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A B S T R A C T

The Sentinel-2 Multi-Spectral Imager (MSI) has three spectral bands centered at 705, 740, and 783 nm wave-
lengths that exploit the red-edge information useful for quantifying plant biochemical traits. This sensor con-
figuration is expected to improve the prediction accuracy of vegetation chlorophyll content. In this work, we
assessed the performance of several statistical and physical-based methods in retrieving canopy chlorophyll
content (CCC) from Sentinel-2 in a heterogeneous mixed mountain forest. Amongst the algorithms presented in
the literature, 13 different vegetation indices (VIs), a non-parametric statistical approach, and two radiative
transfer models (RTM) were used to assess the CCC prediction accuracy. A field campaign was conducted in July
2017 to collect in situmeasurements of CCC in Bavarian forest national park, and the cloud-free Sentinel-2 image
was acquired on 13 July 2017. The leave-one-out cross-validation technique was used to compare the VIs and the
non-parametric approach. Whereas physical-based methods were calibrated using simulated data and validated
using the in situ reference dataset. The statistical-based approaches, such as the modified simple ratio (mSR)
vegetation index and the partial least square regression (PLSR) outperformed all other techniques. As such the
modified simple ratio (mSR3) (665, 865) gave the lowest cross-validated RMSE of 0.21 g/m2 (R2=0.75). The
PLSR resulted in the highest R2 of 0.78, and slightly higher RMSE =0.22 g/m2 than mSR3. The physical-based
approach-INFORM inversion using look-up table resulted in an RMSE =0.31 g/m2, and R2=0.67. Although
mapping CCC using these methods revealed similar spatial distribution patterns, over and underestimation of
low and high CCC values were observed mainly in the statistical approaches. Further validation using in situ data
from different terrestrial ecosystems is imperative for both the statistical and physical-based approaches' ef-
fectiveness to quantify CCC before selecting the best operational algorithm to map CCC from Sentinel-2 for long-
term terrestrial ecosystems monitoring across the globe.

1. Introduction

Canopy chlorophyll content (CCC) is defined as “the total amount of
chlorophyll a and b pigments in a contiguous group of plants per unit
ground area” (Gitelson et al., 2005) often expressed in g/m2. It is a
product of leaf chlorophyll content, i.e., chlorophyll content of a fresh
green leaf per unit area (μg/cm2) and leaf area index (LAI) (m2m−2))

that describes chlorophyll pigments distribution within the three-di-
mensional canopy surface (Darvishzadeh et al., 2008b). Thus, CCC
determines the total photosynthetically active radiation absorbed by
the canopy (Gitelson et al., 2015). CCC is one of the plant pigments that
provide valuable information about plant physiology and ecosystem
processes (functions), enabling ecologists, farmers, and decision-makers
to assess the influence of climate change, and other anthropogenic and
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natural factors on plant functions and adaptation (Féret et al., 2017).
CCC is an essential input variable to terrestrial biosphere models for
quantifying carbon and water fluxes (Luo et al., 2018), primary pro-
ductivity (Houborg et al., 2013; Peng and Gitelson, 2011), and light use
efficiency (Wu et al., 2012). Changes in CCC can be an indicator of
plant disease, nutritional, and environmental stresses (Korus, 2013;
Zhao et al., 2011; Inoue et al., 2012). Therefore, because of its im-
portance to ecosystem function and its value as an indicator of eco-
system health, CCC is an essential variable to be monitored consistently
in space and time (Li et al., 2014; Homolova et al., 2013).

Remote sensing (RS) offers a means of monitoring and evaluating
terrestrial vegetation at a wide range of spatial and temporal scales.
Chlorophyll content at the leaf, canopy and landscape scales has been
monitored using ground and airborne hyperspectral sensors and space-
borne satellites for the last four decades (e.g., Darvishzadeh et al.,
2008b; Asner et al., 2014; Houborg et al., 2015; Croft et al., 2013).
Remote sensing is becoming the most popular means to retrieve
chlorophyll content over large areas, by establishing empirical re-
lationships between different vegetation indices (VIs) and chlorophyll
content, or through physical-based approaches relying on the inversion
of canopy reflectance models. Remote sensing of CCC is mainly based
on optical remote sensing, covering the visible to near-infrared (NIR)
spectral region, and the short wave infrared region (SWIR) as well when
LAI and other vegetation biophysical properties effect is high (Inoue
et al., 2016; Darvishzadeh et al., 2008c).

Concurrently with the evolution of satellite sensors, which bring
increased resolution and sensitivity to biochemical variables, a number
of robust algorithms have been developed that relate CCC and remote
sensing data (e.g., Vincini et al., 2016; Dian et al., 2016; Li et al., 2015;
Ma et al., 2014; Verrelst et al., 2012). Notably, the red edge region
(680–760 nm) of the reflectance spectrum also known as Red Edge
Position (REP), has been widely used to estimate chlorophyll content
from reflectance spectra (e.g., Okuda et al., 2016; Li et al., 2016; Inoue
et al., 2016) based on the fact that an increase in chlorophyll content
will be reflected in the spectra by a shift in the absorption feature to
longer wavelengths (Curran, 1989).

Plant canopy variables that can be predicted from remote sensing
data include biophysical variables such as leaf area index (LAI), the
fraction of vegetation cover (FVC), and biochemical variables such as
water and dry matter content, carotenoid content, as well as CCC.
Popular approaches that have been developed as ways of quantifying
biophysical and biochemical variables from remote sensing data are
typically grouped into two categories in the RS literature: (1) the sta-
tistical (variable-driven) category; and (2) physical-based (radiometric
data-driven) category (Baret and Buis, 2008; Darvishzadeh et al.,
2008c). They can also be characterized as inductive and deductive by
their logic, or as deterministic and stochastic by their processing
method (Skidmore, 2002). The increasing number of techniques in both
approaches resulted in expanding the methodological categories into
subcategories and combinations thereof (Verrelst et al., 2015). Hence,
the later authors categorize the techniques into (i) parametric regres-
sion, (ii) non-parametric, (iii) physically-based, and (iv) combined
methods.

