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Background: Androgen receptor (AR) has been described to play a prominent role

in male breast cancer (MBC). It maps on chromosome X, and recent reports indicate

that X-chromosome polysomy is frequent in MBC. Since the response to anti-androgen

therapy may depend on AR polysomy and on its overexpression similarly to prostate

cancer, the aim of the present study was to investigate the DNA methylation level of AR

and its coregulators, especially those mapped on the X-chromosome, that may influence

the activity of AR in MBC.

Methods: The DNAmethylation level of AR, MAGEA2, MAGEA11, MAGEC1, MAGEC2,

FLNA, HDAC6, and UXT, mapped on the X-chromosome, was evaluated by quantitative

bisulfite-NGS. Bioinformatic analysis was performed in a Galaxy Project environment

using BWA-METH, MethylDackel, and Methylation Plotter tools. The study population

consisted of MBC (41 cases) compared with gynecomastia (17 cases).

Results: MAGEA family members, especially MAGEA2, MAGEA11, MAGEC, and UXT

and HDAC6 showed hypomethylation of several CpGs, reaching statistical significance

by the Kruskal–Wallis test (p < 0.01) in MBC when compared to gynecomastia. AR

showed almost no methylation at all.

Conclusions: Our study demonstrated for the first time that MAGEA family members

mapped on the X-chromosome and coregulators of AR are hypomethylated in MBC. This

may lead to their overexpression, enhancing AR activity.

Keywords: male breast cancer, androgen receptor, MAGE family, DNA methylation, X-chromosome, FLNA, UXT,

HDAC6
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INTRODUCTION

Even if its incidence is slightly increasing, male breast cancer
(MBC) is a rare disease accounting for about 1% of all breast
cancers (1). Due to its rarity, management and treatment
are primarily based on postmenopausal female breast cancer
(FBC) knowledge. Most MBCs are estrogen receptor (ER) and
progesterone receptor (PR) positive and HER2 negative, thus
presenting a luminal like profile (2–4) and being considered an
ER-driven cancer.

Recent papers based on molecular analyses of large multi-
institutional series demonstrated that, in spite of some
similarities with FBC, MBC shows a specific molecular portrait
(3, 5–7).

Among the genes differentially expressed between MBC and
FBC, the androgen receptor (AR) gene is emerging as playing
a key role in male breast neoplastic transformation (2–4). The
importance of AR has been demonstrated both on the molecular
(8) as well as the morphological basis (4). AR protein, detected by
immunohistochemistry, is frequently expressed on MBC, being
positive in the large majority of the neoplastic cells (4).

AR maps to the X-chromosome (9). Previous studies
performed at our institutions (10, 11) demonstrated X-
chromosome polysomy paralleled by AR gene copy number gain
in most invasive MBC, as well as in in situ carcinoma and in
cancer-associated gynecomastia.

On the other side, the gene copy number increase does not
necessarily result in higher protein expression. Indeed, CpG
islands methylation in gene promoter regions results in gene
transcriptional silencing.

In MBC, preliminary data (10) indicated that all additional
AR gene copies were hypomethylated, suggesting AR
protein overexpression.

AR gene expression is modulated by regulators, mainly
belonging to melanoma antigen-A11 (MAGEA11) family genes,
all mapping to the X-chromosome (12).

Therefore, X-chromosome polysomy, which is frequently
seen in MBC, can result in a higher gene copy number of
MAGEA11 family genes, therefore causing imbalanced AR gene
expression modulation. Presently, no data have been published
onMAGEA11 family genes methylation profile in MBC.

Furthermore, gene methylation constitutes an attractive
research focus in oncology, often useful to detect prognostic and
therapeutically important cancer profiles (13). Due to its rarity,
only a few studies focused on MBC methylation profiles (3).

