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Characterizing flood impact on Swiss floodplains

using inter-annual time series of satellite imagery
Gillian Milani, Mathias Kneubühler, Diego Tonolla, Michael Doering, Michael E. Schaepman

Abstract—Pressure on the biodiversity of ecosystems along
many rivers is growing continuously due to the increasing
number of hydropower facilities regulating downstream flow and
sediment regimes. Despite a thorough understanding of the short-
term processes and interactions at this hydro-biosphere interface,
long-term analyses of the impacts on floodplain dynamics are
lacking. We used inter-annual Landsat 4, 5, 7 and 8 time
series to analyze the effects of hydrological events on floodplain
vegetation in four mountainous floodplains in the Swiss Alps.
Using a spectral mixture analysis approach, we demonstrate that
the floodplain vegetation dynamics of mountainous rivers can
be recovered at a spatial resolution of 30 meters. Our results
suggest that interactions between floods and floodplain vegetation
are complex and not exclusively related to flood magnitude. Of
the four reaches analyzed, only data gathered along the sub-
mountainous reach with a quasi-natural flow regime show a clear
link between remotely sensed vegetation indices and floods. In
addition, our 29-year time series shows a continuous upward
trend in vegetation indices along the floodplains, strongest in
the reaches affected by hydropower facilities. The approach
presented in this study can be easily replicated in other mountain
ranges by providing available flow data to verify the impact of
hydropower on floodplain vegetation dynamics.

Index Terms—Landsat, unmixing, NDVI dynamics, Alps, floods

I. INTRODUCTION

Rivers and their floodplains provide essential ecosystem

services worldwide while under pressure from hydropower

production, agricultural expansion and climate change [1],

[2], [3]. The changes imposed on the flow regime largely

impact the floodplain vegetation through the modification of

natural hydrogeomorphic processes [4], since the forms of

floodplain vegetation are largely related to flood and sediment

characteristics [5], [6]. Alterations of the flow regime, as well

as alterations of the sediment transport, result in changes in

the floodplain ecosystem, such as vegetation encroachment

or increase in non-woody vegetative cover, but prediction of

changes are challenging [7], [8]. Observation and monitoring

of floodplain vegetation development and recovery are crucial

to assess flow regime management needs and the achievements

of restoration projects along river systems globally [9].

A. Floodplain Vegetation Dynamics

The processes linking vegetation to the flow regime have

already been the subject of several studies showing strong
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correlations between flow disturbance and vegetation growth

[10], [11], [12]. Effects of the water flow on the alluvial

vegetation can be summarized in six main factors [13],

which are, in brief, erosion, asphyxiation of roots, change

in floodplain morphology, variations in ground-water, seed

dispersal and change in soil chemistry. Flood events with

their timing duration, frequency and magnitude are major

components of the flow regime affecting these factors and

overall floodplain vegetation [14], [15]. Although changes in

floodplain characteristics have been linked to flooding, vegeta-

tion development appears to have a more complex relationship

with the flow regime [16]. Thus, water flow sustaining an

integrity of downstream ecosystems depends on their dynamic

character [17], [18]. Considering the complex impact of flow

regimes and floods including their magnitude, timing, and

duration on alluvial vegetation, the analysis of time series

spanning consecutive years could help at understanding these

impacts. Such understanding can be helpful for managing

flow regimes and reducing the impact of flow alteration on

floodplain ecosystems.

In this frame, temporal series of remotely sensed data allow

to study vegetation changes and vegetation health status linked

to flood events, as well as vegetation recovery. A study by

[19] demonstrated the usefulness of medium spatial resolution

satellite imagery over the Tagliamento River in Italy, where

changes in riparian vegetation caused by changes in natural

flow conditions were successfully observed.