Parametric regression methods are based on the relationship be-
tween spectral observations and a specific variable (e.g., CCC). These
are inductive/empirical techniques used to find a statistical relation
between the in situ measured plant trait and its spectral reflectance or
some transformation of reflectance, e.g., to a vegetation index, through
fitting a function (Skidmore, 2002). The different forms of VIs and
parametric approaches based on quasi-continuous spectral band confi-
gurations such as REP calculations and continuum removal are grouped
under this category. Many reliable and robust VIs (e.g., SAVI (Huete,
1988), TSAVI (Baret et al., 1989), TCARI (Haboudane et al., 2002), and
MCARI (Daughtry et al., 2000) that are less affected by non-vegetated
environmental factors have been developed for the inversion of plant
properties from remote sensing data. The main advantage of parametric

regression methods is their inherent simplicity, speed, and low com-
putational expense. However, the downsides are data acquisition time,
vegetation type and site-specific, and lacking generalization for up-
scaling approaches (e.g., Cui and Zhou, 2017; Liang et al., 2016; Broge
and Leblanc, 2001). These methods are based on a subset of spectral
bands and make poor use of the large spectral information obtained
from hyperspectral, and even multispectral sensors (Haboudane et al.,
2004).

Unlike parametric regression methods, the non-parametric ap-
proaches do not rely on statistical distribution in the data. The opti-
mization of non-parametric models makes use of a learning phase based
on training data. A linear or non-linear fitting function is directly de-
fined according to information from RS spectral data. The non-para-
metric models include stepwise multiple linear regression, principal
components regression, partial least squares regression (PLSR), ridge
(regulated) regression, decision tree learning (e.g., random forest re-
gression), artificial neural networks (ANN), kernel methods (e.g., sup-
port/relevance vector machines), and kernel ridge regression, Gaussian
process regression, and Bayesian networks. Detail description of each
method can be found in Verrelst et al. (2015). Non-parametric models
are computationally demanding, require field data, exhibit overfitting
stemming from overly complex models (Rocha et al., 2017), and tend to
be sensor-specific (Verrelst et al., 2015).

Physically-based approaches apply physical laws through the es-
tablishment of cause-effect relationships. The transfer and interaction
of radiation energy inside the canopy can be described by canopy ra-
diative transfer models (RTM) coupled with leaf-level physical models
such as PROSPECT (Jacquemoud and Baret, 1990) and LIBERTY
(Dawson et al., 1998) to derive leaf biochemistry. Radiative transfer
inversion based methods are especially important in the case of het-
erogeneous environments, where canopy structure plays a significant
role in the scattering processes (Widlowski et al., 2015; Yanez-Rausell
et al., 2015). A large variety of canopy RTMs are currently available,
and a recent inter-comparison is presented by Widlowski et al. (2015).
RTMs range from the turbid medium models (1D) to Monte Carlo ray
tracing three-dimensional (3D) models and their combinations. Inver-
sion of RTMs can be performed using techniques such as a look-up table
(LUT), iterative numerical optimization methods, or parametric and
non-parametric approaches. The inversion of a canopy RTM is often
considered as a physically sound approach because the approach is
generic and has more transferability (Féret et al., 2011; Atzberger et al.,
2013; Verrelst et al., 2010; Malenovský et al., 2008). However, the
retrieval of variables through RTM inversion may be ill-posed (Combal
et al., 2003) since different combinations of the input parameters may
produce the same spectral signature. RTMs are also computationally
demanding and require a large number of leaf and canopy variables,
which need extra effort to acquire. Uncertainties emanating from
measurements and model assumptions are prevailing in RTM inversion
(Scales and Tenorio, 2001).

The fourth category of approaches combine elements of statistical
approaches and physically-based models. They make use of the generic
properties of physically-based methods combined with the flexibility
and computational efficiency of parametric and non-parametric
methods. RTMs are used to simulating canopy reflectance, and then the
simulated data are used to train parametric or non-parametric methods
to link spectral information and canopy parameters (Jacquemoud et al.,
2009). Therefore, this approach has the advantage of empirical method
simplicity as well as physical models universality. In contrast, they are
often strongly affected by sensors and atmospheric noise and mea-
surement uncertainty (Liang, 2007). The results of such methods also
depend on the quality of the RTMs, and prior knowledge about input
parameters (Verrelst et al., 2015).

Although numerous methods in all four categories have been pro-
posed for estimating CCC (e.g., Cui and Zhou, 2017; Liang et al., 2016;
Atzberger et al., 2015; Darvishzadeh et al., 2008b), to date, there has
been little agreement on a method that suitably applies to different
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remote sensing data across different vegetation types. Accuracy of CCC
prediction with different methods highly constrained by vegetation
type (Zou et al., 2015; Niemann et al., 2012), spectral bands (Dian
et al., 2016) and external factors (such as atmospheric condition and
soil background) (Asner, 1998) as well as uncertainties associated with
field/ground measurements of CCC. Discrepancies between remote
sensing data acquired with different sensors, due to their spectral and
spatial specifications, lead to various performances (e.g., Darvishzadeh
et al., 2019b) of the same method in predicting CCC. Therefore, the
choice of the appropriate algorithm when predicting CCC and other
vegetation traits is always a tradeoff decision between accuracy and
efficiency.

