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Abstract: Colorectal cancer (CRC) is the fourth leading cause of cancer death in the world. Despite

the screening programs, its incidence in the population below the 50s is increasing. Therefore, new

stratification protocols based on multiparametric approaches are highly needed. In this scenario,

the lipidome is emerging as a powerful tool to classify tumors, including CRC, wherein it has proven

to be highly sensitive to cell malignization. Hence, the possibility to describe the lipidome at the level

of lipid species has renewed the interest to investigate the role of specific lipid species in pathologic

mechanisms, being commercial cell lines, a model still heavily used for this purpose. Herein, we

characterize the membrane lipidome of five commercial colon cell lines and their extracellular vesicles

(EVs). The results demonstrate that both cell and EVs lipidome was able to segregate cells according to

their malignancy. Furthermore, all CRC lines shared a specific and strikingly homogenous impact on

ether lipid species. Finally, this study also cautions about the need of being aware of the singularities

of each cell line at the level of lipid species. Altogether, this study firmly lays the groundwork of

using the lipidome as a solid source of tumor biomarkers.

Keywords: colorectal cancer; lipidomics; lipid biomarkers; extracellular vesicles; cell lines; plasmalogens)

1. Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the fourth leading

cause of cancer death in the world [1]. In some high-income countries, the implementation of screening

programs has led to a significant reduction in CRC incidence in the population aged 50 years and

over. Unexpectedly, the incidence in the population below this age has increased significantly for

causes as yet unknown [2]. Therefore, the development of better tools for an accurate stratification of
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CRC patients is still highly needed. The multiple phenotypic and genetic particularities of tumors,

as well as interindividual differences, are some of the difficulties hampering the development of cancer

stratification tools. Currently, some studies propose classifying CRC patients according to methods

based on multiple features, including histological, genetic, and epigenetic features [3]. In this scenario,

the lipidome is emerging as a powerful tool to identify disease biomarkers [4–8], and increasing interest

in the lipid metabolism is reflected in the sharp rise in the number of publications on this topic (from

20,000 in 1980 to 60,000 in 2018, according to Web of Science).

Solid advances in the field of lipid analysis have facilitated access to detailed descriptions of many

different lipidomes [4,7,9,10], while the irruption of imaging mass spectrometry techniques providing the

bidimensional distribution of each lipid species across a tissue section has undoubtedly demonstrated

how specific this distribution is [8,11–14]. Lipidomic results often yield complex scenarios, with hundreds

of different lipids changing in a highly ordered and orchestrated manner by mechanisms yet to be

defined. Consistently, the lipidome has proven to be highly sensitive not only to cell type but also to any

biological process including differentiation, malignization, and death. In this sense, our previous study

analyzing the changes in the lipid signature along the colon epithelium demonstrates that there is a

strict regulation at the molecular species level, concomitant to the colonocyte differentiation process and

that this regulation is clearly altered in the malignant tissue [8,15].

There is no doubt that the possibility of building complex profiles based on the combination of

different molecular species, all measured at once, offers a wide variety of potential biomarkers for

diagnosis. Furthermore, because of their tight participation in biological processes, membrane lipids

could also be used to monitor the progression of a disease. In an effort to search for new non-invasive

cancer biomarkers, the composition of extracellular vesicles (EVs) arises as a promising source of

biomarkers [16,17]. Although in terms of lipid composition several studies have described the lipidome

of EVs isolated from a diversity of biological sources [18–24], only a few of them explored how lipid

molecular species of EVs could be used as biomarkers [25–27].

Altogether, the possibility of describing lipids at the level of molecular species has led to regaining

the interest in investigating their specific role using study models, one of the most commonly used of

which are commercial cell lines. Herein, we investigated whether the lipid fingerprint, of both cells and

their derived EVs, could be used to distinguish cancer cell lines according to their degree of aggressiveness.

Thus, we analyzed the lipidome of five human colon commercial cells, in particular, one healthy primary

and four cancer cell lines, all broadly used in cancer research as a model of colorectal adenocarcinoma:

HT29, SW480, and LS174t, isolated from primary tumors, and Colo 201, isolated from metastatic sites.

The results demonstrate that the cell lipidome was indeed able to separate primary, in situ, and highly

metastatic cell lines either by their cell lipid content or by their EV lipid composition. Furthermore,

consistently with the literature, a profound impact on ethanolamine containing glycerophospholipids

was observed in all cancer cells. Interestingly, a closer look into the changes in molecular species

distribution within each lipid class revealed a striking shift of species from diacylphosphatidylcholine

and diacylphosphatidyl-ethanolamine (PE) to PE plasmalogen. Unexpectedly, this distribution turned

out to be highly selective for species presenting a saturated fatty acid at the sn-1 position and arachidonic

(AA) or docosahexaenoic acid (DHA) at the sn-2 position.

Altogether, these results demonstrate the capacity of lipid profiles, whether from cells or EVs,

for sensing a wide range of physiological alterations and, consequently, in providing potential lipid

biomarkers. This study also brings to the surface an alteration common to all the cancer cells analyzed,

which involved a profound alteration in PE plasmalogen metabolism. Importantly, these changes go

beyond a mere increase in mass, to affecting a very specific set of molecular species. Nevertheless,

the heterogeneity within the analyzed cell lines does caution using a limited number of cell lines to

study the role of particular molecular species in biological processes or to establish new biomarkers.



Cancers 2020, 12, 1293 3 of 22

2. Results

2.1. Identification of Potential Lipid Markers for Cellular Malignization in Commercial Cell Line

Given the sensitivity of the lipidome to culture conditions, especially to high confluence

conditions [28], all cell lines were characterized in terms of growth before starting the study. As a

criterion, we prioritized that at the time of sample collection, cell confluence was similar in all cell lines.

For this reason, healthy colon primary cells were plated at 3 × 104 cells/cm2 for 48h, HT29 and LS174t

cells were plated at 3 × 104 cells/cm2 for 48h, SW480 cells were plated at 2 × 104 cells/cm2 for 48h,

and Colo 201 cells were plated at 2 × 104 cells/cm2 for 72h. We used a protocol based on differential

centrifugation and filtration processes to obtain an EV fraction highly-enriched in exosomes [29].

Although this fraction tested positive for exosome markers (CD9 antigen, 25 kDa), for simplicity it will

be referred to as EVs. To assess the differences between tumor and healthy colon cells, we compared

the lipidome obtained from a healthy primary cell line and four different CRC commercial cell lines.

