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FDG PET versus CT radiomics to predict
outcome in malignant pleural
mesothelioma patients
M. Pavic1* , M. Bogowicz1, J. Kraft1, D. Vuong1, M. Mayinger1, S. G. C. Kroeze1, M. Friess2, T. Frauenfelder3,

N. Andratschke1, M. Huellner4, W. Weder2, M. Guckenberger1, S. Tanadini-Lang1 and I. Opitz2

Abstract

Background: Careful selection of malignant pleural mesothelioma (MPM) patients for curative treatment is of

highest importance, as the multimodal treatment regimen is challenging for patients and harbors a high risk of

substantial toxicity. Radiomics—a quantitative method for image analysis—has shown its prognostic ability in

different tumor entities and could therefore play an important role in optimizing patient selection for radical cancer

treatment. So far, radiomics as a prognostic tool in MPM was not investigated.

Materials and methods: This study is based on 72 MPM patients treated with surgery in a curative intent at our

institution between 2009 and 2017. Pre-treatment Fluorine-18 fluorodeoxyglucose (FDG) PET and CT scans were used for

radiomics outcome modeling. After extraction of 1404 CT and 1410 FDG PET features from each image, a preselection by

principal component analysis was performed to include only robust, non-redundant features for the cox regression to

predict the progression-free survival (PFS) and the overall survival (OS). Results were validated on a separate cohort.

Additionally, SUVmax and SUVmean, and volume were tested for their prognostic ability for PFS and OS.

Results: For the PFS a concordance index (c-index) of 0.67 (95% CI 0.52–0.82) and 0.66 (95% CI 0.57–0.78) for the training

cohort (n = 36) and internal validation cohort (n = 36), respectively, were obtained for the PET radiomics model. The PFS

advantage of the low-risk group translated also into an OS advantage. On CT images, no radiomics model could be

trained. SUV max and SUV mean were also not prognostic in terms of PFS and OS.

Conclusion: We were able to build a successful FDG PET radiomics model for the prediction of PFS in MPM. Radiomics

could serve as a tool to aid clinical decision support systems for treatment of MPM in future.

Keywords: Radiomics, Machine learning, Artificial intelligence, Malignant pleural mesothelioma, Prognostic model, Clinical

decision support system

Background
Malignant pleural mesothelioma (MPM) is an aggressive

thoracic malignancy with a dismal prognosis. The tumor

originates from cells of the visceral or parietal pleural

and is linked to asbestos exposure with a median latency

of 44.6 years [1]. Due to the latency between exposure

and onset of mesothelioma and the ongoing use of

asbestos in parts of the world, the incidence is expected

to rise continuously in the next years, necessitating im-

provements in management of these patients. Life ex-

pectancy is still poor today, with a median overall

survival of approximately 12 months [2]. Multimodal

treatment strategy is associated with a prolonged median

survival of up to 29 months, but also harbors the risk of

increased toxicity [3, 4]. Adjuvant radiation therapy after

chemotherapy and radical surgery was investigated in a

multicenter phase II trial and did not show a benefit for

locoregional relapse-free survival and thus cannot be
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considered as a standard adjuvant treatment for MPM

patients [5]. To date, most centers offer multimodal

treatment consisting of (neo-)adjuvant chemotherapy

in conjunction with maximal surgical cytoreduction

[6]. However, only a minor subset of all newly diag-

nosed patients is considered to be eligible for such

radical surgery. The vast majority of patients receive

palliative systemic therapy. Careful selection of appro-

priate candidates for a curatively intended and poten-

tially toxic multimodal treatment is of highest

importance, asking for prognostic factors and scores.

There are some known clinical prognostic factors,

such as the performance status and histology among

others [7], that are incorporated into the EORTC–

prognostic score. Based on this, a discrimination of

pleural mesothelioma patients into a good- and a

poor-prognosis group is possible [8].

Recently, morphological features derived from medical

images were discovered as additional important prog-

nostic factors. Tumor volumetry and maximal pleural

thickness on axial CT slices were prognostic in terms of

median survival [9, 10]. The International Association

for the Study of Lung Cancer (IASLC)/International

Mesothelioma Interest Group (IMIG) database reported

a correlation between the maximal pleural thickness on

axial CT slices and T stage (according TNM 7th edi-

tion), overall stage, nodal stage, and survival [11].