While numerous studies have evaluated the performance of dif-
ferent approaches in estimating vegetation variables from hyperspectral
remote sensing data (e.g., Darvishzadeh et al., 2008b; Atzberger et al.,
2010; Cui and Zhou, 2017), there has been limited effort towards ex-
amining the performance of these various methods to estimate CCC
across different vegetation types using multispectral satellite remote
sensing data such as Sentinel-2. The Sentinel-2 multi-spectral instru-
ment (MSI) provides high spatiotemporal resolution and will generate
long-term, continuous datasets with free access for current and future
accurate global mapping of essential variables of terrestrial ecosystems,
including canopy chlorophyll content. To our knowledge, only a few
studies have evaluated the performance of Sentinel-2 data for pre-
dicting CCC in crops using statistical approaches (Clevers et al., 2017;
Vincini et al., 2014; Chemura et al., 2017; Sun et al., 2018). Recently,
Darvishzadeh et al. (2019a) evaluated the performance of a radiative
transfer model (RTM) inversion in retrieving a temperate forest leaf
chlorophyll content from Sentinel-2 and RapidEye.

This study aimed at evaluating the performance of the state-of-art
methods for mapping CCC from Sentinel-2. Thus, our specific objectives
were 1) through literature review, identify the highly recommended
state-of-art methods and compare their accuracy, and precision in
predicting CCC of a temperate heterogenous mountain forest from
Sentinel-2 data, and 2) evaluate the consistency of the spatial dis-
tribution in the CCC products generated with the selected methods.

To achieve those objectives, methods that may be operationally
feasible for large scale mapping of CCC were identified and shortlisted
through a systematic literature review. Then the prediction perfor-
mance of the candidate methods on Sentinel-2 MSI was validated by
using in situ data. Finally, CCC spatial distribution maps were generated
using the candidate methods that exhibit good performance and further
evaluated for their spatial consistency.

2. Field data and methods

The overall procedures followed in comparing the different CCC
retrieval algorithms are illustrated in Fig. 1. In situ CCC measurements
and model input parameters’ data were collected in 32 sample plots in
the study area. Sentinel-2 image acquired during the field data collec-
tion was downloaded. Statistical-based methods were calibrated and
validated by applying the leave-one-out cross-validation technique on
the in situ measured CCC and their corresponding spectra from the
Sentinel-2 data. In the case of physical-based models, RTMs were
parameterized to simulate canopy reflectance, and inverted on Sentinel
2 data to predict CCC. RTM inversions’ accuracy was then validated
using the in situ measured CCC. Finally, the CCC products with rela-
tively higher accuracy (higher correlation and lower error against in situ
data) from each approach were checked for their spatial consistency,
stability, and uniformity. The details of the field data collection and
methods used are presented in the following subsections.

2.1. Test site

The test site for this study was the Bavarian Forest National Park in
Germany (BFNP), which is located in south-eastern Germany, at center

coordinates of 13°12′9″ E (longitude) and 49°3′19″ N (latitude) along
the border between Germany to the Czech Republic. The Park is a
mixed mountain forest with an approximate area of 240 km2. Elevation
varies between 600m–1453m. The park has a temperate climate.
Annual precipitation range from 1200mm to 1800mm, with annual
temperature averages from 30 to 60 Celsius. The lower altitude (below
900m a.s.l) part of the park is predominated by brown soils, and in the
high altitude area (above 900m a.s.l), brown soils and brown podzolic
soil are the predominant soil types (Heurich et al., 2010).

There are three ecological zones: Valleys, hillsides, and highlands.
The natural forest ecosystems vary in each zone (Heurich et al., 2010).
Alluvial spruce forests are dominant in the valleys, mixed mountain
forests on the hillsides and mountain spruce forests in the high areas
(Fig. 2). The European beech (Fagus sylvatica), Norway Spruce (Picea
abies) and Fir (Abies alba) are the three dominant tree species. Sycamore
Maple (Acer pseudoplatanus L), Mountain Ash (Sorbus aucuparia L), and
Goat Willow (Salix caprea) are less often found in deciduous stands of
the park (Heurich and Neufanger 2005). Due to massive disturbance by
bark beetles and wind storms in recent decades, the forest structure in
the park is very heterogeneous (Lehnert et al., 2013).

2.2. Data

2.2.1. In situ data
The CCC, field dataset was collected between 01 and 31 July 2017.

The study area was stratified into Conifers, Broadleaf, and Mixed
stands, and a random sampling technique was implemented to collect
samples in each stratum. Biophysical and biochemical variables were
obtained in total from 40 square plots with 30m sides. Geographic
coordinates of the plots were recorded at the center using a handheld
Garmin Global Positioning System (GPS) that has a geometric accuracy
within± 5m. In each plot, estimation of LAI and ALA were conducted
using Li-COr LAI-2200 canopy analyzer equipment (LI-COR, 1992). We
followed the standard procedure of taking one reference (above the
canopy) reading in the nearest open field, and five below canopy
measurements inside each plot in estimating LAI (Darvishzadeh et al.,
2019a). A maximum effort was made to take the LAI-2200 measure-
ments with constant illumination conditions for the above and below
canopy readings.

In each plot, a crossbow was used to collect sample leaves/shoots
from the mature sunlit part of the top of the canopy. Sample leaves/
needles were collected from two to three branches of the representative
trees in each plot. Leaves/shoots chlorophyll content were immediately
measured using Chlorophyll Content Meter (CCM-300) and averaged to
determine leaf chlorophyll content (Cab) per plot. Then leaves/shoots
were removed from the branches and placed in a zip-locked plastic bag
together with wet pulp paper and transported to the laboratory. CCC of
each plot was calculated by multiplying the plot’s average Cab and LAI.
The summary of all the field data records is presented in Table 1.

