
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Verenich, Ilya, Dumas, Marlon, La Rosa, Marcello, Maggi, Fabrizio Maria,
& Di Francescomarino, Chiara
(2015)
Complex symbolic sequence clustering and multiple classifiers for predic-
tive process monitoring. In
11th International Workshop on Business Process Intelligence 2015, 31
August - 3 September 2015, Innsbruck, Austria.

This file was downloaded from: http://eprints.qut.edu.au/91194/

c© Copyright 2015 [Please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33505263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Verenich,_Ilya.html
http://eprints.qut.edu.au/view/person/Dumas,_Marlon.html
http://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
http://eprints.qut.edu.au/91194/


Complex Symbolic Sequence Clustering and
Multiple Classifiers for Predictive Process

Monitoring

Ilya Verenich1,2, Marlon Dumas2, Marcello La Rosa1, Fabrizio Maria Maggi2,
and Chiara Di Francescomarino3

1 Information Systems School, Queensland University of Technology, Australia
{ilya.verenich,m.larosa}qut.edu.au

2 Institute of Computer Science, University of Tartu, Estonia
{marlon.dumas,f.m.maggi}@ut.ee

3 FBK-IRST, Trento, Italy
dfmchiara@fbk.eu

Abstract. This paper addresses the following predictive business pro-
cess monitoring problem: Given the execution trace of an ongoing case,
and given a set of traces of historical (completed) cases, predict the most
likely outcome of the ongoing case. In this context, a trace refers to a
sequence of events with corresponding payloads, where a payload con-
sists of a set of attribute-value pairs. Meanwhile, an outcome refers to
a label associated to completed cases, like, for example, a label indi-
cating that a given case completed “on time” (with respect to a given
desired duration) or “late”, or a label indicating that a given case led
to a customer complaint or not. The paper tackles this problem via a
two-phased approach. In the first phase, prefixes of historical cases are
encoded using complex symbolic sequences and clustered. In the second
phase, a classifier is built for each of the clusters. To predict the outcome
of an ongoing case at runtime given its (uncompleted) trace, we select
the closest cluster(s) to the trace in question and apply the respective
classifier(s), taking into account the Euclidean distance of the trace from
the center of the clusters. We consider two families of clustering algo-
rithms – hierarchical clustering and k-medoids – and use random forests
for classification. The approach was evaluated on four real-life datasets.

Keywords: Process Mining, Predictive Process Monitoring, Complex
Symbolic Sequence, Clustering, Ensemble Methods

1 Introduction

Modern business processes are supported by information systems that record
data about each individual execution of a process, also referred to as a case.
These data can be structured in the form of event logs consisting of traces, each
capturing the events produced in the context of one case. Such event logs can
be used for various business process analytics tasks [21].
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Predictive process monitoring [14] is concerned with exploiting such event
logs to predict how running (uncompleted) cases will unfold up to their comple-
tion. One particular type of predictive process monitoring is that of estimating
the probability that an ongoing case will lead to a certain outcome among a
set of possible outcomes. In this context, an outcome could be, for example, the
timely completion of the case with respect to a deadline (versus late completion),
or the fulfillment of a desired business goal (e.g., a sales process leading to an
order, or an issue handling process leading to successful resolution).

Given that event logs consist of sequences of event records (each possibly
associated to a corresponding payload), the above predictive monitoring problem
can be seen as the one of early sequence classification [27], that is a problem of
assigning a “label” (outcome) to a sequence based on: (i) a prefix thereof; and
(ii) a set of labeled completed sequences (the “history”). A direct approach to
this problem is to extract features from prefixes of historical sequences and use
them to train a classifier. This classifier is then used at runtime in order to assign
a label to the incomplete trace of an ongoing case.

This paper investigates an alternative cluster-and-classify approach to this
predictive monitoring problem. The proposed approach proceeds in two phases.
First, prefixes of previous traces are clustered. Secondly, a classifier is built for
each cluster to discriminate between different outcomes (e.g., “normal” versus
“deviant” cases). At runtime, a prediction is made on a running case by mapping
it to one or multiple clusters and applying the corresponding classifier(s).

The paper explores multiple variants of the proposed approach based on two
clustering techniques (k-medoids and hierarchical) as well as a single-classifier
approach versus a multiple-classifier (ensemble) approach. These variants are
experimentally compared using as baseline a plain classication-only approach.