B. Remote Sensing of Mountainous and Sub-Mountainous

Floodplains

Despite decades of research on the use of satellite remote

sensing for floodplain vegetation [20], its actual use for

mountainous and sub-mountainous floodplain studies is still

very rare. The study of mountainous and sub-mountainous

floodplains based on archive data is challenging because of

the relatively small size of the study object compared to the

imagery spatial resolution. High or medium-resolution satellite

images were used to delimit geomorphological units, flood

extent and land use in riverine environment, for example

by using the ASTER sensor [19] or the QuickBird Satellite

sensor [21]. High-resolution satellite imagery has also been

used to map bar crest movement over a relatively short time

scale [22] or to map riparian habitat at high spatial resolution

[23]. Although high-resolution imagery can be useful for

studying mountainous and sub-mountainous floodplains [24],

[25], the lack of large data archives of high-resolution images

hinders their use for inter-annual studies. Furthermore, coarse
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resolution imagery, e.g. from the MODIS sensor [26], offering

long time series are not suitable in the riverine context given

the relatively small size of mountainous and sub-mountainous

floodplains.

Among the data archives available today, the Landsat

archive offers a unique homogeneous dataset available since

several decades and usable at a decameter scale [27], [28].

Landsat Tasseled Cap inter-annual products have been used

to classify the land cover of large floodplains and interannual

changes [29], [30]. In the past, previous studies have shown

that decameter scale satellite imagery can be used for study-

ing floodplains in a multi-temporal setting [31], [19], [32].

However, these studies did not consider a statistical regression

analysis with auxiliary datasets such as discharge data and

where limited in the automation of the information extraction

from the image stack, limiting therefore the number of scenes

considered.

In our study, we contribute to the discussion on ripar-

ian vegetation changes led by modification of flow regime

in mountainous and submountainous rivers by developing a

workflow to extract vegetation indices distributions in a semi-

automated manner from a data archive suitable to be used for

floodplain monitoring, which allows us to carry out a statistical

analysis with discharge data from gauging stations. We apply

this approach to time series of images geo-located over four

Swiss Alpine river floodplains. Our approach allows extracting

information on vegetation dynamics covering a very restricted

area of the remotely sensed data thanks to Spectral Mixture

Analysis (SMA) and an iterative construction of a floodplain

mask. The analysis of satellite imagery in our study provides

information on the state of riparian vegetation, such as the

rate of vegetation growth to be linked to changes in the flow

regime. Typical impacts of flow alteration include stream nar-

rowing, vegetation encroachment and bank stabilization [33],

[34]. Compared to natural floodplains showing a correlation

between flow regimes including flood events and vegetation

dynamics, we expect a decoupling of such mutual effects

along floodplains with altered flow and sediment regimes. This

hypothesis is motivated by the loss in habitat dynamics ex-

pected along reaches with an altered flow regime in particular

with lacking flood events. We assume that observed changes

in vegetation conditions are mainly triggered by flood events

affecting the floodplains.

II. MATERIAL AND METHODS

A. Study Sites

The four Swiss Alpine study sites were selected on reaches

of the Sense, Allenbach, Maggia and Brenno river floodplains

where unvegetated gravel bars are large enough to be detected

by the remote sensing data considered (Figure 1). We selected

the four reaches in a way that different states of water flow

alteration can be compared with reaches largely influenced

by water flow alterations and others as close as possible to a

natural state, under the limits of data availability. The width of

the floodplains considered is therefore linked to the theoretical

minimum width required for a continuous detection of the

surface, which encompasses two pixels. This minimum width

is here 60m on the ground, given that the imagery used has a

30m spatial resolution. The study area was delineated by the

extent of the Swiss federal inventory of floodplains of national

importance. The last inventory was carried out from 2012 to

2017. The selected reaches each have a gauging station few

kilometers upstream or downstream of the reaches of interest.

A summary of some of the characteristics of each reach is

presented in Table I.

The first reach is located along the Sense River next to the

village of Plaffeien, an investigation site of previous studies

about its hydromorphology [35], floodplain habitats [36] and

the use of aerial imagery [37], [38], [39]. The Sense River

is one of the last rivers in Switzerland to have a near natural

flow and sediment regime.

The second reach is located along the Allenbach, a moun-

tainous stream located next to the village of Adelboden. The

Allenbach is prone to flood events triggered by short storm

events due to the low storage capacity of the watershed [40].

Supplementary information on the Allenbach watershed can

be found in [41].

The third reach is located along the Maggia River, between

the villages of Boschetto and Lodano. A large hydropower

system, Officine Idroelettriche della Maggia SA, impacts the

floodplain ecosystem due to flow regulation since ca. 1995,

resulting in a residual flow regime [42]. The flow regulation

has led to a 75 percent decrease in the average annual

discharge, while the annual peak discharge was not decreased

[42]. Supplementary information on the flow and sediment

dynamics can be found in [43] and, along with landscape

composition information, in [36].

