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Abstract

While active sensing such as radars, laser-based ranging (LiDAR) and ultrasonic sensors are

nearly ubiquitous in modern autonomous vehicle prototypes, cameras are more versatile because

they are nonetheless essential for tasks such as road marking detection and road sign reading.

Active sensing technologies are widely used because active sensors are, by nature, usually more

reliable than cameras to detect objects, however they are lower resolution, break in challenging

environmental conditions such as rain and heavy reflections, as well as materials such as black

paint. Therefore, in this work, we focus primarily on passive sensing technologies. More specific-

ally, we look at monocular imagery and to what extent, it can be used as replacement for more

complex sensing systems such as stereo, multi-view cameras and LiDAR.

Whilst the main strength of LiDAR is its ability to measure distances and naturally enable 3D

reasoning; in contrast, camera-based object detection is typically restricted to the 2D image

space. We propose a convolutional neural network extending object detection to estimate the

3D pose and velocity of objects from a single monocular camera. Our approach is based on a

siamese neural network able to process pair of video frames to integrate temporal information.

While the prior work has focused almost exclusively on the processing of forward-facing rectified

rectilinear vehicle mounted cameras, there are no studies of panoramic imagery in the context of
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autonomous driving. We introduce an approach to adapt existing convolutional neural networks

to unseen 360◦ panoramic imagery using domain adaptation via style transfer. We also introduce

a new synthetic evaluation dataset and benchmark for 3D object detection and depth estimation

in automotive panoramic imagery.

Multi-object tracking-by-detection is often split into two parts: a detector and a tracker. In

contrast, we investigate the use of end-to-end recurrent convolutional networks to process auto-

motive video sequences to jointly detect and track objects through time. We present a multitask

neural network able to track online the 3D pose of objects in panoramic video sequences.

Our work highlights that monocular imagery, in conjunction with the proposed algorithmic

approaches, can offer an effective replacement for more expensive active sensors to estimate depth,

to estimate and track the 3D pose of objects surrounding the ego-vehicle; thus demonstrating

that autonomous driving could be achieved using a limited number of cameras or even a single

360◦ panoramic camera, akin to a human driver perception.
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Chapter 1

Introduction

Autonomous vehicles have gained significant coverage in mainstream media in recent years [10,

11]. While fully autonomous vehicles are certainly years away, some autonomous systems have

already been integrated into cars in the form of various Advanced Driver Assistance System

(ADAS) such as adaptive cruise control, collision alerts and mitigation, automatic high beams

[12]. More recently, some commercial cars have featured fully-automated parking assistance,

lane keeping assistance, and dynamic driving assistance [12,13]. The SAE international standard

J3016 [14] subsumes the various automation systems under 6 levels of driving automation ranging

from 0 – no driving automation to 5 – full driving automation. Current production vehicles

achieve up to level 2 — the so-called hands-off level — while a few manufacturers have plans

to release level 3 vehicles — the so-called eyes-off level — in the next couple of years [13, 15].

Alas, this kind of partial automation in level 2 and level 3 comes with a set challenges regarding

safety [16, 17] which have been illustrated by several tragic accidents in both testing vehicles

[18] and production vehicles [19–21]. Those challenges of partial automation, revolving around
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Figure 1.1: A vehicle equipped with a forward facing stereo camera.

human-computer interactions and driver distraction, stem from the need to keep a human driver

involved in the system to take control of the vehicle at short notice in the event of a system

failure or limitation [16,22]. This event is called a disengagement. The annual surveys from the

American Automobile Association (AAA) [23–26] produced between 2016 and 2019 show that

three quarters of the U.S. drivers are afraid of such automation technology. According to the

AAA, the public fear increased in 2018 following the number of high profile accidents where the

driver failed to take control of the vehicle during a system failure [25,26]. In contrast, level 4 are

expected to automatically recover from system failure [14] and would address the current safety

concerns related to human-computer interactions [16]. Automation level 1 to 4 are expected to

work within a specific operational design domain (ODD). Such domain (e.g. restricted to highway

driving) can be defined by the vehicle manufacturer and the vehicle automation is not expected

to work outside of this ODD, while automation of level 5 vehicles are expected to have no ODD

limitation and the automation must work at all time. Therefore level 4 and level 5 provide a
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high-level of automation which does not depend on the driver and would address the current

safety concerns [16]. As a result, we see the automation of level 4 and 5 as key requirements for

autonomous vehicles.

As early as 1994, the VaMP driverless car [27] was able to drive on the motorway for long

distances with little human interaction, however driving in complex urban scenarios remained

out of scope. The VaMP car itself followed the work of Dickmanns et al . in the 1980s on the

VaMoRs lorry [28] and the work of Pomerleau on ALVINN [29], a vehicle guided by a three-layer

neural network in 1989. Nowadays, there are several autonomous systems being trialled on public

roads by most automotive manufacturers [30]. The DARPA 2007 Urban Challenge [31] featured

autonomous vehicles capable of driving in urban traffic. Whilst prototype driverless cars have

been involved in very few car crashes; the number of accidents is not a representative metric of

how safe a fully autonomous system is. Indeed, Google, a main operator of driverless cars on

public roads, reports that their test drivers are expected to take back the control of the car if

they themselves discovers any discrepancy between what they see and what the car sees (active

disengagement) as well as when an automated alert is reported by the car (passive disengage-

ment) [32]. Hence a better metric is the number of miles driven per disengagement (MPD) from

automatic mode to manual mode. The report [32] shows that current autonomous vehicles can

drive thousands of miles without any disengagements [32]. In 2018, Lv et al . [30] published a

study of the 2016 annual disengagement reports submitted by manufacturers conducting testing

of autonomous vehicles on public roads in California. They set the threshold between level 2

and level 3 automation at around 2000 MPD — a target which was achieved by only one man-

ufacturer. For stage 1 automation (< 2000 MPD), active disengagements represent 37% of the

overall number of disengagements (active and passive). That is, either the system did not detect

the fault, or the driver was not confident that the system would and actively intervened to dis-

engage the vehicle. In contrast, in a passive disengagement, the system successfully detected the

fault and was able to alert the driver. The study provides an extensive analysis of the type of
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causes for disengagements; in particular, it notes that software failure is the cause of 79.63% of

passive disengagement while software limitation is the cause of 87.72% of active disengagement.

Software is the primary cause of both passive and active disengagement of autonomous vehicles.

At the core of an autonomous vehicle software stack, there is a situational awareness system

which is traditionally divided into three aspects: perception, planning and control [22]. On one

hand, the environmental perception aspect gathers data from sensors and produces a coherent

and meaningful representation of the real world. On the other hand, the control and planning

aspects use this representation to forecast the most likely future events over a short window of

time (typically a few seconds), plan the behaviour of the ego-vehicle and consequently control

the ego-vehicle. Mapping is also sometime included as a fourth aspect as high definition (HD)

maps of the road can be used to alleviate the complexity of the perception system in level 4

vehicles. While mapping can be used as a part of a geo-fenced service such as ridesharing or

taxi services, such maps are expensive to create. Besides, they are most likely impossible to

maintain on a large scale such as countrywide or worldwide, keeping track of both temporary

changes (e.g . accidents, road works) and permanent evolutions of the road network. Therefore,

it would not be realistic to rely on a HD map in level 5 vehicles which are expected to have

no ODD limitations [14]. Furthermore, Koopman and Fratrik [33] provide a non-exhaustive list

of ODD considerations related to objects and events, most of which are not directly related to

mapping aspects and would not be addressed by a HD maps, even in a geo-fenced service. Wang

and Li [22] showed that the two main causes of disengagements in the 2018 AAA report [25]

are undesired behaviours from road users (48%) and computation issues of perception (28%).

Those two figures highlight that despite the recent advances, perception remains one of the key

challenges of autonomous driving.
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1.1 Motivation

Perception is intrinsically linked to the number and kind of sensors used by the vehicle. Indeed,

Wang and Li [22] argue that, according to empirical evidence, increasing the number of Light

Detection and Ranging (LiDAR) sensors decreases the number of disengagements caused by

perception issues. Recently, there has been much research on the use of passive technologies

such as stereo cameras (as shown in Figure 1.1) instead of radars, LiDAR and ultrasonic sensors.

While active technologies are usually expensive, cameras are much cheaper, smaller and more

versatile. Cameras are more versatile because they are essential for tasks such as road marking

detection and road sign reading. Active sensing technologies are widely used because active

sensors are, by nature, usually more reliable than cameras to detect objects, however they are

lower resolution than cameras, break in challenging environmental conditions such as rain and

heavy reflections, as well as materials such as black paint — an all too common vehicle body

colour. The task of detecting objects using active sensors under significant partial occlusions

in complex scenes is no more simpler than its computer vision counterpart [34, 35]. Computer

vision is intrinsically a difficult inference problem [36, Section 1.1], however recent advances in

computer vision and hardware capabilities enable real-time solutions albeit they still require a lot

of processing power. Therefore, in this work, we focus primarily on passive technologies. More

specifically, we look at monocular imagery and to what extent, it can be used as replacement for

more complex systems such as stereo and multiview setups as well as LiDAR.

LiDAR are primarily used in autonomous driving to provide 3D sensing. A LiDAR provides a

dense estimate of the distance (a.k.a. depth) of objects to the sensor over a polar coordinate

sampling grid. This depth image is subsequently reprojected from polar to cartesian coordinates

to form a 3D point cloud or a voxel grid. We study the counterpart problem of depth estimation

in monocular colour imagery in Chapter 4. The depth maps produced in Chapter 4 could be

substituted in lieu of a LiDAR in any further processing stages which would normally rely on
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a LiDAR output. However, the characteristics of the depth map produced by a camera and

a LiDAR are not the same. Current camera technologies have a much higher horizontal and

vertical resolution than a LiDAR for the same Field of View (FoV), while LiDAR technologies

have superior radial (i.e. distance) accuracy (see Chapter 4). A camera also provides colour

information, not available with a LiDAR, which is useful for many tasks. Therefore, we aim in

Chapter 3 to replace a common use of the depth map generated by a LiDAR: object detection

and 3D pose estimation. Such 3D detection consists of the size (width, height, length) and 3D

pose (translation and rotation) of an object with respect to the egovehicle. In contrast, an object

detected by a camera is typically represented by a 2D rectangle in image space. Therefore, the

3D detections provided by a LiDAR are much more useful for self-driving than the 2D detections

provided by a camera as 3D detections enable reasoning in the 3D space. In Chapter 3, we show

how to estimate the actual 3D position of objects using a monocular camera by leveraging a neural

network which is able to learn not only geometrical constraints but also semantic constraints.

While an active sensor might be directional and have a limited FoV like a camera, a typical

autonomous vehicle would feature at least one 360◦ omnidirectional LiDAR. In contrast, the

contemporary computer vision work to date has focused almost exclusively on the processing

of forward-facing vehicle mounted cameras. In Chapter 4, we introduce an approach to adapt

contemporary deep network architectures developed on conventional rectilinear imagery to work

on equirectangular 360◦ panoramic imagery which can be generated by an omni-directional dual

fisheye camera or a multi-view camera setup.

In addition to object detection and 3D perception, object tracking is another key aspect of

any autonomous driving perception pipeline. Tracking for autonomous driving is accomplished

using the multi-object tracking-by-detection (MOTD) approach. In MOTD, the tracking task is

divided first into a object detection step in each individual frame followed by grouping of those

detections across frames into tracklets. The detection step could be based on any of the detectors
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which we develop in Chapters 3, 4, and 5. This approach limits the amount of information

available to both the detector and the tracker: the detector does not have access to temporal

information and cannot exploit temporal consistency whereas the tracker has access to a limited

set of per-detection features instead of a dense representation of the input video sequence. In

contrast, in Chapter 3 and 5, we attempt to jointly solve the problem of detection and tracking.

Chapter 3 attempts to define a frame-to-frame detection and tracking neural network trained

on pairs of images which can link the information of the previous and the next frames together.

However this network is not recurrent and therefore is not capable of handling occlusions and

more challenging detections. In contrast, Chapter 5 builds upon this work to provide a multi-

scale tracking neural network trained on video sequences which maintains an internal recurrent

state in order to track objects in more challenging scenarios.

1.2 Thesis Contributions and Structure

The main contributions of this thesis are:

• A novel approach to detect objects and estimate the 3D pose and velocity of those objects in

a scene using a single monocular camera. This approach is based on a siamese architecture

[37] and the two-stage detector Faster R-CNN [34]. It achieves state-of-the-art results

compared to Mousavian et al . [4] and Xiang et al . [5] for 3D pose estimation and shows

that velocity can be more accurately estimated using a siamese network than derived from

past and present 3D pose (Chapter 3).

• A method to extend existing neural network architectures to 360◦ monocular imagery. This

extension overcomes the dataset bias problem described in Section 2.2.1 and generalises to

360◦ imagery by using style transfer [2] to adapt existing automotive datasets to train

neural networks suited to 360◦ imagery. We demonstrate our method by adapting our
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3D pose estimation approach described in Chapter 3 and dense depth estimation based

on Godard et al . [38]. We also introduce the first evaluation dataset for 360◦ automotive

imagery based on synthetic data generated using the Carla simulator [39] (Chapter 4).

• A novel approach for 3D detection and tracking within 360◦ monocular video sequences

based on an end-to-end neural network, extending our work from Chapter 3 and 4. The

introduced architecture is a novel end-to-end multi-scale recurrent tracking network based

on SSD [40] instead of the conventional two-stages approach of tracking-by-detection [41,

42]. We provide one of only two approaches based solely on cameras rather than LiDAR

and the only approach using panoramic imagery on the nuScenes tracking benchmark [7]

(Chapter 5).

Figures 1.2.A&B show a qualitative example of our object detection and 3D pose estimation

approach described in Chapter 3. The images A and B are taken four frames apart and each

vehicle is coded using a unique colour that is common between the two frames to illustrate our

frame-to-frame tracking results. The cross on the 3D bounding box indicates the front of the

vehicle. Figure 1.2.C shows the extension of the 3D pose estimation approach to 360◦ panoramic

imagery in Chapter 4. Figure 1.2.D shows dense depth estimation results using the same domain

adaptation approach in Chapter 4, where the colour ranges from light yellow (closest distance to

the camera) to deep blue (furthest distance). Figures 1.2.E–G show examples of our multi-class

3D detection and tracking approach within 360◦ video sequences described in Chapter 5.

These thesis contributions have led to the following publication in the peer-reviewed literature:

• G. Payen de La Garanderie, A. Atapour Abarghouei, and T.P. Breckon, “Eliminating

the Blind Spot: Adapting 3D Object Detection and Monocular Depth Estimation to

360◦ Panoramic Imagery”, in Proc. European Conference on Computer Vision, Springer,

pp. 812-830, 2018 (Chapter 4 and parts of Chapter 3).
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In Chapter 2, we introduce the contemporary state of the art in machine learning and computer

vision related to automotive applications which we build upon through this thesis. In Chapter

3, we build a siamese [37] 3D object detection and tracking network based on MS-CNN [43]. We

have identified a lack of prior work and datasets on panoramic imagery in automotive applica-

tion; which we attempt to fill in Chapter 4 by introducing a novel approach to adapt existing

training datasets and Convolutional Neural Network (CNN) to panoramic imagery using Cycl-

eGAN [2]. We use this methodology to adapt our neural network presented in Chapter 3 as

well as Monodepth [38] to 360◦ panoramic imagery. This approach is based on the concepts of

domain adaptation to generalise from the KITTI dataset [8] to our own 360◦ synthetic imagery

testing dataset. We attempt to depart from the tracking literature in Chapter 5 by integrating

object detection and tracking together in a single end-to-end CNN. This network is a multi-scale

single shot detector inspired by [44,45].
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Figure 1.2: A & B: Frame-to-frame 3D detection and tracking (Chapter 3), C: 3D Detection in
360◦ imagery (Chapter 4), D: Depth estimation in 360◦ imagery (Chapter 4), E – G: Detection,
pose estimation and tracking in 360◦ imagery (Chapter 5).
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Chapter 2

Literature Review

As mentioned briefly in the introduction, we split the automotive sensing literature on situational

awareness in two parts. The first part is the perception system (object detection, object tracking,

depth estimation). The second part presents the key concepts of machine learning and more

specifically of deep learning which we build upon for both domain adaptation and for scaling

neural network training to video sequences.

2.1 Visual Perception

Visual perception is a very broad subject, which we attempt to narrow down to the topics relevant

to autonomous driving. There is no clear definition of what the output of a perception system is

or ought to be. In recent times, this has been defined by example via a number of benchmark-

based challenges defined by their associated dataset and perception task. Traditionally, the main

autonomous driving benchmark, the KITTI collection of benchmarks [8], released in 2012 based
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on the dataset of the same name [1], identified several autonomous driving tasks: stereo vision,

optical flow, odometry, object detection, object tracking, and road detection [46]. In 2015, a scene

flow benchmark [47] and in 2017, a 3D object detection, depth estimation and depth completion

benchmarks were also incorporated into KITTI.

