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1 Introduction

The top-quark mass is a fundamental parameter of the Standard Model (SM). Its large

size, of the order of the electroweak (EW) scale, is associated with a strong coupling to

the Higgs boson, and therefore with a possible role of the top quark in EW symmetry

breaking. Its precise value directly affects the stability of the EW vacuum in the SM, since

top-quark contributions drive the evolution of the Higgs boson self-coupling. In addition,

the top-quark mass crucially enters in the computation of radiative corrections to precision

SM observables.

For the above reasons, a precise measurement of the top-quark mass is of utmost

importance for the LHC and future collider facilities. The measurement and interpretation

of the top-quark mass at hadron colliders is, however, quite controversial (for related reviews

see, e.g., refs. [1, 2]). The top-quark mass is a parameter of the underlying field theory,

and this implies that, at the formal level, it has to be treated similarly to any other bare

parameter of the SM. The top-quark mass has to be renormalised and, in particular, its

meaning and value depend upon the adopted renormalisation scheme.

A widely used renormalisation scheme for the top-quark mass is the pole scheme.

Within this scheme the renormalisation procedure fixes the pole of the quark propagator,

at any order in perturbation theory, to the same value, which is the pole mass Mt. Other

mass renormalisation procedures, such as the MS scheme (which is the customary scheme

for the renormalisation of the QCD coupling αS), can be used. In the MS scheme, the

ultraviolet divergences are renormalised by removing only the singular contributions in the

dimensionally regularized formulation of the underlying field theory. In this scheme the

pole of the quark propagator receives corrections at any order in perturbation theory and,

therefore, the MS renormalised mass mt(µm) differs from the pole mass Mt. Moreover,

the MS mass depends on the auxiliary renormalisation scale µm, while the pole mass is

renormalisation-scale independent. The physical predictions of the theory are independent
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of the scheme, provided the two renormalised masses and the corresponding perturbative

calculations are formally related to all orders in perturbation theory. However, the use of

different mass renormalisation schemes can have a non-negligible quantitative impact in

the context of fixed-order predictions, especially at low perturbative orders.

In the context of top-quark production at hadron colliders, the top quark is viewed as a

‘physical’, though unstable, particle. In the limit of vanishing width of the top quark, this

picture directly leads to considering theoretical calculations for the production of on-shell

top quarks (t) and antiquarks (t̄) with a definite pole mass. The main source of top-quark

events at hadron colliders is the production of top-quark pairs. QCD radiative corrections

to the tt̄ total cross section are available up to next-to-next-to-leading order (NNLO) within

the pole mass scheme [3–7]. In refs. [8–11] the NNLO QCD calculation of tt̄ production is

extended to the computation of differential cross sections.

Considering the calculation of on-shell tt̄ production, the pole mass of the top quark

can be re-expressed at the formal level in terms of a different mass parameter, such as the

MS mass of the top quark. Approximate NNLO results for the tt̄ total cross section using

the MS mass were presented in refs. [12, 13]. Using the results of refs. [3–6], the calculation

was later extended to complete NNLO, and first next-to-leading order (NLO) results for

differential distributions were presented in ref. [14]. A common aspect of the studies of

refs. [12–14] and of related calculations (e.g., those used in refs. [15, 16]) is that, in general,

only a fixed renormalisation scale is used for the MS mass. Specifically, the renormalisation

scale is set to the value µm = mt, where the mass parameter mt is defined by the relation

mt(mt) = mt in terms of the MS mass. Eventually, in these calculations the pole mass

Mt is perturbatively re-expressed in terms of the scale-independent parameter mt in the

MS scheme. In the journal version of ref. [14] (see figures 3 and 8 therein) effects of µm

variations around µm = mt are considered only for the cases of the total cross section and

the transverse-momentum distribution of the top quark.

In this paper we present, for the first time, a fully differential QCD calculation of

the top-quark pair cross section at NNLO by using the MS mass. The results are based

on our implementation of the tt̄ production cross section presented in refs. [7, 11], where

fully differential predictions were obtained in the pole scheme by using the qT -subtraction

method [17]. In addition, and at variance with previous works, we do not consider only

one fixed renormalisation scale for the evaluation of the MS mass. We extensively study

µm variations and their effect on the estimate of theoretical uncertainties. The use of the

MS scheme or, more generally, of a short-distance and scale-dependent renormalisation

procedure of the top-quark mass can have potential theoretical advantages with respect to

the use of a fixed (scale-independent) top-quark mass. Indeed, the scale-dependent mass

can be evaluated at the physical scale that is relevant for the observable under consideration.

Therefore, in this paper we also study the use of dynamic scales for the running MS mass.

Specifically, we compute the invariant-mass distribution of the tt̄ pair by using fixed and

dynamic scales, and we compare our NNLO results with a recent measurement performed

by the CMS Collaboration [16].

The paper is organized as follows. In section 2 we introduce the MS scheme for the

renormalisation of the top-quark mass, we discuss its relation with the pole scheme, and we
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present the relevant formulas for the calculation of the NNLO cross section. In section 3 we

present our numerical results for tt̄ production at the LHC energy of 13TeV. In section 3.1

we consider the results for the total cross section, and we discuss their scale dependence

and related scale uncertainties. In section 3.2 we consider differential cross sections, and

we perform detailed comparisons between results in the pole and MS schemes. Finally, in

section 3.3 we present new results obtained by using fixed and running values of the MS

mass, and we compare them with the corresponding CMS data. Our results are summarised

in section 4.

2 The heavy-quark cross section in the MS scheme

Perturbative calculations of QCD scattering processes involve UV divergences. Part of

the divergences are reabsorbed in the renormalisation of the QCD coupling αS, and the

customary procedure is to work in the MS scheme. The removal of the UV divergences

associated with quark masses also needs the choice of a renormalisation scheme. Different

schemes lead to renormalised masses whose relative difference is formally of O(αS). A

‘natural’ renormalisation scheme is the pole scheme. The renormalised quark mass in this

scheme is determined order-by-order in the perturbative expansion by the pole of the quark

propagator, and, therefore, it corresponds to the customary meaning of mass for the case

of a ‘physical’ quark. A possible alternative scheme is the use of MS renormalisation also

for the quark mass.

The top-quark mass in the pole scheme, Mt, is related to the MS mass at the scale

µm, mt(µm), through the following perturbative relation:

Mt = mt(µm) d(mt(µm), µm) = mt(µm)

(

1 +
∞
∑

k=1

(

αS(µm)

π

)k

d(k)(µm)

)

. (2.1)

The first two perturbative coefficients d(1) and d(2) in eq. (2.1) have the values [18, 19]

d(1)(µm) =
4

3
+ Lmt(µm) ,

d(2)(µm) =
307

32
+ 2ζ2 +

2

3
ζ2 ln 2−

1

6
ζ3 +

509

72
Lmt(µm) +

47

24
Lmt(µm)

2

−
(

71

144
+

1

3
ζ2 +

13

36
Lmt(µm) +

1

12
Lmt(µm)

2

)

nf , (2.2)

where

Lmt(µm) = 2 ln(µm/mt(µm)) . (2.3)

The three-loop coefficient d(3) was computed in refs. [20, 21], and the numerical result

for d(4) was presented in ref. [22]. Here and in the following, αS(µ) is the QCD coupling

in the MS renormalisation scheme, and its running with the scale µ is understood to be

computed with nf = 5 light flavours. The light quarks are considered to be massless

throughout the paper.

A main feature of the MS mass is that it is a scale-dependent quantity, since it depends

on the arbitrary mass renormalisation scale µm. An ensuing feature (which follows from
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eq. (2.1) and the fact that Mt does not depend on µm) is that the scale dependence of

mt(µm) is perturbatively computable. The dependence of mt(µm) on the scale is driven

by the renormalisation group equation

d lnmt(µm)

d lnµ2
m

= γm(αS(µm)) , (2.4)

where the mass anomalous dimension γm(αS) has the perturbative expansion

γm(αS) = −
(

γ0
αS

π
+O(α2

S)
)

, (2.5)

and γ0 = 3
4CF = 1. The perturbative expansion of the mass anomalous dimension in

eq. (2.5) is explicitly known up to O(α4
S) [23, 24] and O(α5

S) [25–27]. We note that compar-

ing to the αS evolution with nf = 5 flavours, the mass evolution is roughly a factor of two

slower. Indeed, the first coefficient β0 of the QCD β function is β0 =
11CA

12 − nf

6 = 33
12 −

nf

6 ,

and, setting nf = 5 we have

γ0 =
12

23
β0 . (2.6)

The actual value of mt(µm) at any scale µm can be specified by relying on the knowl-

edge of Mt and, therefore, by using eq. (2.1). Alternatively, mt(µm) can be obtained by

solving its renormalisation group equation, provided the MS mass is known at some refer-

ence scale. The choice of the reference scale is arbitrary, and it can be done independently

of the knowledge of Mt. For instance, one can simply choose a specific value of µm (e.g.,

analogously to the choice of the mass of the Z boson as a typical reference scale for the

running coupling αS). The reference scale can also be chosen through an ‘intrinsic’ defini-

tion, as a scale of the same order as the MS mass itself. A customary intrinsic definition

corresponds to the scale mt such that mt(mt) = mt. In this case the coefficients d(1)(mt)

and d(2)(mt) in eq. (2.2) are positive and of order unity, and, therefore, the reference mass

mt is typically smaller than the pole mass Mt by about 10GeV.

