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Abstract: Genetic cardiomyopathies are characterized by changes in the function and structure of

the myocardium. The development of a novel in vitro model could help to better emulate healthy

and diseased human heart conditions and may improve the understanding of disease mechanisms.

In this study, for the first time, we demonstrated the generation of cardiac organoids using a triculture

approach of human induced pluripotent stem-cell-derived cardiomyocytes (hiPS-CMs)—from healthy

subjects and cardiomyopathy patients—human cardiac microvascular endothelial cells (HCMECs)

and human cardiac fibroblasts (HCFs). We assessed the organoids’ suitability as a 3D cellular model

for the representation of phenotypical features of healthy and cardiomyopathic hearts. We observed

clear differences in structure and beating behavior between the organoid groups, depending on the

type of hiPS-CMs (healthy versus cardiomyopathic) used. Organoids may thus prove a promising

tool for the design and testing of patient-specific treatments as well as provide a platform for safer

and more efficacious drug development.

Keywords: hiPSCs; cardiomyocytes; differentiation; 3D culture; organoids; in vitro disease modeling;

personalized medicine

1. Introduction

Presently, cardiovascular diseases (CVD) represent the main cause of death worldwide [1].

Cardiomyopathies (nongenetic and genetic)—a set of conditions that compromise the contractile

activity of the heart in affected patients—represent a highly relevant subset of CVD. The disease

mechanisms in genetic cardiomyopathy are extremely variable, making it difficult to establish a

universal efficacious treatment and causing a tremendous cost burden on healthcare systems [2].

The development of novel drugs and treatments is a long and expensive process, often involving

years or decades of research, potentially leading to ineffectual results [3,4]. Indeed, the efficacy and

safety of novel medications are first evaluated during a preclinical drug discovery process which is

typically performed in 2D cell cultures and subsequently in animal models. Unfortunately, both models

fail in adequately representing human physiological conditions and incur the risk of novel candidate
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failure [5–7]. Adverse events at a late stage of clinical trials can cause substantial temporal and financial

loss [8]. To overcome these limitations and to enhance the understanding of biological mechanisms

during the preclinical stage of the drug discovery process, a new concept based on culturing cells

in three dimensions (3D) has been suggested [9]. It is believed that 3D human organoid models

will eventually promote better understanding of human disease mechanisms, and help direct future

treatments towards personalized medicine [10–13].

The advances in human induced pluripotent stem cell (hiPSC) technology allow for in vitro disease

modeling and tissue regeneration research geared towards patient-specific treatments. They also give

rise to the possibility of developing functional human organoids to emulate a multitude of organ

systems and conditions more easily [14,15]. One key feature of hiPSCs is the capacity of the cells to retain

the patient genotype from which they were derived [16]. Lan et al. showed that cardiomyocytes (CMs)

differentiated from hiPSCs derived from a hypertrophic cardiomyopathy (HCM) patient containing

a gene mutation encoding for myosin heavy chain 7 (MYH7) retained the mutation and displayed

the HCM phenotype, which is characterized by cellular hypertrophy and abnormal calcium handling

activity as evidenced by irregular beating/arrhythmia [17]. We narrowed our research focus on a

missense mutation of MYH7 in exon 19 where a single point mutation (SNP) causes an amino acid

change from Arginine into Glutamine, referred to as Arg719Gln or R719Q-MYH7 mutation. Despite

being annotated as a benign mutation, this SNP has been known to play a role in the onset of HCM

causing sudden cardiac death [18,19].

Despite well-established chemically-defined methods to efficiently differentiate hiPSCs into

high quality cardiomyocytes (CMs), only few studies have so far investigated cardiac organoids for

mimicking the human heart and its functions [20–23]. Given the advances in reprogramming somatic

cells to obtain hiPSC lines reflecting patient-specific genome profiles and in differentiating hiPSCs into

cardiomyocytes (hiPSC-CMs) resembling the corresponding cardiac phenotypes, a multicellular 3D

bioengineered tissue construct strategy is deemed a promising approach for modeling the human

heart in vitro [24–26]. However, the myocardium also contains nonmyocyte cells, which play essential

roles in cardiac physiology and function. Cardiac fibroblasts and cardiac endothelial cells represent

the majority of nonmyocytes present in the adult heart [23,25]. Cardiac fibroblasts contribute to

tissue maintenance and remodeling through the synthesis of extracellular matrix (ECM) and directly

affect the electrical properties of the myocardium. Endothelial cells (ECs) regulate the contractile

state, survival, metabolism and rhythmicity of CMs through autocrine and paracrine signaling [26,27].

The combination of these three cells types, therefore, may have the potential to significantly improve

the cardiac research field through the development of human cardiac organoids. The latter can mimic

various heart developmental stages, and can be used not only as a reliable platform for drug screening

but also as a tool to imitate patient-specific cardiac conditions and assess the effectiveness of tailored

personalized treatments [12].

In this study, as a first step, we compared two chemically defined protocols for the differentiation

of hiPSCs into CMs. Two commercially available hiPSC lines, one obtained from a healthy patient

and one from an HCM-patient carrying an MYH7 mutation, were differentiated into CMs. hiPSC-CM

quality was assessed by the evaluation of cell morphology and beating intensity. The better-suited

protocol was chosen based on the quality of the hiPSC-CMs at harvesting day. The differentiated

cells were subsequently characterized in terms of cell population purity using flow cytometry and in

terms of differentiation status using quantitative gene expression analysis. Further optimization of

the culturing conditions for the creation of cardiac organoids containing CMs and nonmyocytes was

performed. We obtained highly contractile cardiac organoids consisting of hiPSC-CMs, human cardiac

microvascular endothelial cells (HCMECs) and human cardiac fibroblasts (HCFs) by seeding a mix of

corresponding single cell suspensions. The organoids containing either of the two hiPSC-derived CMs

(healthy and cardiomyopathy-associated) were then compared in terms of cell distribution, structural

integrity, differentiation status and calcium activity, in order to assess their capability of representing

the donors’ phenotypic features.
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2. Materials and Methods

Materials were purchased from Sigma Aldrich, unless stated otherwise.