Radiomics is an advanced computational method to

describe tumors in a more comprehensive way than sim-

ple measurements. Shape, intensity, and texture of a

tumor are quantified on medical images through math-

ematical analysis, resulting in hundreds of extracted fea-

tures [12]. By applying mathematically defined filters,

even more information can be extracted from images by,

e.g., enhancing high and low frequency components of

the images, such as edges and reduced noise. Radiomic

signatures were shown to be prognostic for survival and

local tumor control in multiple tumor entities [13].

However, MPM has not been investigated yet using this

approach. The aim of our study was to analyze the prog-

nostic ability of CT-based and Fluorine-18 fluorodeoxy-

glucose (FDG) PET-based radiomics models for the

prediction of progression-free-survival (PFS) and overall

survival (OS) in MPM patients undergoing a curative

treatment approach.

Methods
Studied population

In total, 72 MPM patients were studied retrospectively

out of 123 patients referred for treatment to the Univer-

sity Hospital Zurich between 2009 and 2017. Clinical pa-

rameters and initial pre-therapeutic staging by FDG

PET/CT were available. Confirmation of diagnosis by

histological examination of biopsy specimens was

available in all subjects. All patients underwent curative

treatment consisting of at least aggressive surgery. In-

duction chemotherapy with platinum and pemetrexed,

administered for 3 to 4 cycles, was performed in 60 out

of 72 patients. Curative surgery was performed either by

extrapleural pneumonectomy (EPP) or pleurectomy/de-

cortication (P/D). The training and the validation cohort

consisted of 36 patients each (split by date of treatment).

Median follow-up was 51.9 months (22.4–70.5 months)

and 24.1 months (13.5–39.8 months), overall survival

(OS) was 21.5 months (2.6–74.8 months) and 23.7

months (5.9–39.8 months) and PFS was 11.3 (range 2.6–

51.9 months) and 11.7 (5.0–39.8 months) for training

and validation cohort, respectively. Detailed patients’

characteristics are provided in Table 1.

Image acquisition and definition of volumes

For all patients, pretreatment FDG PET and native CT

scans were available. Blood glucose level was measured

prior to FDG PET/CT. All PET scans were corrected for

decay, attenuation, scatter, dead time, and random. De-

tails on scanning parameters are provided in Table 2. To

reduce variability in imaging acquisition between pa-

tients, non-contrast-enhanced CT scans were used as

some patients did not receive contrast due to various

reasons. Manual delineation of the primary tumors was

performed by four radiation oncologists (with more than

3 years of experience) on co-registered CT and FDG

PET images according to a study-specific protocol: all

FDG PET-positive masses were included as well as FDG

PET-negative but highly suspicious pleural thickenings,

lung nodules, infiltrated pericardium and mediastinal ex-

tension on CT imaging. Pleural effusion and atelectasis

were excluded. Contouring was performed either in

Eclipse (Varian Medical Systems VR, Palo Alto, CA) or

MIM Vista (Version 6.7.9, MIM Software Inc. VR,

Cleveland, OH).

Table 1 Patient characteristics

Training cohort (n = 36) Validation
cohort (n = 36)

Age (range) 64 (40–67) 66 (49–76)

Gender (%)
- Male
- Female

34 (94)
2 (6)

30 (83)
6 (17)

Histology (%)
- Epithelioid
- Biphasic
- Sarcomatoid

31 (86)
4 (11)
1 (3)

30 (83)
5 (14)
1 (3)

Surgery (%)
- P/D
- EPP

23 (64)
13 (36)

30 (83)
6 (17)

Induction chemotherapy (%) 25 (69) 35 (97)

P/D pleurectomy/decortication, EPP extrapleural pneumonectomy
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Image pre-processing and radiomics analysis