The paper is organized as follows. In Section 2, we provide a brief survey
of previous work on the predictive process monitoring. Section 3 presents the
proposed method for predictive process monitoring. The validation is discussed
in Section 4. Finally, Section 5 draws conclusions and outlines possible future
work.

2 Background and Related Work

This section provides a review of existing predictive business process monitor-
ing approaches. Most of these approaches are based on sequence classification
methods.

Many previous works deal with the problem of identifying and eliminating
process-related risks. For example, Pika et al. [17] make predictions about time-
related process risks, by identifying and exploiting indicators observable in event
logs that affect the likelihood of violating specified deadlines. Conforti et al. [3]
propose a technique to reduce possible process risks by supporting the process
participants in making risk-informed decisions. Risks are predicted by travers-
ing decision trees generated from the logs of past process executions. Suriadi
et al. [20] present an approach for Root Cause Analysis through classification
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algorithms. Decision trees are used to retrieve the causes of overtime faults on a
log enriched with information about delays, resources and workload. Metzger et
al. [15] present a technique for predicting “late show” events in transportation
processes. Specifically, they apply standard statistical techniques to find corre-
lations between “late show” events and external variables related to weather
conditions or road traffic. Grigori et al. [8] present an approach and a tool suite
for real-time exception analysis, prediction, and prevention.

Another group of works deals with the time perspective. In [25], van Dongen
et al. develop an approach for predicting the remaining cycle time of a case by
using non-parametric regression with case-related data as predictor variables. In
[22,23], van der Aalst et al. present a set of approaches in which annotated tran-
sition systems, containing time information extracted from event logs, are used
to check time conformance while cases are being executed, predict the remain-
ing processing time of incomplete cases, and recommend appropriate activities to
end users working on these cases. Rogge-Solti and Weske [18] use stochastic Petri
nets to predict the remaining execution time of a process, taking into account
the time passed since the last observed process event. Folino et al. [6] develop a
predictive clustering approach, where various context-related execution scenar-
ios are discovered and modeled via distinct state-aware performance predictors.
A predictive model is obtained eventually that can make performance forecasts
for any new running test case.

Zeng et al. [29] adopt the ARIMA forecasting method to predict perfor-
mance criteria for event sequences. The approach is applied for aggregated key
performance indicators (KPI) rather than single instances. Then classification
is applied to separate cases that meet KPIs from those that violate them. Kang
et al. [9] propose an approach for predicting abnormal termination of business
processes. They apply a fault detection technique based on k-nearest neighbor
algorithm to estimate the probability that a fault occurs. Alarms are generated
for an early notification of probable abnormal terminations. Lakshmanan et al.
[11] develop a technique to estimate the probability of execution of any potential
future task in an ongoing process instance using extended Markov chain. Xing
et al. [26] mine a set of sequential classification rules as a classifier. An evalu-
ation was conducted based on simple DNA sequence datasets and the method
was demonstrated to be very accurate. Greco et al. [7] approach the issue of
classifying a process instance using frequent itemset detection.

Closely related to predictive monitoring is deviance mining [5]. While pre-
dictive monitoring deals with predicting the impact of actions and decisions of
process participants on the outcomes of ongoing process executions, deviance
mining deals with the offline analysis of process execution logs in order to detect
common abnormal executions and to explain deviance that leads to increased
or decreased performance [19]. Together, these two techniques provide evidence-
based management of business processes, which enables process participants to
receive guidance to achieve required process outcomes and performance [5].

Most of the above mentioned works rely either on the control-flow or on
the data perspective for making predictions at runtime, but they do not take
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both perspectives into consideration. The two perspectives have been considered
together only by Maggi et al. [14], where a framework was proposed to predict
whether or not an ongoing case will fulfill a given predicate upon its completion
based on: (i) the sequence of activities executed in a given case; and (ii) the values
of data attributes after each execution of an activity in a case. This framework
has been shown to be relatively accurate, but at the expense of high runtime
overhead, since the classifiers used by the model are constructed at runtime.
Thus this framework is not applicable in settings with high throughput or when
instantaneous response times are required to help users make rapid decisions.