Further, we paid particular attention to the differences in lipid composition between cells isolated from

a primary tumor (HT29, SW480, and LS174t) and those from a metastatic site (Colo 201) as they could

identify as potential biomarkers for the metastatic process.

The results of the lipidomic analysis of the five cell lines provided a rather complex scenario

(Figures 1–3). The PCA using cell membrane lipid content data, including the main phospholipids

(PC, PE, PS, and PI) and sphingolipids (SM and Cer), showed that membrane lipid classes were able

to separate primary from cancer cells (Figure 1A). The separation was due to changes in PE levels

and, to a lesser degree, in PE plasmalogens and PC levels (Figure 1B). Consistently, ANOVA analysis

confirmed the profound divergences in cell lipid composition between cell lines (Figure 1C and Table

S1). The most robust differences between primary and all cancer cells affected diacyl- and vinyl ether

ethanolamine (PE and PE plasmalogens) levels. In tumor cells, PE levels decreased compared to

primary cells (25.1 and 10.6%, respectively), while PE plasmalogen levels increased (5.4 and 15.2%,

respectively). Finally, all cancer cell lines showed increased PC levels (44.9 vs. 51.7% primary vs. mean

value of all tumor cells) and, consistent with previous studies [30,31], decreased sphingomyelin (SM)

levels, which were significant in three of the four tumor cells (all but LS174t, 11.1 vs. 7.5%).

Figure 1. Analysis of the main membrane lipid classes of the commercial cell lines analyzed. (A) PCA

using membrane lipid levels expressed as % of total membrane lipids. Explained Variance = 83.4%;

(B) Loading plot after PCA of the main membrane lipid classes. For clarity, only the most influential

species are indicated in each variable PCA analysis; (C) Membrane lipid composition. Values are

expressed as % of total membrane lipids (mean ± SD), n = 3–6. Statistical significance was assessed

using one-way ANOVA followed by Bonferroni post-test. For clarity, only statistical differences between

primary and cancer cells are represented. The asterisk (*) indicates a significant difference between

cancer cell lines and the primary cell line. * p < 0.05; ** p < 0.01; *** p < 0.001. Detailed results showing

all comparisons are included in Table S1.
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To delve into these differences, a PCA was performed using all molecular lipid species detected

(Figure 2). The results confirmed the capacity of the whole lipidome to separate the cell lines into

three groups according to their malignancy; that is, primary cells (Prim) from in situ (HT29, SW480,

and LS174t) and from highly metastatic cancer cells (Colo 201) (Figure 2A). Higher levels in PI38:3,

SMd18:1/24:1, and Cerd18:1/24:1, and lower levels in PE P-16:0/22:6 and SMd18:1/16:0 accounted for the

separation of the primary cells (Figure 2B). Colo 201 were separated from the in situ cells because of the

higher content in PS and PE36:1, SMd18:1/16:0, and Cer18:1/24:0, and the lower content in Cer18:1/16:0

and 18:1/24:1 and PE P-16:0/20:4. Despite the fact that PCA was able to discriminate between the cell

lines, it barely explained 50.0% of sample variance. Hence, to identify the lipid species accounting for

the separation, each lipid class was analyzed individually by PCA (Figure S1). Briefly, the molecular

species of each lipid class separately were able to differentiate, to a greater or lesser extent, primary

cells from cancer cells. However, only PC, PE plasmalogens, and PS molecular species were able to

separate Colo 201 from the rest of the cell lines.

Figure 2. Cell lipidome segregates cell lines according to their malignancy. (A) PCA using the levels of

all lipid species expressed as % of total lipid class. Explained variability 54.6%; (B) Loading plot after

PCA of the main membrane lipid classes. For clarity, only the most influential species are included.

Consistent with data in human colon epithelium [8], the most abundant PC species in all cell lines was

34:1 (34.6–50.9%, lowest and highest value throughout the five cell lines analyzed, respectively), followed

by 36:2 (13.9–27.3%), 34:2 (6.8–13.1%), and 36:1 (7.4–9.2%). Within this lipid class, we detected an increase

in 34:1 (34.6 vs. 44.0%, primary vs. the average value in cancer cells), and a decrease in 36:3 (5.4 vs. 3.3%)

and in 36:2 (21.8 vs. 11,9%), except for Colo 201 that increased up to 27.3% (Figure 3A, Table S2).

In PE, 36:2 (17.9–34.4%) was the most abundant species, followed by 36:1 (9.9–25.5%), 34:1

(13.0–15.9%), and 38:4 (4.7–14.3%). The increase in 40:7 and 40:6 (0.3 and 0.5% in primary vs. 2.9 and

4.7% in tumor cells, respectively) and the decrease in 38:3 (10.6 vs. 4.45%) were the most consistent

changes throughout all cell lines (Figure 3B and Table S2). In in situ cancer cell lines, 36:2, 38:3, and 38:4

levels were equally affected, with 36:2 (34.4 vs. 19.1% primary vs. mean value of all in situ cancer cells)

and 38:3 (10.6 vs. 15.3%) decreasing, and 38:4 (8.9 vs. 13.1%) increasing. Considering that it is highly

plausible that 18:0/18:2, 18:0/20:3, and 18:0/20:4 are the assignations for 36:2, 38:3, and 38:4, respectively,

these changes would be highly consistent with the metabolic relationship existing within the fatty

acids found at the sn-2 position. Conversely, in Colo 201, 38:4 levels were the lowest (4.7%), 36:2 levels

were similar to the primary cells (32.1%), while 38:3 were similar to the in situ cancer cells (3.0%).

Finally, 36:1 was increased in Colo 201 cells (1.8-fold) compared to all cell lines. In PE plasmalogens,

the most abundant species was 16:0/20:4 (12.9–33.8%), followed by 18:0/20:4 (13.3–21.7%), 16:0/22:6

(0.7–26.9%), and 18:0/18:1 (5.1–18.1%) (Figure 3C and Table S2).
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Figure 3. Membrane lipid fingerprint of primary, in situ, and metastatic cancer cell lines. Bar diagrams

comparing changes in lipid composition of (A) PC, (B) PE, (C) PE plasmalogens, (D) PI, (E) PS, (F) SM,

(G) Cer, and (H) HexCer at the molecular species level in primary, HT29, LS174t, SW480, and Colo 201 cell

lines. Values are expressed as percentage of total fatty acid (mole %) and represent mean ± SD, n = 3–6.