Meanwhile, the Cityscapes dataset [48,49] released in 2016 introduced dense pixel-wise semantic

and instance segmentation. While the KITTI dataset was recorded on the streets of Karlsruhe,

Germany — shown in Figure 2.1; the Cityscapes dataset [48, 49] expands to multiple cities in

Germany and the recent CCSAD dataset [50], recorded in Mexico, presents some new challenges

found in developing countries. Furthermore, the Mapillary Vistas instance segmentation dataset

[51] based on crowdsourced imagery covers a large number of countries on all five continents [51].

In addition to this dataset, Mapillary provides a vast collection of unannotated images including

360◦ panoramic imagery from all over the world. In Chapter 4, we attempt to adapt existing

neural networks and weights to this set of 360◦ panoramic imagery.

While new datasets have been released, the KITTI dataset remained, until recently, the largest

dataset both in breadth and in scope for object detection and tracking. The nuScenes dataset [7]

from nuTonomy released in 2019, is the first dataset to include features comparable to the KITTI

dataset (e.g . 3D annotations) while providing a much higher number of scenes and richer set of

sensors. The nuScenes dataset is also the first dataset to provide a HD map alongside the data.

Similar datasets from Lyft [52], ApolloScape [53], Waymo [54, 55] have been released in 2019

with an emphasis on multi-cameras multi-sensors configurations as well as 3D object tracking.

Among the tasks proposed by those benchmarks, there are two main categories: the first provides

a pixelwise labelling of the scene (segmentation, optical flow, depth estimation) which augment

the existing imagery with additional per-pixel information while the second extracts information

from those images (object localisation and classification, object tracking, road extraction). In-

terestingly, none of the aforementionned datasets and benchmarks integrates road sign reading,
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Figure 2.1: Map of the KITTI dataset captured on the streets of Karlsruhe, Germany (reproduced
from Geiger et al . [1]).

road marking and road layout understanding. In this section, we focus on the prior work in

object detection, object tracking and depth estimation which we build upon in Chapters 3, 4,

and 5.

2.1.1 Object Detection

The object detection task, as shown in Figure 2.2, is, at least in automotive, concerned with

finding objects, recovering their orientation and labelling them with predefined classes. In the

KITTI Object benchmark, the classes are cars, pedestrians and bicycles. Immovable objects (e.g.

buildings, trees, lamp posts, poles and road signs) are generally ignored. The recent Waymo Open

Dataset [54] also includes road signs in addition to moving objects.

Object detection performance is evaluated using the mean Average Precision (mAP). The overlap

between the ground truth and the detected objects is measured using the Intersection over Union
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Figure 2.2: 3D Object detection example within a 360◦ equirectangular image from our work on
panoramic imagery (see Chapter 4).

(IoU), also called Jaccard index, over the area of the 2D bounding boxes. The ground truth

and predicted boxes are matched together using the Kuhn-Munkres algorithm [56] based on the

computed IoU as a cost matrix. The assignments are subsequently used to compute true and false

positives and negatives, precision and recall. The mAP is defined as the average precision over

the recall thresholds. The KITTI dataset [8] requires a minimum overlap of respectively 0.5 and

0.7 for pedestrians/cyclists and cars for positive detections. Object detection in an automotive

context presents some unique challenges due to a high number of objects, heavy occlusions, poor

lighting conditions such as strong shadows and very bright regions [57]. Furthermore, safety

requires a high recall especially for objects which are in the immediate vicinity of the egovehicle

to guarantee that important objects will not be missed at the expense of a higher false positive

rate.

Prior work relies on various inputs such as monocular imagery [34], stereo imagery [58], super-

pixels segmentation [59], disparity maps and point clouds [57]. Some older approaches assume

that the road had already been segmented by a prior processing step to simplify the problem;

however, recent approaches based on CNN [60] do not require as much preprocessing.

Early object detection approaches based on machine learning perform an exhaustive search with

a sliding window [61] to find potential objects; however, this is very computationally expensive;

thus, van de Sande et al . introduced the concept of Selective Search [61] to identify potential

candidate regions instead of searching the entire space. Sande et al . use Selective Search together

with bag-of-words features [62] and the SVM classifier [63].
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Most contemporary end-to-end CNN driven detection approaches are based on the R-CNN ar-

chitecture introduced by Girshick [64] which is composed of a CNN classifier used jointly with

Selective Search [61]. Successive improvements from Fast R-CNN [65] and Faster R-CNN [34]

increased the performance by respectively sharing feature maps across proposals and generating

the proposals using a Region Proposal Network (RPN) instead of traditional techniques based

on a sliding window. The RPN is based on the principle demonstrated by Sermanet et al . [66]

that CNNs are inherently efficient at computing a sliding window over the image. This allowed

unified end-to-end training of the network to solve the combined detection and classification task.

Online Hard Example Mining (OHEM) was proposed by Shrivastava et al . [67] to improve the

training of region-based neural networks. More recently, Yang et al . [68] and Cai et al . [43] in-

troduced a multi-scale extension of Faster R-CNN by pooling the region proposals from multiple

layers in order to reduce the number of proposals needed as well as to improve performance on

smaller objects such as distant objects. Our approaches, presented in Chapter 3 and 4, are based

on the multi-scale approach of Cai et al . [43]. Lin et al . [69] takes the multi-scale approach a

step further by transforming the network into an hourglass network.

Faster R-CNN and the aformentionned detectors are based on AlexNet [60] and VGG [3] ar-

chitectures which were originally designed for image classification and later adapted to object

detection [64]. Those architectures consist of a stack of convolutional layers followed by a fully-

connected layer. In contrast, newer architectures such as ResNet [70] and GoogLeNet [71] are

fully convolutional which does not fit with the original model of Faster R-CNN [34]. Dai et al .

designed R-FCN [72], a fully convolutional network which fits more naturally with those new

architectures.

The two stage architecture used by Faster R-CNN-based approaches presents several drawbacks.

Due to the two stages, the architecture is difficult to combine with a multi-scale approach. While

Cai et al . [43] proposed such a multi-scale architecture to generate proposals at multiple scales,
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the Region of Interest (ROI) are still pooled from the last CNN trunk layer. The second stage of

the network is applied to each region proposal separately, creating a large amount of duplicated

work due to the lack of information sharing between proposals. This impairs the scaling of Faster

R-CNN to scenes containing a large number of detections and slows the inference. In contrast,

Liu et al . [40] introduced SSD, a single stage approach to object detection. Subsequent work by

Redmon and Farhadi [73–75] on the YOLO detector provides a single stage detector which is

much faster than two-stages approaches. Data imbalance between foreground and background

classes is a severe problem in single stage networks which is addressed in SSD [40] using OHEM.

In constrast, the RetinaNet [76] tackles the problem by adapting the cross entropy loss function

to down weight easy positive and negative examples. Ren et al . [44] turned SSD into a recurrent

network which iteratively refines the detections over time. The iterative approach of Ren et

al . [44] adapts SSD [40] by stacking multiple hourglass networks [69]. This hourglass model

can be applied iteratively to refine the quality of the detections. Zhang et al . [45] use a similar

structure to refine the detections. Our multi-frame tracking approach presented in Chapter 5 is

inspired by those stacked single shot detectors [44,45].

Object Detection within Panoramic Imagery

Even though significant strides have been made using rectilinear imagery to generate object pro-

posals [77] and detections by deep networks [34, 43, 64–66, 78], comparatively limited literature

exists within 360◦ panoramic imagery. A rectilinear image is produced by projecting a scene

onto an image plane using a pinhole camera model [79, Chapter 1] and the pinhole model can

be approximated by rectifying the image produced by most lenses, except for fisheye lenses with

a very small focal length (FoV close to 180◦ or more). Rectilinear imagery has the advant-

age of preserving straight lines and reducing distortions as perceived by humans. In contrast,

360◦ panoramic views cannot be represented using rectilinear images. The most common rep-

resentation of panoramic views are equirectangular images. The pixel coordinates inside an
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equirectangular image are specified by their latitude and longitude; in contrast to pixels in a

rectilinear image which are represented using their horizontal and vertical position within the

image projection onto the 2D focal plane.

Deng et al . [80] adapted, trained and evaluated Faster R-CNN [34] on a new dataset of 2,000

indoor panoramic images for 2D object detection. However, their approach did not handle the

special case of object wrap-around at the equirectangular image boundaries.

Recently object detection and segmentation has been applied directly to equirectangular pan-

oramic images to provide object detection and saliency in the context of virtual cinemato-

graphy [81, 82] using pre-trained detectors such as Faster R-CNN [34]. Su and Grauman [83]

introduce a Flat2Sphere technique to train a spherical CNN to imitate the results of an existing

CNN facilitating large object detection at any angle.

In contemporary automotive sensing problems, the required vertical field of view is small as

neither the view above the horizon nor the view directly underneath the camera have any useful

information for those problems. Therefore, the additional complexity of the spherical CNN intro-

duced by [83] is not needed in the specific automotive context. Instead we show in Chapter 4 how

to reuse existing deep architectures built for rectilinear imagery without requiring any significant

architectural changes.

Object Detection within Videos

The object detectors defined above work on still images however there are a few authors who

have addressed the task of detecting objects within videos. This task overlaps the traditional

definition of object detection as well as tracking. In this section, we focus on the detection aspects

rather than the tracking aspects whilst tracking is surveyed in Section 2.1.2. Object detectors in

videos face one challenge: motion blur and compression artifacts which are not present in the still
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images used in most image classification and object detection benchmarks such as ImageNet [84]

and Pascal VOC [85] however this domain bias does not exist in automotive because models are

usually trained and tested on the same automotive datasets [7,8], which have been extracted from

video sequences recorded on road rather than still imagery. In addition, video-based detectors

exploit temporal consistency to improve detection quality.

Tripathi et al . [86] defines a Recurrent Neural Network (RNN) based on a Gated Recurrent Unit

(GRU) [87] to refine the location of detections over time. It is based on a weakly-supervised loss

function which enforce consistency across frames rather than accuracy with the ground truth. It

assumes that the detections have been grouped into tracklets by an external tracker. Meanwhile,

SeqNMS [88] extends the Non Maximum Suppression (NMS) commonly used in detectors to

work across time. Kang et al . [89–91] introduce the notion of tubelet as an extension of the

concept of object proposals to videos and use a Long Short Term Memory (LSTM) [92] to refine

the confidence score and location of each object across frames. Similarly, Galteri et al . [93] uses

the object detections from the previous frame as a prior for object proposal generation. Ning [94]

introduce ROLO, a single object tracker refining the location of objects using an LSTM. Unlike

the prior work, it also integrates the last feature map of YOLO into the tracker to provide a

richer input to the temporal network. Lu et al . [95] introduce an association LSTM network

which jointly associate detections and tracklets as well as refining the object location.

Chen et al . [96] introduce TSSD, a network based on VGG16 [3] as well as a new type of

recurrent unit called convLSTM, an extension of LSTM [92] using convolutions rather than

matrix multiplications. Unlike the prior work, TSSD is a single end-to-end network. The two

recurrent layers work on the convolutional feature maps rather than a sparse set of detections.

The network consists of an attention mechanism which relies on both the current frame and the

hidden state to select useful parts of the image. While the original network is only a detector,

Chen et al . subsequently extended it to a tracker [97].
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In 2019, Voigtlaender et al . [98] introduce an extension of the KITTI dataset for multi-object

tracking and segmentation (MOTS). In addition to the dataset, they introduce a baseline method

based on Mask R-CNN [78] for joint tracking and segmentation. Instead of using a recurrent

network, they use 3D convolution to merge the information of 8 frames before the RPN. Zhang

and Kim [99] extend the notion of temporal convLSTM [96, 97] by warping the hidden state

feature maps using the optical flow generated using FlowNet [100].

Most of the aforementioned approaches add an extra temporal layer at the end of the network

[86,94–97] while more recent approaches integrate temporal knowledge earlier before the creation

of object proposals [89–91, 93, 98] for two-stages detectors — such as Faster R-CNN [34]. In

contrast, in Chapter 5, we propose a new single-shot architecture which integrates the temporal

information at different scales throughout the network.

2.1.2 Object Tracking

Tracking algorithms can be divided into two broad categories: the first are template-based ap-

proaches which learn a complex representation of an object to be able to recognize it in subsequent

frames while the second category called multi-object tracking-by-detection (MOTD), as shown

in Figure 2.3, leverages motion continuity to link detections across frames to form tracklets. In

this section, we focus on the later which is more relevant to autonomous driving. Leal-Taixé et

al . [41] and more recently, Ciaparrone et al . [42] provide a comprehensive overview of the state

of the art in multi-object detection.

MOTD is most commonly evaluated using the multiple object tracking precision (MOTP) and

multiple object tracking accuracy (MOTA) metrics defined by Bernardin and Stiefelhagen [101].

MOTP is a measure of the quality of the generated bounding box position based on the IoU

while MOTA is an aggregate of a ratio of misses in the sequences, a ratio of false positives and

a ratio of mismatches. Unlike the mAP, the confidence score of the detections is not taken
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Figure 2.3: Object tracking and 3D pose estimation example from our work in Chapter 3. The
two images are four frames apart, that is 400ms apart.

into account in the definition of the metric. Even if such a confidence scores exist, MOTA and

MOTP expect that low confidence detections would have already been filtered out. Contrarily,

the recently released nuScenes tracking benchmark [7] uses the Average MOTP (AMOTP) and

Average MOTA (AMOTA) respectively defined by Weng and Kitani [102] which are averages of

the MOTP and the MOTA over the recall thresholds. Weng and Kitani [102] also define a variant

of MOTA called recall-normalised MOTA (MOTAR) which introduce a recall-normalisation term

to prevent the MOTA from being negative. Li et al . [103] introduce two other metrics: mostly

tracked (MT) and mostly lost (ML) which are the number of groundtruth tracklets successfully

tracked for more than respectively 80% and 20% of their length.

Graph-based and Feature-based Approaches

Early work addresses the MOTD task using Bayesian inference [103]. A set of studies have shown

that the Bayesian formulation can be expressed as a min-cost flow graph solvable in polynomial
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time [104, 105] online [106, 107] however there is no guarantee that the formulated model is an

accurate representation of the problem. This has led to numerous further publications on graph-

based pedestrian tracking [108–113]. The models are usually based on a pairwise detection

association cost using features such as 2D bounding box position, size and visual appearance

statistics such as colour histogram [109], pedestrian shape template [108], and LBPH [114]. Osep

et al . [115] and Sharma et al . [116] have recently shown that the performances can be improved

using 3D pose as an additional feature. To compute this 3D pose, they merge 2D detections with

3D proposals generated from stereo imagery. Sharma et al . [116] also use a pairwise appearance

cost based on an appearance feature descriptor generated by an hourglass CNN. Instead of using

appearance, Tang et al . [112] rely on optical flow [117] in the pairwise costs of the minimum cost

multicut formulation. Wang et al . [118] combines a graph-based approach with deep learning

using convolutions. The drawback of this approach is that it works on a fixed time window of

64 frames.

RNN-based Approaches

The LP-SSVM algorithm, introduced by Xiang et al . [119], learns to track objects using a

Markov Decision Process trained using Reinforcement Learning. Deep learning has been used

for template-based single target tracking [120–122] however the first use of deep learning to solve

multi-target tracking is a RNN by Milan et al . [123]. While they note that this is a step toward

end-to-end tracking using neural networks, it still relies on the output of a separate detector. Lu

et al . [95] use a similar approach based on two stacked LSTM layers [92]. Conversely, Gaidon

et al . [124] use a probabilistic framework based on the last feature maps produced by a CNN-

based detector. Gaidon et al . still train the detection network separately from the tracking linear

classifier. Similarly, Zhou et al . [125] integrate CNN feature map from a small region of interest

into a tracking framework called Deep Continuous Conditional Random Field (DCCRF). While

not an end-to-end solution, the detector is still able to use information-rich feature maps rather
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than a limited set of object attributes.

Zhang et al . [126] present an end-to-end network for single-object tracking trained with back-

propagation and reinforcement learning. Sadeghian et al . [127] model the interactions between

objects over an occupancy grid using an LSTM [127]. Ma et al . [128] takes a different ap-

proach: using tracklets already pre-built using a simpler approach such as the Munkres-Kuhn

algorithm [56], they introduce a network able to correct the mismatches and improve the quality

of the detections. Kim et al . [129] use bilinear LSTM, which is based on the intuition that while

the additive coupling of LSTM is efficient at storing motions, it is far less efficient at storing

object representations.

Tracking by Re-Identification

Graph-based and RNN-based approaches primarily rely on the analysis of motion and the be-

haviour of the targets to associate detections and tracklets. Those approaches are not robust

to targets which leave the camera field of view then re-enter at a subsequent time. This task

is called Re-Identification (ReID) and can be used instead of tracking the motion of object to

build a tracker. Tang et al . [113] introduce the concept of lifted edges as a new type of edge in

a tracking graph to integrate person re-identification within a graph-based tracker. Ristani et

al . [130] learn object appearance embeddings using a triplet loss and use those embeddings to

cluster detections together. Zhang et al . [131] generates short tracklets and subsequently merge

them across multiple views using ReID based on a hierarchical clustering. Luiten et al . [132]

propose a 3D tracking approach through occlusions which does not use any appearance model

but rather interpolate the trajectory of objects through occlusions.

