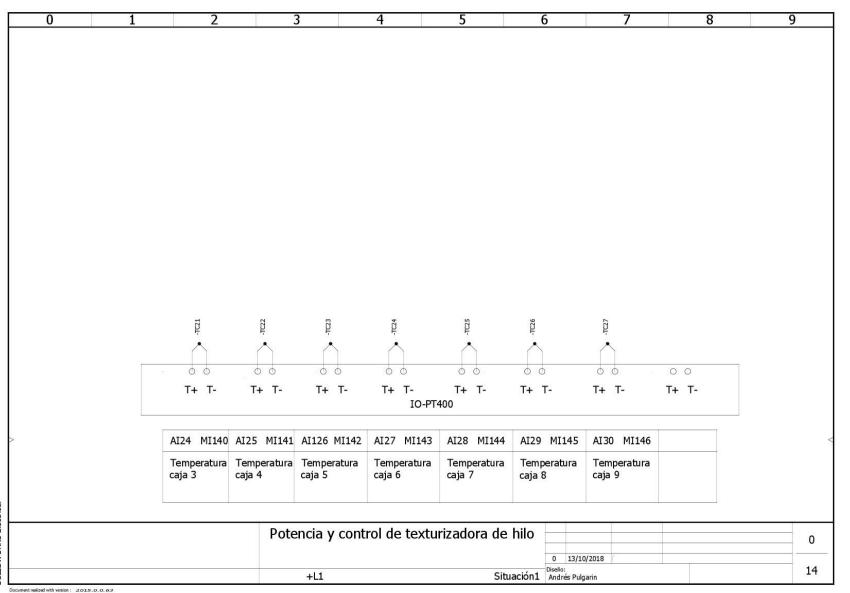
Código	FDE 089
Versión	03
Fecha	2015-01-22

