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Abstract

Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species
have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic
habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this
clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1),
short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not
examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-
coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We
examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early
history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses
contradict the ‘‘coastal’’ hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead
suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in
baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated
convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea
(rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby’s beaked whale), (4) Physeter macrocephalus (giant sperm whale),
and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where
the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean
lineages renders these taxa rod monochromats, a condition previously unknown among mammalian species.
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Introduction

Cetacea [dolphins, porpoises, and whales] represents a remark-

able example of aquatic specialization within Mammalia [1]. With

their return to river and marine environments, the ancestors of

modern toothed cetaceans (Odontoceti) and baleen whales

(Mysticeti) underwent extensive modifications that included the

evolution of novel structures [e.g., baleen plates, tail flukes], major

anatomical rearrangements (e.g., telescoping of the skull, devel-

opment of fore-flippers), the loss or reduction of typical

mammalian traits (e.g., olfactory structures, hair, hindlimbs), and

associated behavioral changes (echolocation, filter-feeding, deep-

diving) [2–4]. At the genetic level this restructuring includes

evidence of positive selection in loci related to high-frequency

audition [5–7], brain size [8,9], and flipper development [10], as

well as degradation of genes related to olfaction [11–13], taste

[14], tooth enamel formation [15–17], and vomeronasal chemo-

reception [18].

In the case of vision, aquatic environments impose challenging

constraints, and the cetacean eye exhibits both morphological and

molecular specializations that enhance underwater sight [19].

Possible morphological adaptations include an extensive reflective

tapetum lucidum, a spherical lens with high refractive power, a

relatively large cornea, and a rod-dominated retina, all of which

enhance visual capabilities under dim light conditions [20,21]. At

the molecular level, most mammals have dichromatic color vision

based on presence of three visual pigments, each of which is a G

protein-coupled receptor that consists of an opsin protein moiety

linked via a Schiff base to a retinal chromophore [22]. The three

opsins that characterize most mammals include a rod opsin (RH1)

and two cone opsins, short wavelength-sensitive opsin (SWS1) and

long wavelength-sensitive opsin (LWS). Rods mainly function in

dim light conditions (scotopic/night vision) whereas cones require

more light (photopic vision) and are necessary with color vision. By

contrast with most other mammals, all cetaceans that have been

investigated are thought to be L-cone monochromats that possess

an inactivated copy of SWS1 and two functional opsins, RH1 and

LWS, which are expressed in rod and L-cone cells of the retina,

respectively [19,23,24].

Griebel and Peichl [19] and Peichl [24] suggested that retinal S-

cones, which express SWS1 and are sensitive to blue wavelengths,

were lost during an early, coastal period of cetacean evolution.

Near-shore waters commonly have an underwater light spectrum

that is red shifted owing to the absorption of blue light by organic

and inorganic debris, and the loss of ‘jobless’ S-cones may have

constituted an economical advantage in this environment by
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simplifying retinal and cortical visual information processing [19].

There are no inactivating frameshift mutations in SWS1 that are

shared by all odontocetes and mysticetes [23], but Griebel and

Peichl [19] suggested that an unidentified genetic change, possibly

in the promoter region, thwarted expression of the SWS1 protein

in the common ancestor of crown Cetacea. Following the

knockout of SWS1, crown cetacean lineages that independently

conquered the open ocean were forced to shift lmax [the

wavelength of maximal absorption] of RH1 and LWS to bluer

wavelengths because SWS1 had previously been inactivated

[19,24]. By contrast, Bischoff et al. [25] offered an alternative

scenario in which RH1 was blue shifted in the common ancestor of

Cetacea. Specifically, Bischoff et al. [25] speculated that the

ancestral cetacean RH1 possessed 83Asn, 292Ser, and 299Ala at

three key tuning sites, as in the deep-diving giant sperm whale

[Physeter macrocephalus], but stopped short of using explicit methods

to reconstruct the ancestral RH1 sequence of Cetacea. If RH1 was

blue-shifted in the common ancestor of Cetacea, then SWS1 may

have been inactivated independently in mysticetes and odonto-

cetes, perhaps due to the inefficiency at S-cones at photon capture

in dim light conditions [22].

Another intriguing hypothesis posits rod monochromacy, as

opposed to L-cone monochromacy, in at least some cetaceans.

McFarland [20] suggested that some cetaceans are probably rod

monochromats in which S-cones, L-cones, and their associated

opsin genes [SWS1 and LWS, respectively] are lacking, so that

vision is based entirely on rods and the rod opsin gene RH1.

Immunocytochemical studies have failed to support this hypoth-

esis and instead demonstrated the presence of L-cones in

representative odontocete species belonging to the families

Delphinidae and Phocoenidae [26]. More recently, Fasick et al.

[21] reported the first partial L-cone opsin sequence (LWS) of a

mysticete, Eubalaena glacialis (Atlantic right whale), and suggested

that the L-cone opsin in this taxon is blue shifted, as are the L-

cone opsins of representative odontocetes [27]. A potential

shortcoming of this study is that Fasick et al. [21] only sequenced

exons 3 and 5 of the E. glacialis LWS gene. In addition, LWS

sequences have not been characterized from several other

cetacean families including the deep-diving Ziphiidae, Physeter-

idae, and Kogiidae. Thus, McFarland’s [20] suggestion that some

cetaceans are rod monochromats remains to be tested by a more

complete sampling of opsin gene sequences from a broader array

of species.

Here, we report complete or nearly complete protein-coding

sequences for all three opsin genes (RH1, SWS1, LWS) from

representatives of all extant families of Cetacea and the cetacean

sister group, Hippopotamidae. Previous studies have characterized

the evolutionary patterns of individual cetacean opsins in isolation,

but have not yet integrated information from all three retinal opsin

genes (RH1, LWS, SWS1) into a single, comprehensive analysis.

