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Abstract

Objective

To determine the effect of a linear gadolinium-based contrast agent (GBCA) on the signal

intensity (SI) of the deep cerebellar nuclei (DCN) in a retrospective clinical study on dogs

after multiple magnetic resonance (MR) examinations with intravenous injections of gado-

diamide and LA-ICP-MS analysis of a canine cerebellum after gadodiamide administration.

Animals

15 client-owned dogs of different breeds and additionally 1 research beagle dog cadaver.

Procedures

In the retrospective study part, 15 dogs who underwent multiple consecutive MR imaging

examinations with intravenous injection of linear GBCA gadodiamide were analyzed. SI

ratio differences on unenhanced T1-weighted MR images before and after gadodiamide

injections was calculated by subtracting SI ratios between DCN and pons of the first exami-

nation from the ratio of the last examination. Additionally, 1 research beagle dog cadaver

was used for LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry)

analysis of gadolinium in the cerebellum as an add-on to another animal study. Descriptive

and non-parametrical statistical analysis was performed and a p-value of < 0.05 was consid-

ered significant.

Results

No statistically significant differences of SI ratios, between DCN and pons, were detectable

based on unenhanced T1-weighted MR images. LA-ICP-MS analyses showed between 1.5

to 2.5 μg gadolinium/g tissue in the cerebellum of the examined dog, 35 months after the

last of 3 MRI examination with gadodiamide (two examinations at a dose of 1 x 0.1mmol/kg,

last examination at a dose of 3 x 0.05mmol/kg).
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Conclusion and clinical relevance

Although the retrospective MRI study did not indicate any visible effect of SI increase after

multiple gadodiamide exposures, further studies based on LA-ICP-MS showed that the opti-

cal threshold was not reached for a potential visible effect. Gadolinium was detectable at a

level of 1.5 to 2.5 μg gadolinium/g tissue by using LA-ICP-MS in the cerebellum 35 months

after last MRI examination. The general importance of gadolinium retention of subvisible

contents requires further investigation.

Introduction

In 2014 Tomori Kanda[1] published his work about signal intensity (SI) increase on unen-

hanced T1 weighted magnetic resonance imaging (MRI), causing hyperintensities in the den-

tate nucleus (DN)-to pons and globus pallidus to thalamus after consecutive injections of

gadolinium-based contrast agents (GBCAs). His important work was the beginning of an

ongoing debate about the deposition of GBCAs in patient’s brains.[1–18] It is shown in

numerous studies on humans and in a few animal studies that there is a positive correlation

between SI increase on unenhanced T1 weighted MRI and the gadolinium concentration in

the brain.[19–25] Currently, the scientific interest focuses on the question whether all GBCAs

or only a specific GBCA subtype is causing such hyperintensities. As free ionic gadolinium is

toxic, GBCAs are applied as chelates. According to their chemical structure, two subtypes of

GBCAs can be classified. GBCAs of the linear subtype partially and GBCAs of the macrocyclic

subtype completely enclose gadolinium. On the one hand, the majority of studies provided evi-

dence that linear GCBAs are stronger correlated with SI increase in the DN.[1, 3–7, 13–15, 17,

18, 20, 22–24, 26–43] On the other hand, SI increase was described after macrocyclic GBCA

administration in a few studies that were controversial discussed between specialists due to

their limitations.[3, 5, 7, 8, 17] It seems that the molecular structure of the GBCA ligand,

which defines the GBCA subtype, is a crucial factor for the SI increase on unenhanced T1

weighted MRI.[44]

In 2017, as a consequence of the scientific debate, regulatory authorities (EMA, European

Medicine Agency; FDA Food and Drug Administration) decided about safety issues using

GBCAs during clinical work-up, which resulted in divergent actions between EU and USA.

[25] Based on a precautionary approach in the European Union nearly all linear GBCAs were

removed from the market, while the FDA issued a class warning for all GBCAs.

Until now, the majority of published animal studies about this topic were performed on

rodents[23, 24, 45–49] the minority on large experimental animals.[25] So far, in veterinary

medicine, no studies described a potential SI increase after multiple linear GBCA administra-

tions in client-owned dogs. This species is of special clinical interest, as dogs will potentially

face multiple MR examinations in veterinary medicine during treatment of tumors or during

neurological diseases. Moreover, dogs play an indispensable role as animal model for transla-

tional research approaches. Therefore, the question arises if in dogs, similar to humans, an SI

increase in the DCN is detectable after consecutive MR examinations or whether the number

of GBCA administration is below the limit of detection for a visible SI increase on unenhanced

T1-weighted MR images. This study followed the guidelines for standardized assessment of SI

increase for retrospective MRI studies published from the European Gadolinium Retention

Evaluation Consortium (GREC).[44]

Gadolinium deposition in the brain of dogs
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In the current study, we aimed to retrospectively assess clinical data of dogs after multiple

MRI examinations with intravenous administration of gadodiamide. Additionally, the brain of

one dog, which was euthanized unrelated to this study, underwent an LA-ICP-MS measure-

ment of gadodiamide 35 months after last MRI examination.[50–52] We hypothesized that

there is an increased hyperintensity on non-enhanced T1 weighted sequences in the deep cere-

bellar nucleus (DCN) of dogs after multiple gadodiamide administrations and a detectable

gadodiamide retention in the cerebellum of dogs with LA-ICP-MS.