2.1. Cell Culture

2.1.1. Human Cardiac Microvascular Endothelial Cells

Human Cardiac Microvascular Endothelial Cells (HCMECs) are primary cells isolated from human

heart tissue. HCMECs were purchased from ScienCell Research Laboratories (Carlsbad, USA) and

cultured in cell culture flasks precoated with 2 µg/cm2 Bovine Plasma Fibronectin (BPF) (#8248) diluted

in Endothelial Cell Medium (ECM) (#1001). The ECM was supplemented with 5% Fetal Bovine Serum

(#0025), 1% Endothelial Cell Growth Supplement (ECGS) (#1052) and 1% Penicillin-Streptomycin

solution (#0503).

2.1.2. Human Cardiac Fibroblast

Human Cardiac Fibroblasts (HCFs) are primary cells isolated from healthy adult human heart

tissue. Cryopreserved HCFs were purchased from Cell Application (San Diego, CA, USA) and cultured

in HCF Growth Medium (#316K-500).

2.1.3. Cor.4U Cardiomyocytes

Cor.4U Cardiomyocytes (Cor.4U-CMs) are commercially available human embryonic stem

cell-derived cardiomyocytes (hiPSC-CMs) containing a mix of 60% ventricular, 20% atrial, and 20%

nodal cells. One frozen cryovial (1 × 106 cells) was purchased from NCardia Stem Cell Expert (Leiden,

the Netherlands). Cor.4U-CMs were cultured as recommended by the manufacturer. Briefly, 1 × 106

Cor.4U-CMs were thawed and plated in a 25 cm2 culture flask (T25) (TPP Techno Plastic Products

AG, Trasadingen, Switzerland), precoated with 10 µg/mL Fibronectin (Sigma-Aldrich, #F1141) in

Dulbecco’s Phosphate Buffered Saline (DPBS) with Ca2+ and Mg2+ (Gibco, #14040-133) in Complete

Culture Medium (#Ax-M-HC250), supplemented with 2 µg/mL Puromycin (#Ax-M-PO-05). After 24 h

incubation, the medium was changed and the flask was kept in culture at 37 ◦C, 5% CO2. Forty-eight

hours post-thawing, the Cor.4U-CMs were dissociated using 0.05% Trypsin EDTA (Life Technologies,

#15400, Zug, Switzerland) and immediately used to generate triculture organoids.

2.1.4. Human Induced Pluripotent Stem Cell Lines

Two commercially available hiPSC lines were purchased from the European Bank of Induced

Pluripotent Stem Cells (EBiSC, Salisbury, UK). The Wellcome Trust Sanger Institute (WTSIi020-A)

line was derived from a healthy donor and the Uniklinik Köln (UKKi025-A) line originated from a

hypertrophic cardiomyopathy donor (see Table 1). All cell culture reagents for hiPSCs were purchased

from Stem Cell Technologies (Cologne, Germany), unless stated otherwise.

Table 1. Human induced pluripotent stem cell (hiPSC) lines obtained from the European Bank of

Induced Pluripotent Stem Cells (EBiSC).

hiPSC Line Gender Age Race Remarks

WTSIi020-A Female 40–44 Caucasian Derived from healthy donor

UKKi025-A Female 40–44 Caucasian

Derived from hypertrophic cardiomyopathy (HCM)
donor with MYH7 mutation. The mutation is a
heterozygous missense mutation of the β-myosin heavy
chain MYH7 gene located in exon 19, at chromosome
location 14q11.2. There is a change of the single
nucleotide sequence at position 2156 from G to A which
causes the exchange of a nonpolar amino acid for a
positively charged one (Arginine changed into
Glutamine) in codon 719.
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Both cell lines were cultured in a six-well plate (TPP, Switzerland), precoated with 10 µg/mL

VitronectinXF (#07180) in CellAdhere dilution buffer (#07183). On seeding day, each cryovial was

thawed and seeded into two wells in 2 mL/well mTeSR1 complete medium (#85850) supplemented

with 10 µM Y-27632 (#72304).The latter is a ROCK pathway inhibitor that significantly enhances the

recovery of frozen stocks and improves hiPSCs attachment and growth in culture vessels. After 24 h at

37 ◦C with 5% CO2, the ROCKi medium was replaced with mTeSR1 complete medium, which was

replenished daily until about 70% confluency. Subculturing with a split ratio of 1:6 was done when

cell colonies presented as compact clusters with well-defined edges by using a nonenzymatic reagent,

ReLeSR (#05872). Cryopreservation was done using animal component-free medium, CryoStor CS10

(#07930), containing 10% DMSO.

2.2. Cardiomyocyte Differentiation

2.2.1. STEMdiff Differentiation Protocol

WTSIi020-A (passage no. ≥38) and UKKi025-A (passage no. ≥41) were cultured in mTeSR1

medium (StemCell Technologies, Vancouver, BC, Canada) in VitronectinXF-coated 12-well plates until

95% confluence. The STEMdiff Cardiomyocyte Differentiation Kit (StemCell Technologies, #05010) was

used to differentiate hiPSCs into CMs in eight days by following the manufacturer’s protocol. From day

8 to 15, the obtained hiPSC-CMs (WTSI-CMs and UKK-CMs) were maintained in culture, using the

STEMdiff Maintenance Kit (#05020), as recommended by the supplier. On day 15, cell harvesting

was performed by dissociating the hiPSC-CMs, using the STEMdiff Cardiomyocyte Dissociation Kit

(#05025) and a fraction of the cells was cryopreserved in STEMdiff Cardiomyocyte Freezing Medium

(#05030) at a cell density of 1 × 106 cells/mL. To reduce stress due to cell thawing and to improve

hiPSC-CMs recovery, STEMdiff Cardiomyocyte Support Medium (#05027) was applied for 24 h after

thawing and then replaced with STEMdiff Cardiomyocyte Maintenance Medium for long-term culture.