We utilized selection intensity estimates, ancestral sequence

reconstructions, shifts in spectral tuning, and shared missense/

frameshift mutations to infer the complex history of opsin

evolution in Cetacea. Our reconstructions suggest that RH1 was

blue-shifted in the common ancestor of Cetacea prior to the

independent inactivation of SWS1 on the stem mysticete and

odontocete branches. LWS, in turn, was pseudogenized conver-

gently in five different cetacean lineages [right whale plus

bowhead, rorquals plus gray whale, Sowerby’s beaked whale,

giant sperm whale, pygmy sperm whale], all of which are deep

divers that feed on bioluminescent organisms. The tandem

inactivation of SWS1 and LWS in these taxa presumably renders

them rod monochromats, a condition that was previously

unknown within Mammalia.

Results

Phylogenetic Analyses
Maximum likelihood trees based on SWS1 exons plus introns,

SWS1 exons, RH1 exons, and LWS exons are shown in Figures S1,

S2, S3, S4. With a few exceptions, clades with high bootstrap

support percentages (.90) on individual gene trees are in

agreement with the species tree in Figure 1. All of the gene trees

recovered Cetancodonta [Cetacea + Hippopotamidae], Cetacea,

Mysticeti, Balaenidae, Balaenopteroidea, Physeteroidea, Ziphii-

dae, Iniidae + Pontoporiidae, Phocoenidae, Delphinidae, Delphi-

noidea, and Iniidae + Pontoporiidae + Delphinoidea [Delphinida].

Odontoceti was only recovered in the SWS1 analyses, but

conflicting nodes in the RH1 and LWS trees had low bootstrap

support values (#53%).

SWS1 Evolution
Inactivating mutations (frameshift indels, premature stop

codons, disrupted intron splice sites, amino acid replacement at

the Schiff’s base counterion site) were apparent for all cetacean

species in the SWS1 alignment (Table 1), but were lacking in SWS1

from the semiaquatic outgroup species, Hippopotamus amphibius

(Figure 1). Although the SWS1 genes of all cetacean species show

evidence of mutational decay, no inactivating mutations map to

the last common ancestral branch of Cetacea (Figure 1, node 26 to

node 27). Instead, different molecular lesions define various

sublineages of Cetacea (Table 1). An amino acid replacement

(E113G; bovine RH1 numbering) at the Schiff’s base counterion

site that is thought to disrupt opsin-chromophore binding [23]

optimizes to the stem branch of Odontoceti (Figure 1; node 27 to

node 35), and a four base-pair frameshift deletion was derived on

the stem branch of Mysticeti (Figure 1; node 27 to node 28). These

independent inactivating mutations imply that SWS1 was

pseudogenized convergently in the two major subclades of Cetacea

(Figure 1, Figure S5).

Author Summary

The emergence of Cetacea (whales, dolphins, porpoises)
represents a profound transition in the history of life.
Living cetaceans have evolved a spectacular array of
adaptations in association with their return to aquatic
habitats. Aquatic environments impose challenging con-
straints on sensory systems, including vision, and the
cetacean eye exhibits both anatomical and molecular
specializations that enhance underwater sight. Most
mammals have one photopigment (RH1) for dim-light
vision and two photopigments (long wavelength-sensitive
opsin [LWS], short wavelength-sensitive opsin [SWS1]) for
daytime, color vision. By contrast, cetaceans have an
inactivated copy of the gene that encodes SWS1. Here, we
show that LWS is also inactivated in several cetacean
lineages including the giant sperm whale, Sowerby’s
beaked whale, and balaenopteroids (rorquals plus gray
whale). These cetaceans dive to depths of at least 100
meters where the underwater light field is dominated by
dim, blue light. The knockout of both cone pigments
renders these taxa rod monochromats, a condition that is
previously unknown among mammalian species. Rod
opsin remains functional in these taxa and is blue-shifted
to increase its sensitivity to the available blue light that
occurs in deep water conditions. These results further
elucidate the molecular blueprint of modern cetacean
species.

Rod Monochromacy in Cetacea
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Estimates of v (dN/dS) on different branches of the cetacean

tree are consistent with parallel knockouts of SWS1 in Odontoceti

and in Mysticeti. The v estimate for SWS1 on the stem Cetacea

branch (Figure 1, node 26 to node 27), just prior to the two

inferred inactivating mutations, suggests a pattern of purifying

selection based on analyses with two different codon frequency

models (v= 0.31, 0.35). Likewise, a signature of strong purifying

selection (v= 0.16, 0.17) was inferred on the stem Odontoceti

branch (node 27 to node 35) (Table 2). Neutrality is predicted on

the stem odontocete branch if SWS1 had previously been

inactivated on the stem cetacean branch [19], but statistical tests

rejected this hypothesis (Table 2). The v estimate (0.75, 0.83) for

the stem mysticete branch (node 27 to node 28), in turn, is only

slightly lower than expected for complete neutrality (v= 1.0) and

suggests that pseudogenization occurred very early on this branch.

Estimates of v for crown odontocete + crown mysticete branches

are in agreement with expectations for neutrality (Table 2), and in

conjunction with numerous frameshift indels within these clades

(Table 1) imply a release from selective constraints after the

occurrence of inactivating mutations on the stem odontocete and

stem mysticete branches (Figure 1).

RH1 Evolution
No inactivating mutations (frameshift indels, splice site muta-

tions) were apparent in the RH1 alignment, implying that RH1 is

functional in all of the species that were surveyed (Figure 1).

