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Abstract

Generating numbers has become an almost inevitable task associated with studies

of the morphology of the nervous system. Numbers serve a desire for clarity and

objectivity in the presentation of results and are a prerequisite for the statistical

evaluation of experimental outcomes. Clarity, objectivity, and statistics make

demands on the quality of the numbers that are not met by many methods. This

review provides a refresher of problems associated with generating numbers that

describe the nervous system in terms of the volumes, surfaces, lengths, and num-

bers of its components. An important aim is to provide comprehensible descrip-

tions of the methods that address these problems. Collectively known as design-

based stereology, these methods share two features critical to their application.

First, they are firmly based in mathematics and its proofs. Second and critically

underemphasized, an understanding of their mathematical background is not nec-

essary for their informed and productive application. Understanding and applying

estimators of volume, surface, length or number does not require more of an orga-

nizational mastermind than an immunohistochemical protocol. And when it comes

to calculations, square roots are the gravest challenges to overcome. Sampling

strategies that are combined with stereological probes are efficient and allow a

rational assessment if the numbers that have been generated are “good enough.”

Much may be unfamiliar, but very little is difficult. These methods can no longer be

scapegoats for discrepant results but faithfully produce numbers on the material

that is assessed. They also faithfully reflect problems that associated with the his-

tological material and the anatomically informed decisions needed to generate

numbers that are not only valid in theory. It is within reach to generate practically

useful numbers that must integrate with qualitative knowledge to understand the

function of neural systems.
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1 | INTRODUCTION

Quantitative morphology in the neurosciences is, in the context of this

review, defined as studies that provide information about the basic

structural organization of the nervous system in terms of—to mention

but a few parameters—volumes of brain regions, the numbers of cells

or synapses within them, the length of capillaries supplying them, or of

membrane areas that are available for substance exchange or synaptic

contacts. Like many other specialties within the neurosciences, quan-

titative morphology is the principal focus of comparatively few

research groups. Unlike other specialties and as a consequence of a

general striving toward objectivity in the presentation and evaluation

of data, quantitative morphology has also been imposed on those

whose primary interests are elsewhere. A specialist in a neurodegen-

erative disease model showing unequivocal qualitative evidence of cell

loss will almost inevitably be asked for the provision of data that pro-

vide an objective measure—implicitly meaning “numbers”—of how

many cells are lost. The next demand will be statistical testing—

requiring numbers—that sets diseased apart from healthy. Trying to

comply with the demand for numbers, one may check who has previ-

ously generated the numbers needed, how they were generated and

where the outcome was published. A judgment of quality concerning

the “who” and “where” and a judgment of effort concerning the “how”

is likely to follow. Unfortunately, quantitative morphology only

reached methodological maturity after the onset of the quest for

numbers. The bulk of the quantitative morphological methods that

together constitute what was called the new or unbiased stereology

and what today is commonly referred to as design-based stereology

was introduced in the 1980s and 1990s (for early reviews, see

Gundersen, 1986; Gundersen, Bagger, et al., 1988; Gundersen,

Bendtsen, et al., 1988; Royet, 1991). Prior to that, studies of

respected researchers published in respected journals had hardly an

alternative but to resort to methods that, for a large part, were fraught

with possible sources of error. A following of studies that use these

precedences and that themselves function as precedences must be

expected in the course of a methodological paradigm shift. However,

one would hope for their numbers to dwindle quickly and for the tran-

sition to be brief and uncontroversial.

Subsequent to the introduction of design-based stereological

methods, some journals, for example, The Journal of Comparative Neu-

rology (Coggeshall & Lekan, 1996; Saper, 1996), Neurobiology of Aging

(West & Coleman, 1996), or The Journal of Chemical Neuroanatomy

(Kordower, 2000) strongly promoted the use of these methods, precipi-

tating a vigorous discussion—in part about the freedom of choice of

methods (Guillery & Herrup, 1997). This freedom should, of course, not

be challenged. Data collected by any quantitative morphological

method in a replicable manner are true by definition of the method.

Problems first arise with the interpretation of the data. Do the data

provide sound evidence, for example, for a loss of cells following an

experimental intervention? Or should they elicit the death knell of a

manuscript under review because “the data provided do not support

the conclusions being drawn”? In dealing with numbers, the freedom of

interpretation of the data is far more restricted than the freedom of

choice of methods. If, for example, the method of choice only allows

the presentation of a density, that is, a ratio of something (numerator;

e.g., cell number or capillary length) per something else (denominator;

e.g., tissue volume or cells), it is simply not possible from the ratio alone

to make conclusive statements about changes in the total of the numer-

ator or denominator. Figure 1 provides an example for which the idea

that differences in densities reflect differences in number would be

almost intuitively rejected. Instead, one has to argue why a density,

under the particular circumstances of the experiment, may provide

good evidence for such a change. Although this may be possible, it

would appear more fruitful to either save the time and energy required

by the argument or to expend them on discussing what the biological

significance of the change would be (Cruz-Orive, 1994).

What is puzzling is that, decades after the introduction and vigor-

ous discussion of a new methodology, a shift to more powerful and

rather simple methods is, if at all, proceeding at a snail's pace. The rea-

sons are manifold. The very strength of the methods, that is, a mathe-

matical proof can be and often is included in their original description,

renders much of the primary methodological literature next to impossi-

ble to read for many biologists. Popularizations of the methods may try

to restrict themselves to a basic vocabulary, but often fail to realize that

the audience simply may not (want to) speak a language of mathematics

or statistics (Fawcett & Higginson, 2019). Also, when quantitative mor-

phological methods were prominent tools in neuroscience, many of

their users were keenly aware of their problems. This awareness has

faded with time and the vast expansion of the neuroscience toolbox.

Yet another reason is the effort required to obtain the measures.

Design-based stereology prided itself to have cut the workload sub-

stantially through rational study design (e.g., Gundersen &

Østerby, 1981). However, the methods are still, at best, semiauto-

matic. They require user intervention and hours of work to return a

measure. While other methods were equally or even more time con-

suming in the past, increased computing power has allowed the devel-

opment of image analysis methods that return data within minutes.

Without an understanding why the extra effort provides more reliable

data than those quickly generated, the extra effort seems hard to

justify—in particular if the additional effort does not seem necessary

to publish well. It is a vicious circle that is difficult to break.

The intention of this review is to refresh memories on the prob-

lems inherent to quantitative morphology of the sectioned CNS, to

provide comprehensible explanations how design-based stereological

methods address these problems and to provide sufficient detail on

the application of the methods to allow the design, execution, and

evaluation of the outcome of a quantitative morphological study. For

more formal introductions, the texts of Russ and Dehoff (2000), How-

ard and Reed (2010) or West (2012a; serialized in Cold Spring Harbor

Protocols) are recommended. Brief introductions have been published

by, for example, Schmitz and Hof (2005) or Boyce, Dorph-Petersen,

Lyck, and Gundersen (2010).

Most brain regions contain so many objects—neurons, glia, synap-

ses, and so forth—thatworkloadwouldmake it prohibitive to count them

all. The few cases in which “everything” was counted, usually based on

serial reconstructions, were primarily concerned with the validation of
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other approaches that reduce workload (e.g., Baquet, Williams, Brody, &

Smeyne, 2009; Delaloye, Kraftsik, Kuntzer, & Barakat-Walter, 2009;

Pover & Coggeshall, 1991). Alternative approaches will always consist of

a two-step process. The first step reduces the workload by sampling only

a small fraction of a region of interest. The second step consists of prob-

ing the sample in a way that makes the final estimate free from probing

related artifacts (see Section 2). Although many of the design-based ste-

reological methods have been presented as bundled sampling-probing

combinations (e.g., West & Gundersen, 1990; West, Slomianka, &

Gundersen, 1991), the two steps are not inextricably linked and can indi-

vidually be subject to modifications and improvements. Therefore, they

will be treated separately in Section 3, which is concernedwith sampling,

and Sections 4–7, which are concerned with probes. Once an estimate

has been generated, the inevitable question is if it is good enough. Sec-

tion 8will help in approaching the answer to this question. Section 9 tries

to point out and address some of the problems that arise when theory

hits the less thanmathematically perfect life in the laboratory.

An argument that occasionally is being put forward against the

use of design-based methods is the cost associated with the software

and hardware tools that may be needed to apply them. First, this cost

may only be small compared to that of other equipment commonly

used. It may not even amount to the operational expenses associated

with a single project. Most importantly, the purchase of specialized

software and hardware is a purchase of convenience and speed but

not one of ability. These tools were not around when many of the

methods were developed—sometimes in the form of first applications.

Almost all methods that will be presented here can, in principle, be

used without special resources. Some simple ways that have been

devised to facilitate the work will be presented in conjunction with

the sections on sampling and the introduction of specific probes.

2 | A PROBLEM

Although the paradigm shift that one could have expected is barely

proceeding, the introduction and discussion of new methods have

sensitized some experimenters to problems associated with generat-

ing quantitative morphological data. One of these problems relates to

answering the question “How many are there?” that is, to estimating

number. Some responses to the problem, which unfortunately fall

short of solving it, and the current best solution will be

described here.

2.1 | Easy ways to fail

When tissue is cut into sections, some of the objects, for example,

cells, contained within the tissue will inevitably be cut too. Fragments

of cells that have been cut will be present in two sections. In two-

dimensional representations of the sections, for example, images that

have been acquired, the fragments are seen as profiles. If cell profiles

would be counted in all sections, the number of profiles would be

higher than the number of cells. Now we have the problem: A profile

count represents an overcount of actual cell number. The following,

very slightly paraphrased responses to the problem of overcounting

have been published in descriptions of methodology: “… to avoid dou-

ble counting of the same cell, sections used to count were a minimum

of 100 μm apart. …” or “… we then took every fourth section, so the

distance between sections that were counted was 80 μm. Given that

the typical cell diameter is smaller than 30 μm, this ensures that the

same cell was not counted twice.” There are further variations on this

theme.

The simplicity of this solution is appealing. It was used in Figure 2

to generate an example of three series of sections fulfilling the crite-

rion that the spacing of the sections is larger than the size of the cells

(blue objects) contained in the region of interest (dark gray). The

example also has the advantage that the number of cells prior to cut-

ting is known. There are 18 (Figure 2a). Every third section was “col-

lected” in each of the series represented in Figure 2b–d: Figure 2b,

sections 1, 4, 7, and 10; Figure 2c, sections 2, 5, and 8; and Figure 2d,

sections 3, 6, and 9. None of the individual cells can be double coun-

ted in any one of the series. Each series represents, on average, one-

F IGURE 1 C57 mouse and human hippocampal dentate granule cells. Despite the much higher packing density (a) of �550,000 granule cells
in C57 mice (Ben Abdallah, Slomianka, Vyssotski, & Lipp, 2010), they are by far outnumbered by �15,000,000 granule cells (West &
Gundersen, 1990) in the human hippocampus (b). It is a change in the denominator of density—the total volume of the granule cell layer—that is
responsible for the discrepancy between appearance and numbers. Scale bars in a and b: 10 μm [Color figure can be viewed at
wileyonlinelibrary.com]
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third of the entire region of interest. An estimate of total cell number

would, according to the simple solution, be the number of cells coun-

ted in any one of the series multiplied by three. The average of the

estimates of the three series should correspond to the number of cells

contained in the structure—18. Does it?

Unfortunately, it does not; 8, 10, and 9 cell profiles are counted

(Figure 2b–d), resulting in estimates of 24, 30, and 27 cells. The aver-

age of the three estimates, 27, is 150% of the true number. The possi-

bility that a specific cell is counted twice cannot be the reason for the

overestimate. Instead, the problem is caused by assigning a count of

“1” to cell fragments that represent less than one entire cell

(Billingsley & Ranson, 1918). As long as cells can be fragmented during

the sectioning this error will occur, and the size of the error will

depend on the likelihood of a cell being cut. The latter depends on the

average cell height in relation to the thickness of the sections. If this

relation was known, the error could be corrected, which is the basis of

Abercrombie's cell counting method (1946; see Section 6.7). Without

correction, the true total cell number cannot be obtained using the

simple solution. Ironically, this error will not increase even if the sec-

tions are spaced close enough together for a specific cell to be present

and counted in two sections. If we count in all sections, we see

27 fragments—the same number that we obtained by estimating from

every third section. The extrapolation of profile counts to total num-

ber will provide us with an estimate of fragment number and not cell

number.

Correct total cell numbers are, however, not always the primary

aim of a study. When control groups are compared with experimental

groups, group differences may be more important than correct total

numbers. This has led some investigators to state that “… because the

absolute, unbiased number of neurons was not needed to address the

questions posed in this study, a profile-sampling method was used,”

or that “… unbiased stereological methods were not used as the data

of interest is relative difference and not absolute value,” or that “… no

corrections were made for overcounting because we were interested

in relative rather than absolute differences in the number of neurons.”

The point appears valid at a first glance, if one could be certain that at

least the group differences were correct. Figure 3 reexamines the

region illustrated in Figure 2. Figures 2 and 3 now may represent

members of a control group (Figure 2) and an experimental group

(Figure 3).

Then, 10, 13, and 11 cells are counted (Figure 3), resulting in esti-

mates of 30, 39, and 33 cells. The average of the three estimates,

34, is �126% of the control value (27 cells estimated from Figure 2).

This increase is observed even though the number of cells in the

region of interest did not change. There are, again, 18 cells. What did

change is the size of the cells. Because their height increased, the like-

lihood of producing fragments increased and, consequently, the pro-

file count increased. The observed difference in cell number estimates

between control (Figure 2) and experimental (Figure 3) individuals is

an artifact generated by the increase in size of the cells.

That changes in number occur without changes in size is the cen-

tral but often unspoken or unrealized assumption that must be true

for a faulty method to generate similarly sized errors in controls and

experimentals. It is not only counterintuitive—cells do not instanta-

neously pop in and out of existence—but changes in size of neurons

as a reaction to stimuli have been known almost since it became pos-

sible to stain neurons (Nissl, 1892). A little more recently, neurons in

the entorhinal cortex were found to decrease in size by �30% follow-

ing the destruction of hippocampal granule cells (Goldschmidt &

Steward, 1992). The age-related dopaminergic cell death in the

F IGURE 2 Profile counts cannot be extrapolated to total cell number. (a) A region (dark gray) containing 18 cells (blue objects) is cut into
three series of sections (b–d). In each series, the profiles of cells visible in the sections are counted. Eight cell profiles are counted in the two
sections of the region contained in series (b). The three sections in series (c) contain10 cell profiles. The three sections in series (d) contain nine
cell profiles. Extrapolating the mean profile count, 9, to total cell number by multiplying with 3 generates an estimate of 27 cells instead of the
true value of 18 cells [Color figure can be viewed at wileyonlinelibrary.com]
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substantia nigra is accompanied by an increase in the volume of the

remaining cells (Rudow et al., 2008). The age-related loss of phrenic

motor neurons is accompanied by a decrease in the size of the

remaining cells (Fogarty, Omar, Zhan, Mantilla, & Sieck, 2018). There

are age-related changes in the volumes of the perikaryon and nucleus

of human neocortical neurons (Barger, Sheley, & Schumann, 2015;

Stark et al., 2007). Also, an increase in the size of both dentate mossy

cells (40%) and interneurons (58%) that survive pilocarpine-induced

seizures has been described (Zhang et al., 2009; Zhang, Thamattoor,

LeRoy, & Buckmaster, 2015). A survey of age-related changes in cell

F IGURE 3 Dependence of profile counts on object size. (a) A region (dark gray) containing 18 cells (blue objects) is cut into three series of
sections (b–d). In each series, the profiles of cells visible in the sections are counted. In series (b), (c), and (d), 10, 13, and 11 profiles are counted.
The average of the 3 possible estimates, 30, 39, and 33, is 34. The increase in the size of the cells relative to those in Figure 2 results in an
estimate of 34 instead of 27 cells. The true cell number is 18 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Influence of orientation on a profile count. Red lines represent borders between adjacent sections. The ellipsoid cells in (a) result
in a count, across all sections, of 27 profiles. The same cells, unchanged in size but oriented differently in (b), result in a count of 33. Changing the
direction of the cutting from, for example, coronal in (a) to sagittal in (c), the profile count increases from 27 to 32. (a) and (c) could also be two
brain regions that are cut in the same direction. A laboratory may, for example, claim that the ratio of neurons in (a) to those in (c) is 27/32 = 0.84,
while another laboratory using a different cutting direction may claim this ratio to be 32/27 = 1.19—a 40% discrepancy between two results that
are both wrong. There are again 18 cells in each structure, and the ratio is 1. One does not have to search long to find neuronal nuclei that are
even more elongated than the ones in (a–c): (d) bed nucleus of the stria terminalis, (e) zona incerta, C57 mouse, hematoxylin stain, minimum
density projections. Scale bar: 5 μm [Color figure can be viewed at wileyonlinelibrary.com]
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sizes based on earlier methods can be found in Flood and

Coleman (1988).

Figures 2 and 3 used spheres to represent cells. If cells are not

spherical, the number of profiles counted in a section will not only

depend on the size of the cells. It will also depend on their orientation,

which may change because of experimental interference or, quite sim-

ply, because of a change in the direction in which the tissue is cut. For

the sake of brevity, the regions of interest in Figure 4, which illus-

trates the effect of orientation on profile counts, were not split up

into samples of sections. Recall that the number of profiles that can

be counted in all sections would correspond to the faulty number of

cells (in reality cell fragments) that we would estimate from a series.

If an error can be present because of changes in factors other

than number, does an error have to be present? No. The problem is

that we do not know. Without further evidence, it is impossible to

judge the presence, size, or direction of an error. Also, if significant

differences exist between groups, something must have happened.

However, without further knowledge about the size, shape, or orien-

tation of the cells, the data generated do not provide unequivocal evi-

dence about the parameter of interest—the number of cells.

Even if we could guess at the approximate size of the error, trying

to define a value for an acceptable error does not make sense. First, the

outcomes of statistical testing depend not only on the difference

between the group means but also on the variability of the groups and

the number of individuals in each group. However small a difference

may be, it can generate a positive statistical outcome provided the

number of individuals is large enough or the variability is small enough.

It is not just the perhaps small danger of finding a completely artificial

difference, but also the increase in the risks of false-positive and false-

negative findings that make even small errors treacherous. The defini-

tion of an acceptable error would require an argument, and most likely

a very contentious one, that relates errors to group variability, group

size, and the biological relevance of effect sizes. If reaching a common

ground on these issues is possible at all, it is tedious considering that

the problem can be avoidedwithout too much effort.

2.2 | An almost as easy solution

The problem described in the preceding section is caused by the cou-

nting of “something” (profiles) that is not unique for the objects of

interest, but that can occur more than once for each object in a series

of sections. If the section thickness remains unchanged, selecting a

smaller structure to count—the nucleus instead of the cell, or the

nucleolus instead of the nucleus—does reduce the error because the

chance that it is sectioned decreases. However, even if the error in

thick light microscopic sections may not be detectable, this may not

be the case if section thickness is reduced dramatically, for example,

when only one confocal plane is used or when tissue sections are pre-

pared for electron microscopy. The error depends on a parameter,

that is, section thickness, which is chosen during the preparation of

the tissue. This also adds to the complexity of comparing results of

different studies.

An error-free estimate can only be obtained if a “something” is

identified that only occurs once for each object of interest in a series

of sections. Thompson (1932) may have been the first to state that

the first time an object is recognized in a series of sections is such a

unique feature. Regardless of how big an object is and how many profiles

it may produce when the tissue is sectioned; it will only once be seen for

the first (or last) time. His idea went sadly unnoticed until Sterio (1984)

rediscovered and extended it in the form of the disector. In its concep-

tually simplest form, the disector is based on the examination of two

(di-) sections (-sector). One of the sections, the sample section, is used

to count cells. The other section, called the look-up section, is used to

decide which of the cells visible in the sample section are to be coun-

ted and which ones are not. The rules that determine what to count

are rather simple.

If a cell is visible for the first time in the sample section,

i.e., it is not present in the look-up section, it should be

counted.

If a cell is visible in the sample section but was already

visible in the look-up section, it should NOT be

counted.

There should be no anxiety that the disector must be used in this

form, that is, as a tedious-at-best comparison of two real sections

(physical sections and, hence, physical disector) in which cellular fea-

tures need to be identified in both sections. Nor should it be neces-

sary to compare an entire section, which may contain thousands of

cells, with another entire section. How the disector has improved

technically will be described in detail in Section 6. However, the physi-

cal disector remains the easiest way to explain the counting rules and

why they return the correct number. They are illustrated in Figures 5

and 6, in which the region already illustrated in Figures 2 and 3 is eval-

uated using the disector.

Every third section is used as a sample section. In the three possi-

ble sets of sample and look-up sections, eight, five, and five cell pro-

files are countable according to disector counting rules. In that each

series represents one-third of the total, we multiply by three and

obtain estimates of 24, 15, and 15 cells. The average of the three esti-

mates, 18 cells, corresponds to the true number of cells in the region

of interest.

In that cells, regardless of their size along the z-axis, only once

can appear for the first time in a section, the disector should also

return the correct cell number for the member of the experimental

group that was used for the profile counts in Figure 3. Figure 6 illus-

trates that it does. Once again, we count an average of six cells in

each of the three possible sets of sample and look-up sections, provid-

ing the true number of 18 cells contained within the region of

interest.

The disector would, of course, also return the correct estimate for

the change in orientation or for a change in the direction of the sec-

tioning illustrated in Figure 4.

Examples similar to those in this section could be constructed for

the estimation of most of the morphological parameters that we may
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want to quantify. Here, the disector has been used as a representative

of the design-based stereological probes that share in returning the

correct value for one parameter of interest (number, length, surface,

volume) in the region of interest regardless of changes in one or more

of the other parameters.

3 | SAMPLING

Subsequent statistical testing of group differences is one of the main

motivations of quantitative morphological descriptions. One prerequi-

site for meaningful statistical testing is representative (for the many

F IGURE 5 The disector generates an estimate of true object number. (a) A region (dark gray), containing 18 cells (blue objects), is cut into
three series of sections. For each of the three series that may be used to count, the sections of the previous series are used as look-up sections
(b–d). According to the counting rules of the disector, cells that are present in the look-up section (red objects in b–d) are NOT counted. The
three sections of the structure in series (b) contain eight cell profiles that were not present in the adjacent look-up sections. The three sections in
series (c) and (d) both contain five cell profiles that can be counted [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 A number estimate obtained by the disector is independent of object size. (a) A region (dark gray), containing 18 cells (blue
objects), is cut into three series of sections. For each of the three series that can be used to count, the sections of the previous series are used as
look-up sections (b–d). In series (b), eight cells are counted in the sample sections (blue objects) that were not present in the look-up sections (red
objects). In series (c) and (d), four and six cells are counted. The average count is six cells in one-third of the sections, which multiplied by three
provides the true number of 18 cells [Color figure can be viewed at wileyonlinelibrary.com]
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interpretations of this word, see Kruskal & Mosteller, 1979) sampling.

If the sample is not statistically representative for the region of inter-

est, statistical outcomes may not apply to the region either. Key to

representative sampling is that each part of the region must have the

same chance to contribute to the sample as any other part of the

region. Opinion polls are sometimes used to illustrate principles of

good (and bad) sampling. If we are interested in the opinion of a popu-

lation, everyone in the population should have a chance of being

asked. Sampling in an opinion poll means deciding on whom one

should ask. Sampling in quantitative morphology means deciding on

where one should make a measurement. Two ways in which represen-

tative samples can be obtained are described in Sections 3.2 and 3.3.

3.1 | The representative section

It is common that quantitative methods are employed in a (small set of)

representative section(s). Most often “representative”means sections in

which the region of interest has its typical anatomical looks, and it is

assumed that typical looks will result in typical quantitative measures.

The only way to ascertain if this is true is beforehand knowledge of the

entire region of interest. If an experiment is performed, this extends to

beforehand knowledge about changes in the entire region of interest.

However, if this is already known, why would one perform these mea-

surements at all? Kruskal andMosteller (1979) harshly translate this type

of “representative” sampling to “My sample will not lead you astray; take

myword for it even though I give you no evidence.” It is at least unfortu-

nate that the credibility of statistical outcomes should rest solely on the

credibility of the investigator (but see Section 9.6). In a formal compari-

son, effects of prenatal low-dose irradiation of the hippocampus and cer-

ebellum shown in a statistically representative sample could not be

observed in “representative” sections (Schmitz et al., 2005).

Independent of the credibility of sample selection, a critical problem

of restricting the sample to this type of representative sections is that

number, length, or surface estimates will have to be presented as

densities—either raw, as estimate (numerator) per section (denominator),

or standardized to some reference also obtained from the section, for

example, as estimate (numerator) per unit area or unit volume (denomi-

nator). Densities alone do not allow statements about changes in the

numerator without knowledge of the total size of the denominator for

the region of interest (Gundersen, 1986). The problem was already illus-

trated in Figure 1. Additional examples from the literature emphasize the

importance of the problem. Cell density increased in the hippocampal

CA3 pyramidal cell layer 30 days after contusion injury relative to shorter

survival times even though cell number remained constant (Baldwin

et al., 1997). Significant and similar differences in both hippocampal gran-

ule cell number and granule cell layer volume, but no differences in cell

density, were found between superior and inferior learners among aged

Wistar rat (Syková et al., 2002). Decreases in both hippocampal CA1

pyramidal cell number and pyramidal cell layer volume were also

observed in monkeys after simian-immunodeficiency virus infection

(Curtis et al., 2014). Unchanged cell numbers but decreased cell densities

were found in adult human medullary nuclei when compared to infant

ones (Porzionato, Macchi, Parenti, & de Caro, 2009). Hippocampal gran-

ule cell density was found to be highest in C57 mice when compared to

DBA and NZB mice although total granule cell number in the three

strains was the lowest in C57mice (Abusaad et al., 1999). GFAP-positive

cell numbers increase in all hippocampal division inBassoon-mutantmice,

but their densities remain unchanged (Heyden et al., 2011). In the same

mutant, hilar cell numbers also increase, but density decreases. An

increase in the density of cholinergic fibers and expansion of the width

of the commissural-associational zone in the hippocampal dentate

molecular layer after entorhinal cortex lesions were long interpreted as

examples of reactive plasticity, but later found to be secondary tomolec-

ular layer shrinkage (Phinney, Calhoun, Woods, Deller, & Jucker, 2004;

Shamy, Buckmaster, Amaral, Calhoun, & Rapp, 2007). Both primary

visual cortex volume and the neuron number in schizophrenics were

found to be lower than in controls, but cell density did not differ (Dorph-

Petersen, Pierri, Wu, Sampson, & Lewis, 2007). While vascular density

increases in the cerebellum of Lurcher mice, total vascular length actually

decreases (Kolinko, Cendelin, Kralickova, & Tonar, 2016). Even large

increases in cell number can go hand in hand with decreases in cell den-

sity in the canary song system following androgen treatments

(Yamamura, Barker, Balthazart, & Ball, 2011). An age-related loss of hip-

pocampal granule cells in APP/PS1KI mice was accompanied by an age-

related increase in volume (Cotel, Bayer, & Wirths, 2008; Cotel, Jawhar,

Christensen, Bayer, &Wirths, 2012), which would lead to a larger decline

in density than in number. Further examples from research on the mor-

phological basis of neuropsychiatric disorders can be found in Dorph-

Petersen and Lewis (2011). In each of these cases, conclusions drawn

based on the numerator of a density obtained from representative sec-

tions would have been misleading because of changes in the denomina-

tor. Unknown changes in the denominator of a density have also been

named the “reference trap” (Brændgaard & Gundersen, 1986). Changes

in density indicate changes in the functional relations between the struc-

tures that provide numbers for the numerator and the denominator.