Statistical significance was assessed using one-way ANOVA followed by Bonferroni post-test. For clarity,

only significance with respect to primary cells are expressed, * p < 0.05; ** p < 0.01; *** p < 0.001; and only

species accounting for <5% of total membrane lipid class are included in the graph. Detailed results of all

comparisons and all lipid species are included in Table S2.
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The most robust observation was the decrease in oleic acid (18:1)-containing species, either at the

sn-1 or sn-2 position (16:0/18:1, 18:1/18:1, 18:0/18:1, 18:1/20:4), which coincided with changes reported

in human colon tissue [15]. Consistent with previous reports, all cancer cells showed a significant

increase in most DHA-containing species (16:0/22:6 and 18:0/22:6) [32].

The most abundant PI molecular species were 38:3 (13.2–47.9%), 38:4 (15.9–30.7%), and 36:1

(1.5–23.6%) (Figure 3D and Table S2). The most noticeable changes occurred in MUFA-containing

species (34:1 and 36:1). Whereas in primary cells, 34:1 and 36:1 accounted for approximately 1.0%

total PI, in cancer cells the average values were 11.3% (5.1–15.6%) and 16.7% (9.6–23.6%), respectively.

Interestingly, Colo 201 cells differed in their content in 34:1, 36:2, and 36:1 compared to the rest of cancer

cells. In PS, the most abundant molecular species were 36:1 (37.8–60.5%), 36:2 (7.8–16.4%), and 34:1

(6.9–16.7%) (Figure 3E and Table S2). The largest and most consistent change was the solid increase in

40:5 and 40:6 in all cancer cells compared to primary cells.

Regarding sphingolipids, in particular SM, Cer, and HexCer, the most abundant species were

d18:1/24:1 (9.5–36.5% in SM, 10.9–26.7% in Cer, and 37.8–4.3% in HexCer) and d18:1/16:0 (36.7–58.2% in

SM, 30.3–56.2% in Cer, and 10.1–66.1% in HexCer) (Figure 3F–H, Table S2). Interestingly, the most

profound changes occurred in these species, together with a significant increase in SMd16:1/18:1 in all

cancer cells (2.7-fold). Thus, in cancer cells, d18:1/16:0 species increased (1.5-fold in SM, 1.2-fold in Cer

5.2-fold and in HexCer) while d18:1/24:1 species decreased (3.3-fold in SM, 1.5-fold in Cer, and 3.9-fold

in HexCer) compared to primary cells, although these changes were not significant in all cancer cells.

Next, we evaluated how a particular molecular species, expressed as the number of C-atoms:

number of double bonds (38:1, 38:4, 40:5, etc.), were distributed within the main membrane phospholipid

classes (PC, PE, PE plasmalogens, PS, and PI) (Figure 4, Figure S2, Table S3). By doing so, we were

able to evaluate into which phospholipid class cells channeled and stored a particular combination of

fatty acids. At this point, we need to acknowledge that, except for PE plasmalogens, our lipidomic

data did not provide the identity of each of the fatty acid moieties. Therefore, we had to assume

certain assignations. To do this, we took into account the combination of fatty acids identified in PE

plasmalogens, as well as data found in the literature. Nevertheless, alternative combinations of fatty

acids contributing to the final percentage cannot be ruled out.

Interestingly, this way to express the results facilitated the identification of new cancer-associated

alterations that, in this study, were common for all cancer cell lines. Thus, we were able to group the

molecular species in four general categories according to the changes observed. The first group of

species included 38:4, 40:6 36:4, and 38:6 species (Figure 4A, Figure S2) which, in cancer cells, were all

drastically shifted from PE and PC to PE plasmalogens, and to PI in the case of 38:4. Importantly, this

observation was independent of the cancer cell line and of the distribution in primary cells (e.g. 36:4 is

different compared to 38:4), as in all cases the accumulation in PE plasmalogens accounted for up to

70% of the total. Indeed, there was a net increase in sn-1 saturated plasmalogen content in cancer cells

(66% in primary vs. 93% in situ, 84% in Colo 201 cells, Table S3). In the second group, which included

38:5 and 40:7 species, the distribution into PE plasmalogens was barely affected, with Colo 201 cells

as the only exception (Figure 4B). This drastic difference between the first and the second group was

rather unexpected as these species only differ in the presence or absence of a saturated fatty acid at the

sn-1 position. The third group included 34:1, 36:2, 32:0, 34:2, and 36:3 species (Figure 4C, Figure S2),

which clearly shifted to PC. Within this group, the changes in 36:2 and 36:3 species were significant,

as the PC: PE distribution in primary cells shifted from 50:40 and 60:30 to 70:10 in cancer cells. Finally,

the fourth group included 38:3, 40:5, 36:1, and 40:4 species (Figure 4D, Figure S2), which shared a large

decrease in PE in all cancer cell lines.
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Figure 4. Specific shift of PC and PE molecular species to sn-1 saturated /sn-2 AA or DHA - containing PE

plasmalogens in cancer cells. The distribution of the total amount of a particular fatty acid combination

within each membrane phospholipid class was evaluated. (A) 38:4 and 40:6-containing phospholipids;

(B) 38:5 and 40:7-containing phospholipids; (C) 34:1 and 36:2-containing phospholipids; (D) 38:3 and

40:5-containing phospholipids; Values are expressed as a percentage of the total amount of the selected

fatty acid combination (mole %) and represent mean± SD, n = 3–6. Statistical significance was assessed

using one-way ANOVA followed by Bonferroni post-test. Only significance with respect to primary

cells are expressed. * p < 0.05; ** p < 0.01; *** p < 0.001. Detailed results of all comparisons are included

in Table S3. Minor species are included in Figure S2.
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2.2. Levels of Plasmalogen are Coordinated with Enzyme Changes

A thorough analysis of the lipidome of these five colon cell lines offered two consistent results:

a profound impact on the levels of ethanolamine glycerophospholipid subtypes (decrease in PE

and increase in PE plasmalogens) and a drastic shift of AA- and DHA-containing diacyl species to

PE plasmalogens. Unexpectedly, this shift mainly affected plasmalogens with saturated fatty acids

at the sn-1 position. Since the latter is established during the early steps of ether lipid synthesis

(Figure S3), we explored the differences between the primary and cancer cell lines in the expression

of enzymes involved in the synthesis of fatty alcohols and their insertion at the sn-1 position of the

glycerol backbone, namely: fatty acyl-CoA reductase (FAR, isoforms 1 and 2), glycerone-phosphate

O-acyltransferase (GNPAT), and alkylglycerone-phosphate synthase (AGPS) (Figure 5, Figure S4,

Table S4).