Ancestral amino acid sequences at key tuning sites (83, 292, 299)

in Cetacea [21,25] are shown in Table 3 for internal nodes with

inferred blue or red shifts in lmax. Amino acid changes from DAS

to NSS on the stem cetacean branch [node 26 to node 27] resulted

in an inferred blue shift from 501 to 484 nm. Additional blue shifts

(484 to 479 nm) are inferred in Caperea, in stem Physeteroidea

(node 35 to node 36), and in stem Ziphiidae (node 38 to node 39)

based on an amino acid changes at site 299 (NSS to NSA) that

occurred independently in these three lineages. Seven red shifts

were reconstructed in Cetacea, including three in Mysticeti (stem

Balaenidae [node 28 to node 29], Megaptera, Eschrichtius) and four

in Odontoceti (stem Iniidae + Pontoporiidae [node 42 to node 43],

Figure 1. A hypothesis for the evolution of LWS, SWS1, and RH1 in Cetacea and outgroups. Phylogenetic relationships and divergence
times for Cetacea follow McGowen et al. [42] and for outgroups are as in Meredith et al. [101]. Nodes in the tree are numbered (1–50) and are
referenced to in the main text. The coloration of branches indicates inferred functional SWS1 (blue), functional LWS (red), and functional RH1 (black);
for example, all three opsins are reconstructed as functional in the common ancestor of Cetacea (node 26 to node 27), but only RH1 is functional in
balaenopteroid baleen whales (node 31 and its descendants). Inferred inactivation events (frameshifts, premature stop codons, etc.) are marked by
yellow circles with Xs, and are arbitrarily placed at the midpoints of branches to which these events were optimized. Inferred red and blue shifts in
lmax for LWS and RH1 are indicated by arrows at internodes. Geological time scale is shown at the bottom of the figure with time in millions of years
(Plio = Pliocene; P = Pleistocene). For taxon names, the mysticete genus Balaenoptera is abbreviated as ‘‘B.’’. Paintings are by Carl Buell.
doi:10.1371/journal.pgen.1003432.g001

Rod Monochromacy in Cetacea
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Table 1. Summary of inactivating mutations in cetacean SWS1 and LWS genes.

SWS1 Mutations

Taxon
Number of Exon
or Intron

Inactivating Mutation Including
Alignment Number and
Nucleotide Position(s)

Location on Tree (Ancestral Node
Number: Descendant Node Number)

Tursiops truncatus Exon 1 1-bp frameshift deletion
(Alignment1:34)

49:24

Mysticeti, Mesoplodon bidens, Platanista
minor, Phocoenoides dalli (polymorphic),
Delphinapterus leucas (polymorphic)

Exon 1 4-bp frameshift deletion
(Alignment1:270–273)

27:28, 41:13, 37:12, 47:20, 45:22

Physeter macrocephalus Exon 1 1-bp frameshift insertion
(Alignment1:310)

36:10

Globicephala melas Exon 1 50-bp frameshift deletion
(Alignment1:261–311)

48:25

Pontoporia blainvillei Exon 1 2-bp frameshift deletion
(Alignment1:308–309)

43:17

Odontoceti Exon 1 E113G amino acid replacement
at the Schiff’s base counterion
site (bovine rhodopsin numbering)
(Alignment1:338–340)

27:35

Berardius bairdii Intron 1 GT to GC splice site mutation
(Alignment1:363–364)

39:16

Eschrichtius robustus Exon 2 8-bp frameshift deletion
(Alignment1:808–815)

33:6

Globicephala melas Exon 3 4-bp frameshift insertion
(Alignment1:1438–1441)

48:25

Caperea marginata Intron 3 GT to GC splice site mutation
(Alignment1:1489–1490)

30:4

Platanista minor Exon 4 1-bp frameshift insertion
(Alignment1:2201)

37:12

Kogia breviceps Exon 4 1-bp frameshift deletion
(Alignment1:2336)

36:11

Pontoporia blainvillei Exon 4 2-bp frameshift insertion
(Alignment1:2337–2338)

43:17

Physeteroidea Intron 4 GT to GA splice site mutation
(Alignment1:2382–2383)

35:36

Tursiops truncatus Exon 5 1-bp deletion (Alignment1:4079) 49:24

Balaenoptera acutorostrata Exon 5 2-bp frameshift deletion
(Alignment1:4103–4104)

31:9

LWS Mutations

Taxon Number of Exon or Intron

Inactivating Mutation Including
Alignment Number and
Nucleotide Position(s)

Location on Tree (Ancestral Node
Number: Descendant Node Number)

Balaenopteroidea Exon 1 22 bp deletion that includes first
two bp of initiation codon in
exon 1 (Alignment4:99–120)

30:31

Kogia breviceps Exon 1 44-bp frameshift deletion
(Alignment4:120–163)

36:11

Balaenoptera musculus Exon 1 1-bp frameshift deletion
(Alignment4:169)

32:5

Balaenopteroidea Exon 2 1-bp frameshift deletion
(Alignment5:238)

30:31

Mesoplodon bidens Exon 2 4-bp frameshift insertion
(Alignment5:409–412)

41:13

Kogia breviceps Intron 2 GT to CT splice site mutation
(Alignment5:504–505)

36:11

Eubalaena australis Intron 2 AG to CG splice site mutation
(Alignment6:5–6)

29:2

Physeter macrocephalus Exon 5 28-bp frameshift deletion
(Alignment8:186–213)

36:10

Rod Monochromacy in Cetacea
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Pontoporia, stem Monodontoidea [node 44 to node 45], Delphinap-

terus) (Table 3).

Among ten other amino acid sites that have been linked to

spectral tuning in vertebrates [28], eight (sites 96, 102, 122, 183,

253, 261, 289, 317) are invariant among the cetaceans and the

hippopotamid that were included in our taxon sampling, site 194

exhibits four amino acid replacements within Cetacea, and site

195 shows an amino acid replacement [L to P] on the stem

Cetacea branch and four replacements within Cetacea.

Analyses with Codeml rejected site models 2 and 8, which add

an extra category for positively selected sites, in favor of models 1

and 8a, respectively. By contrast, branch-site analyses with two

different codon frequency models (CF) provided statistically

significant support for a bin of five positively selected sites (7, 83,

123, 266, 292) on branches with lmax changes (CF2: P = 0.00036,

v= 5.53; CF3: P = 0.00018, v= 6.43). Three of the five positively

selected sites (83, 266, 292) have probabilities .0.95 of

membership in this bin.