In order to overcome this problem, the framework has been extended in [4]
by introducing a clustering pre-processing phase which allows for the pre-
computation of the classification models. This allows for a drastic reduction of
the prediction time and for facing high throughput loads. Nevertheless, a limita-
tion of this approach is that only the payload of the last executed event is taken
into account, while neglecting the evolution of data values throughout the exe-
cution traces. In [13], this limitation is addressed by treating execution traces as
complex symbolic sequences and processing them as such. Our research extends
the approach presented in [4] through the use of a multiple classifier method
and the combination of the clustered-based approach with the approach based
on complex symbolic sequences introduced in [13].

3 Approach

We propose a two-phased approach for predictive process monitoring. In the first
phase, from a log of historical (i.e., completed) cases, we extract prefixes of a
fixed length n and encode them using complex symbolic sequences. In particu-
lar, we use the index-based encoding presented in [13]. Thus, we obtain feature
vectors that can be clustered. In the second phase, we use the sequences con-
tained in each cluster to train a classifier. In this work, we apply random forest.
Random forest is a powerful classifier that has been already applied for similar
problems [16], [24]. To predict the outcome of an ongoing case at runtime given
its (uncompleted) trace, we select the closest cluster(s) to the trace in question
(taking into account the Euclidean distance of the trace from the center of the
clusters) and apply the respective classifier(s).

3.1 Sequence Encoding

In the proposed approach, an execution trace is treated as a complex symbolic
sequence, i.e., a sequence of events each carrying a data payload consisting of
event attributes. In order to apply the clustering approach, trace prefixes need
to be encoded in terms of a feature vector. Complex sequences can be encoded
as feature vectors in several ways. In this paper, we use an encoding based on
indexes as proposed by Leontjeva et al. in [13], which has been shown to yield
a relatively high accuracy. In particular, index-based encoding specifies for each
position in a trace, the event occurring in that position and the value of each
data attribute in that position.
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3.2 Clustering

Clustering is a type of unsupervised learning technique in which a structure
has to be devised on top of unlabeled data. The main idea behind clustering is
organizing a dataset into groups (clusters), so that elements within a cluster are
more similar to each other than elements belonging to different clusters. Many
clustering algorithms have been proposed in the literature, as well as a number of
possible dimensions for their classification. In this work, we apply two clustering
approaches – hierarchical clustering and k-medoids.

Hierarchical Agglomerative Clustering. Hierarchical agglomerative clus-
tering (HAC) belongs to a family of clustering algorithms that measure the
distance between clusters based on the distances between pairs of elements (e.g.,
maximum or minimum distance between two elements of the clusters) [28]. In
particular, hierarchical agglomerative clustering groups data elements into a tree
of clusters (dendrogram), building it in a bottom-up fashion. It starts by placing
each individual data element in its own cluster and then merges these atomic
clusters into larger clusters. This process continues until all data elements are
gathered in a single cluster or certain termination conditions are satisfied.

In hierarchical clustering, clusters are defined as branches of a cluster tree.
The constant height branch cut, a commonly used method to identify branches of
a cluster tree, is not ideal for cluster identification in complicated dendrograms.
In this work, we use adaptive hierarchical clustering as defined by Langfeldera
et al. [12]. They describe a new dynamic branch cutting approach for detecting
clusters in a cluster tree based on their shape.

k-medoids Clustering. In k-medoids clustering (KM), clusters are repre-
sented by the so-called medoid element and, hence, the distance between clus-
ters is based on the distance between their medoid elements. The k-medoids
algorithm selects first k data elements, which become the medoids elements.
The algorithm then assigns each of the remaining data elements to the clusters,
based on the distance between the element and the cluster medoid. Then, a new
medoid for each cluster is computed. This process iterates until convergence
has been reached. The k-medoids algorithm is closely related to the k-means
algorithm.

3.3 Classification

Random Forest. The random forest is an ensemble classifier that consists of
a large number of randomly trained decision trees. To classify a case, each tree
outputs its prediction, or “vote”, and the final decision is determined by majority
voting [1].

The performance of the random forest is linked to the level of correlation
between any two trees in the forest. The lower the correlation is, the higher the
overall performance of the entire forest is [2].



6 I. Verenich et al.

Multiple Classifier Method. For classifying an ongoing case at runtime,
generally, we select the closest cluster, run the classifier that has been trained
for that cluster and output the probability of a case belonging to class “normal”
or class “deviant”. The closest cluster is chosen based on the smallest distance of
the point representing the case from each center. However, it is often the case that
the point is almost equally distant from two or more centers. To accommodate
this situation, we take the output of each classifier with a weight that is inversely
proportional to the distance from the point to the center of the cluster. For
example, if we have two clusters, and a point is equally distant from the center
of each cluster, then, we take the output of each classifier with weight 0.5.