2.2.2. CDM3 Differentiation Protocol

WTSIi020-A (passage no. ≥38) and UKKi025-A (passage no. ≥41) were cultured and expanded in

six-well plates. At 70% confluence, the cells were split at a 1:4 ratio and replated in VitronectinXF-coated

12-well plates until about 85% confluence. CM differentiation was performed as described by

Burridge et al. 2014 [21]. Briefly, the cell medium was changed to CDM3, consisting of RPMI 1640

(11875, Life Technologies) supplemented with 500 µg/mL Oryza sativa-derived recombinant human

albumin (A0237, Sigma-Aldrich, 75 mg/mL stock solution in WFI H2O, stored at −20 ◦C) and 213 µg/mL

L-ascorbic acid 2-phosphate (Sigma-Aldrich, 64 mg/mL stock solution in WFI H2O, stored at −20 ◦C).

The medium was changed every other day (48 h). For the first 48 h post cell replating, CDM3 was

supplemented with 6 µM CHIR99021 (LC Laboratories). On day 2, the medium was changed to CDM3

supplemented with 2 µM Wnt-C59 (Selleck Chemicals). The medium was then again changed on day 4,

and every other day until day 15 using CDM3. Contracting cells were observed from day 7 onwards.

On day 15, both hiPSC-derived cardiomyocyte lines (WTSIi020-A-CMs and UKKi025-A-CMs) were

dissociated with TrypLE Express (1×) containing phenol red (ThermoFisher Scientific, #12605010) for

10 min at 37 ◦C and used for gene expression analysis (RT-qPCR), cell population analysis (FACS) and

triculture organoid formation. Day 15 dissociated cells were counted using a LUNA Automated Cell

Counter (Logos Biosystems, Villeneuve-d’Ascq, France) and a fraction of the cells was cryopreserved

at 1 × 106 cells per vial in CryoStor® CS10.

2.3. Flow Cytometry

WTSIi020-A-CMs and UKKi025-A-CMs were harvested on day 0 and 15 to evaluate the efficacy

of the differentiation protocol (CDM3) in producing hiPSC-CMs. The dissociated cells were directly

transferred to flow cytometry tubes (BD Biosciences) and stained with a live/dead discriminator using

1:1000 Zombie Aqua Dye (BioLegend, #423101). Samples were fixed with 4% PFA for 15 min and
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stored in FACs buffer, containing 2% FBS, 5mM EDTA, 0.01% Sodium Azide in PBS, at 4 ◦C for later

use. Before flow cytometry analysis, samples were permeabilized using a blocking buffer containing

20% FBS, 3% BSA, 0.2% Saponin in PBS for 10 min at RT. They were then stained using an antibody

solution containing 1% BSA and 0.1% Saponin in PBS, 1:600 mouse monoclonal IgG1 TNNT2 (cardiac

troponin T, clone 1G1, #MA5-17192) and rabbit monoclonal IgG OCT4 (Octamer-binding transcription

factor 4, clone T.631.9, #MA5-14845) primary antibodies (ThermoFisher Scientific, USA) for 1 h in the

dark at RT. Secondary antibody staining was performed with 1:600 dilutions of Alexa Fluor 488 and

Alexa Fluor 568 secondary antibodies (Life Technologies) for 30 min at RT. Samples were analyzed

using LSRFortessa (BD Biosciences) and FACSDiva Software. The resulting data was analyzed using

FlowJo v10 (TreeStar).

2.4. Real-Time Quantitative PCR Analysis

WTSIi020-A-CMs and UKKi025-A-CMs were collected at two differentiation time points, day 0 as

a control for pluripotent markers and day 15 to check the efficiency of the CM differentiation protocol.

Cor.4U-CMs (1 × 106) were also sampled and used as a positive control for cardiac markers. Samples

were lysed with RLT buffer (QIAGEN) and stored at −80 ◦C before proceeding with mRNA extraction.

RNA samples were obtained using RNeasy Mini Kit (QIAGEN, #74104). 100 ng RNA per sample were

reverse transcribed to 20 µL cDNA (1:1 reaction) using iScript Reverse Transcription Supermix (Bio-Rad,

#1708841). Quantitative gene expression analysis was performed using TaqMan Fast Universal PCR

Master Mix (2×), no AmpErase UNG (Applied Biosystems, #4366073), TaqMan Gene Expression

Assays (listed in Table 2) and an Applied Biosystems 7500 Fast Real-Time qPCR System. All reactions

were performed in triplicate and normalized using the 18S endogenous housekeeping gene. Relative

quantification of gene expression was performed using the ∆∆Ct method, where 2−∆∆Ct was calculated

to obtain the expression fold change value of each gene.

Table 2. Taqman gene expression assays used to prove the efficiency of Chemically-Defined Medium 3

(CDM3) differentiation protocol through real-time quantitative polymerase chain reaction (RT-qPCR).

Gene Category Symbol Gene Name Taqman Primer ID

Housekeeping 18S Eukaryotic 18S rRNA Hs99999901_s1

Pluripotency

NANOG Nanog Homeobox Protein Hs02387400_g1

OCT4 (POU5F1) Octamer-binding Transcription Factor 4 Hs00999632_g1

SOX2 SRY (Sex determining Region Y)-box 2 Hs01053049_s1

KLF4 Kruppel Like Factor 4 Hs00359936_m1

MYC
V-Myc Avian Myelocytomatosis Viral
Oncogene Homolog

Hs00153408_m1

Cardiac Development NKX2.5 NK2 Homeobox 5 Hs00231763_m1

Cardiac Structure

TNNT2 Cardiac-specific Troponin Hs00165960_m1

MYH6 Myosin Heavy Chain 6 Hs00411908_m1

MYH7 Myosin Heavy Chain 7 Hs01110632_m1

2.5. Organoid Formation Technique

Triculture organoids were created by combining hiPSC-CMs (Cor.4U-CMs or WTSI-CMs or

UKK-CMs) with HCMECs and HCFs in a single-cell suspension at a physiological cell ratio of 3:5:2,

as suggested by Devalla and Passier [28]. Greiner HLA Terasaki 60-well plates (Sigma-Aldrich, #M6062)

were used to create the organoids utilizing a modified hanging drop protocol [5,29]. Approximately

100,000 cells in 20 µL cell suspension were pipetted into each well. Organoids were harvested after

three days and transferred to Poly-L-Lysine (Sigma-Aldrich, #P4707) precoated 12-well plates for

long-term culture (21 days).
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2.6. Cell and Organoid Immunofluorescence Staining

Cells were fixed with 4% PFA (Sigma) for 20 min at room temperature. They were permeabilized with

a solution of 0.2% saponin/20% FBS/3% BSA, and further stained with primary and secondary antibodies.