Figure 5. Protein and gene expression of ether lipid synthetic enzymes in primary and cancer colon

cell lines. (A–D) Protein expression of ether lipid synthesis enzymes: FAR1 and FAR2 (fatty acyl-CoA

reductases 1 and 2), AGPS (alkyl-glycerone-3-phosphate synthase), and GNPAT (glyceronephosphate

O-acyltransferase) in primary (Pr) and cancer colon cell lines (Co, Colo-201; HT, HT29; LS, LS174T;

SW, SW480). Values are expressed as a percentage of control and represent the mean ± SEM, n = 3–5;

(E–H) Gene expression of ether lipid synthesis enzymes in primary (Pr) and cancer colon cell lines (Co,

Colo-201; HT, HT29; LS, LS174T; SW, SW480). Values are expressed as a percentage of control and

represent the mean ± SEM, n = 5. To assess statistical differences, one-way ANOVA and Bonferroni

post-test were applied. For simplicity only significance with respect to primary cells are expressed.

* p < 0.05; ** p < 0.01; *** p < 0.001. Detailed results of all comparisons are included in Table S5. Original

values and densitometry values are included in Figure S4 and Table S4, respectively.

Western blot analysis showed that FAR1, FAR2, and AGPS protein expression was consistently

enhanced in all cancer cell lines compared to primary cells, although these differences were statistically

different in all tumor cell lines simultaneously only for FAR1 (Table S5). The largest impact was observed

in AGPS expression, showing a 14- to 70-fold increase depending on the cancer cell line. Interestingly,

AGPS was overexpressed in Colo 201 not only compared to primary cells but also, and importantly,

compared to all the in situ cell lines, that is, SW480, LS174t, and HT29 cancer cells (1.5- to 5-fold higher).

Interestingly, FAR1 and FAR2 were overexpressed in all cancer cells compared to primary cells, at rather

similar levels for each cancer cell type (8- to 10-fold in Colo 201; 12-fold in HT29; 5-fold in LS174
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and 8- and 12-fold in SW480). Finally, only SW480 cells showed an overexpression of GNPAT at the

protein level (Figure 5A–D). Next, we evaluated the expression of these enzymes at the mRNA level by

quantitative PCR. FAR1 mRNA levels were uniformly overexpressed in all cancer cell lines by 5.6-fold

(average value). AGPS mRNA levels were also overexpressed in all cell lines, although values varied

considerably: with a 4-fold increase in LS174t while the rest of cancer cells showed a 1.4-fold change.

GNPAT mRNA levels were overexpressed by 3.6-fold in LS174t, while they remained constant in the

rest of the cell lines (0.9-fold in Colo 201, 1.2-fold in HT29, and 0.9-fold in SW480). Finally, the FAR2

mRNA expression pattern was unexpectedly different between cells: overexpressed 7.0- and 2.1-fold

in LS174t and HT29 cells, respectively, but downregulated by 0.3-fold in Colo 201 and SW480 cells,

respectively (Figure 5E–H). Altogether these results were consistent with data on plasmalogen levels,

indicating that the plasmalogen metabolism is profoundly affected at both the protein and the mRNA

levels in all cancer lines (with the latter being highly dependent on the cell line).

2.3. Extracellular Vesicle Lipids as Biomarkers of Malignization in a Cell Culture Model

EV lipid analysis was sensitive enough to separate them according to their cell origin. Thus, PCA

of membrane lipid classes separated primary and cancer cell-derived EVs, although, unlike for cells,

it was not able to discriminate between the in situ and Colo 201 cancer cells (Figure 6A).

Figure 6. Membrane lipid composition of EVs isolated from colon commercial cell lines. (A) PCA of the

EV lipid composition at the level of membrane lipids classes; (B) Loading plot after PCA of the major

membrane lipid classes. For clarity, only the most influential species are indicated at each variables

PCA analysis; (C) EV membrane lipid composition. Values are expressed as % of total membrane

lipids (mean ± SD), n = 3–6. Statistical significance was assessed using one-way ANOVA followed

by Bonferroni post-test. For clarity, only statistical differences between primary and cancer cells are

represented. The asterisk (*) indicates a significant difference between cancer cell lines and the primary

cell line. * p < 0.05; ** p < 0.01; *** p < 0.001. Detailed results showing all comparisons are included in

Table S6. (D) Membrane lipid class segregation between cells and cell-derived EVs. Enrichment of

lipid classes in cells or exosomes calculated as mol% of lipids in these samples.
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In any case, the most influencing lipid classes in the PCA were PC, SM, PE plasmalogens, and PS

(Figure 6B). Thus, PCA results indicated that primary cells were segregated from the rest due to high

PE plasmalogen levels and low PC levels (Figure 6B,C). Taken globally, in situ cell lines showed a

profile with a high content in PC combined with low PE plasmalogen levels. Finally, the EVs of the

most malignant cells were characterized by a low PC level compared to in situ cancer cells.

Consistent with the literature, the most abundant membrane lipids in EVs were PC (29.8–61.6%)

and SM (28.4–35.4%) (Figure 6C, Table S6) [26,27,33]. The most relevant differences between primary

and cancer cells were the increase in PC (29.8 vs. 57.2% primary cells vs. tumor cells), and decrease in

Cer (3.4 vs. 0.89%), PE (10.3 vs. 1.7%), and PI (4.1 vs. 0.7%) levels. Despite not being significant, it is

worth stressing that EVs isolated from in situ cancer cells differed from those of Colo 201 in PS (1.5 vs.

10.3%) and PE plasmalogen (1.0 vs. 7.8% in situ cancer cells vs. Colo 201 cells) content. In terms of

membrane lipid classes, EVs derived from in situ cancer cells were less diverse than those from the

primary and Colo 201 cells. This homogeneity, together with the high PC and SM levels, would lead to

more rigid membranes of the in situ derived EVs.

Next, we investigated the differences in cell and EV membrane lipidome by comparing their

relative levels (Figure 6D). In this context, the most solid change was the rise in SM levels in EVs

(4.1-fold enriched in EVs), which is in line with the literature [34]. The opposite was observed for PE,

PE plasmalogens, and PS as all cell derived EVs were impoverished in these membrane lipids, whereas

their levels between EVs and cells were maintained in the primary and Colo 201 cells. PI levels were

rather similar in primary EVs and cells, while EVs derived from cancer cells contained lower levels of

this phospholipid compared to their origin cell. Finally, the ceramide group was enriched in primary

EVs (3.0-fold) but was barely affected in cancer cells.