2.2.2. Sentinel-2 data and pre-processing
To assess the CCC predictive accuracy of the different algorithms,

the Sentinel-2A image of the study area acquired on 13 July 2017 was
utilized. The image acquired on 13 July is chosen because the pilot site
and its surroundings were cloud-free on this date. The Sentinel-2A level
1c product was downloaded from the ESA Copernicus. It has four bands
at 10m, six bands at 20m, and three bands at 60m spatial resolution in
the visible and NIR and SWIR spectral regions. The three red-edge
bands center at 705, 740, and 783 nm. Top-of-atmosphere (TOA) re-
flectance (level 1c product) was processed into top-of-canopy (TOC)
reflectance (level 2A product) and resampled to 20m spatial resolution
using Sen2cor 2.5.5 stand-alone software, which is freely distributed
under the GNU general public license (http://step.esa.int/main/third-
party-plugins-2/sen2cor/). Spectral information from ten bands (band
2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12) were utilized in this study. The re-
maining three bands (band 1, 9, and 10) serve mainly for atmospheric
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Fig. 1. Analytical framework for comparison of selected methods that can be used for the retrieval of CCC from Sentinel 2 surface reflectance data.

Fig. 2. Location and major vegetation types of Bavarian Forest National Park (source: Park administration office).
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corrections and were not relevant for our purpose. The TOC reflectance
data of the pixels containing the sample plots were extracted and used
for testing the performance of the candidate algorithms together with in
situ CCC.

2.3. CCC retrieval methods

Among the multitude of methods that have been proven to be su-
perior when estimating CCC in a wide range of vegetation types in the
literature, we selected some of the best-performing methods from each
category to be evaluated for mapping CCC from Sentinel-2 data. Table 2
presents the proposed algorithm type and their formulation that are
evaluated in the mixed mountain temperate forest of BFNP. Vegetation
indices in the literature that use wavelengths closer to sentinel-2 band
positions were considered.

2.3.1. Parametric and non-parametric approaches
The parametric and non-parametric methods were implemented

with atmospherically corrected reflectance (TOC reflectance) obtained
from the plot pixels. Linear or quadratic equations were fitted between
the VIs and the in situ CCC depending on the nature of the relationship.
In the case of Non-parametric approaches, different subsets of the
spectral information in Sentinel-2 bands were tested. The number of
components of the PLSR was optimized by testing different

combinations of explanatory variables by adding an extra component to
the models and observing Root Mean Square Error (RMSE) and
Coefficient of determination (R2) between the in situ and predicted
values. Components that result in less than 2 % decrease in RMSE were
ignored to avoid overfitting problems (Darvishzadeh et al., 2008c).

2.3.2. Physical-based model parameterization and inversion
2.3.2.1. Parameterization and generation of LUT using INFORM. The
Invertible Forest Reflectance Model “INFORM” (Schlerf and
Atzberger, 2006; Atzberger, 2001) is a combination of the forest light
interaction model (Rosema et al., 1992) and SAIL (Verhoef, 1984)
canopy RTMs with the PROSPECT leaf RTM (Jacquemoud and Baret,
1990). INFORM input parameters at the leaf level consist of Cm, Cw, Cab
and leaf Structure parameter (N), and at the canopy level include SD,
single tree leaf area index (LAIs), SH, CD, and ALA, as well as
observation related parameters such as, view zenith (θo), sun zenith
(θs) and relative azimuth angle (Φ). The model simulates top of canopy
spectral reflectance of forest stands between the 400 and 2500 nm
wavelengths.

To simulate the spectral property of forest ecosystems, the range of
input parameters were determined using the field measurement, lit-
erature review, and sensor configurations (Table 3). In INFORM, LAI is
represented by LAIs. Hence, LAIs was computed using eq.1 from LAI and
CC (Schlerf and Atzberger, 2006).

=LAI
LAI

CC
s (1)

A LUT of canopy reflectance spectra is generated by varying the
input parameters randomly within their range. For each spectra in the
LUT, its corresponding CCC was computed and stored as a product of
Cab and LAI of the input parameters. The size of the LUT should be large
enough so that the simulated spectra contain all possible combinations
of the input parameters. However, if the LUT is extremely large, the
inversion becomes computationally expensive. Therefore, a LUT of

Table 1
Basic statistics of the in situ measured variables. Leaf chlorophyll content (Cab),
leaf area index (LAI), and Canopy chlorophyll content (CCC).

Summary Cab (μg cm−2) LAI (m2 m−2) CCC (g m−2)

Minimum 33.62 1.33 0.58
Maximum 51.75 5.4 2.42
Mean 42.80 3.82 1.62
Std.dev 4.83 1.01 0.46

Table 2
Methods tested for their performance to predict CCC from Sentinel-2 top of canopy reflectance data. R is the Sentinel-2 reflectance in different spectral bands.

Category Algorithm Original Formula Formula on S2 bands Reference

Parametric Statistical approach
(vegetation indices)

The green Chlorophyll index (CIgreen) 1
R nm

R nm

780

550

1
R nm

R nm

783

560

Hunt et al. (2012)

The red-edge chlorophyll index (CIred-
edge)

1
R nm

R nm

780

705

1
R nm

R nm

783

704

Gitelson et al. (2005)

Simple Ratio Vegetation Index (SRVI) R nm

R nm

815

704

R nm

R nm

835

704

Gitelson and Merzlyak
(1997)

modified Simple Ratio 2 (mSR2) R nm

R nm

815

704

R nm

R nm

865

704

Gitelson and Merzlyak
(1997)

Modified Simple Ratio 3 (mSR3) R nm

R nm

815

704

R nm

R nm

865

665

—

Modified Simple Ratio 4 (mSR4) R nm

R nm

815

704

R nm

R nm

835

665

—

Datt Derivative (DD) DR nm

DR nm

754

704

DR nm

DR nm

740

704

Datt (1999)

MERIS Terrestrial Chlorophyll index
(MTCI)

R R

R R

753.75 708.75

708..75 681.25

R R

R R

740 704

704 665

Dash and Curran
(2004)

modified MTCI (mMTCI) R R

R R

753.75 708.75

708..75 681.25

R R

R R

665 497

497 865

—

the novel Inverted Red-Edge
Chlorophyll Index (IRECI)

RNIR Rred

Rred Rred1 / 2

R R

R R

783 665

704 / 740

Frampton et al. (2013)

Sentinel 2 red edge position index
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Non-parametric Statistical approach Partial Least Square Regression
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Physical-based approach INFORM inversion using LUT Schlerf and Atzberger
(2006)

Combined approach PROSAIL inversion using ANN (SNAP toolbox) Baret (2016)
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200,000 builds was implemented (e.g., Wang et al., 2017). A random
Gaussian noise value of 0.3 % was added to each simulated spectrum to
account for model uncertainties and reduce auto-correlation between
the simulated reflectance spectrum and input variables.