We note that the reference scale mt has no special physical meaning, since an intrinsic

MS reference scale can be introduced differently. For instance, one can define the scale mλ

such that mt(λmλ) = mλ, where λ is a parameter of order unity. The choice λ = 1 leads

to mλ = mt. Different choices of λ lead to scales mλ whose relative difference from mt is

of O(αS).

We also recall that the features of the MS scheme are unchanged by using any other MS-

like scheme that is obtained by a perturbative redefinition of mt(µm) with scale-independent

coefficients. The relative difference between the running masses of the two schemes is of

O(αS) (this affects eq. (2.1) starting from its first-order coefficient d(1)), and the first-order

coefficient γ0 of eq. (2.5) is unchanged (the change of scheme affects eq. (2.5) starting

from O(α2
S)).

It is well known that the renormalised pole mass is affected by a renormalon am-

biguity [28–30]. More precisely, at large values of k the perturbative coefficients d(k) in

eq. (2.1) are factorially growing with k. This implies that a non-perturbative ambiguity of

O(ΛQCD) affects the definition of the pole mass itself (no corrections of O(ΛQCD) affect the
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MS mass). The knowledge of the coefficients d(k) with k ≤ 4 can be combined with that of

the asymptotic factorial behavior [30] to obtain approximations [31–33] of the perturbative

coefficients of eq. (2.1) beyond the four-loop order. High-order approximations of eq. (2.1)

can also be used to estimate the renormalon ambiguity on the value of the pole mass. In

ref. [32] the ambiguity is estimated to be about 110MeV, while ref. [33] estimates it to be

about 250MeV. We note that both estimates are of the order or below the accuracy that

can be reasonably achieved in LHC measurements of the top-quark mass.

The renormalon ambiguity does not only plague the pole mass definition, but it can in

principle affect the perturbative expansion of tt̄ cross sections. The total cross section ex-

pressed in terms of the MS mass is expected to be not affected by renormalons at O(ΛQCD).

However, the tt̄ total cross section is not directly measurable in practice. Renormalon ef-

fects are unavoidable [34] in the perturbative computation of tt̄ production observables

that are defined by realistic selection cuts applied in LHC experiments. Even if LHC ex-

perimental measurements are often extrapolated to the full phase space, the extrapolation

procedure is not able to (theoretically) correct for renormalon effects.

At the LHC top-quark physics can be studied either indirectly or directly. By indirectly

we mean through quantities in which the top quark appears as a virtual (off-shell) particle

that is not directly observed. For instance, since the Higgs boson is mostly produced by

gluon fusion through the coupling to a top-quark loop, studies of Higgs boson production

give information on the top quark, including the effects of its mass. For all the quantities

in which the top quark appears indirectly, mass renormalisation can be carried out equiva-

lently in any renormalisation scheme. For instance, one can introduce MS renormalisation

and the MS mass without using and even mentioning the pole mass (one can also do the

opposite, of course). For all these quantities the MS and pole masses can be introduced on

equal footing.

The direct studies of top-quark physics at the LHC are those in which the top quark

(and/or antiquark) or, more precisely, its decay products, are directly observed in the

final state. These studies are based on a definite physical picture that fully relies on the

concepts of pole mass, Mt, and width, Γt, of the top quark. The top quark is so heavy

(Mt ∼ 173GeV from direct measurements at the Tevatron and the LHC [35]) and so

unstable (Γt ∼ 1.4GeV [35]) that it decays by weak interactions before strong interactions

come into play and form bound states. Therefore, the top quark is viewed as a ‘physical’,

though unstable, particle (its pole mass and width gain a physical meaning) that manifests

itself in a resonance peak in physical cross sections. LHC experimental data on top-quark

production entirely rely on this physical picture, since the top-quark signal is extracted by

the quasi-resonant behaviour of the (supposed) decay products of the top quark. No LHC

experimental data on top-quark production can be obtained without referring to the pole of

the propagator of the top quark (i.e., without having introduced the concept of pole mass).

Therefore, the pole mass and the MS mass do not appear on equal footing in the context

of top-quark production at the LHC. The pole mass has a primary role, and the MS mass

has (somehow) an auxiliary role. Note that this is not only a conceptual aspect, since the

difference between Mt and mt(µm) (at scales µm of the order of the top-quark mass) can

be as large as about 10GeV, and, hence, much larger than Γt. Therefore, the pole and

– 5 –



J
H
E
P
0
8
(
2
0
2
0
)
0
2
7

MS masses cannot be regarded as being approximately equal for practical experimental

purposes. We also note that the size of the renormalon effects on Mt is definitely smaller

than Γt and, hence, renormalons do not change the picture of the top quark as a ‘physical’

unstable particle. The main caveat to this picture is due to the fact that the top quark

carries colour charge, and QCD colour is confined through hadronization and not observable

in the final state. This implies that colour confinement produces quantitative corrections

on the identification of the decay products of the top quark. However, such effects are not

related to the difference between the pole and MS masses.

The experimental treatment of the top quark as a physical unstable particle has a di-

rect correspondence in theoretical calculations based on the narrow-width approximation.

In the limit Γt ≪ Mt, top-quark production is computed by setting the top quark on shell

and with a mass equal to the pole mass Mt.
1 We use the shorthand notation σ(Mt;X)

to generically denote cross sections or differential cross sections for on-shell tt̄ produc-

tion.2 The perturbative QCD calculation of σ(Mt;X) defines the perturbative function

σ(αS(µR), µR, µF ;Mt;X) that is computed order-by-order as a series expansion in powers

of αS(µR). The dependence on the auxiliary remormalization scale µR and factorisation

scale µF is due to the MS renormalisation of αS and the MS factorisation of the parton

distribution functions (PDFs) of the colliding hadrons. The perturbative expansion of

σ(αS(µR), µR, µF ;Mt;X) up to NNLO can be written as

σNNLO(αS(µR), µR, µF ;Mt;X) =

2
∑

i=0

(

αS(µR)

π

)i+2

σ(i)(Mt;µR, µF ;X) , (2.7)

where the perturbative coefficients σ(i)(Mt;µR, µF ;X) explicitly depend on the pole mass

Mt of the on-shell top quark and antiquark that are produced in the final state.

In the context of eq. (2.7) (and its generalization to higher perturbative orders), we

remark on the fact that Mt is not simply a parameter of the QCD Lagrangian, but it is

also, and importantly, a key kinematical parameter of the phase space. The final-state top

quark has a mass Mt, and the on-shell constraint p2 = Mt
2 affects each of the components

pν of the four momentum p of the top quark. This in turn produces a dependence on Mt

of all the kinematical variables of the produced final state. For instance, if the kinematical

variable X is the invariant mass mtt̄ of the tt̄ pair, it has an implicit dependence on Mt,

which in particular leads to the constraint mtt̄ > 2Mt. Therefore, the differential cross

section with respect to mtt̄ has a ‘physical’ threshold at mtt̄ = 2Mt, and it vanishes for

smaller values of mtt̄ (this is true for the perturbative cross sections σ(i) in eq. (2.7) at

each perturbative order). Obviously, the kinematical/phase space dependence of the cross

section on Mt is the consequence of the underlying dynamical approximation, namely, the

fact that the cross section in eq. (2.7) deals with the production of an ‘unstable’ top quark

with pole mass Mt in the limit of vanishing width Γt.

1The top-quark decay can also be computed and included within the same approximation. Throughout

this paper we do not consider the decay of the top quark.
2The variable X in σ(Mt;X) can directly refer to differential cross sections, dσ/dX, or it can generically

refer to a set of acceptance cuts that specify fiducial cross sections. The variable X is absent in the case of

the tt̄ total cross section.
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Throughout the paper we refer to the cross section in eq. (2.7) (and its generalization

to higher orders) as the on-shell cross section computed in the pole mass scheme.