Re-Identification is most useful to track targets over a long time across multiple views. In

contrast, tracking for autonomous vehicle is only concerned with a more immediate timescale of

a few seconds. If a vehicle leave the field of view and re-enter later, a new ID can be assigned
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Figure 2.4: Monocular depth estimation example within an equirectangular image from our work
on 360◦ panoramic images (see Chapter 4).

without any consequences in terms of driving. In addition, strong shadow, poor lighting and

similar colours make the ReID task quite challenging in autonomous driving scenarios.

End-to-end Approaches

In contrast, there are few approaches based on end-to-end tracking. Leal-Taixé et al . [133] use

a siamese CNN to compute the association cost of each pair of detections. Feichtenhofer et

al . [134] contruct a siamese network based on R-FCN [72] with an additional correlation stage to

compute the association cost matrix between the objects of two images. In 2019, Voigtlaender et

al . [98] use an end-to-end network with a layer of 3D convolutions. For each frame, it learns the

location of the object in the previous frame and uses the information to link each frame together.

The downside of end-to-end tracking is the difficulty of acquiring the large amount of annotated

video sequences as well as the cost of training a large network relative to the shallower networks

used for ReID and RNN-based strategies. In Chapter 5, we propose a new end-to-end approach

to tracking with current features at multiple scales and a frame-to-frame association approach

similar to Voigtlaender et al . [98].

2.1.3 Depth Estimation

Traditionally, depth estimation, as shown in Figure 2.4 is recovered using multi-view approaches

such as structure-from-motion [47,135] and stereo vision [136], relying on an explicit handling of

geometrical constraints between multiple calibrated views. In multi-view approaches, the overall
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process is typically split into two separate steps: keypoint matching and geometric optimisation

[136]. The keypoint matching is based on a range of visual cues: geometric cues are found in

sparse keypoints such as SIFT [137], SURF [138] feature descriptors as well as dense descriptors

such as HOG [139, 140]; visual similarity cues are found in dense approaches based on cross-

correlation such as Normalised Cross Correlation (NCC) [136]. Knowing a set of either dense

or sparse matches between a set of multi-view images, the most likely depth estimate can be

determined using geometric reasoning. Since the problem is typically both under-constrained

(textureless areas, poor lighting) and subject to noise (reflections, specularity), it is framed

as a minimisation problem by regularising the geometric constraints and adding smoothness

penalty terms. This problem can be solved locally using Dynamic Programming or globally using

approaches such as Graph Cuts or Belief Propagation. However, many approaches rely on Semi-

Global Matching (SGM) [141] which is a compromise between local and global optimization using

an astute backtracking technique. SGM is relatively fast and can be parallelized on the Graphic

Processing Unit (GPU) for real-time efficiency. Modern stereo approaches such as Kendall et

al . [142] take advantage of the expressiveness of CNN while retaining geometric considerations

such as the disparity-space cost function.

In contrast, geometric considerations can be used for depth estimation in a single monocular

image up to a scale factor and even then this is a severely underconstrained and challenging

task. In addition to geometric cues, it is necessary to rely on contextual or semantic cues in

monocular imagery. Saxena et al . [143, 144] provides the first approach that exploits such cues.

It is based on machine learning using a Markov Random Field (MRF) model to estimate dense

depth maps.

Dense Monocular Depth Estimation After the initial success of classical learning-based

techniques [143, 144], depth recovery was first approached as a supervised learning problem by
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the depth classifier of Ladický et al . [145] and deep learning-based approaches such as [9, 146].

However, these techniques are based on the availability of high-quality ground truth depth maps,

which are difficult to obtain. In order to combat the ground truth data issue, the method of

Atapour-Abarghouei and Breckon [147] relies on readily-available high-resolution synthetic depth

maps captured from a virtual environment and domain transfer to resolve the problem of domain

bias.

On the other hand, other monocular depth estimation methods have recently emerged that are

capable of performing depth recovery without the need for large quantities of ground truth

depth data. Zhou et al . [148] estimate monocular depth and ego-motion using depth and pose

prediction networks which are trained via view synthesis. Kuznietsov et al . [149] utilises a deep

network semi-supervised by sparse ground truth depth and subsequently reinforced within a

stereo framework to recover dense depth information.

Godard et al . [38] train their model based on left-right consistency inside a stereo image pair

during training. At inference time, however, the model solely relies on a single monocular image

to estimate a dense depth map. Even though the said approach is primarily designed to deal

with rectilinear images, in this thesis, we further adapt this model to perform depth estimation

on equirectangular panoramic images in Chapter 4.

Sparse Monocular 3D Object Detection In contrast to dense methods, it is also possible

to recover the 3D pose of objects of interest in monocular imagery.

Prior work on 3D pose regression in panoramic images is mostly focused on indoor scene recon-

struction such as PanoContext by Zhang et al . [150] and Pano2CAD by Xu et al . [151]. The

latter retrieves the object poses by regression using a bank of known CAD (Computer-Aided
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Design) models. In contrast, our method does not require any a priori knowledge of the object

geometry.

While most of the work has focused on 2D detection, the work of Chen et al . [57,152] leverages 3D

pointcloud information gained either from stereo on LIDAR modalities to generate 3D proposals

which are pruned using Fast R-CNN. Whereas these works use complex arrangements using ste-

reo vision, handcrafted features or 3D model regression, recent advances [4, 153, 154] show that

it is actually possible to recover the 3D pose from monocular imagery. Chen et al . [153] use

post-processing of the proposals within an energy minimization framework assuming that the

ground plane is known. Chabot et al . [154] use 3D CAD models as templates to regress the 3D

pose of an object given part detections. While Mousavian et al . [4] show the 3D pose can be

recovered without any template assumptions using carefully-expressed geometric constraints. In

this thesis, we propose a new approach in Chapter 3, similar to Mousavian et al . [4], without

explicitly-expressed geometric constraints. It performs well on both rectilinear and equirectan-

gular panoramic imagery without any knowledge of the ground plane position with respect to

the camera. We further extend this approach in Chapter 5 to a single-shot detector.

2.1.4 Perception Summary

The previous sections have provided an insight in the current state-of-the-art of perception ap-

plied to the automotive domain. Some algorithms such as stereo vision, optical flow and tracking

have been studied for a long time; while object detection and monocular depth estimation al-

gorithms have advanced rapidly in the last few years. 360◦ panoramic imagery is a relatively

new field which has not been studied in the context of automotive. Furthermore, the work of

Kendal et al . [155] has shown that it is possible to jointly learned multiple tasks efficiently with

a single neural network. Our work hinges on the study of 3D object detection, tracking, and

depth estimation in both rectilinear and 360◦ panoramic imagery.
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2.2 Machine Learning and Deep Learning

Computer vision and in particular in the field of autonomous driving has proven to be a par-

ticularly challenging if not intractable task to solve exclusively using hand-crafted features and

algorithms. While such algorithms can achieve reasonable results, especially on toy examples,

they are ill-suited to the complexity of real-world tasks. In order to hand design such algorithm,

one must consider an enormous number of interrelated aspects and in particular the interaction

between each of those aspects. It is extremely difficult to achieve a separation of concerns in

computer vision. The lack of separation of concerns and the exponential number of interactions

leads to the intractability. The introductory chapter of the seminal text by Szeliski [36] provides

an in-depth explanation and discussion about this challenge. Koller and Friedman [156] demon-

strate in probabilistic terms that exact inference on models of such complexity is intractable and

one must instead rely on approximate inference. This result is particularly important for the

mission-critical and safety systems required in autonomous vehicles where exact inference would

have been desirable but an unachievable property. Instead, one must turn to machine learning

to efficiently solve these problems.

This thesis is based on the concepts of deep learning. Schmidhuber produced an extensive survey

of deep learning [157] while LeCun published an extensive overview [158]. While shallow neural

networks have been around since the 1960s, deep learning was considered impractical in the

1980s due to the computational cost, however it became viable in the mid-2000s with the advent

of fast GPUs [157], eventually breaking records in the MNIST handwritten digit recognition

challenge [159] in 2010 and ImageNet image classification challenge [60] in 2012. Since then,

deep learning-based approaches have surpassed the existing state-of-the-art on many tasks as

illustrated in Section 2.1.

In this section, we discuss two aspects of machine learning which are particularly relevant to this

thesis: dataset bias and domain adaptation as well as training scaling to video sequences.
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2.2.1 Domain Adaptation and Style Transfer

Machine learning models trained on one dataset do not necessarily transfer well to a new dataset

— a problem known as dataset bias [160] or covariate shift [161]. A simple solution to dataset

bias would be fine-tuning the trained model using the new data, however that often requires

large quantities of ground truth, which is not always readily-available.

While many strategies have been proposed to reduce the feature distributions between the two

data domains [162–165], a novel solution was recently proposed in [147] which uses image style

transfer as a means to circumvent the data domain bias.

Image style transfer was first proposed by Gatys et al . [166] but since then remarkable advances

have been made in the field [167–170]. In this work, we attempt to transform existing rectilinear

training images (such as KITTI [1, 8]) to share the same style as our panoramic destination

domain (Mapillary [171]). However, these two datasets have been captured in different places

and share no registration relationship. As demonstrated in [147], unpaired image style transfer

solved by CycleGAN [2], can be used to transfer the style between two data domains that possess

approximately similar content.

In Chapter 4, we use style transfer and more specifically CycleGAN [2] to adapt existing neural

networks to 360◦ panoramic imagery (as shown in Figure 2.5).

2.2.2 Training at Scale

While significant work has focused on scene understanding from still images, video processing

is much less studied [172, 173]. Typical video tasks are video classification (e.g . type of video

or action recognition) [172] and captioning [173]. Deep learning-based video object detection

and tracking are often split into a still image object detector followed by a recurrent temporal

network such as [95, 128, 129] to reduce complexity. The main difficulty is the limited amount
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Figure 2.5: Domain adaptation example using CycleGan [2]. A: Original image. B: Image
transferred to the second domain. C: Reconstructed image back to the original domain.
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of memory which is available in the processing units (e.g . typically 12Gb RAM on a standard

GPU). Classical neural network training approaches extensively rely on gradient backpropagation

throughout the network. The gradient computation is based on two phases: a forward phase

through the entire network followed by a backward phase. All the intermediaries results from

the forward phase must be kept in order to perform the backward phase. Therefore, the memory

required to train a deep learning model increases linearly with the number of frames processed by

the model. Therefore, the typical algorithm would sample a small fixed number of frames from

the sequences, such that the model can be trained within the memory constraints. Furthermore,

in order to train using more than 2 or 3 frames at a time, the frames must be shrunk to a small

size such as 512×512, 224×224 or sometime even smaller [172].

Recent works [174–176] have shown that it is possible to implement strategies to trade-off compu-

tation time for memory. Such strategies curb the memory requirements from linear complexity

to sublinear complexity. Those techniques have been successfully applied to train larger net-

works [177–180]. Furthermore, it is possible to store intermediaries gradients either on the main

memory or disk storage. For instance, Figure 2.6 shows, without loss of generality, how a neural

network processing a video sequence of 5 frames can be optimised using this method to reduce the

amount of memory which must be simultaneously stored between the forward and the backward

passes.

Those difficulties are only present during training. Backpropagation is not required for inference

using the trained models. Hence the memory-wise inference complexity is typically constant

regardless of the number of frames and regardless of the training complexity. We exploit this

paradigm in Chapter 5 to train a large memory-intensive tracking network which scales to an

arbitrary number of video frames.
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(a) Naive implementation. The internal state of all Ft must be stored during the forward pass to be
used in the backward pass.
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(b) Scalable implementation. The internal state is not stored in the forward pass. Instead each forward
function Ft is replayed as required in the backward pass, saving much memory at the expense of a slight
increase in computation time.

Figure 2.6: Backpropagation through time for a recurrent network over 5 frames. Ft represents
the forward pass and Bt, the associated backward pass, at frame t. Each small dots is a hidden
state between frames. Each double arrow is the internal state of the forward function Ft which
is required by the complementary backward function Bt. The internal state is much larger than
the hidden state.
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2.3 Summary

We have identified that 360◦ panoramic imagery has a new set of challenging problems in auto-

motive visual sensing. In particular, we address in this thesis the problems of object detection,

3D pose estimation, and multi-object detection and tracking within monocular 360◦ panoramic

imagery.

We have introduced the contemporary state of the art in object detection in Section 2.1.1 and

object tracking in Section 2.1.2 which we build upon throughout this thesis. In Chapter 3, we

build a siamese [37] 3D object detection and tracking network based on MS-CNN [43]. We have

identified a lack of prior work and datasets on panoramic imagery in automotive application;

which we attempt to fill this gap in Chapter 4 by introducing a novel approach to adapt existing

training datasets and CNN to panoramic imagery using CycleGAN [2]. We use this methodology

to adapt our neural network presented in Chapter 3 as well as Monodepth [38] to 360◦ panoramic

imagery. This approach is based on the concepts of domain adaptation presented in Section 2.2.1

to generalise from the KITTI dataset [8] to our own 360◦ synthetic imagery testing dataset. We

attempt to depart from the tracking literature in Chapter 5 by integrating object detection and

tracking together in a single end-to-end CNN using the concepts of neural network training

presented in Section 2.2.2. This network is a multi-scale single shot detector inspired by [44,45].
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Chapter 3

Combined Multi-Object

Frame-to-Frame Detection, Tracking

and 3D Pose Estimation within

Monocular Video Imagery

3.1 Introduction

Object detection and tracking is an essential component of the perception subsystem of any

self-driving vehicle. Tracking can be based on either LIDAR and RADAR information or camera

video streams. We will focus on the later. The MOTD literature treats the object detection and

tracking as two distinct problems whereby the output of the former is used as the input of the
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Ft−1

Ft

Figure 3.1: Examples of detection results. Top row shows the results on the previous frame and
bottom row shows the result on the current frame.

later [104,105,107]. As presented in Section 2.1.2, such approaches limit the amount of knowledge

transferred between the detector and the tracker. The tracker input detections are typically

represented using a 2D bounding box and some visual appearance embedding. In challenging yet

common driving scenarios, the information provided by the appearance embedding is somewhat

limited because distant objects under shadow or strong contrast due to sunlight have very similar

appearances. Besides such a detector has no notion of time and a tracker has no notion of

geometric cues which are not contained in the detection themselves.

Another essential aspect of the perception subsystem is the 3D reasoning ability. Specifically,

3D pose estimation is relevant to object detection and tracking. While 3D reasoning is an

intrinsic part of LIDAR- and RADAR-based approaches, it is absent of most detection approaches

based on monocular imagery. Depth perception from imagery is traditionally approached using

stereo vision [136]. In contrast, as explained in Section 2.1.3, depth and 3D pose estimation by

geometric reasoning in monocular imagery is a severely underconstrained task. Machine learning
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is particularly suited to integrate semantic reasoning to resolve the geometrical ambiguities as

proven by the work of Mousavian et al . [4] and Xiang et al . [5] presented in Section 2.1.3. We

propose an improved 3D pose estimation method using a simpler formulation than earlier work.

In this chapter, we present a novel algorithm which jointly solves object detection, 3D pose

estimation and frame-to-frame object tracking. We show that frame-to-frame tracking can be

formulated by teaching an object detector based on Faster R-CNN [34] to process two consecutive

frames to jointly output the 3D pose, size and velocity of each detections in each frame as well

as a mapping of object positions between the two frames (as shown for example in Figure 3.1).

Our frame-to-frame approach enables us to directly estimate the velocity of detected objects. We

also show that such velocity estimates are more accurate than calculating them as the difference

between past and present locations.

3.1.1 Proposed Contributions

The key contributions, against the state of the art [4, 5] outlined in this chapter are:

• improved monocular 3D pose regression of vehicles, pedestrians and cyclists using a simpler

formulation than earlier work [4, 5] which achieve state-of-the-art results;

• a novel frame-to-frame detector based on Faster R-CNN to recover the velocity of objects

as well as a frame-to-frame mapping of those objects.

3.2 Approach

We first describe the overall network architecture (Section 3.2.1). Subsequently, we describe how

we leverage this architecture to estimate 3D pose (Section 3.2.2) and velocity (Section 3.2.3).

Finally, we show how we exploit this information for object tracking (Section 3.2.4).
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Figure 3.2: RPN subnetwork. Convolutional are shown in blue, pooling and concatenation layers
in red. Layers with the same names share the same weights if any. The layers conv1-1 up to
conv6 are pre-trained VGG16 [3] layers.

3.2.1 Network Architecture

Primarily we leverage the existing multiscale architecture of Cai et al . [43] called MS-CNN,

however this work can be adapted to any of the derivatives of Faster R-CNN [34]. This network

generates a sequence of detection proposals using an RPN and then, in the second-stage detection

network, pools a subregion around each proposal to further regress the proposal 2D location. We

extend this network to work on two successive frames at a time using a siamese architecture [37]

inside the RPN then concatenate the feature maps of both frames in the detection network to

regress the 2D location as well as 3D pose and velocity estimation.