2.3.2.2. INFORM inversion using Look-up table (LUT). Inversion of the
LUT generated by INFORM involved matching the similarity between
measured spectra (Sentinel-2) and simulated spectra (INFORM).
Spectrum matching was performed using the least RMSE comparison
of the measured and simulated spectra according to Eq. 2.

=RMSE
R R

n

( )measured modelled
2

(2)

where Rmeasured is a Sentinel-2 reflectance at wavelength λ and Rmodelled

is a simulated reflectance at wavelength λ in the LUT, and n is the
number of wavelengths.

An average absolute error was computed between the INFORM si-
mulation and the Sentinel-2 reflectance data, and different Sentinel-2
band subsets were evaluated for their performance. The inversion result
obtained from the band subset with lower absolute error (0.02), was
proposed as a threshold to identify well-simulated bands by
Darvishzadeh et al. (2008b) and used in this study. The solution to the
inverse problem is the set of input parameters corresponding to the
reflectance in the database that provided the smallest RMSE. Because of
the potential insufficiency in model formulation and parameterization,
and noise related to calibration and pre-processing errors in the ob-
served reflectance, the least RMSE solution might not necessarily pro-
vide the best estimates. For this reason, for each measured spectrum,
the first 10, 100, 250, and 500 (q) closest matching spectra were se-
lected from the LUT and validated. From the multiple available solu-
tions (q), the final solution was chosen by comparing the performance
of statistical measures of central tendency such as mean, median, and
mode of the closest matching spectral subsets. Then, the corresponding
CCC value of the matching spectra was obtained as the final solution of
the inversion.

2.3.3. A combined approach using the SNAP toolbox. The PROSAIL and
artificial neural network (ANN) inversion approach have been
implemented in the SNAP toolbox to generate biophysical products,
including CCC from Sentinel-2 TOC reflectance (Baret, 2016). It uses an

ANN trained on the PROSAIL simulated database. It requires an input
layer of normalized TOC Sentinel-2 data: B3, B4, B5, B6, B7, B8a, B11,
B12, cos(viewing zenith), cos(sun zenith), and cos(relative azimuth
angle) and derives a set of biophysical variables, namely: leaf area
index, fraction of absorbed photosynthetically active radiation, fraction
of vegetation cover, chlorophyll content in the leaf and canopy water
content. Then the CCC is computed as a product of Cab and LAI. Details
of the algorithm can be found in Baret (2016).

2.4. Validation
For parametric and non-parametric statistical approaches, a leave-

one-out cross-validation procedure (Zhang, 2001) was performed using
the in situ measured CCC of the sample plots (n=32) and their cor-
responding TOC reflectance extracted from Sentinel-2 data. In the
leave-one-out cross-validation approach, the calibration set of n-1
samples is used to fit the predictive model and then evaluated using the
sample that has been left out.

In the case of INFORM inversion and the biophysical retrieval ap-
proach from the SNAP toolbox, the retrieved CCC values were validated
using the in situ measured CCC of the sample plots. R2, RMSE, and bias
between the measured and predicted CCC was used to assess the ac-
curacy of the methods. Boxplot and paired t-test were used to show how
the predictions were in agreement with each other, and with the in situ
CCC.

2.5. Mapping CCC

Before mapping CCC, the non-forested part of the test site (BFNP)
was masked out from the Sentinel-2 image using a vegetation map
obtained from the national park administration (Silveyra Gonzalez
et al., 2018), which was a product of LiDAR and high-resolution ima-
gery integration for object-based mapping of forest habitat. In this
study, the forest includes conifer and broadleaf stands or a mix of the
two with tree height ≥ 3m. Once the forest area of the test site ex-
tracted, the best-performing methods from each category were applied
to map CCC of the mixed mountain forest. The maps generated using
the selected methods were compared for their stability, uniformity, and
constancy by computing image difference and consistency statistics
such as frequency distribution, range, and standard deviation.

3. Results

3.1. Calibration of the selected methods

All the tested vegetation indices showed markedly strong linear
positive correlation (r) to CCC (Fig. 3a) (p≤ 0.01). The maximum
r=0.88 was observed for three VIs, namely mSR3, mSR2, and CIred
edge. Relatively lower r= 0.72 was obtained for S2REP. Fig. 3b–d de-
monstrated the nature of the relationship, the equation fitted, and the
R2 between the top three VIs against the measured CCC data. Other VIs
correlation to measured CCC can be seen in Appendix A.

The non-parametric method-PLSR was trained on three spectral
subsets: 1) red-edge bands of sentinel-2 (band 5, 6 and 7), 2) using all
the valid ten bands described in Section 2.2.2 and 3) using eight
spectral band subsets (band 2, 3, 4, 5, 6, 8a, 11 & 12) that showed
higher variable importance in the prediction (result not shown here).
Applying the criterion of change of RMSE≥2 % to avoid overfitting,
and to determine the most appropriate number of components resulted
in a PLSR model with five components (using a spectral subset of eight
bands of Sentinel-2) for accurate CCC retrieval.

Similarly, the performance of different spectral subsets was eval-
uated for inversion of INFORM on Sentinel-2 spectral bands. The results
revealed that INFORM inversion using spectral information in the red
and red-edge region, where an increase in chlorophyll content increases
absorption, is the optimal subset. Therefore, inversion of INFORM on
Band 4, Band 5 and Band 6 of Sentinel-2 showed high sensitivity to in

Table 3
INFORM input parameters used to generate the LUT as defined based on lit-
erature review and sensor configuration (sentinel-2 MSI).