The aim of this study was therefore to evaluate themethylation
level of AR, MAGEA11, and its family members (MAGEA2,
MAGEC1, and MAGEC2) in MBC. In addition, AR regulator
genes on the X-chromosome like FLNA, HDAC6, and UXT were
studied. Results obtained in invasive MBC were compared with
gynecomastia as controls.

MATERIALS AND METHODS

Patient Collection
MBC and gynecomastia cases were retrieved from the files of
the Pathology Units of the Universities of Bologna (at Bellaria

Hospital), Rome (at Catholic University, Fondazione Policlinico
Universitario A. Gemelli, IRCCS), Italy, Zurich (University
Hospital, Institute of Pathology and Molecular Pathology),
Switzerland, and Utrecht, The Netherlands. Tissues had been
routinely formalin-fixed and paraffin-embedded (FFPE). Cases
were retained when enough informative DNAwas obtained from
the FFPE tissue samples. Gynecomastia cases (N = 17) were
selected when not associated with invasive carcinoma, either
synchronous or metachronous.

All cases were diagnosed according to currently
available criteria and had undergone ER, PR, and HER2
immunohistochemical evaluation at the time of diagnosis.

Immunohistochemistry for AR was performed on an
automated platform (Ventana, Roche) applying a monoclonal
antibody (clone F39.4.1, mouse, BioGenex, San Ramon,
CA, USA).

Ethical Statement
All clinical investigations have been conducted according to the
principles expressed in the Declaration of Helsinki. The study
was approved by local Ethics Committee of Bologna (protocol
number CE-AVEC 17180). Further use of cases was approved by
the local ethical committees of Zurich (KEK_2012-553 and KEK-
2012-554) and Utrecht (5). All information regarding the human
material used in this study was managed using anonymous
numerical codes.

DNA Purification
DNA purification was performed as previously described (14)
and summarized as follows. Selected areas containing at least
70% cancer cells were macrodissected by a scalpel starting from
10-µm FFPE sections. The tissue was digested at 56◦C for 3 h
or overnight using the Quick ExtractTM FFPE DNA extraction
kit (Epicenter, Madison, WI, USA). After a denaturation step at
95◦C for 5min, the solution was centrifuged at 10,000 × g at
4◦C for 5min. The interphase containing DNA was quantified
by Nanodrop (ThermoFisher, MA, USA) and stored at 4◦C or
immediately processed for the bisulfite-NGS protocol.

Bisulfite Next-Generation Sequencing
Bisulfite treatment of genomic DNA (100–500 ng) was
carried out with the EZDNA Methylation-LightningTM Kit
(Zymo Research, Irvine, CA cod. D5031) according to the
manufacturer’s protocol. Quantitative DNA methylation analysis
was performed as previously described (15) using a two-step PCR
protocol for targeted sequencing using the NexteraTM index kit as
previously described (16). In brief, well-defined CpG islands of
the following 14 genes (see Table 1) were amplified by multiplex
PCR: AR, MAGEA2, MAGEA11, MAGEC1, MAGEC2, FLNA,
HDAC6, UXT, all mapped on the X-chromosome. Locus-specific
bisulfite amplicon libraries were generated with tagged primers
using Phusion U DNA polymerase (ThermoFisher, cod. F555L)
and loaded onto MiSEQ (Illumina, cod. 15027617) according to
the manufacturer’s protocol. FASTQ output files were processed
for quality control (Phred value > 30) and converted into
FASTA format in a Galaxy Project environment (17). The DNA
methylation level of each CpG was evaluated in parallel using
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TABLE 1 | Primers coordinates of the seven genes evaluated in this study.