LWS Evolution
Inactivating mutations are apparent in LWS sequences from ten

cetacean species (Figure 1, Figure S6, Table 1). Reconstructions of

ancestral sequences imply eight frameshift indels and three splice

site disruptions within Cetacea, with convergent inactivation of

LWS on the following five branches (Figure 1): Physeter macroceph-

alus, Kogia breviceps, Mesoplodon bidens, stem Balaenidae (node 28 to

node 29), and stem Balaenopteroidea (node 30 to node 31). All of

these separate knockouts of LWS postdate prior inactivations of

SWS1 and therefore result in rod monochromacy (Figure 1).

Estimates of v throughout the species tree generally are

consistent with multiple, independent knockouts of LWS within

Cetacea. Branches reconstructed as functional for LWS exhibit a

strong signature of purifying selection (v= 0.09, 0.10). By contrast,

v estimates on ‘‘transitional’’ branches [16], where inactivating

mutations in LWS were reconstructed, generally show elevated

rates of nonsynonymous substitution (Physeter: v= 0.38, 0.41, Kogia:

v= 0.73, 0.78, stem balaenopteroid branch: v= 0.34, 0.37).

Exceptions are the short transitional branches for stem Balaenidae

(1.5 to 1.7 inferred substitutions, v= 0.0001) and Mesoplodon (2.4 to

3.1 inferred substitutions, v= 0.13, 0.19). Branches within crown

Balaenopteroidea (node 31 and descendant branches) plus crown

Balaenidae (node 29 and descendant branches), which are

interpreted as pseudogenic based on the prior occurrence of

inactivating mutations, have an v value based on two codon

models (0.69, 0.70) that does not deviate significantly from neutral

expectations (v= 1.00) based on x2-tests.

Reconstructions of ancestral amino acid sequences at five key

tuning sites (amino acids 180, 197, 277, 285, 308) [21,25] are

shown in Table 3 for branches with inferred shifts in lmax. For the

five tuning sites, AHYTA (lmax = 552 nm) is the inferred ancestral

condition for Cetancodonta (node 26) and for the last common

ancestor of extant cetaceans (node 27). Three changes at LWS

tuning sites were reconstructed within Cetacea. Parallel changes

from AHYTA to AHYTS on the stem Mysticeti branch [node 27

to node 28] and on the stem Delphinoidea branch (node 42 to

node 44) imply blue shifts from 552 nm to 522–531 nm. A change

from AHYTA to AHYTP was reconstructed on the terminal Inia

branch, but the functional effect of A308P is unknown (Table 3).

Analyses with Codeml rejected site models 2 and 8, which add

an extra category for positively selected sites, in favor of models 1

and 8a, respectively. Similarly, positively selected sites were not

identified in branch-site analyses.

Discussion

Opsin Evolution in Cetacea
Here, we assembled complete or nearly complete protein-

coding sequences for RH1, SWS1, and LWS for representatives of

all extant cetacean families. These sequences, in combination with

molecular evolutionary analyses, permit a detailed, synthetic

reconstruction of opsin evolution in Cetacea (Figure 1).

Recent phylogenetic hypotheses imply that the aquatic ancestry

of Cetacea extends back to its last common ancestor with the semi-

aquatic Hippopotamidae in the early Eocene, .50 Ma [4,29,30].

Whales and hippos share a variety of ‘‘aquatic’’ specializations

including sparse hair, loss of sebaceous glands, and the ability to

birth and nurse underwater [4,31,32], but these features

traditionally have been interpreted as parallel evolutionary

derivations in these two lineages. Given the hypothesis that the

common ancestor of cetaceans and hippos was aquatic/semi-

aquatic (Figure 1, node 50 to node 26), shared mutations in opsin

genes that enhance vision in aquatic environments might be

expected in whales and hippos. ML reconstructions of ancestral

opsin sequences imply only two replacement substitutions (LWS:

E41D; RH1: L216M) on the stem lineage. These replacements are

not at key tuning sites and fail to provide compelling evidence for

an aquatic shift in opsin properties in the common ancestor of

hippos and whales.

Following divergence from Hippopotamidae, the unique

evolutionary history of Cetacea began on the stem cetacean

branch (Figure 1, node 26 to node 27). The fossil record indicates

that the stem cetacean lineage was marked by a profound

Table 1. Cont.

LWS Mutations

Taxon Number of Exon or Intron

Inactivating Mutation Including
Alignment Number and
Nucleotide Position(s)

Location on Tree (Ancestral Node
Number: Descendant Node Number)

Physeter macrocephalus Exon 5 1-bp frameshift deletion
(Alignment8:251)

36:10

Balaenidae Intron 5 AG to GG splice site mutation
(Alignment9:32–33)

28:29

Eubalaena australis Exon 6 7-bp frameshift deletion
(Alignment9:47–53)

29:2

Inactivating mutations include frameshifts, Schiff’s base counterion site mutations, and splice site mutations. All alignments are provided in Text S3. Inactivating
mutations are also cross-referenced to branches in Figure 1.
doi:10.1371/journal.pgen.1003432.t001
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transition in anatomy from primitive semi-aquatic forms to

obligately aquatic taxa with vestigial hindlimbs [3,33–35].

Ancestral reconstructions imply that stem cetaceans retained

dichromatic color vision with functional SWS1, LWS, and RH1 as

in Hippopotamus and more distantly related artiodactyls; a blue shift

in RH1 also occurred on the stem cetacean branch (Figure 1).

Specifically, the amino acid array at three key tuning sites (83, 292,

299) [21,25] changed from DAS to NSS, with an inferred lmax

shift from 501 to 484 nm. Our ML reconstruction supports

Bischoff et al.’s [25] hypothesis that RH1 was blue shifted on the

stem cetacean branch, but contradicts their assertion that the

ancestral cetacean expressed the amino acids NSA as in deep-

diving physeteroids.