The in-house developed radiomics software Z-rad writ-

ten in Python programing language (version 2.7.6) was

used to analyze the 3D images by extracting shape, in-

tensity, texture, and wavelet features. This software

package was benchmarked in the Image Biomarker

Standardization Initiative [14]. For intensity, texture, and

wavelet analysis, images were resized to cubic voxels of

3.3 mm in CT and 5.5 mm in PET using linear

interpolation. These voxel sizes correspond to the most

common image resolution in CT (sagittal) or PET

(axial). Additionally, Hounsfield units (HU) range − 300

to 200 in CT was applied to limit the analysis to tumor

tissue only. These adapted CT contours were then trans-

ferred to the PET images. To quantify the texture and

wavelet, images were discretized to equally spaced bins

of 5 HU in CT and 0.25 SUV in FDG PET.

In total, 1404 features from CT images and 1410 fea-

tures from FDG PET images were extracted, according

to Pavic et al [15]. All details on definitions and descrip-

tion of analyzed features are provided in that paper and

online on the website giving a detailed overview on the

radiomics software including code and definition of fea-

tures [16]. Six additional features for the FDG PET im-

aging described volumes exhibiting metabolism above

certain threshold of the maximum SUV (metabolic

tumor volume 20%, 30%, 40%, 50%, 60%, 70%). To ac-

count for differences in contouring between the different

observers, only stable features irrespective of differences

in tumor contouring were considered for further ana-

lysis. For CT images, this analysis was done on 11 cases

out of the entire cohort in a previous work and a de-

tailed list of all extracted as well all stable CT features

used for modeling is provided in supplementary material

of the above-mentioned inter-observer delineation vari-

ability study [15]. For FDG PET images, the analysis on

stable features was done prior to feature extraction on

the same 11 MPM cases and following the same proced-

ure as for the CT study. In brief, for each region of inter-

est, the radiomics analysis was performed and

consistency of the three respective results was tested

using the intraclass correlation coefficient (ICC), where-

upon an ICC > 0.8 was accepted as a value to indicate

robustness [17]. The description of procedures is de-

tailed in a publication on CT scans by Pavic et al. [15].

Statistical analysis

Statistical analysis was performed in R (version 3.3.2).

OS and PFS were determined from the date of initial

diagnosis. First, features with more than 20% missing

Table 2 Scanning parameters

Scanning characteristics/parameters Training cohort (= 36) Validation cohort (= 36)

CT scanners Siemens Biograph40 (n = 9)
GE Discovery STE (n = 7)
GE Discovery 690 (n = 15)
GE Discovery VCT (n = 5)

Siemens Biograph40 (n = 16)
Siemens Biograph128 (n = 4)
GE Discovery STE (n = 3)
GE Discovery 690 (n = 3)
GE Discovery VCT (n = 7)
GE Discovery 600 (n = 1)
GE Discovery MI (n = 2)

- Slice thickness (mm) 2.5–4 1.25–3.27

- In-plane resolution (mm) 0.98–1.52 0.98–1.52

- kV 100; 120; 140 100; 120; 140

- mAs 62–402 23–136

- Reconstruction kernel Soft kernel (n = 33)
Sharp kernel (n = 3)

Soft kernel (n = 20)
Sharp kernel (n = 16)

PET scanners Siemens Biograph40 (n = 9)
GE Discovery STE (n = 7)
GE Discovery 690 (n = 15)
GE Discovery VCT (n = 5)

Siemens Biograph40 (n = 15)
Siemens Biograph128 (n = 4)
GE Discovery STE (n = 3)
GE Discovery 690 (n = 4)
GE Discovery VCT (n = 7)
GE Discovery 600 (n = 1)
GE Discovery MI (n = 2)

- Slice thickness (mm) 2.5–4 2–3.27

- In-plane resolution (mm) 2.73–5.47 2.73–5.47

- Administered FDG activity (MBq), median (range) 337.5 (188–417) 316.3 (204.1–408)

- Delay between administration of FDG and scanning (min) 46.1–85.6 49.8–91.1

- Reconstruction algorithm 3D OSEM (n = 18)
3D OSEM with PSF (n = 18)

3D OSEM (n = 24)
3D OSEM with PSF (n = 12)

kV kilovolt, mAs milliampere-second, MBq Mega Becquerel, OSEM ordered subset expectation maximization., PSF point spread function modeling
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values or low variability were excluded from the analysis.