The analysis of EVs lipid molecular species revealed profound changes in acyl chain composition in

cancer cell lines compared to primary cells (Figure 7). The PCA using PC, PE, PI, and PS molecular species

separately was able to separate between primary and cancer cells (Figure S5). Globally, the separation

between primary and cancer cells was mainly due to their content in MUFA and DUFA species. The species

accounting for this segregation were: high levels in PC32:0, 34:2, and 36:2; low levels in PE34:1 and

32:0; high levels in PI38:3 and low levels in PI36:1, and high levels in PS36:2 and 34:1, and low levels

in PS36:1 content. Although the PCA indicated that PC34:1, PE36:2, and PI38:3 were increased in Colo

201 cells compared to in situ cancer cells, these differences were not statistical. The most abundant PC

species in EVs were 34:1 (28.3–34.7%) followed by 36:2 (7.8–19.9%) and 36:1 (11.8–17.5%) (Figure 7A,

Table S7). Globally, the changes observed at the level of PC molecular species occurred in the same line

and degree in both the in situ and metastatic cells, with PC34:1 as the only exception. Interestingly, 36:1

(a MUFA-containing PC) increased in cancer cells compared to primary cells (11.0 vs. 16.6% primary vs.

mean cancer cell content). Conversely, primary cells were enriched in di-unsaturated species, 34:2 (12.0

vs. 2.5%) and 36:2 (19.9 vs. 8.8%), compared to all cancer cells.

In PE, the most abundant species were 34:1 (10.5–37.1%), 36:2 (24.0–42.4%), and 36:1 (15.7–23.7%)

species (Figure 7B, Table S7). The most relevant differences were the increase in 34:1 (10.5 vs. 30.3%

primary vs. mean of all tumor cells) and 32:0 (0.4 vs. 10.0%), and the decrease in 38:3 (9.4 vs. 0.85%) in

cancer cell derived EVs. In this study, fewer PE plasmalogen species were detected in EVs and their

levels did not change statistically (Figure 7C, Table S7). In PI, the most abundant species were 38:4

(29.1–36.7%) and 38:3 (14.9–43.5%) (Figure 7D, Table S7). However, no significant differences were

detected in PI species between the EVs derived from the cell lines studied. Finally, the most abundant

PS species was by far 36:1 (52.6–66.1%) followed by 36:2 (6.5–16.3%) (Figure 7E, Table S7). The most

consistent changes throughout the cancer cell lines were the decrease in 38:3 (8.5 vs. 4% primary vs.

mean of all tumor cells) and 40:4 (4.5 vs. 0.3%) content. Finally, regarding sphingolipids, d18:1/16:0 and

d18:1/24:1 (36.8–45.4% and 17.4–23.2%, respectively) in SM, and d18:1/16:0 and d18:1/24:0 (19.9–30.6%

and 16.5–34.3%, respectively) in Cer, were the most abundant SM species (Figure 7F,G, Table S7). Taking

into account these constant SM levels, it was rather remarkable to discover the increases in species of

the likes of d18:1/22:1 and d18:1/22:0 in all “in situ” cancer cells and in d16:1/18:1, which increased
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similarly in all cancer cells. As in membrane classes, we compared how a particular molecular species

was distributed between cells and EVs within each cell line (Figure S6). The most interesting result

was the differential segregation of AA-containing species depending on whether this fatty acid was

esterified in PC or PE. Thus, PC38:4 and 38:5 were preferentially channeled into EVs, while PE38:4 and

38:5 were directed into cells. Importantly, this observation was specific for cancer cells.

Figure 7. Molecular species composition of the main membrane lipids of EVs isolated from commercial

colon cell lines. Bar diagrams comparing levels of (A) PC, (B) PI, (C) PE, (D) PE plasmalogens, (E) PS,

(F) SM, and (G) Cer at the molecular species levels in primary, HT29, LS174t, SW480, and Colo 201

cells. Values are expressed as a percentage of total fatty acid (mole %) and represent the mean ± SD,

n = 3–6. Statistical significance was assessed using one-way ANOVA comparing primary to cancer

cells. For clarity, only species accounting for <5% of the total lipid class were included in the graphs.

* p < 0.05; ** p < 0.01; *** p < 0.001. Detailed results of all comparisons are included in Table S7.
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3. Discussion

Cancer cell lines have been used in biomedical research worldwide for almost seven decades.

Since the development of the HeLa cell culture in 1951, the use of immortalized cell lines implied a

paradigm shift in the study of cancer [35]. Importantly, cancer cell lines helped to reveal the molecular

mechanisms underlying multiple diseases, including, but not exclusively, cancer. Despite the controversy

surrounding their use [36,37], cancer cell lines are still a valuable “in vitro” model system, widely used

in cancer research, identification of biomarkers, and drug discovery [38–40]. Lipid research has been

no exception in the use of this model, as could not have been otherwise. Taking into account that

solid increase in the interest in lipidomics [41] and the solid results demonstrating the specificity of

the lipid fingerprint, the use of commercial cell lines to investigate the role a particular lipid species is

expected to rise. Herein, we demonstrate that the lipid analysis of five human colon cell lines rendered a

lipid fingerprint that although, at first sight, may appear to be cell line-dependent, its comprehensive

examination demonstrates that cancer and secreted EV lipidomes share common features that make it

possible to distinguish not only between primary and cancer cells but also between cancer cell origin

(primary tumor vs. metastatic site, Figure 1, Table S1). Importantly, these changes were also specific

enough to segregate cells according to their malignancy, firmly laying the groundwork for using both

cell and EV lipid fingerprint as a CRC biomarker. Nevertheless, it is important to take into account

the limitations of using cell cultures when interpreting lipidomic results [42], particularly those closely

related to lipid metabolism, since it is highly sensitive media composition or culture conditions such as

hypoxia/normoxia [43], cell density or cell growth type (2D vs. 3D cell cultures) [44].

Thus, the lipidomic data demonstrated that cancer and primary cell lipidome differ significantly

at the level of both membrane lipid class and molecular species. Different lipid groups account

for the separation between primary and cancer cells, with ethanolamine glycerophospholipids and

sphingomyelin as the most critical (Figure 1, Figure S1). Hence, the most consistent changes throughout

the cancer cell lines were the decrease in SM and PE and the increase in PE plasmalogens compared to

primary epithelial cells, which fully agrees with the literature [42–47]. However, the causes of these

alterations and the role of these lipids in the tumorigenic process remain unknown.