Código	FDE 089
Versión	03
Fecha	2015-01-22



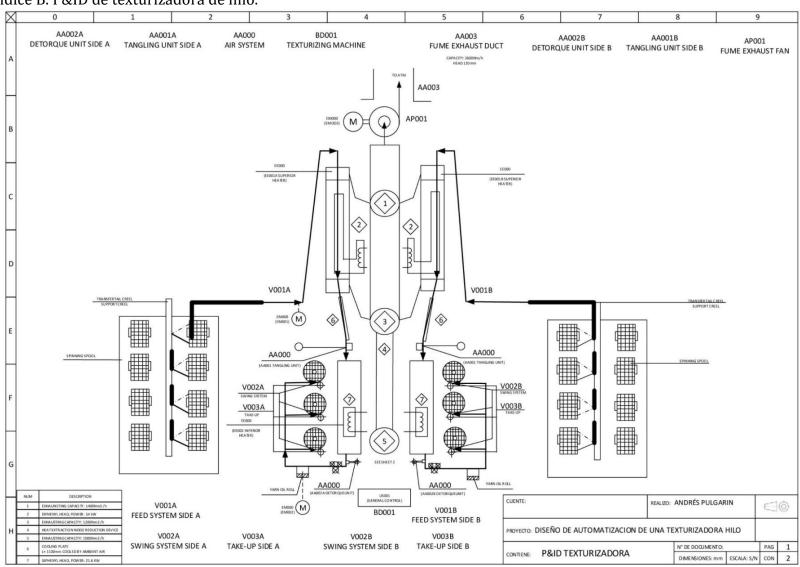
SOLIDWORKS Electrical

۔ ۔

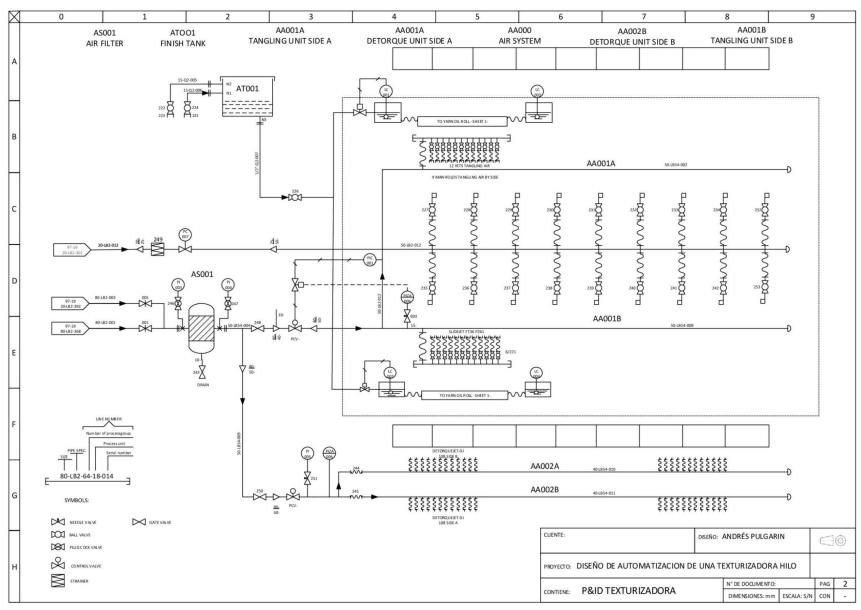


Código	FDE 089
Versión	03
Fecha	2015-01-22

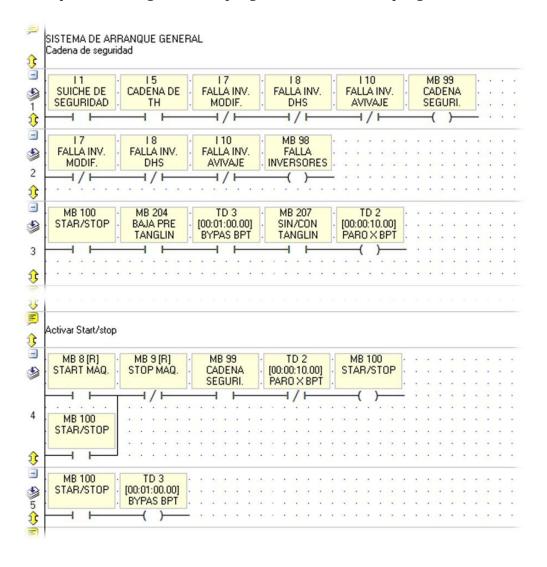
Código	FDE 089
Versión	03
Fecha	2015-01-22

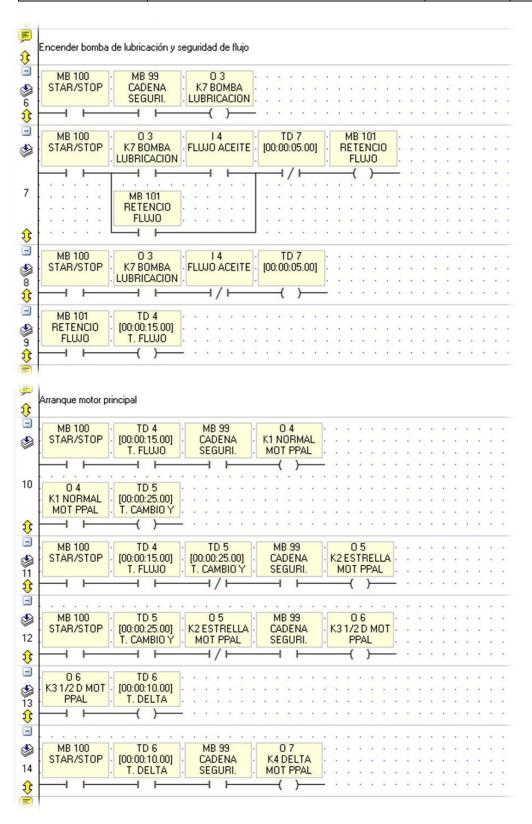

SOLIDWORKS Electrical

- - 1

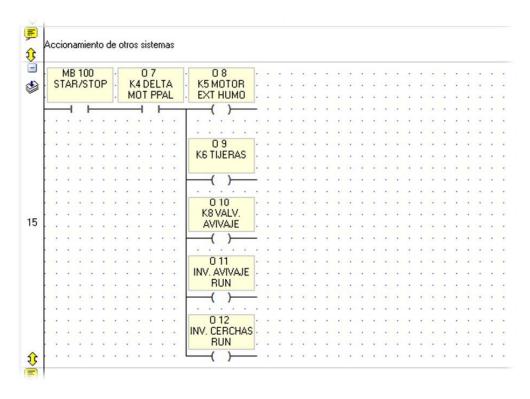

Código	FDE 089
Versión	03
Fecha	2015-01-22

Apéndice B. P&ID de texturizadora de hilo.