Starting from the pole scheme cross section σ(αS(µR), µR, µF ;Mt;X), we theoretically

define the MS cross section σ̄ through a formal replacement of Mt with its dependence on

the MS mass mt(µm). Our definition is

σ̄(αS(µR), µR, µF ;µm,mt(µm);X) = σ(αS(µR), µR, µF ;Mt = mt(µm) d(mt(µm), µm);X) ,

(2.8)

where the right-hand side of the equation is the pole scheme cross section in which the

pole mass Mt has been expressed in terms of the MS mass through the all-order relation in

eq. (2.1). The cross sections σ and σ̄ in eq. (2.8) are equal if regarded as formal expressions

to all orders in αS. The order-by-order expansions of σ and σ̄ are instead different. The

perturbative expansion of σ̄ is simply obtained by considering the right-hand side of eq. (2.8)

and expressing d(mt(µm), µm) as a function of αS(µR) and mt(µm) (see eq. (2.1)). The

expression, σ̄NNLO, of the MS scheme cross section up to NNLO is

σ̄NNLO(αS(µR), µR, µF ;µm,mt(µm);X) =
2
∑

i=0

(

αS(µR)

π

)i+2

σ̄(i)(mt(µm);µm, µR, µF ;X) ,

(2.9)

and the explicit contributions σ̄(i) are

σ̄(0)(mt(µm);µF ;X)=

[

σ(0)(m;µF ;X)

]

m=mt(µm)

(2.10)

σ̄(1)(mt(µm);µm,µR,µF ;X)=

[

σ(1)(m;µR,µF ;X)+d(1)(µm)m∂mσ(0)(m;µF ;X)

]

m=mt(µm)

(2.11)

σ̄(2)(mt(µm);µm,µR,µF ;X)=

[

σ(2)(m;µR,µF ;X)

+ m

(

d(1)(µm)∂mσ(1)(m;µR,µF ;X)+
1

2

(

d(1)(µm)
)2

m∂2
mσ(0)(m;µF ;X) (2.12)

+d(2)(µm)∂mσ(0)(m;µF ;X)+β0 d
(1)(µm) ln

(

µ2
R

µ2
m

)

∂mσ(0)(m;µF ;X)

)]

m=mt(µm)

,

where d(1)(µm) and d(2)(µm) are the coefficients in eq. (2.2), and the term proportional to

β0 in eq. (2.12) arises from expressing eq. (2.1) in terms of αS(µR) (rather than αS(µm)).

We comment on some main features of the definition of the cross section σ̄ in the

MS scheme.

The perturbative contributions σ̄(i) are given in terms of the corresponding contri-

butions σ(i) as computed for on-shell tt̄ production in the pole mass scheme. The cross

sections σ̄(i) depend on the on-shell cross sections σ(i) and their derivatives (∂m ≡ ∂/∂m)

with respect to the top-quark mass. These are partial derivatives at fixed values of the

auxiliary scales µR, µF and fixed values of X.
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The tt̄ total cross section only depends on the top-quark mass (and auxiliary scales).

Fiducial and differential cross sections depend on the additional variables X. As previously

discussed, in the perturbative calculation for on-shell top quarks, the variables X are

kinematically correlated to the pole mass. The formal definition of the MS cross section

in eqs. (2.8)–(2.12) produces ensuing kinematical correlations between the variables X and

the MS mass mt(µm).

We also note that the partial derivatives ∂k lnσ(i)/(∂ lnm)k can be very sizeable in

some cases. If this happens, the fixed-order expansion of the MS scheme cross section can

become quantitatively unstable, although the all-order equality in eq. (2.8) remains valid.

The perturbative contributions σ̄(i) to the MS cross sections depend on the MS mass

mt(µm) and on the mass renormalisation scale µm. The auxiliary scale µm is formally ar-

bitrary. The usual procedure to obtain quantitative predictions in the presence of auxiliary

scales, such as µR, µF and µm, is to assign them some central values and, then, consider

variations around these central values. There are no reasons to consider perturbative pre-

dictions by uniquely fixing the value of µm (e.g., by setting µm = mt) without examining

the effect of varying µm.

As a final general comment on the MS scheme cross section σ̄ we note that, analogously

to the pole scheme cross section, it regards top-quark production in the limit of vanishing

top width Γt. The formal definition of σ̄ in eq. (2.8) does not introduce any physical

corrections due to the finite width of the top quark.

In the following, we comment on the actual structure of the perturbative coefficients

in eqs. (2.9)–(2.12). At the LO there are no mass renormalisation effects to be consid-

ered. The LO MS scheme cross section σ̄(0) in eq. (2.10) is equal to the on-shell cross

section σ(0) in eq. (2.7), apart from the replacement of the pole mass Mt with the MS

mass mt(µm). Since we are dealing with the production of on-shell quarks, this formal

replacement is questionable from a physics viewpoint. For instance, the question becomes

evident by considering the differential cross sections with respect to mtt̄. The pole scheme

differential cross section dσ/dmtt̄ (at any perturbative order) has a physical threshold at

mtt̄ = 2Mt, whereas in the MS cross section at LO the threshold is at mtt̄ = 2mt(µm). If

the difference between Mt and mt(µm) is much larger than the width Γt, such displacement

of the production threshold is definitely unphysical.

At the NLO, one-loop corrections on internal quark lines require mass renormalisation,

which can be carried out either in the pole or the MS scheme. However, the NLO cross

section σ(1) in eq. (2.7) still involves on-shell top quarks with pole mass Mt. The NLO MS

cross section σ̄(1) in eq. (2.11) includes two contributions: one contribution is simply σ(1)

with the replacement Mt → mt(µm), and the other contribution is controlled by the mass

derivative of the LO on-shell cross section σ(0). This second contribution represents the

correction that is applied to σ̄ for having naively identified Mt with mt(µm) at the LO.

For instance, the correction is quantitatively very large for the differential cross section

dσ̄(1)/dmtt̄ close to the threshold region where mtt̄ ∼ 2mt(µm) ∼ 2Mt, since the mass

derivative of dσ̄(0)/dmtt̄ is very large in this region.

A similar discussion can be extended at NNLO and higher orders. In particular,

the mass derivatives of the on-shell cross sections σ(j) that appear in the perturbative
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contributions σ̄(i) (j < i) partly originate from having replaced the pole mass Mt with the

MS mass mt(µm) in the lower-order cross sections for on-shell top-quark production.

We summarise the main points of our general discussion of the MS scheme cross section.

Dealing with the production of on-shell top quarks with pole mass Mt, we have considered

the pole scheme cross section σ(αS,Mt, X) in eq. (2.7). The MS scheme cross section

σ̄(αS,mt(µm), X) is then introduced through the pole scheme cross section and the mass

relation in eq. (2.1). The cross section σ̄ is defined by using the formal all-order identity in

eq. (2.8). In this relation, the cross section variables X (which can depend on the on-shell

kinematics of the produced top quarks) are considered to be independent of the pole mass

Mt. The cross sections σ and σ̄ differ order-by-order in αS. Owing to the perturbative

nature of the definition in eq. (2.8) and using mass scales µm of the order of the top-

quark mass (so that the coefficients d(k)(µm) in eq. (2.1) are of order unity), we expect the

following perturbative behaviour. At low perturbative orders, σ and σ̄ can give quantitative

results that are consistent (within perturbative uncertainties), and the difference can be

larger for cross sections that depend on kinematical variables X that are more sensitive

to kinematic thresholds related to on-shell top-quark production. At higher perturbative

orders, σ and σ̄ can give very similar quantitative results, thus leading to an equivalent

perturbative description. As we briefly discuss below, at such perturbative orders, the MS

formulation can take advantage of the dynamical features of the running mass mt(µm).

In the case of cross sections that depend on physical scales X that are much larger than

the mass of the top quark (e.g., if X = mtt̄ at high values of mtt̄), tt̄ production takes place

in a multiscale dynamical regime. Therefore, we can expect that an improved perturbative

description can be achieved in the context of the MS scheme by using a running mass

mt(µm) with a dynamical value of the renormalisation scale µm. We also note that in

such high-scale regime the variable X has a weaker dependence on the pole mass of the

produced on-shell top quark.

In the next section we present detailed quantitative studies of the perturbative features

of the MS scheme cross sections. We also discuss an implementation of the running mass

mt(µm) in the computation of the differential cross section with respect to the tt̄ invariant

mass mtt̄.

3 Results

In this section we present inclusive and differential results for tt̄ production in the MS

scheme up to NNLO, and we compare them with the corresponding results obtained in the

pole scheme. All our results are based on the calculation of tt̄ production up to NNLO

that is reported in refs. [7, 11, 36]. The calculation is carried out within the Matrix [37]

framework, which features a completely automated implementation of the qT subtraction

formalism [17] at the NNLO. The core of the Matrix framework is the Monte Carlo

program Munich,3 which includes a fully automated implementation of the NLO dipole

subtraction method for massless [38, 39] and massive [40] partons, and an efficient phase

3
Munich is the abbreviation of “MUlti-chaNnel Integrator at Swiss (CH) precision” — an automated

parton-level NLO generator by S. Kallweit.
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space integration. All the required (spin- and colour-correlated) tree-level and one-loop

(squared) amplitudes are obtained by using OpenLoops [41–43]. The required two-loop

amplitudes are available in a numerical form [44]. More details on the implementation of

tt̄ production in Matrix can be found in ref. [11].