Changes in density may be worthwhile discussing in this context, and

they must have a cause. However, there are always two numbers that

can change a density, and we do not know if it is the one of our primary

interest (for similar arguments and examples see, for example,

Mayhew, 1996). Note that all the examples come from stereological

studies, which incidentally looked at both solid number and density esti-

mates. If it was possible to get more bewildered than by attempts to find

a consistent relation between density and number, adding biases due to

the orientation or size of objects would sure do the trick.

3.2 | A representative sample of sections

One way to draw a representative sample from a series of sections of a

brain region would be akin to drawing lottery tickets. Each lottery ticket

has the same (a uniform) chance (random) of being drawn, and the chance

that a ticket is being drawn is independent of the chance that another

ticket is being drawn. This type of sampling is therefore referred to as

uniform random independent sampling. Sections that are selected in this

manner would constitute a statistically representative sample of the
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region that has been cut. This approach is hardly ever used in quantita-

tive morphological studies. First, it is actually more tedious to draw a ran-

dom sample than one may expect. Just fishing with a brush for a

section in an Eppendorf tube is not good enough—large sections may be

more likely to stick to the brush than small ones (or the other way

round—who knows?). Some formal randomization procedurewould have

to be used. The frequently used phrase “randomly selected” is hardly

ever accompanied by a description how randomness was achieved. Sec-

ond, it is counterintuitive and may be disruptive to other procedures.

Randomization would mean that a sample from one animal actually may

not contain any of those cherished anatomically typical sections, while

the sections sampled in the next animal may contain all those cherished

sections. Also, there is an intuitive resistance to the large variability of

the estimates that one correctlymay expect across this type of samples.

Another way of representative sampling is much closer to proce-

dures already in place in many laboratories—uniform random system-

atic sampling. We rarely collect and process all sections of larger brain

regions to look at one particular parameter. Instead, series of sections

are collected, in which the distance between sections is determined

by the needs of anatomical coverage (the series ought to contain

examples of the typical appearance of the region of interest) and the

number of ways in which the sections will be processed. If, for exam-

ple, four antibodies will be used, we may need four series. To that, we

may add an additional series to try out antibody concentrations.

Another one or two series may be added in case something should go

wrong or in case a different type of assessment is considered useful

later in the course of the study. The four antibodies, trial sections, and

backup section require, in this example, a total of seven series to be

cut. The seven series may then be collected into Eppendorf tubes or

well plates, each tube or plate containing every seventh section that

was cut. Each series is a systematic sample (every seventh) of the

region of interest. To make these systematic samples statistically repre-

sentative only one small additional step is required. Each section must

have the same (uniform) chance (random) to give its opinion with

regard to, for example, the antibody used as any other section. We

cannot always use series one (containing sections 1, 8, 15 …) for anti-

body A and always use series two (containing sections 2, 9, 16 …) for

antibody B. If we did, sections 1, 8, 15 … would never be allowed to

give their opinion on antibody B and sections 2, 9, 16 … would never

be allowed to give their opinion on antibody A. Instead, we must pick

one of our seven series at random when we assign them to a particu-

lar stain. This is the only step required to turn a traditional series of

histological sections into a statistically representative uniform random

systematic sample of sections.

In Section 9, the number of series to be cut (any number is good,

but some numbers give more options than others) and ways to deal

with missing sections will be discussed.

3.3 | Representative sites within sections

Similar to the sampling of sections, sampling within sections must be

statistically representative. Again, one has to resort to either uniform

random independent sampling or to uniform random systematic sam-

pling. Similar to the sampling of sections, uniformly and randomly

sampling the area of the section in a systematic way requires us to

randomly select a starting point and proceed from the starting point

at regular intervals along the two dimensions of the area of the sec-

tion. In the most common cases of square or rectangular grids of sam-

pling locations, the distances between sampling locations are often

referred to as the x- and y-step sizes.

Both uniform random independent sampling and uniform random

systematic sampling are illustrated in Figure 7. The distribution of dots

in the circular region of interest may resemble the distribution of gan-

glion cells in the retina—they are spaced closer to each other in the

region of the center of the visual field than in its periphery. Figure 7a

illustrates three of the infinitely many possible patterns of uniform

random independent samples; Figure 7b three of the infinitely many

possible patterns of uniform random systematic samples.

Figure 7 illustrates a strength of systematic sampling. If the

objects of interest are unevenly distributed within the region of inter-

est, a systematic sample is more likely to capture this heterogeneity

than an independent sample. Just from the visual impression of the

distribution of the sampling locations in the section, the red indepen-

dent sample appears to probe areas of different density “just about

right.” The green independent sample seems to have “too many” sam-

pling locations within the dense part of the section, whereas the blue

independent sample seems to miss the dense part of the

section almost completely. As long as these three possibilities are

equally likely to occur, it does not matter. Across the sampling of sev-

eral sections (or across several individuals), the differences between

sections will average out to a correct group mean. In contrast to the

independent samples, the systematic samples do not show a visually

apparent overemphasis on parts of the region either densely or

sparsely populated by the objects. The systematic placement of the

sampling locations together with the distance between the sampling

locations makes it impossible to happen. As a consequence, the vari-

ability of estimates obtained from a systematic sample may be lower

than the variability obtained from an independent sample. Less vari-

ability between the samples typically also means less variability

between subjects in a group and a greater chance to detect statistical

differences between groups. In biological regions of interest, gradual

changes in the density of the objects of interest are common, and the

efficiency of systematic sampling can be expressed in simple mathe-

matical terms. Variability between estimates decreases typically with

a factor of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

number of sampling locations
p

when independent sam-

ples are used, whereas it may decrease with a factor of 1/number of

sampling locations when systematic samples are used (Gundersen &

Jensen, 1987; Roberts et al., 1993). That means that if a certain preci-

sion can be obtained looking at 10,000 (or 400 or 100) sampling loca-

tions that were collected in a uniform random independent manner,

the same degree of precision may be obtained from only

100 (or 20 or 10) sampling locations that were placed in a uniform

random systematic manner. Importantly, it also means that it will typi-

cally require much less work to generate a precise outcome using a

uniform random systematic sample.
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Of course, Figure 7 has been drawn to make a point and may con-

sidered “unfair” to uniform random independent sampling with regard

to the differences between the three samples. However, it is far from

exaggerating what might happen when independent samples are used.

That all samples fall outside the region of interest and return a count

of zero is statistically just as likely as all samples hitting the central

part of the section returning a count of very, very many. Any combi-

nation of sampling locations is just as likely to occur as any sequence

of numbers in a lottery. Another example of the difference in the effi-

ciency between independent and systematic samples is provided in

Section 5.2.

The efficiency of systematic sampling, which was illustrated for

the sampling within sections in Figure 7, applies to all levels of the

sampling scheme. If the area of a region of interest shows gradual

changes in size from section to section, using a systematic sample of

sections will not only be more conform to routine laboratory proce-

dures but also more efficient than using an independent sample.

Depending on the demands of the study, the sampling scheme may

be extended to additional levels—like a sample of brain slabs (Dorph-

Petersen et al., 2009) from which a sample of blocks are prepared,

which are then sectioned and, again, sampled (Lyck et al., 2009).

There are two special cases in which systematic samples do not

compare favorably with independent samples. If the region of interest

shows truly random fluctuations in size from section to section or if

the objects of interest are distributed at random within the region of

interest, the variability of estimates obtained from systematic or inde-

pendent samples will be the same. The variability of estimates

obtained from a systematic sample may be larger than that obtained

from an independent sample if there are periodic changes in the size

of the region of interest and a match of such periodic changes with

the intervals with which sections are collected. The same is true for a

match between the distances between sampling locations within a

section and a regular periodic distribution of objects within the sec-

tions. The case of periodic anatomical change will be discussed in

more detail in Section 8.10.

3.4 | Fractionator sampling

The fractionator (Gundersen, 1986) allows to calculate totals of num-

ber, length, surface or volume based on counts obtained from a sam-

ple of a region without any further knowledge about quantitative

parameters of the region in which the counts were made. A uniform

random systematic sample is taken at regular intervals, which allows

calculating the fraction of the region of interest that is included in the

sample. If a series of every third section of the region was collected,

the sample contains only one-third of the entire region and one-third

of the objects that one may want to measure. The section sampling

fraction, ssf, is one-third. If only part of the area of the section is

investigated, for example, one-tenth, only one-tenth of the objects of

interest in the section will be contained in this sample of the area. The

area sampling fraction, asf, is one-tenth. If one looks at the areas that

were selected at high magnification, one may not look at every possi-

ble location along the thickness (z-axis) of the section but restrict anal-

ysis to, for example, half of the thickness of the section. Again, only

one-half of the objects of interest that are located beneath the area

will be contained in the sample. The thickness sampling fraction, tsf, is

one-half.

Whatever we measure and however we perform measurements

in the sample, we know how much of all-that-there-is we have looked

at—one-half of the thickness of one-tenth of the area in one-third of

the sections, that is, one-sixtieth (1/2 × 1/10 × 1/3) of all-that-there-

F IGURE 7 Uniform random
independent sampling and uniform
random systematic sampling. The area
of a section containing unevenly
distributed objects is probed in
(a) with three uniform random
independent samples of the area (red,
green, and blue squares) and in
(b) with three uniform random
systematic samples of the area. Both
types of sampling are statistically
representative. However, note that
the systematic samples, unlike the
blue independent sample, never
completely miss the central part of
the section, in which the objects of
interest are spaced closely together.
Also, they never, like the green
independent sample, contain an
unduly large number of samples in the
central part of the section [Color
figure can be viewed at
wileyonlinelibrary.com]
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is. If what we measure is one-sixtieth of all-that-there-is, all-that-

there-is in the entire structure must be 60 times what we measured.

Uniform random systematic sampling and fractionator sampling are

two sides of the same coin. Uniform random systematic sampling

becomes fractionator sampling if we use the information about the

sample to calculate the fraction of the region that we analyzed, and if

we use this fraction to calculate the amount of all-that-there-is in the

region.

The number of fractions that are included in a fractionator sam-

pling scheme can be extended according to the practical demands of

a study. If, for example, the human neocortex is the region of inter-

est, it may be divided in a number of smaller blocks that can be cut

and stained following standard protocols (Lyck et al., 2009). Not all

blocks need to be processed as long as the fraction of blocks that

have been processed is known. Although not yet very useful in the

neurosciences, the sections that are being used do not need to be

parallel, equally thick or evenly spaced (Baddeley, Dorph-Petersen, &

Vedel Jensen, 2006; Gundersen, 1986) as long as each section has

the same chance to contribute to the sample as any other

section and as long as it is known which fraction of all sections was

sampled. Using a uniform random independent sample that repre-

sents a known fraction of all sections would also be a fractionator

sample. The same applies to the other levels at which one may want

to sample.

Sampling schemes like the smooth fractionator (Andersen,

Fabricius, Gundersen, Jelsing, & Stark, 2004; Gardi, Nyengaard, &

Gundersen, 2006; Gundersen, 2002a) and the proportionator (Gardi,

Nyengaard, & Gundersen, 2008) have been developed that can take

into account regional differences in the distribution of the region

that we may want to know something about. Briefly, the smooth

fractionator adjusts the distribution of the region of interest across

sections to efficient fractionator sampling. The proportionator

instead adjusts sampling intensity within sections to the local distri-

bution of the objects of interest. When the appearance of a region

of interest in different sections is very heterogeneous or when

objects are distributed very heterogeneously within the sections,

these approaches have the potential to generate more precise

estimates per unit of work invested than even uniform random

systematic samples.

3.5 | No sampling

Correct sampling is important, but it is only a means to reduce workload

and not an inevitable part of design-based stereology. Workload may

not be prohibitive to the assessment of everything, or at least every-

thing at one or more levels of the sampling scheme. If one can assess

all sections but not all objects within them, one only needs to sample

within sections. If there are too many sections but only few objects in

each section, one only has to sample sections but not within sections.

At each step at which sampling can be avoided, a source of variability

can be avoided. An example of no sampling is the study of ganglion cell

distribution in retinal whole-mounts by Coimbra, Collin, and Hart (2014).

Instead of sectioning the eye (e.g., Fileta et al., 2008), the retina is pre-

pared as a whole-mount, and the sampling of sections is not necessary.

The section sampling fraction is one. The depth of the entire retinal

ganglion cell layer can be assessed with high magnification lenses, and

it is technically not necessary to restrict sampling to part of the depth

of the tissue. The thickness sampling fraction can therefore also be

one. If workload is not a prohibitive factor to intensive or even exhaus-

tive sampling at one or more levels of the sampling scheme, the ques-

tion remains if the work is sensibly spent (Gundersen & Østerby, 1981).

This question will be addressed in Section 8.

4 | A BRIEF INTRODUCTION TO PROBES

Probes are the tools with which the amount of objects, length, sur-

face, or volume can be estimated. While sampling determines the

place at which a measurement is being made, the probe that is

selected determines how a measurement will be made. Stereological

probes resemble other probes commonly used to investigate tissues.

First, there is a similarity of the type of probe and the thing that is

probed for. Proteins, in the form of antibodies, can be used to immu-

nocytochemically probe for the proteins in tissues. In situ hybridiza-

tion uses RNA probes to detect RNA in tissues. Not surprisingly,

numbers of point probes, lengths of line probes, areas of surface pro-

bes and volume probes are used to probe for volume, area, length,

and number. Traditional and stereological probes share another

feature—complementarity or the lock-and-key principle. Antibodies

need to be matched to their antigens and RNA probes need to be

complementary to the sequence that they are supposed to detect.

There is a similar requirement relating stereological probes to the

morphological parameter that they measure. If one is interested in the

quantitative morphology of three-dimensional structures, the dimen-

sion of the probe and the dimension of the parameter that is being

measured must sum up to at least three. A point (zero-dimensional)

can be used to estimate volumes (three-dimensional; 0 + 3 = 3); a line

(one-dimensional) can be used to estimate areas (two-dimensional; 1

+ 2 = 3); an area (two-dimensional) can be used to estimate length

(one-dimensional; 2 + 1 = 3), and a volume (three-dimensional) must

be used to estimate numbers (zero-dimensional; 3 + 0 = 3). No

method has been found that will work if the sum is smaller than three,

and a proof presented by Gual-Arnau, Cruz-Orive, and Nuño-

Ballesteros (2010) suggests that none can be found.

If the dimensions of probe and parameter do not fulfill this

requirement, the probe will start cross-reacting with other parame-

ters. This is akin to an antibody of insufficient specificity that cross-

reacts with a protein different from the one it was intended to react

with. The example in Section 2 illustrated what happens if this

requirement is not fulfilled. Not only do we generate the wrong num-

ber if we estimate number (zero-dimensional) with a count in an area

(two-dimensional; 0 + 2 = 2), but the wrong number depends on the

size or orientation of the objects that are being counted. A probe that
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we aimed at the number of objects cross-reacts with the size or orien-

tation of the objects.

The advantage of the dimensions of the probe and the parame-

ter to add up to precisely three is that one can simply count the

interactions between a probe and an object—the number of times

that point probes fall within its volume, that a line probe pierces its

surface, that an area probe intersects with its length and that objects

are contained within a volume probe (Figure 8). The counts and the

size of the probes enter into, yet again, very simple equations that

allow the calculation of densities. These equations are referred to as

relationship equations.

The relationship equations are: for volume density

VV =PP =
Number of points counted
Number of test points

(Glagolev, 1933, 1955), for surface density

SV = 2IL =2×
Number of intersections counted

Length of the test lines

(Saltykov, 1946 as cited by Saltykov, 1974; Smith &

Guttman, 1953), for length density

LV =2QA =2×
Number of transects counted

Surface of the test area

(Saltykov, 1946 as cited by Saltykov, 1974; Smith &

Guttman, 1953), and for number density

NV =Q
−

V =
Number of profiles observed in onlyoneof twosections

Test volume encompassedby the twosections

(Sterio, 1984).

Q refers to “Querschnitt,” the German word for profile or cross

section. The superscript minus in number density refers to the “seen

in one section but not the other.” Reviews of the historical develop-

ment of the relationship equations were presented by Hykšová,

Kalousová, and Saxl (2012) or, with an emphasis on mathematical the-

ory, by Cruz-Orive (1997, 2017).

Next, densities can be converted to estimates of total number,

length, area, or volume using equally simple equations. The conversion

of densities to totals will be addressed in the sections on specific

probes.

In Figure 8, the probes for surface and length were placed in the

plane of the section. This is how the probes would be intuitively

applied, by defining an area of the section or by placing lines on the

section and count intersections. However, a requirement for all pro-

bes is that the number of the interactions of probes with volume, sur-

face, length or number must only depend on the amount of volume,

surface, length, or number. Section 2 showed how the disector

accomplished this for a number estimate. Section 7 will briefly

describe why orientation (of the sections or probes) may impact on

estimates of surface and length and how tissue preparation or spe-

cial shapes of test areas or lines rid these estimates from the influ-

ence of orientation. For estimating volume or number, there are no

further theoretical requirements, but a number of practical con-

straints that are discussed together with the probes in the following

sections.

F IGURE 8 Probes for volume, surface, length, and number. Probes for volume, surface, and length are depicted how they would look like
applied to the three dimensional tissue and how they would look like in sections that have been prepared from the tissue. For number, two
sections and the distance (h) between them define the volume probe of the disector. The two sections have also been superimposed on each
other in the last view presented. For each probe, one of the places in which probes and feature interact has been marked by an arrowhead in the
sections. The total number of probe feature interactions in the examples are nine (volume), ten (surface), five (length), and two (number) [Color
figure can be viewed at wileyonlinelibrary.com]
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The dimensions of the probe and of the parameter can sum up to

more than three, and such probe/parameter combinations are part of

some stereological methods. However, to obtain an estimate of the

parameter does now require measurements instead of counts. If a sur-

face area is, for example, estimated by area probes, the length of the

lines of intersection of surface and area probe need to be measured to

obtain an estimate of the area. One popular method that uses line pro-

bes (one-dimensional) to estimate volume (three-dimensional; 1

+ 3 = 4) is the nucleator (Gundersen, 1988).

Finally, we may be interested in systems, which are not three-

dimensional. Cells can be grown in a “two-dimensional” monolayer

cell culture in a Petri dish. As the number of dimensions in our world

of interest has changed to two, the sum of probe and feature only

needs to be two ("Petri-metrics" in Howard & Reed, 2010). A test

area (two-dimensional) is sufficient to count cell number (zero-

dimensional; 2 + 0 = 2) and lines (one-dimensional) may be sufficient

to estimate the length of their processes (one-dimensional; 1

+ 1 = 2). Some of the sampling strategies mentioned in the preceding

section, or the counting frame described in Section 6.2 will still be

useful tools. As soon as we become interested in something three-

dimensional, for example, the volume of the cells in the monolayer,

we are back at a sum-of-three rule and the methods described in this

review.

5 | PROBING VOLUME: THE CAVALIERI

ESTIMATOR

Volume estimates of brain compartments may serve different pur-

poses. It is relatively easy to generate precise volume estimates. If

changes in the numbers of neurons or synapses or dendrites or ves-

sels are reflected in changes of the gross volume of the region that

contain them, the volume change may be easier to detect than the

underlying more specific changes. Volume estimates may therefore be

an efficient first means to assess the likelihood of morphologically

more specific structural changes (e.g., de Groot et al., 2005). If biologi-

cal variability is low, differences as small as �5% have been detected

statistically in moderately sized groups (Slomianka & West, 1987).

Also, volume estimates may be necessary if fractionator sampling

(see Section 3) is not possible or desirable. In this case, estimates can

be generated from density estimates and reference volumes

(Pakkenberg & Gundersen, 1997; West & Gundersen, 1990). Finally,

area estimates, which are part of the generation of volume estimates,

are helpful in the design of sampling schemes that aim at other param-

eters than volume (see Section 8.11).

5.1 | Calculating volume from area estimates

Following Cavalieri's theorem (translated by Evans, 1917), the volume

of a region is equal to the sum of the areas of the region in parallel

sections that pass through it, multiplied by the distance between the

subsequent sections, or

Volume=ΣAreas×distance between areas

We do know the distance between subsequent sections of our

histological series. Note that the distance between areas is the dis-

tance between the same surfaces of the sections used in the series. If

all sections are used there is no gap or distance between the sections,

but there still is a distance, corresponding to section thickness,

between the top surfaces of two adjacent sections. In addition to dis-

tance, the only thing needed to calculate volumes are estimates of the

areas that a region of interest occupies in the sections. What comes

to mind immediately is to outline the region in some graphics applica-

tion and have the application calculate the area. As will be discussed

in Section 5.4, this may not be the most convenient way to estimate

an area, and it is prone to errors. Instead, we can use point counts to

estimate the area of the region of interest in the sections.

5.2 | A point probe to estimate an area

Imagine a region (blue circle in Figure 9) that occupies an unknown

area within a reference area (all of the square and blue circle in

Figure 9). If a point is placed many times at a random position within

the reference area, the number of times that the point will fall onto

the region depends on how much of the reference area is occupied by

F IGURE 9 Using points to estimate an area. The reference area
(entire gray and blue areas of this figure) is probed with 25 randomly
placed points to estimate the area of the blue circle within it. Twelve
of the twenty-five points fall onto the circle. The area of the circle can
therefore be estimated to 12/25th of the reference area. In that we
can arbitrarily choose the size of the reference area, we can calculate
an estimate of the size of the circle [Color figure can be viewed at
wileyonlinelibrary.com]
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the region. If the region would occupy all of the reference area, a

point would fall onto the region each time a point is placed in the ref-

erence area. In this case, the probability of the point to fall onto the

region is 1. If the region would only occupy half of the reference area,

a point would fall onto the region in about half of the trials, that is,

the probability is about 0.5.

Usually it is the other way around. We do not know the area of

the region, and we use the probability of points to fall onto it to esti-

mate the area. The more trials are made, the better is the estimate of

the area. The probability that we observe is equal to the proportion of

the reference area occupied by the region—that is, if we observe a

probability of 0.48 (12 points out of 25 that hit the structure in

Figure 9), about 48% of the reference area is occupied by the region.

The area occupied by the region can now be calculated by multi-

plying the probability with the size of the reference area. We can arbi-

trarily decide on the size of the reference area before we start this

little experiment.

In Figures 8 and 9, the points are represented by a small crosshair

(a dimensionless mathematical point would be invisible), which is also

the most common representation of point probes in illustrations and

in stereology software packages. Unfortunately, a crosshair does not

always allow it to decide if a point hit the area of interest or not. First,

it is not the entire cross that needs to fall onto the area of interest for

the cross to be counted. Even the intersection of the bars of the cross

does not always allow us to see if this point is located inside or out-

side the structure (Figure 10a).

The corners of the crosshair provide better probes

(Glagolev, 1955). In Figure 10b, two of the corners are located inside

the structure, while the two other corners are located outside the

structure. Note that it is the very point at which the arms of the cross-

hair meet that is used as a probe. Any one of the four corners can be

used as a probe, but which one should be decided upon before the

probe is applied to the section. In the survey of probes (Figure 8), the

lower left corner was selected and generated a count of nine. The

upper right corner would have generated a count of eleven.

5.3 | A point-grid as an area probe

Using points that are placed completely at random within the refer-

ence area, like in Figure 9, would represent a uniform random inde-

pendent sample of sites. Following the uniform random systematic

way of sampling, the area of interest can also be probed by placing a

grid of regularly spaced points over the reference area (Figure 11).

Nine of twenty-five points hit the area of interest, and an estimate of

this area would be 9/25th of the reference area.

Now, let us get rid of the need to know the total number of

points applied or the size of the reference area. Each point of the grid

is not only a probe within the reference area, but also for a smaller

area associated with each point. If the points are, for example, spaced

1 cm apart from each other, this new, smaller “reference area”

is 1 cm2.

Within each small square, the probability to hit the structure with

the point will either be 1 (the point hit the region) or 0 (the point did

not hit the region). In Figure 11, we obtain nine trials of the smaller

areas in which the probability of the point to fall onto the structure

was observed to be 1 (1 hit/1 trial) and 16 trials in which this

F IGURE 10 Representing a point probe. The representation of a
point probe, a crosshair, falls onto the boundary of a blue region. In
(a), the boundary is hidden by the crosshair, and it is not possible to
decide if the intersection of the arms (arrow) falls onto the region or
not. Using any one of the four corners of the crosshair in (b) allows an
unequivocal decision. Corners 1 and 4 are falling outside the
structure, while Corners 2 and 3 fall inside [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 11 Using a point grid to estimate area. When the
reference area is probed with a grid containing 25 points, 9 points fall
onto the blue circle. We estimate the area of the blue circle to 9/25th
of the reference area. Alternatively, we can look at this sample as
25 smaller areas, each with 1/25th of the full area, that are each
probed with one point. The area estimate of the blue circle would
correspond to nine times the smaller area, that is, we do not need to
know the reference area but only the area associated with each point
[Color figure can be viewed at wileyonlinelibrary.com]
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probability was 0 (0 hits/1 trial). An estimate of the area would be

9 × 1 × 1 cm2 + 16 × 0 × 1 cm2 = 9 cm2. Changing the size of the ref-

erence area (keeping the area per point constant) would only change

the number of probes that return a zero probability. The only things

that matter are the points that hit and the area associated with them.