The fourth reach is located along the Brenno River. The

reach considered along the Brenno spans a total length of circa

4km, which we divided into three sections. Such division was

necessary to eliminate river sections along which agriculture

and roads were close to the channel and thus would influence

the retrieval of the vegetation indices. The first section is

located next to the village of Loderio, the second is located

upstream of the village of Motto Blenio, and the third section

is located next to the village of Prugiasco. This reach has

also been affected by hydropower facilities since circa 1960,

leading to a 73 percent decrease of annual discharge and a

substantial decrease in small and medium-sized floods, while

the number of flood events does not show any change [44].

B. Satellite Imagery

Our methodology was developed to reflect changes in vege-

tation indices in medium-resolution satellite imagery (ground

resolution ∼30m), with the aim of using time series covering

three decades along mountainous and sub-mountainous rivers.

Here, the size of the objects under study was considered to be

small for a remote sensing application since the extent of the

minimum size under consideration (i.e. the minimal width of

the floodplains) is of the same magnitude as the size of the

ground sampling distance of the imagery.

Since vegetation indices tend to accurately capture differ-

ences in vegetation cover at low fractional cover [45], we make

use of the large variation in fractional cover typically found
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TABLE I
CHARACTERIZATION OF THE STUDY REACHES IN THEIR ACTUAL STATE. THE NATURAL FLOW REGIME WAS EXTRACTED FROM DATA MADE AVAILABLE

BY THE SWISS FEDERAL OFFICE FOR THE ENVIRONMENT (FOEN). THE SUBSTRATA CLASSIFICATION IS BASED ON THE MAP GK500 OF THE SWISS

GEOTECHNICAL COMMISSION (SGTK). THE WIDTH REFERS TO THE MEAN OF THE DETECTED FLOODPLAIN AREA BASED ON THE SATELLITE IMAGERY.
ABBREVIATIONS: GS: GAUGING STATION, HP: HYDROPOWER PLANT, C: CRYSTALLINE, U: UNCONSOLIDATED, S: SEDIMENTARY.

Maggia Brenno Sense Allenbach

Strahler number 7 6 6 4

Lengh [km] 8 4 4 2.2

Mean floodplain width [m] 304 104 163 128

Area [ha] 243 42 65 28

Mean Elevation [m asl] 365 447 820 1’470

Natural Hydrological Regime meridional

nivo-pluvial

meridional

nivo-pluvial

transition nival meridional

nivo-pluvial

Distance to GS [km] 3.5, upstream 1, downstream 15, downstream 0, downstream

Distance to upstream HP [km] 5.3 8 - -

Substrata C (hills) / U (valley) C and S (hills) / U

(valley)

U U / S

Location of reaches

Swiss boundary

Considered area (subset)

Floodplain delineation (federal inventory)

46° 44’ 37‘’ N

07° 18’ 03’’ E 

46° 29’ 06’’ N

07° 30’ 54’’ E

46° 17’ 20’’ N

08° 38’’ 43’’ E

46° 23’ 05’’ N

08° 58’’ 41’’ E

Fig. 1. Subsets of the considered reaches exhibiting the delineation of the
floodplains (white line) and the total considered area in the study (white
pixels). The floodplain delineations are extracted from the Swiss federal
inventory of floodplains of national importance. The total considered area
(in white) represents all locations that were included in the mask for the
normalized difference vegetation index (NDVI) and the vegetation fraction
(VF) calculation for at least one acquisition in the time series. The coordinates
refer to the image center. Background Image Source: orthophotos of the years
2004 and 2005 (Swissimage Geodata c© Swisstopo).

in mountainous floodplains for a robust retrieval of vegetation

properties by remote sensing. The central idea is therefore

to focus on the sparse vegetation areas of the floodplain in

order to extract reliable information on changes in vegetation

conditions.