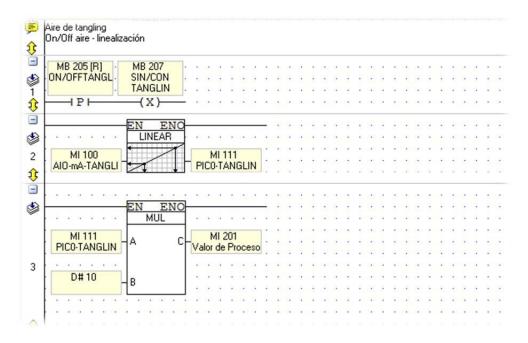

Código	FDE 089
Versión	03
Fecha	2015-01-22


Código	FDE 089
Versión	03
Fecha	2015-01-27

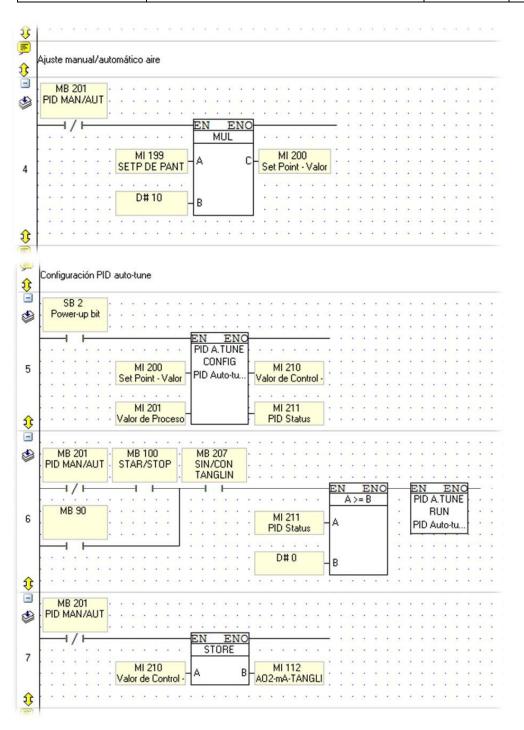
Apéndice C. Algoritmo de programación del arranque general.



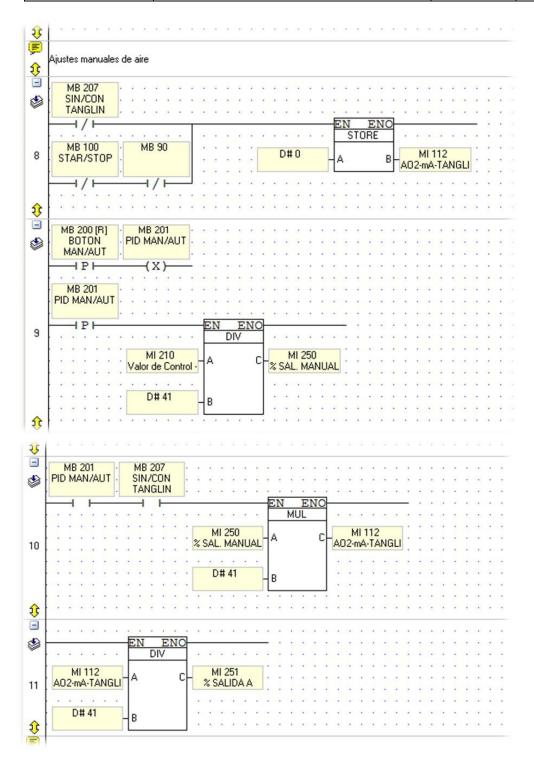
Código	FDE 089
Versión	03
Fecha	2015-01-22



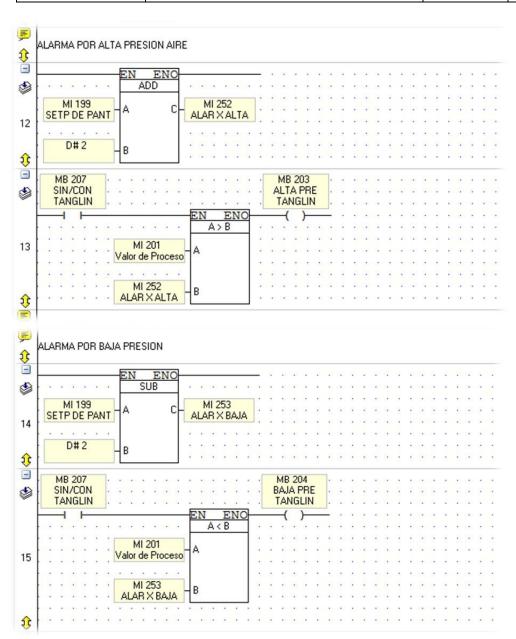
Código	FDE 089
Versión	03
Fecha	2015-01-22



Apéndice D. Algoritmo de programación para el manejo de aire comprimido.