As illustrated in Figure 3.2, the RPN network takes an input of both the current (Ft) and

previous (Ft−1) frame from a monocular video stream. Images are upsampled by a factor of 1.5

to the resolution 1920×576 then each frame of this pair (Ft, Ft−1) is processed via a dedicated
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trunk of VGG16 [3] 3 × 3 convolution layers (Figure 3.2, conv1-1 to conv5-3 ) and 2 × 2 max-

pooling layers (Figure 3.2, max pool). Those trunks form a siamese network with shared weights

for each convolution layer. Subsequently at four different scales, CNN feature maps (Figure 3.2,

conv4-3, conv5-3, conv6 and the last max pool) from each trunk are pulled and concatenated

together and then fed into a set 5 × 5 convolution layers (Figure 3.2, layers det-8 to det-64 ).

The concatenation followed by a convolution is designed to capture relationships between the

two consecutive frames by merging the feature maps from the frames Ft and Ft−1 together. For

each location, the detection convolutional layers (det-8 to det-64 ) produce the 2D bounding box

of two ROI named Pt and Pt−1 for respectively the current and the previous frame (Ft, Ft−1) as

well as an objectness score (as introduced in Faster R-CNN [34]). Those ROI which may contain

an object of interest are called region proposals.

The position of the region proposal at each anchor in the RPN is regressed using a smooth

L1 loss [65] and the objectness score is regressed using a binary cross entropy loss function as

described by Ren et al . [34]. As explained in Section 3.3, we use a two stage training. In the

first stage, the RPN is trained on its own using the smooth L1 loss and cross entropy; while in

the second stage, it is further trained jointly with the detection network described below.

As most anchors do not contain any object at all and others are for the same objects; we apply

NMS with a 2D IoU threshold of 0.65 and select the 3000 highest scoring boxes.

Subsequently, the detection network (shown in Figure 3.3) further regresses the exact bounding

box and class label of each of the 3000 remaining proposals as well as their full 3D pose and

velocity. As shown in Figure 3.3, at the beginning of the detection network, for each proposal,

we pool a ROI from conv4-3 defined by the bounding box encompassing the regions Pt and

Pt−1 for respectively the current and previous frames because it is desirable to use a single

common ROI for both frames rather than disjoint ROIs per frame to accurately compute the
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Figure 3.3: Detection network. Feature maps from two ROI pooling layers (one for each frame)
are concatenated together then processing through a deconvolution layer (roi-c1 ) and a fully-
connected layer (fc6 ). Each output is predicted using one further separate fully-connected layer.

velocity of an object. As shown in Figure 3.3, the two conv4-3 layers are upsampled using a

transposed convolution layer (conv4-3-2x ) of kernel size 4 and stride 2 applied on each channel

independently, then concatenated together feature-wise then pooled. The pooled feature map is

then fed through the fully-connected layers (Figure 3.3, roi-c1, fc6 ). The layer roi-c1 has 512

input channels (same as the layer conv4-3 of VGG16 [3]) and 1024 output channels; while fc6

has both 1024 input and output channels. We use the last common feature map fc6 to learn

features (shown in green in Figure 3.3) using a separate subsequent fully-connected layer per

feature.

While the approach aggregates information from two siamese VGG [3] trunks, during inference

on a video stream, we can reuse the VGG trunks (Figure 3.2, conv1-1 up to conv6 ) from one

frame to the next at each time step because the weights are shared across the two VGG trunks

to save runtime.
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As illustrated on Figure 3.3, the network outputs for each object, its current 2D bounding box

and 3D pose in frame Ft, its previous 2D bounding box and 3D pose in Ft−1 (hence connecting

objects in Ft to Ft−1), its size, and its velocity. Each of the output and associated loss function

is described in the next sections and the method to jointly train this set of loss is defined in

Section 3.3.

3.2.2 3D Pose Recovery

While Mousavian et al . [4] shows that 3D pose can be estimated without any assumptions of

known 3D templates, their algorithm relies on geometric properties. In contrast, we regress the

3D pose directly, simplifying the computation and making it easier to adapt to panoramic images

in the subsequent work in Chapter 4.

Here, we directly regress the 3D dimension (width, length and height) in meters of each vehicle

using a fully-connected layer as well as the orientation as per [4]. Moreover instead of relying

on geometric assumptions, we also regress a quantity which we name the object disparity d = f
z

which is the inverse of the distance z multiplied by the focal length f . This definition of the

disparity is analogous to the definition used in stereo vision (d = fB
z

) [36, Chapter 11]. The

size of a given object in image space depends on its physical size, distance and the focal length

of the camera therefore it is not possible for a neural network to learn the distance z based on

object appearance in image space unless the focal length is a constant. This assumption is not

desirable because it would prevent the network from generalising to other cameras and lenses.

Besides, since the focal length associated with a given ROI depends on the size of the ROI, it

is desirable to learn a quantity which is independent from the focal length. In constrast, the

disparity d given the object appearance in image space is independent from the focal length.

Using a fully-connected layer connected to the last fully-connected layer fc6, we learn coefficients

a, b such that:

d = ahroi + b (3.1)
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where hroi is the height of the region proposal generated by the RPN in pixels. To simplify the

computation, we also learn the 2D projection of the centre of the vehicle onto the image (u, v)

using another fully-connected layer. As a result, we can recover the 3D position (x, y, z) using:

[x, y, z]T = zP−1[u, v, 1]T (3.2)

where P is the camera matrix obtained from earlier camera calibration [79, Chapter 1].

For network training of our model, we additionally use data augmentation including image crop-

ping and resizing as defined by [43]. Any of those operations on the image must be accompanied

by the corresponding transformation of the camera matrix P in order to facilitate effective train-

ing.

As noted by Mousavian et al . [4], estimating the angle of an object pose a significant challenge

because the signed angle of +π radians and of −π radians along an axis of rotation represent the

same 2D rotation; thus when regressing angles, there is a discontinuity at π radians. Confronted

with such an ambiguity, a naive regression using the mean-square error would choose the average

of the two extremas rather than the actual angle for objects with an orientation of ±π. To

circumvent this problem, given the object yaw θ (orientation on the ground plane), we instead

learn c = cos2 θ and s = sin2 θ which are both independent of the directionality. Noting that

cos2 θ + sin2 θ = 1, c and s can be conveniently learned with a fully-connected layer followed by

a softmax layer. For each pair (c, s), there are four possible angles each in a different quadrant

depending on the sign of the sine and cosine:

θ̂ = arg
(

±
√
c ±

√
s i
)

(3.3)
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We further discriminate between the four quadrants using a separate classifier consisting of a

fully-connected layer followed by a softmax classification layer.

Following the convention of the KITTI dataset [8], we assume that the pitch and roll are null

however it is possible to extend this representation to arbitrary 3D rotation θ around a vector u

given that it can be expressed as the quaternion q = cos θ
2
− (uxi+uyj+uzk)sin

θ
2
. This adds an

extra 3 parameters to learn u which can also be learned with a softmax layer because |u| = 1.

3.2.3 Temporal Continuity Information

For each object, we directly learn the 3D velocity vector v in meters relative to the egovehicle

between frames Ft−1 and Ft using a fully-connected layer. We also regress the 2D bounding box

and 3D pose of the object in frame Ft−1 using the same method as for Ft.

3.2.4 Object Tracking

In the previous section, we have shown that for a given detection a at time t, we can recover its

bounding box Ba
t−1 and Ba

t in respectively the previous frame Ft−1 and the current frame Ft.

As we aimed to test our object detector as a tracker, we adopted a simple scheme to match the

detections on the pair of frames (Ft−2, Ft−1) of the previous time step with detections of the

current time step (Ft−1, Ft). We say that two detections a and b from respectively time step

t− 1 and t matches if:

IoU(Ba
t−1,Bb

t−1) < ǫ

dist(Ba
t−1,Bb

t−1) < µ

(3.4)

where IoU is the Intersection over Union (also called Jaccard index) over the area of the 2D

bounding boxes, dist is the euclidean distance between the centre of the two boxes in the 3D
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space, ǫ and µ are two thresholds. In our experiments, we choose ǫ = 0.5 and µ = 2m. If a

detection at time step t can be matched to more than one detection at time t − 1, we pick the

detection with the highest overlap measured by the 2D IoU. We ignore any detection with a class

score below 0.2 and any new detection with a score below 0.6. Using this scheme, we are able

track the object frame-to-frame using our detector without relying on any additional tracker.

3.3 Network Training

We trained and evaluated our algorithm on the KITTI detection benchmark [8] which does not

provide any ground truth for the previous frame Ft−1; however, we were able to annotate 4400

images out of the 7400 available images using the tracklets provided in the raw dataset. When

no ground truth is available for Ft−1 for a given sample (either a new object in the sequence

or missing ground truth mentionned above), we ignore the output of the loss functions related

to the previous frame as well as the velocity loss; and instead only learn the outputs associated

with the current frame Ft.

We use the two-phase training of MS-CNN as described in [43]. In the first phase, we train

the region proposal network (shown in Figure 3.2) to generate region proposals Pt and Pt−1 on

respectively the current and the previous images using a multitask loss.

In the second phase, our entire network, comprising the architecture of [43] and our 3D pose

regression extension, is fine-tuned end-to-end using a multi-task loss over 7 sets of network

outputs: class and quadrant classification are learned via cross entropy loss while bounding-box

position, object centre, distance, orientation, velocity are dependent on a mean-square loss. As a

result, it would be time-consuming to manually tune the weights of the weighted sum of losses in

a multi-task loss, therefore we use the methodology of Kendall et al . [155] to dynamically adjust

the multi-task weights during training based on homoscedastic uncertainty without any use of

manual hyperparameters.
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For each phase, we trained the network using stochastic gradient descent with a batch size of

4 samples, hence 8 frames per batch and a learning rate of 1× 10−4 for 25000 iterations. The

remaining parameters of MS-CNN as set as described in [43].

3.4 Evaluation

We evaluate our approach on the KITTI object detection and tracking benchmark [8]. In addition

to the metrics used in the benchmark, we provide our own metrics for the extension to 3D pose

and velocity estimation.

3.4.1 Distance Evaluation

We compare our results (shown in Figures 3.9 and 3.10) to the current state-of-the-art monocular

3D object detection method Deep3DBox [4] with both methods trained on the training/validation

split of [181]. The Figure 3.4a shows the original results of Deep3DBox [4] compared to SubCNN

[5]. Those results were generated on a common subset of ground truth objects which were

successfully detected by both methods. As shown in Figures 3.4b and 3.4c, our method has a

17% decrease of average distance error compared to Deep3DBox and a 10% increase in 3D IoU

performances for the common set of detections between the two methods.

As shown in Figure 3.5, we were also able to learn the distance of more difficult objects such as

pedestrians and cyclists which have very few samples in the dataset. The much higher error on

pedestrians and cyclists more than 30m away are due to the lack of training data and their small

size.

3.4.2 3D Detection Benchmark

Following the work on Chen et al . [152] on multi-view 3D detection, this task was recently added

to the KITTI benchmark. In this section, we finetune our network using the entire KITTI
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Figure 3.5: Statistics for all categories of the KITTI benchmark.

training set and present the results on the testing set. The 2D IoU matching between ground

truth and detections was replaced with 3D IoU. Detections must score an IoU greater than 0.70 to

be valid. Our performances shown in Table 3.1 are much lower than other methods published in

the benchmark [152,182,183] because we rely solely on monocular imagery instead of multiview

or LIDAR data. We achieved 2.62%, 1.30% and 1.25% for respectively easy, moderate and hard

detections. An IoU above 0.70 requires a distance error below 2m because cars are on average

4m long. On average, we achieved a distance error of 1.5m and a 3D IoU of 0.40.

Our score on the pedestrian and cyclist 3D detection benchmark are shown in Table 3.1. Due

to their small size, as shown in Figure 3.5b, it is much more difficult to have a high overlap

for pedestrian and cyclist than cars. The KITTI benchmark requires IoU≥ 0.5 for cyclist and

pedestrians. This means that the actual position of the object must be pinpointed down to a

few decimetres.

As shown in Figure 3.6, the performances obtained with a 3D IoU are heavily dependent on the

overlap threshold used in the evaluation. Decreasing the required threshold leads to a dramatic

improvement of the Average Precision. In contrast, the performances of the 2D detections are
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not as sensitive to the threshold. This difference can be explained by the 3D IoU accumulating

the error along both the 2D position and distance dimensions, whereas the 2D IoU excludes the

distance error. This sensitivity shows that the low performances on the KITTI benchmark can be

attributed to the quality of the 3D bounding boxes, and particularly the difficulty of measuring

the distance of each vehicle in monocular imagery.

While LiDAR can estimate the distance of objects within a few centimetres accuracy, monocular

approaches have a much higher error margin as shown in Figure 3.5. As the KITTI 3D detection

benchmark use 3D IoU to match ground truths and detections, the monocular approaches are

particularly penalised due to the lack of high accuracy, especially for small size objects. In

contrast, newer benchmarks such as the nuScenes benchmark [7], which we use in Chapter 5,

replaces the 3D IoU with euclidean distance between the ground truths and detections.
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3.4.3 Velocity Evaluation

Figures 3.7a and 3.7c show the average relative speed error for detected vehicles. Each detection

is grouped by distance and relative speed from the egovehicle and the average error is calculated

for each of those groups. We can see that on average, the error is around 10 kmh−1 (6.2mph)

for relative speeds below 60 kmh−1 (37mph). The error slightly increases with the distance. In

two places, the error becomes particularly high: for vehicles at low speed (<12 kmh−1, 7.4mph)

in the regions of [10m,20m] and above 40m in distance; and for vehicles at high speeds above

60 kmh−1 (37mph). This can be attributed to the lack of ground truth data both for training

and evaluation in the KITTI dataset for such higher speed. This is particularly visible in the

distribution of the ground truth instances as shown in Figure 3.7b & 3.7d. In particular, there

is no ground truth data for speeds in the range [60 kmh−1,96 kmh−1] ([37mph,60mph]) at

distances below 30m, thus leaving a gap in Figure 3.7a & 3.7c. The KITTI data has been mostly

captured at low speed in a urban environment with very few examples of highway driving. The

distribution of speeds is also influenced by the speed limits and the layout of the roads. At high

speed, median strips are typically used to separate opposing lanes and distance opposing vehicles

from each other. Besides, on a highway most vehicles drive at very similar speeds and the actual

relative speed is quite small. Therefore, measurements of high speeds are not particularly good

but are not particularly relevant either in this context.

The relative speed can also be calculated as the difference between the position of the object in

the current (pt) and previous frames (pt−∆t) divided by the time difference ∆t as defined by:

v =
pt − pt−∆t

∆t
(3.5)

The results are shown in Figure 3.8a & 3.8b. On average, the error generated by this method

(Figure 3.8a & 3.8b) is about twice the error of directly learned speeds (Figure 3.7a & 3.7c).
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Figure 3.7: Speed measurement error and number of ground truth samples per relative speed and
distance bucket. The gaps in Figure 3.7a & 3.7c means that there is no ground truth samples in
those buckets.
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Figure 3.8: Speed calculated as the difference of the previous and current relative vehicle position.
Speed measurement error and number of ground truth samples per relative speed and distance
bucket. The gaps in Figure 3.8a & 3.8b means that there is no ground truth samples in those
buckets.

Besides, the results are much more sensitive to distance. This illustrates two aspects. The first

one is that at higher distances, it is easier to calculate the relative motion than absolute positions.

The second one is that we are accumulating the uncertainty surrounding the measurements in the

current and previous frames. Therefore, we can conclude that for the purpose of studying relative

positions such as speed measurements, it is more efficient to directly regress them than calculating

them from other outputs. This is enabled by the two streams neural network architecture, which

allows our approach to directly learn the velocity of an object between two frames.

3.4.4 Tracking Benchmark

While we trained our network using the training dataset provided by the KITTI detection bench-

mark (Figure 3.11), we also show our results on the KITTI tracking benchmark [8]. We evaluate

our work using the MOTA and MOTP metrics defined by Bernardin and Stiefelhagen [101]. On

the testing dataset, we achieved MOTA of 66.96% and MOTP of 79.51%. Those results are

slightly below the state-of-the-art because we have compromised the quality of the neural net-
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work by using a 1.5x upsampling as described in Section 3.2.1 instead of 2x upsampling of the

input used in the final results of MS-CNN [43]. This compromise was necessary to fit the model

within the memory requirements (12Gb) of available GPU hardware.