4 Evaluation

4.1 Setup and Datasets

We conducted the experiments on four real-life datasets. Table 1 summarizes
the characteristics of the logs (number of normal and deviant cases, average case
length, total number of events, and total number of event classes).

Dataset Normal
cases

Deviant
cases

Total
cases

Median
trace
length

Num of
events

Event
classes

BPICϕ1 743 172 915 44 120,036 623
BPICϕ2 232 683 915 44 120,036 623
Hospital 448 363 811 18 14,825 26
Insurance 788 277 1065 12 16,869 9

Table 1: Case study datasets.

The first dataset (BPI) is taken from the BPI 2011 challenge and contains
events related to treatment and diagnosis steps for patients diagnosed with can-
cer in a Dutch Academic Hospital. Specifically, each case refers to the treatment
of a particular patient. The event log contains domain specific attributes that are
both case attributes and event attributes. For example, Age, Diagnosis, Diagno-
sis code, and Treatment code are case attributes, whereas Activity code, Number
of executions, Specialism code, and Group are event attributes. From this log,
we define a deviance as a violation of a compliance rule. In particular, we use
the following linear temporal logic rules [14]:

− ϕ1 = G(“CEA−tumor marker using meia”→ F(“squamous cell carcinoma using eia”))

− ϕ2 = F(“historical examination− big resectiep”)

where Fϕ indicates that ϕ is true sometimes in the future and Gϕ means that
ϕ is true always in the future. The rule ϕ1 states, hence, that every time “CEA-
tumor marker using meia” occurs, then “squamous cell carcinoma using eia”



Predictive Monitoring of Business Processes 7

has to occur eventually, while rule ϕ2 states that “historical examination - big
resectiep” has to occur eventually at least once.

The second log we used (Hospital) refers to the treatment of patients with
chest pain in an emergency department of an Australian hospital. To classify the
cases in this log, we used a temporal deviance criterion. In particular, we labeled
as quick those cases that complete within 180 minutes and as slow those cases
that need more than 180 minutes to complete. We considered the slow cases
as deviant. With this definition, the dataset is nearly balanced w.r.t. the class
labels – 448 normal cases and 363 deviant cases (Table 1).

The third log (Insurance) is taken from a large Australian insurance company
and records an extract of the instances of a commercial insurance claim handling
process. In this log, we also used a temporal deviance criterion for classification,
marking cases quick if they complete within 30 days, and slow, i.e., deviant
otherwise.

It should be noted that cases in the datasets have very different lengths and
the values in Table 1 only indicate the median length. Moreover, normal and
deviant cases typically have different lengths. Fig. 1 shows the distribution of
lengths of normal and deviant cases in each dataset.

4.2 Evaluation Metrics

Most classifiers are capable of outputting not only class labels, but also class
probabilities, i.e., probabilities that a data sample belongs to a particular class.
In this case, predictive ranking ability can be measured with the receiver operat-
ing characteristic (ROC) curve. A ROC curve represents ranked accuracy. The
horizontal axis is the proportion of false positives (FPR), that is negative cases
that were incorrectly identified as positives, and the vertical one is the corre-
sponding proportion of true positives (TPR), that is actual positive cases that
were correctly identified [10]. For a well-performing classifier this curve would be
as closer to the top left corner as possible, thus minimizing FPR, and maximizing
TPR. For a random guessing this curve would be diagonal.

The area under a ROC curve (AUC) represents the probability that the
binary classifier will score a randomly drawn positive sample higher than a ran-
domly drawn negative sample [10]. A value of AUC equal to 1 indicates a perfect
ranking, where any positive sample is ranked higher than any negative sample.
A value of AUC equal to 0.5 indicates the worst possible classifier that is not
better than random guessing. Finally, a value of AUC equal to 0 indicates a
reserved perfect classifier, where all positive samples get the lowest ranks.

4.3 Results

We evaluated 5 different variants obtained by applying the only random forest
classification (No clustering) or by combining clustering techniques (KM and
HAC) with classification techniques (single and multiple classifiers).