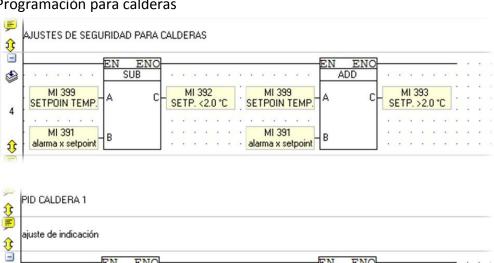


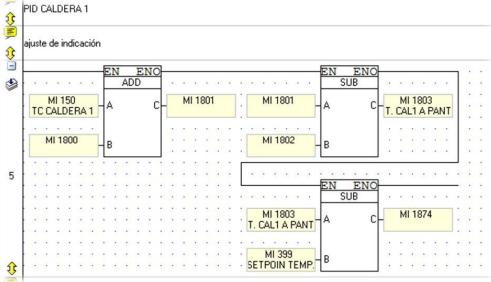
Código	FDE 089
Versión	03
Fecha	2015-01-22



Código	FDE 089
Versión	03
Fecha	2015-01-22

Código	FDE 089
Versión	03
Fecha	2015-01-22

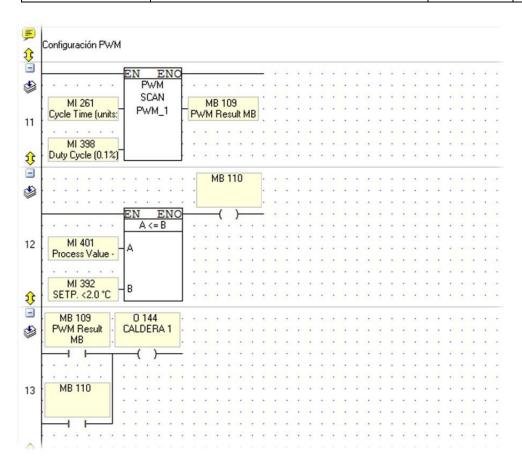




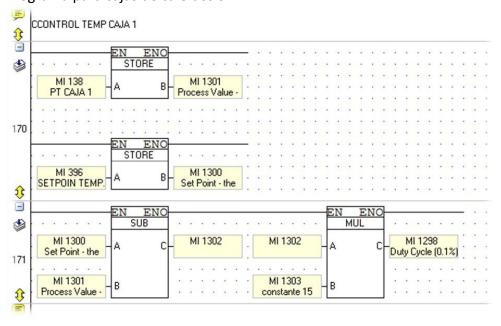
Código	FDE 089
Versión	03
Fecha	2015-01-22

Apéndice E. Algoritmo de programación para el sistema de calentamiento de cajas y calderas.