The calculation of ref. [11] directly leads to the numerical evaluation of the pertur-

bative contributions σ(0), σ(1) and σ(2) (see eq. (2.7)) to the cross sections for on-shell tt̄

production in the pole scheme. According to eqs. (2.9)–(2.12), the calculation of the MS

cross section σ̄ up to NNLO requires the computation of the first and second derivatives

of the LO result σ(0) with respect to the mass, and of the first derivative of the NLO

corrections σ(1), computed in the pole scheme. This calculation is performed by com-

puting the cross sections σ(0) and σ(1) for several values of the top-quark mass around

m = mt(µm), and performing a quadratic fit of the results, from which the numerical

values of the relevant derivatives are obtained. This procedure is carried out for the total

cross section and, analogously, for each bin in the variable X of the considered differential

distributions dσ/dX.

To present our quantitative results, we focus on pp collisions at the centre-of-mass

energy
√
s = 13TeV. In section 3.1 and 3.2 we consider perturbative calculations in

the pole scheme and in the MS scheme by using values of the renormalisation scale µm

of the order of the top-quark mass. We use nf = 5 massless quark flavours and the

corresponding NNPDF31 sets [45] of parton distribution functions (PDFs) with αS(mZ) =

0.118. In particular, NnLO (with n = 0, 1, 2) predictions are obtained by using PDFs at

the corresponding perturbative order and the evolution of αS(µR) at (n+1)-loop order, as

provided by the PDF set. Our results in the pole scheme with Mt = 173.3 GeV [35] are

compared with the corresponding results in the MS scheme with mt = 163.7 GeV. These

two values of Mt and mt are numerically related by mass renormalisation at the NNLO,

namely, we use the relation in eq. (2.1) at three-loop order by including the coefficients

d(1), d(2) and d(3) [18–21] (we set d(k) = 0 if k ≥ 4). We note that the same value of mt is

used regardless of the order of the calculation.

Unless otherwise stated, the top-quark mass (either mt or Mt) is used in our calcula-

tions as the central value µ0 for the renormalisation (both µR and µm) and factorisation

scales. We use the customary procedure of performing scale variations around the cen-

tral scales to estimate the uncertainties from perturbative contributions at higher orders

or, more precisely, to roughly set a lower limit on such uncertainties. The scale uncer-

tainty bands for the predictions in the pole scheme are obtained by setting µ0 = Mt and

performing independent variations of µR and µF . We set µi = ξiµ0, and we vary the

parameter ξi according to ξi = {1/2, 1, 2} with the constraints µi/µj ≤ 2 (i, j = R,F ).

This prescription leads to the customary 7-point scale uncertainty. In the case of the

MS scheme, we have an additional auxiliary scale, µm, which (as discussed in section 2)

has to be varied. We perform an independent variation of the three auxiliary scales,

by setting µi = ξiµ0 (here µ0 = mt) and varying ξi as ξi = {1/2, 1, 2}, with the con-

straints µi/µj ≤ 2 (i, j = R,F,m). This prescription leads to a 15-point scale variation.

By varying µm in the interval 0.5mt < µm < 2mt, the MS mass varies in the range

155.5 GeV . mt(µm) . 173.3 GeV. This dependence of mt(µm) on µm is computed at
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scheme pole MS

variation 7-point 15-point µm = µ0 µR/F = µ0 µR/F = µm

LO (pb) 478.9 +29.6%
−21.4% 625.7 +29.4%

−21.9%
+29.4%
−21.3%

+24.7%
−21.9%

+1.5%
−1.5%

NLO (pb) 726.9 +11.7%
−11.9% 826.4 +7.6%

−9.7%
+7.6%
−9.6%

+5.6%
−9.7%

+1.2%
−1.2%

NNLO (pb) 794.0 +3.5%
−5.7% 833.8 +0.5%

−3.1%
+0.4%
−2.9%

+0.3%
−3.1%

+0.0%
−0.3%

Table 1. Total cross section at
√
s = 13TeV in the pole scheme with Mt = 173.3 GeV and in the

MS scheme with mt = 163.7 GeV. The central results refer to the scales µR = µF = µ0 = Mt

in the pole scheme and µR = µF = µm = µ0 = mt in the MS scheme. The scale dependence is

computed by performing independent scale variations by a factor of two around the central scales,

as described in the text. In the case of the MS scheme, the uncertainties obtained with different

prescriptions for the scale variations are also shown.

NNLO accuracy4 (i.e., we consider the evolution equation (2.4) with the anomalous dimen-

sion γm(αS) of eq. (2.5) that is evaluated up to O(α3
S)) by using the package CRunDec [46].

We note that the upper limit on mt(µm) is very close to the value of the pole mass Mt.

3.1 Total cross section

We start the presentation of our results by considering the tt̄ total cross section. In table 1

we compare the results at LO, NLO and NNLO in the pole scheme with the corresponding

results in the MS scheme. The scale uncertainties of the MS scheme results as evaluated in

different ways (see the comments below) are also presented. We have checked that the MS

scheme results at fixed µm = mt, including µR and µF variations around µ0 = mt (third

column of table 1), are in excellent quantitative agreement with those obtained by using

the numerical program Hathor [12, 47].

We present some comments on the scale dependence of the results in table 1. We

observe that the scale uncertainties obtained in the MS scheme by using the 15-point scale

variation, by keeping µm fixed or by keeping µR and µF fixed (see, correspondingly, the

second, third or fourth column in table 1) are quantitatively very similar. The reason

for this similarity is that the total cross section increases as µm increases, while it has the

opposite dependence on µR and µF . Indeed, if µm increases, the value of mt(µm) decreases,

thereby leading to an increase of the cross section. On the contrary, the cross section

decreases as µR increases, and it slightly decreases as µF increases. This µR dependence is

due to the overall proportionality of the cross section to the factor α2
S(µR) (see eq. (2.9)).

The µF dependence is due the fact that the tt̄ cross section is sensitive to relatively large

momentum fractions of the colliding partons, and in this kinematical region the scaling

violations of the PDFs are slightly negative. Moreover, we note that the absolute variation

of the cross section that is obtained with the µm scan is similar in size to the one obtained

by varying µR (whose dependence dominates in the 7-point variation of µR and µF ). These

features imply that the uncertainty obtained by varying all the three scales simultaneously

4We have checked that the variation range of mt(µm) is almost unchanged by using the evolution

equation (2.4) at lower perturbative orders.
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(µR = µF = µm) is much smaller than the one obtained with independent variations. We

also note that larger scale uncertainties are obtained if the constraint 1/2 ≤ µm/µi ≤ 2,

with i = R,F , is relaxed (the corresponding results are not shown in table 1). This fact is

also in line to the observations made above.

Using table 1, we can compare the results in the pole and MS schemes, and we note

the following main features. Order-by-order in perturbation theory, the total cross section

at central scales is larger in the MS scheme: the increase is about 30% at LO, 15% at NLO

and 5% at NNLO. In particular, the NNLO results in the two schemes are very similar.

Referring to the full scale dependence (as given in the first two columns of table 1), the

order-by-order differences between the two schemes are comparable to the corresponding

scale dependence effects. Therefore, at each perturbative order the predictions in the

MS scheme are consistent with the corresponding predictions in the pole scheme within

their scale uncertainties. At LO the results in the two schemes have a very similar scale

dependence. At higher orders the MS scheme results have a reduced scale dependence.

The reduction of the scale dependence is moderate at NLO and more sizeable at NNLO.

We note, however, that the NNLO scale uncertainties of the MS scheme result are highly

asymmetric: the upward variation is much smaller than the downward variation. This

means that the MS scheme cross section is computed close to a local maximum (namely,

close to a region of local minimal sensitivity [48]) of the scale dependence of the NNLO

result. This may in turn lead to an underestimate of the perturbative uncertainty due to

higher-order corrections.

In ref. [12] it was pointed out that the perturbative convergence of the total cross

section in the MS scheme appears to be faster than in the pole scheme. Such behaviour

is indeed visible by considering the results in table 1 at central values of the scales. To

quantify the effect we can introduce the K-factors, K(N)NLO = σ(N)NLO/σ(N)LO, namely

the ratios of the cross section results at two subsequent orders. In the pole scheme we

have KNLO = 1.52 and KNNLO = 1.09, while in the MS scheme we have KNLO = 1.32 and

KNNLO = 1.01. At each perturbative order the K-factor in the MS scheme is smaller than

that in the pole scheme, thus leading to a faster apparent convergence of the perturbative

expansion. We recall that we are using an NNLO relation to obtain the value of mt from

Mt = 173.3 GeV. The faster apparent convergence of the MS scheme results would be

partly reduced by considering a strictly formal order-by-order comparisons between the two

mass schemes. Such comparison implies the use of eq. (2.1) at each corresponding order,

and it leads to mt = 165.8 GeV at LO and mt = 164.2 GeV at NLO. The corresponding

LO and NLO cross sections in the MS scheme have the values 589.0 pb and 808.6 pb,

respectively. Therefore, in this case the K-factors in the MS scheme would be KNLO = 1.37

and KNNLO = 1.03.

We are not able to offer a physical interpretation of the faster apparent convergence

of the MS scheme results, but we do have a technical explanation for it. The explanation

uses the structure of the pole and MS scheme cross sections in eqs. (2.7)–(2.12), and it is

discussed below.