The remaining features were grouped using principal

component analysis, and the Horn method was used for

definition of the optimal number of retained components

[18]. Univariable Cox regression analysis was applied to

determine prognostic value of correlated features. Per

principal component related group, the feature with the

highest Concordance Index (c-index), and corresponding

false discovery rate < 0.25 in the univariable Cox regres-

sion was selected. The prognostic non-redundant features

(one feature per principal component group) were entered

in the multivariate Cox regression analysis with backward

selection of variables using Akaike information criterion.

For the split into risk groups, we used 80th percentile of

the predictions in the training cohort, yielding a threshold

of 0.35. We have chosen the split percentile based on the

most significant result in the training cohort. The model

was validated in the separate cohort of 36 patients. The

risk group stratification was studied with the G-rho test. A

p value below 0.05 was considered significant.

In order to test the added value of a radiomics analysis

over routinely gathered information by PET-CT, that

was already shown to have prognostic value, we calcu-

lated the prognostic power of standard uptake value

(SUV) max and SUV mean and of volume for PFS and

OS [9, 19] (Fig. 1).

Results
Robustness of FDG PET-radiomics

In the cohort of 11 MPM patients, on which the stability

of CT radiomics results according to the inter-observer

delineation variability was tested previously, 780 out of

1410 FDG PET features (55.3%) were stable against vari-

ability in tumor segmentation. The stable features in-

cluded 1 shape (5.6% shape features), 20 intensity (87%

intensity features), 82 texture (59.9% texture features),

and 677 wavelet features (55% wavelet features). Add-

itional file 1: Tables 1, 2, 3, and 4 provide the full list of

stable features.

CT radiomics model

For the PFS, dimensionality reduction by PCA derived

five groups of correlated features in the training cohort.

Only one group contained features with a good discrim-

inative power. The final model consisted of one radiomic

feature: “LHH GLRLM long run high grey level em-

phasis” (a wavelet feature).

For the OS, dimensionality reduction by PCA derived

five groups of correlated features, that all contained fea-

tures with a good discriminative power. After backward

selection, the final model consisted of three radiomic

features: “GLSZM grey level non-uniformity” (a texture

feature),”HLH GLCM homogeneity” (a wavelet feature),

and “LHH intensity range” (a wavelet feature). However,

for both PFS and OS, the model could not be success-

fully validated (see Table 3). Thus, no CT radiomics

model with a good prognostic ability could be generated.

FDG PET radiomics model

For the PFS, dimensionality reduction by PCA resulted

in three groups of correlated FDG PET features in the

training cohort. All three groups contained features with

a good discriminative power. After backward selection,

the final model consisted of three radiomic features:

“HLH intensity range,” “HLH GLSZM high grey level

zone emphasis,” and “HLH GLCM maximal correlation

coefficient.” All three features represent wavelet features.

The model performance was first estimated in 5-fold

cross validation in the training cohort with a mean c-

index of 0.67 (95% CI 0.52–0.82). The performance of

the model for the validation cohort showed a good prog-

nostic power with a c-index of 0.66 (95% CI 0.57–0.78).

The model splits the patients into groups with signifi-

cantly different PFS in the training (11 vs. 7 months, p

0.05) as well as in the validation (12.5 vs. 9 months, p <

0.001) cohort (see Fig. 2). Our PFS PET radiomics prog-

nostic model showed also good discrimination for OS

with c-index = 0.66 (95% CI 0.52–0.80). Details for the

Cox model are provided in Additional file 3 in supple-

mentary material.

Fig. 1 Overview of radiomics workflow
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For the OS, dimensionality reduction by PCA resulted

in three groups of correlated FDG PET features in the

training cohort. All three groups contained features with a

good discriminative power. After backward selection, the

final model consisted of two radiomic features: “LHH

GLSZM small zone high grey level emphasis” and “LLL

GLCM information measures of correlation 2”—both

representing wavelet features. The model performance

first estimated in 5-fold cross validation in the training co-

hort showed a mean c-index of 0.72 (95% CI 0.62–0.84).