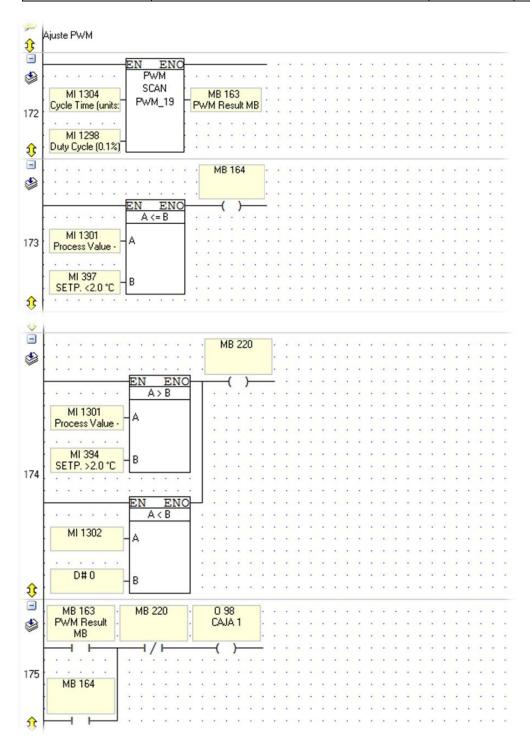

Programación para calderas



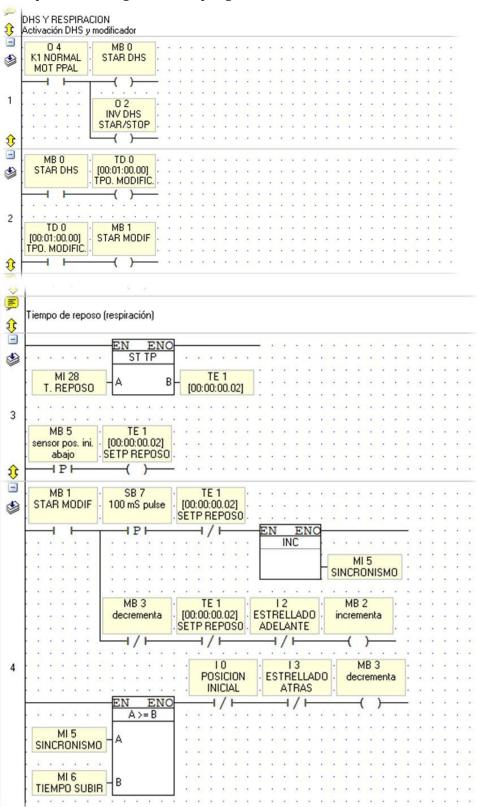
Código	FDE 089
Versión	03
Fecha	2015-01-22