Organoids were harvested and immunofluorescence stained using the Visikol Histo Organoid

Protocol. Briefly, organoids were transferred to 12-well plates and fixed overnight (≤16 h) in 4% PFA

(Sigma Aldrich, Buchs, Switzerland). After fixation, they were transferred into a 0.05% sodium azide

solution in PBS for long-term storage before processing.

All antibodies used were purchased from ThermoFisher Scientific Zurich, Switzerland, and further

diluted in Visikol Antibody Buffer (Hampton, NJ, USA). Primary antibodies used were as follows:

mouse antihuman alpha sarcomeric actinin (1:300, #MA122863), goat antihuman cardiac troponin

(TNNT2, 1:300, #PA1-86820), rabbit antihuman vimentin (VIM, 1:300, #MA5-16409) and mouse

antihuman vascular cadherin (VeCADH, 1:300, #14-1449-82). DAPI solution (1 mg/mL, #62248) was

used as a nuclear label, diluted 500-fold in Visikol Antibody Buffer, and incubated for 5 min at 37 ◦C

between the application of the primary and secondary antibodies. Secondary antibodies used were as

follows: rabbit anti-goat Alexa Fluor 647 (#A27018), goat anti-rabbit Alexa Fluor 488 (#A11034) and goat

anti-mouse Alexa Fluor 568 (#A11004). Images were taken with a Leica SP8 confocal microscopy system.

2.7. Calcium Activity Monitoring Assay

Calcium activity in highly contractile cardiac organoids was assessed using the EarlyTox Cardiotoxicity

Kit (Molecular Devices). The kit contains a dye which binds to calcium ions as they enter the cell cytoplasm,

allowing for the measurement of changes in calcium concentrations. Briefly, Cor-Oids, WTS-Oids

and UKK-Oids were transferred to eight-well µ-slides (Ibidi—cells in focus, #80824), containing

100µL of medium and 100µL of prewarmed calcium dye per well, and incubated for 2 h at 37 ◦C.

The calcium activity within the organoids was observed using widefield microscopy and recorded for

90 s. The beating pattern of each organoid type was analyzed and plotted using Fiji- ImageJ v2.0.0.

The beating rates per minute (bpm) were calculated in Fiji- ImageJ v2.0.0 using the BAR plug-in, which

determines the peaks in the plotted organoid beating curves.

2.8. Statistical Analysis

FACS: the flow cytometry standard files obtained from the FACS analysis were processed using

FlowJo. Firstly, gating of the forward (FCS) versus side scatter (SCC) was determined. To determine

the live cell population, the singlets and zombie aqua dye negative events were selected. The Median

Fluorescence Intensity (MFI) over the differentiation time (day 0 vs day 15) in TNNT2 and OCT4 cells

was recorded, plotted and compared by a two-way ANOVA test using the GraphPad Prism 8 software.

All data are presented as mean ± standard error of the mean (SEM). A p-value ≤0.01 was deemed

statistically significant.

qPCR: 18S was selected as the housekeeping gene and amplification data were used to quantify

the expression of the genes of interest. Relative expression values (2−∆∆Ct) were calculated using Excel

(Microsoft). The unpaired t-test (two-tail) was used to compare the different time points for each gene

investigated (day 0 vs day 15). All data are presented as mean ± standard error of the mean (SEM).

A p-value ≤ 0.01 was deemed statistically significant.

3. Results

3.1. Differentiation of hiPSCs into Cardiomyocytes

Cardiomyocytes were differentiated from hiPSCs, comparing two differentiation protocols,

STEMdiff and CDM3 adapted from [21], using two commercially available patient-derived hiPSC lines:

WTSIi020-A and UKKi025-A, corresponding to a healthy donor and an HCM patient, respectively.

Various differentiation cell batches were produced to optimize the protocol for our study (see Table 3).

Cardiac differentiation was induced in both lines with the results showing that the production of
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hiPSC-CMs using the STEMdiff protocol exhibited high variability, while the CDM3 protocol was found

to be more stable and effective, especially when started at a cell passage number >40 and at higher

than 85% cell confluency (Figure 1 and Table 3). The quality of our hiPSC-CMs was assessed by visual

inspection of their morphology and beating intensity at harvesting day. Both WTSIi020-A derived

CMs (WTSI-CMs) and UKKi025-A derived CMs (UKK-CMs) obtained from five differentiation batches

were frozen and banked to assess their survival after thawing. WTSI-CMs and UKK-CMs obtained

using the STEMdiff protocol showed low cell recovery post-thawing (10–20% survival), while the ones

differentiated according to the CDM3 protocol displayed better cell recovery post-thawing (40–50%),

when using the freezing media as suggested by the protocols. To improve recovery post-thawing,

another freezing medium, normally used for hiPSC cryopreservation (CryoStor), was tested, which

improved the cell recovery of CMs differentiated in CDM3 up to 60–70% post-thawing.

Table 3. Differentiation protocol comparison. The STEMdiff and CDM3 protocols were compared to

differentiate cardiomyocytes (CMs) using two hiPSC-lines, one from a healthy patient (WTSIi020-A) and

another from a hypertrophic cardiomyopathy patient (UKKi025-A). In terms of cell quality, the CDM3

protocol proved to be better for the differentiation of WTSIi020-A and UKK025-A into CMs.

WTSIi020-A UKKi025-A

Batch No. Protocol Passage Confluence CMs Quality Passage Confluence CMs Quality

1st STEMdiff 38 95% Low 42 95% Mid

2nd STEMdiff 39 95% Differentiation Failed 41 95% Mid

3rd
STEMdiff 39 95% × 41 95% ×

CDM3 39 85% Mid 41 85% High

4th CDM3 40 85% High 41 90% High

5th CDM3 42 90% High 42 95% High

value ≤0.01 was 

−ΔΔCt

value ≤0.01 was deemed statistically significant.