SM appears to play a pivotal role in regulating cell adhesion [48], as well as cleavage furrow formation

during cytokinesis [49], both critical processes in cell division and tumor development. Interestingly, our

lipidomic results showed a common change throughout the sphingolipid family at the molecular species

level. Thus, sphingolipids in primary cells were highly enriched in d18:1/24:1 species, while in cancer cells,

they were enriched in d18:1/16:0. Although these are rather common sphingolipid species, there is still

no clear evidence regarding their specific role, which could depend on cell type. Thus, SMd18:1/16:0 was

identified as a biomarker for hypoxic tumor regions in a breast cancer xenograft model [50], whereas in

liver cancer [51], this species enabled common necrosis (typical of tumor progression) to be distinguished

from infarct-like necrosis (a response to treatment). Unlike in phospholipids, fatty acid turnover is not a

mechanism used by mammalian cells to modify sphingolipid molecular species, so the alterations in

lipid metabolism must be happening at the species de novo synthesis or degradation level in cancer cells.

Further, the comprehensive analysis of the lipid fingerprint left us with two solid results affecting

ethanolamine glycerophospholipids on two levels. First, ethanolamine glycerol-phospholipids were

affected at the level of subclasses. Thus, we established a profound impact on PE and PE plasmalogen

levels, decreasing and increasing, respectively. The first study reporting enhanced ether lipid levels in

cancer dates back to the late 1960s [45]. Since then, many studies, including ours, have consistently shown

higher levels of ether lipids in cancer cell lines [45], in xenograft models [47] or human tumor samples [45].

According to our results, the increase in PE plasmalogens could be explained by overexpression of

the key plasmalogen synthesis enzymes, FAR1, FAR2, and AGPS, in all cancer cell lines. Importantly,

despite the solid evidence linking plasmalogens and cancer, little is known about the impact on ether

lipid synthetic enzymes of the tumorigenic process. The initial reaction in ether lipid synthesis requires

the formation of a complex between two AGPS and one GNPAT molecule to acylate dihydroxyacetone

phosphate at the sn-1 position [52] (Figure S3). Recently, AGPS overexpression was associated with
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cancer cell aggressiveness and invasiveness in primary breast tumors and cancer cell lines (breast

(231MFP), melanoma (C8161), and prostate (PC3) cancer cells) [45]. Consistently, we showed that not

only was AGPS overexpressed in all cancer cell lines but also between cell lines isolated from primary

tumors or metastatic sites (Figure 5C). Taking into account the fact that the levels of ether lipids are

positively associated with the tumor metastatic capacity of a cell line [45,46], our results consolidate

AGPS expression as a good biomarker to assess the metastatic capacity of a cancer cell. Conversely,

GNPAT expression was only overexpressed in LS174T, while in the rest of cells it was either unaffected

or slightly downregulated. A similar observation, a reduction in GNPAT mRNA levels, was reported in

a study on murine microglia exposed to inflammatory stimuli [53]. Therefore, it cannot be ruled out that

the tumor inflammatory component could account for the GNPAT mRNA levels observed in this study.

To the best of our knowledge, no data comparing GNPAT, FAR1, and FAR2 expression in tumor and

non-tumor cell lines have been published to date.

The second most striking impact on ethanolamine glycerophospholipids was at the level of

molecular species. Herein, we report for the first time a profound shift of PE and PC diacyl species

into PE plasmalogens, which proved to be highly selective for those presenting saturated fatty acids

and AA (36:4, 38:4) or DHA (38:6, 40:6) at the sn-1 and sn-2 position, respectively. Despite the fact

that plasmalogens are the often-unperceived member of phospholipid family, these results clearly

indicate that they are more tightly regulated than initially suspected. Fatty acyl-CoA reductases

(FAR1 and FAR2) are the enzymes catalyzing the reduction of a fatty acyl-CoA to the fatty alcohol

that is finally linked at the sn-1 position of the plasmalogens [54]. FAR1 is the isoform showing the

broadest distribution, whereas FAR2 expression is largely restricted to the meibomian glands, skin,

brain, and small intestine (no data have been reported for colon) [55]. It has been proposed that

differences between enzyme expression, activity, and substrate preference could be related to a cell

strategy to differentially channel fatty alcohols to ether lipid or wax ester synthesis [56]. Importantly,

FAR1 and FAR2 also differ in their activity and substrate preference. FAR1, which seems to be more

active, accounts for C16:0, C18:0, and C18:1 fatty alcohol synthesis, while FAR2 prefers C16:0 and C18:0

saturated fatty acids [57]. Furthermore, FAR1 stability (but not FAR2) is regulated post-translationally

by a mechanism sensitive to plasmalogen levels, wherein the adequate localization of plasmalogens in

the inner leaflet appears to be fundamental [57,58].

Using duramycin, a probe that binds both diacyl- or plasmalogen type [59], it was demonstrated that

apoptosis or exposure to noxious cues induces translocation of ethanolamine glycerophospholipids [60–62].

Hence, it cannot be ruled out that the translocated PE could contain a fraction of PE plasmalogens. If so, this

could trigger a “low plasmalogen level” signal at the inner leaflet [63] and leading to the overexpression

of FAR1 levels (Figure 5). Conversely, in the context of exacerbated plasmalogen synthesis, FAR2 fatty

alcohols might also be used in plasmalogen synthesis. This could be particularly important in the context

of intestinal cancer were FAR2 mRNA levels have been shown to be high compared to other tissues [55].

It is worth stressing that despite the individual differences in the lipidome of cancer cells, when compared

to primary cells, the lipid and protein changes reported herein were strikingly homogeneous in the four

cancer lines, pointing to what could be a common feature of the tumorigenic process. Regarding the

specificity at the sn-2 position, it is well known that AA is preferentially incorporated and accumulated at

this position in PI and PE plasmalogens, although the biological implication of this specificity remains

unestablished [64,65]. In this context, we have recently demonstrated that PE plasmalogens and PI

molecular species containing AA are strictly regulated during colonocyte differentiation [8,15]. Thus,

AA-PE-plasmalogen/PI levels are highest at the base of the crypt, where continuous stem cell division

occurs, and they decrease concomitant to the advance in the differentiation process. Importantly, these

changes were accompanied by a gradient in the expression of enzymes involved in AA metabolism. Further,

higher levels of AA-containing phospholipids have been consistently shown in culture cells [32,45,46,66]

as well as in colon adenomatous polyps and carcinoma [8,15]. Altogether, we hypothesize that rapidly

dividing cells, whether they be stem cells or cancer cells, need to accumulate and preserve esterified

AA levels, particularly in PI and PE plasmalogens, to sustain their division rate, which would account
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for the robust shift observed in this study. Figure 8 summarizes our current understanding of how the

observed cancer-induced changes in plasmalogens may participate in exacerbated cell division due to

their involvement in the recruitment and activation of Akt, a key regulator of cell proliferation [65,67].