Gene Description Primer forward Primer reverse Map ENSEMBL Position UCSC h38 coordinates Amplicon

length

Position respect

to TSS

Number of

interrogated

CpGs

UXT Ubiquitously

expressed

prefoldin like

chaperone

GTTTGGGTGTTTTTGGGT

GGT

TCCAATTTAACCTCACA

CACAATTCAT

Xp11.3 ENSG00000126756 Exon 1 ChrX + strand:

47658973-47659103

130 +78 6

HDAC6 Histone

deacetylase 6

TTGAGAAAGGGGTTGYG

TTT

CTACCCCRTTCCTTCAA

CCA

Xp11.23 ENSG00000094631 5′UTR/exon1 ChrX + strand:

48801912–48802085

174 −781 15

AR Androgen

Receptor

GAGGAGTTTTTTAGAATT

TGTTTTAGAG

AAAAACCATCCTCACC

CTACTACTAC

Xq11-12 ENSG00000169083 Exon 1 ChrX strand+:

67545205-67545435

231 1,169 9

MAGEC1 MAGE family

member C1

TAGTAGGGTTTAGGGA

GTGAGTAGAAA

TCAAAATTAATCAAAACTA

ACAACCC

Xq27.2 ENSG00000155495 Promoter ChrX + strand:

141903673-141903833

161 −1,400 7

MAGEC2 MAGE family

member C2

TGTTGGATTTTATTATTTAT

ATTTTTGTTG

AAACTTCCTCCTCTTC

CTCATCTATA

Xq27.2 ENSG00000046774 Exon 3 ChrX – strand:

142203870-142204050

181 −63 8

MAGEA11 MAGE family

member A11

GGGAGGATTGAGGTATT

TTTATGAT

ACTTCCCTAAATTTACA

ACAAAAAC

Xq28 ENSG00000185247 intron1-2 ChrX + strand:

149711859-149712030

172 22,883 15

MAGEA2 MAGE family

member A2

TTTTTGTYGTGAATTTA

GGGAAG

AATAAAACCCRCCTCAA

TCC

Xq28 ENSG00000268606 Exon 1 ChrX – strand:

152753752-152753935;

ChromX + strand:

152714535-152714718

184 −57 16

FLNA filamin A TGGAAGAAGATTTAGTAG

AATATTTTTA

CTTCTAACTAAACACC

TCCAACAAC

Xq28 ENST00000369850.10 Exon2 ChrX – strand:

154370985-154371125

141 +365 12

Map: chromosome mapping of the gene.

Ensembl: Transcript ID in www.ensembl.org~website.

UCSC h38 coordinates: chromosome number and human genome 38 coordinates.

Position respect to TSS: number of bases from the Transcriptional Start Site.
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the bisulfite sequencing pattern analysis tool (BSPAT—http://
cbc.case.edu/BSPAT/index.jsp) (18), Kismeth (19), and finally
BWAMETH followed by the MethylDackel tool in a Galaxy
Project environment (Europe) (17). The DNA methylation level
of each CpG was compared between MBC and gynecomastia
cases by the Kruskal–Wallis U-test using the Methylation Plotter
tool available online (20). Principal component analysis (PCA)
and the methylation HeatMap were created using ClustVis, a web
tool for visualizing clustering multivariate data (21).

RESULTS

The study population comprised 41 men with a mean age of
63 years (range 49–93). All cases were diagnosed as invasive
carcinoma, no special type (IC-NST), and were ER and PR
positive. No HER2 amplified cases were included. Clinic-
pathological details are reported in Table 2.

AR was expressed in all cases. AR antibody stained 10–100%
of the neoplastic cells (average 60%, in 86% of the cases, AR was
expressed in >60% of the neoplastic cells; Figure 1).

DNA Methylation Analysis
Bisulfite NGS was used to examine the set of seven genes listed
in Table 1, with a total of 92 CpGs, mostly located within the
promoter and the first exon.

MAGEA family members, in particularMAGEA2,MAGEA11,
and MAGEC2, showed the hypomethylation of several CpGs (p
< 0.01) in MBC compared to gynecomastia (Figure 2). Mean
values between MBC and gynecomastia of the most statistically
significant CpG of each gene of interest are highlighted in
Table 3. UXT, AR, and FLNA showed at least one statistically

TABLE 2 | Clinic-pathological details of cases enrolled in this study.