The area of the structure is directly proportional to the number of

points that hit it, 9. This number multiplied by the area associated with

each point (1 cm2) is an estimate of the area occupied by the structure

in the section (9 cm2). We do no longer need to know the size of the

entire reference area covered by the point grid or the number of

points in the grid.

5.4 | The precision of an area estimate

As already mentioned, the estimate of area would be more precise, if

we repeated the random placement of the points many times. Instead

of adding more points by repeating the estimate, we can use more

points for each estimate, that is, place the points closer together in

the grid that we apply to the structure.

In Figure 12, points counted in the green squares return an exact

estimate of the area that is associated with these points. A hit is seen,

the observed probability is 1, and the area is indeed one time the area

associated with each point. The estimate of the red area is less pre-

cise. Using the coarse point grid in Figure 12a, four hits are seen in

the 16 squares that contain some red area. For those four points, we

add the entire area associated with the point to our estimate even

though the red area occupied less than that. Statistically, adding too

much for the four points that hit will be balanced by adding nothing

for the remaining 12 squares, which also contain a little bit of red area

even though their points are not counted. Increasing point density

fourfold in Figure 12b, the green area, for which we obtain an exact

area estimate, increases. At the same time, the red area decreases.

Not only does it decrease, it is also probed 26 times (each little square

that contains a little red) instead of 16 times, which should provide a

more precise estimate.

Note that it is at least possible for all points to fall outside the

structure or for all points to fall inside the structure if they are placed

in the random independent manner that was used in Figure 9. This

cannot happen for the grids (uniform random systematic samples) of

points used in Figures 11 and 12. That means that when estimates are

repeated, we would see fewer extreme values if we use a uniform ran-

dom systematic sample. If we apply the point grids to different ani-

mals, we are therefore also likely to see fewer extreme values that are

caused by the placement of the points. The standard deviation that

we see in groups of animals would therefore also be smaller, and we

would have a better chance to observe a difference between two

groups. For the same number of points used, a grid (uniform random

systematic samples) is more efficient than randomly placed points to

generate estimates that can be used to document changes that may

occur between groups.

How large is the region of interest illustrated in Figures 9, 11, and

12? By now we have three estimates—48% (12/25th) of the reference

area from the independent sample in Figure 9, and 36% (9/25th) and

40% (10/25th = 40/100th) from the two systematic samples in Fig-

ures 11 and 12. The region of interest in the figures actually occupies

40.5% of the reference area. Aside from efficiency, systematic sam-

ples do have another advantage over independent samples. We can

F IGURE 12 Increasing the density of a point grid increases precision. Point grids of different densities are placed over the round profile of a
region. If point density increases, the area that is estimated less precisely (red) is found in 26 squares (b) instead of 16 squares (a). The red area
also decreases relative to green areas that are estimated exactly by a point count. With more trials available to estimate the size of a relatively
smaller area, the precision of the estimate of the area of the round region increases with increasing point density [Color figure can be viewed at
wileyonlinelibrary.com]
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estimate the margin of error based on the number of points that have

hit the region of interest. For the 36% estimate the margin of error is

�11% of the estimate and, for the 40% estimate, it is �3% of the esti-

mate. How this margin of error is estimated will be described in Sec-

tion 8.4. Note that the margin of error indeed decreased to less than a

third by increasing sampling density by a factor of 4, that is, by cou-

nting 40 instead of 9 hits. To obtain the same increase in precision

using a uniform independent sample of points, sampling density would

have to be increased by about a factor 16.

5.5 | An example of a volume estimate

A full example of a Cavalieri estimate is useful to illustrate how much

time it takes to generate an estimate once the material has been pre-

pared, to provide a small dataset that can be used in the following sec-

tions of this review and to show how the observer impacts on the

estimate.

Figure 13 provides images of a hamster olfactory bulb taken in a

horizontal series of every 24th 20 μm thick, plastic-embedded and

Nissl-stained section. The first section is placed at random in the first

sampling interval (here the 12th sections, or 240 μm after the first

appearance of the olfactory bulb). We therefore have a uniform ran-

dom systematic sample of sections. A counting grid, in which the

points are 350 μm apart along the x- and y-axes, is superimposed onto

each of the images. The grid was positioned at random onto each sec-

tion, and the sections are therefore probed at a uniform random sys-

tematic set of sampling sites. Note that the grid was not just shifted

at random along the x- and y-axis. It was also rotated at random. If a

longish structure of interest maintains its orientation from section to

section, a row of points may miss the structure in some sections while

hitting the structure in other sections. Rotating the grid eliminates the

chance that this will happen often. Rotating or not rotating the grid

will not affect the mean of repeated estimates, but it can reduce their

variability.

The region of interest has been selected to be the combined gran-

ule cell, internal plexiform, and mitral cell layers (schematic in

Figure 13, lower right). They are treated here as one structure, and

any point falling onto anyone of these three layers should be counted.

We do not need to keep track of which layer the counts came from

because we are only interested in their combined volume. To obtain

the area estimates needed to estimate the volume, a point count is

performed for each image. The upper right corners of the crosses

were selected to represent the points, but any of the corners will

do. To calculate a volume estimate, only the total number of points

counted across all sections is needed. Counts are nevertheless

recorded per section because they are needed to estimate the preci-

sion of the volume estimate (in Section 8). Recording counts per

section is also necessary when the anatomical distribution of the vol-

ume (or number, length, or surface) has a scientific interest

(e.g., Amrein et al., 2015; Buckmaster & Dudek, 1997; Chen &

Buckmaster, 2005; Slomianka & West, 1987)

Along the dorsoventral axis (from 240 μm to 3140 μm), the fol-

lowing sequence of counts was obtained: 3, 16, 13, 11, 12, 9, and

2. The total number of points counted is 66. The area associated with

each point is 350 × 350 μm = 122,500 μm2. The total area is there-

fore 66 × 122,500 μm2 = 8,085,000 μm2. The sections are 480 μm

apart. Using Cavalieri's theorem, we obtain a volume estimate of

8,085,000 μm2
× 480 μm = 3,880,800,000 μm3

≈ 3.9 mm3.

The counts quoted above and those of other observers are likely

to vary a little even though the same images and points are used. This

may be because of the use of a different corner. It may also be

because the schematic is used differently to define the region of inter-

est in the other sections. It may also be because criteria to count a

point differ. How does the tissue in the corner of the cross need to

look like to be counted? The Cavalieri estimator cannot generate a

bias in its own right, but the data that it is fed with may vary with the

interpretation of the material by the observer, that is, with observer

bias. Observer bias cannot be avoided by any method involving an

observer. It even cannot be avoided by many methods that do not

involve an observer, for example, an automated, image analysis-based

assessment. The use of automated methods only transfers the

observer bias to the person that at some time in the past calibrated

the automated assessment or trained a learning algorithm. Hmm, at

least someone else could be blamed for mistakes.

5.6 | Outlines or point counts?

Areas are often measured by outlining a structure and the subsequent

automated calculation of the area of the structure based on the out-

line. How well the calculated area corresponds to the actual area does,

of course, depend on how well the outline is done. The complexity of

the shapes and, therefore, the effort to define precise outlines may

vary with the region of interest. In Figure 13, the region of interest

was chosen to be the combined granule cell, internal plexiform and

mitral cell layers because the border is rather clearly defined, which

suits an exercise. It also makes outlining rather easy. For the two thin-

ner layers, the internal plexiform layer and the mitral cell layer, out-

lining becomes tedious work. An error that has only a small effect on

the combined volume of the three layers will have a much larger

effect on the volumes of the thinner layers. One may have to go to

higher magnification to generate better outlines for the thinner

layers—only to realize that borders which look well defined a low

magnifications often present increasingly complex outlines at higher

magnifications. At one point, it becomes the observer's decision to

accept possible errors because a precise border simply cannot be seen

or because the outline needs to be approximated because the border

is too complex to be traced precisely with a reasonable effort. Point

counting does not have this problem. The only decision that has to be

made is whether the point falls onto the region of interest or not. The

number of times that this decision will have to be made depends on

the point density and the area of the region, but it does not depend

on the complexity of the outline of the region of interest. Using
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F IGURE 13 Cavalieri estimator applied to the hamster olfactory bulb. A 20 μm thick plastic sections (methacrylate) were Nissl-stained
(Giemsa). The region of interest is highlighted in the lower right image: granule cell layer—green, internal plexiform layer—yellow and mitral cell
layer—red. Their combined volume is estimated. Any point falling on any one of them is counted. Sections are 480 μm apart from each other.
Distances between the points in the grids are 350 μm along the x- and y-axes [Color figure can be viewed at wileyonlinelibrary.com]
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outlines, an additional source of error may be associated with the cal-

culation of areas based on the points that have been placed to define

the outline. The area may, for example, be calculated for the polygon

that is defined by the points of the outline (Figure 14a) or based on

smooth lines that are approximated to the points (splines; Figure 14b,

c). How well the area is estimated depends on how well the area ful-

fills the underlying assumptions of being a polygon or an area with

smooth outlines. Although the resulting bias may become small with

an increase in the number of points used to define the outline, it will

always be there, and it may become significant (Bonilha, Kobayashi,

Cendes, & Li, 2003).

5.7 | A caveat: Overprojection

Cavalieri's principle is valid if the area estimate is made in planes pass-

ing through the structure, which would correspond to infinitely thin

sections. This requirement is impossible to fulfill. To estimate area, we

have to treat sections as two-dimensional representations of the

region of interest. However, tissue sections do have a thickness, that

is, they are three-dimensional structures. As soon as the sum-of-three

rule is violated, cross-reactivity sneaks in. In this case, the volume esti-

mate will be influenced by the three-dimensional shape of the region

of interest (Gundersen, 1986). The conflict of theory with practical

constraints will result in an overestimate of volume—regardless if we

are using point counts or outlines. Figure 15 illustrates the problem. In

practice (see below), it may be of little importance.

For sections of a convex structure (e.g., a sphere), the error

amounts to volume of the largest section (Gundersen, 1986), and this

volume could be subtracted from the estimate of the total volume of

the structure. If the shape has dents or contains hollows, the size of

the error will be larger.

The error occurs when the border of the region that we see in a

section is sharp and unequivocal even at low magnification—

essentially like it would appear when a structure is opaque, like the

sphere in Figure 15. In histological sections, this will rarely be the

case. The whole purpose of sectioning, at least in neuroscience, is to

make a region transparent so that we can examine its internal

structure—to see the cells, their processes, vessels, and so forth.

Because of that, one is rarely faced with the problem of sharp bound-

aries, but rather with the problem of finding boundaries in the first

place. The size of the error will also depend on how many sections

can be cut from the region of interest. If hundreds of sections can be

cut from a region, even the largest section may only represent a per-

cent fraction of the total volume. If only very few sections can be cut,

one may decide to perform a point count at high magnifications.

Because the thickness of the focal plane is usually much thinner than

the thickness of the section (about 0.5 μm for an oil-immersion objec-

tive), the size of the error would diminish to the volume contained in

the largest focal plane.

In an analysis of MRI scans, a dependence of volume estimates

on slice thickness has been noted that shows overprojection effects

(Bonilha et al., 2003).

5.8 | Area fraction fractionator

A volume estimate may require high magnification to identify the bor-

der of the region(s) of interest and/or to minimize overprojection. A

region of interest may also be embedded in another, larger region of

interest. One approach would be a count at low magnification using a

coarse grid for the large region and a subsequent count with a much

finer grid for the regions that require high magnification. The latter

count may become prohibitively laborious if we need to assess a small

region that is distributed over a large area. It can be avoided by using

an approach based on Delesse's principle proposed by Howard and

Reed (2010). It is now commonly referred to as the area fraction frac-

tionator. Only a small fraction of the entire area needs to be assessed,

but this small fraction can be sampled with a high density of points.

The approach is illustrated for a section of the olfactory bulb in

Figure 16. It can be used to estimate the volumes of the mitral and

inner plexiform layers (Figure 13). These two layers would have

required higher magnifications and a much denser grid than the grid

used in Figure 13 to obtain a precise volume estimate. The areas that

are sampled in one of the sections of the olfactory bulb are shown in

Figure 16a. One of the small areas that comprise the sampled area is

illustrated in Figure 16b. The sum of the points counted for each layer

at each sampling site in all sections is used to estimate the fraction of

the entire volume that is occupied by the layers. Once the fraction is

known, it can be used to estimate layer volume. If one would examine

all 24 sites in Figure 16, 48 point would be counted for the mitral cell

layer, 27 for the inner plexiform layer and 360 for the granule cell

layer. The sum of all points in all layers is 435. The mitral, inner plexi-

form and granule cell layers account for 0.11 (48/435), 0.06 (27/435),

and 0.83 (360/435) of the total volume in this section. We should, of

course, look at all sections. However, if these relations hold for all of

sections, the volumes of the layers could be estimated by multiplying

their area fractions with the estimate of their combined volume, which

F IGURE 14 Polygonal- and spline-based approximations of an
area to boundary points. (a) If a region is not polygonal, an area
estimate (red) based on outlines will underestimate the actual area
(blue) if the calculation is based on the area of a polygon. (b,c) If the
area is estimated using smooth curves approximated to the points
(splines), the area is, depending on the placement of points,
overestimated (b) or underestimated (c) if the region is polygonal. The
direction and size of the error depend on the number of points used
to define the outline and the shape of the region outlined [Color
figure can be viewed at wileyonlinelibrary.com]
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was 3.9 mm3. We would obtain 0.11 × 3.9 mm3 = 0.43 mm3 for the

mitral cell layer, 0.06 × 3.9 mm3 = 0.23 mm3 for the inner plexiform

layer and 0.83 × 3.9 mm3 = 3.24 mm3 for the granule cell layer.

A common application of the area fraction fractionator is the esti-

mation of cortical amyloid plaque load (e.g., Heggland, Storkaas,

Soligard, Kobro-Flatmoen, & Witter, 2015; Riudavets et al., 2007).

Other applications have, for example, been concerned with cortical

vascularization (e.g., Wälchli et al., 2015) or with olfactory bulb struc-

ture (Schoenfeld & Knott, 2004).

5.9 | Simple Cavalieri estimator implementation

The Cavalieri estimator is probably the method easiest and least

expensive to implement. Several plug-ins that generate point grids are

available for ImageJ. Point grids can be prepared using any graphics

software that allows a placement of the test points with reasonably

consistent point-to-point distances. Even recreational graphics soft-

ware often contains a useable function, one of which was used to

generate Figure 13. The point grids can next be placed over images of

the region of interest—either digitally or, copied onto transparency

sheets, onto prints or onto a screen. The point grid can be calibrated

with images of an object micrometer taken under the same conditions

as the tissue. If a region is too large to be imaged on the screen or on

a print, simple tools allow regions to be probed across several fields of

view of the microscope (Adiguzel, Duzcan, Akdogan, & Tufan, 2003;

Kaplan, Canan, Aslan, Ünal, & Sahín, 2001; Melvin, Poda, &

Sutherland, 2007). In a nutshell, two (or more) points that are sepa-

rated by a known distance along the x- and y-axes are marked on the

screen. Once a field of view has been examined, a feature visible close

to one of the points is moved in the x- or y-direction to the next

point.

6 | PROBING NUMBER: THE DISECTOR

We have already probed for number using the disector in Section 2.2.

The example used in Figure 5 and 6 were based on the comparison of

two real, physical sections. The variation of the disector using this

approach is referred to as physical disector. Using this approach and

F IGURE 15 The overprojection error of volume estimates. (a) If a section that is thick when compared to the region—in a worst case in which
it is actually thicker than the region—the volume of the region is overestimated. The area of the region will look like a circle, which, when
multiplied with the thickness of the section, will give us a volume estimate of a cylinder rather of the sphere that the region actually looks like.
Looking at sections of the sphere from the side (b), the error (red) decreases as sections become thinner and thinner. The errors made in each
section will sum up to the volume of the largest of the sections [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 16 Area fraction fractionator. (a) Areas that are sampled
in this section. The sampling sites are 350 μm apart along the x- and
y-axes. The arrowhead marks the sampling site illustrated in (b). At
each sampling site, a small area (150 × 150 μm) is probed with a grid
of points that are 30 μm apart along the x- and y-axes. At this
sampling site, six points are counted in the mitral cell layer (red), five
points in the inner plexiform layer (yellow), and nine points in the
granule cells layer. Five points (white) fall outside the region of
interest [Color figure can be viewed at wileyonlinelibrary.com]
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the statistical demand that each object of interest, for example, cells,

must have a chance to contribute to the sample requires that it must

be possible to decide for every cell if it is present in the counting sec-

tion, look-up section or both. Although image analysis features of ste-

reological software packages may facilitate the process, both the

generation of material of a quality that permits the analysis and the

analysis itself remain demanding. Consequently, few studies have been

published that used the physical disector (e.g., Korbo et al., 1990; Miki,

Harris, Wilce, Takeuchi, & Bedi, 2003, 2004; West, Coleman, &

Flood, 1988). Today, the physical disector is used almost only if it is not

possible to use the optical disector, for example, in electron microscopic

quantitative morphological studies (see Section 9). If the physical dis-

ector is used, the two sections need to be assessed independently from

each other (Hedreen, 1998a), that is, the structures of interest are iden-

tified in look-up and sample sections, and it is only examined afterward

which object appeared for the first time in the sample section.

Two conceptual/technical advances, beyond the way in which

the disector was introduced in Section 2, have allowed its routine

application in a large number of studies. The first, the unbiased cou-

nting frame (Gundersen, 1977), allows restricting the sample to a small

fraction of the area of the sections. The second, the optical sectioning

of thick tissue sections (Gundersen, 1986; West et al., 1991) has made

it unnecessary to compare two physical sections.

6.1 | Which object should be counted?

If the object of interest is easy to recognize, nothing prevents us from

just counting them. If recognition becomes difficult, we may have to

look for a proxy. Could we count a neuron when we, for the first time,

recognize one of its dendrites? If not impossible, it seems at least very

impractical. Even the soma may require closer scrutiny. Is it actually

two small somata we count, or are they the trunks of two primary

dendrites that merge into a larger soma outside the optical plane we

are looking at? One suitable unit to count would be the nucleus, which

typically has an easily recognizable and fairly simple shape. Note that

“simple shape” is not a requirement to estimate the true number, but

it simply makes it more convenient to estimate the true number. What

is more important than convenience is that the nucleus also has a

fixed numerical relationship to the objects that we are actually inter-

ested in. There is one nucleus in every cell. The frequencies of binu-

cleate neurons or glia in the scarce CNS studies that report them

(e.g., Ackman, Siddiqi, Walikonis, & LoTurco, 2006; Rezze, 1966) are

so low that they can be safely ignored in the vast majority of studies,

but this may be different for the PNS (Forsman, Lindh, Elfvin, &

Hallman, 1989; Ribeiro, 2006). Another convenient unit may be the

nucleolus, which in some (but not all) cell populations of some species

has a 1:1 relation to the nucleus/cell. The key to the suitability of any

structure to serve as a proxy for the objects that we are interested in

is a known numerical relationship between the structure we can count

and the objects we want to count. This relation does not need to be

1:1, but it needs to be known. Most humans could be counted by cou-

nting hands (2:1) or fingers (10:1) but not by counting hairs.

6.2 | The unbiased counting frame

Even a single section may contain too many of the objects of interest

to count them all. A smaller sample needs to be drawn in a way that

provides each object with the same chance to contribute to the sam-

ple. The counting frame devised by Gundersen (1977) allows just that

(Figure 17). The counting rule of the disector allows the unique identi-

fication of an object along the z-axis. In essence, the unbiased cou-

nting frame applies the same rules to the x- and y-axis of the section.

Imagine that the section is recut first parallel to the x- and then paral-

lel to the y-axis (Figure 17b,c). The first cuts (parallel to the y-axis)

divide the section in a series of strips (Figure 17b). Applying the rules

for the z-axis to the strips from left to right, we are allowed to count

what is seen in a strip if it was not visible in the previous strip. The

next cuts (parallel to the x-axis) further divide the strips into small

squares (Figure 17c). Applying the counting rules now from bottom to

top, we are allowed to count what is seen in a square if it was not visi-

ble in the previous square. Two sides of the square end up becoming

exclusion lines. If an object crosses these lines, it will have been coun-

ted in an adjacent square. The borders of the squares that an object

may cross and still be counted are referred to as the inclusion lines.

These rules are not quite sufficient yet. One object (labeled ? in

Figure 17c) crosses the inclusion lines of two squares that touch each

other with their corners. This object would be double counted if we

would look at all frames. Analog to the example in Section 2, spacing

the frames far enough apart to avoid double counting does not solve

the problem. Instead, the exclusion lines are extended to avoid this

from happening. If their length is at least as great as the largest diame-

ter of the objects that are to be counted, no object has a chance to be

double counted (Figure 17d).

Figure 17d represents the traditional, square counting frame with

exclusion lines extending along the y-axis of the section plane. The

counting frame may also be rectangular, and the exclusion lines may

just as well extend along the x-axis as along the y-axis. As long as a

complete tessellation, that is, a complete covering by nonoverlapping

tiles of the surface of the section is possible (Figure 18), counting

frames/exclusion lines may take on complex shapes

(Gundersen, 1977). In practice, squares or rectangles are almost

exclusively used.

In the above description, “to cross” an exclusion or inclusion line

was used as counting criterion. One may equally well use “to touch”

as the criterion for inclusion or exclusion. Critical is the use of the

same criterion for both the inclusion and exclusion lines of the cou-

nting frame. In the complete tessellation shown in Figure 18, each

object will be counted once independent of its size, shape, or

orientation.

6.3 | Optically sectioning a section

The acceptance that the disector has found relates to the fact that its

second incarnation, the optical disector, is practically far less demand-

ing than the physical disector. Instead of comparing two physical
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sections, we count in optical sections, that is, within a part of a physi-

cal section. The top and bottom of the optical disector are defined by

two focal planes of the microscope placed at different positions along

the z-axis of the physical section. The counting criterion of the physi-

cal disector, “not present in the look-up section but present in the

sample section,” is simply exchanged by the corresponding optical cri-

terion (Figure 19).

An object is counted if it is not recognized in the top

focal plane of the optical section, but first recognized

as we gradually move, within the section, to the bot-

tom focal plane of the optical section.

The distance between the top and bottom focal planes, h, defines

the height of the optical disector in which we perform the count.

Typically, one would first recognize an object when the object

appears in focus for the first time. Unfortunately, the perception of

“in focus” may vary from observer to observer. One of the strengths

of the optical disector is that it is not crucial to agree on a specific

focal plane as long as each observer can recognize each object at least

once. This is because we use two focal planes to decide if objects

should be counted or not. An observer (early recognizer in Figure 19)

may decide that, according to her or his criteria, the top-most object

is in focus in the top focal plane of the optical disector. Therefore, it

cannot be counted. An object placed similarly in relation to the bot-

tom focal plane will be counted. Another observer (late recognizer in

Figure 19) may only recognize the object when the focal plane is mov-

ing slightly further into the section. The top-most object that was not

counted by the early recognizer is counted by the late recognizer. If

this personal perception of “focus” is applied consistently to the top

and bottom planes, the late recognizer will not count the object cross-

ing the bottom focal plane of the optical disector. Differences in

counts due to different perceptions of focus cancel each other over

the top and bottom focal planes of the disector. This will not happen

in each and every disector, but across all sampling sites, all positions

of cells should occur with the same likelihood. As far as the optical

disector is concerned, the focus of a student is likely to be as good as

the focus of a professor. Attempts to introduce some morphological

criteria to define “recognition”, for example, “… were counted when

the nucleus was widest,” are not necessary and will reintroduce the

possibility of bias.

Critical aspects of the application of the optical disector are the

ability to measure the distance between the top and bottom focal

planes and to decide if an object can be recognized or not as we move

the focal plane from top to bottom. Both demands are satisfied by the

use of high magnification oil-immersion lenses with large numerical

apertures (NAs) in conjunction with a microcator, which is a device

that measures the distance that the section moves along the z-axis as

we focus through the section.

It is important to know that the distance that we move the

section along the z-axis with the focus knob of the microscope does

not necessarily correspond to the distance that the focal plane moves

within the section (Galbraith, 1955; Majlof & Forsgren, 1993). This is

only the case if the refractive index of the embedded tissue corre-

sponds to the refractive index of the medium between section and

microscope lens. For most embedding media this will be the case if

oil-immersion lenses are used. If air or water-immersion lenses are

used instead, the physical movement of the section along the z-axis

will typically no longer correspond to the distance moved by the focal

plane. If this situation cannot be avoided, conversion factors need to

F IGURE 17 The unbiased counting frame. A
section containing 14 objects (a) is successively
divided first parallel to the y-axis (b) and then
parallel to the x-axis (c). Along the dividing lines,
the same counting rules that have been
established along the z-axis are now applied along
the x- (b) and then x- and y-axes (d). Fifteen
objects instead of 14 are detected if all objects
fully contained within the squares and all object
fragments touching a green inclusion line are
counted in (c). The overcount is due to the double
count of the cell labeled with the question mark.
The double count is avoided by the extension of
the red exclusion lines in (d) [Color figure can be
viewed at wileyonlinelibrary.com]
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be applied—a task that can be automated by stereology software

packages.

Figure 20 illustrates two optical disector samples—both are fluo-

rescence stacks of mouse hippocampal CA1 pyramidal cell nuclei

recorded using either traditional epifluorescence illumination or struc-

tured illumination (Karadagli�c & Wilson, 2008; Mertz, 2011; Neil,

Juskaitis, & Wilson, 1997). The latter is visually similar to a confocal

stack. Although the visual appearance of the stacks is strikingly differ-

ent, nuclei can be counted reliably in both of them. It appears that

individual nuclei cannot be recognized in as many optical planes in the

traditional stack when compared to the confocal-like stack. It does

not matter, as long as they can be recognized at least once. It also

appears that they need to be a little larger before they are recognized

in the traditional stack. It does not matter either, because the position

at which a structure is recognized does not matter as long as it is simi-

lar at the top and bottom planes of the stack.