3.5 Summary

We have shown how to recover the 3D pose, size and velocity of objects from monocular video im-

agery and use this information to track objects frame-to-frame without the need of an additional

tracker, using a siamese neural network [37] based on MS-CNN [43] which is able to process a

pair of frames at a time. Our pose estimation approach achieves state of the art results compared

to Mousavian et al . [4] and Xiang et al . [5]. Besides the approach can further be used to enrich

the input data of an existing tracking framework such as the online tracker [107] with full 3D

pose, size and velocity of the detection. As we are able to process a pair of frames through our

two streams architecture, we are able to directly regress the velocity as an output of the network

rather than calculating from the previous and current 3D locations. We have shown that this

leads to more accurate measurements of the velocity of objects. By its frame-to-frame nature

with no memory, our work is not able to track objects through occlusions and is not robust to

false negatives. Chapter 5 attempts to address this issue by transforming the detection CNN

into a recurrent network to introduce memory inside the network.
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Ft−1

Ft

Ft−1

Ft

Figure 3.9: Examples of detection results. Top row shows the results on the previous frame and
bottom row shows the result on the current frame.
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Ft−1
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Figure 3.10: Examples of detection results. Top row shows the results on the previous frame and
bottom row shows the result on the current frame. (cont.)
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Figure 3.11: Tracking results. Each images was captured at 4 frames interval.
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Figure 3.11: Tracking results. Each images was captured at 4 frames interval. (cont.)
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Figure 3.12: Tracking results. Each images was captured at 4 frames interval. (cont.)
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Figure 3.12: Tracking results. Each images was captured at 4 frames interval. (cont.)
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Figure 3.13: Tracking results. Each images was captured at 4 frames interval. (cont.)
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Figure 3.13: Tracking results. Each images was captured at 4 frames interval. (cont.)
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Chapter 4

Adapting 3D Object Detection and

Monocular Depth Estimation to

360◦ Panoramic Imagery

4.1 Introduction

Recent automotive computer vision research (object detection [34,44], segmentation [188], stereo

vision [142,189], monocular depth estimation [38,145,147]) and indeed our own work in Chapter 3

have focused almost exclusively on the processing of forward-facing rectified rectilinear vehicle

mounted cameras. Indeed, by sharp contrast to the abundance of common evaluation criteria and

datasets for forward-facing camera imagery [1,8,51,190–193], there are no annotated evaluation

dataset or frameworks for any of these tasks using panoramic camera.
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A

B

Figure 4.1: Our monocular panoramic image approach. A: 3D object detection. B: depth
recovery.

However, varying levels of future vehicle autonomy will require full 360◦ situational awareness,

akin to that of the human driver of today, in order to be able to function across complex and

challenging driving environments. One popularly conceived idea of capturing this awareness

is to use active sensing in the form of 360◦ LIDAR, however this is currently an expensive,

low-resolution method which does not encompass the richness of visual information required

for high fidelity semantic scene understanding. An alternative is to fuse the information from

multiple cameras surrounding the vehicle [194] and such methods have been used to fuse between

a forward-facing camera and LIDAR [152, 195]. However, here opportunities are lost to share

visual information in early stages of the pipeline with further computational redundancy due to

overlapping fields of view. Alternatively, the imagery from a multiview setup can be stitched

into a 360◦ panorama [196]. A roof mounted on-vehicle panoramic camera offers superior angular

resolution compared to any LIDAR, is 1-2 orders of magnitude lower cost and provides rich scene

colour and texture information that enables full semantic scene understanding [197].

Panoramic images are typically represented using an equirectangular projection (Figure 4.1A); in

contrast a conventional camera uses a rectilinear projection. In this projection, the image-space

coordinates are proportional to latitude and longitude of observed points rather than the usual

projection onto a focal plane. As shown in Figure 4.1A, straight 3D lines are represented as
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curves and the panoramic representation of objects exhibits spherical distortion as an intrinsic

property of the equirectangular projection. This property has limited the success of applying

existing contemporary object detection approaches to panoramic images.

Recent work on panoramic images has largely focused on indoor scene understanding [150,151],

panoramic to rectilinear video conversion [81,82,198] and dual camera 360◦ stereo depth recovery

[199, 200]. However, no work to date has explicitly tackled contemporary automotive sensing

problems.

By contrast, we present an approach to adapt existing deep architectures, such as a CNN [38,43]

developed on rectilinear imagery to operate on equirectangular panoramic imagery. Due to

the lack of explicit annotated panoramic automotive training datasets, we show how to reuse

existing non-panoramic datasets such as KITTI [1,8] using style and projection transformations,

to facilitate the cross-domain retraining of contemporary algorithms for panoramic imagery. We

apply this technique on panoramic imagery to estimate the dense monocular depth (see example

in Figure 4.1B) and to recover the full 3D pose of vehicles (Figure 4.1B) based on our approach

presented in Chapter 3. Additionally, our work provides the first performance benchmark for

the use of these techniques on 360◦ panoramic imagery acting as a key driver for future research

on this topic. Our technique is evaluated qualitatively on crowd-sourced 360◦ panoramic images

from Mapillary [171] and quantitatively using ground truth from the CARLA [39] high fidelity

automotive environment simulator. For future comparison our code, models and evaluation data

is publicly available1.

4.1.1 Proposed Contributions

Overall the main contributions, against the state of the art [1, 4, 8, 38, 39, 43], presented in this

work are:

1https://gdlg.github.io/panoramic

https://gdlg.github.io/panoramic
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• a novel approach to convert deep network architectures [38, 43] operating on rectilinear

images for equirectangular panoramic images based on style and projection transformations;

• a novel approach to reuse and adapt existing datasets [1, 8] in order to train models for

panoramic imagery;

• the subsequent application of these approaches for monocular 3D object detection using

an adaptation of our work in Chapter 3, additionally operable on conventional imagery

without modification;

• further application of these techniques to monocular depth recovery using an adaptation

of the rectilinear imagery approach of Godard et al . [38];

• provision of the first performance benchmark based on a new synthetic evaluation dataset

(based on CARLA [39]) for this new challenging task of automotive panoramic imagery

depth recovery and object detection evaluation.

4.2 Approach

We first describe the mathematical projections underlining rectilinear and equirectangular pro-

jections and the relationship between the two required to enable our approach within panoramic

imagery (Section 4.2.1). Subsequently, we describe the dataset adaptation (Section 4.2.2), its ap-

plication to monocular 3D pose recovery (Section 4.2.3) and depth estimation (Section 4.2.4) and

finally the architectural modifications required for inference within panoramic imagery (Section

4.2.5).

4.2.1 Rectilinear and Equirectangular Projections

Projection using a classical rectified rectilinear camera is typically defined in terms of its camera

matrix P . Given the Cartesian coordinates (x, y, z) of a 3D scene point in camera space, its
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projection (ulin, vlin) is defined as:
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(4.1)

where ⌊·⌋ denotes the homogeneous normalization of the vector by its last component. Assuming

the pinhole camera model shown in Figure 4.2, the camera matrix P is conventionally defined

as:

P =




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

f 0 cx

0 f cy

0 0 1
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
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(4.2)

where f and (cx, cy) are respectively the focal length and the principal point of the camera [79,

Chapter 1].

The rectilinear projection as defined in Equation 4.1 is advantageous because the camera matrix

P can be combined with further image and object space transformations into a single linear

transformation followed by an homogeneous normalization. However, this transformation can

also be written as:
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(4.3)
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Figure 4.2: Pinhole camera model of principal point (cx, cy) and focal length f . fovx and fovy

are respectively the horizontal and vertical field of view.

This formulation (Equation 4.3) is convenient because the image-space coordinates are expressed

in terms of the ratio x/z and y/z which are the same regardless of the distance from the 3D

scene point to the camera.

In contrast, the equirectangular projection is defined in terms of the longitude and latitude of the

point using the coordinate system shown in Figure 4.3. The longitude and latitude, respectively

(λ, φ), are defined as:

λ = arctan x/z (4.4)

φ = arcsin y/r where r = (x2 + y2 + z2)
1

2 (4.5)

The latitude definition in Equation 4.5 can be conveniently rewritten in terms of the ratios x/z



Chapter 4: Adapting 3D Object Detection and Monocular Depth Estimation to

360◦ Panoramic Imagery 66
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λ
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Figure 4.3: The spherical coordinate space using longitude, latitude and radius: (λ, φ, r).

and y/z as in Equation 4.3 for rectilinear projections:

φ = arcsin
y/z

r
where r = (x/z2 + y/z2 + 12)

1

2 (4.6)

For the sake of simplicity, this computation of the latitude and longitude from the Cartesian

coordinates can be represented as a function Γ:
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(4.7)

Finally, we define an image transformation matrix Tequi which transforms the longitude and
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latitude to image space coordinates (uequi, vequi):
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The matrix Tequi can be defined as:

Tequi =


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(4.9)

where α is an angular resolution parameter akin to the focal length. Like the focal length, it can

be defined in terms of the field of view:

α = fovλ/w = fovφ/h (4.10)

where fovλ, fovφ, w, h are respectively the image horizontal FoV, vertical FoV, width and height.

In contrast to rectilinear imagery, where the focal length is difficult to determine without any kind

of camera calibration, the equirectangular imagery, commonly generated by panoramic cameras

from the raw dual-fisheye pair, can be readily used without any prior calibration because the

angular resolution α = 2π/w depends only on the image width. Therefore, approaches that

would require some knowledge of the camera intrinsics of rectilinear images (e.g . monocular depth

estimation) can be readily used on any 360◦ panoramic image without any prior calibration.

By coupling the definitions of both the rectilinear and equirectangular projections in terms of the

ratios x/z and y/z (Equation 4.3 & 4.8), we establish the relationship between the coordinates
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in the rectilinear projection and equirectangular projection for the given matrices P and Tequi:













uequi

vequi

1













= Tequi · Γ













P−1 ·













ulin

vlin

1

























(4.11)

This enables us to reproject an image from one projection to another, such as from the rectilinear

image (Figure 4.4A) to an equirectangular image (Figure 4.4C) and vice versa — a key enabler

for the application of our approach within panoramic imagery.

4.2.2 Dataset Adaptation

In our approach, the source domain is the KITTI [1,8] dataset of rectilinear images captured us-

ing a front-facing camera rig (1242×375 image resolution; 82.5◦ horizontal FoV and 29.7◦ vertical

FoV); while our target domain consist of 30,000 images from the Mapillary [171] crowd-sourced

street-level imagery (2048×300 image resolution; 360◦ × 52.7◦ FoV). These latter images are

cropped vertically from 180◦ down to 52.7◦ which is more suitable for automotive domain applic-

ations. This reduced panorama has an angular coverage 7.7 times larger than our source KITTI

imagery. Due to the lack of annotated labels for our target domain, we adapt the source domain

dataset to train deep CNN for panoramic imagery via a methodology based on projection and

style transformations.

Due to dataset bias [160], training on the original source domain is unlikely to perform well

on the target domain. Furthermore, our target is relatively low resolution and has numerous

compression artefacts not present in the source domain, which are, however, present in our

360◦ target domain due to the practicality of 360◦ image transmission and storage. To improve

generalization to the target domain, we transform the source domain to look similar to imagery

from our target domain via a two-step process.
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A

B

C

D

Figure 4.4: Output of each step of the adaptation of an image from the KITTI dataset: A: No

tranformation, B: Style transfer, C: Projection transfer, D: Style and projection
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Figure 4.5: RPN subnetwork. Convolutional layers are shown in blue; pooling and concatenation
layers in red. The layers conv1-1 up to conv6 are pre-trained VGG16 [3] layers.

The first step transfers the style of our target domain (reprojected as rectilinear images) onto

each image from the source domain (Figure 4.4A); resulting images are shown in Figure 4.4B.

We use the work of Zhu et al . on CycleGAN [2] to learn a transformation back and forth between

the two unpaired domains. Subsequently, this transformation model is used to transfer the style

of our target domain onto all the images from our source domain. Despite the style transfer,

the actual geometry of the scene is preserved. In essence, the style transfer introduces a tone

mapping and imitates compression artifacts present in most panoramic images while preserving

the actual geometry. Without the use of style transfer, the weights are biased toward high-quality

imagery and perform poorly on low-quality images.

The second step reprojects the style-transferred images (Figure 4.4B) and annotations from

the source domain rectilinear projection to an equirectangular projection (Figure 4.4D). The

transformed images represent small subregions (FoV: 82.5◦ ×29.7◦ ) of a larger panorama. While

this set of transformed images covers only a small 82.5◦ horizontal FoV, we find that they are

sufficient to train a deep CNN that perform well on the full 360◦ FoV.
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4.2.3 3D Object Detection

For 3D detection, we leverage the same network by Cai et al . [43] which we used in Chapter 3,

including our 3D pose regression extension; however, without loss of generality, we leave out

our frame-to-frame temporal extensions as shown in Figure 4.5 (RPN) and Figure 4.6 (detection

network), because the network is evaluated on a dataset of still panoramic imagery rather than

video sequences in Section 4.3. Uniquely, our extended network can be used on either rectilinear

or equirectangular imagery without any changes to the network itself, instead only requiring a

change to the interpretation of the output for subsequent rectilinear or equirectangular imagery

use.

As per Section 3.2.2, we regress the object disparity dlin = r
f

which is the inverse of the distance

r multiplied by the focal length f . For equirectangular imagery, we use a similar definition

dequi = r
α

substituting the angular resolution for the focal length. Using a fully-connected

layer connected to the last common layer defined in [43], we learn coefficients a, b such that the

disparity d can be expressed as:

d = ahroi + b (4.12)
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where hroi is the height of the region proposal in pixels generated by the RPN (as defined by

Cai et al . [43]). To simplify the computation, we also learn the 2D projection of the centre of

the object onto the image (u, v) using another fully-connected layer. As a result, we can recover

the actual 3D position (x, y, z) using:

[x, y, z]T = r · u[P−1 · [ulin, vlin, 1]
T ] for rectilinear images (4.13)

[x, y, z]T = r · u[Γ−1(T−1

equi · [uequi, vequi, 1]
T )] for equirectangular images (4.14)

where u[v] = v
‖v‖ is the unit vector in the direction of v.

For network training of our model, we additionally use data augmentation including image crop-

ping and resizing as defined by Cai et al . [43]. Any of those operations on the image must be

accompanied by the corresponding transformation of the corresponding camera matrix P or Tequi

in order to facilitate effective training.

We learn the remaining size and orientation parameters using the methodology described in

Section 3.2.2. Therefore our entire network, comprising the architecture of [43] and our 3D

pose regression extension, is fine-tuned end-to-end using a multi-task loss over 6 sets of network

outputs: class and quadrant classification are learned via cross entropy loss while bounding-box

position, object centre, distance, orientation are dependent on a mean-square loss.

4.2.4 Monocular Depth Recovery

We rely on the approach of Godard et al . [38] which was originally trained and tested on the

rectilinear stereo imagery of the KITTI dataset [8]. We reuse the same architecture and retrain

it on our domain-adapted KITTI dataset constructed using the methodology of Section 4.2.2.
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Following the original work [38], the loss function is based on a left-right consistency check

between a pair of stereo images. In our new dataset, both stereo images have been warped to

an equirectangular projection as well as depth smoothness constraints. While Godard et al . uses

the stereo disparity dstereo = fB
zw

where f is the focal length, B the stereo baseline and w the

width of the image, we replace the focal length with the angular resolution: dequi =
αB
rw

.

Given a point pl = (ul, vl)
T , the corresponding point pr = (ur, vr)

T for a given disparity d can

be calculated as:

pr = Tequi · Γ
[

u
[

Γ−1(T−1

equi · pl)
]

+

[

dequiw

α
, 0, 0

]T
]

(4.15)

with definitions as per Section 4.2.1. The corresponding point pr in Equation 4.15 is differentiable

w.r.t. dequi and is used for the left/right consistency check instead of the original formulation

presented in [38]. This alternative formulation (Equation 4.2.1) explicitly takes into account that

the epipolar lines in a conventional rectilinear stereo setup are transformed to epipolar curves

within panoramic imagery, hence enabling the adaptation of monocular depth prediction [38] to

this case.

4.2.5 360◦ Network Adaptation

While the trained network can be used as is [80, 81] without any further modification, objects

overlapping the left and right extremities of the equirectangular image would be split into two

objects; one on the left, and one on the right (as depicted in Figure 4.7a, bottom left). Moreover,

information would not flow from one side of the image to the other side of the image — at least

in the early feature detection layers. As a result, the deep architecture would ‘see’ those objects

as if heavily occluded. Therefore, it is more difficult to detect objects overlapping the image

boundary leading to decreased overall detection accuracy and recall.
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(a) A 360◦ equirectangular image can be folded over itself
until the ends meet.

(b) A 3 × 3 convolution kernel, a column
of padding copied from the other side is
added at each extremity

Figure 4.7: Convolutions are computed seamlessly across horizontal image boundaries using our
proposed padding approach.

A cropped equirectangular panorama can be folded into a 360◦ ring shown in Figure 4.7a by

stitching the left and right edges together. A 2D convolution on this ring is equivalent to padding

the left and right side of the equirectangular image with respective pixels from the right and left

side as if the image was tiled (as illustrated on Figure 4.7b for 3×3 convolutions). This horizontal

ring-padding is hence used on all convolutional layers instead of the conventional zero-padding

to eliminate these otherwise undesirable boundary effects.