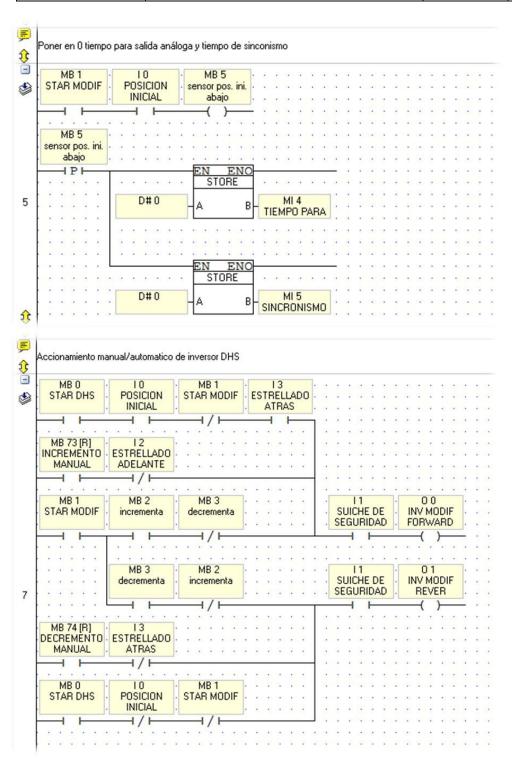


Código	FDE 089
Versión	03
Fecha	2015-01-22

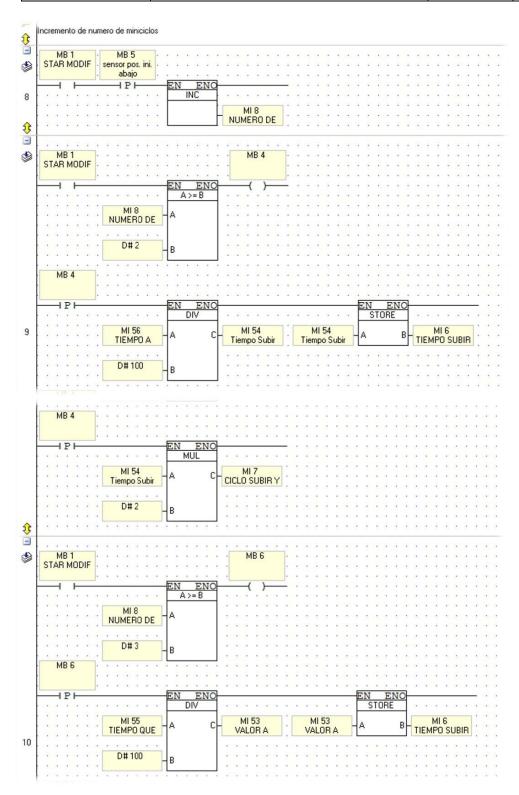


Programa para cajas de calefacción

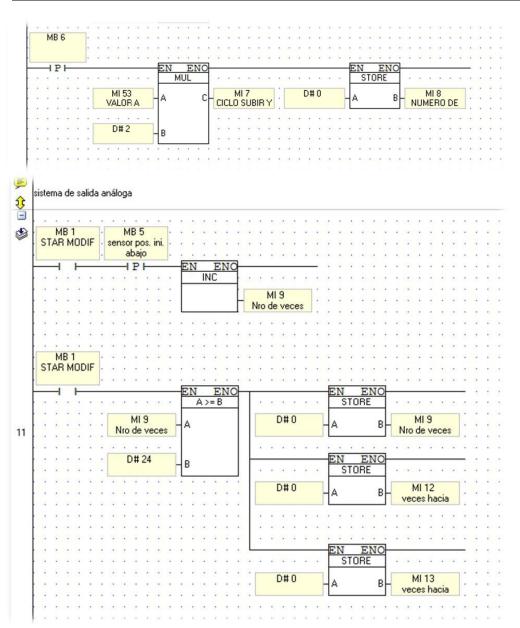

Código	FDE 089
Versión	03
Fecha	2015-01-22


Código	FDE 089
Versión	03
Fecha	2015-01-22

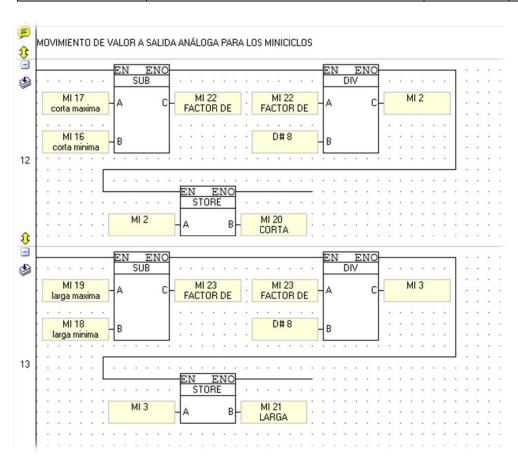
Apéndice F. Algoritmo de programación del sistema Vaivén.



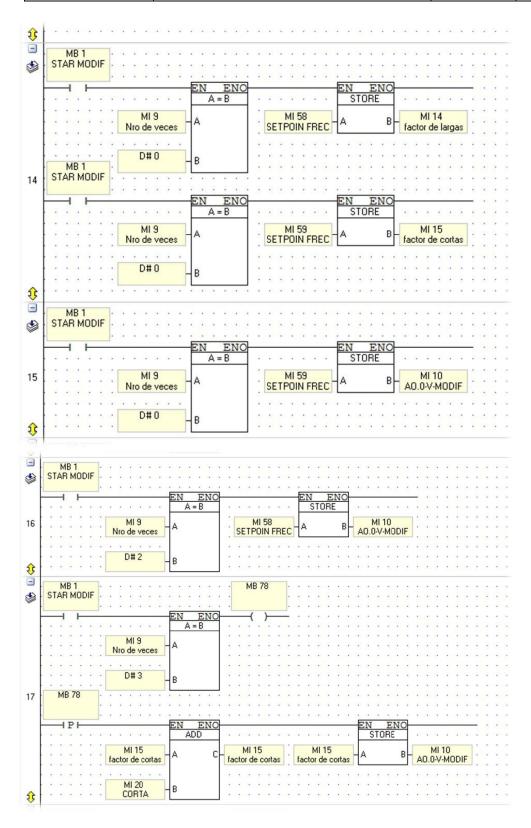
Código	FDE 089
Versión	03
Fecha	2015-01-22



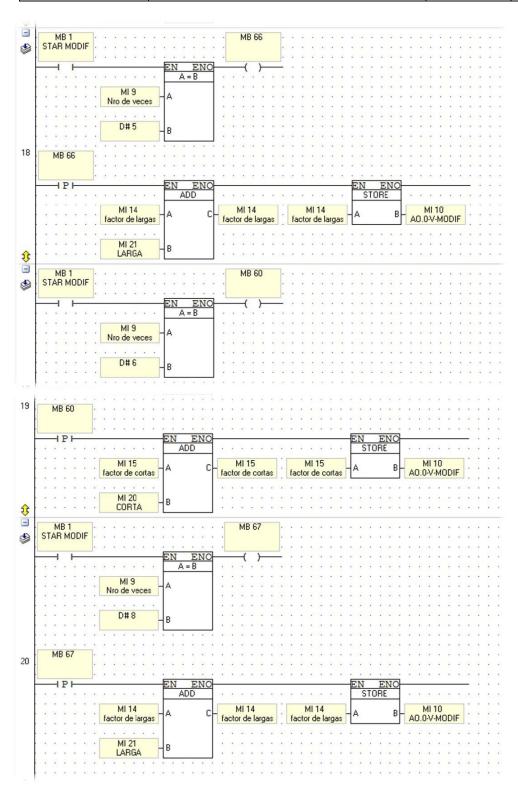
Código	FDE 089
Versión	03
Fecha	2015-01-22