Parameter Symbol Unit Range Source

Min Max

Leaf dry mass per area Cm g/cm2 0.005 0.03 (Ali et al., 2016a)
Equivalent water

thickness
Cw g/cm2 0.006 0.035 (Ali et al., 2016a)

Leaf structural
parameter

N NA 1 2.5 (Ali et al., 2016a)

Leaf chlorophyll
content

Cab μg/cm2 5 65 Field measurement

Single-tree LAI LAIs NA 2 10 Ali et al. (2016b)
Understory LAI LAIu NA 0.2 1 Field measurement
Stem density SD n/hr 200 2000 Ali et al. (2016b)
Stand height SH m 5 40 Ali et al. (2016b)
Crown diameter CD m 3 10 Ali et al. (2016b)
Average leaf angle ALA degree 40 60 Field measurement
Sun zenith angle θs degree 25 35 Sentinel 2 metadata
Observation zenith

angle
θ0 degree 0 15 Sentinel 2 metadata

Azimuth angle Φ degree 50 210 Sentinel 2 metadata
Scale NA 0.5 1.5 (Schlerf and

Atzberger, 2006)
***Fraction of diffused

radiation
Sky1 fraction 0.1 (Schlerf and

Atzberger, 2006)
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situ measured CCC compared to any other spectral subset as well as the
whole spectral dataset. From the multiple available solutions (q), we
chose the median CCC value of the first 100 multiple solutions as a final
solution after experimenting with the performance of the statistical
measures of central tendency for the different closest matching spectral
subsets.

3.2. Validation

Many of the statistical-based methods provide high R2 and low
RMSE/Bias combinations. The coefficient of determination between the
measured and predicted CCC values range from 0.48 to 0.78 (Table 4).
The highest R2 was observed when PLSR applied to eight spectral bands

Fig. 3. Relationship between measured canopy chlorophyll content (CCC) (n= 32) and selected vegetation indices (VIs). (a) Bar graph of the VIs’ Pearson correlation
to CCC, (b–d) the scatterplot of CCC against the three best performings VIs.

Table 4
Accuracy of the estimates of CCC in the Bavarian forest national park obtained using the selected methods on Sentinel-2 data. Methods with better performance from
each category (parametric and non-parametric statistical models, physical-based models, and their combination) are in bold. The R2, RMSE, and bias are based on
leave one out cross-validation approach for the statistical approach, and the whole in situ data for physical-based methods.

Category Algorithm R2 RMSE (g/m2) RMSE (%) Bias

Parametric Statistical approaches (vegetation indices) CIgreen 0.61 0.25 15.58 −0.034
CIred-edge 0.74 0.23 13.57 0.026
SR 0.69 0.24 14.69 0.038
mSR2 0.74 0.23 13.57 0.026
mSR3 0.75 0.21 12.53 −0.016
SR4 0.65 0.25 15.22 0.006
DD 0.50 0.29 17.36 0.003
MTCI 0.55 0.30 17.53 0.032
mMTCI 0.68 0.25 14.09 −0.003
IRECI 0.58 0.26 15.18 0.030
S2REP 0.48 0.29 17.11 0.046
MCARI/OSAVI 0.57 0.26 15.44 0.032
NDRE 0.63 0.25 14.56 0.028

Non-parametric Statistical approaches PLSR) using red edge bands 0.67 0.24 14.32 −0.010
PLSR using eight bands 0.78 0.22 13.10 −0.038
PLSR using ten bands 0.74 0.21 12.49 −0.008

Physical approach Inversion of INFORM uing LUT 0.67 0.31 18.11 −0.101
Combined approach SNAP toolbox 0.66 0.35 21.72 −0.1632
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subset (R2=0.78), and the minimum (R2=0.48) for S2REP. The
mSR3 and the PLSR provided relatively the highest R2 and the lowest
RMSE combinations. All statistical methods showed a bias close to zero
(Bias ≤ 0.05). Whereas, the physical-based models: INFORM inversion
by LUT and the SNAP toolbox reveal relatively higher bias.

One method with relatively higher accuracy and robustness from
each category was selected for further investigation. Thus, predictions
made using the mSR3 from VIs, PLSR on eight sentinel-2 bands from
nonparametric, the inversion of INFORM using LUT and the SNAP
toolbox (which are shown in bold in Table 4) were compared for their
statistical significance difference from in situ data and spatial

Fig. 4. (a–d) scatter plot of the in situ CCC and predictions made by the four methods and (e) their corresponding boxplot. In Figures a–d, the broken line shows the
1:1 relationship, while the solid line indicates the relationship between the field measured and predicted values of CCC.

Table 5
Paired t-test score of each selected method (i.e., mSR3, PLSR, INFORM, and
SNAP) predicted values against in situ CCC.

Method Std. dev. 95 % conf. interval tstat p-value

Lower Upper

mSR3 0.23 −0.08 0.08 −0.05 0.96
PLSR 0.40 −0.23 0.054 −1.27 0.21
INFORM 0.57 −0.38 0.03 −1.73 0.09
SNAP 0.32 −0.28 −0.05 −2.90 0.01

A.M. Ali, et al. Int J Appl  Earth Obs Geoinformation 87 (2020) 102037

8



consistency. The scatterplots of predicted values obtained from the four
approaches against the in situ CCC data are presented in Fig. 4 (see
Appendix B for scatterplots of other methods). As can be observed from
Fig. 4, the prediction is more accurate for the statistical-based ap-
proaches (Fig. 4a & b) than for physical-based model inversion (Fig. 4c
& d). However, the statistical methods show a tendency to overestimate
lower CCC values and underestimate higher CCC values, which is a sign
of saturation problem due to the insensitivity of the methods for very
low or high CCC values. The physical-based models avoided such sa-
turation problems, and the predicted values were linearly scattered
around the 1:1 relationship line (Fig. 4c & d). The Boxplot in Fig. 4e
illustrates the summary of the central tendency of the four methods
prediction compared to in situ CCC data. The analysis of paired t-test
demonstrated (Table 5) that only prediction performed by the SNAP
toolbox showed a significant difference from the in situ CCC (p= 0.05).