In addition to replacements at sites 83 and 292, a change at

tuning site 195 (K to T) of RH1 occurred on the stem cetacean

branch. This change from a polar amino acid to a positively

charged residue has been retained in the deep-diving physeteroids

(giant sperm whale, pygmy sperm whale). The inferred shift in

lmax that results from a K to T replacement at this site, if any,

remains to be investigated with mutagenesis studies. Unlike tuning

sites 83, 292, and 299, that are situated in transmembrane regions

of RH1 and are in close proximity to the chromophore, site 195 is

positioned in the luminal face of RH1 [36]. The nature of long

distance interactions between this amino acid site and the

chromophore are unknown [36].

The basal split in Cetacea defines the separation of Odontoceti

from Mysticeti, and also marks the evolution of profound changes

in anatomy/feeding strategy in both clades [4,37]. Echolocation

capabilities and degradation of olfactory structures were derived

on the stem odontocete branch (Figure 1, node 27 to node 35),

whereas the transition to bulk filter feeding with a keratinous

baleen sieve evolved on the stem mysticete branch (Figure 1, node

27 to node 28). These divergent specializations represent changes

in feeding style that would be expected to impact demands on

visual systems.

Following the blue shift in RH1 on the stem cetacean branch,

SWS1 was inactivated independently in stem odontocetes and in

stem mysticetes, coincident with the evolution of divergent

specializations in these two clades (Figure 1). Two lines of

evidence support this reconstruction and argue against an earlier

knockout of SWS1 in the common ancestor of Cetacea. First,

comprehensive sequencing of SWS1 exons and introns revealed no

shared inactivating mutations common to all extant cetaceans.

Odontocetes have a common missense mutation at the Schiff’s

base counterion site (E113G) that disrupts opsin-chromophore

binding [23]. Mysticetes, in turn, share a 4-bp frameshift mutation

in exon 1 of SWS1 that results in a premature stop codon.

Frameshift indels in the same position occur in several odonto-

cetes, but these deletions are most parsimoniously reconstructed as

convergent between Mysticeti and multiple odontocete subclades

(Text S1). Several mutations that disrupt intron boundaries were

identified, but in all cases these substitutions map to branches

within Odontoceti or within Mysticeti. Second, dN/dS values on

the stem odontocete and stem mysticete branches should indicate

an absence of selective constraints if SWS1 was inactivated earlier

in the common ancestor of Cetacea. Estimates of dN/dS (0.75,

0.83) for the stem mysticete branch are consistent with neutral

evolution (dN/dS = 1.00), but neutrality was rejected given the low

dN/dS estimates (0.16, 0.17) for the stem odontocete branch,

indicative of purifying selection and thus functionality after the

split between Odontoceti and Mysticeti (Figure 1, node 27;

Table 2).

Together, our reconstructions for the evolution of RH1 and

SWS1 contradict the coastal knockout hypothesis [19,24]. This

Table 3. Amino acids at key tuning sites for RH1 [21,25] and LWS [36].

Branch Node Numbers
(Ancestor to
Descendant) Branch Name RH1 LWS

Amino Acid
Changes at Key
Tuning Sites
(83 292 299)

lmax (nm)
Change
on Branch

Amino Acid
Changes at Key
Tuning Sites
(180 197 277 285 308)

lmax (nm)
Change
on Branch

26 to 27 Stem Cetacea DAS to NSS 501 to 484 No changes No change

27 to 28 Stem Mysticeti No change No change AHYTA to AHYTS 552 to 522–531

28 to 29 Stem Balaenidae NSS to NAS 484 to 493 No change No change

30 to 4 Caperea NSS to NSA 484 to 479 No change No change

33 to 6 Eschrichtius NSS to NAS 484 to 493 No change No change (pseudogene)

34 to 7 Megaptera NSS to DSS 484 to 492 No change No change (pseudogene)

35 to 36 Stem Physeteroidea NSS to NSA 484 to 479 No change No change

38 to 39 Stem Ziphiidae NSS to NSA 484 to 479 No change No change

42 to 43 Stem Iniidae + Pontoporiidae NSS to NAS 484 to 493 No change No change

43 to 17 Pontoporia NAS to DAS 493 to 501 No change No change

43 to 18 Inia NAS to NAT* 493 to ? AHYTA to AHYTP* 552 to ?

44 to 45 Stem Monodontidae +
Phocoenidae

NSS to DSS 484 to 492 No change No change

45 to 22 Delphinapterus DSS to DAS 492 to 501 No change No change

42 to 44 Stem Delphinoidea No change No change AHYTA to AHYTS 552 to 522–531

Node numbers correspond to Figure 1. RH1 lmax values are based on Fasick et al. [21] for DAS and Bischoff et al. [25] for all other amino acid combinations. LWS lmax

values are based on Fasick et al. [21].
* =lmax value unknown.
doi:10.1371/journal.pgen.1003432.t003
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scenario postulates that SWS1 was inactivated during an early

amphibious phase of cetacean history when semi-aquatic whales

occupied coastal waters that absorbed blue light, and that RH1

was subsequently blue shifted in crown cetaceans that moved to

open ocean environments dominated by blue light. The coastal

knockout hypothesis requires an as yet undiscovered inactivating

mutation in SWS1, perhaps in the promoter region of this gene or

at splice sites [23]. Instead, our results fit the hypothesis that RH1

was blue shifted in the common ancestor of Cetacea, and that

SWS1 was convergently knocked out in Odontoceti and in

Mysticeti after cetaceans had invaded open ocean habitats. This

is perhaps surprising given that SWS1 is well suited to detect the

blue light that dominates the open ocean. However, the relative

scarcity of S cones in the mammalian retina, which diminishes the

efficiency of photon capture under dim light conditions, may have

predisposed S-cones to eventual loss through relaxed selection

[22]. By contrast, rods are much more efficient at photon capture

under dim light conditions because of their higher density in the

mammalian retina and their integration with large, sparsely

distributed ganglion cells that sum photon detection over huge

receptive fields [38]. The preferential retention of a functional

copy of LWS rather than SWS1 in some cetaceans may reflect the

higher density of L-cones and their greater impact on visual acuity

[22].