6.4 | Guard zones

The term “guard zone” (Figure 19) is used for the parts of the physical

section located above and below an optical disector. Their use is rec-

ommended for two reasons. First, the surfaces of the sections may be

“disturbed” by the cutting, meaning that objects that are cut or even

just close to the surface of the sections may become distorted or

damaged (see Helander, 1983 for an illustration of disturbances in

paraffin and plastic sections). If the disturbance is great, one may not

be able to recognize the objects that are affected (Andersen &

Gundersen, 1999). If they cannot be recognized, they cannot be coun-

ted. This violates the one firm requirement of design-based

stereology—namely that each object must be able to contribute to the

sample. How far an optical disector sample should stay away from the

surfaces of the section depends on the depth of the disturbance and

the sensitivity of the object to it

F IGURE 18 A complete
tessellation of a region containing
objects of varying size and shape. If
the counting rules are applied, each
object is counted at least once and
never more than once independent of
its size, shape, or orientation. The
objects are marked with a plus sign in
the image of the frame in which they
are counted. Sometimes one also
needs to know how many counting
frames have been applied to a region
of interest (see Section 6.5). Any
selection of the corners of a counting
frame, in this case the top-left and
bottom-right corner, can be used to
estimate the number of entire
counting frames that fell on the
structure. Eight of the selected
corners (arrowheads) fall inside the
gray region of interest. Objects were
therefore counted in an area
estimated to that of 8/2 = 4 counting
frames [Color figure can be viewed at
wileyonlinelibrary.com]
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Formally, it is best determined by a small pilot study in which

disector samples spanning the entire thickness of the section are

used. While counting, the position of objects along the z-axis is

recorded. Next, the numbers of objects located in intervals along the

z-axis is plotted (Figure 21). One would not expect that the number

of objects varies along the z-axis of the section, and the graph should

ideally look like a rectangle. If objects at or close to the surfaces of

the sections cannot be recognized, the numbers in the intervals at or

close to the section surfaces will be smaller than in intervals located

in the middle of the section. The disector samples should only span

the part along the z-axis in which the plot is close to horizontal. The

remainder of the depth of the section should become part of the

guard zones.

The formal assessment of the distribution of cells along the z-axis

presented in Figure 21 may be useful for another reason. It allows

detecting if, for example, an antibody used to stain the objects of

interest has evenly penetrated the section. If that is not the case, one

may observe a distribution along the z-axis that shows a depression in

the middle of the section (Torres, Meldrum, Kirik, & Dunnett, 2006).

This issue, and others that relate more to practical aspects of the

bench work than to the principles of the method, will be discussed

again in Section 9.2.

The second reason why a guard zone may be useful is the shape

of the objects that are to be counted. Some shapes may not allow to

decide if an object recognized in the last focal plane of a disector

should be counted or not (Figure 22). If that is the case, the part

below the last focal plane needs to be examined to make the decision.

This part, the lower guard zone, should be large enough to allow

deciding if a profile should be counted or not.

Finally, the guard zone below the disector provides the space that

may be necessary for objects to be counted using individually variable

criteria for the recognition of objects (Figure 19).

6.5 | From disector counts to total number:

Fractionator and NV × VRef

Ironically, given my complaints about the use of density changes as

evidence for changes in number, all that the disector probes initially

deliver is a number density estimate, NV, that is, the number of objects

counted in the volume of all the disector probes that were used to

count. One could, of course, also calculate the average number per

volume of one disector probe or a number per “unit of choice” of vol-

ume. There are two ways to convert the counts to estimates of total

number—the optical Fractionator and the NV × VRef method.

The optical fractionator (West et al., 1991)— If uniform random sys-

tematic sampling was used throughout, we can safely ignore the volume

information provided by the disector. Uniform random systematic sam-

pling also means fractionator sampling (see Section 3.4). It is therefore

known which fraction of the volume of the region of interest has been

included in the sample. Total number can be calculated bymultiplying the

number of objects, for example, cells, counted with the disector probes

with the inverse of the sampling fractions that have been used to sample.

N=
X

Q−

×
1
tsf

×
1
asf

×
1
ssf

If, for example, the height, h, of the disector probes spanned

10 μm along the z-axis and section thickness, t, is 20 μm, the thickness

sampling fraction (tsf ) would be 0.5. The inverse of the thickness sam-

pling fraction is 2. Note that section thickness here refers to the actual

thickness of the stained and mounted section on the slide and not the

value that has been set on the microtome. Thickness will have to be

measured (see Section 9.3).

If the distances between the disector probes along the x- and

y-axes are 200 μm, one disector probe is placed in an area of

F IGURE 19 Independence of optical disector counts from object recognition criteria. Two observers are looking at the same sample of cells.
One of them (early) recognizes the object rather early and one of them (late) recognizes them rather late. Differences in the first recognition
(arrows) of objects between observers cancel each other across the top and bottom focal planes that define the height of the optical disector.
Regardless how objects are recognized, both observers will count two objects (green arrows) in this example. (Adapted from West et al. (1991),
figure 7) [Color figure can be viewed at wileyonlinelibrary.com]
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200 × 200 μm2 = 40000 μm2. If the disector probes measures 10 by

10 μm along the x- and y-axes, that is, 100 μm2, the probes will

include only 100/40,000th = 1/400th of the total area of the section.

The area sampling fraction (asf ) is 1/400, and the inverse of this frac-

tion is 400.

If the series contained only every 10th section, the

section sampling fraction (ssf ) is 1/10th, and the inverse of this frac-

tion is 10.

If we counted ΣQ = 200 cells in all the disector probes, we know

that this is ½ × 1/400 × 1/10 = 1/8,000th of all the cells that there

F IGURE 20 Examples of optical disector probes. Image stacks representing two optical disector probes that are 7 μm deep in a DAPI-stained
mouse hippocampal CA1 pyramidal cell layer. The upper stack was recorded using structured illumination, which generates confocal-like images
with little out-of-focus light. The lower stack represents normal epifluorescence images. In both stacks, nuclei marked with green arrow can be
counted according to disector counting rules, that is, they are not present in the top focal plane of the disector (0 μm), they do not cross the red
lines at the depth at which they are first recognized (nuclei marked with red arrows), and they are contained within the counting frame or cross
the green lines at the depth at which they are first recognized. The personal criterion for the recognition of a nucleus was a nice, crisp outline.
The counting frame measures 30 × 30 μm. The white arrow at a depth of 5 μm in the first stack most likely represents a capillary endothelial cell
nucleus that is not being counted [Color figure can be viewed at wileyonlinelibrary.com]
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are. If we multiply the 200 cells with the inverse of the sampling frac-

tion, that is, 8,000, we obtain an estimate of total cell number—1.6

million.

200×
1
10
20

×
1
100

40,000

×
1
1
10

=200×2×400×10= 200×8,000= 1,600,000

The number or volume of all the disector probes that were used

to generate the sample actually never enter into the equation. If the

objects that are counted can be recognized directly, for example, sero-

tonin immunoreactive cells of the raphe or hippocampal CA3 pyrami-

dal cells, the border of the area that we counted in does not matter.

The sampled area could be extended by vast numbers of disector pro-

bes beyond the raphe or beyond CA3 to encompass the entire coun-

try of residence of the investigator. The vast majority of probes would

return counts of 0 and not alter the number estimate. It is therefore

not necessary to outline the area to be sampled very precisely.

It is different if the objects of interest cannot be recognized

directly. A cortical layer III pyramidal cell in V1 may be difficult to tell

from a layer III pyramidal cell in V2 in the small field of view available

at high magnifications. In such cases, an outline needs to be defined

that allows the identification of the objects of interest. The outline

may be defined based on regional cytoarchitecture at low magnifica-

tion or based on other stains in parallel series that allow its definition

(e.g., Gritti et al., 2006; Morgan, Barger, Amaral, & Schumann, 2014).

In these and similar circumstances, the area that is sampled needs to

be defined as good as possible along the parts of the border that have

the potential to add to the counts. For example, a cortical area would

need to be delimited as good as possible from neighboring areas but

not necessarily against the surface/pia mater or white matter. If one is

interested in cortical oligodendrocytes, one would, of course, also

need a precise outline toward the white matter. Correct outlines may

be needed to allow the correct identification of the objects, but, again,

the area of the outline or the numbers of probes placed within it do

not enter into any calculation.

NV × VRef — Another approach to obtain an estimate of total

numbers needs both the volume contained in the disector probes and

the volume of the region of interest. If 200 cells were counted in

100 disector probes that measure, as in the example above,

10 × 10 × 10 μm or 1000 μm3, an estimate of number density, NV,

could be 200/(100 × 1,000 μm3) or 2/1,000 μm3. If number density is

multiplied by a reference volume, VRef, that is, the volume of the same

region of interest used in the fractionator example above, an estimate

of total number is obtained. If the volume of the region of interest is

estimated to be, for example, 0.35 mm3 or 355,000,000 μm3 we

obtain an estimate of total number of 710,000 cells.

200
100×1,000μm3

×355,000,000μm3 =710,000

If it is indeed the same region of interest used in fractionator

example, something really does not work here! Using the fractionator

estimate, we obtain an estimate of 1.6 million cells, but using the

F IGURE 21 Z-axis plot of cells. Hippocampal CA3 pyramidal cells
are observed throughout the depth of methacrylate sections. The
depth of their first recognition is recorded. Cells already visible in the
top focal plane of the section are omitted. If cells distribute evenly
throughout the thickness of the sections, similar numbers should
appear in each bin. In this example, cells distribute evenly from Bin
3 to Bin 9. Low numbers in Bins 1 and 2 were due to low counts in
the top 2 μm of the sections. Low numbers in Bin 10 were due to low
cell numbers in the bottommost 1 μm of the sections [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 22 Guard zone and object shape. A deep guard zone
may allow the correct identification of profiles if the shape of the
objects is complex. In this example, the part of the section below the
disector needs to be examined to determine if object profiles visible
in the lowest focal plane (green line) should be counted as one or two
objects. This decision is not possible if the disector is extended to the
bottom of the physical section [Color figure can be viewed at
wileyonlinelibrary.com]
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volume of our region of interest and the NV × VRef approach, we

obtain only 710,000 cells. The discrepant estimates can be caused by

the fact that some disector probes may not be contained completely

within the region of interest but instead fall on the border of the

region of interest (this just must happen sometimes—see below). The

parts of the disector probes that lie outside the border cannot contrib-

ute to the counts, while their volume still contributes to the estimate

of number density. How this can be accounted for has already been

illustrated in Figure 18. While counting, we can keep track of how

much of each probe is inside the region of interest. An easy way to do

so is to keep track of the number of corners of the counting frame

that fall within the region of interest. Depending on the degree of pre-

cision that is desired, one may choose one, two or more corners to

represent the counting frame. In Figure 18, two corners (top left and

bottom right) were selected. Although nine counting frames are

applied to the region of interest, only 8 of the 18 possible corners fall

into the region of interest. As two corners represent one counting

frame, the nine frames applied to the region of interest yield only four

full frames, that is, only 4/9 of the volume of all the probes applied

was contained within the region of interest. If this was also the case

for the region in this example, we can use a factor of 4/9 to correct

and obtain an estimate of 1,597,500 cells is obtained.

200
4
9 ×100×1,000μm3

×355,000,000μm3 =1,597,500

Note that within each disector, regardless of the disector itself

being counted as 1, ½, or 0, we count all objects that are located

within the region of interest and that comply with the counting rules

of the disector probe.

Small differences that may remain between fractionator and

NV × VRef estimates (here 2,500 cells) originate from chance—small dif-

ferences in the volume estimates due to the random placement of the

point grid or small differences in the estimate of the number of probes

that were used. Across estimates in a number of individuals, the means

of fractionator and NV × VRef estimates should be close to identical.

As pointed out above, counting frames that fall onto the border

of the region of interest cannot be avoided. If we decided to only

include disectors that are completely contained within the region of

interest, objects contained within the region do no longer have equal

chances to contribute to the count. The problem is illustrated in

Figure 23. Objects close to the border of the region of interest would

only rarely or even never be included in the count, whereas objects

that lie farther away from the border have a chance to be counted in

many differently positioned counting frames. We can only provide the

objects with equal probabilities to be counted if we permit counting

frames that overlap the border of the region of interest. This is a

requirement for both the optical fractionator and the NV × VRef

method.

There is one more thing that needs to be paid attention to when

the NV × VRef approach is used—a form of the reference trap. If errors

sneak into the calculation of the reference volume, they will generate

errors in the estimate of total number. For example, sections may be

cut at 40 μm thickness but shrink to 20 μm after mounting, drying and

coverslipping. During shrinkage, the objects come closer together, and

the NV estimate may double. The reference volume needs to be calcu-

lated based on the section thickness at the time of counting, that is,

based on 20 μm and not on 40 μm. There may be many steps

between reference volume estimation and counting. The reference

volume may have been estimated by in vivo MRI imaging. The cells

are then counted after maybe dehydration of the brain, embedding,

cutting of sections, rehydration, staining, dehydration, clearing, and

mounting. Changes of the reference volume that can affect NV or VRef

estimates need to be monitored (see Section 9.5) and adjusted for.

6.6 | Simple disector implementation

Possibilities to move along the x- and y- axis have already been

described in Section 5.7. A slightly more advanced solution to

repeated movements at high magnification was presented by Kaplan

et al. (2005). For z-axis measurements of section thickness or disector

F IGURE 23 Counting frames that are not fully contained in the region of interest must be used. An object located fairly centrally in the
region of interest (a) can be contained in many differently positioned counting frames (only two examples are drawn). If only counting frames that
are fully located in the region of interest are used (colored frames), while partial frames (gray frames) are excluded, the number of frames that
could contain a more peripheral object decreases (b) until the object cannot be contained in any frame placed on the region (c). Number would
consequently be underestimated [Color figure can be viewed at wileyonlinelibrary.com]

26 SLOMIANKA



height, a microcator can be attached to the microscope. A costly

microcator will return measurements of z-axis movements of the

microscope stage with a precision within small μm fractions. Simpler

solutions allow readings to within one micrometer (Howard &

Reed, 2010, appendix A). Microscopes with motorized z-axis move-

ment may offer a read-out of the z-axis movement that is sufficiently

precise to omit a microcator. Finally, even the z-drive knobs of fully

manual microscopes may be calibrated to permit z-axis movements of

a defined size (Korkmaz & Tümkaya, 1997; Xavier-Vidal, 2010). When

using the optical fractionator, this size does not need to be in μm. If

the disectors are two-tick-marks-movement of the focusing wheel

thick and the sections are on average four-tick-marks-movement

thick, the thickness sampling fraction is one-half, which is all we need

to know.

If a simple imaging setup is available, ImageJ extensions that gen-

erate counting frames are available to analyze image stacks. To count

live, a calibrated counting frame can be drawn onto a transparency

and taped to a display. Microscope eyepiece reticules that show grids

useable as counting frames are available for live counting.

6.7 | A comment on Abercrombie's methods

As pointed out in Section 2, a profile count obtained from sections

could be converted into an estimate of cell number using

Abercrombie's method (1946), if it was known how likely, for example,

cells are to be cut during sectioning. The likelihood to be cut depends

on the height of the cells in relation to the thickness of the section. It

is therefore necessary to measure cell height. Abercrombie was well

aware of sources of error of the measurement and underlying

assumptions, but accepted them for the sake of feasibility and

because the error seemed much smaller than the errors possibly asso-

ciated with earlier methods. Height measurements of a number-

weighed, that is, disector-sampled, selection of cells would allow such

measurements but, as discussed in detail by Hedreen (1998b), this

would require all the steps that are needed to generate a disector-

based number estimate and render the measurement of cell height for

an Abercrombie estimate redundant. Height measurements in the

plane of the section, which have commonly been substituted for mea-

surements along the z-axis, will introduce a possibility of bias that can-

not be overcome by any correction.

Prior to the introduction of the disector, Abercrombie's method

was the method of choice to obtain cell numbers. Sadly, the issue of

Abercrombie versus disector dominated many early methodological

discussions. At a critical time, the championship fight between incum-

bent and contending methods unfortunately diverted energy and

attention from addressing the fact that many approaches that pretend

to generate information about object number are far, far worse than

either of the combatants claimed the other to be.

Interestingly, Abercrombie also describes a method to estimate

cell numbers that is based on counts in sections of different thick-

nesses (Abercrombie, 1946). A count obtained in a thin section is sub-

tracted from the count obtain in a thick section. The difference

between the counts is an unbiased estimate of cell number in a

section of a thickness equal to the thickness difference of the thick

and thin sections. The disector is a special case of this method, in

which the thin section would have a thickness of zero. It corresponds

to subtracting the count in the top plane of an optical disector, from a

count of all objects, including those in the top plane, in the disector

probe. This is the same as excluding objects in the top plane from the

count. Although the method has been reintroduced several times

(Collan, 1998; Ebbeson & Tang, 1965), I am not aware of recent appli-

cations in the neurosciences.

7 | LENGTH AND SURFACE ESTIMATORS

7.1 | Orientation sensitivity of probe-feature

interactions

Critical for the understanding of length and surface estimators is the

orientation sensitivity of probe-object interactions when length and

surface are estimated by area and line probes (Figure 24). If we probe

for the length of, for example, axons (blue in Figure 24a) running more

or less parallel in a fiber tract, an area probe (green in Figure 24a) that

is parallel to the axons will never be intersected by the axons, that is,

there are no probe–object interactions that can be counted. The num-

ber of area-axon intersections will increase as the angle between the

probe and the axons increases (Figure 24b) until we obtain the maxi-

mum amount of probe-axon interactions/area when the area probe is

perpendicular to the axons (Figure 24c). The number of interactions

per unit area is dependent on orientation and the length of the axons

instead of just the length of the axons. It is only when we sample the

axons with all possible orientations of the area probe that the number

of interactions between area and axons is directly proportional to the

length of the axons. The roles of probe and object in Figure 24 can

also be exchanged. We could use line probes (blue) to probe for, for

example, cortical surface (green), and we face the same problem of

orientation dependence of line–surface interactions.

The situation in Figure 24 is, of course, an extreme case. Locally,

the orientations of neuronal processes may appear more or less ran-

dom, but they usually are not (Figure 25a), and randomness, when

suspected, would be difficult to verify. If orientations are completely

random, they are also called isotropic orientations. The very names

that are applied to many structures, for example, cortical columns and

barrels, or bi-tufted (Figure 25b), chandelier or pyramidal cells imply

some sort of spatial organization of the cells and their processes.

Rather than the randomness of isotropy, we should expect some

orderliness, that is, anisotropy, in the brain.

Probing the nervous tissue for length and surface requires isot-

ropy, yet we have to expect anisotropy. The problem can be solved by

randomizing either the orientation of the objects of interest during tis-

sue preparation or by randomizing the orientation of the probe. Ran-

domizing the orientation of objects in the sections would require that

the orientation in which the tissue is cut is randomized. At a first

glance, this is really not a very attractive prospect. However, it is very
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easy to count probe-object interactions in randomly oriented sections.

Approaches to estimate length and area in sections of (partly) random

orientation are therefore described in Section 7.4. Randomizing the

orientation of probes within sections has become the preferred

approach, because it retains the free choice of the orientation of the

section. Thick sections are required because sufficient space is needed

within the sections to allow the placement of line or area probes in

any orientation, that is, also along the z-axis, which typically limits the

size of the probes that can be applied.

Two slightly different approaches have been developed to place

randomly oriented area probes within sections. The use of isotropic

virtual planes (Larsen, Gundersen, & Nielsen, 1998) refers to changing

orientations of probe planes at different sampling locations. This

method is computationally demanding and the counting rules are not

simple. Subsequently, a method was developed that places a spherical

area probe at each sampling location (Mouton, Gokhale, Ward, &

West, 2002). The probe has become known as a spaceball and is,

together with its use, described in the following section. Well docu-

mented applications have been published by, for example, Calhoun,

Mao, Roberts, and Rapp (2004), Shamy et al. (2007), Gondré-Lewis,

Darius, Wang, and Allard (2016) or Nykjær Nikolajsen, Kotynski,

Jensen, and West (2017),

7.2 | Using spaceballs to probe for length

A spherical probe or spaceball fulfills the requirement of equal proba-

bilities of all possible orientations, or isotropy, because the surface of

a sphere presents all possible orientations of a surface in space. A rep-

resentation of the surface of a spaceball can be generated by a com-

puter interfaced to a microscope as the focal plane is moved through

the depth of the section (Figure 26). Probe-object interactions occur

each time the objects of interest touch or cross the circles that repre-

sent the surface of the spaceball.

Each orientation in space is not only represented once, but twice on

the surface of a spaceball—once each at opposing sides of the spaceball.

That means that the application of a hemisphere is sufficient to probe

the tissue. In practice, this has the nice effect that a larger probe area can

be used at each sampling location. If 20 μm thick sections are probed,

the largest sphere that can fit inside the section has a radius of 10 μm

and a surface area of 1257 μm2 (Asphere = 4πr2). Instead, we can place a

hemisphere with a radius of 20 μm and a surface area of 2,513 μm2 at

the same sampling site. In principle, a hemisphere could even be par-

titioned into multiple slices at each sampling site (Mouton et al., 2002).

While this would allow for a further increase in the available probe area,

it would also complicate the counting (see below).

F IGURE 24 Orientation effects on
interactions between a length and an area. The
number of interactions between area and length is
sensitive to orientation. Even though the blue
length and green area are identical in all three
images, 0 interactions are observed in (a), 4 in (b),
and 8 in (c). This orientation sensitivity applies to
estimates of length using area probes and to
estimates of area using line probes [Color figure
can be viewed at wileyonlinelibrary.com]

F IGURE 25 Isotropy and the structure of the brain. Randomness and the structure of the brain do not go well together. (a) Many axons in
the deep layers of the somatosensory cortex of the bank vole (Myodes glareolus) travel roughly perpendicular to each other between the neurons.
Nauta stain. (b) Oriented dendrites of a sparsely spinous bi-tufted interneuron (perhaps a Martinotti interneuron) of the Sprague–Dawley rat
somatosensory cortex. Golgi stain, montage of several focal planes. Scale bars: 25 μm [Color figure can be viewed at wileyonlinelibrary.com]
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A hemisphere was used as a spaceball in Figure 27 to count inter-

sections of tyrosine hydroxylase (TH) immunoreactive axons with the

spaceball surface. Small circles appear close to the top of the hemi-

sphere that, at first, quickly increase in size as the focus is moved down-

ward (Figure 27, 0–3 μm). Close to the equator of the hemisphere, the

size of the circles increases very little (Figure 27, 8–10 μm). In contrast

to the counting frame, touch and cross are not equivalent interactions

but may be differently influenced by the thickness of the structure of

interest (see below). In Figure 27, to cross the surface, that is, to cross

the circle in the 2D representation that we see, was used as a counting

criterion. The rapidly changing diameter of the circles close to the top

of the spaceball may make it difficult to observe the actual crossing of

the object of interest with the circle. If it was seen once on the outside

and once on the inside, it must have crossed in the meantime and an

intersection should be counted (e.g., Figure 27 at 1 and 2 μm).

Note also that an intersection observed in the very last focal plane

that contains the spaceball would also be counted in the very first focal

plane of the hemisphere that continues the spaceball. Intersections in

the last focal plane should therefore only be counted as 0.5 to avoid

overcounting. Alternatively, one could declare one-half of the last circle

an “exclusion semicircle.” If the spaceball was sliced further to increase

the available probe area, any probe-feature interactions occurring at

the edges of the slices would also have to be counted as 0.5. Using the

intersections of the object of interest with the surface of the spaceball

is rather straightforward if the objects are thin. The decision if an inter-

section is present or not may not always be unequivocal if the objects

get thicker (Figure 28). In this case, it is helpful to use the imagined cen-

ter, or spine, of the object to judge if one or more intersections took

place (Gundersen, 2002b;Mouton et al., 2002).

In Figure 27, we count six interactions of axons with a hemisphere

that has a radiusof10 μmandasurfaceareaof (4 ×π × 102)/2=628 μm2.

Following the relationship equation for length using an area probe, we

obtain a length density estimate, LV.

LV =
2Q
A

=
2
P

Q

nsamples ×Areaper sample
=

2×6
1×628μm2

in whichQ is the number of intersections countedwith the spaceballs, and

A is the surface area of the spaceball thatwas used to probe the tissue.

Usually, there should be more than six interactions, and, of

course, we should probe our region of interest with more than a single

spaceball. Similar to the calculation of the NV × Vref estimate of num-

ber, we may need to keep track of how many of the spaceballs actu-

ally were located inside the reference volume. One or more arbitrarily

placed points can be included with the spaceball—often the corners of

a square drawn around the spaceball. The number of points would tell

us how many spaceballs were contained within the reference volume.

If we had counted 84 intersections using 53 spaceballs located inside

the reference volume, Lv would be (2 × 84)/(53 × 628 μm2).

The length density estimate can be converted to the total length

by multiplying LV with the volume of the region that contained the

objects of interest.

L= LV ×Vref

Note that of the μm2 in the denominator of LV and the μm3 as the

unit of Vref only a unit of length, μm, remains.

Alternatively, a fractionator approach can be used to calculate total

length. Getting at the formula, which is simple enough, is a littlemore con-

voluted than was the case for a fractionator cell count. When LV is multi-

plied with Vref, we nicely get rid of the area in the denominator of LV and

conveniently end up with a length. Multiplying by the dimension-less

inverse of the sampling fraction does not help us to get rid of the area to

end up with length. LV needs to be converted to a length before we can

multiply it with the inverse of the sampling fraction.We can convert LV to

a length by multiplying LV with the volume of arbitrarily sized boxes that

we place around the spaceballs. The most conveniently sized box con-

tains the volume, Vbox, of the tissue that is probed with each spaceball. In

the plane of the section, this box has an area of Astep. The depth of the

box would be section thickness, h. There is one box per spaceball, and the

number of boxes that we looked at corresponds to the number of sam-

pling sites, nsampling sites. So, the volume of all the boxes would be nsampling

sites × Vbox. This is the volumewe use tomultiply with LV.

The dimensions of this box are also used to calculate the area and

thickness sampling fractions. The chosen size of the box is convenient

because its area equals Astep and its height equals h. Area and thick-

ness sampling fractions are 1 and can be ignored. Only the

section sampling fraction, ssf, is needed. Length can now be estimated

from parameters that we know and the counts.