3.3. Mapping CCC and checking consistency

The similarities and differences of the spatial distribution of the
predicted CCC by the selected methods were examined through visual
inspection of the maps and computing basic statistics. Fig. 5 presents
the spatial distribution map of the CCC across the study area (Bavarian
Forest National Park) generated by using the four selected methods
after masking non-forest land cover types using an existing land cover
map of the study area. When compared to Fig. 6, the variability of CCC

across different stands is visible in the four CCC products. Higher CCC
are observed in deciduous stands (mean =1.77 g/m2) than coniferous
stands (mean =1.44 g/m2) and mixed stands (mean =1.63 g/m2)
(Figs. 5 and 6). All methods, i.e., the SNAP toolbox, SRVI (mSR3), IN-
FORM inversion by LUT, and PLSR showed similar distribution with a
higher frequency between 1 g/m2 and 2 g/m2 (Fig. 7).

The expected (obtained from the representative sample plots) and
predicted CCC ranges in the four maps are presented in Table 6. It was
observed that CCC predictions through INFORM inversion using LUT
indicated a range, mean, and standard deviation much closer to the in
situ data statistics than any other approaches. The highest CCC (4.35 g/
m2) was observed in the map produced using SNAP toolbox, and the
lowest CCC (0.012 g/m2) was recorded using the PLSR method. Con-
sequently, the CCC product from the SNAP toolbox exhibited easily
noticeable differences when compared to the other three CCC products
(Fig. 8).

4. Discussion

This study compared the wide range of methods available in the
literature for evaluating their operational feasibility in retrieving ca-
nopy chlorophyll content of a heterogeneous mixed mountain forest
from the Sentinel-2 image. Although artefacts caused by canopy
structure, radiometric distortions due to topography, atmosphere, solar
illumination geometry, sensor viewing conditions, and soil optical

Fig. 5. CCC maps predicted from Sentinel-2 data by applying the SNAP toolbox approach, SRVI, INFORM inversion by LUT, PLSR, and PROSAIL inversion by LUT for
Bavaria forest national park.

A.M. Ali, et al. Int J Appl  Earth Obs Geoinformation 87 (2020) 102037

9



properties particularly in sparse vegetation, make retrieval of vegeta-
tion traits from canopy reflectance data challenging (Darvishzadeh
et al., 2008a; Ollinger, 2011; Gitelson et al., 2005), many of the tested
methods provided encouraging results to map CCC of the hetero-
geneous forest ecosystem.

Among the tested VIs, the simple ratio form of indices formulated
based on wavelengths from the red-edge and NIR region showed good
performance. CIred_edge and mSR3 indices revealed the highest positive
correlation (r= 0.88) to change in CCC (Fig. 3a and Appendix A) in this
study. This was expected as spectra in the red-edge region have proven
strong sensitivity to chlorophyll (e.g., Ju et al., 2010; Dawson and
Curran, 1998; Curran et al., 1990). Our finding agrees with several
studies that reported the superior sensitivity of simple ratio vegetation
indices to subtle changes in chlorophyll content (Inoue et al., 2016; Cui
and Zhou, 2017; Tong and He, 2017).

Similarly, spectral subsets obtained from the red and red-edge re-
gion were the good fit spectral datasets for the inversion of RTMs. Also,
PLSR calibration that includes this spectral region elucidated strong
sensitivity to CCC. This finding broadly supports the work of other
studies in this spectral region linking canopy reflectance with chlor-
ophyll content acquired at leaf and canopy levels in forest ecosystems,
grassland and crops (e.g., Delegido et al., 2011; Clevers and Gitelson,
2012; Vincini et al., 2016; Darvishzadeh et al., 2019a).

The result showed that the mSR2, mSR3, and CIred-edge from the
parametric statistical, PLSR from non-parametric statistical, INFORM
inversion by using a LUT from physical-based, and the PROSAIL in-
version by ANN (SNAP toolbox) from combined approaches were good
predictors (Table 4). The highest R2 was obtained by applying PLSR on
eight selected spectral bands (R2=0.78). However, the lowest RMSE
was recorded for mSR3 (R2=0.75, RMSE =0.21 g/m2). In terms of
bias, among the good-performing methods in each category, relatively,
the lowest bias was for mSR3 (bias= 0.016).

Fig. 6. The three forest stand types in the Bavarian national park.

Fig. 7. The frequency distribution of CCC values of BFNP as predicted from
Sentinel-2 data by applying the four methods (SRVI, PLSR, INFORM inversion
by LUT, and SNAP toolbox approach.

Table 6
Summary statistics as a measure of consistency computed from the in situ data,
and CCC maps produced by the four methods. Cells in bold show predicted CCC
closer to expected values.

Method minimum Maximum Mean St. Dev

In situ 0.58 2.42 1.62 0.46
SRVI 0.26 2.80 1.46 0.47
PLSR 0.01 3.54 1.45 0.42
INFORM 0.50 2.70 1.59 0.47
SNAP toolbox 0.22 4.35 1.50 0.45
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Our results identified several VIs, applicable at Sentinel-2 spectral
resolution, that can be used for computationally efficient prediction of
CCC. Several studies have demonstrated VIs based on broadbands as
useful predictors of chlorophyll content. For instance, Broge and
Leblanc (2001) compared the prediction power and stability of broad-
band and hyperspectral VIs for estimation of LAI and canopy chlor-
ophyll density, and concluded that hyperspectral indices are not ne-
cessarily better predictors of the two variables. The results from a study
by Tong and He (2017) confirmed that broadband indices are as ef-
fective as narrowband indices for chlorophyll content estimation at
both the leaf and canopy scale. Broge and Leblanc (2001) found
broadband indices less affected by external factors such as canopy ar-
chitecture, illumination geometry, soil background reflectance, and
atmospheric conditions, and recommended for LAI and canopy chlor-
ophyll content prediction. Nevertheless, VIs are based on empirical
relationship, and may lack generality (i.e., relationships being site,
time, and species-specific) and caution should be taken when applying
VIs developed for one vegetation type or time to another vegetation
type or time (Haboudane et al., 2004; Verrelst et al., 2015; Atzberger
et al., 2015).