In addition to the blue shift of RH1 in the ancestral cetacean

branch, several amino acid replacements in RH1 imply further

adjustments in lmax (Figure 1). These shifts are generally consistent

with the photic environments that are occupied by different

cetacean species [20,25]. Among these changes are blue shifts in

deep-diving physeteroids [sperm whales] and in ziphiids [beaked

whales], a red shift in the common ancestor of Inia and Pontoporia,

both of which are found in shallow water environments, and red

shifts in several mysticetes [e.g., Eschrichtius, Megaptera]. Bischoff et

al. [25] suggested that the red-shifted pigments that occur in some

mysticetes are better adapted to relatively shallower foraging

environments than the ancestral mysticete pigment. The blue shifts

in Physeteroidea and Ziphiidae occured in parallel and in both

cases involve amino acid replacements [serine to alanine] at tuning

site 299 [21,25]. Sperm whales and beaked whales rank among the

deepest diving mammals and specialize on a cephalopod-rich diet

[39]. Several phylogenetic studies of anatomical evidence grouped

these suction feeding species, presumably based on convergent

character states related to their deep diving habits [40,41], but

most recent work indicates that ziphiids are more closely related to

dolphins and porpoises than to physeteroids [37,42,43].

Nozawa et al. [44] suggested that Yang’s [45] codeml program

is not useful for identifying adaptive sites in visual pigments. Our

results support Nozawa et al.’s [44] finding that site analyses fail to

identify adaptive changes in visual pigments. However, branch-site

tests identified five codons in RH1 that have evolved under positive

selection on branches with inferred changes in lmax. The v value

for the five positively selected sites is well above one (5.53–6.43),

and supports the hypothesis that changes affecting lmax in

cetacean RH1 proteins are adaptive. The failure of site analyses

to detect positively selected sites in RH1 may be a consequence of

mixing positive selection on foreground branches with purifying

selection on background branches. Nozawa et al. [44] criticized

branch-site tests [45–47] for their proclivity to generate false

positive results based on simulations, but Yang et al. [48] correctly

noted that false positives only occurred in 32/14,000 cases, which

is much lower than the nominal significance level (5%) and

demonstrates that the branch-site test is conservative. Among the

positively selected sites, two (83, 292) are known tuning sites that in

part are the basis for inferring changes in lmax (Figure 1). Changes

at site 83 may also be important in dim-light conditions because

the amino acid at this position affects the rate at which

photoreceptor cells generate electrical signals [49]. The other

three sites (7, 123, 266) have not been predicted to affect lmax. Site

7 occurs in the extracellular domain, site 123 occurs in

transmembrane helix III, and site 266 occurs in transmembrane

helix 6 [50]. The functional consequences of mutations at these

amino acid positions in cetacean RH1 sequences remain

unknown, although conformational changes associated with

transmembrane domains III and VI of G protein-coupled

receptors may be important in receptor activation [51].

Changes in LWS spectral sensitivity coincide with deployment

of cetaceans to diverse aquatic habitats (Figure 1). A blue shift in

LWS in stem mysticetes co-occurs with an SWS1 frameshift

mutation on the same branch, although the sequence of these

events is unclear. An additional LWS blue shift in lmax maps to

the common ancestor of Delphinoidea [dolphins, porpoises,

beluga], but the most striking feature of LWS evolution in Cetacea

is the convergent knockout of this gene in five different lineages:

Balaenopteroidea (rorquals and gray whale), Balaenidae (bowhead

and right whale), Mesoplodon bidens (Sowerby’s beaked whale),

Physeter macrocephalus (giant sperm whale), and Kogia breviceps (pygmy

sperm whale) (Figure 1). Given that SWS1 is also debilitated in

each of these species (Figure 1), the genetic data imply that these

taxa are rod monochromats. This iterated degeneration of

cetacean LWS was not apparent in earlier studies because

complete protein-coding LWS sequences had been generated for

only a few cetacean species [21].

Rod Monochromacy in Cetacea
Historically, the pure rod retina has been proposed as the

‘‘extreme’’ adaptation to low light levels [52]. Walls [52] and

McFarland [20] suggested the possibility of rod monochromacy in

at least some cetaceans. More generally, early studies on retinal

anatomy hinted at this condition in a variety of nocturnal and

aquatic mammalian species with rod dominated retinas, including

night monkeys, lemurs, tarsiers, chinchillas, seals, and bats [52–

57]. Recent work has shown that representative cetaceans are

instead L-cone monochromats and retain a functional copy of

LWS [21,26]. Similarly, primates, rodents, pinnipeds, and bats that

were previously hypothesized to be rod monochromats are now

known to be L-cone monochromats with functional LWS or even

cone dichromats with functional LWS and SWS1 [22,58–61]. The

present survey of cetacean opsins, which documents pseudogen-

ization of both SWS1 and LWS in multiple cetacean lineages,

vindicates McFarland’s [20] hypothesis that some cetaceans are

rod monochromats (Figure 1). To our knowledge these are the

only known examples of rod monochromacy in Mammalia or even

Amniota. The observation that five independent derivations of

mammalian rod monochromacy are all clustered within Cetacea is

striking, and suggests that one or more features of cetacean biology

have been pivotal in driving the degenerative pattern of opsin

evolution in this aquatic clade.

The naked mole rat (Heterocephalus glaber) is the only other

mammal, aside from the cetacean species characterized here, that

is known to lack a functional copy of LWS, but H. glaber retains an

intact SWS1 and is interpreted as a cone monochromat [62]. This

condition contrasts with other mammalian cone monochromats

[pinnipeds, dolphins, porpoises, some procyonids, some rodents,

some bats] that combine a pseudogenic SWS1 with a functional

copy of LWS [22,23,28,60,63–71]. It has been suggested that

cetacean cone monochromats [e.g. bottlenose dolphin, Tursiops

truncatus] can distinguish colors, possibly via interactions between

LWS and RH1 [38,72], but any vestiges of color vision

Rod Monochromacy in Cetacea
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presumably have been lost in the various rod monochromatic

cetacean species documented here (Figure 1).