We used remotely sensed images acquired by Landsat

missions 4, 5, 7 and 8 to construct inter-annual time series

of vegetation indices [46]. Independent time series were built

for each reach. A list of all selected images can be found

in the additional material (SI Section 1). The calibrated top-

of-atmosphere reflectance [47] at a resolution of 30 m was

used. For each reach, only one image was selected per year

from 1988 to 2016. This period was chosen as a compromise

between data availability, the size of the data set and the occur-

rence of large-scale flood events in the sectors of interest. The

best image was selected based on minimum cloud coverage

over the target area and an acquisition date as close as possible

to July 31 to represent the vegetation period. The images used

were all from the Landsat series, including the operational land

imager (OLI) on Landsat 8, the enhanced thematic mapping

system Plus (ETM+) on Landsat 7 and the thematic mapping

instrument on Landsat 5 (TM05) and Landsat 4 (TM04).

Limiting our analysis to the Landsat image collection allowed

a consistent comparison of the information remotely acquired

over the period. Where possible, we tended to include data

from a single sensor in order to further minimize the biases

that could occur due to small but existing differences in sensor

characteristics [48]. Therefore, when available, Landsat 7 was

chosen instead of Landsat 5, and Landsat 5 images instead of

Landsat 4 images. If no suitable images were found in July

or August, the images acquired in June were considered as

potential candidates. The images from ETM+ were chosen to

minimize the Scan Line Corrector (SLC) problem [49]. If the

SLC issue affected a large part of the area of interest, images

of OLI and TM05 were considered instead.

Although we did not apply atmospheric correction our-

selves, we provide some details on these corrections here since

the results of this study depend on these processing steps. We

used already atmospherically corrected images, as provided by

the USGS via the Google Earth Engine platform. The image

acquisitions by TM04, TM05 and ETM+ have been corrected

using the LEDAPS algorithm (Landsat Ecosystem Disturbance

Adaptive Processing System) [50]. Average residues of ∼0.004

to 0.010 have been reported for the accurate recovery of the

surface reflectance of ETM+ [51]. Image acquisitions by OLI

were corrected using the Landsat Surface Reflectance Code

(LaSRC). While LEDAPS uses meteorological services to

evaluate the parameters of atmospheric correction, LaSRC uses

parameters estimated from the MODIS satellite constellation.

The surface reflectance is considered to be captured more

accurately by OLI than by previous sensors [52], [53]. We

selected only images without clouds or shadows on or close

to the reaches. On each image, the cloud and shadow areas

were masked according to the internal flags available in the
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product quality assessment (QA) layer.

C. Image Post-Processing and Vegetation Indices

The normalized difference vegetation index (NDVI) [54]

was used in our study, along with fractional vegetation ex-

tracted from Spectral Mixture Analysis (SMA) [55]. The

extraction of information from remotely sensed data is realized

in multiple steps (Figure 2), detailed further as: the building of

a spectal endmember library, the production of indices maps,

the delineation of the floodplain, and the data aggregation at

the reach level.

NDVI varies according to the Leaf Area Index (LAI) and

vegetation health among other sources of variation [56], [57].

NDVI has been used in a broad range of applications such as

estimation of productivity, response to environmental changes

or trophic interactions [58]. However, NDVI has shown some

inconsistencies in a few cases when comparing the state of

vegetation at a given location over time [59], [60], e.g.,

when comparing images acquired under different atmospheric

conditions or with different sensors.

To complement the use of NDVI, we also extracted the

vegetation fraction (VF) for each pixel, derived from SMA.

SMA, or unmixing, aims at retrieving the abundances of a

number of selected spectra from a single pixel. A spectral

library can be formed from the selected spectra, called spectral

endmembers (i.e., a spectral library consists of spectra of dif-

ferent land cover types). The SMA uses a restricted selection

of endmembers to estimate the contribution of land cover com-

ponents to the measured reflectance. For each pixel, the output

of the SMA is therefore an estimation of covered fraction by

each component. In short, SMA retrieves the contribution of

each material by an optimal mixture of selected endmembers

that create the observed reflectance. The sparse vegetation

and small patches of vegetation found on floodplains underpin

the need for SMA (Figure 1). While it has been shown that

nonlinearity is important to retrieve accurate subpixel fractions

[61], [62], we are here interested in relative changes, making

the retrieval of absolute values not a necessity. For this reason,

we consider the VF as an index in our study. Here, we used an

implementation of a fully constrained linear spectral unmixing

algorithm provided by the Google Earth Engine platform.