Material andmethods

Dataset of patients

This restrospective study was performed onMR imaging data sets of 18 client-owned dogs pre-

sented between August 2012 and October 2017 at the Clinic for Diagnostic Imaging at the Vet-

suisse Faculty of the University of Zurich. Inclusion criteria was that the dogs had multiple

(defined as two or more) MR examinations of the brain with intravenous administration of

the linear GBCA gadodiamide at a dose of 0.15mmol/kg. Three patients did not undergo

unenhanced T1-weighted imaging or were unreadable for study purposes and were excluded

from this study. However, 15 client-owned dogs met the inclusion criteria and had a history of

neoplastic or neurological disease as reason for MRI examination. Demographic and clinical

characteristics of the all animals in the dataset is summarized in Table 1. All animals under-

went general anesthesia during MRI examination based on a standard anesthesia protocol.

After premedication with butorphanol and continious intravenous lactated Ringer’s infusion,

general anesthesia was induced with propofol and maintained with isoflurane combined in

oxygen and air. One research beagle dog cadaver, which was euthanized unrelated to this

study, was used for dissection and sampling of the whole brain. Accordingly, the additional

organ sampling, which was an add-on to the main study purpose, applied 3R requirements

and maximized the scientific output from the dog. LA-ICP-MS was used for determination of

Gd-concentration in the cerebellum.

Imaging and data analysis

The analysis included whole-brain MR imaging obtained between 2016 and 2019 at the Vet-

suisse Faculty Zurich. Imaging was performed with a 3.0-T MRI (Philips Ingenia, Philips Neth-

erlands). Transverse unenhanced T1-weighted image parameters were as follows: Repetition

time: 11.15–13.17 ms, Echo time: 5.116–6.125 ms, slice thickness: 0.7 mm, number of averages:

1, acquisition matrix: 0/228/227/0 and echo train length: 227.

Image analysis was performed independently by two of the authors (HR, PK). A picture

archiving and communication system (Synapse1 PACS, Fujifilm) was used for all reading ses-

sions. Evaluation of the images, including analysis of ROIs and the mean SI values, was per-

formed with open source medical image viewer (Horos based upon OsiriXTM, 64-bit medical

image viewer for OS X, Version 3 (LGPL-3.0)). Pre- and postcontrast images were subjectively

compared and analyzed regarding presence of signal alteration in the region of the deep cere-

bellar nuclei (DCN). Regions of interest (ROI) were drawn on the unenhanced T1-weighted

images on the central pons, and the DCN on both hemispheres. (Fig 1) The anatomically cor-

rect description of the DN in dogs is Nucleus lateralis cerebelli, which is the most prominent

DCN. Accordingly, we use the more generalized term DCN instead of DN or Nucleus lateralis

cerebelli to better reflect the canine anatomical situation. The correct placement of the ROI

was confirmed by using T2-weighted images at the same section position for identification of

the DCN in unclear cases. The DCN-to-pons SI ratio was calculated by using the following

Gadolinium deposition in the brain of dogs
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formula:

DCN�to�pons SI ratio ¼ ðmean SI of DCNÞ=ðmean SI of central ponsÞ:

The first and last MR examination of the dogs was used to calculate the SI ratio difference

by substracting the first examination SI ratio from the last examination SI ratio.

Cadaver sample preparation

The research beagle dog was euthananized according to another unrelated study (animal

license number ZH057/17) in accordance to Swiss animal welfare act. As an add-on to the

main study, the dog’s brain was harvested directly after euthanasia. The left brain hemisphere

was coronally cut into 0.5–1.0 cm slices and cryopreserved (at −80˚C). Deep cerebellar nuclei

of the left cerebellum were cut into a 50-μm-thick section and fixed on a piece of cork with Tis-

sue-Tek O.C.T. Compound (Sakura Finetek GmbH, Staufen, Germany). For chemical analysis,

Table 1. Demographic and clinical characteristics.