We first consider the NLO K-factor. The LO cross section σ̄(0) in the MS scheme is

simply obtained by evaluating the LO cross section σ(0) in the pole scheme with a value of
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scheme pole MS MS pole

central scale choice µR/F = Mt
µR/F = mt µR/F = mt

µR/F = Mt/2
µm = mt/2 µm = mt

LO (pb) 478.9 488.9 625.7 619.8

NLO (pb) 726.9 746.4 826.4 811.4

NNLO (pb) 794.0 808.0 833.8 822.4

Table 2. Total cross section at
√
s = 13TeV in the pole scheme with Mt = 173.3 GeV and in the

MS scheme with mt = 163.7 GeV. Results obtained with different values of the auxiliary scales

µR, µF and µm.

the top-quark mass (mt = 163.7 GeV) that is significantly lower than the value of Mt. Since

the on-shell total cross section is a decreasing function of the top-quark mass, the LO cross

section increases in going from the pole scheme to the MS scheme. Such increase partly

contributes to a decrease of the value of KNLO. A further decrease of KNLO is produced by

the NLO radiative corrections. The NLO correction σ(1) in the pole scheme is positive and

sizeable. The NLO correction σ̄(1) in the MS scheme receives the additional contribution of

d(1)m∂mσ(0) (see eq. (2.11)) that is negative (d(1) is positive, and the derivative ∂mσ(0) is

negative since σ(0) is a decreasing function of the top-quark mass) and not small. Therefore,

we have σ̄(1) < σ(1), and this effect also decreases the size of KNLO in going from the pole

scheme to the MS scheme.

The discussion of the NNLO K-factor follows the same lines as at NLO. We simply

notice two main effects in going from the pole scheme to the MS scheme: the NLO cross

section increases and the NNLO correction decreases (because in eq. (2.12) the coefficients

d(1) and d(2) are positive and the mass derivatives of the cross sections are negative).

Both effects contribute to decrease the value of KNNLO, thus producing a faster apparent

convergence. Moreover, we point out that both effects are the consequence of two basics

facts: the pole scheme cross section is a decreasing function of the top-quark mass with

radiative corrections that are relatively large at lower orders; the top-quark mass mt that

is used in the MS scheme calculation is significantly lower than Mt. Therefore, the features

of faster apparent convergence of the tt̄ cross section with respect to the behaviour in the

pole scheme are common to any renormalisation scheme that perturbatively introduces a

renormalisation mass that is systematically smaller than Mt.

From the above discussion one is led to conclude that the computation in the MS

scheme leads to an improved perturbative stability with respect to the computation in the

pole scheme. However, we find that such pattern of perturbative convergence is strongly

dependent on the choice of the central values of the auxiliary scales. This fact can be

observed, for instance, in table 2 where we report the results of table 1 at central scales

and two additional sets of results obtained in the pole and MS schemes by using different

central values of the auxiliary scales.

We note that the MS scheme results with µR = µF = mt and µm = mt/2 have a

reduced perturbative convergence (the K-factors are KNLO = 1.53 and KNNLO = 1.08),
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and, at each perturbative order, they are quantitatively very similar to the pole scheme

results with µR = µF = Mt. This similarity is not unexpected, since if µm = mt/2 the

value of the top-quark mass mt(µm) that is used in the MS scheme computation is almost

equal to Mt.

By contrast, if the central scales µR = µF = Mt/2 are used within the pole scheme

(as suggested in ref. [49]), the computation shows a faster perturbative convergence (the

K-factors are KNLO = 1.31 and KNNLO = 1.01) and, at each perturbative order, the results

are quantitatively very similar to the MS scheme results with µR = µF = µm = mt. Within

the pole scheme a faster perturbative convergence is achieved by lowering the value of µR

(and µF , to a smaller extent), thus increasing the cross section results at lower orders.

We draw some overall conclusions from our comparison between pole and MS scheme

results for the total cross section up to NNLO. At each perturbative order the two schemes

give results that are consistent within the corresponding scale uncertainties, and, in par-

ticular, the results are quite similar at NNLO. The pattern of slower or faster apparent

perturbative convergence depends on both the mass renormalisation scheme and the ac-

tual values of the auxiliary scales. This is a consequence of the fact that at low orders the

radiative corrections are relatively large and the results have a sizeable dependence on µR

and on µm within the MS scheme. Using the central scales of table 1, the perturbative

convergence of the MS scheme is faster than that of the pole scheme. An opposite (or

intermediate) pattern of perturbative convergence can be obtained by using other central

scales that are within the range of scale variations that is used in table 1. Therefore, in the

case of the total cross section, the scale setting that is used in table 1 is sufficiently repre-

sentative of the scale dependence effects that can affect the comparison between the pole

and MS schemes. We expect that this remains true for other tt̄ production observables.

Therefore, in our subsequent comparison of the pole and MS schemes for single-differential

cross sections we still use the scale setting of table 1.

3.2 Differential cross sections

We now move to consider differential results. At the centre-of-mass energy
√
s = 13TeV, we

have computed the differential cross sections dσ/dX with respect to the following variables

X: the invariant mass mtt̄ (figure 1) and the rapidity ytt̄ (figure 2) of the tt̄ pair, the

average value of the transverse momentum pT,tav (figure 3) and rapidity ytav (figure 4) of

the top quark and antiquark. The perturbative results up to NNLO in the MS and pole

schemes are presented in the left and right panels, respectively. The values of the top-quark

masses and of the auxiliary scales are the same as used in table 1. In particular, the scale

uncertainty bands refer to the 15-point scale variations for the MS scheme and the 7-point

scale variations for the pole scheme. In the lower panels of figures 1–4 we show the ratios

of the perturbative results with respect to the central NNLO result in the corresponding

mass renormalisation scheme. The LO and NLO differential cross sections with respect to

mtt̄, pT,tav and ytav in the MS scheme were computed in ref. [14], and our LO and NLO

results are consistent with them.

Comparing the MS and pole scheme results in figures 1–4, we observe some overall

features that are fully analogous to those observed by considering the tt̄ total cross section.
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Figure 1. Top-quark pair invariant-mass distribution at LO (gray), NLO (red) and NNLO (blue)

within the MS (left) and pole (right) schemes. The lower panel shows the ratio to the corresponding

NNLO result. The values of the top-quark masses and of the auxiliary scales are the same as in

table 1.
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Figure 2. Top-quark pair rapidity distribution at LO (gray), NLO (red) and NNLO (blue) within

the MS (left) and pole (right) schemes. The lower panel shows the ratio to the corresponding NNLO

result. The values of the top-quark masses and of the auxiliary scales are the same as in table 1.
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Figure 3. Top-quark (t and t̄ average) transverse momentum distribution at LO (gray), NLO (red)

and NNLO (blue) within the MS (left) and pole (right) schemes. The lower panel shows the ratio

to the corresponding NNLO result. The values of the top-quark masses and of the auxiliary scales

are the same as in table 1.
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Figure 4. Top-quark (t and t̄ average) rapidity distribution at LO (gray), NLO (red) and NNLO

(blue) within the MS (left) and pole (right) schemes. The lower panel shows the ratio to the

corresponding LO result. The values of the top-quark masses and of the auxiliary scales are the

same as in table 1.
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The MS scheme results typically have smaller K-factors and a larger overlap between the

scale variation bands at subsequent perturbative orders. At NLO, these features were

already noticed in ref. [14]. Going to NNLO we note, in particular, that within the MS

scheme the NNLO scale uncertainty band is contained within the NLO band for most of

the kinematical regions considered in figures 1–4. These overall comments apply to the

results in figures 1–4 with the exception of the mtt̄ distribution at low values of mtt̄. The

low-mtt̄ region deserves further specific comments.

The invariant-mass distribution for on-shell tt̄ production has a physical threshold at

the value mtt̄ = 2Mt, and it has a sharply increasing behaviour just above the threshold.

Within the pole scheme (figure 1 right), this behaviour is fulfilled order-by-order in pertur-

bation theory. As we have already mentioned in section 2, this physical behaviour is spoiled

by the fixed-order perturbative expansion in the MS scheme. This is the consequence of

the identification of the top-quark mass with the MS mass mt(µm) in the computation

of the perturbative on-shell cross sections σ(i) of eqs. (2.10)–(2.12). The order-by-order

computation of the mtt̄ distribution in the MS scheme produces a threshold at the value

mtt̄ = 2mt(µm), and such threshold is unphysical for a twofold reason: the threshold value

differs from 2Mt, and it depends on the unphysical (arbitrary) auxiliary scale µm. Besides

producing an unphysical threshold, the MS scheme perturbative expansion also produces

instabilities at subsequent perturbative orders since the mass derivatives (m∂m)kσ(i) in

eqs. (2.11) and (2.12) are very large close to the threshold region. These perturbative

instabilities are clearly visible in figure 1 by comparing the MS and pole scheme results

at low values of mtt̄: in the first and, partly, second mtt̄ bins the MS scheme results have

larger K-factors (at both NLO and NNLO) and wider scale uncertainty bands. At NLO

this unstable behaviour has also been observed and discussed in ref. [14].