L=
1
ssf

× Lv × nsampling sites ×Vbox

� �

=
1
ssf

×
2×Q

nsampling sites ×Areaper spaceball
× nsampling sites ×Vbox

� �

=
1
ssf

×
2×Q

Areaper spaceball
×Vbox

=
1
ssf

×
2×Q

Areaper spaceball
×Astep × h

Note that, the number of probes or the total volume probed do

no longer appear in the final equation. As long as probe-object

F IGURE 26 Interactions of a length with a spherical probe. (a) A
spaceball, that is, a spherical probe, interacts with two tubular
structures. (b,c) Two views of the sectioned spaceball, corresponding
to the movement of the focal plane (gray) in a thick histological
section. The tubular structures intersect the surface of the spaceball
twice in each of the two section planes. The black outlines of the
spaceball surfaces in (a,c) would appear as circles as the focal plane is
moved through the depth of a histological section (see Figure 27)
[Color figure can be viewed at wileyonlinelibrary.com]
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interactions are only counted within the region of interest, it does not

matter if much of the volume associated with each sampling location

would be outside the region of interest when the probe itself is inside

the region and vice versa. Note also that the most complicated mathe-

matical operations required are simple divisions and multiplications,

and not even many of them.

Figure 28 shows that it sometimes may be difficult to decide if an

object intersects the probe area or not. This is because biological struc-

tures are not infinitely thin mathematical lines but have a thickness, and

it would really not make things easier if they were invisibly thin. That

there is a thickness of an axon or a vessel may result in a bias if we use

“touching the probe area” instead of the preferred “intersecting the

probe area” as the counting criterion (Gundersen, 2002b). For example,

object B in Figure 28b touches twice but does not intersect. This will

bias estimates of length, and the size of the bias depends on the thick-

ness of the structures in relation to the diameter of the spaceball. The

size of the bias can be defined for simple shapes in the form of a factor

1 + 0.25(d2/t2) (factor for hemispheres; Mouton et al., 2002), in which d

is the diameter of the structure of interest and t the radius of the

spaceball. If, for example, the length of 2 μm thick axons or 6 μm thick

capillaries are estimated with spaceballs of a radius of 20 μm, the fac-

tors would be 1.01 and 1.09. We see 1.01 times (1%) more touches

than there are actual intersections of the axon with the area of the

spaceball and 1.09 times (9%) more touches of capillaries than there

are actual intersections. Even though the bias is not large, it may be

avoided by using “intersect” instead of “touch” as counting criterion.

F IGURE 27 Estimating length using a spaceball as probe. A hemispherical spaceball (black circles) with a radius 10 μm inside a 10 μm deep
image stack of neocortex containing tyrosine hydroxylase (TH) immunoreactive axons. Intersections of the axons with the surface of the spaceball
are marked with arrows. At 0 μm, the spaceball only touches the image and is not yet visible as a cross section. The green circle was added to
help identify axons that are in focus at 0 μm and, at 1 μm, inside the spaceball. Such axons would intersect the surface of the spaceball and should
be counted (no such cases are observed here). At 9 μm, an axon briefly enters the spaceball to immediately leave it again. It must therefore
intersect the surface twice (see object C in Figure 28). The two intersections observed at 10 μm (yellow arrows) would also be visible in the very
first plane of the hemisphere completing the spaceball to a sphere. They would therefore be counted in two hemispheres. To avoid overcounting,
these intersections are therefore only counted as 0.5. A total of six axon-spaceball intersections (five green, 2 × 0.5 yellow) are observed [Color
figure can be viewed at wileyonlinelibrary.com]
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7.3 | Probing surface: Isotropic line estimators

Conceptually the roles of probe and objects of interest introduced

for length estimators are exchanged when surfaces are probed, while

the problem of orientation sensitivity remains (Figure 24). The solu-

tion is, again, a randomization of the orientation of line probes if we

want to remain free to choose the orientation of the tissue sections

that we like best. Two methods using a randomization of line

orientations have been presented. Similar to the randomly oriented

isotropic virtual planes (Larsen et al., 1998) that can be used for

length estimates, the isotropic fakir (Kubínová & Janácek, 1998) uses

randomly oriented sets of straight lines. Similar to the spaceballs

(Mouton et al., 2002), virtual cycloids (Gokhale, Evans, Mackes, &

Mouton, 2004) use test lines that each incorporate multiple orienta-

tions. Both the isotropic fakir and virtual cycloids are applied as vir-

tual probes to thick tissue sections.

F IGURE 28 Identifying interactions of lengths with an area probe. Sometimes it is easy to decide how many interactions need to be counted
based on the appearance of the objects of interest alone (Objects A and D in (a)). Other objects are more doubtful (B, C, and E in (a)). If one does
not want to count touches as interactions between the spaceball and the length that is to be estimated, imagining the spines (white broken lines
in (b)) may be helpful. Even though object C touches the circle only once, the spine of this object crosses the spaceball twice. We need to count
two interactions. Instead, object B touches the spaceball twice, but its spine does not intersect the surface of the spaceball. No interactions are
counted. Even though object E interacts only once with the surface of the spaceball, its spine crosses twice and two interactions need to be
counted [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 29 Interactions of randomly oriented lines with a surface. (a) Using the common latitude and longitude coordinate system, the areas
associated with a degree of latitude and a degree of longitude are much smaller close to the poles than close to the equator. (b) Random latitude
and longitudes are selected for lines originating from the center of a sphere. They interact more frequently with the surface of the sphere close to
the poles than with the surface close to the equator. (c) Randomly selected longitudes are combined with randomly selected sine weighted
latitudes. The interactions between the lines and the surface of the sphere are now evenly distributed over the surface. Angles for latitudes below
(b) and (c) show eight uniform random systematic angles in (b) and eight uniform random systematic sine-weighted angles in (c). (Globe in
(a) generated using satglobe4 (Kleder, 2005)) [Color figure can be viewed at wileyonlinelibrary.com]

SLOMIANKA 31



The easiest way to generate a line with a random orientation is to

decide on a point of origin and, thereafter, randomly select two angles

that would correspond to the longitude and latitude used to specify

positions on the surface of the earth (Figure 29a). Surface density esti-

mates require that the number of interactions between the line pro-

bes and a surface is directly proportional to the length of the lines and

surface area and nothing else. Unfortunately, the simple selection of

two angles does not quite yet fulfill this requirement. In Figure 29a,

areas that are associated with a degree of longitude and a degree of

latitude are much smaller close to the poles than they are close to the

equator. Because of this, countries far up north or down south look—

bolstering national self-esteem—much larger in some maps than they

are in reality. Also, a unit of surface close to the poles would interact

more often with randomly oriented line probes than a unit of surface

close to the equator (Figure 29b), and we would erroneously confirm

that some countries are much larger than they are. This can be com-

pensated for by sine weighting the angle for the latitude of the probe

lines. Instead of picking a random angle, a random sine value (between

zero and one) is selected, and the corresponding angle is calculated

and used (Figure 29c). Using sine weighted angles, line probe-surface

interactions distribute evenly over the globe.

A sphere and an origin of the lines from the center of the sphere

were chosen to illustrate the problem and its solution. The solution

also works when the shape is not a sphere and when the origin of the

lines lies outside the object of interest.

While sine weighting does allow the placement of randomly ori-

ented lines, it still requires the placement of many differently oriented

lines at the sampling sites. In the same way in which a spaceball, used

to estimate length, contains all orientations of a surface in space,

some convenience can be gained by using a line which contains all ori-

entations in a sine weighted manner. Such a line is called a cycloid. A

cycloid would be formed by the movement of a point on a rolling cir-

cle (Figure 30). A cycloid's steep initial segment is rather short

(corresponding to fewer lines going to the polar region) compared to

the longer, shallow-angled approach to its' peak value (corresponding

to more lines going to the equatorial region).

As a virtual probe, the cycloid will be represented by a point that

moves as the focal plane is moved up or down through the

section (Gokhale et al., 2004). Note that at different sampling sites,

the point must move in different directions because randomly

selected longitudes, that is, random directions in the plane of the sec-

tion, must be used at each sampling site. A probe-object interaction is

counted each time the point moves across/intersects a surface

(Figure 31).

The number of interactions between cycloids and a surface can

now be used in the relationship equation for surface density, SV.

SV =2IL =
2I

Length of virtual cycloids

in which I is the number of intersections counted.

The length of a cycloid is twice its height, that is, 14 μm for each

of the cycloids in the 7 μm high stack in Figure 31.

For the one sampling site using two cycloids illustrated in Figure 31,

SV is 10/28 μm. The calculation of total surface is analogous to the calcu-

lation of total length. We can obtain an estimate by multiplying with a

reference volume, S = SV × Vref. For example, the volume represented by

the stack in Figure 31 is 50 μm × 50 μm × 7 μm, that is, 17,500 μm3. An

estimate of the nuclear surface contained in this volume is

(10/28 μm) × 17,500 μm3 = 6250 μm2.

For a fractionator estimate, SV needs to be first converted to a

surface in the same way in which it was done for length in Section 7.2.

In addition to the actual counts, only the sampling parameters and

section thickness need to be known to calculate an estimate of total

surface.

S=
1
ssf

×
2
P

I

Lengthper virtual cycloid
×Astep × h

A problem of virtual isotropic line estimators is the recognition of

line-surface interactions in thick tissue sections, which can be difficult

if the surface is tangential to the plane of the section. While the sur-

face of a spaceball is represented by a quickly moving but otherwise

distinct line close to the top of the spaceball, this is most likely not the

case for, for example, neuronal membranes or vascular surfaces. If rec-

ognizing probe-object interactions is judged to be too uncertain, sur-

face estimators that are described in the following section could

be used.

F IGURE 30 Cycloids. (a) The curved shape that is formed by attaching eight sine weighted lines (Figure 29c) of equal length to each other
resembles a cycloid. If increasingly more and shorter lines were used, the shape would be indistinguishable from the cycloid in (b), which is the
curve formed by a point (red) on the perimeter of a rolling circle (gray) [Color figure can be viewed at wileyonlinelibrary.com]
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7.4 | Length and surface estimates in isotropic and

vertical sections

When isotropic surface or line estimators are used in thick tissue sec-

tions, the orientation of the section in which they are applied does

not matter. The probes guarantee that interactions between probe

and object are independent of the orientation of the section. The

freedom to choose the plane of the section comes at a price. The sec-

tions need to be relatively thick, shrinkage along the z-axis ought to

be minimized (see Section 9.5), and it may occasionally be difficult to

judge if the probe and object interact. Although simple and inexpen-

sive ways to implement probes can be devised, their implementation

is not as straight forward as one might wish. Some of these difficulties

can be overcome by giving up the freedom to cut the tissue in a

desired direction. Before the advent of virtual probes in thick sections,

this was part of earlier approaches that guaranteed isotropic probe-

object interactions.

7.4.1 | The isector

The most radical approach to guarantee isotropic probe–object inter-

actions is to prepare isotropic sections, that is, sections in which the

direction of cutting has been completely randomized. The approach is

called the isector (Nyengaard & Gundersen, 1992). Using the isector,

samples of the tissue are embedded in random orientations and cut

(Figure 32). The sections that are generated are also called isotropic

uniform random (IUR) sections. Using the isector may appear almost

ludicrous in the central nervous system, in which the orientation of

the section may even determine if the region of interest can be recog-

nized or not. However, it is less so than it appears at a first glance. A

practical approach for the preparation of isector samples was outlined

by Løkkegaard, Nyengaard, and West (2001) in a study that estimated

capillary length in the subdivision of the human hippocampus. In this

study, sections of varying thicknesses were cut from larger blocks and

used for different stains. Samples for the isector were prepared by

microdissecting samples from thick sections that were stained free

floating prior to embedding to allow the identification of regions. The

isector does not demand that the entire structure is cut at random.

Sections can be cut and stained in the usual manner provided that tis-

sue blocks for subsequent embedding/recutting can be obtained from

these or adjacent sections. By now, it should not be necessary to say

that the blocks should be a uniform random independent or system-

atic sample.

Because the sections are isotropic, estimates of surface can be

obtained by applying line probes of any orientation to the sections to

F IGURE 31 Estimating surface using virtual cycloids. The image stack was acquired using structured illumination of mouse DAPI stained
hippocampal pyramidal cell nuclei. In each image, the intersections between the image plane and two 7 μm high virtual cycloids (passing from the
center of the image to the lower left and upper right) are marked by red dots. The parameter estimated is nuclear surface area. The yellow tails of
the dots are helpful in this illustration to mark the path that the dots traveled since the last image of the stack. They would not be needed during
the live application of the probe, when the dots move smoothly and can actually be seen crossing nuclear boundaries. The dots pass five times
across the nuclear boundaries. Both cycloids pass from outside of a nucleus to the inside of a nucleus between 0 and 1 μm generating one probe-
object interaction for each cycloid (green arrowheads); they are leaving the nucleus again at 3 and 4 μm, again generating one probe-object
interaction for each cycloid. The last interaction is generated as one of the cycloid passes inside a nucleus at 7 μm. The length of a cycloid is twice
its height, that is, 14 μm. Two cycloids are used and the total probe length is 28 μm. Scale bar: 10 μm [Color figure can be viewed at
wileyonlinelibrary.com]
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count line–surface intersections. For length estimates, the plane of

the section represents the available probe area. Estimates of length

can be obtained by counting intersections of objects with the plane of

the section. For both length and surface estimates, the estimation pro-

cedure can be restricted to a sample of the area of the section using

the unbiased counting frame (Section 6.2; Figure 33). The resulting

surface or length density estimates can be converted to total length

or surface using either the fractionator or the NV × VRef approach (for

example, Jørgensen, Marner, & Pakkenberg, 2008; Tang &

Nyengaard, 1997).

In the example for length (Figure 33a), three intersections of vessels

are countedwithin 40 × 40 μm=1600 μm2 area defined by the counting

frame. An estimate of LV based on just this one probewould therefore be

2 × 3/1600 μm2. The volume associated with the probe equals the area

of the frame × section thickness, that is, 1600 μm2
× 0.2 μm = 320 μm3.

An estimate of the length, L, of vessels in the volume associated with this

one probewould be (2 × 3/1600 μm2) × 320 μm3 = 1.2 μm.

In the example for surface (Figure 33b), the length of the test

lines (two circles with a radius of 10 μm) is about 126 μm. The sizes

of the counting frame area and section thickness are identical to

those in the example for length. An estimate of the surface, S, of

nuclei in the volume associated with this one probe would be

(2 × 11/126 μm) × 320 μm3 = 55 μm2.

7.4.2 | Vertical sections

Vertical sections as a means to guarantee isotropic probe-object inter-

actions were first introduced for surface estimators by Baddeley, Gun-

dersen, and Cruz-Orive (1986) and subsequently also for length

estimators (Gokhale, 1990). Vertical sections do not require the com-

plete randomization of the cutting direction. Essentially, half of the

randomization is generated during the cutting of the tissue, while the

other half of the randomization relies on the application of the probes

to the sections. These two randomizations work similar to the ran-

domization of the orientations of test lines already introduced in Sec-

tion 7.3. A random angle for the longitude is chosen to rotate the

region of interest or slabs of the region prior to cutting (Figure 34).

Note that the horizontal, that is, the plane in which we rotate the

tissue, can still be chosen freely. The horizontal would correspond to

a plane passing through the equator in Figure 29.

Next, the rotated tissue is cut into sections perpendicular/vertical

(hence, vertical sections) to the horizontal. The sections generated in

this way would pass through a randomly selected longitude. They are

called vertical uniform random (VUR) sections. The randomization of

the angle that would specify the latitude is achieved during the appli-

cation of the line or area probes. The major gain, in comparison to sec-

tions prepared with the isector, is that it is possible to at least decide

where we place the horizontal. From an anatomist's point of view,

vertical sections are suited to parts of the brain that have a natural

horizontal. If we rotate neocortex (as a flat-mount or a cortex block;

Dorph-Petersen et al., 2009) in a horizontal that is parallel to its sur-

face and cut it vertical to the surface, we will always see the typical

six layered organization of the cortex. The same will be true for any

part of the CNS that has a tiered organization in one plane or can be

prepared to have one. Other structures may have a natural vertical.

Rotating, for example, the olfactory bulbs around their central axis will

provide sections looking fairly similar to sections cut either sagittally

or horizontally. Similar to the practical approaches that have been

used with the isector, it is not necessary to sacrifice the entire region

of interest to vertical sectioning (Hosseini-Sharifabad &

Nyengaard, 2007). Also, if a region of interest has no natural vertical

or horizontal, sections taken from tissue slabs prepared in a conve-

nient anatomical orientation can be used to map the location of

regions in vertical sections prepared from adjacent slabs (Dorph-

Petersen, 1999).

Line probes applied to vertical sections face the same problem

that was already discussed for virtual isotropic lines. Choosing random

angles for their application will result in too many lines passing into

the direction of the poles. The solution to this problem is, again, a sine

weighted selection of the angles, that is, picking a random value

between zero and one, calculating which angle would have this value

as its sine, and using this angle to apply a line to the section. Again,

efficiency can be gained by using a line that is a cycloid, that is, a line

representing all orientations in a sine weighted manner (Figure 35a).

Intersections between the lines and the surfaces are counted. In con-

trast to the use of isotropic virtual lines, sections can be thin, because

the cycloid is now placed in the plane of the section instead of

F IGURE 32 Isotropic section prepared using
the isector. In the form the isector was originally
proposed, tissue blocks are embedded in a
spherical mold. The sphere containing the tissue
(left) was thereafter randomly rotated,
reembedded and cut to generate an isotropic
section through the tissue blocks (right) [Color
figure can be viewed at wileyonlinelibrary.com]
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perpendicular to it. Probe-object interactions may be easier to recog-

nize in thin sections. Also, in the critical zone along the long axis of

the cycloid, we are looking for probe-feature interactions “from the

side” instead of “from the top,” which should make it easier to define

probe-object interactions when the surface and the line probe are

running close to parallel through the tissue. Total surface is calculated

using fractionator or SV × Vref approaches.

In contrast to length estimates using spaceballs, length estimates

in vertical sections face the same problem as surface estimates. We

therefore again have to apply a weighting to area probes applied to

the sections. However, the roles of probe and feature have been

exchanged. Instead of a line probe that will estimate an area, we use

an area probe to estimate a length. To compensate for the fact that

lengths pointing into the direction of the poles of the vertical

section would interact more often with a spherical surface probe than

lengths pointing toward the equator, we need to compensate by pro-

viding more area close to the equator. This can be achieved by cosine

weighting the area probes—either by randomly selecting cosine-

weighted directions of flat probe areas or by using an area probe that

bends into a (surprise!) cycloid shape. While the long-axis needed to

be parallel to the horizontal to estimate surface, this cycloid will have

its long axis parallel to the vertical (Gokhale, 1990). The area that we

apply would be a projection of a line, whether straight or in the form

of a cycloid, through the depth of the section, that is, the length of

the line multiplied by the thickness of the section (Figure 35b). In

practice, the focal plane is moved through the depth of the

section and intersections of the line (representing the probe area) and

objects of interest are counted. If we see an interaction between the

length and the area probe in the top focal plane, we do not count it,

because it would be counted in the bottom focal plane of another

probe. Once again, total length can be calculated using fractionator or

LV × Vref approaches. Well documented applications of length estima-

tors in vertical sections can be found in, for example, Artacho-Pérula,

Roldán-Villalobos, and Cruz-Orive (1999), Chen et al. (2017), or

Kubíková, Kochová, Tomášek, Witter, and Tonar (2017). Vertical sec-

tions are also easily applied to macroscopic in vivo imaging data sets,

in which the plane in which a structure is visualized can be chosen

freely (Acer et al., 2010; Cruz-Orive, Gelšvartas, & Roberts, 2014).

7.5 | Simple implementation of virtual length and

surface probes

For the selection of sampling sites and the spacing of stack images

along the z-axis, some of the simple and inexpensive ways already

introduced in the preceding sections may be useful.

If image stacks of sampling sites are available, circles that repre-

sent a spaceball can be drawn onto the individual images of the stack.

If, for example, 10 μm along the z-axis of the stack contain 21 images

(one image at zero μm and 20 images at increments of 0.5 μm) that

need to be probed with a spaceball (hemisphere) that has a radius of

10 μm, the sine is divided into 21 equally spaced values separated by

increments of 0.05 (0, 0.05, 0.10, 0.15 … 0.95, 1) and the angles

corresponding to the values are calculated (0, 2.9, 5.7, 8.6 … 71.8, 90).

The radius of the circles that need to be drawn onto individual images

will be the cosine of these angles multiplied by the radius of the

spaceball (10, 9.99, 9.95, 9.89 … 3.12, and 0 μm). If the graphics soft-

ware permits the recording of image manipulations in form of an exe-

cutable script (even recreational graphics software may allow this), the

script can be applied to the remaining stacks of the sample. Figure 27

was prepared in this manner. It is advisable to keep an unmodified

backup of the stacks.

F IGURE 33 Probing for length and surface in isotropic 0.2 μm
semithin sections of Epon-embedded, toluidine blue stained mouse
neocortex. (a) A counting frame used to define a sample of the area
and to count intersections of capillaries with the plane of the
section in this area. The three capillaries labeled with green arrows
can be counted. The capillary marked with the red arrow crosses the
exclusion line of the counting frame and is not counted. An additional
capillary is labeled with a white arrow. (b) Merz test lines are used to
count intersections of the lines with the surface of cortical nuclei. The
area to which the lines are applied is again defined by a counting
frame. Straight lines could also be used, but the hemicircles
composing the Merz lines may be more efficient if the surfaces to be
estimated have a preferred orientation in the section (Merz, 1967).
Eleven intersections of the lines and the boundaries of nuclei are
counted (green arrows). Scale bars: 10 μm [Color figure can be viewed
at wileyonlinelibrary.com]
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Even isotropic line probes may be implemented without the aid of

advanced software. A point could be moved from image to image of a

stack by the distances that correspond to the displacement of the point

along the x-axis of a cycloid for y-axis increments of the cycloid. The y-

axis increments would correspond to the distances between the images

in the stack. The x values will be 0:5h× cos−1 1− y
0:5h

� �

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h× y−y2
p

. h

is the height of the entire cycloid/image stack and y the height (in the

stack) of the image that the x value needs to be calculated for. The

length of the cycloid probe is 2h. Note, that the displacement of the

point in the plane of the section should take place in all possible direc-

tions. The x-positions for different height in the stack could be mar-

ked on a ruler that is applied to the screen as a physical or digital

overlay. Working live with the microscope one would at least need a

precise readout of z-axis movement of the stage.

Length and surface estimators in IUR and VUR sections are back

into the realm of very simple implementations. A counting frame that

samples the area of an IUR section for intersections of the objects of

interest with the plane of the section can be placed on a section by

way of an eyepiece reticule, transparencies, or as a digital overlay on

recorded images. Images of cycloids for length and surface estimates

in VUR sections are difficult to draw freehand, but suitably scaled

ones may be generated with MATLAB and placed over images or

taped to displays. Also, a cycloid grid plug-in is available for ImageJ.

8 | GOOD ENOUGH?—ESTIMATE

PRECISION

A recurrent question pertaining to estimates of number, length, sur-

face, or volume is whether they are “good enough.” If the tissue has

been sampled and probed correctly, statistically valid estimates are

obtained. Unfortunately, statistically valid does not necessarily mean

useful. It is the precision of estimates that determines how good, that

is, useful, the estimates can be. In purely descriptive quantitative stud-

ies, the precision indicates how close the reported mean of the esti-

mates is likely to be to the true mean of the sample. In experimental

studies, estimate precision in part determines how likely it is that dif-

ferences between control and experimental groups can be detected

statistically. To answer the question if the estimate is “good enough,”

we need to generate a number that we can use to assess precision in

the context of the study. Considering that “not good enough” usually

means “useless” even if the sampling and probing were done correctly

in a statistical sense, an understanding of the preceding sections is

equally useless if we cannot at least get close to an answer of the

“Good enough?” question. Consequently, some space will be spent on

estimating and judging precision. There will be quite a few new con-

cepts, and it may be a good idea to take a break before setting out.

8.1 | What is a CE?

A parameter that is useful to describe the precision of an estimate is

the Coefficient of Error or, short, the CE. To understand what the CE is,

we again need to take a look at why and how an estimate is gener-

ated. Typically, estimates are generated because it is not feasible to

determine the precise values of the parameters that one is interested

in. There are, for example, simply too many cells in too many sections

to count them all. To generate a valid estimate, a statistically repre-

sentative sample needs to be drawn from each individual, that is, the

mean of the estimates obtained from all possible samples will be the

true value of the parameter of interest in that individual.

Let us estimate the volume of a brain region. If we use the Cavalieri

Estimator to estimate the area of a brain region in all sections that can

be cut and, next, plot the point counts obtained in each section along

F IGURE 34 Two-ways to prepare vertical sections from a region of interest. A plane parallel to the equator, the horizontal, can be chosen
freely. The choice of the horizontal does not necessarily impact on the way in which sections are prepared. Slabs of the region of interest can
prepared in the same way in (a) and (b) despite the choice of different horizontals. The choice of horizontal does impact on the way the slabs
must be rotated prior to sectioning to generate the random angles that are necessary to ensure isotropy. Slabs or parts of them must be rotated
around the vertical, an axis perpendicular to the horizontal [Color figure can be viewed at wileyonlinelibrary.com]
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the axis in which the brain was cut, we obtain a graph like Figure 36a.

This is what we often cannot do because it would require too much

work. Instead, we draw a sample of the sections. Because the size of

the brain region differs slightly from section to section, each sample will

return a slightly different point count. The resulting estimates differ

even though we sample the same structure each time.

Figure 36b illustrates the estimates obtained from all samples

that used sampling intervals of every 2nd, 3rd, 4th … 12th, … or

20th section. As one may expect, the estimates tend to vary

more if fewer and fewer sections are used. If data of this type is

available, the coefficient of variation or, short, CV, of the samples

that belong to a particular sampling interval can be calculated.

The CV is the standard deviation of all estimates of a particular

sampling interval divided by their mean. The CV provides a mea-

sure of how much the estimates vary relative to the mean

(Gundersen & Jensen, 1987). Figure 36c is a plot of the CVs that

were obtained from the variability of the estimates in

Figure 36b.

CE estimators provide an estimate of the CV that is calculated

from repeated estimates in the manner described above. Notably,

one does not need to count in all sections to be able to draw the

subsamples that belong to a particular sampling interval. Instead,

several approaches have been developed that allow a CE estimate to

be calculated from a single sample. While the ability to calculate the

CE from a single sample saves a significant amount of work, it does

come at a price. CE estimators do not provide more than their

name promises: an estimate of the CE. In the same way in which

any one estimate of, for example, cell number may deviate from

the mean of the group of animals, any one CE estimate may not be

close to the true precision that is associated with a sampling

scheme (Schmitz & Hof, 2000). In neither case is it likely that the

final assessment of the data will be based on a single observation,

that is, an n of 1.