Male breast cancer Number of cases

Age 63 (range 49–93)

Size T1 35

T2 4

T3 1

T4 1

Lymph-node status N0 37

N1 2

N3 2

Histotype Invasive carcinoma NST 41

Grade G1 3

G2 31

G3 7

Number of positive cases Percentage of positive cells

ER 41 Range 1–100%

PR 36 Range 10–98%

AR 41 Range 10–100%

HER2 0

significant CpG, but both groups showedmethylation levels close
to 0 (see Supplementary Table 1 for details).

Using the PCA with the highest distribution of data (PC1,
x-axis) and the second highest principal component (PC2, the y-
axis), cases are distributed considering the methylation level of
the total of 92 CpGs (Figure 3).

The HeatMap (Figure 4) generated by data from the whole
CpGs coming from seven genes evaluated in this study showed
two clusters using correlation distance and average linkage: on
the right, 29 MBCs are positioned together with 3 gynecomastia
cases; on the left, the remaining 12 MBCs clustered together with
14 gynecomastia cases.

DISCUSSION

X-chromosome polysomy can be observed in 31 to 85% of the
MBC neoplastic cell population (11), being more frequent in
IC-NST of higher histological grade and larger size, affecting
older men (11). X-chromosome polysomy can be observed in in
situ carcinoma as well as in cancer-associated gynecomastia (10),
thereby suggesting to favor neoplastic transformation.

Several genes that can play a key role in neoplastic
transformation of male breast epithelium map to the X-
chromosome, like AR and its regulators. Therefore, it is
plausible that all those genes show copy number gain as
a consequence of X-chromosome polysomy. Indeed, results
obtained by fluorescent in situ hybridization confirm that the
AR gene copy number parallels the X-chromosome copy number
(10, 11).

A higher gene copy number can result in higher protein levels,
depending on the CpG island methylation status. Therefore, the
methylation profile is crucial to evaluating the functional status
of additional gene copies.

FIGURE 1 | AR shows a strong positivity by immunohistochemistry in most

neoplastic cells in male breast cancer.

Frontiers in Oncology | www.frontiersin.org 4 June 2020 | Volume 10 | Article 784
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FIGURE 2 | Methylation plotter of MAGEA2, MAGEA11, and MAGEC2, showing statistically significant differences by Kruskal–Wallis U Test (CpG with KW < 0.05 are

highlighted by an asterisk) between male breast cancer (MBC) and gynecomastia (Gyn).

Frontiers in Oncology | www.frontiersin.org 5 June 2020 | Volume 10 | Article 784
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TABLE 3 | DNA methylation mean values between MBC and gynecomastia of the most statistically significant CpG of each gene of interest (*p < 0.05).

Gene Position Gyn

methylation

mean

MBC

methylation

mean

Gyn

methylation

standard

deviation

MBC

methylation

standard

deviation

Gyn

methylation

minimum

MBC

methylation

minimum

Gyn

methylation

maximum

MBC

methylation

maximum

Kruskall-

Wallis

p-value

UXT 47659074 0.01678235 0.0047439 0.01555885 0.00653242 0 0 0.0411 0.0234 *0.011399

HDAC6 48802039 0.01268235 0.00179024 0.02963487 0.00696053 0 0 0.1176 0.0337 0.07347

AR 67545280 0 0.0091439 0 0.02121541 0 0 0 0.095 *0.03887

MAGEC1 141903813 0.39485 0.2411579 0.2204918 0.2036862 0 0 0.8387 0.7615 0.05113

MAGEC2 142203979 0.93955 0.4498455 0.07496397 0.44105528 0.7778 0 1 1 *0.00839

MAGEA11 148793547 0.7496625 0.5093436 0.180209 0.2780319 0.4372 0 1 1 *0.001103

MAGEA2 152733738 0.9080929 0.6717211 0.04281433 0.24045582 0.8504 0.0081 0.9768 0.9971 *0.0009163

FLNA 153599378 0.066 0.00509091 0.09142757 0.00785529 0.004 0 0.171 0.029 *0.034042

Gyn methylation mean: mean values of methylation values obtained in gynecomastia cases.