We split each log into training set (80%) and test set (20%). To classify an
ongoing case of length n, we select the set of pre-built (offline) clusters containing
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Fig. 1: Distribution of case lengths for the BPICϕ1
(a), BPICϕ2

(b), hospital (c)
and insurance (d) datasets.

prefixes of length n.1 Then, we determine cluster that is the closest to the ongoing
case. Through the associated classifier, we estimate the probability for the case
to end up normally. Considering that in the logs we have full information about
the completion of cases also in the test set, we can compare predicted and actual
labels and calculate AUC. Fig. 2 shows the average AUC for various prefix
lengths, i.e., n varying from 2 to 20. Additionally, Table 2 reports the average
AUC values across various prefix lengths.

1 except for the “No clustering” approach.
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Fig. 2: Mean AUC values using prefixes of different lengths for the BPICϕ1
(a),

BPICϕ2
(b), hospital (c) and insurance (d) datasets.

Looking at the plots and at the table, we can notice that the multiple-
classifiers k-medoids approach outperforms by a small margin other methods,
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Method Prefix sizes 2 to 5 Prefix sizes 2 to 20
BPICϕ1

BPICϕ2
Hospital Insurance BPICϕ1

BPICϕ2
Hospital Insurance

No clustering 0.899 0.898 0.643 0.792 0.913 0.908 0.674 0.847
KM 0.893 0.896 0.639 0.793 0.902 0.905 0.675 0.847
KM, multiple cl. 0.903 0.900 0.662 0.797 0.915 0.908 0.679 0.856
HAC 0.889 0.896 0.629 0.771 0.904 0.902 0.667 0.826
HAC, multiple cl. 0.897 0.898 0.647 0.781 0.906 0.903 0.665 0.839

Table 2: Mean AUC values across various prefix sizes. Best method for each
dataset is highlighted.

including random forest without clustering which corresponds to the approach
implemented in [13]. Interestingly, for smaller prefix sizes (2 < n < 10) its ad-
vantage is more evident, but with the increase of n it becomes much less visible.

On the other hand, almost all methods were able to achieve AUC > 0.9 on
the BPIC datasets with prefix sizes n ≥ 5, which is about the 10% of the median
case length. For the Insurance dataset, we achieved AUC > 0.8 for n ≥ 7, which
is about half of the median case length. The result for the Hospital dataset was
lower (average AUC never exceeded 0.68), probably due to the fact that this
dataset includes mostly case attributes that do not change over a case, rather
than event attributes.

For real-time prediction, it is also important to be able to output the results
as fast as possible. Thus, we also measured the time needed to classify test cases.
The experiments were conducted using GNU R version 3.2.0 on a computer with a
2.4 GHz Intel Core i5 quad core processor and 8 Gb of RAM. We found that the
average time needed to classify a test case using random forest without clustering
is around 0.2 milliseconds for the maximum prefix size n = 20. For clustering
with multiple classifiers, the prediction time ranges from 20 to 50 milliseconds
per case. Therefore, we can conclude that the proposed approach allows for low
run-time overhead predictions. Additionally, the time needed to cluster training
cases and build offline classifiers for each cluster never exceeds 60 seconds for
n = 20.

5 Conclusion

The paper has presented a cluster-and-classify approach to address the problem
of predicting the outcome of individual cases of a business process. We have
explored the design space by considering two clustering techniques (HAC and
KM) and by considering the case where an ongoing case is matched against one
single classifier (associated to one cluster) or against multiple classifiers (asso-
ciated to multiple clusters). The evaluation on real-life datasets has shown that
the multiple-classifiers k-medoids variant outperforms others (including a pure
classification-based approach) in the context of early prediction, i.e., predictions
based on short prefixes of a case.

The presented work has several limitations. First, the observations are based
on a rather reduced number of datasets, representing two application domains
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(hospital healthcare and insurance). A broader evaluation is warranted to back
the initial observations. Second, the advantages of the cluster-and-classify ap-
proach relative to a pure classification approach, while consistent, are relatively
minor. Designing further optimizations of the proposed methods to achieve
higher accuracy is a direction for future work. Finally, deeper comparison with
alternative methods such as methods based on generative models, e.g., Hidden
Markov Models (HMMs) or Conditional Random Fields, could be considered. A
systematic comparative evaluation covering this latter technique, the proposed
cluster-and-classify method, and other alternative methods is another avenue for
future work.
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