The performance of the model for the validation cohort

showed a poor prognostic power with a c-index of 0.47

(95% CI 0.36–0.62).

SUV and volume results

For the PFS and OS, the performance of SUVmax was c-

index = 0.55 (0.44–0.60) and c-index = 0.54 (0.42–0.68),

respectively. Performance of SUVmean for PFS was c-

index = 0.52 (0.40–0.66) and for OS c-index = 0.48 (0.39–

0.61). Thus, on the training cohort, no prognostic model

could have been built based on SUVmax and SUVmean.

The volume-based model showed no prognostic

performance for PFS with a c-index of 0.60 (0.49–

0.73) and a c-index of 0.57 (0.48–0.67) for the train-

ing and validation cohort, respectively. Yet, for the

OS, the model was prognostic with a c-index of 0.62

(0.52–0.72) and a c-index of 0.63 (0.50–0.75) for the

training and validation cohort, respectively (see Add-

itional file 2: Figure 1). See Table 3 for an overview

of results.

Discussion
We were able to train a radiomics model on pre-

treatment FDG PET images being predictive for the PFS.

Table 3 Overview of modeling results

Performance of model PFS OS

FDG PET-model, c-index (95% CI)
Training
Validation

0.67 (0.52–0.82)
0.66 ( 0.57–0.78)

0.72 (0.62–0.84)
0.47 (0.36–0.62)

CT-model, c-index (95% CI)
Training
Validation

0.66 (0.56–0.76)
0.54 (0.44–0.67)

0.71 (0.59–0.80)
0.59 (0.47–0.74)

SUVmax, c-index (95% CI)
Training
Validation

0.55 (0.44–0.60)
–

0.54 (0.42–0.68)
–

SUVmean, c-index (95% CI)
Training
Validation

0.52 (0.40–0.66)
–

0.52 (0.40–0.66)
–

Volume, c-index (95% CI)
Training
Validation

0.60 (0.49–0.73)
0.57 (0.48–0.67)

0.62 (0.52–0.72)
0.63 (0.50–0.75)

PFS progression-free-survival, OS overall survival

Fig. 2 Cox regression results for FDG PET radiomics model for PFS
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The significant but in terms of absolute numbers moder-

ate PFS advantage translated also into an OS difference

when applying the radiomics model developed on the

PFS to test for the OS differentiation. On the contrary, a

simple model based on SUVmax or SUVmean had no

prognostic power for PFS nor OS. Volume was prognos-

tic for the OS but showed lower c-index than the FDG

PET radiomics-based PFS model.

The ability of radiomics on CT and MRI images to

support the diagnostic process of differentiation between

benign and malignant pleural lesions has recently been

proposed with an AUC of 0.92 for the CT model and

AUC of 0.87 for the MR model [20]. However, to the

best of our knowledge, no radiomics model for outcome

prediction in pleural mesothelioma patients has been re-

ported yet. The Multimodality Prognostic Score (MMPS;

range 0–4) was generated to identify patients which may

benefit most from an aggressive multimodal treatment

[10]. Using the following prognostic factors, the MMPS

could distinguish patients with different prognosis in

terms of OS: tumor volume pre-chemotherapy (pre-

CTX) > 500 ml, CRP pre-CTX > 30 mg/l, non-

epithelioid histology in pre-CTX biopsy, and progressive

disease according to modified RECIST criteria [21]. Pa-

tients with a MMPS of ≥ 3 did experience a significantly

shorter OS. Our cohort consisted of patients all being

eligible for aggressive surgery, and we had no patient

with an MMPS of ≥ 3 included—therefore, a comparison

of the radiomics model with the MMPS score is not pos-

sible. The MMPS allows selection of patients for referral

to surgery after induction chemotherapy. Our radiomics

model was developed on medical images acquired before

any treatment was initiated and could therefore in future

contribute to a prediction model and decision-support

system for individualized treatment strategy before initi-

ation of induction chemotherapy. A notable advantage

of prediction models based on images is that these med-

ical images are routinely acquired for diagnostic pur-

poses—the ASCO guidelines recommend an FDG PET/

CT as staging method for all MPM patients considered

candidates for definitive surgical resection [6]—and

therefore are available for all patients without the need

for an additional procedure.