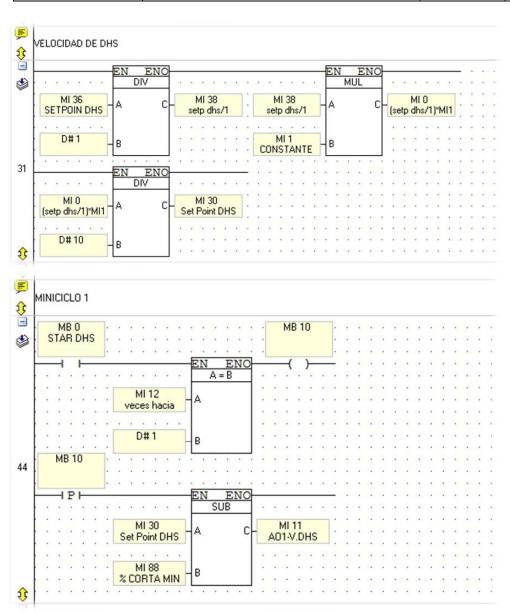
Código	FDE 089
Versión	03
Fecha	2015-01-22



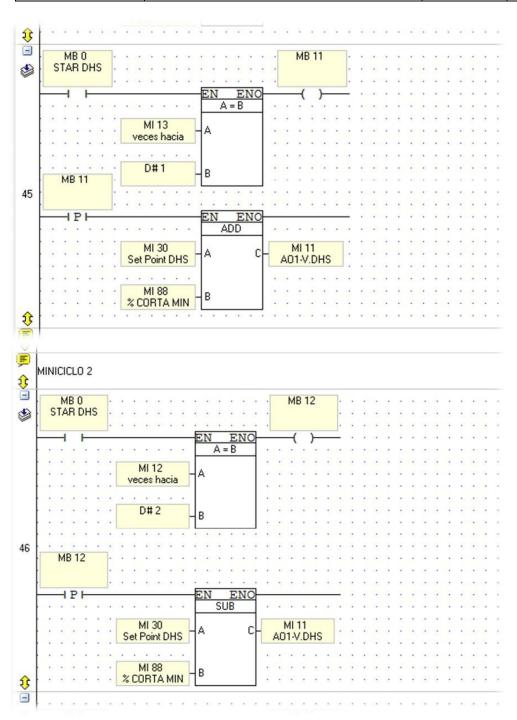
Código	FDE 089
Versión	03
Fecha	2015-01-22



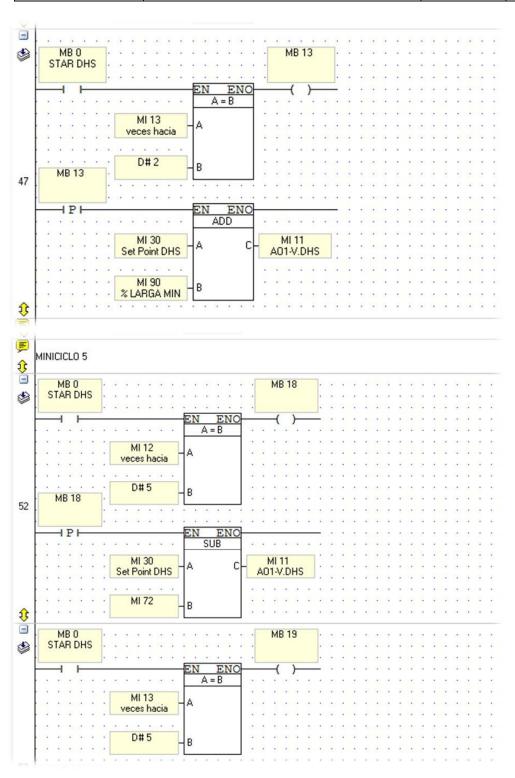
Código	FDE 089
Versión	03
Fecha	2015-01-22