Figure 8. Model describing the impact of the most consistent lipid changes observed in cancer cells— increase

in PE plasmalogen- and AA-containing phospholipids (in particular PI)—on the Akt signaling pathway,

a canonical cell differentiation and proliferation pathway. (A) In healthy cells, phosphatidylinositol-

3–kinase (PI3K) phosphorylates PIP2 to PIP3, which recruits Akt directly via a PH-pleckstrin domain.

Despite the lack of direct evidence indicating the preference of PI3K enzymatic for AA-containing PIP2,

this specificity was shown for PI4K [68,69]; in addition, both PIP2 and PIP3 are enriched in AA [70].

Altogether, it could be speculated that PI3K, may prefer AA-containing substrates. Thus, other papers

show that plasmalogens are needed to maintain Akt linked to the membrane [67,71], which is crucial

for its activation via phosphorylation by PDK1 and PDK2 (among others). Once phosphorylated,

Akt shuttles back to the cytosol where it phosphorylates a myriad of targets, activating downstream

pathways that culminate in cell proliferation. (B)—In cancer cells, including colorectal cancer cells,

PI3K and Akt are overexpressed at the protein level [72]. Therefore, the presence of high levels of

AA-containing phospholipid, and plasmalogen [8,15,45–47] in cancer cells would provide the substrate

and necessary environment to sustain enhanced and uncontrolled cell division.

There is no doubt that detecting cancer at very early stages is a factor critical to patient survival.

Therefore, the possibility of detecting differential EV profiles in terms of composition has led many

researchers to characterize their content thoroughly. However, despite the general interest in this field,

few papers describe the complete lipidome of EVs [26,33]. In this study, the results showed that the EV

lipidome is dependent on cell origin, and therefore has the potential of becoming a good biomarker.

However, the comprehensive description of the EV lipidome of five different colon cells lines enabled

us to conclude that it was possible to segregate between EVs shed by cancer cells from those shed by

non-cancer cells. These changes could help in future studies to understand the role and regulation

of EVs, but more importantly, could set the basis to use the EV lipidome as a non-invasive cancer

biomarker tool. The results in terms of phospholipid composition are in agreement with previous

studies showing a relevant SM enrichment in EVs compared to cell of origin [34]. While several studies

describe the lipidome of EVs obtained from rather different sources [18–24], only a few studies explored

how EV lipid molecular species could be used as biomarkers [25–27]. Interestingly, we were able to

segregate EVs according to their origin by using lipid PC, PE, PI, and PS molecular species confirming

the great potential the EV lipidome has in generating biomarkers for cancer diagnosis.
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4. Materials and Methods

4.1. Cell Lines and Culture Protocol

CRC cell lines, Colo-201, HT29, LS174T, and SW480 were purchased from the European Collection of

Authenticated Cell Cultures (ECACC, Salisbury, UK). To avoid contamination by serum-EVs, all cell lines

were cultured with EVs-free serum that was prepared by centrifuging the commercial serum at 120,000×

g overnight. The primary colon epithelial cell line was purchased from Innoprot (Ref. P10768, Derio,

Spain). Cells were grown for 72 h in the medium recommended by the manufacturer and completed,

except for primary cells, with 10% v/v exosome-free FBS (Labclinics, Barcelona, Spain, Ref. S181B-500),

1% v/v non-essential amino acids (Labclinics, Ref. NEAA-B), and 2 mM glutamine (Labclinics, Ref.

P1012-500GR). Cells were plated and grown as follows: primary cell line, 30,000 cells/cm2 in Colonic

Epithelial Cell Medium (Innoprot, Bizkaia, Spain, Ref. P60165) for 48h; SW480, 20,000 cells/cm2 in

DMEM for 48 h (Labclinics, Ref. L0106-500); HT29, 30,000 cells/cm2 in MEM for 48 h (Labclinics, Ref.

MEMA-RXA); LS174t, 30,000 cells/cm2 in MEM for 48 h (Labclinics, Ref. MEMA-RXA); and Colo 201,

20,000 cells/cm2 in RPMI for 72 h (Labclinics, Ref. L0490-500). For EV collection, the culture medium

was collected 48 h after being plated (72 h for the Colo 201) and kept at −80 ◦C until processing. Protein

levels were measured using a protein assay based on the Bradford dye-binding method, according to the

manufacturer’s instructions (Bio-Rad Laboratories, Barcelona, Spain).

4.2. Extracellular Vesicle Isolation

EVs were isolated using a differential centrifugation protocol adapted from Crescitelli et al. [29].

The first centrifugation was at 300× g for 10 min to precipitate the floating cells and cell debris.

Then, the supernatant was centrifuged at 2000× g for 20 min. to precipitate the apoptotic bodies.

Next, the supernatant was filtered by gravity through 0.8 µm filters to remove undesired particles

> 800 nm. The supernatant was filtered with gentle pressure to isolate the smallest vesicles. Finally,

the supernatant was centrifuged at 120,000× g for 70 min. to obtain the exosome-enriched fraction.

All centrifugation steps were performed at 4 ◦C.

4.3. Lipid Extraction and LC-MS

4.3.1. Lipid Standard Solutions

Internal standard solutions were prepared as described previously [73]. For measurements of PE

P-, GM1, and GD1, an external standard solution containing 50 pmol each of PE (28:0), PE (P-18:0/18:1),

GM3 (d18:1/12:0), and GD1a (from bovine brain) was prepared. Pretreatment and measurement of

the external standard solution were performed simultaneously with the samples, and derived (peak

area of PE (P-18:0/18:1)/peak area of PE (28:0)) values were used as the corrective coefficients for the

quantitation of PE plasmalogen.

4.3.2. Lipid Extractions

Lipid extractions were performed as described previously [73], but with several modifications.

Briefly, cell pellets were sonicated for 10 s with 0.1 mL methanol/butanol (1:1) to inactivate the associated

enzymes using an ultrasonic bath. After the addition of 0.05 mL standard lipid mixture, 0.05 mL of

0.5 M phosphate buffer (pH 6.0), and 0.2 mL of water, the samples were shaken with 0.7 mL of butanol

and sonicated for 3 min. in an ultrasonic bath. After centrifugation, the upper layer was collected.