8.2 | Why is a CE important?

Let us assume that we sample a brain region that in all individuals of a

control group is totally and utterly completely identical in size and

shape (black circle in Figure 37). The true value of whatever we are

interested in is 100. If the regions are completely alike, sampling the

different individuals of the control group would correspond to the

repeated sampling of one region illustrated in Figure 36. Because we

sample, we will not obtain the same value from each individual but

slightly different ones. Instead of seeing identical values for all individ-

uals in the control group, they are now represented by the green cir-

cles in Figure 37.

Let us now add an experimental group, in which the size and

shape of the region are, again, identical in each individual. In our

experimental group, the region is slightly larger (black diamond in

Figure 37) than that of our control group. In the experimental group,

the true value of whatever we are interested in is 110. Once again,

because we sample we will see slightly different values for each indi-

vidual instead of identical ones. We now obtain the green diamonds

in Figure 37 for our experimental group.

We were lucky. The difference between the green control sample

and the green experimental sample is highly significant using a two-

tailed t test (p = .00008). Had we been lazier and sampled less, the

estimates would be less precise and the variability of the estimates

F IGURE 35 Surface and length estimates in vertical sections.
(a) A cycloid line probe interacts twice with the surface of a neuron.
Scale bar: 5 μm. (b) A cycloid area probe interacts 10 times with
tyrosine hydroxylase immunoreactive axons in a minimum density
projection of an image stack spanning a 40 μm thick section. Image
planes were spaced 0.2 μm apart. To resolve interactions between an
area probe and axons in dense axon clusters (asterisk), the image
stack would have to be examined image by image. Scale bar: 10 μm
[Color figure can be viewed at wileyonlinelibrary.com]
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would be larger. Control and experimental values may now look like

the red circles and red diamonds in Figure 37. More variability in the

groups means a smaller chance to detect a group difference. Luck has

left us. The p value for the group comparison is now 0.065. The vari-

ability around the mean that we generated because we sampled

obscures a difference that we know exists. We sampled too little and

the CEs are not “good enough.”

CEs are important because their size has direct influence on statisti-

cal outcomes

Drawing samples generates variability that adds to the natural

variability present in the group. This relation is often expressed in the

following simple formula.

Vargroup =Varbiology +Varsampling

Individuals in groups are, most likely, never absolutely identical.

The true values may look like the green markers in Figure 37

reflecting biological variance (Varbiology), and the variability added by

the sampling (Varsampling) may turn them into the red markers in

Figure 37. Group variance (Vargroup) is given to us by standard sta-

tistics. A useful estimate of how much variability we added, that is, the

CE, would allow us to figure out if working harder on the sampling

would allow us to obtain a statistically significant outcome. If not, we

need more individuals in our groups, that is, a larger n. Not only

that—if the statistical outcome of a group comparison has shown a

significant effect, a useful CE estimate would also allow us to figure

out how much less work in terms of sampling or fewer individuals we

F IGURE 36 Sampling a volume and the precision of volume estimates. (a) Volume distribution of the hippocampal dentate gyrus granule cell
layer in an exhaustive series of 20 μm thick coronal sections (data from Basler, Gerdes, Wolfer, & Slomianka, 2017). (b) If subsamples are drawn
with increasingly larger distances between the sections, the volume estimates (point counts from the sections scaled by the sampling interval)
start to diverge. (c) The standard deviation of the estimates generated by a particular sampling divided by the mean, that is, the coefficient of

variation, is a measure of the precision that can be obtained with the sampling scheme. If, for example, every 10th section is analyzed, the
variability of the estimates generated with this sampling scheme amounts to less than 0.05, that is, less than 5% of the mean [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 37 The impact of sampling generated variance on group
variance. Sampling generates variability in a data set. Identical values
(dark circle and diamond) may turn into a variable set of values with
low (green) or high (red) variances depending on how much work we
invest into sampling. If instead the green values reflect the true values
of a parameter that has a natural variability indicated by the scatter of
the point (circles and diamonds statistically different), adding variance
by the sampling may turn them into the red data points (circles and
diamonds statistically not different). Knowing the amount of
variability that we add by sampling tells us if additional work could
reduce the scatter in the red data points. It also tells us if we can
expect a statistically significant outcome for the comparison between
groups if we invest more work [Color figure can be viewed at
wileyonlinelibrary.com]
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may be able to afford without jeopardizing our chances to see the

effect.

8.3 | Estimating the CE based on a single sample

Several ways have been proposed to calculate the variance that orig-

inates from the sampling of sections. A prerequisite for their use is

that the sections form a uniform random systematic sample, that is,

that they form a series of sections of the type typically cut in a

laboratory.

The key to understanding why the variability that originates from

the sampling of sections can be calculated based on a single sample is

to realize that counts obtained from one section will always be able to

forecast—more or less well—the counts that are likely to be obtained

from nearby sections. The shape of brain structures was not gener-

ated by a random number table. If the cortex is large in section 10 and

in section 20 of a series, there is a good chance that it will be large in

section 15 too (Gundersen & Jensen, 1987). Counts obtained from

sections in a series co-vary with each other, and we should be able to

calculate how much they do so. The variance that is not explained by

covariance between sections can be approximated mathematically

using the formula proposed by Gundersen and Jensen (1987) based

on the work of Matheron (1965, 1971). For a volume estimate using

counts of points in sections, Pi, the formula would be

Variancesections =
3A+C−4Bð Þ

12

in which

A is the sum, across all sections of the sample, of the counts in

each individual section, that is, Pi, squared

B is the sum, across all section of the sample, of Pi multiplied by

the counts in the following section of the sample, that is, Pi + 1, and

C is the sum, across all sections of the sample, of Pi multiplied by

the counts obtained in the next to the following section, that is, Pi + 2

A=
X

n

i=0

Pi
2 B=

X

n

i=0

Pi × Pi+1 C =
X

n

i=0

Pi × Pi+2

Note that the region, hopefully, was not present in the

section that would be following the last section that was collected

using the sampling scheme. The counts obtained from sections follow-

ing the sample are zero (see Table 1), that is, the last number to be

summed up for B and the last two numbers to be summed up for

C will be zero because Pi is multiplied by zero.

A variance estimate is nice, but what it is more informative to

know how variable the counts are relative to the mean. We therefore

calculate how large the variance is in relation to the counts. The calcu-

lation is similar to that of the CV, in which we divide the square root

of the variance, that is, the standard deviation, by the mean. To obtain

the CE, we divide the square root of the variance originating from the

sampling of sections by the count.

CE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3A+C−4Bð Þ=12
p

P

Pi

Table 1 provides a brief example of the calculations using the

small dataset generated in Section 5.3. The point count used in the

example could be exchanged for any other count of probe–object

interactions.

In this form, the Gundersen–Jensen CE estimator was used in, for

example, the paper that introduced the optical fractionator (West

et al., 1991). Several improvements have been made since then

(Gundersen, Jensen, Kieu, & Nielsen, 1999) and will be introduced in

the following sections.

Variability in the data is generated each time a region is sampled.

Typically, we sample a region twice. A sample of sections is used and,

within the sections, we apply the probe to a sample of sites in the sec-

tions. The variance that originates from sampling of the sections is

accounted for by the Gundersen–Jensen CE estimator in its original

form. Variance originating from the sampling within the sections can

now also be accounted for. The way in which this component of the

variance is estimated depends on the type of probe that is being

applied. Fortunately, there are currently only two ways—one for the

point probes used within sections to obtain a Cavalieri estimate of

volume and one for probes of area, length and number that return

counts of probe–object interactions, for example, isotropic lines,

spaceballs, and disectors (Section 8.4).

A second area of improvement pertains to the smoothness factor

of the structure that is being investigated. The ability of counts in one

section to forecast counts in adjacent sections may differ between

structures. Sections of a structure with a smooth surface (e.g., an

almond) are more likely to resemble each other than sections of a

structure with a crumpled surface (e.g., a walnut). How well counts

from sections can forecast counts from adjacent sections does, of

course, also depend on the distance between the sections in the sam-

ple. The smoothness factor allows the adjustment of CE estimators to

the quantitative morphological peculiarities of the region that we

assess (Section 8.5).

8.4 | Variance originating from the sampling within

sections

The variance originating from the sampling within sections has unfor-

tunately been referred to by a variety of names, for example, local

error, noise or nugget (referring to an irregular shape) variance. Here,

it is called it S2, which is short and the expression used in many equa-

tions in the literature.

Variance originating from point counts within sections — As

already illustrated in Figure 11, the precision of an area estimate

based on a point count in a section depends on the density of points

used. Obviously, the point count will have to be used. Another factor

that influences the precision of the estimate is the shape of the area.

The counts that a very “thin” area will return when a point grid is

applied to estimate area will be more variable than the counts that a
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very “thick” area may return. (Figure 38). Consequently, a second fac-

tor that we will need to use is a number describing the shape of the

area to which we apply the points. The relation between the variance

that is generated by the estimate, point counts, and shape was

described by Matérn (1985) and brought into an applicable form by

Gundersen and Jensen (1987) by way of the following equation.

S2 =0:0724×
b
ffiffiffi

a
p ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n×ΣPi
p

The point count obtained enters in the form of ΣPi, that is, the

total number of points counted in all sections. Shape enters the formula

in the form of the shape factor b
ffiffi

a
p , that is, the boundary length, b, of

the structure divided by the square root of the area of the structure,

a. This factor grows when the region becomes thinner. n refers to the

number of sections in which the counts were made.

Boundary length and area need to be known to calculate the shape

factor. While one obtains at least an estimate of the area from the point

count itself, this is not so for the boundary length. It is fairly easy to esti-

mate (Buffon, 1777, translated by Hey, Neugebauer, & Pasca, 2010;

Cruz-Orive, 1997; Howard & Reed, 2010), but one may decide not to

bother. Points come very cheap in terms of the time needed to count

them. If only 200 points are counted in 10 sections, the relative variability

of the mean for areas in the shape of a circle (the smallest possible shape

factor of 3.54) would amount to only about 1.7% of the area estimate.

ffiffiffiffiffi

S2
p

ΣP
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0724×3:54×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10×200
pp

200
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

11:46
p

200
=0:017

Very, very “thin” areas rarely exceed a shape factor of 30, and the

variability would still amount to less than 5%. Software packages

allow thousands of points to be counted with ease, and 1,000 points

would limit the CE to 0.5 and 1.5% for shape factors of 3.54 and

30, respectively. Aside from this, software packages may provide a

rough approximation of the shape factor based on the boundary

length of the area associated with the marked points. The shape fac-

tor could also be approximated using the nomogram provided by Gun-

dersen and Jensen (1987). Point counting within sections will likely be

a negligible source of variance if the number of points is as large as it

easily can be. The section-to-section variability of the shape of a

TABLE 1 An example of a CE

calculation. The example is based on the
olfactory bulb point counts from
Figure 13. Even though, there are only
seven sections in the sample in which
only 66 counts were obtained, the CE

generated by the sampling of the
sections amounts to only 0.06 or 6% of
the mean. The olfactory bulb was no
longer present in sections 8 and 9. The
counts are therefore 0, and the last
entries in the two columns to the right
will also be 0

Section i Pi Pi× Pi Pi× Pi + 1 Pi× Pi + 2

1 3 3 × 3 = 9 3 × 16 = 48 3 × 13 = 39

2 16 16 × 16 = 256 16 × 13 = 208 16 × 11 = 176

3 13 13 × 13 = 169 13 × 11 = 143 13 × 12 = 156

4 11 11 × 11 = 121 11 × 12 = 132 11 × 9 = 99

5 12 12 × 12 = 144 12 × 9 = 108 12 × 2 = 24

6 9 9 × 9 = 81 9 × 2 = 18 9 × 0 = 0

7 2 2 × 2 = 4 2 × 0 = 0 2 × 0 = 0

8 0

no olfactory bulb present

9 0

no olfactory bulb present
P

Pi = 66 A = 784 B = 657 C = 494

CE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3×784+494−4×657ð Þ=12
p

66
ffi0:06

F IGURE 38 Shape and the precision of point-count area estimates.
Using this point grid, a circle with the smallest possible shape factor of
3.54 will, depending on how the grid was placed, return a count
between 7 and 9. The second shape, composed of two hemicircles
(shape factor 5.8) with the same area of the circle, will return counts
between 6 and 10. The top right corner of the crosshairs was used to
count [Color figure can be viewed at wileyonlinelibrary.com]
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region and, therefore, the sampling of sections will likely be the domi-

nant source of variance.

For the olfactory bulb data in Table 1 and a conservative guess at

the shape factor of 5 (the region in Figure 13 does not look like a cir-

cle, but definitely not like two half circles either),

S2 =0:0724×5×
ffiffiffiffiffiffiffiffiffiffiffiffiffi

7×66
p

ffi8

or relative variability of the mean of
ffiffiffiffi

S2
p
P

P
=

ffiffi

8
p

66 ffi0:04 or 4%—not bad

for counting a total of only 66 points in seven sections.

Variance originating from other estimators within sections —

While an understanding of the variance generated by point counts is

rather intuitive (many points ≈ lots of precision, crumpled

shape ≈ less precision) this is not so for the variance originating from

other probe–object interactions in sections. Currently, there is no sta-

tistical well-founded approach to estimate it. Instead, one has to

resort to a nonintuitive approximation that, at least, has the advantage

of extremely easy calculation.

S2 =Σ interactions

If 100 cells are being counted in disector probes, S2 for the num-

ber estimate would be 100. If we observe 214 interactions of capil-

laries with the surface of spaceballs, S2 of the length estimate would

be 214.

The assumption that allows this easy calculation is that the num-

bers of interactions that we count each time we place a probe are

Poisson distributed (Cruz-Orive & Geiser, 2004). The usefulness of

the assumption has been verified in models (Schmitz, 1998) and real

object populations (Chia, 2002; Cruz-Orive & Geiser, 2004). A conve-

nient mathematical property of a Poisson distribution is that the sum

of two Poisson distributions is a Poisson distribution and that the vari-

ance of a Poisson distribution is equal to its mean. If the counts com-

ing from each probe originate from a Poisson process, than their sum

will do so too and the variance is equal to the sum

– S2 = Σ interactions.

Probe-feature interactions for number, length, or surface are har-

der to come by than point counts for volume. Routinely, one is first

outlining the structure of interest, which takes a nontrivial amount of

time even if done roughly. Subsequent work with high magnification

oil lenses requires time to change lens, oil or clean the section and

step across the tissue, and we of course need to look for the probe–

object interactions. Counting in excess of 200 interactions quickly

becomes tedious work. And 200 interactions could still generate a

S2amounting to 7%.

ffiffiffiffiffiffiffiffiffi

200
p

200
=0:07

In contrast to point counts, variance originating from sampling

within sections with probes for number, length, or surface may con-

tribute a large part to the total variance that we introduce with the

sampling.

8.5 | The smoothness factor

As mentioned above, the ability to predict counts in sections based on

the counts in close-by sections depends on both the shape of the

region that is being assessed and the distance between the sections. If

the distribution of the object of interest changes very gradually from

section to section, even sections that are spaced far apart may pro-

vide a good forecast. If the structure is shaped very irregularly, even

closely spaced section may have a poor ability to provide a good pre-

diction of what is happening in adjacent sections. The quality of the

prediction that can be expected from a sample of sections enters the

calculations of the CE by way of the smoothness, m. Smoothness refers

here to the appearance of the plot that is formed when the data

points obtained from the sample are plotted in order.

Once again, we need a number that can enter into the calculation

of estimate precision. The smoothness of the plot can itself be esti-

mated (Cruz-Orive, 1999, 2006; Gundersen et al., 1999; Kiêu, 1997),

and stereology software packages may include an estimate of smooth-

ness in their output. Estimators of smoothness are however not

robust when based on the small datasets that are available from typi-

cal quantitative studies (Cruz-Orive, 1999; García-Fiñana & Cruz-

Orive, 2004; Gundersen et al., 1999), that is, individual estimates may

be far off the true value. Also, estimates of smoothness must be

converted into the smoothness factor, α(m) or just α, before it can

enter into the equation that will provide the estimate of the CE. This

conversion is not trivial and may still require the use of interpolation

tables (Cruz-Orive, 2006). The bottom line is that smoothness is cur-

rently judged rather than calculated—perhaps also because estimating

something to enter into an estimator of something related to the vari-

ability of an estimate of something is exhausting the trust in the num-

ber that is finally generated.

Typically only two values of m are considered—zero or one. m can

be set to one if all jumps in the plot can be “predicted” by the preced-

ing or succeeding points (Figure 39a). m can be set to zero if the distri-

bution contains jumps that are not “predicted” by the preceding or

succeeding points (Figure 39b). If one is conservative and/or uncom-

fortable with making this judgment, one may decide on m being zero

independent of the appearance of the distribution. Estimates of the

precision are unlikely to be worse than the ones obtained for an m of

zero (Cruz-Orive, 1999, 2004).

Note that while selecting m does impact on the quality of the CE

estimate, an m of zero does not generate CEs that necessarily must be

much larger than those predicted by an m of one. Samples comprised

of twelve sections will generate CEs between only two and three per-

cent for both structures illustrated in Figure 39 (Basler et al., 2017;

Slomianka & West, 2005), even though they are best predicted by a

different m. That one may expect small CEs from both samples is also

suggested by the good fit between the lines connecting the data

points of the sections belonging to the samples and the underlying

volume distributions.

For the two cases of m, we can finally obtain smoothness factors

to enter into the CE calculations.

For m = 0, the smoothness factor, a, is 1/12; for m = 1, α is 1/240.
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The value to be used for m = 0 did already appear in the equation

introduced in Section 8.3. We now have the opportunity to change it

according to our perception of the smoothness of the count distribu-

tion that we obtained from a sample.

form=0CE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3A+C−4Bð Þ=12
p

P

Pi
form=1CE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3A+C−4Bð Þ=240
p

P

Pi

With the improvement of the CE estimator, it was suggested that

an m = 1 would be a more satisfying approximation than an m = 0

(Gundersen et al., 1999). Software packages may provide CE estimates

for m of both zero and one. These values may be taken as the upper

and lower bounds (e.g., Filice, Vörckel, Sungur, Wöhr, &

Schwaller, 2016), which, independent of the spacing of the sections,

are rarely exceeded (Basler et al., 2017; Cruz-Orive, 2004;

Slomianka & West, 2005).

8.6 | Putting it together: The current Gundersen–

Jensen CE estimator

In the original form, the Gundersen–Jensen estimator did not account

for the fact that the counts obtained from the sections are themselves

only estimates. The count that is used for a section may not be small

because the section is small but because, by chance, there were few

probe–object interactions. Because we only have estimates for the

values of the sections, we underestimate the ability of the sections to

predict counts in nearby sections. We therefore overestimate the var-

iance that is generated by the sampling of sections. In Section 8.4,

estimates of the variance, S2, originating from the probe–object inter-

actions in sections were calculated. S2 is subtracted in the term that

defines the variance originating from the sampling of sections,

because it led us to overestimate the error produced by the sampling

of sections. On the other hand, we actually generate this variance dur-

ing the sampling within sections. S2 is therefore added to the total

variance as an independent component.

Together with the possibility to adjust for the smoothness that

we perceive, we now have the Gundersen–Jensen CE estimator in a

generalized form that is in use today.

CE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 A−S2ð Þ+C−4Bð Þ×α+ S2
p

P

f

in which

S2 is the variance originating from the sampling within sections

calculated according to Section 8.4.

f is the value of our measurement function—a term that covers any

type of counts obtained in a section using the estimators presented in

this review. Σf is the sum of the counts of whatever across all sections.

A CE landscape that could be generated from a very large dataset

(all sections, >10,000 disector probes) of the hippocampal CA1 pyra-

midal cell layer (Figure 40a) was reasonably well approximated by

Gundersen–Jensen CE estimates (Figure 40b).

The CE of the olfactory bulb data set (Table 1) can now be rec-

alculated, for the last time, using the current Gundersen–Jensen

F IGURE 39 The smoothness of volume distributions. The graphs show samples of 12 sections (red dots) of the (a) entire mouse dentate
gyrus and (b) rat hippocampal CA1 pyramidal cell layer in coronal series of sections. Dark lines show the volume distribution based on all sections.
Sample values in (a) appear reasonably predictable by the surrounding values and m = 1 seems suitable for this sample, which also has been
verified empirically (Basler et al., 2017). Sample values in (b) do show sudden jumps (arrows) that do not appear to be predicted by the preceding
or following sample values. The appearance of the data plot and empirical results (Slomianka & West, 2005) suggest that m = 0 would be the most
suitable choice [Color figure can be viewed at wileyonlinelibrary.com]
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estimator. A CE estimate of �0.07 is obtained for m = 0 and an esti-

mate of �0.04 for m = 1. It is an almost certain win to bet that it is

somewhere between the two values.

Although trying to convey an intuitive understanding of how

this estimator works fills some space, and although the formula

looks fairly impressive to nonmathematicians, the most complicated

mathematical operation that has to be performed is drawing a

square root. A CE estimator is easily implemented in a spreadsheet,

in which one only would have to enter the counts obtained from the

sample of sections in their correct anatomical order to obtain a CE

estimate. I have even seen CEs being calculated using mobile

phones.

F IGURE 40 Empirical CE estimates and CE estimators. In (a), CEs of a number estimate were estimated empirically by collecting a very large
data set from hippocampal CA1 pyramidal cells (Slomianka & West, 2005). From this data set subsamples were drawn and the CEs were
estimated (CV of the mean of all subsamples for each combination of subsampling intervals). The Gundersen–Jensen (GJ) estimator (b) and Curz–
Orive's split sample estimator (c) provide useful approximations of the variance generated by the sampling. The estimator of Schmitz (1998)
(d) considers only the variance component generate by sampling within sections and provides a simple to calculate, rough-and-ready estimate if

the sampling of sections contributes very little variance to estimates [Color figure can be viewed at wileyonlinelibrary.com]
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What we gain from either the small effort that is required to gen-

erate a CE estimate or from “just” understanding the estimates pro-

vided by software packages is a way to judge if the estimates that

were performed are not only statistically valid—they always will be,

provided that the sampling was representative—but, finally, also if

they are “good enough” in the context of the study in which the esti-

mates are used.

8.7 | Finally: Good enough or not?

We have now two of the variables that formed the equation pres-

ented in Section 8.2.

CV2
group =CV

2
biology +meanCE2sampling

The relative group variance, that is, the standard deviation

squared divided by the mean, can be calculated from the mean and

standard deviation provided by routine statistics—whether they are

part of a pocket or desktop calculator, a spreadsheet or more or less

advanced statistics packages. It would be difficult to avoid seeing

them somewhere even if one tried. And the last couple of pages have

been about estimating the CEs. Note that the mean CE2 is calcu-

lated as

CE2animal 1 +CE
2
animal 2 + � � �+CE2animal n

� �

=n

and not by first calculating a mean CE and subsequently squaring it.

Well, when is a CE good enough? It is good enough if it is not the

weakest link of our quantitative procedures. If something needs to be

improved, the proper place to invest work would be the weakest link.

The ratio between the mean of the CE2s and the relative group vari-

ance will provide a guess at where the weakest link is located

(Gundersen & Østerby, 1981).

meanCE2sampling

CV2
group

If this ratio is smaller than 0.5, the variability introduced by the

sampling contributes less than half of the total variability that is seen

between animals. Natural differences between animals contribute

more to the variability seen in the group than the sampling that we

used. If we wanted to improve the reliability of the means presented

in a descriptive quantitative study or if we wanted to improve the

chance of statistically detecting a group difference, the proper place

to invest work would be the source of most of the variance. If the

main source is natural differences between subjects, increasing the

number of subjects would be more efficient than increasing the

amount of work that we invest into each subject. The CEs are good

enough; if necessary, we ought to increase n. If the ratio is larger than

0.5, the reverse applies. Sampling is a larger source of variance than

natural differences between animals. Improving the data by investing

more work into the subjects at hand would be more efficient than

increasing the number of subjects. Strictly speaking, the CEs are not

good enough.

How does one handle CEs that are not good enough? It depends

on the outcomes of statistical testing, the workload associated with

increasing n or improving CEs, but, first, a look at available data. In, for

example, Amrein, Slomianka, and Lipp (2004), we reported a ratio of

1.44 for one of the species in which dentate granule cells were coun-

ted. The estimate of the sampling-induced variability by far exceeded

the variability that was observed in the group. This ought to be

impossible—if we introduce variability by estimating, we ought to see

it in the group. The ratio between what we introduce and what we

see should never be larger than 1. Yet it is possible because we talk

statistics. It is possible because both the estimates of the CE and the

observed group variance are just that—statistical estimates based on

samples. We may, by chance, have drawn samples that generate CE

estimates that are larger than the real CE. We also may, by chance,

have generated estimates that by statistical accident are very similar

to each other. In this particular case, the CEs for the granule cell

counts were less than 0.1—the value that we also aimed for. The

group CV for the granule cell counts was however as low as �2%. We

would still be counting today if we had attempted to decrease CEs to

a value that would return a ratio below 0.5. Despite the large ratio,

we considered the CEs to be good enough.

Statistical outcomes by themselves may, for the time being, justify

a poor CE2/CV2 ratio. Sampling may be the weakest link, but if one

actually has detected a significant group difference, sampling was

apparently not sloppy enough to hide a significant effect. If the effect

is real, it also means that a smaller n, which is more responsible with

regard to animal experimentation ethics, would be sufficient to detect

the difference if the sampling is improved.

If assessments of the data and/or statistical outcomes do not pro-

vide a loophole for poor ratios, it is time to think. A ratio below 0.5 is

advice toward more subjects. Above 0.5, the advice is more sampling.

Whether one follows the advice depends on the workload and feasi-

bility associated with increasing n or decreasing the CE. Variance may

need to be just a little better to generate an outcome; additional sub-

jects may not be available, but additional sections may still be avail-

able from the subjects that we have already, or we could count more

in the sections we already have. In this case, it may be worthwhile try-

ing to improve estimates even though it would not be the most effi-

cient way to obtain an outcome. A fully calculated example that can

provide a clue if it is even worth trying can be found in West (2012c).