For 3D detection, our proposed approach based on Faster R-CNN [34] generates a sequence of

detection proposals and subsequently pools a subregion around each proposal to further regress

the final proposal location, class and 3D pose. To adapt this operation, instead of clamping

subregion coordinates by the equirectangular image extremities, we instead wrap horizontally

the coordinates of each pixel within the box:

uwrap ≡ u (mod w) (4.16)

where u is the horizontal coordinate of the pixel, uwrap the wrapped horizontal coordinate within
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the image and w the image width.

As a result of this approach, we are hence able to hide the image boundary, as a result, enabling

a true 360◦ processing of the equirectangular imagery.

4.3 Evaluation

We evaluate our approach both qualitatively on panoramic images from the crowd-sourced street-

level imagery of Mapillary [171] as well as quantitatively using synthetic data generated using

the CARLA [39] automotive environment simulator. For future comparison, our code, models

and evaluation data is publicly available2.

4.3.1 Qualitative Evaluation

As discussed in Section 2.2.1, we qualitatively evaluate our method using 30,000 panoramic

images (Miami, USA) from the crowd-sourced street-level imagery of Mapillary [171]. Figure 4.8

shows our depth recovery and 3D object detection results on a selection of images of representative

scenes from the data. Ring-padding naturally enforces continuity across the right/left boundary;

for instance, zero-padding can prevent detection of vehicles crossing the image boundary (Figure

4.9A) whereas ring-padding seamlessly detects such vehicle (Figure 4.9C). Similarly zero-padding

introduces depth discontinuities on the boundary (Figure 4.9B) whereas ring-padding enforces

depth continuity (Figure 4.9D).

The proposed approach is able to successfully estimate the 3D pose of vehicles and recover scene

depth as shown in Figure 4.8. However, the approach fails on vehicles which are too close to the

camera (as shown in Figure 4.8F and 4.8H), almost underneath the camera. Those vehicles are

challenging to detect, because there are no vehicle with a similar pose relative to the egovehicle in

2https://gdlg.github.io/panoramic

https://gdlg.github.io/panoramic
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the KITTI dataset. For vehicles within a couple of metres of the camera, the view of the vehicle

is heavily influenced by the position of the camera on the egovehicle. In particular, the camera

is placed higher on the roof of the vehicle in the Mapillary dataset than in the KITTI dataset.

Secondly, such vehicle are viewed sideway (as shown in Figures 4.8 F, G, and H); however, such

vehicles is usually seen on the sides of the egovehicle, driving in adjacent lanes rather than in

front of the egovehicle, thus there are no example of such vehicle in the KITTI dataset. This

issue is also present to some extent for depth estimation (as shown in Figure 4.8D) for parts

of the scene on the side of the egovehicle. Following the conventions of the KITTI dataset,

any vehicles less than 25 pixels in image height were ignored during training. Due to the lower

resolutions of the panoramic images, an average-size vehicle (about 2m height) with an apparent

height of 25 pixels in KITTI is approximately at a distance of 56.6m, whereas the same vehicle

in a panoramic image will stand at 26m. As a result, the range of the algorithm is reduced

even though this is not a fundamental limitation of the approach itself (e.g . in Figure 4.8A and

4.8H). Rather, we expect this maximum distance to be increased as the resolution of panoramic

imagery is increased.

4.3.2 Quantitative Evaluation Methodology

Due to the lack of available annotated automotive panoramic imagery dataset, we evaluate our

algorithm on synthetic data generated using the CARLA automotive environment simulator [39]

adapted for panoramic imagery rendering using the same format as our qualitative dataset.

We extended the CARLA simulator [39] to output four different views of 90◦ horizontal FoV at

right angle from each other, as well as the depth map for each of those views. Those views were

stitch together into a single equirectangular image. We generated a validation set and testing set

using two distinct scenes, such that there is no overlap between the validation and testing sets,

both in terms of imagery and content. We automatically generated a list of vehicles in the scene;
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C

D

Figure 4.8: Monocular depth recovery and 3D object detection with our approach.
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E

G

H

Figure 4.8: Monocular depth recovery and 3D object detection with our approach. (cont.)
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A B C D

Figure 4.9: Right/left boundary effect. A,B: Zero-padding; C,D: Ring-padding.

however, as automated occlusion measurement is difficult in some cases such as transparency,

wire meshes and fences; we choose to manually label the occlusion status of each object. Due

to the lack of diversity of the content, our dataset based on CARLA is not suitable for training

purposes, while it is suitable for cross-dataset testing. Qualitative results of our approach on

this dataset are shown in Figure 4.10. Following KITTI conventions, we filtered out vehicles less

than 25 pixels in height from our detection results.

Table 4.1 shows the mAP using an IoU of 0.5 across variations of our algorithm on 8,000 im-

ages. Overall, the projection transformation during training impairs the results by about 10%

points. Our best results come from the combined style-transferred training dataset consisting

of both Mapillary and CARLA (4% points increased compared to original) whilst training on

the CARLA-adapted dataset alone impairs the performance by 2% points. This is due to the

simplistic rendering and lack of variety of the synthetic dataset which impairs the style transfer.

As a result, the CARLA-adapted dataset significantly boosts the accuracy for very low recall;

however, it also reduces the recall ability of the network (Figure 4.12a). The model trained on

the CARLA-adapted dataset achieves a mAP of 0.82 on our evaluation set of adapted images

but only 0.35 on the actual CARLA dataset which shows that the style transfer is somewhat

limited. The Figure 4.12b shows that the 3D IoU performance is similar with and without style

transfer. This highlights that the style transfer primarily increases the quality of the detections

but does not improve the 3D localisation of vehicles.

The monocular depth estimation results are shown in Table 4.1 for 200 images (for distances <
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D

Figure 4.10: Monocular depth recovery and 3D object detection with our approach on our
synthetic dataset based on CARLA.
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50m). Similar to our detection result, using CARLA-adapted imagery impairs the performance.

Using projection transformation, we see an increase of about 2.5% points in accuracy. Overall,

those differences are smaller than those on object detection across the different transformations

(Table 4.1).

Despite the lack of ground truth annotations in the Mapillary dataset, we can see that qualit-

atively the results are of higher quality on the Mapillary dataset than on the CARLA dataset.

While the dataset adaptation described in Section 4.2.2 is suitable for real-world imagery such

as the Mapillary dataset [171], the style-transfer with CycleGAN [2] struggles to find corres-

pondences between the real-world KITTI dataset [8] and our synthetic virtual dataset as shown

in Figure 4.11. Consequently, the KITTI images transferred to the synthetic dataset domain

are still visually quite different from the target domain and have numerous defects as shown

in Figure 4.11. In particular, it mismatches the road with grass (Figure 4.11A & B), the road

with red rooftop shingles (Figure 4.11D), and introduces black artefacts (Figure 4.11A & C).

Using a more robust style transfer approach or increasing the visual diversity and quality of the

synthetic dataset would improve the domain adaptation quality and the overall results of our

method. A consequence of this issue is that the training dataset combining images in the style of

the Mapillary and CARLA dataset is able to outperform the CARLA training dataset on both

detection precision and recall metrics (Figure 4.12a).

From our results, we can clearly see that we have identified a new and challenging problem within

the automotive visual sensing space (Table 4.1) when compared to the rectilinear performance

of contemporary benchmarks [1, 8].

4.4 Summary

We have adapted our existing object detection approach described in Chapter 3, the depth estim-

ation method of Mousavian et al . [4] and the KITTI dataset [1, 8], which are architectures and
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D

Figure 4.11: Example of failure cases of the style-transfer of KITTI images to the synthetic
domain.
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Figure 4.12: Object detection results

training datasets proven on forward-facing rectilinear camera imagery, to perform on panoramic

images. The approach is based on domain adaptation [2] using geometrical and style transforms,

and novel updates to training loss to accommodate panoramic imagery. Our approach is able

to recover the monocular depth and the full 3D pose of vehicles. We have also introduce a new

padding technique to the convolutions in existing CNN to hide the discontinuity between the left

and the right boundary of an equirectangular image.

Consequently, we have identified panoramic imagery has a new set of challenging problems in

automotive visual sensing and provide the first performance benchmark for the use of these

techniques on 360◦ panoramic imagery, with a supporting evaluation dataset of synthetic imagery

generated using the CARLA automotive environment simulator [39], hence acting as a key driver

for future research on this topic.
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Chapter 5

Dense Object Detection and

Tracking in Panoramic Imagery

5.1 Introduction

In Chapter 3, we introduced a frame-to-frame approach to object tracking using a siamese neural

network which process simultaneously two frames together. In this chapter, we revisit object

tracking in two ways: we use an end-to-end tracking CNN using recurrent connections and

develop an object tracker for 360◦ panoramic video sequences in light of our work on 360◦ imagery

presented in Chapter 4.

Object tracking is an essential component of the perception subsystem of any self-driving vehicle.

Until the recent release of the nuScenes tracking benchmark [7, 102], automotive tracking data-

sets [1, 8] focused on 2D object tracking in forward-facing vehicle mounted cameras or LiDAR.

Our approach presented in Chapter 4 being one of the first to extend object detection to
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360◦ reasoning. In contrast, the nuScenes tracking benchmark [6] emphasises 360◦ surround

tracking and 3D perception.

On the nuScenes benchmark, approaches for 360◦ tracking have focused exclusively on LIDAR

data [201] with the exception of one camera-based method [202]. Following our approach presen-

ted in Chapter 4 on 360◦ monocular object estimation, we propose a new approach for 3D

tracking within 360◦ equirectangular video sequences.

Object tracking is a broad field encompassing both single-object tracking-by-template and multi-

object tracking-by-detection (MOTD) [101, 104, 105]. The later is predominantly used in self-

driving applications. MOTD is often split into two parts, both conceptually and in the design

of modern approaches [104] as discussed in Section 2.1.2. The first part, the detector, aims at

detecting relevant objects in a single frame, which are typically identified by their bounding

box [34]. For instance, such a detector might be configured and trained to detect vehicles and

pedestrians. The second part, the tracker aims to form tracklets by matching across frames those

detections, which belong to each individual objects [104].

The tracker matches each detection based on attributes such as detection position, size and

appearance [104]. Unfortunately, it would be very difficult — if not impossible — to create an

exhaustive list of all the desirable features for tracking purposes as explained in Section 2.1.2.

The richer the set of attributes used, the more informed the tracker will be. As such, the recent

literature has moved away from handcrafted features to instead use large feature maps as input

to the tracker [124, 125]. Joint detection and tracking would simplify this problem because the

information would no longer be explicitly passed between the two components.

End-to-end joint detection and tracking using neural networks is difficult for two main reasons.

Firstly, in contrast to single-image processing, video processing is expensive at training time

because the time complexity and memory required to process a batch of video sequences is linear
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with respect to both width, height and the number of video frames. Secondly, the information in

modern detection CNNs is spatially dense whereas the information in temporal trackers is sparse.

This is because the tracker works with a handful of detections per frame instead of whole images

or feature maps. Note that the video processing time is only a training issue; online inference

is performed frame-by-frame and the frame processing time remains constant regardless of the

number of frames. Leal-Taixé et al . [133], Feichtenhofer et al . [134] and our method proposed

in Chapter 3 are end-to-end detection and tracking CNNs; however, they only process pairs of

frames and lack temporal information — apart from the last frame. Voigtlaender [98] proposes

a CNN based on 3D convolutions to integrate temporal information over 8 frames. In contrast,

our proposed method uses recurrent connections with a hidden state.

We propose a novel approach with integrates tracking into a 3D detection CNN. As such, the

tracking is performed directly on dense information rather than sparsely. This enables the tracker

to reason holistically about the scene using attributes such as overall scene geometry, inter-object

relations and occlusions, which are difficult to convey within the traditional framework. This

tracker is able to detect, estimate the pose, and track objects in 360◦ panoramic video sequences.

We evaluate our method on the recently released nuScenes Tracking Benchmark [7].

5.1.1 Proposed Contributions

Our key contributions are as follow:

• a new approach for joint detection and tracking which propagates feature maps through

time at multiple scales. This approach is the first using 360◦ imagery and one of the first

approaches [102,202] based on camera only using the nuScenes Tracking Benchmark [6];

• a method to scale the training of such networks to video sequences of arbitrary length

based on mixed precision training [203, 204] and reducing the memory requirements of

back-propagation for video sequences;
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• a neural network trained and tested on 360◦ panoramic video sequences generated from the

nuScenes dataset [7] by stitching the imagery from the six cameras available in the dataset.

5.2 Method

Tracking an object is usually based on an appearance model of each object which is used to link

detections from frame to frame into tracklets [107]. This appearance model can be learned as

an embedding into an appearance space. In the prior literature [42], detections and associated

embeddings are generated for each frame individually, then subsequently the embedding are used

to link the frames together. Therefore, the embeddings learned by the network must somehow be

a function of the appearance of each object, consistent from one frame to another. In autonomous

driving scenarios, this is difficult because objects are often small (e.g . far away vehicles), poorly

visible (e.g . backlit and dark vehicles) or ambiguous (e.g . very similar car model). Therefore

some of the vehicles may have very similar appearances and thus very similar embeddings.

In our method, we do not explicitly rely on such embeddings. Instead we create a CNN which

propagates a hidden state through time. It is the responsibility of the CNN to propagate whatever

information is relevant for tracking through this hidden state. This information might be relevant

to tracking but might also include relevant information to improve the precision of subsequent

detections.

Our approach is based on the Single Stage Detector (SSD) defined by Liu et al . [40] and the

Rolling Recurrent Convolution (RRC) defined by Ren et al . [44]. For each frame, our network pro-

duces a fixed number of detections at different scales at predefined prior locations [40]. For each

of those detections, the network generates three group of outputs: classification (background,

bicycle, bus, car, motorcycle, pedestrian, trailer, and truck), 2D & 3D location (bounding box)

and the relative 3D position of the detection between the last and current frame (velocity). 3D
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frame 1 VGG down 1 down 2 down 3

up 1 up 2 up 3 multibox output 1

frame 2 VGG down 1 down 2 down 3

up 1 up 2 up 3 multibox output 2

frame t VGG down 1 down 2 down 3

up 1 up 2 up 3 multibox output t

I1 x1,1 x2,1

x3,1 , y3,1

I2 x1,2 x2,2

x3,2 , y3,2

It x1,t x2,t

x3,t , y3,t

y1,1 y2,1

s1,1 s2,1 s3,1

y1,2 y2,2

s1,2 s2,2 s3,2

y1,t y2,t

s1,t s2,t s3,t

Figure 5.1: Overall architecture for a network with 3 scales.

tracking presents the advantage over 2D tracking that objects can always be separated by their

position in 3D even when highly overlapping in the 2D image space.

We first introduce the overall network architecture, including the multi-scale and recurrent as-

pects of our approach (Section 5.2.1). Subsequently, we describe the details of the upscaling

and downscaling blocks constituting the network (Section 5.2.2); followed by the description of

the network outputs and loss function (Section 5.2.3). Finally, we conclude by presenting the

inference process (Section 5.2.4) and training process of our network (Section 5.2.5).

5.2.1 Overall Network Architecture

As shown in Figure 5.1, a given input image It captured at time t is fed through a VGG16 trunk

up to the last layer of the fourth convolution block conv4_3 [3], the resulting feature map tensor
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denoted VGG(It) is used as input to the first scale of our network. Our approach following the

principles of Ren et al . [44] and Liu et al . [40] is multiscale and aggregates features from different

scales into a single stage network, in contrast to two-stages networks such as Faster R-CNN [34].

This is done using an hourglass subnetwork, where at each scale, the feature maps are either

downscaled or upscaled by a factor of 2. In downscaling blocks, if the spatial dimensions of the

input tensors are not a multiple of two, we automatically pad the input tensors to round up the

dimensions to a multiple of 2.

The input feature map VGG(It) is fed through a cascade of downscaling blocks creating feature

maps (xi,t) using both the feature map from the previous scale xi−1,t as well as temporal hidden

state si,t−1 from the previous frame at t−1. Subsequently the information is propagated upward

through a cascade of upscaling blocks generating feature maps (yi,t). Those upscaling blocks are

also connected to their counterpart downscaling block at a given scale using skip connections.

Those skip connections are implemented in the same way as the temporal connections across

frames. The output of the downscaling network is a tuple of tensors (si,t), which are used as

input to the next frame at t+ 1 as well as input to the multibox heads which produce the final

neural network outputs. For the first frame of the video sequence, the hidden state (si,0) is

zero-initialised.

The neural network outputs are generated using a multibox head as defined by Liu et al . in

their SSD network [40] for each scale as shown in Figure 5.1. Each multibox head is fed from

the corresponding hidden state feature map si,t and produce the network outputs as defined in

Section 5.2.3: classification, pose estimation and tracking outputs. For each output, the multibox

head is constituted of a 3× 3 convolutional layer producing the required number of channels for

the output kind.

The number of channels and output boxes at each scale is shown in Table 5.1. The downsampling

ratio shown in the table indicates the size of the feature map at this scale compared to the original
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Scale i № channels № boxes Downsampling ratio
1 4096 12 1/8

2 1024 24 1/16

3 256 24 1/32

4 256 24 1/64

5 256 6 1/128

Table 5.1: The number of channels for xi,t and si,t and the number of boxes for each scale i.

image size. The first scale as a ratio of 1/8 which corresponds to the ratio of the conv4_3 layer

in the VGG16 trunk [3].