animal BW
[kg]

number of GBCA
applications

cumulated dose
[mmol/animal]

time between last GBCA and
last MRI [days]

gender breed type of disease

1 11.2 2 3.36 254 female,
neutered

Spitz meningioma

2 33.0 2 9.90 169 male Labrador Retriever meningioma

3 37.0 3 16.65 98 male Boxer unspecified recurrent brain
tumor

4 15.5 2 4.65 77 male,
neutered

franz. Bulldogge pituitary tumor

5 24.6 2 7.38 92 female,
neutered

Magyar Vizsla meningioma

6 6.0 2 1.80 137 female,
neutered

Jack Russel Terrier meningioma

7 13.2 2 3.96 582 male,
neutered

franz. Bulldogge cushing

8 1.8 2 0.54 138 male Yorkshire Terrier meningoencephalitis

9 22.8 2 6.84 83 female,
neutered

Katalanischer
Schäferhund

meningoencephalitis

10 29.0 2 8.70 24 male Boxer unspecified recurrent brain
tumor

11 29.5 2 8.85 114 male,
neutered

Collie meningioma

12 22.7 2 6.81 374 male,
neutered

Labrador Retriever meningioma

13 35.5 2 10.65 135 male Boxer unspecified recurrent brain
tumor

14 8.5 2 2.55 217 male,
neutered

Jack Russel Terrier pituitary tumor

15 22.4 3 10.08 106 female,
neutered

Labrador Retriever pituitary tumor

16 11.4 3 5.13 552 female beagle healthy

median 22.6 2 6.83 136

min 1.8 2 0.54 24

max 37.0 3 16.65 582

Demographic and clinical characteristics of all dogs displayed with date of birth (DOB), age at last MRI [months], bodyweight (BW) [kg], number of GBCA

applications, cumulated dose [mmol/animal], time between last GBCA and last MRI [days], gender, breed, and type of disease.

https://doi.org/10.1371/journal.pone.0227649.t001
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the deep cerebellar nuclei were cut in thin sections of 10-μm thickness with a cryotome and

mounted on microscopic glass slides. Before the ablation process, microscopic images were

recorded with a BZ-9000 inverted fluorescence/bright field microscope (Keyence, Osaka,

Japan). The right hemisphere of the brain was formalin fixed (4% buffered formalin), paraffin

embedded, and stored until further analysis.

Localisation of deep cerebral nuclei by bench-top μXRF

For the localisation of deep cerebral nuclei, an M4 Tornado bench-top μXRFinstrument (Bru-

ker Nano GmbH, Berlin, Germany) was used. The rhodium X-ray tube was supplied with a

voltage of 50 kV and a current of 600 μA throughout the measurements. The emitted X-ray

fluorescence was detected by a silicon drift detector (XFlash1 5030, Bruker Nano GmbH, Ber-

lin, Germany). Spatial resolution was approximately 25 μm. Each pixel was measured twice for

200 ms at a pressure of 20 mbar. The data was evaluated using the software ESPRIT HyperMap

(Bruker Nano GmbH, Berlin, Germany).

Standard preparation for LA-ICP-MS

For calibration, 11 matrix-matched gelatine standards in a concentration range from 0 ng/g to

600 μg/g were created. For this purpose, a 1000 μg/g gadolinium (Gd) ICP-MS standard

(Fluka Analytical, St. Gallen, Switzerland) was diluted and combined with gelatine of highest

purity (Grüssing GmbH, Filsum, Germany) resulting in standards with a gelatine content of

10% (w/w). The suspension was homogenized by heating the standards to a temperature of

50˚C and the usage of a vortex mixer. Afterwards, 10 μm thin slices of each standard were pre-

pared via a CryoStar NX70 Cryostat (Thermo Fisher Scientific, Waltham, USA). The thin slices

of the standards where then mounted onto a microscopic slide.

The Gd concentration in the gelatine standards was confirmed by ICP-TQMS (iCAP TQ,

Thermo Fisher Scientific, Waltham, USA) analysis of the digested standards. For digestion,

500 μL concentrated nitric acid (Merck Chemicals GmbH, Darmstadt, Germany) and 100 μL

Fig 1. T1 weighted unenhanced images a dogs brain in transversal orientation at the level of DCN; Colored circles indicate ROI at the Pons (proximal circles) and DCN
(distal circles) in the left and right hemisphere A: first examination precontrast, B: second examination precontrast 105 days after first examination; related SI
measurements of the ROIs showing measured area in mm2, Mean, Min, Max and SD of SI in the ROI.

https://doi.org/10.1371/journal.pone.0227649.g001
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35% (w/w) hydrogen peroxide (Acros Organics, Geel, Belgium) were added to around 50 mg

of each gelatine standard. The mixture was then heated to a temperature of 70˚C until com-

plete digestion. Afterwards, the digests were diluted and a rhodium (Rh) ICP-MS standard

(SCP Science, Baie-D’Urfe, Canada) was added as an internal standard. The concentration was

determined using an external Gd calibration in a range from 0 pg/g to 30 ng/g consisting of 12

standards. Again, Rh was used as an internal standard.