We used a selection of 19 spectra from the ASTER spectral

library as spectral endmembers [63]. Among the 19 selected

endmembers, three were vegetation spectra. To complement

the selected 19 endmembers, we included three additional

vegetation endmembers and two rock material endmembers

extracted specifically from the selected images, leading to a

total of 24 endmembers.

The image post-processing creates three products, i.e., (i)

the delineation of a floodplain mask (Figure 3), (ii) the

extraction of the NDVI distribution and (iii) the extraction

of the VF distribution. The mask was created from the same

center line for each year. First, we digitized a line in the center

of the unvegetated area. The line was then rasterized, defining

an initial mask at a resolution of 30m. Then, two steps were

repeated iteratively. First, the initial mask was extended by

one pixel in all directions. Then, pixels that contain a VF

Landsat image stackspectral database

19 endmembers  

selection

spectral endmembers library

5 endmembers 

selection

SMA

VF maps

floodplain masks

NDVI maps

VF distributions NDVI distributions

cloud / shadow masking 
NDVI calculation

mask delineation*

aggregationaggregation

Fig. 2. Schematic workflow from the image stack and spectral endmembers
library to the distribution of NDVI and VF. Image or map data are shown as
rectangle, non-image data are shown as rounded rectangle, and operations are
shown as ellipse. The iterative steps of the mask delineation (*) are detailed
in Figure 3.

Fig. 3. Scheme of the mask delineation. The center line is first manually
digitized (A) and then rasterized (B). Then, iterations of mask expansion (C,
E, G) and filtering (D, F, H) are applied up to a maximum of six iterations
(here three iterations in the scheme). The very last step of mask expansion is
not shown here.

larger than or equal to 50 percent were removed from the

mask. The threshold of 50 percent was based on a qualitative

consideration of the non-forested areas inside the retrieved

mask compared to the federal inventory of floodplains (up-

dated on July 1st 2007) issued by the Swiss Federal Office

for the Environment (FOEN). Repeating these steps several

times results in a mask that covers all pixels in the section

that have a VF smaller than 50 percent. Six repetitions extend

the mask to a maximum width of 360m. The last step in the

construction of the mask consisted of a final expansion of one

pixel in all directions. This last step creates a mask robust

to one-pixel variations of co-registration. The distributions of

the NDVI and VF values were finally extracted for each year

within the limits defined by the mask.

The theoretical range of NDVI is from -1 to 1. Negative

values can be found over water bodies. The low positive values

observed here generally correspond to bare soils, areas of

unvegetated gravel, or a mixture of gravel and water. In gen-
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eral, the NDVI increases with vegetation cover and vegetation

health. The possible values of VF range from 0 to 1. A VF

value of 0 indicates a total absence of vegetation within a pixel,

while a VF value of 1 indicates that the entire pixel is covered

with vegetation. An intermediate value indicates that parts of

the pixel are covered with vegetation. An intermediate value

can be observed over different configurations, for example,

if vegetation is sparse or because there is a clear boundary

between land cover types. Also, intermediate values of NDVI

and VF may indicate the presence of large woody debris in the

pixel. It is indeed almost impossible to differentiate between

very sparse vegetation and the presence of woody debris in a

pixel because of the similar spectral signature of the two types

of land cover.

D. Flow Variables

The discharge data were made available by the Swiss

Hydrology Division of the Federal Office for the Environment

(FOEN).

We chose gauging stations as close as possible to the study

reaches (Figure I): Maggia - Bignasco, Ponte Nuovo 2475,

Brenno - Loderio 2086, Allenbach - Adelboden 2232, and

Sense - Thörishaus, Sensematt 2179.

Eight variables, which are expected to be related to flood-

plain vegetation dynamics, were calculated from maximum

daily flow data of the selected hydrological stations for each

period between satellite images (SI Table VII). Only flow data

until the exact image acquisition date were considered as part

of the period. For example, if a satellite image was acquired

over the Sense on July 17, 2014, the flood occurring on August

11, 2014, was then considered in the subsequent period (image

2015). The eight flow variables used in the analysis were:

- Q2, Q10 and Q30: number of floods with return periods

of n=2, 10 and 30 years. Commonly used to describe

recurrence of floods with a certain magnitude [64]. Qn

were extracted from the FOEN report for each gauging

station, without catchment correction. For example, a Q2

event is defined here as a day presenting a peak discharge

equal or higher than the Q2 discharge. A flood can be

considered in multiple groups (i.e. if one Q10 occurred,

it was also considered as Q2, since it raises above both

thresholds).