Owing to these features, the formal replacement of the pole mass with the MS mass is

not a justified (and, thus, not a recommended) procedure for the perturbative computation

of the invariant-mass distribution close to its on-shell production threshold. However, we

note that the unphysical perturbative behaviour of the MS scheme computation at low

values of mtt̄ can be partly alleviated by considering three related (and correlated) aspects:

the use of large bin sizes, the inclusion of variations of the renormalisation scale µm, the

computation of higher-order contributions. We comment on these aspects in turn.

We recall that, in our MS scheme computation of the mtt̄ cross section, the MS mass

mt(µm) varies (due to µm variations) in the range 155.5 GeV . mt(µm) . 173.3 GeV (we

also recall that the upper value coincides with the value of Mt). The first mtt̄ bin in figure 1

extends from 300GeV to 360GeV, so that the unphysical thresholds are always included

in the first bin. The reduction of the bin size will amplify the unphysical behaviour of the

MS scheme computation.

At low values of mtt̄ the scale dependence of the MS scheme results is very large, thus

leading to a sizeable perturbative uncertainty and, therefore, mitigating the effect of the

unphysical features at the quantitative level. We note that at low values of mtt̄ this scale

dependence is largely dominated by the effect of µm variations (which, through eq. (2.9),

changes the position of the mtt̄ threshold), while the variations of µR and µF lead to much

smaller quantitative effects. This is in contrast with the MS scheme results in the region of
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higher values of mtt̄, where (analogously to the total cross section results in the second and

third columns of table 1) the 15-point and 7-point (i.e., by fixing µm = mt) scale variations

produce quantitatively similar scale uncertainties.

The unphysical features of the MS scheme computation at low mtt̄ are due to the low-

order perturbative expansion in eqs. (2.10)–(2.12). Owing to the formal all-order equality

in eq. (2.8), these unphysical features tend to ‘disappear’ by expanding the MS scheme

cross section σ̄ at a ‘sufficiently’ high order (see the results in figure 5 and related accom-

panying comments).

Considering the behaviour of the mtt̄ distribution near the threshold region, we note

that the perturbative computation in the pole scheme also leads to enhanced radiative

corrections, which are of dynamical origin. All-order resummed calculations of Coulomb-

type radiative corrections combined with effects of the finite width Γt of the top quark

were presented in refs. [50–53]. In particular, the calculation of refs. [52, 53] leads to an

increase of about 9% of the NNLO differential cross section integrated over the bin where

300 GeV < mtt̄ < 380 GeV (larger resummation effects occur for the detailed shape of

dσ/dmtt̄ over a more restricted region of size ∆mtt̄ ∼ Γt around the on-shell threshold at

mtt̄ = 2Mt). We remark on the fact that the dynamical effects considered in refs. [50–53]

are unrelated to those produced by the change of mass renormalisation schemes from the

pole to the MS scheme.

We note that our comments and discussion on the unphysical features of the invariant-

mass distribution at low values of mtt̄ similarly apply to other differential distributions

in kinematical regions that are sensitive to thresholds related to on-shell tt̄ production.

For instance, this is the case for the ytt̄ and ytav differential cross sections in the very high

rapidity region (specifically, at values of |ytt̄| and |ytav | that are larger than those considered

in the results of figures 2 and 4).

To perform a more direct comparison of the MS and pole scheme results for the differ-

ential cross sections in figures 1–4, we compute the ratio between them at each perturbative

order for each of the distributions. The ratios are presented in figure 5, where the lower

panels show in more detail the NNLO results and their uncertainty bands in both the MS

and pole schemes. We see that for all the distributions the results in the two schemes are

consistent at LO, NLO and NNLO within the corresponding scale uncertainties. In par-

ticular, and in relation to our previous discussion of the low-mtt̄ region, we note that the

quantitative effect of µm variations in the MS scheme is particularly relevant to get consis-

tency with the pole scheme results for the invariant-mass distribution. At NNLO the scale

uncertainty band of the MS scheme results is typically of the same size (see the mtt̄ and

pT,tav cross sections) or smaller (see the ytt̄ and ytav cross sections) than the corresponding

band in the pole scheme. In the cases of the ytt̄ and ytav distributions, we also see that

the NNLO scale band in the MS scheme is highly asymmetric with respect to its central

value (which, therefore, is evaluated close to a region of local minimal sensitivity to scale

variations), consistently with the similar behaviour of the total cross section in table 1.

In figure 5 we also observe that the shape differences between the MS and pole schemes

are significantly reduced by the inclusion of high-order corrections, and they are already

quite small at NNLO. Moreover, and importantly, in all the kinematical regions of figure 5
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Figure 5. Ratio between the MS and pole scheme predictions at LO (gray), NLO (red) and NNLO

(blue) for the differential distributions in figures 1–4. The numerator is the MS scheme result with

its 15-point scale variation, while the denominator is the central result (at each corresponding order)

in the pole scheme. The lower panels show only the NNLO ratio, including the uncertainty band

of the pole scheme result (purple).
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we note a sizeable overlap between the MS and pole scheme uncertainty bands at NNLO:

this fact shows the expected similarity between the two schemes once enough perturbative

orders are included in the calculation.

3.3 Comparison with CMS data and running-mass effects

Up to now we have presented perturbative calculations in the MS scheme by using values of

the renormalisation scale µm that are of the order of the top-quark mass. In the following

we refer to these calculations as predictions with a fixed MS mass, since the scale µm is

not necessarily related to the characteristic scale of the differential cross section under

consideration. In the remaining part of this section we also consider QCD predictions that

use a running MS mass, namely, perturbative calculations in which the MS mass mt(µm)

is evaluated at a dynamical value of µm that is related to the hard-scattering scale of the

differential cross section. Specifically, we consider QCD predictions for the invariant-mass

cross section dσ/dmtt̄, since its characteristic scale is mtt̄, which can be parametrically

much larger than the top-quark mass.

In ref. [16] the CMS Collaboration performed a measurement of the invariant-mass

distribution for tt̄ production based on 35.9 fb−1 of LHC data at the centre-of-mass energy√
s = 13TeV. The measurement was then compared with QCD predictions in the MS

scheme to the purpose of performing a determination of the top-quark mass.

The procedure used in ref. [16] by the CMS Collaboration is as follows. The theo-

retical results for dσ/dmtt̄ are obtained by using the NLO QCD calculation [14] in the

MS scheme with a fixed scale µm = mt, and treating mt(mt) = mt as a free parame-

ter. The value of mt in each invariant-mass bin is then determined by comparing these

theoretical predictions with the data point in the same bin. The fitted value m
(k)
t of mt

in the kth bin is then used to compute mt(µk) at the characteristic invariant-mass scale

µk [16] of the corresponding bin. The computation of mt(µk) from mt(m
(k)
t ) = m

(k)
t is

performed by using the evolution equation (2.4) at LO. The final result of the CMS Col-

laboration [16] is that the µk dependence of the determined values of mt(µk) agrees (within

theoretical and experimental errors) with the expectation from the evolution equation (2.4)

at LO.

The final result of ref. [16] implies that the fitted values of m
(k)
t in the various invariant-

mass bins are consistent (within errors) with a single common (i.e., bin-independent) value.

In view of this, we conclude that the CMS data of ref. [16] on dσ/dmtt̄ are consistent

with the NLO QCD predictions in the MS scheme as obtained by using a fixed value

mt(mt) = mt of the MS mass, namely, without introducing dynamical effects due to the

running of the MS mass.5 Therefore, the analysis performed in ref. [16] has no direct

sensitivity to running-mass effects, contrary to what is stated therein.

In section 3.1 we have computed the tt̄ total cross section by fixing µm = mt and using

the corresponding fixed value, mt(mt) = mt, of the MS mass. Such QCD predictions can

be used to determine the value of mt through a comparison with data for the tt̄ total cross

5Indeed, a fixed value of µm = mt is used in the NLO QCD calculation of ref. [16] for all the invariant-

mass bins.
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section (see, e.g., ref. [54]), but such comparison cannot be used to measure the running

of the MS mass of the top quark. Analogously, in the case of differential cross sections,

QCD predictions in the MS scheme that are obtained by using a fixed value of the mass

renormalization scale µm and, hence, a fixed value of the MS mass (such as the NLO

calculation used in ref. [16]) can be exploited to determine this value, but they cannot be

exploited to study the scale dependence and the running of the MS mass. The investigation

of this behaviour requires (at least) the use of QCD calculations with a running (i.e., not

fixed at a unique value) renormalization scale µm.

Taking this fact into account, in the following we present a comparison (see figure 6) of

the CMS data of ref. [16] with QCD predictions in the MS scheme up to NNLO. The QCD

predictions, which refer to the same binning as in the CMS measurement, are obtained by

using either a fixed (figure 6 left) or a running (figure 6 right) MS mass, as specified below.