LA-ICP-MSmeasurements

For elemental mapping of the Gd distribution, the hyphenation of an LSX 213 G2+ (Cetac

Technologies, Omaha, USA) laser ablation system equipped with a HelEx II cell (Teledyne

Cetac Technologies, Omaha USA) and an ICP-MS 2030 (Shimadzu, Kyoto, Japan) was used.

For ablation, a spot size of 10 μm in combination with a stage speed of 30 μm/s was chosen.

Laser energy was optimized for each individual sample to allow for quantitative ablation of the

sample with minor ablation of the object slide. Ablated particles were washed out by a constant

helium flow of 800 mL/min. For more efficient transportation, a daily tuned argon flow was

added on the line to the micro torch of the ICP-MS system. A wet argon plasma with an RF

power of 1200 W was used for the ionisation. The ionized analytes were led through a nickel

interface and were analysed by an SQ-KED setup.

For quantification, the previously described matrix-matched Gd gelatine standards were

used. On each standard, 11 lines with an ablation time of 20 s per line were ablated with the

same parameters as used for the sample. The first line of each recording was discarded for con-

sistency reasons.

All data evaluation was performed using the software ImaJar (developed by Robin Schmid,

Muenster, Germany).

Statistics

Statistical data was analyzed by using SPSS (IBM1 SPSS1 Statistics, version 25, 64-bit-version,

IBM, Chicago, Ill). Due to the limited number of available cases, data was defined as non-nor-

mally distributed and quantitative data was presented with median (range). Non-parametrical

tests were used to compare SI ratio differences between 2 independent observers (Mann-Whit-

ney U test). Inter-rater reliability was assessed based on Intraclass-Correlation-Coefficient

(ICC) in a range from 0.0 to 1.0, whereby large numbers mean better reliability. One-sample t-

tests were used to examine if the mean SI ratio differences between first and last examination

were different from 0. A p-value of< 0.05 was considered significant.

Results

Cinical and demographic aspects

An overview about the demographic and cinical characteristic of the dataset is available pro-

vided as Table 1. The mean age of all dog patients included was 96.20 (31–157) months. The

animals gender was divided as followed: male (5), male castrated (5), female castrated (5). As

this was a restrospective clinical study, the dogs were of different breeds: Boxer (3), Border

Collie (1), French Bulldog (2), Jack Russel Terrier (2), Catalan Scheepdog (1), Labrador

Retriever (3), Magyar Vizsna (1), Spitz (1), Yorkshire Terrier (1). Contrast media injection

protocols were the same for all animals, as they followed a clinical standard operation proce-

dure with 0.15 mmol/kg gadodiamide for each MRI examination. The time between the MRI

examinations was caused by the clinical work-up and was in median 136 (24–582) days.
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Additionally, one research beagle dog cadaver was included into this study, which was

euthanized for another unrelated study. The research beagle dog was used for different studies

including repetitive gadodiamide administrations in MRI before his termination. It was a 52

months old, female castrated beagle dog with 11.4 kg body weight. The contrast media injec-

tions of the dog were as followed: November 2013 (0.1 mmol/kg gadodiamide), December

2013 (0.1 mmol/kg gadodiamide), June 2015 (3 x 0.05 mmol/kg gadodiamide). Accordingly,

the last gadodiamide injection was 35 months before termination. Following the 3R require-

ments, the brain of the dog was sampled and used for chemical analysis, as this was not possi-

ble to perform with the retrospectively examined clinical patient population.

MRI data

Unenhanced T1-weighted imaging were independenly analyzed by two observers (HR, PK). A

summary of all measurements are provided as Table 2. SI values of the DCN and Pons as well

as the SI ratios and the SI ratio differences between the first and the last examination of the left

and right hemisphere are summarized in Table 3. Based on non-parametric Mann-Whitney U

tests, no significant differences were detectable between both observers at a significance level

of p< 0.05 (SI DCN left (p = 0.988), SI Pons left (p = 0.882), SI ratio left (p = 0.329), SI DCN

right (p = 0.976), SI Pons right (p = 0.894), Si ratio right (p = 0.605), SI ratio difference left

(p = 0.756), SI ratio difference right (p = 0.548).

The ICC showed very good agreement between both observers (Table 3). For all analyses,

ICC was between 0.863 (SI ratio difference right hemisphere)– 0.999 (SI DCN left, SI Pons left,

SI DCN right, SI Pons right).