- Qmax: yearly maximum discharge [65], [66]

- NM7Q2: number of days with a daily average discharge

lower than the lowest average discharge observed over

seven consecutive days with a return period of two years

(extracted from the FOEN reports). Commonly used to

describe the effect of droughts periods [67].

- Q2 spring, Qmax spring, NM7Q2 spring: Q2, Qmax

and NM7Q2 for the same growing season as the image

acquisition, defined as starting from the first of April and

lasting until the date of the image acquisition.

We then calculated the Spearman’s rank correlation between

the eight flow variables and the changes in NDVI median and

VF median. A threshold of significance was set at an alpha

value of 0.05 for the correlation. The number of correlations

being significant is inflated due to the number of tests carried

Percentile 25 of NDVI change

R2: 0.28

p-value: 0.01

O
cc

u
re

n
ce

 o
f 

Q
2

Percentile 75 of NDVI change

p-value: > 0.05

Fig. 4. Logistic regression between the normalized difference vegetation
index (NDVI) and the occurrence of preceding Q2 events. For each image
acquisition, absence of preceding events leads to a value of 0 and presence
of at least one preceding Q2 event leads to a value of 1.

out. However, we did not apply a correction for balancing the

presence of false positive results due to the limited sample

size. Instead, we relied on the coherence between correlations

being significant at an alpha value of 0.05 to interpret them

together.

III. RESULTS

A. Spearman’s Rank Correlation

The Q2, Q10 and Qmax and Qmax spring variables were

negatively correlated at a significance level of 0.05 with

changes in NDVI and VF along the Sense (Table II). Correla-

tion coefficients were slightly higher for VF changes than for

NDVI. Variables limited to the spring period showed similar

statistical trends as the full-year variables, although they have

lower correlation coefficients. Along the Maggia, the variables

NM7Q2 and NM7Q2 spring showed a statistically significant

relationship with the change in mask size. No significant

relationship was found between flow variables and variation

of indices along the Allenbach and Brenno rivers.

Along the Sense, the regression between the occurrence

of Q2 events and the change in NDVI was examined more

closely (Figure 4). The more detailed logistic model was

restricted to the Sense, since the other reaches did not show

statistical relations between the median of the indices and

the flow variables. In particular, along the Sense, about half

of the years in which at least one Q2 event was present

showed a negative change in the indices larger than the most

extreme change observed without preceding Q2 events. A

logistic model was therefore tested between the occurrence

of Q2 events and percentiles of NDVI distribution. On the

one hand, the 25th percentile of the NDVI distribution was

correlated at a significance level of 0.05 with the occurrence

of at least one Q2 event. However, the 75th percentile of the

NDVI distribution was not significantly correlated with the

occurrence of Q2 events. A very similar result was obtained

from the VF distributions (SI Figures 9).

B. Indices Dynamics

Besides statistical analysis, a qualitative analysis between

individual events and changes in indices was carried out

(Figure 5).

In general, along the Sense, the Maggia and the Brenno

rivers, presence of Q10 or Q30 events coincides with a
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TABLE II
COEFFICIENT OF SPEARMAN’S RANK CORRELATION FOR THE MASK SIZE (MS), NDVI AND VF CHANGES AGAINST THE FLOW VARIABLES FOR THE

FOUR REACHES. ONLY THE CORRELATION COEFFICIENTS STATISTICALLY SIGNIFICANT AT AN ALPHA VALUE OF 0.05 ARE SHOWN.