For both kinds of predictions, we exactly follow the setup employed in ref. [16]: we use the

ABMP16 PDF sets [54, 55] with nf = 5 massless-quark flavours, and the corresponding

values of the QCD coupling, αS(mZ) = 0.1191 and αS(mZ) = 0.1147 at NLO and NNLO,

respectively. The value of mt is set to 161.6GeV, which corresponds to the result obtained

by the CMS Collaboration [15] from a fit of the tt̄ total cross section (using the same

data set as in ref. [16]) based on NNLO predictions in the MS scheme computed with

the ABMP16 PDFs and the corresponding αS. We note that such value of mt is lower

than the one used to obtain all our previous results in the MS scheme (e.g., the results

in figures 1 and 5). We also note that the value mt = 161.6 GeV corresponds to the pole

mass Mt = 170.8 GeV, by using the relation in eq. (2.1) at three-loop order.

The QCD predictions with a fixed MS mass (figure 6 left) are computed analogously

to those in figure 1. We use the central value µ0 = mt for the three auxiliary scales

µR, µF and µm, and we consider the 15-point scale variations around this central value.

At NLO this calculation corresponds to the one performed in ref. [16], with the main

difference that we include the uncertainties due to the variation of µm by a factor of 2

around µ0 (µm is kept fixed to mt in ref. [16], though the effect of PDF uncertainties is

considered therein).

The QCD predictions with a running MS mass (figure 6 right) are computed by per-

forming the 15-point scale variations around values of the central scale µ0 (for the three

auxiliary scales µR, µF and µm) of the order of mtt̄/2, which is the characteristic hard-

scattering scale of the differential cross section dσ/dmtt̄. Specifically, in the kth invariant-

mass bin we set µ0 = µk/2 (setting directly µ0 = mtt̄/2 in our MS scheme calculation is

more challenging from a computational point of view), where µk is the centre of gravity

of the mtt̄ cross section in the kth bin as computed by the CMS Collaboration [16]. The

values of µk range from µ1 = 384GeV in the 1st bin to µ4 = 1020GeV in the 4th bin

(see table 1 in ref. [16]), and the corresponding values of the running-mass range from

mt(µ1/2) = 159.5GeV to mt(µ4/2) = 149.0GeV (we use the evolution equation (2.4) at

NNLO, as implemented in the package CRunDec [46]). We note that the fixed (µ0 = mt)

and dynamic (µ0 = µk/2) scales substantially differ only in the high-mtt̄ region (for in-

stance, in the first bin µ1/2 = 192GeV and mt differ by less than a factor of two, and

both values are thus included within the scale variation range that we consider). There-
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Figure 6. The invariant-mass distribution of the top-quark pair at NLO (red) and NNLO (blue)

in the MS scheme, and the result of the CMS measurement in ref. [16]. The theory uncertainty

bands are obtained by performing 15-point scale variations around the central value µ0 of the

auxiliary scales µ
R
, µ

F
and µm. In the left panel µ0 is fixed to mt, whereas in the right panel µ0 is

dynamically set to µk/2 (µk is the centre of gravity of the cross section in the kth bin of mtt̄). In

the lower right panel the dashed lines indicate the NLO and NNLO results obtained with µm = mt

and µ
R
= µ

F
= µk/2.

fore, our comparison between fixed-mass and running-mass predictions has the purpose of

investigating differences only at relatively high values of the invariant mass.6

From the theory-data comparison in figure 6 we see that the NNLO results in the

MS scheme with fixed or running masses are both in excellent agreement with data. We

also note that the agreement improves (especially for the predictions with the running

mass at high values of mtt̄) in going from NLO to NNLO. As observed in figure 5, the

NNLO predictions for dσ/dmtt̄ in the pole and MS schemes are consistent within their scale

uncertainties. Therefore, we also note that the level of agreement between data and NNLO

theory is not a peculiarity of the results in the MS scheme. The CMS data are also fully

compatible with the NNLO predictions in the pole scheme, provided they are obtained by

using a value of pole mass Mt that is consistent (according to eq. (2.1) at NNLO) with the

value of mt of the corresponding predictions in the MS scheme.

Inspecting the results reported in figure 6, we see that NNLO (and also NLO) MS

scheme predictions with a fixed and a running mass are consistent with each other within

their scale uncertainties (in particular the two NNLO scale variation bands have a sub-

6As discussed in section 3.2 (see figure 1 and accompanying comments), the use of the pole mass is

preferred with respect to the MS mass in the low-mtt̄ region (e.g., in the first invariant-mass bin of figure 6,

where mtt̄ < 420GeV).
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stantial overlap). In the highest invariant-mass bin of figure 6, the data point agrees better

with the central NNLO prediction with a fixed MS mass, which leads to a larger value

of dσ/dmtt̄. This larger cross section is due the fact that the NNLO result for dσ/dmtt̄

at high mtt̄ is a decreasing function of the central scale. Indeed, the MS prediction with

a fixed MS mass uses the central scale µ0 = mt, while the prediction with the running

mass uses a larger value, (µ0 ∼ mtt̄/2) of the central scale. A qualitatively similar scale

dependence of dσ/dmtt̄ in the high-mtt̄ region (e.g., mtt̄ & 1TeV) is observed in the NNLO

results [49] in the pole scheme. Therefore, such scale dependence (both in the MS and the

pole scheme) is mostly driven by the scale µR of αS and the scale µF of the PDFs (increas-

ing mtt̄ the PDFs are sensitive to the region of increasingly higher values of momentum

fractions, where scaling violations are negative).

Our QCD predictions with running MS mass use the central scale µ0 = µk/2 ∼ mtt̄/2

for all the auxiliary scales µR, µF and µm. To disentangle the effect of the running of

the top-quark mass mt(µm) from the effect due to the running of αS and to the scaling

violations of the PDFs, we also present (see the dashed lines in the lower panel of figure 6

right) the results that are obtained by keeping µm = mt fixed, while still using the dynamic

scale µk/2 for µR and µF . Even though the use of the running mass mt(µk/2) leads to

a slightly better agreement with the data, the difference from the result with µm = mt

(solid lines in figure 6 right) is very small in comparison to the size of the theoretical and

experimental uncertainties.

Comparing the QCD results at central scales in the lower panel of figure 6 right, we note

the following features. Going from mt(µk/2) (solid lines) to mt(mt) (dashed lines), the MS

mass mt(µm) of the top-quark increases and, accordingly with naive expectations, the mtt̄

cross section decreases. The decrease of the cross section is rather uniform throughout, from

the region of low to high values of mtt̄. This is also not unexpected. At low invariant masses

the parametric dependence of the mtt̄ cross section on mt(µm) is large (since the value of

µm effectively changes the position of the invariant-mass threshold), but the difference

between the fixed and the dynamic scales, µm = mt and µm = µk/2 ∼ mtt̄/2, is very small.

At high invariant masses this difference becomes larger, but the parametric dependence of

the mtt̄ cross section on the mass mt(µm) is much smaller.

In the highest invariant-mass bin of figure 6, we also see that the difference between

the solid and the dashed lines of figure 6 (right) is definitely smaller than the difference

between the central predictions (solid lines) on the left-hand side and the right-hand side

of figure 6. This fact confirms our previous conclusion that the difference between our

fixed-mass and running-mass predictions of figure 6 is mostly driven by the scales µR and

µF of αS and PDFs. The quantitative dependence on the mass renormalisation scale is

smaller for a twofold reason: the running of the MS mass of the top quark is slower than

that of the QCD coupling αS (see eq. (2.6)), and the scaling violations of the PDFs increase

with increasing mtt̄.

From our discussion of the results in figure 6 we conclude that the data of ref. [16] are

not able to pin down effects produced by the running of the MS mass in the NNLO predic-

tions. This conclusion is the consequence of the relatively large theoretical uncertainties of

the predictions and, partly, of the size of the experimental errors.
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We complete our discussion on the invariant-mass distributions with few additional

considerations.

The computation of QCD observables that depend on a single hard-scattering scale

(e.g, the tt̄ total cross section, which depends on the top-quark mass) is usually performed

by setting the central scale µ0 of the corresponding fixed-order calculation to a value of the

order of the hard-scattering scale. The differential cross section dσ/dmtt̄ is not a single-

scale QCD observable, since it depends on both the top-quark mass and the invariant

mass of the tt̄ pair. If these two mass scales are parametrically different, we are dealing

with a two-scale QCD observable, and high-order radiative QCD corrections are expected

to be quantitatively relevant. In the context of fixed-order QCD predictions for two-scale

observables, a customary procedure to investigate higher-order effects is to set the auxiliary

scale µ0 of central QCD predictions at a value within the range of the two mass scales. In

our predictions of figure 6 with fixed and running MS masses, we have considered the two

‘extreme’ choices µ0 = mt and µ0 ≃ mtt̄/2, and we have found relatively similar (within

scale uncertainties) results for mtt̄ . 1TeV (i.e., the value of µk in the 4th bin of figure 6).