SI ratio DCN-to-pons showed no significant differences between left and right hemisphere

(observer 1 (p = 0.390), observer 2 (p = 0.722)). SI ratio DCN-to-pons at the right hemisphere

was measured in median with 0.997 (0.860–1.072) for observer 1 and 0.991 (0.887–1.071) for

observer 2, and at the left hemisphere with 0.999 (0.906–1.111)) for observer 1 and 0.989

(0.884–1.089) for observer 2. (Table 4)

SI ratio differences between the first and the last MRI examination of the patients showed

no significant differences, whether at the left nor at the right hemisphere (observer 1

(p = 0.831), observer 2 (p = 0.163)). SI ratio differences between the first and the last MRI

examination of the patients was measured at the right hemisphere in median with -0.011

(-0.125–0.069) for observer 1 and -0.021 (-0.100–0.043) for observer 2, and at the left hemi-

sphere with -0.002 (-0.079–0.138) for observer 1 and -0.010 (-0.096–0.082) for observer 2.

(Table 1) Based on a one-sample t-test, the first and the last MRI examination was tested to be

significant different from 0. For both observers, no significant difference from 0 was found

(observer 1: p = 0.896/0.402; observer 2: p = 0.451/0.098 [left/right]).

LA-ICP-MS data

Visual assessment of LA-ICP-MS analysis as well as a quantitative analysis was performed with

a limit of quantification (LOQ) of 220 ng gadolinium/g tissue and a limit of detection (LOD)

of 67 ng/g. Gadolinium concentrations in the DCN of the research beagle dog could be deter-

mined between 1.5 to 2.5 μg gadolinium/g tissue, 35 months after last gadodiamide injection.

In agreement with the visual assessment of the DCN, gadolinium levels were higher in the

DCN than in the surrounding area of the DCN. A co-localisation of Gd and zinc (Zn) was

detectable, both increasingly detectable in vessels, especially at the DCN. Furthermore, an

anti-correlation with phosphorus (P) was detectable, which is visible in μXRF and LA-ICP-MS.

The results are summarized in Fig 2.
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Table 2. SI ratio differences.

observer 1 oberver 2

animal SI DN
left

SI Pons
left

SI
ratio
left

SI DN
right

SI Pons
right

SI
ratio
right

SI ratio
difference
left

SI ratio
difference
right

SI DN
left

SI Pons
left

SI
ratio
left

SI DN
right

SI Pons
right

SI
ratio
right

SI ratio
difference
left

SI ratio
difference
right

1 125.053 126.691 0.987 124.613 125.208 0.995 124.606 126.761 0.983 125.667 125.343 1.003

1 277.428 281.183 0.987 280.295 287.391 0.975 0.000 -0.020 272.885 282.305 0.967 279.496 285.953 0.977 -0.016 -0.025

2 366.1 372.94 0.982 355.652 361.514 0.984 471.703 468.736 1.006 460.095 466.525 0.986

2 362.487 359.643 1.008 360.836 355.127 1.016 0.026 0.032 362.179 360.978 1.003 357.583 361.620 0.989 -0.003 0.003

3 172.257 173.655 0.992 174.972 176.618 0.991 173.935 176.551 0.985 176.775 177.906 0.994

3 178.492 183.944 0.970 179.350 184.430 0.972 -0.022 -0.018 179.023 183.55 0.975 175.918 186.732 0.942 -0.010 -0.052

3 422.66 449.613 0.940 437.129 459.989 0.950 -0.052 -0.040 419.148 455.787 0.920 429.200 458.764 0.936 -0.066 -0.058

4 175.919 172.502 1.020 172.275 175.804 0.980 172.698 175.878 0.982 173.125 175.544 0.986

4 343.066 340.951 1.006 344.929 346.556 0.995 -0.014 0.015 349.659 342.713 1.020 350.028 348.415 1.005 0.038 0.018

5 614.737 628.453 0.978 639.614 647.677 0.988 622.014 632.662 0.983 634.766 652.891 0.972

5 643.488 642.776 1.001 647.769 635.415 1.019 0.023 0.032 648.4 653.633 0.992 650.581 640.549 1.016 0.009 0.043

6 423.872 427.325 0.992 430.475 429.126 1.003 430.852 439.226 0.981 431.025 431.684 0.998

6 1337.617 1308.215 1.022 1350.109 1308.886 1.031 0.031 0.028 1345.156 1341.79 1.003 1347.488 1345.814 1.001 0.022 0.003

7 997.558 993.47 1.004 995.635 1003.037 0.993 988.921 1000.341 0.989 998.839 1004.823 0.994

7 590.895 589.339 1.003 580.894 577.059 1.007 -0.001 0.014 581.192 591.546 0.982 572.667 593.458 0.965 -0.006 -0.029