Another important finding was that the non-parametric approach-
PLSR with five components on eight spectral bands was the most robust
method for CCC prediction. PLSR was reported superior to VIs (Inoue
et al., 2016), and other non-parametric regression methods (Atzberger
et al., 2010) to assess the CCC of crops and natural grasslands. However,
it is worth noting that the input data used to calibrate the models bound
the performance of non-parametric approaches (Delegido et al., 2011).

This study did not find a significant difference in accuracy between
the physical-based method-INFORM inversion using LUT (R2=0.67)
and the SNAP toolbox approach (R2=0.66), although INFORM was
less biased (-0.101) than SNAP toolbox approach (-0.1632). These
findings suggest that inversion of RTMs either using LUT or by applying
statistical methods have comparable predictive accuracy in retrieving
CCC from remote sensing data. The advantage of these approaches over
other methods is that they minimize the over and/or underestimation of
low and high CCC values. The predictions made by INFORM and SNAP
toolbox follows the 1:1 relationship (Fig. 4) and may be preferred
methods for precise estimation of CCC over large areas. However,
physical-based models inversion demands vegetation structural char-
acteristics information for the simulation of synthetic spectra, which
requires extra effort to acquire.

This suggests that the statistical approaches, which are found suf-
ficiently robust, accurate, and simple in this study, maybe the alter-
native approaches to run continuously in near-real-time across biomes
(Delegido et al., 2011). However, caution must be applied, as the
findings of statistical approaches are affected by the size and type of
training datasets used. The calibration should be made based on in situ
data collected across a broad range of vegetation types to obtain an
accurate and precise prediction of CCC at a regional and global scale.

The maps generated by the four selected methods illustrate well the
spatial variation of CCC across the test site. No visual differences were
observed in the pattern of CCC distribution in the four CCC maps
(Fig. 5), which confirms that canopy chlorophyll content can be esti-
mated using Sentinel-2 imagery. However, when we investigated the

Fig. 8. Ddifference in canopy chlorophyll content (Diff) among products generated using the four methods. The differences are obtained by subtracting one product
from another (e.g. the subtraction of mSR3 from INFORM based CCC product provided the map shown on the top left of the Figure).

A.M. Ali, et al. Int J Appl  Earth Obs Geoinformation 87 (2020) 102037

11



differences through image subtraction, the product from the SNAP
toolbox was found to be deviating from the other products (Fig. 8).

However, the CCC record by PLSR is as low as 0.012 g/m2 and by
SNAP toolbox reached as high as 4.35 g/m2, and showed relatively
higher frequency for those extreme values compared to the other two
methods (Fig. 7). It seems possible that these results are due to the
systematic over and underestimation nature of the two methods. The
method in the SNAP toolbox is based on the PROSAIL model simulation,
which assumes a homogeneous canopy structure (Huemmrich, 2001)
that will be confounded by the heterogeneous forest canopy found in
(semi-)natural forest. The minimum CCC value observed in PLSR gen-
erated map casts a shadow over the transferability of the method, which
is based on a limited in situ dataset, to a larger spatial scale. The CCC
range (0.22–4.35 g/m2) obtained by the SNAP toolbox (4.35 g/m2) was
much higher than a similar study in temperate broadleaved forests
founding CCC ranging from 0.04 to 2.63 g/m2 using PROSAIL (Singh
and Sarnam, 2018). This might be partly attributed to the difference in
phenological conditions of the vegetation studied besides the sys-
tematic over and underestimation nature of the algorithm.

5. Conclusion

There is a multitude of statistical and physical-based methods for
the prediction of CCC from remote sensing data in the literature.
However, previous studies primarily focus on the development of new
techniques and lack a comprehensive comparison of methods to predict
CCC from recently launched high-resolution imageries. This study
tested the feasibility of a broad spectrum of methods from both statis-
tical and physical-based approaches for mapping CCC of a hetero-
geneous mixed mountain forest from Sentinel-2 data. In general,
methods which utilize remote sensing data from the red and red-edge
region are superior in predicting CCC. Among the tested vegetation

indices, mSR3 using central wavelength at 865 &665, mSR2 of 865 &
704 wavelength and CIred-edge based on 783 & 704 central wavelengths,
PLSR on eight bands of Sentinel-2 with five components generate the
most accurate CCC prediction than all the other statistical methods.
Radiative transfer models inversion using LUT and by applying ANN
(SNAP toolbox) provided similar accuracy, though INFORM inversion is
less biased than SNAP toolbox.

Taken together, these results suggest that the CCC maps derived
from Sentinel-2 imagery will enable a spatial assessment of terrestrial
ecosystems condition by mapping CCC. The findings will be of interest
to investigate the effectiveness of the proposed methods to quantify
CCC of different vegetation types to explore the use of Sentinel-2 data to
provide practical means for long-term terrestrial ecosystem monitoring
efforts across the globe. To determine the operationally feasible method
(s) that can be applied for retrieval of CCC in different ecosystems,
further evaluation of the methods will be performed and reported in the
near feature.
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Appendix A

Vegetation indices and CCC correlation
See Fig. A1.

Fig. A1. Relationship between measured canopy chlorophyll content (CCC) (n=32) and vegetation indices (VIs).
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Appendix B

Measured vs predicted CCC scatter plots
See Fig. B1.
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