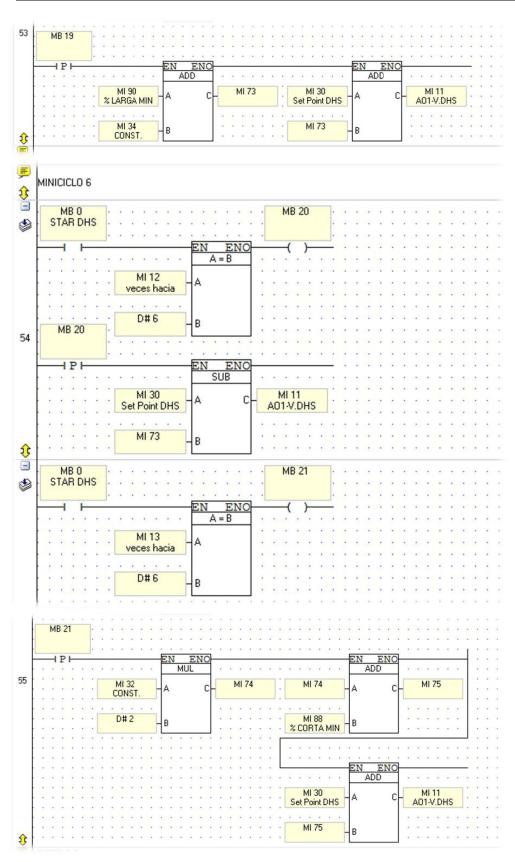
Código	FDE 089
Versión	03
Fecha	2015-01-22



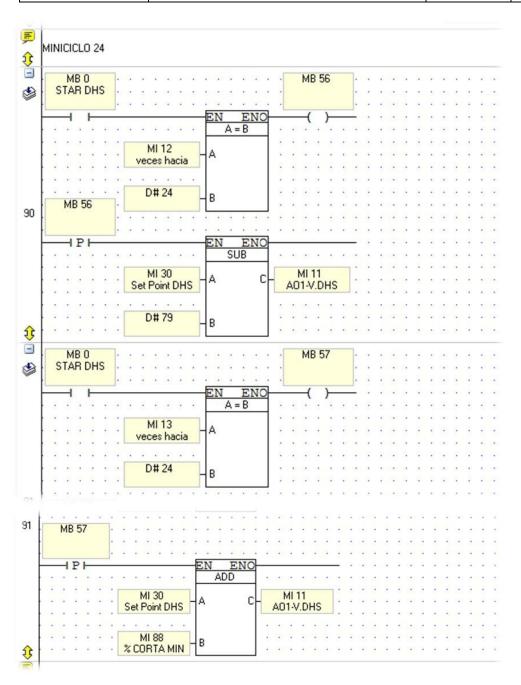
Código	FDE 089
Versión	03
Fecha	2015-01-22



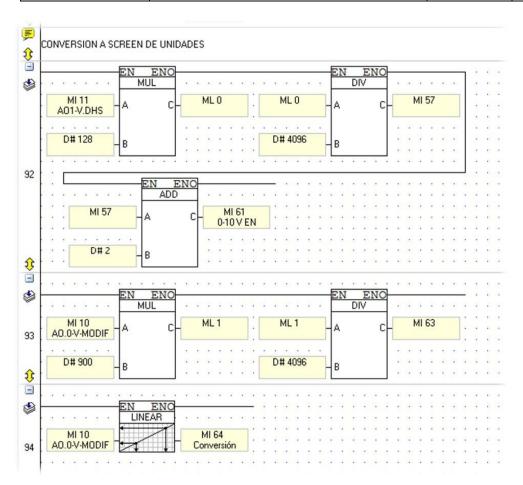
Código	FDE 089
Versión	03
Fecha	2015-01-22



Código	FDE 089
Versión	03
Fecha	2015-01-22



Código	FDE 089
Versión	03
Fecha	2015-01-22



Código	FDE 089
Versión	03
Fecha	2015-01-22

Código	FDE 089
Versión	03
Fecha	2015-01-22

Código	FDE 089
Versión	03
Fecha	2015-01-22

	FIRMA ESTUDIANTES	Andrés Pologia
	FIRMA ASESOR	Impound formet.
		FECHA ENTREGA: 14 NOV 18
FIRMA COMIT	É TRABAJO DE GRADO DE L	A FACULTAD
RECHAZADO	ACEPTADO	ACEPTADO CON MODIFICACIONES
		ACTA NO
		ACIA NO.
		ACTA NO FECHA ENTREGA:
FIR	MA CONSEJO DE FACULTAI	FECHA ENTREGA:
FIR	MA CONSEJO DE FACULTAI	FECHA ENTREGA: