Prediction of protein-protein interactions through support vector machines
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Abstract

In this paper, a SVM-based method is implemented for
the prediction of protein-protein interactions. This model is
initially trained with a set of over 69.000 pairs of protein se-
quences based on documented positive interactions. Then,
a cross-validation method is performed for estimating the
accuracy of the system, showing acceptable performances
in terms of sensitivity, specificity and geometric mean. The
results are approximately balanced and the overall perfor-
mance if around 70% classified through a pairwise kernel
and the parameters are set through an particle swarm opti-
mization meta-heuristic and showing promising results for
the field of bioinformatics.

1. Introduction

Most proteins need to interacting with other proteins in
order to perform their functions. Thus, information about
their interactions can explain many cellular processes, then
is very useful to find out the action mechanism of some dis-
eases [1].

Protein-protein interactions (PPI) are physical contacts
between a pair of proteins allowing them to perform a bio-
chemical event that takes effect in several cellular processes.
These interactions can influence the behavior of multiple
cell signaling pathways and its prediction can provide use-
ful information for discovering the unknown mechanisms in
molecular events such as effects in cellular metabolism or
cell trafficking [2]. Currently, there are some methods for
the prediction of physical interactions that consider the evo-
lution of the genes order across genomes, divergence of pro-
teins across species, and the fusion of two separate proteins
in a single protein. However, since the use of experimental
methods can be expensive and time-consuming, there have
been proposed several methods to predict protein-protein
interactions from computational tools. These methods can
be based on statistics, phylogenetic profiling and machine
learning, among others. Such non experimental methods
can provide good predictions based on previously reported

978-1-4673-9461-1/15/$31.00 (©2015 IEEE

experimental data[3, 4, 5].

There are some approaches for characterization of bio-
chemical protein-protein interactions such as protein mi-
croarrays, which can detect interactions in vitro, but cur-
rently is only being applied to calmodulin and phospho-
lipid binding proteins to domain interactions [6]. Also,
mass spectrometry analysis of purified protein complexes
is a powerful and sensitive tool but it has some drawbacks,
for example: in the complex purification approach it is ex-
pressed just one of the interactors, this approach is more
physiological because the analysis of PPI is done with di-
rect and cooperative combinations, and finally, this can be
more expensive than other methods [7]. On the other hand,
computational prediction of protein-protein interactions has
achieved increasing attention in the last years. Machine
learning methods have been used to this purpose but they
have reached low prediction performances, mostly because
their free parameters are not properly sett[8].

In this paper it is used a support vector machine for the
prediction of interactions between two proteins. Proteins
pairs are classified through a pairwise kernel, and addi-
tionally the parameters are set through an particle swarm
optimization meta-heuristic.

1.1. Background
1.2. Proteins

Proteins are polymers of amino acids, with each amino
acid residue joined to its neighbor by a specific type of
covalent bond. Twenty different amino acids are commonly
found in proteins and these have a carboxyl group and
an amino group bonded to the same carbon atom. They
differ from each other in their side chains, or R groups,
which vary in structure, size, and electric charge, and
which influence the solubility of the amino acids in water.
In addition to these 20 amino acids there are many less
common ones [9].

Of all the molecules encountered in living organisms,
proteins have the most diverse functions, like as cataly-



sis, the catalytic proteins called the enzymes accelerate
thousands of biochemical reactions in such processes as
digestion, energy capture, and biosynthesis. The structural
proteins often have very specialized properties in the cell.
Proteins of movement are involved in all cell movements.
Actin, tubulin, and other proteins comprise the cytoskeleton
and other functions as defense, transport, stress response
and regulation. The latter is related to binding a hormone
molecule or a growth factor to cognate receptors on its
target cell changes cellular function [10].

1.3. Physical methods

Initially every cellular function requires physical
protein-protein interactions (PPIs) between cellular pro-
teins and cellular functions are critically dependent on
the correct assembly of proteins to become functional
multiprotein complexes, where there is dynamic inter-
change of complex components in response to signals,
from internal molecular cellular demands, or a cell en-
vironment. Also, the correct functioning of signaling
pathways, transmitting signals from cell surface receptors
via kinase networks to the nucleus, requires multiple
sequential and transient interactions between upstream
and downstream components of the particular pathway [11].

There are several techniques to know when exists a in-
teraction between two proteins like as yeast two-hybrid, the
modular basis of eukaryotic transcription factors provided
the biological flexibility contributing to the development of
the yeast two-hybrid technique. The base components of
yeast two-hybrid hinge on transcription activator proteins
(Young, 1998). The affinity purification coupled to mass
spectrometry is based on important cellular processes, such
as transcription, replication, and recombination, involve the
action of DNA binding proteins, to study the biochemical
properties of these transcription factors, it is necessary to
purify the proteins to homogeneity. This would enable
the factors to be characterized, facilitate the raising of
antibodies, and ultimately provide a means for cloning the
genes encoding these regulatory proteins [12]. And one of
the most important methods is the co-inmunoprecipitation
generated a novel genetic system to study these interactions
by taking advantage of the properties of the GAL4 protein
of the yeast Saccharomyces cerevisiae. This protein is
a transcriptional activator required for the expression of
genes encoding enzymes of galactose utilization. It consists
of two separable and functionally essential domains: an
N-terminal domain which binds to specific DNA sequences
(UASG); and a C-terminal domain containing acidic
regions, which is necessary to activate transcription. If both
proteins form a complex through GAL4 activating region,
the known protein could be interact with the other protein

[13].

1.4. Non-physical methods

In other cases, is used the bioinformatic methods, among
which are: Phylogenetic profiling that detects proteins that
participate in a common structural complex or metabolic
pathway. Proteins within these groups are defined as
functionally linked. The underlying hypothesis is that
functionally linked proteins evolve in a correlated fashion,
and, therefore, they have homologs in the same subset of
organisms, and the homologs its potentially to interact [14].

The methods based on similar phylogenetic trees, in this
process whereby two or more species interact and influence
genetic changes in one another. The process is also evident
at the molecular level, where interacting proteins exhibit
coordinated mutations to evolve at a similar rate, when a
mutation exists changes occur within inter-protein contact
sites or at regions implicated in the structural integrity
of proteins, and this is taken into account to define the
interaction [15].

The identification of structural patterns consider that
the hot spots contribute dominantly to protein-protein
interactions and has a significant energetic contribution to
protein associations, the residue identity, size and charge,
and the interactions it establishes with its neighboring
residues should be crucial. This consists on the prediction
of these hotspots of a one protein in order to analyze which
is the most important to interact with a set of proteins [16].
And by las the classification methods are used to train a
machine (classifier) to distinguish when exists a interaction
between a pair of proteins. Each protein is represented as a
vector and is necessary that the data have some features to
the machine can distinguish between false or true [17].

1.5. Support vector machines

The support vector machine (SVMs) is a binary classi-
fier, usually use for pattern recognition, and especially for
the two-class classification problem [17]. This use critical
features for the training group, these are much important
to the accuracy in the SVM, if these are specific, the clas-
sification will be much better. For the classification with
two-class problem is necessary assume a set of samples
and consider definite features for a correct distinction.
SVM implements so: It maps the input vectors into a high
dimensional feature space and finally constructs an optimal
separating hyperplane and which maximizes the margin,
the distance between the hyperplane and the nearest data
points of each class in the space [18].



The kernel function is based on information-geometric
consideration of the structure of the Riemannian geometry
induced by the kernel. The idea is to enlarge the spatial res-
olution around the boundary by a conformal transformation
so that the separability of classes is increased and usually
the kernel is then modified conformally in a data dependent
way by using the information of the support vectors [19].
Aditionally, the SVM and other kernels methods derive
their ability from the incorporation of prior knowledge via
the kernel function and offers the application of diverse
types of data.

2. Proposed methodology

Figure shows the overall proposed methodology. Each
stage will be explained in the present section.
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Figure 1. Flowchart of proposed methodology using learning
methods.