Figure 1. Illustration of hiPSC differentiation with Chemically-Defined Medium 3 (CDM3) protocol

adapted from Burridge et al. [21].

3.2. Characterization of hiPSC-CMs

The robustness of the selected differentiation protocol (CDM3) was assessed in terms of proportion

of differentiated to undifferentiated cells in the population, by performing flow cytometry using

cardiac and pluripotency markers. Cardiac-specific troponin (TNNT2) was used to specifically label

differentiated CMs [21,30], and octamer-binding transcription factor 4 (OCT4) [31] was used to check

for the presence of undifferentiated hiPSCs. Flow cytometry analysis was performed on sampled cells

from the fifth differentiation batch on day 0 and day 15. The efficiency of the CDM3 protocol for both

hiPSC lines was demonstrated by the finding that 75% of WTSI-derived cells and 97% of UKK-derived

cells were positive for cardiac troponin at day 15 (Figure 2A,B). The fluorescence intensities of TNNT2+

and OCT4+ cells on day 0 and 15 were measured and the median fluorescence intensities (MFI) were

calculated (Figure 2C,D). The data showed a decrease in the number of OCT4+ cells from day 0 to day

15, while a significant increase in TNNT2+ cells occurred over time, which underlines the robustness of

the differentiation protocol and indicates high cell purity for both WTSI-CM and UKK-CM populations.
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Figure 2. Characterization of cardiomyocytes derived from WTSIi020-A and UKKi025-A. (A,B) Flow

cytometry analysis of cells positive for TNNT2 and OCT4 at the beginning (day 0) and the end (day 15)

of differentiation in CDM3. (C,D) Median fluorescence intensities of TNNT2+ and OCT4+ populations

at day 0 and 15 of the CDM3 protocol. n = 3 biological replicates. (E,F) Heatmap plots representing

RT-qPCR for markers of pluripotency (NANOG, OCT4, SOX2, KLF4, MYC), cardiac progenitors

(NKX2.5) and cardiomyocytes (TNNT2, MHY6, MHY7) on day 0 and day 15. n = 3 independent

biological replicates performed in technical triplicates. (G) Immunofluorescent staining images of

cardiomyocytes derived from WTSIi020-A and UKKi025-A. WTSIi020-A CMs show clear formation of

immature sarcomeric-like structure while UKKi025-A CMs display a disrupted structure and rather

enlarged cell morphology (marked with *). Significance level A: **** poct4 < 0.001; * ptnnt2 < 0.023;

B: *** poct4 = 0.0002; **** ptnnt2 < 0.0001; C: ** poct4 = 0.0015; **** ptnnt2 < 0.0001; D: * poct4 = 0.0142;

**** ptnnt2 < 0.0001; E: p ≤ 0.0001; F: p ≤ 0.0002.
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The fifth batch cells were also sampled and examined for pluripotent and cardiac gene patterns

(Day 0 vs Day 15), comparing them with a commercially available cardiomyocyte line, Cor.4U-CMs,

by real-time quantitative PCR (RT-qPCR) (Figure 2E,F). In concordance with previously reported

patterns [21,32], the pluripotency markers Nanog Homeobox Protein (NANOG), OCT4 and SRY

(Sex determining Region Y)-box 2 (SOX2) were found to have been down-regulated on day 15 when

compared to day 0, meaning that the pluripotent state, normally maintained in undifferentiated cells

by a complex network made of these transcription factors, was diminished [31]. The expression

level of tumorigenic markers Kruppel Like Factor 4 (KLF4) and V-Myc Avian Myelocytomatosis Viral

Oncogene Homolog (MYC) [33] resulted in a significant decrease at day 15, indicating an absence of

carcinogenicity in the differentiated populations [34]. As expected, cardiac-specific markers such as

NKX2.5, TNNT2, MYH6 and MYH7 were found completely absent on day 0 while highly expressed on

day 15. Surprisingly, the cardiac progenitor NK2 Homeobox 5 (NKX2.5), cardiac troponin T2 (TNNT2),

embryonal myosin heavy chain (MYH6) and adult myosin heavy chain (MYH7) were found to have

similar expression levels in both hiPSC-CM populations. This could be related to the cardiomyocyte

maturity status. Indeed, NKX2.5 and MHY6 are normally highly expressed during CM differentiation

and myofilament establishment, the latter of which introduces contractile capacity in the cells [35].

The contraction-relaxation cycle promotes the maturation of fetal/immature CMs [28,36]. Mature

CMs should display a high level of MYH7 and low or no MYH6 expression. TNNT2 is expressed in

both immature and mature CMs, with the difference being that in mature cells its expression level is

somewhat constant and stable [37]. The above-mentioned gene expression results indicate that our

day 15 WTSI-CMs and UKK-CMs, differentiated in CDM3 medium, were still immature.

In concordance with the gene expression results, immunofluorescent staining images (Figure 2G)

showed clear formation of immature sarcomeric-like structures in WTSIi020-A CM, while UKKi025-A

CM exhibited discontinued actin filament fibers and a rather enlarged cell morphology. The beating

patterns of these two types of cardiomyocytes also differed, in that the UKKi025-A CMs (Supplementary

Video S1B) displayed arrhythmic beating as opposed to the WTSIi020-A CMs (Supplementary Video S1A).

3.3. Generation of Triculture Cardiac Organoids

In a next step, highly contractile cardiac organoids—composed of hiPSC-CMs, primary human

cardiac microvascular endothelial cells (HCMECs) and primary human cardiac fibroblasts (HCFs)—were

generated, using Terasaki plates in a modified hanging drop approach [5,29]. 25 µL of the cell mixture

were pipetted onto each Terasaki well, inverted and incubated for at least three days, until organoids

were formed. The cell seeding density was optimized at 100,000 cells per organoid and the cell ratio

was 3:5:2, i.e., three parts CMs, five parts endothelial cells and two parts fibroblasts, mimicking adult

human heart tissue, as previously described by Devalla and Passier [28].