5.2.2 Downscaling and Upscaling Blocks

We have shown in Figure 5.1 that the network is a succession of hourglass subnetworks constituted

of downscaling and upscaling blocks. The details of a pair of upscaling and downscaling blocks

at scale i and time t is shown in Figure 5.2. The first step of the upscaling block is to normalise

its inputs xi−1,t and si,t−1 using Group Normalisation (GN) [205] then the inputs are added

together to merge the information of the previous and current frame. This feature map is fed

through a 3 × 3 convolution layer called the merge block. Subsequently, the network is forked

in two parts: the downscale block is a 2× 2 convolution layer of stride 2 used to downscale the

feature map by a factor of two to produce the next scale xi,t; the adapt block is a 3×3 convolution

to produce the input of the upscaling block. The upscaling block is essentially constituted of the

same operations as the downscaling in reverse order. The upscale blocks use a 2× 2 transposed

convolution of stride 2 to upscale yi,t. Subsequently, the two inputs are normalised using GN

and fed through a 3× 3 convolution layer.

To reduce the footprint of the network, we use separable filters in all convolutions and transposed

convolutions within the downscaling and upscaling blocks. This separable filter is constituted of

a 1× 1 convolution followed by a k× k convolution or transposed convolution on each individual

channel. Both convolutions are followed by a Rectified Linear Unit (ReLU) activation function.
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Each downscaling block is constituted of a merging layer (as shown in Figure 5.2) which merges

together the input information xi−1,t with the temporal information si,t−1. This is followed by

a downsampling layer which halves the size of the feature maps to produce the next scale xi,t.

Another adaptation block produces the tensor for the skip connection to the upsampling block.

Therefore, the upsampling block is essentially an inverted downscaling block.

For feature map normalisation, we use GN [205] with 32 groups instead of the more common

Batch Normalisation (BN) [206] because BN operates on a batch of inputs. In particular, BN does

not work on batches degenerated to a single element. As described in Section 5.2.5, although,

our training procedure accumulates gradients over a batch size of 8 video sequences, we process

each sequence separately to decrease the memory footprint. Therefore, BN is not suitable to

our training procedure. In contrast, GN does not normalise across the batch and is able to

accommodate our training procedure without any changes. We use GN to ensure that the inputs

to each upscaling and downscaling blocks have similar magnitudes. If inputs of widely different

magnitudes are added together, the training will not converge; hence, GN solves that problem.

We pad all the convolutions in the neural network using the ring padding method described in

Section 4.2.5 to process equirectangular panoramas without any left/right border effect. For

downscaling convolutions and upscaling transposed convolutions, since kernel size is equal to the

convolution stride (of 2), padding is not necessary.

5.2.3 Network Outputs and Training Loss Function

Joint tracking and detection is a multi-task problem composed of three tasks: object classific-

ation, object location regression, and tracking. In our approach, object classification is solved

using the focal loss defined by Lin et al . [76] and 2D location regression is solved using the

loss function defined by Liu et al . [40]. Pose estimation is solved using an approach similar to

Chapter 3. Tracklets are formed by learning the relative 3D position in the previous frame and
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Figure 5.2: A downscaling module and upscaling module receiving inputs from the previous scale
xi−1,t and the next scale yi−1,t as well as temporal information from the previous frame si,t−1.
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combining the detections frame-to-frame. As in Chapters 3 and 4, we use the methodology of

Kendall et al . [155] to dynamically adjust the multi-task weights during training.

Classification and 2D Localisation

We use the weighted cross-entropy loss called focal loss lclassification defined by Lin et al . [76] to

classify the object category. The likelihood of each category is defined using a softmax function

and the loss function for a given object is defined as:

Lclassification = −(1− st)
γ log(st) (5.1)

where γ = 2 and t is the index of the ground truth category for the object and st is the t-th

output of the softmax function.

Given the ground truth bounding box b̂ ∈ R
4 and the box predicted by the neural network

bo ∈ R
4, we use the smooth L1 loss to regress the 2D bounding box relative to the prior anchors

bb as defined by Liu et al . [40]:

Lloc = SmoothL1Loss

[

bo,
b̂− bb

µ

]

(5.2)

where µ is the relative position variance as defined by Liu et al . [40].

The loss functions are summed across all boxes, however unlike Liu et al . [40], we do not normalise

the loss by the number of boxes. Such normalisation penalises the gradients on image with many

detections. The aim of such normalisation is to keep the magnitude of the gradients similar across

different images and consequently decreases the importance of detections in images containing

many objects. Those images are often the hardest and most interesting examples. In contrast,

examples with a single vehicle are not so interesting from a tracking perspective. Since, the focal
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loss [76] already takes hard examples into account, we do not use Online Hard Example Mining

(OHEM) [40,67].

3D Pose Estimation

We extend the neural network to 3D object pose estimation using a similar approach to Chapter 3.

For each detection, we regress the centre position, orientation and size of the object 3D bounding

box. Given the ground truth centre position p̂ = (û, v̂) ∈ R
2, orientation q̂ ∈ H and size

ŝ = (ĥ, l̂, ŵ) ∈ R
3. We aim to learn to detect their counterpart centre p = (u, v) ∈ R

2, orientation

q ∈ H and size s = (h, l, w) ∈ R
3. For this, we add another set of outputs to the network po ∈ R

2,

do ∈ R, so ∈ R
3, qo ∈ H.

The centre of each bounding box is projected to image space using the camera matrix P , then

the 2D centre coordinates in pixels and the distance in meters are regressed separately. We

define the image space as using relative coordinates in the space [0, 1]2 rather than the pixel

space [0, w] × [0, h] and the camera matrix is scaled accordingly. This matches the definition

employed for the 2D bounding box location regression [40]. The 2D centre of the 3D bounding

box is regressed using the same approach as the 2D bounding box centre (as per [40]) using a

smooth L1 loss [65]:

Lcentre = SmoothL1Loss

[

po,
p̂− pb

µ

]

(5.3)

where µ is the relative position variance as defined by Liu et al . [40] and bb is the position of

the anchor.

We regress the distance using a smooth L1 loss [65]. The distance is multiplied by a constant

defined as the ratio of the width of the prior anchor box wprior and the focal length f to ensure
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that the average magnitude of the learned representation remains the same at different scales

and is independent of the image resolution. Being independent of the image resolution allows

the network to be trained and used across different datasets and different cameras with different

focal lengths. The distance loss function is therefore defined as:

Ldistance = SmoothL1Loss

[

d, log

(

d̂ · wprior

f

)]

(5.4)

Unlike Chapter 3, we propose two approaches to regress the orientation. The first approach

classifies the angle into two bins: [−π
2
, π
2
] and [−π,−π

2
] ∪ [π

2
, π] and we estimate the angle using

an L2 loss function within each bin. We train the estimator of each of the two bins for angles

which fall within the bin or within π
4

radians of the bin. Training the estimator for angles falling

slightly outside the boundary of a bin increases the accuracy for angles close to the boundary.

The second approach is based on quaternions. While the KITTI dataset only records the heading

of the vehicles, the nuScenes dataset records the full 3D orientation of each object in the scene.

Unlike an angle in radians, the space of rotation is continuous in quaternion space. Quaternions

introduce an undesirable ambiguity for regression since the quaternion q and its opposite −q

represent the same orientation. In automotive, the axis of rotation is somewhat limited to

the upward y-axis, hence we resolve this ambiguity by choosing quaternions such that qy > 0.

Therefore, we are able to directly regress orientation using a cosine similarity using the following

loss function Lorientation:

S(q, q̂) =
q · q̂

max{‖q‖ ‖q̂‖ , ǫ} where · is a dot product (5.5)

Lorientation = arctan (ǫ1 · |S(qo, q̂)|+ ǫ2) (5.6)
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where S is the cosine similarity, qo is the network output and q̂ is the ground truth quaternion,

ǫ is a small constant (ǫ = 10−8). The cosine similarity is essentially the cosine of the angle

between the two quaternions (in quaternion space, not 3D space) however the gradient converges

to 0 as the angle tends to 0 or ±π. Those small gradients reduce the effectiveness of the loss

function. Therefore, we use the arctangent function to linearise the loss function with respect to

the angle and improve convergence. The two small constants ǫ1 and ǫ2 prevents the gradient of

the arctangent from reaching ±∞ for colinear quaternions.

During inference, we can recover the detection orientation q by normalising the output qua-

ternion:

q =
qo

‖qo‖
(5.7)

This loss function does not constraint the magnitude of the quaternion q which is not as important

as its orientation. To prevent the quaternion magnitude from diverging to +∞ during training,

we add a small regularisation term using the L2 norm ‖qo‖.

Finally, the size is directly regressed in meters using a smooth L1 loss:

Lsize = SmoothL1Loss(s, ŝ) (5.8)

By combining those four outputs (centre, distance, orientation and size), we are able to estimate

the 3D pose and size of each object in the scene.
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3D Tracking

Object tracking is performed frame-to-frame by estimating the motion of each object between

each frame. Given the spherical coordinates of a ground truth object ps
t = (λ̂t, φ̂t, d̂t) at a time

t. We define the motion v̂t between the two frames as:

v̂t = (∆λ̂t,∆φ̂t,∆d̂t) (5.9)

where (∆λ̂t, ∆φ̂t, ∆d̂t) is the spherical coordinates difference between time t− 1 and t.

For each location, the neural network estimate the motion v̂t using a smooth L1 loss:

Ltracking = SmoothL1Loss (∆vt,o,∆v̂t) (5.10)

This motion vector v̂t,o can be used to link the detections at inference time together into tracklets.

5.2.4 Inference

Our network architecture can be used for online video stream processing as the inputs at a given

time does not depend on subsequent frames. We feed each image through the hourglass network

generating the hidden state st for the next iteration as well as the detections for the current

frame and repeat the process with the next iteration.

For each frame, the detections are grouped into objects using Non Maximum Suppression (NMS)

[34, 40] on the 2D bounding box in the spherical coordinate space (latitude and longitude). For

each detection in a frame, by combining the object position in spherical coordinates ps
t with the

motion vector vt, we can compute its estimated position in the previous frame p̄s
t−1 = ps

t − vt.

The estimated position in the previous frame can be used to search for the nearest neighbour
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Figure 5.3: Frame-to-frame detection matching precision/recall upper bound achieved while
varying the matching scaling factor for each object category. The circle on each curve indicates
the scaling factor selected during inference.

object in the previous frame. We define a scaling factor ρ to take into account the scale difference

between the longitude and latitude expressed in radians and the distance expressed in meters.

Besides, depth estimation is a much more difficult problem than latitude and longitude estimation

therefore it is desirable to allow for a greater margin of error for the distance. We define the

distance between two points p1 and p2 as:

d(p1,p2) =

∥

∥

∥

∥

p1 − p2

ρ

∥

∥

∥

∥

(5.11)

Using greedy matching, we find the assignment σ which minimises the distance between detec-

tions at time t− 1 and the estimation at time t using the metric d. We reject any association if

the metric d between the object position and its estimation is greater than 1.

To determine the constant scaling factor ρ, we compute the distance metric d for positive and
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negative matches on the validation set and use grid search on the scaling factor to find the upper

bound of the precision/recall curve as shown in Figure 5.3. We pick the scaling factor which

maximise the sum of the precision and recall for each category (shown by a cross on Figure 5.3).

While training the neural network over multiple frames is a slow process, inference works a frame

at a time, therefore our approach runs in real-time during inference at a frame rate of 10Hz on

a GeForce 2080 Ti on large 360◦ panoramic imagery from the nuScenes dataset [6].

5.2.5 Training at Scale

The network is trained using the AdamW optimiser [207] on a minibatch of 8 video sequences

using a learning rate of 1× 10−4. The network is pretrained first on pair of images from the

KITTI detection and tracking datasets [1] for about 30,000 iterations and subsequently on pair

of 360◦ equirectangular images from the nuScenes dataset for 30,000 iterations and finally fine-

tuned on 360◦ equirectangular video sequences of 10 frames from the nuScenes dataset [7] for

40,000 iterations. We use pre-trained VGG weights [3] from ImageNet [84] and initialised the

remaining weights of the network using a Xavier initialisation with a uniform distribution [208]

while the multi-task loss weights [155] are initialised to 1.

Unfortunately, it is not possible to hold more than two or three frames of a single sequence in

memory on modern GPU hardware. For those experiments, we use a GeForce 2080 Ti with

11Gb of memory. Therefore, we solve two problems: how to process a single sequence if it does

not fit into memory and how to process a whole minibatch of sequences. Instead of processing

whole minibatches, we process one video clip at a time and accumulate the gradients from each

video clip. Subsequently, we update the network weights using the AdamW optimiser. This is

mathematically equivalent to processing whole batches but requires 8 times less memory for the

intermediary results.
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We use mixed-precision training using the O1 optimiser provided by Nvidia Apex [203, 204] to

reduce the memory requirements by half. In order to prevent gradient overflow, we use loss

scaling [204] and normalise the input image intensity range to the range [−1, 1]. The input

image normalisation is necessary in order to have CNN weights and biases of similar magnitudes,

thus reducing 16-bits gradient overflows.

Despite the reduced memory footprint of mixed-precision training, it does not scale to arbitrary

video sequence length. Therefore, we split our network into subcomponents using the methodo-

logy of Wang et al . [174] described in Section 2.2.2. For each video clip, we attempt to process

the frames individually. To do so, we process the video clip fully in a first forward pass and

store the temporal information (st,i) while throwing away all other information. This allows us

to recompute the outputs of a given frame without having to recompute all the previous frames.

In a second pass, we re-compute each frame in a reverse order, backpropagating and accumu-

lating gradients along the way. The memory required to store the tensors (st,i) is negligible

compared to the amount of memory required to backpropagate through a single frame. Besides

for very large memory clips (> 100 frames), we can stream the tensors to and from the main

memory or a hard disk with little performance overhead as it is possible to hide the latency

using memory prefetching. In that respect, the algorithm has a near constant GPU memory

complexity regardless of the number of processed frames.

5.3 Evaluation

We evaluate our approach on the recently released nuScenes tracking benchmark [7]. The nuS-

cenes dataset is much larger than the KITTI dataset [1, 8] used in Chapter 3 and 4 and include

a greater number of modalities (6 cameras, 5 radars, 1 LiDAR) however our approach relies only

on the camera imagery.



Chapter 5: Dense Object Detection and Tracking in Panoramic Imagery 102

The multi-view setup of the nuScenes dataset is comprised of six cameras: front, front left, front

right, left, right and back. The cameras FoV have little overlap as shown in Figure 5.4. We

stitch the imagery from the six cameras into a single equirectangular image of size 2048× 175 by

projecting each image using its corresponding calibration. The equirectangular image is centered

around the front camera. In regions where two images overlap each other, we blend the two

images together.

For each frame of the front camera, we generate a corresponding equirectangular image. Since the

cameras are not synchronised between each other, we use the frames from each cameras which

have the closest timestamp to the front camera frame. Only a small subset of the nuScenes

dataset frames are labelled (on average, one every 5th frame at 5Hz) therefore we interpolate

those ground truth labels between the keyframes. The ground truth labels are interpolated in

world space then projected to the front camera space. Subsequently, we train the network using

the procedure outlined in Section 5.2.5.

5.3.1 Qualitative Analysis

Qualitative examples of the results of our approach on the nuScenes Tracking Benchmark are

shown in Figures 5.5–5.10. Overall, the network performs substantially better than our method

proposed in Chapter 4 because it has been trained directly on 360◦ imagery. However, to some

extent, the approach struggles to generalise well on objects close to the camera (< 2m) as shown

in the first five frames of Figure 5.6; which can be attributed to the relatively small number of

ground truth objects close to the camera. Our approach works well on vehicles but struggles on

pedestrians as the dataset features many large groups of pedestrians or individuals close to each

other as shown in Figures 5.6 and 5.9. This increases detection inaccuracy (false positives and

false negatives) and increases tracking target switches. Objects further from the egovehicle are

also difficult to detect because they appear closely grouped, highly overlapping each other, while

the distance estimation error increases.
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Figure 5.4: Field of view of the cameras of the nuScenes setup (reproduced from nuScenes [6]).

5.3.2 3D Pose Estimation

The nuScenes tracking benchmark [7] relies on 3D pose to match detections and ground truths;

thus, the 3D pose quality is directly influencing the tracking MOTA and MOTP. The benchmark

imposes a hard threshold of 2m and any ground truth matching beyond the threshold is ignored.

To evaluate pose estimation, we choose to match detections and ground truths based on 2D IoU

> 0.5 (as in Chapter 3) on the nuScenes validation set.