Among other vertebrates, rod monochromatic taxa are rare and

to our knowledge have only been documented in bony and

cartilaginous fishes [73–81], caecilians [22,82], and the cave

salamander Proteus anguinus [83], although presumed rod mono-

chromacy based entirely on immunocytochemistry, microscopy or

spectral analysis does not preclude the possibility that other minor

visual pigment classes exist [77,81,83]. Most of the rod mono-

chromatic fish species inhabit the deep sea or are nocturnal;

caecilians are generally fossorial and/or nocturnal with poorly

developed eyes; and the cave salamander Proteus lives in a virtually

light-free environment.

The phylogenetic evidence for multiple, independent knock-

outs of both SWS1 and LWS within Cetacea raises the question

of why convergent pseudogenization and rod monochromacy

evolved in this clade but not in other mammalian groups. All

rod monochromatic cetacean species that were genetically

characterized in our survey are capable of diving to depths

that exceed 100 m, with sperm and beaked whales ranking

among the deepest diving mammals [39,84–88]. The selective

pressures on mammalian retinal opsins in deep-water habitats

are drastically different from those on land. In the open marine

environment, the electromagnetic radiation of visible light is

weakened with depth due to absorption and scattering [89]. In

the mesopelagic zone (150–1000 m), down-welling sunlight

becomes more monochromatic and the spectrum shifts towards

shorter, bluer wavelengths with depth [81,82]. Below 1000 m

(bathypelagic zone), there is no down-welling sunlight and

localized bluish bioluminescence becomes the predominant

source of light [90].

A rod-dominated retina is advantageous in dim light conditions

[38]. Therefore, the convergent pseudogenization of SWS1 and

LWS in multiple cetacean lineages may be an adaptation to deep-

water habitats and/or feeding at night on bioluminescent

invertebrate prey. Cone opsins have a higher rate of thermal

activation [i.e., dark noise] than RH1 [91] and may interfere with

rod sensitivity under scotopic conditions. Thus, combined SWS1

and LWS pseudogenization may have increased RH1 sensitivity in

physeteroids and ziphiids that feed in the mesopelagic and

bathypelagic zones. Echolocation is a key specialization that has

enabled odontocete taxa such as these to forage at night and at

great depths on individual prey items, in particular cephalopods

[92]; rod monochromatism may be an additional adaptive feature

that has enabled predation at depth. Balaenopteroid and balaenid

mysticetes are not known to feed in the bathypelagic zone, do not

echolocate, and instead batch filter aggregations of small prey

items. However, baleen whales do feed at night and much of their

diet is composed of bioluminescent prey including krill [93,94].

The ability to take advantage of this huge resource offers a

compelling selective driver on the evolution of visual systems in

Mysticeti, and the detection of schools of tiny prey at night would

seem to be problematic without echolocation. The reliance of

various mysticete species on RH1 might represent one solution for

improved night vision given that rods are more useful than cones

for contrast detection and hence picking out schools of prey from

the background. Along these lines, the parallel pseudogenization of

both cone opsins in Cetacea (Figure 1) could be the result of

natural selection favoring an all-rod retina, in which case cone

opsins were either selected against because of interference with

RH1, or were rendered ‘jobless’ by the elimination of cones and

released from selective constraints on color vision in this aquatic

clade [22].

Conclusions
The emergence of Cetacea represents a profound macroevolu-

tionary transition that entails comprehensive remodeling at both

the genetic and morphological levels [4]. Our results elucidate key

events in the evolutionary history of cetacean opsins, including an

initial blue shift of RH1 in stem Cetacea, parallel knockouts of

SWS1 in Odontoceti and Mysticeti, and five independent

inactivations of LWS in deep-diving cetacean lineages. As correctly

surmised by McFarland [20], some cetaceans are rod monochro-

mats and have evolved eyes that are highly specialized for dim-

light vision.

Materials and Methods

Taxon and Gene Sampling
Previously published RH1, SWS1, and LWS sequences for

Cetacea were combined with new sequences that were generated

through PCR and dideoxy sequencing. We targeted complete

coding regions of all three opsin genes for representatives of

Hippopotamidae and all extant cetacean families (Text S2). RH1,

LWS, and SWS1 sequences for additional cetartiodactyl families

[Bovidae, Cervidae, Suidae, Camelidae] were assembled from

Ensembl, Pre-Ensembl, and NCBI based on availability with

minor augmentation by new sequences (Table S1, Text S2).

PCR and Sequencing
Aligned sequences for Bos taurus, Sus scrofa, Tursiops truncatus,

Vicugna pacos, and available GenBank sequences (Table S1) were

used to design PCR primers for SWS1, RH1, and LWS. SWS1 (exons

1–4; partial exon 5; introns 1–4) was amplified in five overlapping

segments. PCR primers for RH1 (exons 1–5) and LWS (exons 1–6)

were positioned in the flanking intronic regions of each exon (see

Text S2 for additional details on PCR reactions). Accession

numbers for new cetartiodactyl sequences are KC676796–

KC677023 (Table S1). Primer sequences are provided in Table S2.

Alignments and Phylogenetic Analyses
Sequences were aligned manually using Se-Al [95]. The virtual

mRNA alignment lengths were 1014 base pairs (bp) for SWS1,

1092 bp for LWS, and 1044 bp for RH1. The complete alignment

for SWS1, including exons and introns, was 4163 bp. All

alignments for phylogenetic and PAML analyses, along with

alignments for non-overlapping PCR amplicons (exons plus partial

introns for LWS and RH1), are provided in Text S3 in nexus

format. Phylogenetic analyses were performed with RAxML 7.2.7

[96] and the GTR + C model of sequence evolution. Additional

details are provided in Text S2.

Inactivating Mutations
Opsin alignments were manually inspected for putative

inactivating mutations, including substitutions that result in stop

codons, changes at intron splice donor/acceptor sites, and

frameshift indels. We also examined SWS1 sequences for a

missense mutation at Schiff’s counterion site (E113G; bovine RH1

numbering) that disrupts opsin-chromophore binding [23].