What CE value would be good enough for a descriptive study? In

that the size of the CE has no immediate impact on further calcula-

tions, the decision is somewhat arbitrary. One may aim for a CE that,

because of its relatively small size, implies some quality. A value typi-

cally aimed for is a CE of 0.1 or 10%. A more rational way is to adjust

the desired CE to the variability that is expected in the group

(e.g., West & Gundersen, 1990). One may also aim for a CE that in

subsequent experimental studies involving statistical testing would

allow the detection of group differences of a specified size for the

least amount of work (Gundersen & Østerby, 1981). In case of the
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quantitatively nasty subventricular zone of mice (Azim et al., 2012),

we found that decreasing the CE from 20 to 10% would require an

increase in workload of 300% and allow the detection of a 20% effect

in group sizes of five. Retaining a CE of 20% would require group sizes

of eight, that is, an increase in workload of “only” 60%, to detect a

20% effect. In this case, we decided that it would not be sensible to

increase precision in a descriptive study because later experimental

studies would more efficiently address their questions by a slight

increase in n instead of aiming for a lower CE. A similar rationale for

choice of a sampling scheme that balances the power to detect differ-

ences against the effort of analysis was also presented by Kim

et al. (2015).

8.8 | Other CE estimators

While the Gundersen–Jensen estimator is the most commonly used

one, several other CE estimators are available. The split-sample esti-

mator introduced by Cruz-Orive (Cruz-Orive, 1990; Cruz-Orive &

Geiser, 2004) is particularly attractive. While it is based on the mathe-

matical ideas also at the root of the Gundersen–Jensen estimator, the

split-sample estimator is intuitively easier to understand. We can split

our data in half. If the two estimates based on only half the data are

very similar to each other and therefore also to the estimate based on

all data, than the estimate based on all data must be pretty robust. If

doing less would not have made the estimate much less reliable, doing

more probably would not make it much more reliable. Of course, a CE

can be calculated.

CE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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in which τ is the thickness sampling fraction (tsf ) multiplied by the

section sampling fractions (ssf ), and Q−

o and Q−

e are the counts

obtained from the odd and even sections of the sample.

Similar to the Gundersen–Jensen estimator, the split-sample esti-

mator returns CE values that correspond well to values observed

empirically (Slomianka & West, 2005) but without a need to find a

smoothness factor or to calculate S2. Finally, CE estimates returned by

this estimator do not increase smoothly but show regional valleys and

peaks that are very similar to the CE landscape observed in the empiri-

cal data (Figure 40c).

Using computer simulations, both Glaser and Wilson (1998)

and Schmitz (1998) found that 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

P

Q−
p

closely approximated

the empirically observed CE in their models. Note that this

approximation is identical to an estimate based on S2 alone. Notably,

section-to-section variability was minimal in these models. They

therefore confirm the validity of S2 and that the CE will be dominated

by S2 if regions are very smooth. If a region is very smooth, one may

use a CE based on S2 alone as a rough-and-ready CE preview

(Figure 40d).

8.9 | Estimate precision and the orientation of the

sections

Estimate precision depends on how well a sample captures changes in

the distribution of the regions and objects of interest along the axis of

sectioning. Changing the orientation in which the sections are pre-

pared often changes the appearance of the region that contains the

objects of interest. If it does, it may also change the distribution along

the axis of sectioning. If the distributions differ in their smoothness

there will also be differences in the efficiency of the sampling

(Gundersen et al., 1999). One of the three directions in which the cen-

tral nervous system is usually cut may return a much higher precision

for a given amount of sampling than the other two directions. If work-

load is the most critical factor, cutting directions may be evaluated for

efficiency before a final decision on how to cut the tissue is made.

Figure 41 illustrates the effect of sectioning direction on the effi-

ciency of sampling for the dentate gyrus granule cell layer in the

mouse hippocampus. First, the cell layer requires about 110 sections

(20 μm thick) to be cut when the brain is sectioned coronally

(Figure 36) or sagittally but close to 140 horizontal sections. The

workload for the collection and processing of section can be cut by

�20% by deciding in favor of coronal or sagittal sections. Coronal sec-

tions return a CE consistently below 5% for the sampling intervals up

to 12 and well below 10% for all tested sampling intervals up to

20 (Figure 41). Sagittal sections are only slightly less efficient, but pre-

cision is less reliably predicted (Figure 41; see Section 8.10). Horizon-

tal sections do not only require more sections to cut, but precision

decreases more rapidly with increasing sampling intervals. The CE for

larger sampling intervals exceeds that of coronal or sagittal section by

almost a factor 2 (Figure 41). The largest tested interval, that is, every

20th section or five to six section per granule cell layer (110/20),

returns a CE of 8% from coronal sections. To obtain the same preci-

sion in horizontal sections, every 12th section or �12 sections

(140/12) have to be examined. In terms of the sections that need to

be prepared and analyzed, coronal sections actually require half the

work to obtain a precision of 8%. Savings of 20% while cutting and

50% while preparing and analyzing sections are well worth consider-

ing in large-scale projects. Similar differences in sampling efficiency

between sections of different orientation were also observed for the

hippocampal pyramidal cell layer (Slomianka & West, 2005).

Alas, our laboratory often uses horizontal section for this region

of the brain because the surrounding cortical areas are much easier to

assess using this orientation. We can look at all the things we are

interested in the same series. Overall efficiency is better, even though

we have to work a bit harder when going for some numbers.

8.10 | Estimates, CEs, and systematic variations in

morphology

What happens if there are systematic changes in the anatomy of the

region of interest? For many regions of the brain we know that they
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are composed of repetitive units with distinct anatomical appearances

that represent functional entities—cortical columns or barrels, tha-

lamic barreloids or cerebellar aldolase stripes to mention but a few. If

the distance between the samples matches the distance between the

anatomical units, not every part of the unit will have a chance to be

included in the sample, because the sample will hit the same spot in

each unit. Consequently, sampling as outlined in Section 3.4 would

not be representative, and the estimate generated and the assessment

of sampling precision would be fatally flawed. This supposition is as

easily dismissed as it is to step into the actual traps that anatomy

has lain.

The supposition may turn out to be true if there is a near perfect

match of sampling intervals and the size of the anatomical unit across

the entire section and if very few sections are used and if there are

very few animals per group. As soon as the intervals do not match

perfectly, the units will, sooner or later, again be hit in different places.

For example, cortical curvature alone will change the spatial relation

between cortical columns and a rectangular sampling grid. The

section or the sampling grid may also be rotated to minimize the

chances that intervals stay synchronized—an option that is part of ste-

reology software packages. If multiple sections are used and a random

starting point is used in each section, the units will be hit in different

places in different sections even in the unlikely event that this does

not occur in each section. In the very unlikely event that units are hit

in the same place in each section, there is still the chance that they

are hit in different places in different animals. If we consistently,

against all statistical odds, hit the same spots, the estimate obtained

would still be statistically valid, because it is the outcome, however

unlikely, of sampling that should be (and in the long run will be) repre-

sentative. The estimate at hand would, of course, be practically use-

less. Notably, the chance of this happening is only smaller but still

present if random independent samples are used. Suffice is to say that

sampling intervals should avoid known anatomical regularities to keep

the good odds as good as possible. Problems of periodicity when sam-

pling in sections could be avoided by the unaligned sampling

(e.g., Figure 6 in Cruz-Orive & Weibel, 1981), in which the sampling

locations still sample a systematic set of areas defined by the x- and

y-steps, but they are placed at a random location in these areas. How-

ever, unaligned sampling has not been implemented in the major ste-

reology software packages.

Rather than the functional units of the brain, it is the unexpected

quirks of anatomy that may play tricks with our ability to obtain pre-

cise estimates and/or to formally assess precision. In Figure 41, the

empirical estimate of the CEs obtained from sagittal sections do,

around sampling intervals 13 and 14, exceed any of the estimates that

are provided by the Gundersen–Jensen CE estimator and an m of

zero. Looking at the volume distribution of the sagittally sectioned

series in Figure 42, we see two sharp peaks that are separated by a

distance of 13–14 sections. With these sampling intervals, either both

peaks are contained within the samples of sections or both peaks are

missing from the samples, which generates either very large or very

small estimates.

The variance generated by the sampling is not detected by the

Gundersen–Jensen CE estimators (Figure 41), which may underesti-

mate actual sampling related variance for these section sampling inter-

vals by a factor 2. It is the folding of the cell layer in relation to the

F IGURE 41 Sectioning and estimate precision. Graphs show the empirically derived CVs (red) and Gundersen–Jensen CE estimates (triangles
for m = 0 and circles for m = 1) for the mouse dentate gyrus granule cell layer (data from Basler et al., 2017). CV estimates are based on
exhaustive series of 20 μm thick methacrylate sections. The graphs represent the CVs and CEs for coronal, sagittal, and horizontal series of
sections. With larger intervals between sampled section, CEs increase slower when the coronal and sagittal series are sampled than when the
horizontal series is sampled. With the exception of sampling intervals between 12 and 15 (see Section 8.10), empirical CVs are estimated
reasonably well by CE estimates using an m of 0 [Color figure can be viewed at wileyonlinelibrary.com]
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plane of the section that plays a trick on the CE estimates. Sagittal

sections will twice pass through a large part of the cell layer, and two

peaks are sufficient to generate a period. That does not make CE esti-

mators useless. It does however mean that having a good feeling for

how anatomy may impact on the precision of estimators is helpful

when evaluating estimates of precision. Once again, sampling intervals

close to such periods should be avoided.

8.11 | Designing a useful sampling scheme

For the sampling scheme, we need to select parameters for the selec-

tion of the sections, for the selection of sampling locations within

each section and for the size of the probes that will be applied at each

sampling location.

Selection of the sections — Selecting sections means deciding on

the spacing of the sections, that is, the section sampling fraction, in

the series that will be used for an estimate. The number of the sec-

tions that are needed will depend on the shape of the region of inter-

est and the distribution of the objects of interest within the region.

Shape and distribution define how much signal there is in each sec-

tion. If a region appears large in a section, we can expect to see many

of the objects if they are more or less evenly distributed in the region.

If the objects are distributed unevenly, the amount of signal depends

on both the size of the region in the section and the local density of

the objects. Key to the selection of a useful section sampling fraction

is not to miss the parts of the region which contain most of the signal

that we are interested in. Looking at the volume distributions of hip-

pocampal divisions and cell layers in Figure 36 or Figure 39, I would

not want to miss the large peaks. This means looking at the width of

the peaks, and deciding on section sampling fractions that place two

or three sections within the peaks. If the signal is distributed rather

evenly, the use of about 10 or even fewer sections has been

suggested (Gundersen et al., 1999). A rather even distribution of the

signal would mean a smoothness factor close to 1 and, using this num-

ber of sections, only a small contribution of section-to-section vari-

ability to the total variability of the estimate. It would, of course, be

nice to have actual sections or distributions to look at. If that is not

the case, a careful evaluation of an atlas may help. Where does a

region begin and where does it end? And how does its shape change

from one level to another? Looking at the respective coordinates may

provide a clue to the appropriate spacing of sections. The final deci-

sion on the section sampling fraction must rest with the person most

experienced with the distribution of the signal in a region—more likely

the principal investigator rather than a stereologist knowing not much

more about a region than its name.

Selection of sampling locations — In Section 3.3, it was shown

that any unevenness in the distribution of the structures of interest

will be captured better and better the more sampling sites are placed

in a region. A typical recommendation would be a total, across all sec-

tions, of 100–200 sampling sites (Gundersen et al., 1999). Next, the

distances between sampling sites along the x- and y-axes of the sec-

tions need to be estimated. This requires an estimate of the area of

the region of interest that is available in the sections selected for

analysis

In Section 5.3, point counts were used to estimate the area of com-

bined granule cell, internal plexiform and mitral cell layers in the ham-

ster olfactory bulb. The total number of points counted was 66 and the

area associated with each point was 125,000 μm2. The total area in the

sections is therefore 66 × 125,000 μm2 = 8,250,000 μm2. If the region

is to be hit by 100 probes, it needs to be hit once for each 1/100th of

its area, that is, once for each 8,250,000 μm2/100 = 82,500 μm2. The

step size along the x- and y-axes would therefore be the square root of

82,500 μm2 or �287 μm. If the estimate was made in one series and

the decision is made afterward to rather pool two series for actual

quantification, about twice the area will be available. Step sizes of

�406 μmwould return�100 sampling sites.

The area sampled for each step along the x- and y-axis does not

need to be a square. Depending on the looks of the region in a typical

section, a rectangle may be more suitable. For example, if a region

forms a more or less vertical, long, and narrow band, one may select

smaller x-steps and larger y-steps (West & Gundersen, 1990). This

increases the chances to occasionally hit the region in each

section instead of hitting it very often in some sections and very rarely

in others. The variability of the estimates from section to section and,

thereby, the variability of the final estimate, will decrease.

Also, 100 sampling sites should be amended with “of which a sat-

isfying fraction returns some signal.” Objects of interest may be

heavily clustered within the sections, for example, all the structures of

interest may be focused within one spot about the size of 1/100th of

F IGURE 42 Periodicity in a volume distribution. In sagittal
sections, large parts of the mouse dentate granule cell layer will twice
run almost parallel to the plane of the sections. The large areas of the
layer in these sections will result in large point counts (red arrows). If
a sample of sections includes or misses both peaks (section sampling
intervals of 13 or 14) the resulting volume estimates will be very large
or very small generating the large CVs for these intervals in sagittal
sections shown in Figure 41 (data from Basler et al., 2017) [Color
figure can be viewed at wileyonlinelibrary.com]

SLOMIANKA 47



the total area. Of the 100 samples applied, there would be 99 empty

samples and only one which contains signal. It also means that the

cluster may be completely missed in some animals while being hit

twice in other animals. This would massively increase estimate vari-

ability. If there are many clusters within each animal the danger of hit-

ting very few or very many decreases. Depending on the perceived

heterogeneity of the signal distribution, step sizes may be adjusted to

increase the number of samples that return a signal.

Selection of the probe size — If a site of the section is sampled

that contains objects of interest, the probe should be sized to also

return a signal from this sampling site. This is just a matter of effi-

ciency. Some data should be returned by the probe to pay for the

effort of generating it. We should, on average, observe one or more

probe-feature interactions. A disector should, on average, return a

count of one or more cells, or a spaceball should, on average, intersect

one or more axons. There will always be some variability that depends

on the distribution of the objects of interest within the region, and

some probes may well return a count of zero. Without beforehand

knowledge, selecting the probe size is a trial-and-error process. One

or more sections are selected and a probe is tried out in a few sam-

pling locations chosen more or less at random. If there are much more

than two counts from each probe and no or very few probes that do

not return a count, the size of the probe could be decreased. If there

are many probes that do not return a count and few that return a

count of one or two, probe size should be increased. Instead of using

probes that consistently return high counts, it would make more sense

to use a smaller probe and more sampling sites. First, more sampling

sites would allow a better coverage of any unevenness in the distribu-

tion of the objects of interest. Second, it may be visually more com-

fortable to count few interactions with each probe. While illustrative

of many cases related to counting rules, most of the figures of probes

in this review show more probe-feature interactions than one would

hope to see in an average probe actually used to count.

With about 100 sampling sites and probes that return between

one to two counts on average, the final count will be in the range of

100–200. Note that because of S2, the CE obtained with the

Gundersen–Jensen estimator cannot be smaller than the square root

of the count divided by the count. For a count of 100 that would be

10/100 or 0.1 or 10%. Improving this number would demand signifi-

cant amounts of additional work. To decrease the CE to 5% we would

have to obtain a count of 400. An overall CE of 10% is often aimed

for (e.g., Mills Schumann & Amaral, 2005) because it can be achieved

with a reasonable amount of work and, maybe more importantly,

because in many cases a CE of this size accounts for little of the group

variance (Gundersen & Østerby, 1981). Group variance is therefore

more efficiently improved by adding animals instead of counting more

within each animal.

The high magnifications required to count probe-feature interac-

tions limit the field of view that is accessible to us. If there are very

few of the objects of interest, many fields may not contain any, and

many probes will not be able to return a count. We may just have to

accept that. It does not impact on the ability to generate a valid esti-

mate (West, Oestergaard, Andreassen, & Finsen, 1996). At least,

empty probes do not take that much time to count. At one point or

another, it may become more efficient to just look at the entire

section (asf = 1) or to resort to more advanced area sampling schemes

(Boyce & Gundersen, 2018; Gardi et al., 2008; Keller et al., 2013).

Better be safe than sorry — When a sampling scheme is designed,

one may add a little to everything—maybe a few more sections than

one expects to need, some extra sampling sites and a slightly larger

probe. There are two reasons to do so.

First, it is not known if the animal that was used to design the

sampling scheme is close to the group average. If the animal would

return large counts compared to others in the group, a sampling

scheme that keeps to minimum requirements will return few and

maybe too few counts in the other animals. The sample that we drew

from this animal may not be close to the average of this animal either.

The series of sections may have contained a larger section than other

series. The area estimate may have been on the large side of the aver-

age, and the probe may accidentally have returned a few more cells

from the sites at which it was tried than it would do on average. Cut-

ting it close may result in subsequent estimates to return less signal

than it was hoped for. At this point, for example, the step size that has

been calculated may be rounded down to a number that is both easy

to remember and to report. Instead of the 287 μm that were calcu-

lated above, one may use 270 μm, which should increase the number

of sampling sites by about 13% (2872/2702 ≈ 1.13).

Second, nothing is more frustrating than having to do the same

animal twice. Being generous with parameters at the first trial does

not only mean that there are solid data to adjust the sampling scheme.

It also means that one is definitely done with the animal.

Assessing the sampling scheme — Once the first complete esti-

mate has been generated, the sampling scheme should be revisited.

Was the desired number of sampling sites obtained using the selected

step sizes? Did the probes generate the number of counts that was

aimed for? Which CE was obtained using the sampling scheme?

According to the answers to these questions, the step or probe sizes

or the number of sections used can be increased or decreased.

9 | QUANTITATIVE MORPHOLOGY AT

THE BENCH

The beauty of design-based stereological methods lies in their very

strong mathematical foundations. If these methods are applied cor-

rectly, we will obtain a correct number associated with the objects

that we have probed in our samples of the tissue. Another fact that

hardly needs discussion is that whenever a beautiful theory is faced

with everyday life there will be problems, and when design-based ste-

reological methods are faced with the lab bench, there will be prob-

lems too. Reread the second sentence of this section—“the objects

that we have probed in our samples of the tissue” is a strong qualifier of

“correct number.” It leaves plenty of room for questioning the num-

bers. Are all objects that we should be interested in visible in the sec-

tions? How does tissue processing—before we ever have a chance to

look at a sample—influence the parameter that we are interested in?
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And are the representative samples that we draw as representative as

they ought to be? Some of the problems that need to be solved to

answer these questions positively are addressed in the following

sections.

Note that these are purely practical problems that have no bear-

ing on the theoretical validity of stereological methods. More impor-

tantly, note that any quantitative morphological approach is likely to

be faced with one or more or all of the very same problems. We may

fail in addressing these problems. However, if we do so, we will fail

least miserable if the methods that we use are not fraught with intrin-

sic problems and, at least in theory, must provide the right result.

9.1 | Brightfield, fluorescence, confocal, or

electron microscopy

The principles of sampling and probing do not change with the type of

microscopy that is being used. However, workload and technical

requirements may differ dramatically. If objects of interest can be

resolved reliably using traditional brightfield microscopy, there is no

reason to use more advanced techniques. Single-label immunofluores-

cence microscopy means working in the dark with expensive, fading,

sometimes less than brilliant dyes without offering clear methodologi-

cal advances over brightfield immunohistochemistry. For multiple-

label studies one may have to resort to fluorescence, and multiple

labels are a means of efficiency (Amrein et al., 2015; Filice

et al., 2016; Kreutz & Barger, 2018), although there would be alterna-

tives (Hsu & Soban, 1982; McMenamin, 1999; Osman, Oijordsbakken,

Costea, & Johannessen, 2013). Not all traditional epifluorescence

images are as blurry as advertisements for confocal microscopes

would suggest, and they are suited to count the interactions of

objects like nuclei, nucleoli, or axons with probes (e.g., Figure 20).

Confocal microscopy must be resorted to if the increase in resolution

is needed. Stack acquisition times may be very fast, but analysis of the

stacks is not. Confocal microscopy is likely to require the intermittent

storage of large numbers of high-resolution stacks for offline analysis.

Further practical points that need attention when confocal micros-

copy becomes part of quantitative morphology have been discussed

by Peterson (2014) and Kubínová and Janáček (2015). Confidence

and routine are important ingredients to the generation of high quality

material necessary for quantitative assessment, and they may well

outweigh other considerations when a method of light microscopy is

chosen.

The generation of a sufficient number of sampling sites has been

a critical factor in many electron microscopic applications. Often each

site to be sampled is equal to one tissue block that needs to be

processed (e.g., Cardoso et al., 2008; Geinisman, Gundersen, van der

Zee, & West, 1996; West, Bach, Søderman, & Ledet Jensen, 2009),

limiting the sampling sites assessed to numbers that would be consid-

ered very low in other contexts. A detailed workflow for electron

microscopic study can be found in West et al. (2009). Advances in the

control of the stage and image acquisition techniques in electron

microscopy have made it possible to collect multiple samples from

large sections (Reichmann et al., 2015). Ion beam milling (Knott,

Marchman, Wall, & Lich, 2008) may facilitate sample acquisition fur-

ther. Because of the large depth of field of traditional transmission

electron microscopy, there is no equivalent to the optical application

of probes in light microscopy. Physical sections need to be compared

for number estimates, and isotropic probe-feature interactions for

length and surface estimates need to be guaranteed by randomizing

the orientation of the tissue using the Isector or vertical sections.

Using electron tomography, it has been possible to apply probes for

volume and number to the equivalent of extremely thin (2–5 nm) opti-

cal sections (Vanhecke, Studer, & Ochs, 2007).

9.2 | Cutting, staining, and coverslipping

Both the placement of optical probes within tissue section and the

measurement of section thickness (see Section 9.3) ask for thick

sections. This request is sometimes in conflict with our abilities to cut

or embed sections and, importantly, to adequately stain the sections.

Before these problems are addressed, we will quickly look at the

number of series that are to be cut. Unless only one or two series are

cut, prime numbers of series should be avoided. If, for example, five

series are cut, the only options are either counting in one series, that

is, at every 5th section, or in every section by pooling all series. There

are no choices in-between that would allow the pooling of series and

maintaining uniform distances between the sections that have been

pooled. If, instead, six series are cut, all series could be pooled to

count in every section, every second series (Series 1, 3, and 5, or

Series 2, 4, and 6) could be pooled to look at every second section,

every third series (Series 1 and 4, Series 2 and 5, or Series 3 and 6)

could be pooled to look at every third section, or just one series could

be used to count in every sixth section. If it is not clear from the out-

set if one of the six series is sufficient to obtain a count that is “good

enough,” other series may be reserved. One may try to obtain a good

estimate using Series 1 and reserve Series 4 just in case it turns out

that more sections are needed.

Cutting — Cutting presents the least problem when fixed tissue is

being processed. From our own experience, it does become difficult

to cut cryostat sections much thicker than 50 μm without the sections

developing cracks that may interfere with subsequent processing or

with the assessment under the microscope. Thicker sections of excel-

lent quality can be cut in the form of frozen sections (Figure 43), that

is, a frozen tissue block is cut with a room-temperature knife. The sec-

tions melt in the form of ugly little sausages onto the knife, but unfold

beautifully without rolling once they are picked up with a brush and

placed into a liquid medium (cryoprotectant, buffer, etc., Figure 43c,d).

Depending on the speed of the movement of the knife (thicker

sections—slower movement), we have cut sections up to 200 μm thick

and not reached the limit of what would be feasible. Sliding micro-

tomes are easily modified to cut frozen sections (Figure 43a). Paraffin

embedding and cutting techniques have also been adjusted to allow

the preparation of sections up to 100 μm thick (Feldengut, Del

Tredici, & Braak, 2013). If the sections do not require staining because
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the structures are intrinsically visible, for example, because of pigmen-

tation, autofluorescence or the induced expression of fluorescent pro-

teins, only the working distance of the microscope objective limits the

thickness of the sections that can be assessed.

The calculation of the CEs requires the counts from individual

sections to be in the correct anatomical order. If multiple sections are

stained free floating in one well or if they are collected in, for example,

an Eppendorf tube for efficient storage, it is advisable to collect a ref-

erence series in anatomical order (Figure 43b). This series may be used

as a reference to correctly order the sections of other series once they

have been processed.

Staining — Staining is not critical using many classical histological

stains that are based on low molecular weight dyes that easily penetrate

the tissue, such as counterstains applied to immunohistochemically sta-

ined sections or as stand-alone Nissl stains. Using high molecular weight

compounds during, for example, immunohistochemical staining, penetra-

tion of the compounds into the tissue rapidly becomes the factor that

limits the thickness of the sections that can be processed (e.g., Lyck

et al., 2006; Nomura et al., 1997). While decreasing aldehyde concentra-

tion in the fixative may increase penetration, increasing incubation time

or membrane permeabilization may improve penetration less than one

would expect (Torres et al., 2006). The use of zinc-based fixatives

(Beckstead, 1994) instead of aldehyde-based ones has been reported to

increase penetration for some surface antigens to 100 μm (Nykjær

Nikolajsen, Jensen, &West, 2016). Critical to the suitability of the mate-

rial is the presence of stained structures in the center of the section. Ide-

ally, the stained structures are evenly distributed throughout the section,

which can be formally assessed by looking at the z-axis distribution of

probe–object interactions (Figure 21, see also Section 9.5).

Did every object that we are interested in stain? Even classical

Nissl counterstains have been reported to poorly stain some neurons

that are rendered clearly visible immunohistochemically (Whitney,

Kemper, Rosene, Bauman, & Blatt, 2008) or to return significantly lower

number estimates than those obtained from immunohistochemically

stained sections (Zhu, Liu, Zou, & Torbey, 2015). In turn, markers like

NeuN, which are thought to be expressed by most neurons (Mullen,

Buck, & Smith, 1992, who already defined some exceptions), may gen-

erate much lower neuron counts than classical stains (Lyck et al., 2009).