8 121.255 124.544 0.974 122.963 116.500 1.055 122.184 124.16 0.984 122.953 117.417 1.047

8 149.632 134.637 1.111 129.449 129.388 1.000 0.138 -0.055 148.141 138.991 1.066 126.260 128.084 0.986 0.082 -0.061

9 97.817 88.727 1.102 95.320 90.399 1.054 98.402 90.347 1.089 95.379 90.695 1.052

9 97.977 95.76 1.023 97.402 95.758 1.017 -0.079 -0.037 97.07 95.184 1.020 97.455 95.400 1.022 -0.069 -0.030

10 131.948 133.301 0.990 130.471 136.535 0.956 128 134.089 0.955 130.690 137.105 0.953

10 120.822 125.631 0.962 121.811 123.667 0.985 -0.028 0.029 112.01 122.136 0.917 110.887 122.901 0.902 -0.037 -0.051

11 133.753 134.268 0.996 134.603 134.671 0.999 134.295 133.571 1.005 136.521 136.333 1.001

11 129.713 124.613 1.041 129.773 121.503 1.068 0.045 0.069 130.938 126.121 1.038 127.061 122.018 1.041 0.033 0.040

12 76.143 78.517 0.970 77.633 78.761 0.986 73.75 78.213 0.943 76.652 79.258 0.967

12 86.485 95.423 0.906 85.735 99.646 0.860 -0.063 -0.125 84.317 95.434 0.884 85.253 96.134 0.887 -0.059 -0.080

13 707.581 726.456 0.974 690.724 692.353 0.998 713.182 735.14 0.970 695.767 704.060 0.988

13 626.935 637.184 0.984 611.346 622.576 0.982 0.010 -0.016 615.634 624.683 0.986 629.760 611.041 1.031 0.015 0.042

14 504.183 517.667 0.974 514.801 519.431 0.991 509.696 522.529 0.975 517.467 513.294 1.008

14 136.327 138.181 0.987 137.012 139.957 0.979 0.013 -0.012 136.547 138.476 0.986 136.415 138.630 0.984 0.011 -0.024

15 101.85 96.083 1.060 101.685 94.867 1.072 103.259 96.485 1.070 103.662 96.792 1.071

15 123.488 124.719 0.990 124.653 123.724 1.008 -0.070 -0.064 125.277 123.168 1.017 125.057 127.250 0.983 -0.053 -0.088

15 662.897 672.978 0.985 662.978 672.459 0.986 -0.075 -0.086 659.586 677.183 0.974 660.568 680.373 0.971 -0.096 -0.100

median 0.990 0.994 -0.001 -0.016 0.985 0.989 -0.006 -0.029

min 0.906 0.860 -0.079 -0.125 0.884 0.887 -0.096 -0.100

max 1.111 1.072 0.138 0.069 1.089 1.071 0.082 0.043

SI ratio differences from the two observers for each single dog, as well as median, min and max of each measurement

https://doi.org/10.1371/journal.pone.0227649.t002
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Discussion

The current restrospective clinical study is the first study observing multiple gadodiamide

applications in veterinary patients in a clinical set-up. The background of this study was the

ongoing debate about the clinical relevance of hyperintensities of the DCN after multiple

GBCA applications in humans. The hypothesis of this study was that there is a detectable

increased hyperintensity on non-enhanced T1 weighted sequences in the DCN of dogs after

multiple gadodiamide administrations and a measurable gadolinium retention in the cerebel-

lum of dogs after chemical analysis based on LA-ICP-MS. The hypothesis has to be partially

rejected.

This study showed 1) no hyperintensities on non-enhanced T1 weighted sequences in the

clinical dog patients and 2) a Gd concentration of 1.5 to 2.5 μg gadolinium/g tissue in the

brain of a research beagle dog 35 months after last gadodiamide injection.

Table 4. Intraclass-correlation coefficient (ICC).

ICC confidence interval

measurement hemisphere mean min max

SI DCN left 0.999 0.998 0.999

SI Pons 0.999 0.998 1.000

SI ratio 0.994 0.989 0.999

SI ratio difference 0.949 0.847 0.983

SI DCN right 0.999 0.998 1.000

SI Pons 0.999 0.998 0.999

SI ratio 0.910 0.811 0.957

SI ratio difference 0.863 0.592 0.954

Intraclass-correlation coefficient (ICC) between observer 1 and 2. Displayed as mean and confidence interval for SI

measurements at the DCN and Pons, for SI ratios and SI ratio differences in the left and right hemisphere

https://doi.org/10.1371/journal.pone.0227649.t004

Table 3. Measurement data.