The detection mAP and AOS are shown in Table 5.2 for different ground truth matching criteria:

2D IoU > 0.5, 3D IoU > 0.5 and 3D distance thresholds (as per nuScenes [7]). Overall, detection

is much more challenging in 3D than 2D. The IoU-based metrics of the KITTI benchmark heavily

penalises detections of small objects such as bicycles and pedestrians, compared to distance-based

metrics; because the IoU is dependent on the size of the object.
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mAP† Average Orientation Similarity (AOS)†

Category 2D IoU 3D IoU 3D dist 2D IoU 3D IoU 3D dist
bicycle 0.203 0.006 0.130 0.452 0.125 0.237

bus 0.490 0.082 0.217 0.766 0.417 0.562
car 0.679 0.194 0.395 0.790 0.565 0.656

motorcycle 0.247 0.001 0.165 0.417 0.020 0.310
pedestrian 0.423 0.003 0.339 0.464 0.025 0.379

trailer 0.253 0.018 0.090 0.455 0.018 0.226
truck 0.349 0.068 0.148 0.623 0.393 0.457

† Higher, better

Table 5.2: Detection results on the nuScenes [7] validation set: mAP and AOS for different
evaluation methods
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Figure 5.11: Statistics for all categories of the nuScenes [7] validation set.
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Figures 5.11a–5.11d show the pose estimation performance for different distance brackets (Figs.

5.11a and 5.11b) and different recall thresholds (Figs. 5.11c and 5.11d). Performance decreases

as distance or recall increases. This implies that the higher scoring detections have better quality

3D pose and bounding boxes than low scoring ones. Since the nuScenes tracking benchmark uses

a ground truth matching threshold of 2m, any of the detections with a distance error greater

than 2m will be ignored.

5.3.3 Tracking Benchmark

Tracking is evaluated using the metrics provided by the nuScenes Tracking Benchmark [7], which

were originally introduced by Weng et al . [102]. The results of our method compared to the public

leaderboard are shown in Table 5.3 while the per-object category results are shown in Table

5.4. The AMOTA and AMOTP of our method is significantly behind the top methods on the

leaderboard (StanfordIPRL-TRI [201], Megvii-AB3DMOT [102, 209]); however those methods

are LiDAR-based. In contrast, our method performance are similar to CenterTrack_Vision [202]

which is the only other camera-based method. Overall, as shown in Table 5.3, our approach is

much more successful at detecting and tracking cars than other types of vehicles and pedestrians.

This can also be attributed to the lack of training data. The number of ground truth examples

for each category is as follows: 58317 car, 25423 pedestrians, 9650 truck, 2425 trailer, 2112 bus,

1977 motorcycle, 1993 bicycle. Apart from the pedestrian category, all the other categories have

significantly less examples than the car category.

5.4 Summary

In this chapter, we have demonstrated a novel approach to multi-object tracking-by-detection

(MOTD) extending our work on 3D pose estimation and tracking presented in Chapter 3 and

panoramic imagery in Chapter 4 using a single end-to-end CNN which operates directly on
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360◦ panoramic video sequences. Our approach extends single-stage detectors such as SSD [40]

and RRC [44] to video processing using recurrent connections. We have also shown how to

scale the training process of such recurrent CNN to sequences of arbitrary length within the

memory requirements of current GPU technology using mixed-precision training [203,204] and by

recomputing the required state during gradient backpropagation [174]. Our method is one of the

first [102,202] to be able to estimate and track the 3D pose of a broad range of object categories

on the nuScenes tracking benchmark using camera technology alone. It is the only approach

which uses 360◦ panoramic imagery rather than processing each camera imagery individually

and achieves state-of-the-art results compared to existing camera-only approaches [102, 202] on

the nuScenes Tracking Benchmark.
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Chapter 6

Conclusion

In the introduction of this thesis, we identified two key challenges of autonomous driving. The

first challenge is to reduce the number of sensors required for self-driving, particularly active

sensors, which are usually expensive, lower resolution than cameras, and break in challenging

environmental conditions such as rain, heavy reflections, as well as for materials such as black

paint. We have proposed research to provide the same functionalities using cameras which are

more readily accessible. Our work on this aspect focuses on the extension of monocular imagery

to 3D object pose estimation, dense depth estimation and 360◦ panoramic imagery (Chapter 3

and 4). The second challenge is the processing of video sequences in order to leverage temporal

continuity. To this extent, we looked at online end-to-end tracking in 360◦ panoramic video

sequences (Chapter 5).

In Chapter 3, we introduced a novel approach based on Faster R-CNN [34] to detect objects

and estimate the 3D pose, size and velocity of those objects in a scene using a single monocular
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camera without specifying any geometrical and semantic constraints. We achieve state-of-the-

art 3D pose estimation results compared to the contemporary prior work [4, 5]. In addition,

we propose an architecture built on a siamese neural network [37] which is able to compute

object correspondences inside a pair of past and present images. We have shown that those

correspondences can be used to track objects frame-to-frame using a simple matching algorithm

or can be used to enrich the input of an existing tracker. We have shown that it is more accurate

to regress the speed directly using such a network rather than by computing 3D positions in each

frame and calculating the speed as the difference between past and present positions.

In Chapter 4, we extended our work on 3D pose estimation (Chapter 3) as well as prior work

on depth estimation [38] to 360◦ panoramic imagery. Our work is the first of its kind bringing

360◦ panoramic imagery as an image-based solution to 360◦ surround perception in automotive.

We compensate the lack of availability of contemporary annotated 360◦ automotive datasets

using style transfer [2] to reuse existing automotive datasets [1, 8], crossing the bridge between

two different domains and reducing dataset bias. We also propose ring-padding, an approach to

seamlessly compute convolutions and pooling across the left/right edges of an equirectangular

image. Our work is quantitatively evaluated on a new publicly-available synthetic testing dataset

generated using the Carla driving simulator [39] as well as qualitatively on 360◦ imagery from

the Mapillary platform [171].

In Chapter 5, we further extend our work on object detection (Chapter 3) and 360◦ panoramic

imagery (Chapter 4) to track objects over time using a single end-to-end multi-scale recurrent

tracking network. We evaluate our method on the recently released nuScenes Tracking Bench-

mark [6, 7] and our method is one of the first [102, 202] to rely solely on camera imagery which

we stitch into a single large equirectangular video sequence, subsequently fed to the tracking

neural network. Our method is the first to exploit 360◦ equirectangular imagery to adapt CNN

to 360◦ sensing without the complexity of multi-view sensor fusion.
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The approach presented in this thesis goes toward bringing level 4 and level 5 autonomy as

described in Chapter 1 as well as providing a more affordable solution to autonomous driving.

6.1 Contributions

In this thesis, we have contributed the following contributions to the field of visual perception

for autonomous vehicles:

• a novel approach to 3D pose estimation in monocular imagery based on two-stage detector

architectures which achieves state-of-the-art results compared to the contemporary prior

work [4, 5] (Chapters 3 and 4);

• an approach to velocity estimation in a pair of monocular images, as well as, an example

of frame-to-frame tracking based on a siamese network [37] (Chapter 3);

• a new publicly-available1 testing dataset of synthetic 360◦ panoramic imagery generated

using the CARLA automotive environment simulator [39] which serves as a basis for future

work on domain adaptation to 360◦ panoramic imagery (Chapter 4);

• a method to adapt existing datasets and neural networks using style transfer [2] to a new

modality such as 360◦ panoramic imagery without any ground truth labels in the target

domain. We apply this method to adapt imagery from the KITTI dataset [1,8] to real-world

imagery gathered from Mapillary [171] and to our synthetic 360◦ dataset (Chapter 4);

• an extension of existing 2D convolutions, ROI pooling and ground truth prior box matching

to seamlessly compute across the borders of an equirectangular image (Chapters 4 and 5);

• an approach to multi-view object tracking based on a dense end-to-end neural network

for tracking objects in 360◦ equirectangular video sequences. This approach is the first

1https://gdlg.github.io/panoramic

https://gdlg.github.io/panoramic
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approach using 360◦ imagery and one of the first approach [102,202] based solely on cameras

on the nuScenes tracking benchmark [7] (Chapter 5).

6.2 Potential for Impact

This work contributes to raise the awareness that expensive sensor setups on autonomous vehicle

could be replaced by more cost-effective solutions based on cameras. We have shown that mon-

ocular 360◦ camera rigs can be used to fulfill the same functions as a LiDAR. Unlike LiDAR,

cameras are passive components with no moving parts, more affordable and more readily avail-

able. Given current technology, cameras are not quite as accurate (distance-wise) as active

sensors, however we propose that the current LiDAR precision is not required to achieve level 5

autonomy. Indeed, autonomous vehicles today only represent a small fraction of active drivers,

while millions of humans drive everyday using a much simpler sensing capability. Human drivers

compensate for the lack of active sensing with a more thorough visual perception and a deeper

understanding of the interactions between entities and the environment than current technology.

This is the level of visual perception that we aim for.

We also touch on the problem of dataset bias and propose a solution based on style transfer. As

new camera technology becomes more prevalent in autonomous driving such as High Dynamic

Range (HDR), global shutter, infrared night vision, and new multi-view layouts, the ability to

reuse existing datasets alongside new technologies will become more critical as gathering and

annotating large datasets is time-consuming and expensive. Our approach in Chapter 4 shows a

path to adapt existing datasets to new types of camera and helps reduce the size of the dataset

required for autonomous vehicle development.
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6.3 Limitations

Chapter 4 clearly illustrates an example of dataset bias which prevents current machine learning

approaches from generalising well to a new dataset. We have used domain adaptation to improve

the generalisation to panoramic datasets, however domain adaptation particularly struggled with

the lack of diversity in our synthetic dataset. Style transfer between the KITTI dataset and

synthetic dataset introduces many artefacts. Style transfer is limited to style adaptation and

as such, it cannot compensate for the lack content diversity. While we applied style transfer

to synthetic images for a quantitative evaluation, the converse proposition is becoming more

prevalent as simulated environments are used for training autonomous vehicles [147,212,213].

By design, our approach in Chapter 5 does not decouple the object detection and tracking tasks.

As tracking information is represented using a spatially dense network rather than sparse in-

teractions between objects, the network cannot efficiently learn complex tracklet behaviour and

interactions. Learning such behaviours would require vast amount of training examples and the

meaningful patterns themselves would be lost in the noise during training with Stochastic Gradi-

ent Descent (SGD). Therefore, due the complexity of the network compared to the task, the

tracking task is prone to overfitting on small datasets such as KITTI. This overfitting prevents

the network from learning more complex tracking behaviours such as occlusions between mul-

tiple vehicles or with static objects (e.g . buildings). A clear separation between the detection and

tracking steps would introduce resilience inside the tracker against detection failures. In contrast,

our approach is not resilient to detection failures as it is based on the assumption that the de-

tection and tracking mutually benefit from being solved jointly. Since our approach is inherently

frame-to-frame, it does not work with object Re-Identification (ReID). In 360◦ equirectangular

imagery, objects cannot by definition leave the field of view and therefore can only leave the

scene through occlusion behind a building or disappearance in the distance. In either cases,

unlike multi-view tracking applications such as video surveillance [214], object ReID is not a
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requirement of autonomous driving.

Object detection and tracking based on equirectangular imagery requires the stitching of mutiple

views into a single image (Chapter 5) however if the cameras are not synchronised, this might

induce a noticeable shift of the position of objects which has two consequences: uncertainty

about the actual position of the object during inference, and unprecise ground truth position,

especially at the seams between images, during training. In the nuScenes dataset [7], the cameras

are positioned quite far apart from each other on the vehicle (up to 2m away) which can introduce

stitching artefacts on objects close to the camera. The assumption is that this uncertainty is

within acceptable bounds for self-driving vehicles.

6.4 Further Work

We have shown that 360◦ monocular panoramic imagery is a promising area of research to re-

place expensive sensors with more cost-effective and readily-available cameras, however we have

highlighted several limitations of our approach in Section 6.3. We comment on subsequent con-

temporary work following on from this work and present further areas of research stemming from

our approach to improve the reliability of monocular panoramic sensing in three key domains:

3D pose estimation, panoramic imagery, and multi-object tracking.

6.4.1 3D Pose Estimation

Subsequent work on 3D object detection in monocular imagery includes Zhu et al . [215] on

learning object distances, particularly for distances greater than 40 meters. In contrast to our

work in Chapter 3, they learn directly the distance rather than the inverse of the distance

and optimise the distance using a re-projection loss. Bao et al . [216] combine colour images

with a dense monocular depth map as neural network input. Recently, Ding et al . [217] adapt

pointcloud-based methods typically used with LiDAR to monocular 3D pose estimation.
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Depth estimation in monocular imagery is a challenging task due to the lack of strong geometric

cues such as the epipolar geometry used in stereo vision. A new avenue would be to explore

temporal continuity to improve the consistency of the 3D trajectory of objects across time,

similarly to the prior work on 2D trajectory smoothing [86, 94] presented in Section 2.1.1. Our

CNN introduced in Chapter 5 has temporal connections in the form of skip connections, which are

not designed to allow spatial manipulations of the data to follow the objects motion, unlike spatial

transformer networks [218] or optical flow [96], instead the spatial transformations are realised

through convolutions which are not as efficient at preserving regressed values such as position

and distances through time due to vanishing gradients and non-linearities. An architecture using

more efficient spatial manipulations [96, 218] would improve the smoothness of 3D trajectories

under a trajectory consistency loss [86].

6.4.2 Panoramic Imagery

Over the last year, we have seen the release of many new automotive datasets which includes

multi-view setups [7,52–54]. As such, it is now possible to build a training dataset of real-world

360◦ panoramic images. They illustrate that our insight in Chapter 4 is correct and panoramic

imagery is indeed critical for driving. Our publication [219] of parts of Chapters 3 and 4 has

led to follow-up works [220–224] and a revised version of our synthetic dataset has been used by

Plaut et al . [221]. This version2 has been extended to include 3D object detection metrics.

While the domain adaptation approach, which we developed based on style transfer is not needed

anymore with the recent release of 360◦ surround datasets [7, 52,54], it might still be applied to

other modalities which have not yet been explored such as HDR imagery or infrared imagery. The

addition of both near- and far-infrared channels to automotive cameras would be particularly

useful during night time as they offer a solution to reduce the visible light pollution. While

2https://gdlg.github.io/panoramic

https://gdlg.github.io/panoramic
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it is always possible to record new datasets to accommodate additional modalities, acquiring

a new dataset is a very complex, time-consuming and expensive work which could be avoided

or considerably reduced with approaches which are able to reduce dataset bias, adapt existing

dataset to newer datasets, and improve generalisation in machine learning.

The 360◦ panoramic imagery stitching uncertainty introduced by the lack of synchronisation

could be solved by introducing subframes where, at each camera update, the relevant subregion

of the panorama and the corresponding parts of the CNN are updated rather than the whole

panorama to add awareness of the timeshift between the different views inside the neural network.

6.4.3 Multi-Object Tracking

We investigated object tracking using dense spatial neural networks rather than sparse networks.

The dense approach allows the network to better exploit the geometric information of the image,

however it also requires much more memory and computation. Future neural networks could

reduce the scene into a much more compact sparse representation. Unlike existing sparse methods

which only maintain a list of object, a future sparse network could hold an arbitrary amount of

information about all important objects in the scene (e.g . vehicles, road signs, road layout) and

the interactions between them. This information could be processed much more efficiently with

recurrent structures such as a multiscale RNN [225,226] and differentiable neural computers [227].

A 3D object trajectory prediction benchmark has been recently released by nuTonomy in 2020 [6]

to complement the existing nuScenes object detection and tracking benchmarks. The neural

network architecture presented in Chapter 5 is particularly well suited to this problem, because

it features recurrent connections and can use the information from the past frames to interpolate

the vehicle trajectories in the future. Object tracking and prediction are very similar tasks.

Object tracking under heavy occlusion can become a prediction task for objects which are fully

occluded and in its simplest formulation, the output of the prediction task can be defined in
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the same way as object tracking; however the information known to solve the prediction task is

restricted to past frames and by definition not directly observable.

While the emphasise of our work has been to introduce a new kind of sensor in autonomous

driving: 360◦ monocular imagery; the tracking neural network presented in Chapter 5 features a

complex multi-task output including object classification, localisation, 3D pose estimation, and

tracking for each object at each anchor for each time step. A naive integration of trajectory

prediction would add another dimension to predict the time at future time steps for each present

time step. Other extensions such as multi-object tracking and segmentation (MOTS) [98] further

increase the dimensionality of this intermediate representation. The focus of those extensions is to

build an extensive model of the environment. In contrast, Sauer et al . [228] focus on a restricted

low-dimensional intermediate representation called affordances (next traffic sign, vehicle distance,

distance to road centre, etc), however its limited set of affordances cannot encompass all the

situations required for driving, despite most of the information in an extensive representation

being certainly redundant. In contrast, a perception neural network could select the salient

pieces of information required for autonomous driving into a sparse compact representation. This

process could be guided by the feedback from the control system back to the perception system,

akin to the problem of Visual Question Answering (VQA) [229], where the visual component

is the sensor input, the question comes from the control system and the answer is provided by

the perception system; thus, this intermediate representation would reduce the size of the final

stages of the perception neural network by multiplexing the outputs, while providing an insight

into which visual information is the most pertinent to the control system.
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