3.3.1. Proof of Concept Experiment: Gold Standard Cor-Oids

To validate the triculture approach, the organoid formation concept was initially tested and

confirmed by generating contractile cardiac organoids containing commercially available hiPSC-CMs.

Cor.4U-CMs were tricultured together with the HCMECs and HCFs. The Cor.4U-based organoids

(referred to as Cor-Oids) were chosen as a positive control for comparison to organoids containing our

differentiated hiPSC-CMs.

On day 3 after triculture seeding, the Cor-Oids were harvested from the Terasaki plates and

transferred onto Poly-L-Lysine pre-coated plates (Figure 3A) to prevent complete attachment and

spreading on the bottom of the well plate. They were then maintained in culture until day 21 (D21),

when they showed an increased contraction activity compared to the harvesting day (D3). On day 21,

the Cor-Oids shrunk in dimension, assuming a compact and well-defined spherical shape, showing

significantly increased beating intensities.
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Figure 3. Modelling Adult Human Heart Organoids. (A) Generation of contractile cardiac organoids

(Cor-Oids) containing Cor.4U-CMs, HCMECs and HCF at 3:5:2 cell ratio using Terasaki plates showed the

formation of compact ball-like shapes after 21 days of culture. (B) Immunofluorescence staining images

of Cor-Oids after 14 days of culture, labelled with cardiac-specific troponin (TNNT2), vascular cadherin

(VeCADH) and vimentin (VIM), showing organoids with a lack of defined cardiac structures (T-tubules

and sarcomeres). (C) Immunofluorescence staining images of Cor-Oids after 21 days of culture, labelled

with cardiac-specific troponin (TNNT2), vascular cadherin (VeCADH) and vimentin (VIM), showing

CMs migration toward the organoid core, promoting the formation of cardiac filament-like structures.

Scale bars = 200 µm.

The cell distribution and the structural integrity of the Cor-Oids were analyzed and confirmed via

immunofluorescence staining for cell-specific markers after 14 and 21 days post-seeding, using TNNT2,

VeCADH and VIM as specific markers for CMs, HCMECs and HCFs, respectively. All expected cell

types were positively identified within the organoids. The CMs showed a preference to localize at
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the organoids’ perimeter, while HCMECs and HCFs were localized predominantly in the inner part,

on day 14 (Figure 3B).

Interestingly, a more prominent CM migration to the organoids’ core was observed in day 21

Cor-Oids (Figure 3C), implying that one additional week of culture appears to be advantageous for

cell distribution and migration. A more evenly distributed cell pattern was evident, and the CMs (red)

formed an interlaced filament-like structure all around the perimeter of the Cor-Oids (Figure 3C).

We have shown that a triculture approach is effective in forming cardiac organoids composed

of physiological and cardiomyopathic hiPSC-CMs. We observed that the longer the triculture

period, the more contact between myocytes and nonmyocytes was established, thus generating

more physiological-like cardiac organoids. We conclude that day 14 Cor-Oids were decidedly less

physiological than their day 21 counterparts, and we set the latter as the experimental standard for the

further generation of organoids containing our hiPSC-CMs.

3.3.2. hiPSC-CM-Based Cardiac Organoids

Following the optimization of the Cor-Oids protocol, in a next step, both the WTSI-CMs and

UKK-CM cell lines were used for the generation of organoids. A single cell suspension of either cell type

was mixed with both HCMECs and HCFs (3:5:2, 100,000 cells/organoid) to establish organoids representing

healthy and HCM cardiac tissue. We named these organoids WTS-Oids and UKK-Oids, respectively.

The WTS-Oids and UKK-Oids were also maintained for 21 days, and evaluated in terms of

cell distribution, migration of CMs towards the organoids’ core and the presence of cardiac-like

structures. Immunofluorescence staining of TNNT2, VeCADH and VIM performed on WTS-Oids

and UKK-Oids was compared to Cor-Oids at day 21. The HCMEC and HCF cellular distribution

were found to be similar in all organoid types (Figure 4A–C, iii–iv). However, several differences

were observed regarding the hiPSC-CMs of alternative origin. The CMs in the WTS-Oids were

clearly distributed around the perimeter, forming a unique filament-like structure (red staining,

Figure 4B, i–ii), while in the UKK-Oids (Figure 4C, i–ii) the formation of a filamentous structure was

still in progress. These findings demonstrated that the patient-derived CMs initially form a filamentous

structure on the organoids’ perimeter and then migrate to the core, promoting the formation of cardiac

filament-like structures (T-tubules and sarcomeres). We speculate that this migration enhances the

physiological-like properties of the organoids. However, our findings also indicate that the WTS-Oids

were less physiological when compared to the Cor-Oids (Figure 4A, i–ii) and the UKK-Oids appeared

to exhibit the least physiological-like properties at 21 days.

These findings may suggest that the expression of the organoids’ physiological-like properties

depend on the source of CMs. To assess this further, the first day of contractions and relaxations

and the beating time of each organoid type were recorded and compared over 21 days of culture

(Table 4). Our data showed that contractions and relaxations (beating cycles) represent a conditioning

of the organoids, which enhances the formation of cardiac-like structures and promotes the organoids’

physiological properties over time. Cor-Oids exhibited the longest sustained beating times among the

three organoid groups, while WTS-Oids showed intermediate and UKK-Oids the shortest sustained

beating times.

Table 4. The organization of organoids depends on their sustained beating time.

Organoid Type Visible Contractions and Relaxations Sustained Beating Time

Cor-Oids Day 2,3 ~3 Weeks

WTS-Oids Day 7,8 ~2 Weeks

UKK-Oids Day 12–15 ~1 Week

Over 21 days of culture, the day when contractions and relaxations were recognized and the sustained beating
time of each organoid type were found to be key points for determining their structural organization. Indeed,
contractions and relaxations over time stimulate the formation of defined cardiac-like structures.
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Figure 4. Determining the structural development of cardiac organoids. (A–C) Immunofluorescence

images of Cor-Oids, WTS-Oids and UKK-Oids after 21 days of culture, labelled with cardiac-specific

troponin (TNNT2), vascular cadherin (VeCADH) and vimentin (VIM). We identified similar structural

patterns (A–C, iii–iv) in all organoid types, in terms of HCMEC (magenta) and HCF (green) distribution.