observer 1 observer 2 Mann-
Whitney U

test

measurement N minimum maximum mean standard
deviation

One-sample
T-test

minimum maximum mean standard
deviation

One-sample
T-test

p-value

SI DCN left 30 76 1338 358 307 74 1345 361 308 0.988

SI Pons left 30 79 1308 360 306 78 1342 366 311 0.882

SI ratio left 30 0.906 1.111 0.999 0.041 0.862 0.884 1.089 0.989 0.043 0.158 0.329

SI DCN right 30 78 1350 358 308 77 1347 361 310 0.976

SI Pons right 30 79 1309 359 305 79 1346 365 311 0.894

SI ratio right 30 0.860 1.072 0.997 0.039 0.701 0.887 1.071 0.991 0.040 0.227 0.605

SI ratio difference
left

15 -0.079 0.138 -0.002 0.055 0.896 -0.096 0.082 -0.010 0.048 0.451 0.756

SI ratio difference
right

15 -0.125 0.069 -0.011 0.051 0.402 -0.100 0.043 -0.021 0.045 0.098 0.548

Measurements of observer 1 and 2 displayed as mean, min, max and SD for DCN and Pons, SI ratio and SI ratio difference in the left and right hemisphere. One-sample

t-test for both hemispheres, testing for differences from 1 (for SI ratios), respective from 0 (SI ratio differences). Additional p- values of the Mann-Whitney-U test

comparing results of oberserver 1 and 2.

https://doi.org/10.1371/journal.pone.0227649.t003
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With these findings, our study supports the hypothesis that a specific threshold is needed to

identify hyperintensities on unenhanced T1-weighted images. It seems likely that the data of

this dog patient population was not exposed to gadodiamide in an amount to exceed this

threshold. With a median cumulative dose of 6.83 mmol/animal (range 0.54 to 16.65mmol/

animal) the clinical dataset shows much less cumulative GBCA dose as compared to published

reports from human medicine [1] or animal experiments.[53] Even if a superior brain clear-

ance of macrocyclic GBCAs over linear GBCAs is described[54, 55] and all dogs of this study

got a linear GBCA administration, the cumulative dose did not reach a visible level of hyperin-

tensities after 2–3 administrations. We determined mean SI ratio differences between first and

last MRI examination between 0.2% and 6.9% (range -12.5% to 13.8%), which was not signifi-

cantly different from 0. (Table 1) This is much lower than in the study of Hu et al., were an SI

increase between first and most recent MRI examination with an increase of 18.6% ± 12.7%

(range 0.5% to 47.5%) for the DCN was reported.[14] In the study of Hu et al., human patients

received a significant number of subsequent GBCA examinations, ranging between 5 and 37.

Weberling et al. described a significant SI increase in the DCN after at least 5 consecutive

GBCA injections of gadobenate dimeglumine.[13]

Although the retrospective MRI study did not indicate any visible effect of SI increase after

multiple gadodiamide exposures, further studies based on LA-ICP-MS showed that the optical

threshold was not reached for a potential visible effect. Most of the dog patients in this study

had a history of neoplastic or neurological disease as reason for MRI examination (Table 1). In

the patient records of the dogs, no side effects were linked with the contrast media application.

This result is of clinical relevance for all current and future patients in veterinary medicine,

which have a history of diagnosed brain tumors (such as meningiomas gliomas, nerve sheeth

tumors, pituitary adenomas) or meningoencephalitis. Recurrent MRI examination are of

interest in veterinary medicine mainly in dog patients after radiation therapy for follow ups

and/or recidive pathologies. Our dataset showed that mostly not more than two MRI examina-

tions with GBCA are performed during clinical work-up in veterinary medicine. This is a clear

Fig 2. Representative results for the LA-ICP-MS analyses of two cryo cerebellum samples of one dog treated with gadodiamide 35 months before euthanasia.
Anatomy is shown on histological and μXRF images. LA-ICP-MS results are displayed as quantitative distribution map of gadolinium (158Gd) and as qualitative
distribution maps of phosphorus (31P), iron (57Fe) and zinc (66Zn). LA-ICP-MS analyses were performed with a laser spot size of 10 μm and a limit of detection at 67 ng/
g (LOD). A clear colocalization of gadolinium and zinc displays in both samples.

https://doi.org/10.1371/journal.pone.0227649.g002
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difference in comparison with human medicine, were more than 35 linear GBCA administra-

tions to a single patient are reported.[18]

Even if there is no clinically visible hyperintensity on unenhanced T1-weighted MR images,

this does not mean there is no deposition of gadolinium through gadodiamide application

after multiple contrast media administrations in dogs. From human medicine it is known that

approximately 6 injections of linear GBCAs are needed, before hyperintensities in the DCN

become detectable on MRI[7, 56] On the other hand, gadolinium deposition was detectable

after a single injection of linear GBCAs based on LA-ICP-MS measurments in the brain of

sheep.[25] This study confirms gadolinium detection in the brain of a research beagle dog

based on the chemical analysis of the Gd content. After three examinations, two times with