The selective loss of NeuN from neurons (McPhail, McBride, McGraw,

Steeves, & Tetzlaff, 2004; Portiansky, Barbeito, Gimeno, Zuccolilli, &

Goya, 2006; Ünal-Cevik, Kilinc, Gürsoy-Özdemir, Gurer, &

Dalkara, 2004; Wu et al., 2010) is maybe not that surprising if one con-

siders that it is a gene splicing factor (Rbfox-3; Dent, Segura-Anaya,

Alva-Medina, & Aranda-Anzaldo, 2010; Kim, Adelstein, &

Kawamoto, 2009; Kim, Kim, Adelstein, & Kawamoto, 2011) with

phosphorylation-dependent antigenicity (Lind, Franken, Kappler, Jan-

kowski, & Schilling, 2005). It has been suggested that functional states

of neurons may influence NeuN expression or that NeuN may even be

suitable to investigate functional state (Duan et al., 2016; Maxeiner,

Glassmann, Kao, & Schilling, 2014). The loss of marker expression

rather than a loss of the cells that expressed the marker has been

observed in other instances (e.g., Filice et al., 2016; Stanley &

Shetty, 2004). Using a single marker, it would be difficult to answer if

all objects of interest stained with absolute certainty. Both the loss of

marker expression from otherwise persisting structures and the loss of

the structures themselves may be viable and equally interesting inter-

pretations of the data.

Coverslipping — Another way to “gain” section thickness is to

avoid losing section thickness during the final steps of tissue

processing. Most of the decrease in section thickness is due to the

drying and dehydration of the sections prior to coverslipping. A

section cut at 40–60 μm in the cryostat may only be 12–15 μm thick

once it has been processed and is coverslipped (Bonthius et al., 2004;

Carlo & Stevens, 2011). An efficient way to conserve

section thickness is the coverslipping with aqueous mounting media

that avoid the drying and dehydration steps (Bonthius et al., 2004).

F IGURE 43 Preparing frozen
sections on a modified sliding
microtome. (a) A custom-made
freezing attachment filled with dry ice
(and a few ml of alcohol to facilitate
the cooling) cools the mounted tissue.
(b) A well plate to collect sections of a
reference series in correct anatomical
order and lockable tubes to collect
nine additional series for storage prior
to further processing.
(c) Disconcerting appearance of a
freshly cut 40 μm thick section being
collected off the knife, and
(d) beautiful unfolding of the actual
section illustrated in (c) when placed
into buffer [Color figure can be
viewed at wileyonlinelibrary.com]
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Although commercial preparations are quite expensive in comparison

to solvent-based media, the expense may be small in comparison to

the remainder of a project. Also, it is possible to prepare rather inex-

pensive aqueous media like Moviol or Apathy's mounting medium.

Using aqueous coverslipping media, section thicknesses close to the

value set during cutting can be obtained. Yet another possibility is the

coverslipping of sections by epoxy resin embedding, which also con-

served most of the section thickness (Miettinen, Kalesnykas, &

Koivisto, 2002). In addition to providing thick sections that minimize

errors of section thickness estimates and that have ample room for

the placement of optical probes, the wider spacing of structures along

the z-axis also makes it easier to identify probe–object interactions.

For example, densely packed cells are easier to count in a disector if

they retain their size along the z-axis instead of shrinking into a stack

of pancakes.

Missing sections — The loss of sections during the cutting of the

tissue is usually obvious. The number of the series concerned and the

position of the missing section should be noted. The loss of sections

or parts thereof during later stages of, in particular, free-floating tissue

processing may be less obvious. Sections may inadvertently stick to

sieves or tube caps, become entangled in brushes or be siphoned into

oblivion during the pipetting of solutions. The loss of sections can and

should be a rare event. It is a very rare event in many labs, and it is

recommended to consult one of these for advice or training if the loss

of material is considered a problem. A problem that needs to be

solved when dealing with sections lost unknowingly during tissue

processing is to find out if sections are actually missing. The easiest

way would be noting down how many sections have been cut and col-

lected in each series. The reference series already mentioned may also

allow determining the (at least approximate) position of the lost

section in the series by comparing the appearance of the sections that

are present with each other and with the appearance of the sections

in the reference series.

How are missing sections dealt with? If sections or parts of sec-

tions are lost in some animals of a group but not in all of them, the esti-

mates obtained from the animals in which material is lost will turn out

smaller than the estimates in the animals in which all material was avail-

able. The group mean will decrease and the group variance will

increase. If the amount of lost material in control and experimental

groups is similar and if the position of the lost material is random, one

may decide not to do anything and just accept increased group vari-

ances. Increased variances will decrease chances of detecting group dif-

ferences, but, again, provided that losses are comparable in controls

and experimental, differences in the means should be preserved. If the

position of the missing section can be determined, it is valid to interpo-

late a value for the missing section from the adjacent sections. Some

stereology software packages do contain the necessary routines.

If the purpose of the study is descriptive, that is, the actual mean

and not a difference between two means carry the important informa-

tion, interpolation will be necessary. If the lost section carries a signifi-

cant amount of signal or if multiple sections have been lost, it may be

advisable to discard the series from further analysis. There are no firm

rules when this needs to be done.

9.3 | Measuring section thickness

Optical fractionator estimates typically require measurements of

section thickness. Also, a volume estimate may require a measure-

ment of section thickness if the estimate is used as a reference vol-

ume for estimators that themselves only return density estimates.

Currently there are no methods to generate an unbiased estimate of

section thickness. In contrast to disector probes, in which errors at

the top and bottom faces of the probe cancel out, errors in measuring

section thickness are likely to be additive (Figure 44; West

et al., 1991). A measurement of section thickness requires the defini-

tion of the top and bottom of a section to determine the distance

between them. This in turn requires decisions about when features at

the top and bottom appear in the focal plane of the objective lens.

The focal plane actually has a thickness—the “depth of field.” Features

at the very top and bottom of the sections will appear in focus at all

possible locations within the depth of field (Figure 44), and an

observer may choose any of these positions depending on the percep-

tion of focus.

For oil immersion lenses with a NA (usually present on the objec-

tive lens collar) in the range of 1.2–1.4, the depth of field would be

around 0.5 μm. For fluorescence microscopy, this value varies with

the wavelength of the light that is used. It becomes smaller toward

the blue end of the spectrum and may reach about 0.8 μm toward the

red end of the spectrum for a NA 1.2 objective lens. Using 0.5 μm

thickness for the focal plane in the middle of the visible spectrum, it

will only be possible to measure section thickness to within 1 μm of

its true value. Note that the error is independent of section thickness,

that is, the thicker the section is, the smaller will the relative error

become. One μm of a five μm thick section amounts to a possible

error of 20%—the same measurement error will amount to only 2% if

the sections are 50 μm thick. There are no firm rules for the size of

the error that would be acceptable, but a thickness of the sections

F IGURE 44 Measuring section thickness. Section thickness, t,
can only be measured with a precision to within twice the depth of
field (DoF, red boxes) of the objective that is used to make the
measurement. Depending on the perception of focus, it may be
overestimated (early recognition) or underestimated (late recognition)
by the depth of field of the focal plane. Variations in top and bottom
focal plane positions within the field of view but outside the actual
sampling site require top and bottom focal plane positions to be
found at the sampling site [Color figure can be viewed at
wileyonlinelibrary.com]
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close to 20 μm or more after processing is often aimed for

(e.g., Wirenfeldt, Dalmau, & Finsen, 2003), that is, a possible error of

5% for oil immersion objective lenses with NAs around 1.3.

So far, top and bottom surfaces of the section have been taken

for flat planes. They may not be. Depending on the embedding and

sectioning, the surfaces will appear more or less uneven (Carlo &

Stevens, 2011; Helander, 1983). The least unevenness will be present

in sections from tissues embedded in hard media (Hasselholt,

Lykkesfeldt, & Overgaard Larsen, 2015; Helander, 1983) cut with very

sharp knives, while vibratome-cut fresh tissue may exhibit massive

surface irregularities. When we approach the irregular section surface

with the focal plane, not all parts of the field of view will appear in

focus at the same time. Deciding at which time to start the measure-

ment is a second source of error. Ideally, section thickness should be

measured within the areas of the section, in which we will place the

probes (Figure 44). For example, if disectors are used, it is best to

measure somewhere within the counting frame that represents the

disector. Alas, this generates yet another problem. At the location of

the probe, there may not be anything stained present at the top or

bottom of the section if the stained structures occupy only little of

the tissue. Fortunately, even unstained tissue is not invisible or impos-

sible to focus. Background staining and/or light diffraction of different

tissue components will give the tissue a fine texture when in focus

(Figure 45). Also, small dust particles that have settled on the

section during processing should be contained in the depth of field

together with focused tissue at the top of the section (Figure 45).

Measuring thickness is not trivial, and a single measurement may

consume more time than assessing a sampling site for probe–object

interactions. To limit the effort, section thickness does not need to be

measured at each sampling location. In the same ways in which we

can select representative samples of the tissue to assess with probes,

we may select a representative sample of thickness measurements,

that is, we can decide to measure thickness at, for example, every 2nd,

5th or 10th sampling location. Also, as will be discussed in Section 9.5,

it may not make sense to measure thickness at all at locations at

which we do not obtain counts with the probes. Thickness measure-

ments at these locations may therefore be skipped.

9.4 | Using the entire thickness of the section

Guard zones have been included in the optical disector on technical or

observational rather than mathematical grounds (Andersen &

Gundersen, 1999). The technical reason of the loss of objects close to

the section surfaces can be investigated. Although sections prepared

using different cutting techniques do exhibit different degrees of sur-

face artifacts, these artifacts may not interfere with the probing of the

tissue. In contrast to observations in vibratome sections (Andersen &

Gundersen, 1999), Carlo and Stevens (2011) found that although

cryostat sections do show a surface roughness, the surface can be

considered smooth when nuclei are counted. Because surface irregu-

larities were on a much smaller scale than the size of the nucleus, they

would be unlikely to result in the loss of counts. If there is no loss,

there is no technical reason to include a guard zone. Sections of meth-

acrylate embedded tissue were also found to be smooth when nuclei

or nucleoli were used as the counting units (Hasselholt et al., 2015).

There are two observational reasons that may require guard

zones. First, as already mentioned in Section 6.4, the correct identifi-

cation of counting units that have a complex shape may require a

deep guard zone. At least with regard to the appearance of nuclei or

nucleoli in the nervous system, we are lucky. Light microscopically,

their correct identification is not a problem. Complexly shaped struc-

tures, like vascular branch points, are more demanding and at least

their valence, that is, whether a vessel divides into two, three or more

smaller vessel, is likely to require a deep guard zone if we want to

count branch points of a specific valence.

The second observational reason for the inclusion of guard zones

is the lost caps problem that already haunted Abercrombie's method

F IGURE 45 Finding the top focal plane of a section. The three images of Giemsa stained methacrylate embedded rat cortex were acquired
with 0.6 μm steps along the z-axis. Image (a) is clearly out of focus. Some cellular features appear sharp and the background becomes finely
structured in Image (b), which may represent the early recognition of the top focal plane in Figure 44. While sharpness further increases in the
Image (c), a fine grain of dust resting on the surface of the section (arrowheads) is now out of focus. The depth of field should be able to contain
both dust and tissue at the very top of the section. Image (c) may represent the late recognition of the top focal plane in Figure 44. Scale bar:
10 μm [Color figure can be viewed at wileyonlinelibrary.com]
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(Konigsmark, 1970). Lost caps refer to parts of the counting unit that

are too small to be recognized in a section, like the topmost cap of a

nucleus just included in the section at its lower surface. If this cap is

not recognized, that is, lost from the count, an underestimate will

result. This will occasionally be the case if we include the lower sur-

face of the section in the disector probe. After the cap was lost in one

section, the remainder of the counting unit will be located in the fol-

lowing section. Would the nucleus (or any other counting unit) be

immediately recognized when we look at the top of this section or

not? If we do, the unit is indeed lost. If we do not, the nucleus would

be counted in the following section. As pointed out by West (2012b),

the theoretical chance that the exact point is hit at which the unit is

not recognized in one section but recognized in the next one is negli-

gible. Practically, this is not the case. What is recognized in the top-

most focal plane of a section will be influenced by what is seen out of

focus behind it—a phenomenon also known from the physical disector

(Tang, Nyengaard, de Groot, & Gundersen, 2001). There is no way of

telling how much of the underestimate will remain. Empirical evidence

suggests that counts that are obtained with minimal guard zones may

not differ from those with larger ones (Schmitz et al., 2000). We

would like to obtain the best possible numbers. We therefore need to

judge if errors associated with maximizing and measuring

section thickness are likely to be smaller or larger than those associ-

ated with the omission of guard zones. This call can only be made by

an assessment of the material at hand.

9.5 | Shrinkage

The measurement of section thickness is required because of shrink-

age along the z-axis during processing. Shrinkage is the antagonist of

all quantitative morphological methods. Beyond section thickness,

shrinkage may or may not influence the counts that are returned by

the probes that are applied to the tissue.

Volume — Implicit in the term shrinkage is a change in the volume

of the tissue that is investigated. Dorph-Petersen et al. (2005) provide

a detailed description how gross volume changes can be monitored

prior to sectioning. If shrinkage is known, pre-shrinkage estimates

may be calculated to facilitate the comparison of data from different

laboratories. Note that different regions of the brain and different

compartments of each region may shrink differently (discussed in

Dorph-Petersen & Lewis, 2011).

Number — Estimates of number, which is a dimensionless param-

eter, are sometimes presented as the only estimates that are not

affected by tissue shrinkage. Raisins in dough are the example that

has often been used to illustrate why this should be so. The dough

may rise or collapse/shrink, but the numbers of raisins in the dough

will stay the same. Raisin density, of course, will change. That number

estimates are not affected by shrinkage is at least true for physical

fractionator designs. They do not require measurements along any of

the tissue axes, and they assess the entire thickness of the sections.

Other number estimators require a measurement along the z-axis to

obtain section thickness. The thickness of the fully processed

section may, for example, depend on the number of objects found at

the location of the probe. This is akin to dough that collapses and that

now has bumps in the places in which there were many raisins. We

see a differential shrinkage; section thickness is dependent on the

local number of objects that one is interested in. This type of differen-

tial shrinkage can be accounted for. The thickness sampling fraction

needs to be corrected by calculating a number-weighted

section thickness (Dorph-Petersen, Nyengaard, & Gundersen, 2001).

If one cell is counted at a sampling site at which thickness is measured

to 14 μm and five cells are counted at a site at which thickness is mea-

sured to 20 μm, number weighted mean section thickness would be

(1 × 14 μm + 5 × 20 μm)/(1 + 5) = 19 μm. A full example of the calcu-

lations has been provided by Dorph-Petersen et al. (2001). If there is

no differential shrinkage, estimates based on number weighted mean

section thickness will not differ from estimates based on mean thick-

ness alone. Estimates based on number weighted thickness can there-

fore be a default choice even if there is no suspicion of differential

shrinkage. Stereology software packages may provide estimates based

on both the mean and number weighted mean thickness.

The attentive reader may have noticed that sampling was dis-

cussed with regard to sections, the selection of sampling sites within

sections, but not with regard to the placement of probes along the

thickness of the section. It is again the guard zones that prevent using

the entire thickness of the sections. Because parts of the section are

excluded from probing, no practical approach to sample the depth of

the sections was developed for the optical disector (Andersen &

Gundersen, 1999; Hasselholt et al., 2015). This has raised concerns

about the z-axis representativeness of the sampling sites. If, for exam-

ple, a 10 μm deep disector probe is always placed below a two μm

thick guard zone, all samples come from a depth of the

section between 2 and 12 μm. Other depths of the tissue do not con-

tribute to the sample, and the sample is no longer guaranteed to be

representative of the tissue. If the section is affected by shrinkage in

its most unpleasant form—nonhomogeneous shrinkage (Dorph-

Petersen et al., 2001)—it may not be representative. Non-

homogeneous shrinkage refers to shrinkage that has different effects

at different depth of the section. Tissue close to the surface may

shrink more than tissue in the center of the section. If all samples

come from one depth range, a bias is generated that amounts to the

difference of the counts at this specific depth and the counts that

would have been obtained if depth had been sampled representa-

tively. Depending on the material, object density differences along the

depth of the section may be substantial. All preparation techniques

may be affected (Baryshnikova, von Bohlen und Halbach, Kaplan, &

von Bartheld, 2006; Gardella, Hatton, Rind, Rosen, & von

Bartheld, 2003), including plastic sections (Hatton & von

Bartheld, 1999), and the effect may well differ from laboratory to lab-

oratory (compare Figure 21 with data in Hatton and von

Bartheld (1999)). The z-axis distribution of objects (Figure 21), which

is also used to decide on the size of the guard zones, can show if the

problem is present. Without it, the presence and severity of the prob-

lem is difficult to judge, and a formalized solution to this problem has

not been proposed yet. However, it is rare that one has to decide
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where the probes should be placed in sections that are substantially

thicker than required. Usually, it is more problematic to obtain sec-

tions thick enough to place a decently sized probe within the tissue.

Probes often cover much of the tissue depth and thereby include

much of the variation in local densities if it should be present. Omit-

ting guard zones and assessing the entire depth of the section is an

option already discussed in Section 9.4.

Surface and length — The situation becomes more complicated

for surface and length estimates. As two- and one-dimensional mea-

sures, they do not occupy a volume. Therefore, length and area esti-

mates may change, but they do not have to change when the tissue

shrinks. For example, cell membranes can crumple instead of decreas-

ing in size, and axons or capillaries can take a more tortuous course

rather than shorten. If shrinkage is accompanied by any changes and,

if so, how large they are is impossible to determine retrospectively.

The bottom line is that shrinkage should be avoided if it is important

that surface or length estimates are close to the in vivo value of the

parameter. If z-axis shrinkage is present and if it does effect surface or

length, spaceballs or virtual cycloids may be more sensitive to its

effects than line probes placed on thin VUR or IUR sections.

9.6 | Estimate presentation

Sometimes it is unintentionally funny to see how quantitative meth-

odology is presented. Cells were counted “according to the principles

of unbiased stereology” or “following StereoInvestigator” (the name of

a stereology software package). This may mean no more than some-

thing being counted somehow in a series of sections and multiplied

afterward by the section sampling fraction. Alas, the systematic and

maybe even representative sampling of sections is at least a start.

However, one wonders if “according to the principles of good immu-

nocytochemistry” or “following Bond-III” (an automatic staining

machine) would have passed review just as easily. The specific

methods must of course be mentioned, and credit should be given to

the researchers that went through the trouble of devising them.

Beyond that, everything that is needed to replicate a study is needed

in the presentation of an estimate, and information useful to evaluate

the quality of the outcomes would at least be helpful. Recommenda-

tions made here overlap to a large degree with those made by others

(Dorph-Petersen & Lewis, 2011; Schmitz & Hof, 2005; West, 2012a)

Definitions — Even perfect sampling and probing are no guaran-

tee for similar estimates across different laboratories. The definition

of the region of interest provides ample opportunity for estimates to

diverge. This is because of the requirement to assess the entire region

and not just some “representative” sections. It is in the parts of the

region in which its anatomical appearance starts to diverge from the

typical in which differences in definitions may create differences in

the estimates. Divergent estimates may all be methodologically valid,

but only for the definitions that have been used. It may appear that

the demands of the methods that have been introduced here negate

anatomical expertise (Section 3.1). They do, in fact, require anatomical

expertise because of the need to define the region of interest when it

is not looking foolproof. Definitions will impact on the outcomes, and

outcomes should be replicable. Definitions should therefore be part of

the presentation of the estimates. In quantitative studies, comprehen-

sive definitions have been provided for, for example, the hippocampus

in mouse (West, Danscher, & Gydesen, 1978) and human (West &

Gundersen, 1990), the rat striatum (Oorschot, 1996), the rat and pri-

mate amygdala (Carlo, Stefanacci, Semendeferi, & Stevens, 2010;

Chareyron, Banta Lavenex, Amaral, & Lavenex, 2011; Mills Schu-

mann & Amaral, 2005) or the rat and human entorhinal cortex

(Mulders, West, & Slomianka, 1997; West & Slomianka, 1998). Out-

side the quantitative realm, the amply illustrated literature produced

during the heydays of descriptive morphology in the 1950s to 1980s

may be helpful in defining regions beyond their typical appearance in

today's often single and stamp-sized images. If definitions at a suffi-

cient level of detail have been published, they can, of course, be

referred to.

Sampling parameters and estimate precision — Sampling parame-

ters are essential to replicate the outcomes of a study. For each stage

at which a sample was drawn, the associated parameters should be

provided: the frequency at which sections were sampled, the distance

between sampling sites within sections and the size of the probes

(e.g., the dimensions of the disector or the radius of the spaceballs).

Collectively, the parameters represent the amount of probe that was

used to obtain the quantitative signal. Conceptually, these parameters

are similar to the dilutions of an antibody or of an RNA-probe used to

obtain an immunocytochemical or hybridization signal.

In immunocytochemical or in situ hybridization studies, images

are used to illustrate the strength and quality of the signal that was

obtained. In quantitative studies, the strength of the signal corre-

sponds to the number of probe-feature interactions that were coun-

ted. By themselves, these numbers do not provide any information on

the quality of the quantitative signal, but they do allow a judgment of

the workload associated with a particular sampling scheme. It is not

the strength of the signal per se that determines its quality, but the

signal-to-noise ratio. An immunohistochemically stained cell that looks

almost black may be showing strong signal, but it is not very helpful if

the background is almost as dark. The CE is a measure of the noise

that sampling will generate in a quantitative morphological study. The

critical CE2/CV2 can be calculated if the standard deviations, means

and CEs are reported. It may be sufficient to comment on the overall

size (>0.5 or <0.5) of this ratio to document that the estimation proce-

dures are likely to be “good enough.” While other parameters, such as

the number of sections or sampling sites, are informative, an anatomi-

cally informed reader/reviewer can at least guess at them quite well

based on the sampling parameters.

Exemplary descriptions of methodology can be found in, for

example, Woodruff-Pak (2006), Carlo et al. (2010), Stranahan, Jiam,

Stocker, and Gallagher (2012), or Filice et al. (2016). If manuscript

space is at a high premium, shortcuts to the inclusion of parameters

related to quantitative procedures are possible if they have been

documented before and if they are referenced.
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10 | PERSPECTIVES IN QUANTITATIVE

MORPHOLOGY

Design-based stereological methods are the only ones that currently pro-

vide statistically valid estimates about quantitative morphological fea-

tures in tissue sections when the actual determination (e.g., counting all

cells) is not practically feasible.Methods to probe for the basic parameters

volume, surface, length, and number aremature andmay not improve sig-

nificantly. Improvements are to be expected primarily with regard to sam-

pling efficiency (e.g., Boyce & Gundersen, 2018; Witgen, Grady,

Nyengaard, & Gundersen, 2006), the estimation of the precision of esti-

mates (e.g., Hall & Ziegel, 2011; Mattfeldt, 2006, 2011; Ziegel, Baddeley,

Dorph-Petersen, & Vedel Jensen, 2010) and the automation of probing

(e.g., Ahmady Phoulady, Goldgof, Hall, Nash, & Mouton, 2019; Hansen,

Nyengaard, Andersen, & Jensen, 2011). There are also efforts to auto-

mate section thicknessmeasurements (Elozory et al., 2012).

Tissue sectioning will always be an impediment to the three-

dimensional visualization and understanding of brain structure. If it is

not necessary to section the tissue and if it is practically feasible to

determine instead of estimate a parameter, design-based stereology

will become obsolete. Not surprisingly, there is a vigorous proliferation

of methods that allow the morphological assessment of a brain in one

piece, for example, BABB (Dodt et al., 2007), Scale and ScaleS (Hama

et al., 2011; Hama et al., 2015), 3DISCO (Ertürk et al., 2012), ClearT

(Kuwajima et al., 2013), CLARITY (Bastrup & Larsen, 2017; Chung

et al., 2013), PACT/RIMS/PARS (Yang et al., 2014), 3D BrainCV (J. Wu

et al., 2014), SWITCH (Murray et al., 2015), CUBIC (Murakami

et al., 2018), or FOCM (Zhu et al., 2019). It will be interesting to see

how far these approaches can be pushed in terms of the size of tissue

that can be processed (there is life beyond C57), the range of the tradi-

tional probes (antibodies, RNA probes, etc.) that can be applied to them

and the accessibility to a wide community of scientists. Only processing

power limits the automated analysis of image stacks of the entire brain,

and the first quantitative data have been presented for the mouse on

Purkinje cell number (Silvestri et al., 2015), c-Fos+ cells in a large num-

ber of regions (Renier et al., 2016), regional cell numbers in an experi-

mental context (Seiriki et al., 2017) or total regionalized brain cell

numbers (Murakami et al., 2018). If there is not sufficient power for a

determination and in the course of validation (see next paragraph), sta-

tistically representative probes will have to be efficiently drawn and

analyzed (e.g., Kim et al., 2015). In these contexts, the probing and sam-

pling aspects of the methods introduced here will be retained.

As far as the estimation of number is concerned, several

approaches for the automated detection of objects in three dimensions

have been proposed (e.g., Bjornsson et al., 2008; Chinta &

Wasser, 2012; Dumitriu et al., 2012; Fish, Sweet, Deo, & Lewis, 2008).

Approaches that have been tested for their detection of cells did how-

ever not return robust values when compared to a human observer.

Depending on the setting, true positive detection rates ranged between

33 and 99%, and false negative detections ranged between 3.6 and

82% for the best approach tested (Schmitz et al., 2014). Ahmady

Phoulady, Goldgof, Hall, and Mouton (2019) reported false positive/

negative rates of 10 to 20% for the better of two markers that were

tested using yet another automatic analysis approach.While the gener-

ation of algorithms that produce accurate numbers under a defined set

of condition seems possible, little efficiency is gained if they time and

again need to be calibrated to different stains or experimental condi-

tions. There is an awareness that algorithms need to be resistant to

morphological variability, object densities and variations in staining

intensity. It is an active research area, and new algorithms try to address

these issues (e.g., Ruszczycki et al., 2019; Shuvaev et al., 2017).

Anyone interested in quantitative morphology must be keenly

looking forward to the solution of problems of automated quantitative

morphological assessments. Unfortunately, solutions are not just

around the corner, and quantitative morphology as introduced here

will still be with us for some time to come. Also, much of the brain is

still quantitatively uncharted territory. A basic parameter like the num-

ber of neurons in a volume unit of the somatosensory cortex had to

be estimated for a not that old study that aimed at a simulation of cor-

tical function (Markram et al., 2015). Even well-done descriptive quan-

titative studies now rarely appear in the highest impact-factor

publications. However, their scientific impact may well outlast many

studies that do, because, sooner or later, qualitative and quantitative

parameters will have to integrate to provide an understanding of func-

tion of neural systems.
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