Different structural development patterns were observed regarding the migration of hiPSC-CMs and the

formation of cardiac filament-like structures (red), which were well-defined in Cor-Oids (A, i–ii), mostly

perimetric in WTS-Oids (B, i–ii), and still in formation in UKK-Oids (C, i–ii). Scale bars = 200 µm.

3.3.3. Cardiac Organoids Display Patient-Specific Phenotypic Features

In order to further assess the organoids’ beating patterns and frequencies, a calcium ion binding

dye was used to determine their calcium activity after 21 days of culture. As expected, phenotypical

differences based on the source of hiPSC-CMs were observed. Cor-Oids were found to have a

rhythmically regular beating pattern, with a beating rate of 82 ± 2 bpm (Figure 5A and Supplementary

Video S2A) [38]. Interestingly, the beating pattern of WTS-Oids was found to be regular, but with

a much slower rate (31 ± 2 bpm) compared to Cor-Oids, which may be due to the fact that the

WTSIi020-A-CMs were not sorted for cell purity (Figure 5B and Supplementary Video S2B). Notably,

UKK-Oids presented with an irregular beating pattern and a variable beating rate (52 ± 8 bpm), which

may correspond to the arrhythmia typically observed in HCM patients (Figure 5C and Supplementary

Video S2C) [17]. Our findings confirm that the physiological-like state of the organoids is highly

dependent on the culture time.
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Figure 5. Patient-specific (patho-)physiological features mirrored by cardiac organoids. (A–C) Analysis

of the beating patterns and rates of Cor-Oids, WTS-Oids and UKK-Oids on day 21 (A) Cor-Oids showed

a regular beating pattern with a beating rate of 82 ± 2 bpm (B) WTS-Oids showed a similar regular

beating pattern, but a slower beating rate than Cor-Oids (C) UKK-Oids presented an arrhythmic beating

pattern and a significant variability in their beating rate. RFI = Relative Fluorescence Intensity.

4. Discussion

Cardiomyopathies are a subset of human cardiovascular diseases, which are currently among

the leading cause of morbidity and mortality worldwide [5,30]. Although classified into one group,

cardiomyopathies present with many differences in terms of disease mechanisms, which renders
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diagnosis complex and makes it difficult to establish a uniform therapeutic approach [2]. Generally,

cardiomyopathies affect the function of the heart due to compromised CM morphology and

physiology [39,40]. Unexpected pharmaco-related side effects and toxicities have led to serious

outcomes, such as myocardial infarction and the development of chronic heart failure [22,33]. Moreover,

the discovery of novel pharmaceutical lead compounds is not only a long and expensive process but is

often compromised by drug efficacy and drug safety problems in clinical trials [12]. It is thus of great

importance to improve and accelerate the drug discovery process by establishing a human-relevant

tissue model, capable of representing human physiological functions in vitro. Organoids may embody

the most tangible solution to evaluating drug safety during the early phase of preclinical drug discovery,

allowing for the development of risk mitigating strategies by testing patient-specific responses and

tailoring more precise treatments [12,39,41]. Indeed, conventional 2D cell culture has significant

shortcomings, thereby limiting its relevance in assessing drug safety and efficacy [42]. Some previously

established cell culture models using isolated CMs from animals showed their nonrelevance for human

translation [40,43]. Models based on human cardiac cell lines were found to be too simplistic and poor

in the representation of physiological or pathological states [44]. Previous cardiac organoid models

did neither include endothelial cells as a nonmyocyte component in the microtissues, nor contain

cardiomyocytes derived from hiPSC lines having a known cardiac disease background [43,45].

Our study aims to elucidate the suitability of cardiac organoids as a novel in vitro model for

genetically healthy and hypertrophic cardiomyopathy (HCM) heart conditions. This model could serve

as a platform for understanding disease mechanisms as well as designing patient-specific treatments.

Making use of the fact that hiPSCs maintain the genotype of the donor, we differentiated CMs from

hiPSCs derived from a healthy patient and an HCM patient in order to assess their capacity to represent

the corresponding human heart (patho-)physiology [16]. After comparing two differentiation protocols

for robustness and efficiency, the protocol developed by Burridge et al. was selected to derive healthy

(WTSI-CMs) and HCM (UKK-CMs) CMs from hiPSCs [21]. We found this protocol to be the most

economical and efficient differentiation protocol for use in the academic lab. The differentiated cells

were characterized by flow cytometry, with the majority of the differentiated cells (day 15) proving

positive for TNNT2, as confirmed by calculating the median fluorescence intensities (MFI) of the

light emitted by TNNT2+ populations. Further characterization was performed examining the gene

expression patterns on both (WTSIi- and UKKi-derived cells) day 15 TNNT2+ populations, showing

downregulation of pluripotency (NANOG, OCT4, SOX2) and carcinogenicity (KLF4, MYC) markers,

which demonstrates high differentiation efficiency and absence of oncogenicity. Cardiac markers

(NKX2.5, TNNT2, MYH6 and MYH7) were found upregulated, which suggests the formation of

advanced cardiac structures. However, the high expression of NKX2.5 and MYH6 indicate that

both day 15 WTSI-CMs and UKK-CMs were still rather immature cardiomyocytes [16]. Once the

differentiation protocol was established, WTSI-CMs and UKK-CMs were used for the generation of

cardiac organoids, which we labelled WTS-Oids and UKK-Oids, respectively. Our aim in performing

triculture cell seeding to establish cardiac organoids is to provide more physiological-like function and

structure in an in vitro model. The triculture cell ratio —consisting of three parts cardiomyocytes, five

parts endothelial cells and two parts fibroblasts —was chosen to resemble the corresponding cell ratio

in the adult human heart [28]. This ratio is, however, highly variable and subject to change, according

to the different developmental stages of the human heart.