MBC methylation mean: mean values of methylation values obtained in MBC cases.

Gyn methylation standard deviation: range of methylation values obtained in gynecomastia cases.

MBC: methylation standard deviation—range of methylation values obtained in MBC cases.

Gyn methylation maximum: higher level of methylation obtained in gynecomastia cases.

MBC methylation maximum: higher level of methylation obtained in MBC cases.

FIGURE 3 | Principle component analysis of all cases included in this study. Unit variance scaling is applied to rows; singular value decomposition (SVD) with

imputation is used to calculate principal components. X and Y axes show principal component 1 and principal component 2 that explain 13.1 and 10.5% of the total

variance, respectively. Prediction ellipses are such that with probability 0.95, a new observation from the same group will fall inside the ellipse. N = 58 data points.

Previously published results (10) indicated that AR is
generally hypomethylated. The results here obtained on a
larger number of cases confirm that AR is almost completely
unmethylated. Therefore, all AR gene copies seem to be
transcriptionally active.

AR gene expression depends also on several other genes that
regulate its function. The AR FXXLF motif region serves as
an interaction site for melanoma MAGEA11 (12), a specific
AR coregulator (22). MAGEA11 increases AR transcriptional
activity during prostate cancer progression (23). Minges et al.

Frontiers in Oncology | www.frontiersin.org 6 June 2020 | Volume 10 | Article 784
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FIGURE 4 | HeatMap using the whole CpGs coming from seven genes evaluated in this study. Rows are centered; unit variance scaling is applied to rows. Both rows

and columns are clustered using correlation distance and average linkage; 92 rows, 58 columns.

(12) proposed a model in which AR and MAGEA11 form a
multidimeric complex where each monomer of the MAGEA11
dimer interacts with an AR FXXLF motif region, forming a
bridge between transcriptionally active AR dimers. The AR
regulators belonging to the MAGEA11 family also map on the
X-chromosome; therefore, they are most likely increased in copy
number in MBC.

The results here obtained indicate that all MAGEA11 family
genes are hypomethylated and therefore probably all are
transcriptionally active. Several statistically significant CpGs
located at the promoter level of MAGEA2, MAGEA11, and
MAGEC2 support this hypothesis (see Figure 2 for details).
Further studies starting from fresh/frozen tissues are needed
to demonstrate overexpression at the RNA and protein
level by RNA-SEQ and Western blot analysis, respectively.
In fact, these two approaches were not feasible starting
from retrospective FFPE tissues, since the nucleic acids

are usually very degraded and fragmented. Despite this,
we were able to obtain enough DNA from our collection
of MBC and gynecomastia, suitable to be processed with
sodium bisulfite.

Filamin A (FLNA) regulates the cytoskeleton organization
by linking with actin filaments. In addition, FLNA
protein interacting with >60 different other proteins can
regulate several cell functions ranging from cell migration,
transmembrane receptor signaling to DNA damage repair
(24, 25). Among the many functions, FLNA interacts
with AR reducing its activation in prostate cancer (24).
Mooso et al. (25) demonstrated that FLNA inhibits AR
gene transcription levels; in turn, AR modulates FLNA
protein expression and cleavage. As a consequence,
FLNA and AR interaction is a key feature in regulating
androgen deprivation therapy response in prostate
cancer (25).

Frontiers in Oncology | www.frontiersin.org 7 June 2020 | Volume 10 | Article 784
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No data have been previously published on FLNA in MBC.
According to the present results, the FLNA gene extracopies are
all hypomethylated and therefore likely transcriptionally active.