The final FDG PET radiomics model for prediction of

PFS comprised three wavelet features, “HLH intensity

range,” “HLH GLSZM high grey level zone emphasis,”

and “HLH GLCM maximal correlation coefficient.” All

the features in the final model were extracted from the

HLH wavelet map [22]. The HLH wavelet filtering

emphasizes the SUV heterogeneity in 2 out of 3 dimen-

sions. The maximal correlation coefficient is a correl-

ation measure and high grey level zone emphasis takes

high values in the images with larger patches of high in-

tensity. For both of those features, higher values were

associated with worse prognosis. The intensity range

corresponds to the range of wavelet coefficients in the

ROI. In contrary to other features, the lower intensity

range was associated with worse prognosis.

A strength of our study is the implementation of radio-

mics for MPM. This tumor is characterized by a very het-

erogeneous shape and diffuse growth along the pleura and

frequent infiltration of thoracic structures. Therefore, this

tumor is difficult for contouring. A prerequisite for imple-

mentation of a radiomics model as a decision-making tool

into clinical routine is robustness of every individual step in

the process—one important step in the radiomics workflow

is segmentation of the region of interest. Inter-observer

variability in contouring of the tumor was investigated for

several sites and can be substantial [23, 24]. To account for

this uncertainty, we used only features in our model, which

are robust irrespective of variations in contouring [15]. In

total, 505 features were used for CT and 780 for FDG PET

radiomics in the current analysis. Thus, a higher proportion

of FDG PET features was stable compared to CT features.

The potential reason for the higher percentage of stable

features lies within the imaging modality itself: high-FDG

uptake in PET images is quite apparent and contouring

variability is expected to occur mainly in rim regions where

low-FDG uptake or blurring is present. This rim region

represents only a minor sub-volume compared to the

whole FDG uptake area and therefore, uncertainties in this

region do not lead to a high variability of radiomics results.

Another possible factor is the bigger voxel size of 5.5 mm

in FDG PET compared to 3.3 mm in CT images.

As already stated, various factors can influence image

quality and therefore have an impact on the results of a

radiomics model on CT as well as on FDG PET images

[25–31]. Acquisition of FDG PET/CT was done on dif-

ferent machines with different parameter settings, which

can affect the robustness of radiomic features [32]. Un-

fortunately, a small size of subcohorts with homogenous

acquisition and reconstruction protocols prevented us

from studying this effect in more detail or to apply cor-

rection methods, such as ComBat [33]. However, our

dataset represent the real-life data heterogeneity. Retro-

spective nature of data collection together with rapid de-

velopment of detector technology and reconstruction

methods makes collection of large and homogenous

datasets difficult. Therefore, we think that the recently

introduced, specialized PET radiomics phantoms depict-

ing heterogeneity of PET tracer uptake are key tools for

robustness studies [32]. One further limitation of this

study is the low patient number analyzed. In total, 505

CT features and 780 FDG PET features were analyzed

for 36 patients in the training cohort. This leads to the

risk of overfitting because we have little data for the

number of analyzed variables [34]. Furthermore, we only

used a multivariate logistic regression to assess the
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relation of radiomics results with patient outcome. As

the prediction of PFS in MPM patients is a complex task

with possible need for more predictor variables, a more

complex model would eventually perform better in

terms of outcome prediction. However, with our limited

number of subjects, such an analysis was not possible

and would require a much larger cohort—potentially re-

quiring a multi-institutional project.

Conclusions
We could show the prognostic potential of a FDG PET-

based radiomics model for PFS in MPM patients on pre-

treatment images. No CT-based model with sufficient

discriminative power could be built. Radiomics could

serve as a tool to aid decision support systems for treat-

ment of patients with MPM—a malignancy whose cura-

tively intended multimodal treatment can be challenging

for patients, therefore, asking for a careful selection of

appropriate candidates. However, further analysis with

inclusion of more data in a multi-centric setting is rec-

ommended to validate the model.
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