To prevent overgrowth of the endothelial cells and fibroblasts, we used a cardiomyocyte

maintenance medium during the triculture organoids culture. In the myocardium, endothelial

cells are known to regulate the contractile state of CMs through autocrine and paracrine signaling

molecules, while fibroblasts play an essential role in the maintenance and remodeling of the 3D

structure through the synthesis of extracellular matrix (ECM) [12,22,28].Therefore, we used a triculture

approach of hiPSC-CMs, HMCECs and HCFs for the generation of highly contractile cardiac organoids,

with the goal of mimicking the cardiac microenvironment as closely as possible in 3D. As a parallel

comparison, commercially available cardiomyocytes Cor.4U-CMs were used to generate what we
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defined as standard organoids (Cor-Oids). The Cor-Oids exhibited more physiological-like properties

than the hiPSC-derived organoids after 21 days in culture, exhibiting sustained beating, which may

indicate that extended myocyte and nonmyocyte cell-to-cell contact may promote the formation of

more physiological cardiac-like structures.

Cell distribution, CM migration, appearance of cardiac structures and beating patterns as well as

beating rates of WTS-Oids and UKK-Oids were compared to the Cor-Oids to evaluate the functional

features and the physiological-like properties at the same timepoint (day 21). We found that CM

distribution is dependent on organoid culture time to allow for the migration of CMs towards the

core of the 3D microenvironment. This migration promotes the interaction of CMs with nonmyocytes,

leading to the formation of filamentous-like structures, which most likely represent T-tubules and

sarcomeres. Moreover, we observed that the appearance of the beating cycle is directly related to

the formation of T-tubules and sarcomeres, which, in turn, is strictly associated with the organoids’

sustained beating time. This may explain why WTS-Oids and UKK-Oids show weaker beating,

and hence less physiological-like properties, when compared to Cor-Oids. Finally, we observed that

WTS-Oids present a rhythmic regular beating pattern while UKK-Oids present with arrhythmia, which

is typical for HCM patients. This suggests that organoids retain the phenotype of the hiPSC donor.

Taken together, the proposed in vitro organoid model may represent a physiological-like human

heart mini-tissue, which retains the geno- and phenotypical characteristics of the corresponding donor

tissue. Therefore, our organoids may represent a robust model system, suitable for medium- to

large-scale production, for studying and modeling cardiac disease. Feasibility assays for producing

organoids in a more size-controlled, automated and high-throughput fashion is envisioned. It should

be noted that this system cannot entirely replace animal models due to the bypassing of critical

composite features of human diseases, such as complex sensory and feedback systems.

We acknowledge that our study has several limitations. Firstly, the question that has to be

addressed in more detail in the future is the maturation of hiPSC-derived CMs. A recent study

suggests that multicellular contact over prolonged culture periods could enhance maturation [46].

Secondly, the observed differences between the hiPSC lines and the organoids need to be investigated

further using a larger quantity of organoids. The mutation in the HCM hiPSC-CMs should be

confirmed by total DNA sequencing. Thirdly, it is understood that modeling cardiomyopathy using the

triculture approach does not account for further influencing factors, such as immunological responses

and additional cardiac cell fractions (e.g., CM subpopulations like Purkinje fibers). Immune cells

could ideally be cultivated on the outer layer of the organoids to monitor immunological responses.

It would be insightful to elucidate immune cell migration patterns in the rather loose-structured,

cardiomyopathy-representing organoids. Finally, it would be ideal to derive all organoid cell fractions

from the identical parental hiPSC line for the triculture approach. There exist established protocols to

derive hiPSCs into endothelial cells and cardiac fibroblast [47,48]. We suggest that the recapitulation

of cardiomyopathic properties in such organoids could be even more pronounced, especially in

diseases where the pathophysiology does not solely stem from cardiomyocytes pathology but also

from nonmyocyte components.

5. Conclusions

In the present study, we demonstrate the differentiation of isogenically comparable hiPSC lines

into cardiomyocytes from a healthy human donor and a patient with hypertrophic cardiomyopathy

for the generation of human cardiac organoids. To mimic adult human heart tissue, healthy and

HCM-associated hiPSC-CMs were combined with HCMECs and HCFs to generate highly contractile

triculture organoids. These organoids are capable of representing significant phenotypical features of

the healthy and hypertrophic cardiomyopathic human heart in vitro.

Obtaining hiPSCs, reprogrammed from patient-derived somatic cells, offers not only the possibility

of differentiating all cell types involved in the generation of highly contractile cardiac organoids but

may open up new perspectives for the development of safer and more efficacious patient-tailored
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therapeutic strategies. Our novel cardiac organoids may, therefore, represent a valuable platform for

high-throughput testing and validation of novel therapeutic agents to treat cardiomyopathy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/7/1733/s1.
Beating videos of (S1A) WTSIi020-A CMs and (S2B) UKKi025-A CMs; Calcium activity videos of the (S2A)
Cor-Oids, (S2B) WTS-Oids and (S2C) UKK-Oids, obtained using a wide field microscope.
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Abbreviations

CMs cardiomyocytes

Cor-Oids Cor.4U-based organoids

ECM extracellular Matrix

ECs endothelial cells

HCFs human cardiac fibroblasts

HCM hypertrophic cardiomyopathy

HCMECs human cardiac microvascular ECs

hiPSCs human induced pluripotent stem cells

hiPSC-CMs hiPSC-derived CMs

KLF4 kruppel like factor 4

MFI median florescence intensity

MYC V-Myc avian myelocytomatosis viral oncogene homolog

MYH6 myosin heavy chain 6

MYH7 myosin heavy chain 7

NANOG nanog homeobox protein

NKX2.5 NK2 homeobox 5

OCT4 octamer-binding transcription factor 4

RT-qPCR real time quantitative PCR

SOX2 SRY (sex determining region Y)-box

TNNT2 cardiac-specific troponin

UKK-CMs UKKi025-A derived CMs

UKK-Oids UKK-CMs based organoids

VeCADH vascular cadherin

VIM vimentin

WTSI-CMs WTSIi020-A derived CMs

WTS-Oids WTSI-CMs based organoids
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