In the case of two-scale QCD observables, the use of fixed-order calculations with dy-

namic values of µ0 is expected to be a sensible theoretical procedure, provided the two

scales are parametrically not very different. The direct calculation of higher-order contri-

butions (for instance, through all-order resummation techniques) is instead theoretically

more appropriate in the kinematical region where the two mass scales are parametrically

very different. In the specific case of dσ/dmtt̄, this is the multi-TeV invariant-mass region.

In ref. [56], the differential cross section dσ/dmtt̄ at high (multi-TeV) values of mtt̄ was

studied by combining the NNLO calculation in the pole scheme [49] with resummed cal-

culations [57, 58] of contributions due to soft and collinear radiation. The combination of

resummed calculations with the NNLO calculation in the MS scheme can be of interest to

perform further investigations on the effects of the running of the top-quark mass.

4 Summary

This paper has been devoted to present and discuss QCD predictions for tt̄ production at

the LHC by using the MS renormalisation scheme for the definition of the top-quark mass.

We have remarked that the LHC experimental data refer to the production of ‘physical’

(though unstable) top quarks and antiquarks with a definite value of the pole mass Mt (and

width Γt). At the theoretical level, this physical picture directly leads (in the limit Γt → 0)

to considering perturbative calculations for on-shell tt̄ production in the pole scheme. We

have then discussed how the on-shell calculations in the pole scheme can be transformed

into corresponding calculations in the MS scheme through a formal all-order perturbative

replacement of the renormalised top-quark mass. We have highlighted possible unphysical

features (e.g., in connection with tt̄ production thresholds) that are produced by such

formal replacement order-by-order in QCD perturbation theory. We have also discussed

how running-mass effects can be introduced in the perturbative calculation within the

MS scheme.
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In the previous literature, QCD predictions within the MS scheme had been limited to

calculations of the tt̄ total cross section up to NNLO and of single-differential cross sections

up to NLO. In this work we have computed the total cross section and single-differential

distributions for tt̄ production at NNLO by using the MS scheme for the renormalisation

of the top-quark mass. The NNLO results substantially increase the precision of the MS

scheme theoretical results for differential distributions that were previously available only

at NLO, and, therefore, our results are very relevant in the context of the experimental

determination of the MS mass of the top quark.

In our computation we have consistently included variations of the renormalisation

scale µm of the MS mass mt(µm). We have then considered a 15-point variation (once

variations of µR and µF are included) of the QCD auxiliary scales (µR, µF and µm) to

estimate the scale uncertainties of the fixed-order QCD predictions. In particular, we find

that the inclusion of µm variations is crucial to consistently and correctly assess the size of

the perturbative uncertainties of the MS scheme predictions, especially at low perturbative

orders and for differential distributions (e.g., the distribution of the invariant mass, mtt̄, of

the tt̄ pair) in the vicinity of tt̄ production thresholds. Moreover, we have also computed

the invariant-mass distribution at high mtt̄ by using a dynamic value of the renormalisation

scale µm, therefore effectively introducing a running value, mt(µm), of the top-quark mass

in the MS scheme.

We have presented the results of detailed QCD calculations of the tt̄ total cross section

in both the pole and MS schemes up to NNLO by using different central values µ0 of the

auxiliary scales µR, µF and µm, and including uncertainties from scale variations around

the central scale. The comparison between the pole and MS schemes shows consistent

results within scale uncertainties. Comparing the pole scheme results with µ0 = Mt to

the MS scheme results with µ0 = mt, we confirm previous findings in the literature: the

perturbative convergence of these MS scheme results appears to be faster, with larger

overlap of the scale uncertainty bands at subsequent perturbative orders, and with smaller

corrections and scale uncertainties at NNLO. However, we have pointed out that the

features of faster or slower apparent convergence strongly depend on both the value of µ0

and the type of mass renormalisation scheme. Within each of the two mass renormalisation

schemes, the apparent convergence can be made faster (or slower) by changing the value

of the central scale µ0.

Considering scales µ0 of the order of the top-quark mass, we have presented results of

single-differential distributions in the MS scheme up to NNLO, and we have also compared

them with corresponding results in the pole scheme. The comparison between the results in

the two schemes leads to conclusions that are similar to those that apply to the total cross

section. In particular, we concluded that the shape differences between the pole and MS

scheme results are significantly reduced by the inclusion of the high-order contributions,

and they are quite small at NNLO. Moreover, in all the kinematical regions that we have

considered, we have noted a sizeable overlap between the pole and MS scheme uncertainty

bands at NNLO. The high similarity between these pole and MS scheme results at NNLO

for differential distributions is a relevant feature, since it also justifies the study of running-

mass effects through the introduction of dynamic values of the renormalisation scale µm

for the MS mass mt(µm).
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We have considered a recent measurement of the mtt̄ differential cross section per-

formed by the CMS Collaboration. The measurement extends up to mtt̄ . 1TeV. We

have computed corresponding QCD predictions up to NNLO within the MS scheme by

using either fixed (µm = mt) or dynamic (µm ∼ mtt̄/2) central values of µm. We have dis-

cussed the effects that are produced by the dynamic scale. We have observed an excellent

agreement between the experimental data and the theory results at NNLO. In particu-

lar, the NNLO results lead to a sizeable reduction of the scale uncertainties with respect

to the corresponding results at NLO, thus paving the way to a precise determination of

the top-quark mass in the MS scheme. The NNLO predictions with fixed and dynamic

values of µm are consistent within their scale uncertainties, whose size is similar to that

of the experimental errors. Therefore, we have concluded that these CMS data are not

able to pin down effects produced by the running of the MS mass in the NNLO predic-

tions. Additional theoretical studies of running-mass effects in QCD predictions are left to

future investigations.
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[41] F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys.

Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP10(2014)076
https://arxiv.org/abs/1402.6611
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.6611
https://doi.org/10.1007/JHEP01(2017)081
https://arxiv.org/abs/1612.05512
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.05512
https://doi.org/10.1007/JHEP04(2017)119
https://arxiv.org/abs/1702.01458
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.01458
https://doi.org/10.1016/0550-3213(94)90314-X
https://arxiv.org/abs/hep-ph/9402364
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9402364
https://doi.org/10.1103/PhysRevD.50.2234
https://arxiv.org/abs/hep-ph/9402360
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9402360
https://doi.org/10.1016/0370-2693(94)01505-7
https://arxiv.org/abs/hep-ph/9408380
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9408380
https://doi.org/10.1007/JHEP09(2014)045
https://arxiv.org/abs/1407.2128
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.2128
https://doi.org/10.1016/j.physletb.2017.10.054
https://arxiv.org/abs/1605.03609
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.03609
https://doi.org/10.1007/JHEP09(2017)099
https://arxiv.org/abs/1706.08526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.08526
https://doi.org/10.1007/JHEP01(2019)203
https://arxiv.org/abs/1810.10931
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.10931
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD98%2C030001%22
https://doi.org/10.1140/epjc/s10052-015-3793-y
https://arxiv.org/abs/1508.03585
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.03585
https://doi.org/10.1140/epjc/s10052-018-5771-7
https://arxiv.org/abs/1711.06631
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.06631
https://doi.org/10.1016/0370-2693(96)00425-X
https://arxiv.org/abs/hep-ph/9602277
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9602277
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9605323
https://doi.org/10.1016/S0550-3213(02)00098-6
https://arxiv.org/abs/hep-ph/0201036
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0201036
https://doi.org/10.1103/PhysRevLett.108.111601
https://doi.org/10.1103/PhysRevLett.108.111601
https://arxiv.org/abs/1111.5206
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.5206


J
H
E
P
0
8
(
2
0
2
0
)
0
2
7

[42] F. Buccioni, S. Pozzorini and M. Zoller, On-the-fly reduction of open loops, Eur. Phys. J. C

78 (2018) 70 [arXiv:1710.11452] [INSPIRE].

[43] F. Buccioni et al., OpenLoops 2, Eur. Phys. J. C 79 (2019) 866 [arXiv:1907.13071]

[INSPIRE].

[44] P. Bärnreuther, M. Czakon and P. Fiedler, Virtual amplitudes and threshold behaviour of

hadronic top-quark pair-production cross sections, JHEP 02 (2014) 078 [arXiv:1312.6279]

[INSPIRE].

[45] NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.

C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

[46] B. Schmidt and M. Steinhauser, CRunDec: a C++ package for running and decoupling of

the strong coupling and quark masses, Comput. Phys. Commun. 183 (2012) 1845

[arXiv:1201.6149] [INSPIRE].

[47] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR:

HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182

(2011) 1034 [arXiv:1007.1327] [INSPIRE].

[48] P.M. Stevenson, Optimized Perturbation Theory, Phys. Rev. D 23 (1981) 2916 [INSPIRE].

[49] M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at

the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE].

[50] K. Hagiwara, Y. Sumino and H. Yokoya, Bound-state Effects on Top Quark Production at

Hadron Colliders, Phys. Lett. B 666 (2008) 71 [arXiv:0804.1014] [INSPIRE].
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