Ancestral Sequence Reconstructions and Character State
Mapping

Ancestral DNA sequences for SWS1, LWS, and RH1 were

reconstructed with the Baseml program implemented in PAML

4.4b [45]. We used the REV model and a composite species tree

based on McGowen et al. [42] for cetaceans and Gatesy [97] for

all other cetartiodactyls. Frameshift mutations and other indels

Rod Monochromacy in Cetacea
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were optimized with Fitch parsimony, as implemented in Mesquite

[98].

lmax Estimation
Spectral tuning in RH1 is influenced by at least 13 amino acid

sites [28], although replacements at only three of these sites (83, 292,

299) fully explain the absorbance difference between cow RH1 (Bos

taurus, lmax = 500 nm) and bottlenose dolphin RH1 (Tursiops

truncatus, lmax = 488 nm) [99]. These replacements are D83N,

A292S, and A299S. Different combinations of ancestral and derived

amino acids at these three sites have been tested in mutagenic studies

of Bos RH1 to explain the various lmax values that occur in other

cetaceans [21,25]. For LWS, Yokoyama [36] suggested a ‘‘five-sites’’

rule whereby lmax values between 510 and 560 in vertebrates can be

fully explained by amino acid changes S180A, H197Y, Y277F,

T285A, A308S and their interactions. Here, we follow Fasick et al.

[21] and Bischoff et al. [25] and provide lmax estimates for newly

determined RH1 and LWS sequences based on directly determined

lmax values from expressed RH1 and LWS pigments that possess

identical amino acids at the same key sites for each of these opsins. It

will be important in future studies to perform direct measurements of

lmax on reconstructions of ancestral RH1 sequences. Even without

these experiments, empirical measurements on a diverse array of

opsins from cetacean species and Bos taurus (wild type and

mutagenesis variants) provide a strong foundation for inferring lmax

values in ancestral cetacean sequences [21,25].

dN/dS Analyses
The Codeml program in PAML 4.4b [45] was used to estimate

the ratio (v) of the non-synonymous substitution rate [dN] to the

synonymous substitution rate (dS) at individual sites (RH1, LWS)

and on branches (SWS1, LWS). We also performed branch-site

analyses [45–47,100] on RH1 and LWS sequences. In both cases,

branches with predicted changes in lmax (Figure 1) of the relevant

opsin were assigned to the foreground, and all other branches were

assigned to the background. We used a composite species tree for

all cetartiodactyl taxa as detailed above. Statistical tests of

neutrality [complete absence of functional constraints] for

branches and sets of branches were executed as in Meredith et

al. [16]. See Text S2 for details.

Supporting Information

Figure S1 Maximum likelihood phylogram based on SWS1

exons and introns.

(PDF)

Figure S2 Maximum likelihood phylogram based on SWS1

exons.

(PDF)

Figure S3 Maximum likelihood phylogram based on RH1

exons.

(PDF)

Figure S4 Maximum likelihood phylogram based on LWS

exons.

(PDF)

Figure S5 Parsimony reconstruction of the 4-bp frameshift

deletion in SWS1. Branch colors are as follows: gray, odontocetes;

black, mysticetes, blue, stem Cetacea; green, non-cetacean.

Plio = Pliocene; P = Pleistocene. Paintings are by Carl Buell. Also

see Text S1.

(PDF)

Figure S6 Chromatograms that illustrate inactivating mutations

found in cetacean LWS sequences. Taxa exhibiting the deleterious

mutations for the indicated exon are in red font. Deletions are

highlighted in red and insertions are highlighted in green.

(PDF)

Table S1 Taxa and gene segments used in this study. * = new

sequence; + = only sequenced exons 1–2, intron 1 and partial

intron 2 to further delineate the distribution of inactivating

mutations in SWS1. Gene and exon identities of new sequences are

as follows: LWS Exon 1: KC676796–KC676816; LWS Exon 2:

KC676817–KC676838; LWS Exon 3: KC676839–KC676859;

LWS Exon 4: KC676860–KC676879; LWS Exon 5: KC676880–

KC676899; LWS Exon 6: KC676900–KC676920; RH1 Exon 1:

KC676921–KC676938; RH1 Exon 2: KC676939–KC676957;

RH1 Exons 3-4: KC676958–KC676977; RH1 Exon 5:

KC676978–KC676995; SWS1 Exons 1-5: KC676996–

KC677023. The amplicon containing LWS Exon 1 of Eschrichtius

is shorter than 200 bp and could not be deposited in GenBank.

The complete sequence can be found in Text S3.

(PDF)

Table S2 Primers used in this study (all 59 to 39). SWS1 primer

pairs were designed to amplify four complete exons (1–4), four

complete introns (1–4), and part of exon 5 in five overlapping

segments. RHI and LWS primers were designed to amplify each

exon and part of the flanking 59 and 39 introns. Ex = exon.

(PDF)

Text S1 Additional details on the 4-bp frameshift deletion in

SWS1.

(PDF)

Text S2 Additional Materials and Methods.

(PDF)

Text S3 Fourteen alignments in nexus format. Alignment

1 = SWS1 Introns + Exons (RAxML); Alignment 2 = SWS1

Exons (PAML, RAxML); Alignment 3 = LWS Exons (PAML,

RAxML); Alignment 4 = LWS Exon 1 amplicon; Alignment

5 = LWS Exon 2 amplicon; Alignment 6 = LWS Exon 3

amplicon; Alignment 7 = LWS Exon 4 amplicon; Alignment

8 = LWS Exon 5 amplicon; Alignment 9 = LWS Exon 6

amplicon; Alignment 10 = RH1 Exons (PAML/RAxML); Align-

ment 11 = RH1 Exon 1 amplicon; Alignment 12 = RH1 Exon 2

amplicon; Alignment 13 = RH1 Exons 3+4 amplicon; Alignment

14 = RH1 Exon 5 amplicon.

(TXT)
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