Ubiquitously expressed, prefoldin-like chaperone (UXT)
mapped to Xp11.23, also called androgen receptor trapped
clone-27 (26), is a protein expressed in many different tissues.
Among the many functions of the UXT, AR expression reduction
in prostate cancer is comprised (24). Only a few data are
available on the UXT function in FBC, indicating that UXT
modulates ER transcriptional activity (27). No further data
were available on the interaction between UXT and AR in
MBC or FBC. The data shown here, demonstrating UXT
hypomethylation levels in MBC, suggest that all UXT copies are
transcriptionally active.

The histone deacetylase 6 (HDAC6) mapped to Xp11.23 is
an important AR regulator in prostatic cancer by enhancing
AR protein stability (28). A few data are available in breast
cancer. In FBC, a correlation between AR and HDAC6
(29) expression has been demonstrated, especially in those
triple negative FBCs showing AR expression. No data were
previously published onMBC. The data shown here demonstrate
that HDAC6 is hypomethylated, suggesting an active role in
AR signaling.

In summary, the data shown here indicate that AR and its
regulators, mapped to the X-chromosome, are hypomethylated
in MBC, thus probably being transcriptionally active. All these
data are consistent with the fact that AR protein is expressed
in the majority of neoplastic cells in MBC, as detected by
immunohistochemical methods.

It was not possible to find a relation between
immunohistochemical AR expression and AR methylation
levels, as most of the cases showed a strong AR positivity in
>60% of the neoplastic cells.

Results shown here can be potentially interesting as AR
is a therapeutically useful target molecule. Specifically, the
present data demonstrate that AR and all its regulators are
hypomethylated, but methylation levels vary from case to case.
AR and its regulators’ methylation levels are not reflected by
AR expression evaluated by immunohistochemistry; indeed, to
have AR immunohistochemical positivity, a single functioning
gene is enough. As discussed above, to obtain a quantitative
AR expression evaluation, a Western blot analysis would be
necessary. Unfortunately, Western blot analysis is not feasible
on a paraffin embedded material but requires freshly frozen
tissue. Exact quantitative AR expression evaluation could have an
impact on AR deprivation therapy response.

AR deprivation therapy, well-known in prostatic cancer, has
been proposed for FBC andMBCwith varying results (30). At the
moment, only a few studies have been reported (31, 32) focusing
on AR deprivation therapy in MBC. Most knowledge is based on
single case reports (33). In almost all the reported cases, therapy
was proposed on the basis of immunohistochemical AR detection
in the neoplastic cells.

In prostate cancer, it has been shown that AR polysomy is
associated with castration-therapy resistance (34–37). Similarly,
it is plausible that in MBC also, AR deprivation therapy response
is related to AR and its coregulators’ methylation and functional

activity. Therefore, AR and its coregulators’ activity should be
better investigated to understand the real therapeutic value of
anti-AR therapy in MBC.

AR is frequently expressed in FBC. Among triple negative
breast cancers, those expressing AR are identified as of
the “luminal androgen receptor type” (38), and AR as a
possible therapeutic target is under investigation. X-chromosome
inactivation (XCI, the so-called lyonization) is well-known in
cells of the female body. Female cells have a normal XX
chromosomal asset, but one X-chromosome is usually condensed
to form the Barr chromatin body. Recently, non-random X-
chromosome inactivation and cytosine, adenine, guanine (CAG)
repeats on AR genes have been related to increased risk to
developing breast cancer (39). Nevertheless, at the best of our
knowledge, no data have been published on AR and its regulators’
methylation profiles in FBC.

In conclusion, the present study demonstrated for the
first time that MAGEA family members mapped to the X-
chromosome and coregulators of AR are hypomethylated in
MBC, reflecting their probable overexpression, whichmay lead to
the enhancement of AR activity. AR and its coregulators’ activity
may therefore play an important role in AR deprivation therapy
response in MBC.
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