The original suspension was re-extracted by the addition of 0.35 mL each of ethyl acetate and hexane,

followed by centrifugation. The resulting extract was combined with the first butanol extract. After the

addition of 0.7 mL methanol, 10% (0.21 mL) of this solution was dried under reduced pressure at

40 ◦C, and dissolved in 20 µL of LC mobile phase B and 30 µL of mobile phase A. This sample was

used to analyze Cer, SM, monohexosylceramide (HexCer), PE, and PC levels. The remaining 90%

(1.8 mL) of the extract was fractionated on a DEAE-cellulose column (500 µL bed volume packed in
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a 1 mL polypropylene pipette tip), previously activated by acetic acid. After washing with 2 mL of

methanol, the column-bound lipids were eluted with 1 ml methanol/28% aqueous ammonia/formic

acid (1000:33:22). The organic solvent was evaporated from the eluate under reduced pressure at 50 ◦C,

after which dried materials were dissolved with 50 µL of mobile phase A. The resulting sample was

used for the analyses of acidic lipids (i.e., GM3, PS, PG, PI, and phosphatidic acid (PA)).

4.4. MS Analysis

Lipids were measured using LC-MS/MS as described previously [73], except that the collision

energy was set to 30 V for Cer, SM, HexCer, LacCer, PE, and PC. Mass transitions were additionally

set to 702.5/364.2, 724.5/364.2, 728.6/390.2, 730.6/392.2, 748.5/364.2, 750.5/390.2, 752.6/392.2, 774.5/390.2,

and 776.6/392.2 for PE plasmalogens in the positive ion mode. Each molecular species was identified

based on the MS/MS spectrum and LC retention times, and quantities present were calculated from

the peak areas of the measured lipids, compared with those of the internal standards. Each level of

measured lipids was normalized to the total protein content.

4.5. Protein Expression Determined by Western Blot

Samples were lysed using protein extraction buffer (10 mM Tris-HCl pH 7.4, 50 mM NaCl, 1 mM

MgCl2, 2mM EDTA, 1% w/v SDS, Sigma-Aldrich, Madrid, Spain) with complete protease inhibitor

tablets (Roche, Basel, Switzerland). Sample lysates were briefly sonicated (450 Digital Sonifier, Branson,

Hampton, NH, USA) at 4 ◦C and protein concentration was measured using the DC Protein Assay Kit

(Bio-Rad, Barcelona, Spain). Then, 10% loading buffer was added to the sample which was boiled for

8 min. and a total of 20 µg protein was loaded for analysis in an SDS-PAGE. After protein transfer,

nitrocellulose membranes (protran ba85, GE Healthcare Life Science, Barcelona, Spain) were blocked

with PBS (0.14 M NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 2 mM KH2PO4) containing 5% dry non-fat

milk for 1 h at room temperature. Membranes were then incubated at 4 ◦C overnight with primary

antibodies against GNPAT (1:600, Atlas Antibodies, Stockholm, Sweden, cat# HPA060059), AGPS

(1:600, Atlas Antibodies, cat# HPA030209), FAR1 (1:6000, Antibodies-online, cat# ABIN2174097), FAR2

(1:6000, Antibodies-online, cat# ABIN709091), and β-actin (1:10,000, LI-COR Biosciences Lincoln, NE,

USA, cat# 926-42212). After incubation, membranes were washed with PBS containing 0.1% Tween

20, or PBS containing 0.1% Tween 20 and 5% BSA (for polyclonal antibodies) (Sigma-Aldrich). Then,

membranes were incubated with goat anti-rabbit IRDye 800CW (1:5000, LI-COR, cat# 926-32211)

or Alexa 685 donkey anti-mouse IgG (1:2500, Abcam, Cambridge, UK, cat# ab175774) secondary

antibodies at room temperature for 1 h. Membranes were visualized using Odyssey CLx Imaging

System (LI-COR Biosciences); Quantity one software (Bio-Rad, Hercules, CA, USA) was used to

quantify the specific signals.

4.6. Statistical Analysis

Cell lines and derived EVs were compared in each case using one-way ANOVA followed by

the Bonferroni multiple-comparison post-test. Values are expressed as mean ± SD values from 3-6

independent experiments.

5. Conclusions

There is no doubt that tumorigenesis is a complex process which affects cell lipidome at different

levels. Consistently, the lipid profile has proven to be specific enough to unambiguously characterize

different cell states such as division, differentiation, malignization, and cell death [8,15,47,74,75] which

makes the lipidome a powerful tool to identify biomarkers for disease. Furthermore, the identification

of specific molecular species rigorously regulated during fundamental biological processes is leading to

a scenario wherein the specific role of membrane lipids needs to be redefined and further investigated.

Here, we demonstrate that even though it is important to be aware of the differences in individual

lipidomes between cancer lines, even if they share tissue origin, commercial cell lines do show striking
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homogenous changes, pointing to what could be a common feature of the tumorigenic process. This

conclusion is particularly important when developing new drugs targeting lipid metabolism in a

clinical setting. Thus, cell cultures are still a valid model to study lipid metabolism, but caution should

be taken due to its characteristics and its high dependence on cell culture conditions. Individual

differences within tumor CRC cell lines are, in fact, in line with the scenario found in CRC patients,

where it is well established that, because of compositional differences, CRC tumors at the same stage

can differ in both prognosis and treatment response [3]. Consistently, there is a great effort to resolve

this heterogeneity by defining a molecular sub-classification [3]. Taking into account the sharp rise in

lipidomic articles in the last decade, the increase in the number of studies using commercial cell lines

aiming to identify the exact molecular mechanisms used by these molecular species is more than likely.

Hence, when interpreting results, it is critical to take into account that any culture conditions (cell

media composition, hypoxia [47,76], cell confluence, or 2D vs. 3D cultures [77]) may have an impact

on the lipidome.

The increasing number of studies demonstrating the high versatility of lipid metabolism to

describe pathological situations places lipidomics at a crucial moment. Even though the use of

lipidomic analysis in a clinical setting is currently still discrete, some examples include the diagnosis of

severe metabolic diseases in newborns by detecting aberrant levels of very long polyunsaturated fatty

acids, or malnourishment by assessing n-3 fatty acids in plasma. This corroborates the importance of

having a thorough understanding of lipid metabolism and how it is regulated at all levels (enzyme

activity, gene expression, and epigenetically). The incorporation of MS-based methods into the research

lab routine, together with an improvement in the study models (e.g. use of organoids), allows being

optimist about the use of lipidomics in daily clinical practice soon. Proof of that is the great effort being

made by international consortia, such as Lipid Maps, to develop and establish harmonized protocols

for lipid analysis and data mining.
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