1x0.1 mmol/kg and once with 3x0.05 mmol/kg gadodiamide, Gd was measurable 35 month

after the last administration. Accordingly, it could be shown in this study that the described

Gd deposition in the brain of different species similarly occurs in dogs. Therefore, our findings

support the hypothesis of irreversible or long lasting Gd deposition at the DCN. The current

explanation about the pathomechanism is based on de-chelation effects of linear GBCA and

transmetalation in co-localization with other elements, such as Fe, Co, Cu, Zn.[25, 57] We

could show similar effects in the research beagle dog, which supports the ongoing discussion.

As dogs are a widely used species for translational medicine and model for lots of pre-clinical

studies during the approval of new medical products for human medicine, the results of our

study should be recognized for all translational studies in future.

Even if the pathomechanism is not clarified at the moment and there are ongoing studies

about differences between linear and macrocyclic GBCAs, from a scientific and ethical point

of view it is mandatory to reduce the GBCA administration to the essential number with diag-

nostic importance for the patients. At the same time it is important to maintain the benefit of

GBCA as long as there are no valuable alternative contrast media available. This should be

done with respect to the risk of Gd deposition and its accumulation during recurrent contrast

agent administrations.

As one of the limitations of this study, we have to mention that the number of patients and

the number of gadodiamide administrations was lower than in comparable restrospective

human studies. The reason is that in veterinary medicine dogs, as the most used private owned

species, will not be imaged more often in MRI. This can be explained by the costs (payed by

the owner) and the shorter life-span of a dog in comparison to humans. As our data reflects

the daily business in a large university hospital, this was the maximum available data, which

provides a relevant veterinary insight into this topic. Unfortunately, we did not have an MRI

of the research beagle dogs brain, who had multiple gadodiamide administrations before

euthanasia. This was caused by the fact that the brain of the dog was used as an add-on to

another unrelated study which focused on other regions than the animals brain during MRI

examination. It is a beneficial circumstance to have the results of the chemical analysis from

this dog, even if there is no associated MRI of the brain. Based on the gained knowledge that

an increased signal intensity of the brain might only be visible when the number of GBCA

injections surpasses a certain threshold[34], it may have been questionable if this threshold

would have been exceeded or not. According to the current knowledge, gadolinium first

becomes visible in MRI if a threshold of approximately 1 μg gadolinium/g tissue is exceeded.

[25] We assessed between 1.5 to 2.5 μg gadolinium/g tissue in the DCN of the research beagle

dog, which would have caused a signal intensity change in MRI. Currently published case

reports and research studies describe LA-ICP-MS as a useful tool to measure the quantities of

retained gadolinium in human[19, 58, 59] and rodent tissues[47, 60]. Potential risk factors

with effect on Gd retention described are ongoing neuroinflammation[60] or primary gliomas

[59]. Additionally, any type of inflammation can negatively influence the blood brain barrier

Gadolinium deposition in the brain of dogs

PLOSONE | https://doi.org/10.1371/journal.pone.0227649 February 3, 2020 11 / 16

https://doi.org/10.1371/journal.pone.0227649


permeability[61] and therefore could be potential risk factor for gadolinium retention. In this

study LA-ICP-MS was performed in the brain of a healthy research beagle dog, which was con-

sidered to be not influenced by clinical factors. On the other side the dataset of this study

includes patients showing exactly such types of diseases with potential effect on gadolinium

retention. The question how and in which quantity the underlying diseases or a reduced

blood-brain-barrier influenced the gadolinium retention in the brain can not be estimated and

has to be evaluated in further studies.

Another potential confounding factor for all clinical studies is the time between last GBCA

administration and the MRI examination to detect hyperintensities in the DCN or until

LA-ICP-MS measurement of gadolinium, as this time is crucial to differentiate between the

soluble and insoluble form of gadolinium. In this study the median number of days between

last GBCA application and MRI examination was 136 (range 24 to 582days). Accordingly

there was enough gadolinium-free-time to detect insoluble gadolinium deposits only.

In conclusion, we could show that no hyperintensities on non-enhanced T1 weighted

sequences in the clinical dog patients after 2–3 gadodiamide administrations of 0.1 mmol/kg

were detactable and that between 1.5 to 2.5 μg gadolinium/g tissue could be determined in the

brain of a research beagle dog 35 months after his last gadodiamide injection. The importance

and clinical relevance of gadolinium retention of subvisible contents, the pathomechanism

and the potential side effects based on Gd deposition still requires further investigation.
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