2.1. Dataset

The dataset used in this paper was collected from just
interactions from yeast proteinprotein interaction data
collected in other research [20]. In this data contains
several types of interactions like as: high-throughput yeast

two-hybrid, correlated mRNA expression, genetic inter-
action (synthetic lethality), tandem affinity purification,
high-throughput massspectrometric protein complex iden-
tification and other computational methods. Aditionally,
some interactions was consider false positives because the
interactions was classified mediating confidence scale, it
depend of the method employed, and the low confidence
is consider negative or unknown [8]. In this study, were
taken the labels of the proteins that interact in the research
of Mering for the respective characterization.

Then, with the initial dataset were obtained 69.723
positive interactions, whence it had to make more or less
the same quantity of negative randomly interactions, for
this case were used 69.770 this was done choosing a pair
of proteins and making sure that these do not interact, and
so on. All this is necessary to avoid a current drawback in
the implementation of SVMs that is the class imbalance,
because the classifiers generally perform poorly on imbal-
anced datasets[21].

2.2. Features extraction and kernel matrix con-
struction

For the representation of a protein, we consider a several
feature for pick out and test in the classification for the
feature extraction we use the pairwise kernel that provides
a similarity between pair of proteins (Specifically a pair
of sequences). It is computed using R programming and
software environment [22] with a package called Bio3D
[23], this search a function that compare a pair of proteins
to establish a similarity between a parameter by means a
database. The model used by means of R with the package,
is described in the equation 1 where X is similar to X and
Xo is similar to X/ called pairwise kernel function [24].
The results is shown in order to relevant with the significant
pairwise that is related to the possibility of a protein to in-
teract with other. Each value obtained from this extraction
is useful such as characteristic that resulting from kernel
matrix, these values are important to predict the interaction
between a pair of proteins because this will be the condition.

K((X1,X5), (X}, X3)) = K'(X1, X)) K' (X, X}) + K'(X1, X)) K' (X2, X}) (1)

This expression shows the way to construct a pairwise
kernel to express the similarity between two pair of proteins
in terms of similarities between individual proteins.



2.3. Classification

For the binary classification, it employs an algorithm
which it is used when a protein pair can be interact or could
not do, thus, these not form complex. It is necessary that
the parameter settings should be tuned to get the best results
in any case, and the kernel function should be included
too. As shown in figure 1, 80% of the data is used for the
training and more specifically for the classification, and 20
% is used to the prediction with the SVM that is the stage
of testing. Finally, after testing, the obtained results are
analyzed.

3. Results

Table 1 shows the specificity, sensitivity and geometric
mean obtained for each fold in the cross-validation process.

Table 1. Detailed results in the cross-validation procedure

Fold Sensitivity Specificity Geometric Mean
1 0.689 0.710 0.689
2 0.64 0.73 0.697
3 0.81 0.72 0.734
4 0.52 0.90 0.684
5 0.61 0.821 0.707
Mean 0.654 £0.107 0.776 £0.082  0.7022 £ 0.019

As can be observed, results are very consistent through
all folds, with low standard deviations in sensitivity, speci-
ficity and geometric mean. Although the system is slightly
more specific than sensitive, the results are approximately
balanced and the overall performance if around 70%.

4. Conclusions

In this paper it is used a support vector machine to the
prediction of interactions between two proteins, Proteins
pairs are classified through a pairwise kernel, showing
promising results for the field of bioinformatics. The
performance achieved by the machine (Aproximately 70%)
is considerable in terms of the features taken into account.
Also, some methods based on sequence and attraction-
repulsion models but uses other types of characterization.

As future work, the system is intended to analyze pos-
sible relationships between virus proteins and other protein
sequences related with cellular proliferation or apoptosis, in
order to establish its potential oncogenic capabilities. Alike,
the results shows a similar performance like as methods
focused in features while employed, considering that this
method just uses one feature. This can lead to use two char-
acteristics to improve the methods based on machine learn-
ing.
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