Sense Allenbach Maggia Brenno

MS NDVI VF MS NDVI VF MS NDVI VF MS NDVI VF

Q2 - -0.52 -0.65 - - - - - - - - -

Q10 - -0.5 -0.64 - - - - - - - - -

Q30 - - - - - - - - - - - -

Qmax - -0.55 -0.65 - - - - - - - - -

NM7Q2 - - - - - - 0.54 - - - - -

Q2 spring - - -0.52 - - - - - - - - -

Qmax spring - -0.4 -0.53 - - - - - - - - -

NM7Q2 spring - - - - - - 0.43 - - - - -

decrease in indices. Periods with few flood events exhibit an

increase in indices, such as from 1990 to 2005 along the

Sense, from 2002 to 2007 along the Maggia (particularly

on the NDVI), and from 1994 to 1999 and 2009 to 2015

along the Brenno. Along the Sense, the large flood event of

1990 (489 m
3/s, return period: >150 years) coincided with an

observed decrease in NDVI and VF, although the magnitude

of the decrease is not as unique in the time series as the peak

discharge.

Along the Allenbach, no pattern is qualitatively visible in

the dynamics of the indices. The low VF values found in

2014 and 2015 coincided with relatively dry periods preceding

the image acquisitions. Also along the Allenbach, the second

part of the time series, from 2003 to 2016, showed some

positive statistical relation between changes in indices and the

occurrence of large floods, although this was not significant

(SI Figures 7 and 8).

Overall, the NDVI values showed less variability than the

VF values, both for mean values and for complete distributions

(violin charts, SI Section 4). The presence of a statistical

mode in the upper half of the NDVI and VF distributions,

around 0.7 and 0.9 respectively, represents pixels that are

found on entirely vegetated areas. Another mode in the lower

half of the NDVI and VF distributions, around 0.3 and 0.1

respectively, typically represents pixels that are completely

free of vegetation.

C. Trend in the Time Series

The trends of the indices over the years were analyzed.

Overall, the NDVI and VF distributions increased over the

years (Figure 6). The median of the NDVI showed a significant

increase over the years for all four reaches. The median of

the VF only increased significantly over the years along the

Maggia and Brenno reaches. The coefficient of determination

(R2) of the linear regression on the NDVI along the Maggia

River was particularly high at 0.75.

An analysis of the auto-correlation function of the detrended

time series did not reveal a significant level of auto-correlation

beyond a one-year lag along the Sense, Allenbach and Brenno

rivers. A significant level of autocorrelation was detected with

a three-year delay for NDVI along the Maggia River. A

significant level of autocorrelation with a one-year lag for all

reaches has a small but existing impact on the significance of

statistical tests performed on linear trends, which increases the

rate of Type I error.

IV. DISCUSSION

A. Relation between Flow Variables and Remote Sensing

Indices

a) Sense Reach: Along the Sense River, periods with

flood events generally coincide with decreases in NDVI and

VF values, while no linear relationships are observed along

the other three reaches. The magnitude of the flood events

(represented by Qmax) and the number of flood events with a

return period of 2 and 10 years (Q2 and Q10) are statistically

related to changes in the extracted indices. These observations

are in line with the general principle that floods are one of the

main drivers of habitat dynamics in floodplains [68], [69].

The impact of the major flood of 1990 on the indices

(489 m
3/s) is of the same magnitude as for the 2005 and

2014 floods (246 m
3/s and 299 m

3/s). The 2007 flood had

less impact on the indices, probably due to erosion caused

by the 2005 flood two years earlier. A remarkable difference

between these events can, however, be found in the average

daily flow. The average daily flow during the 1990 floods was

34.6 m
3
s and 32.9 m

3/s on July 29 and 30, while the average

daily flow was 147 m
3/s on July 22, 2005 and 130 m

3
s on

August 9, 2007. The very short duration of the flood event of

1990 can therefore be part of the explanation of a relatively

weak change of indices despite the exceptional character of the

flood event. This observation supports the fact that not only

the flood peak is important, but also other characteristics such

as the duration or the total energy of the flood event [70].

Another fact that can explain the relatively low impact of the

flood of 1990 on the indices is that the retrieved indices do not

necessarily reflect all the impacts of a flood on the floodplain

land cover. Although large floods (Q50) have been observed

to have significant effects on channel morphology [71], the

impacts on floodplain morphology may not be proportionally

reflected by the impacts on the riparian vegetation [72].

In addition, the effects of flow regulation on vegetation

structure may still be incomplete after several decades [73],

which suggest a shaping of floodplains in the long-term rather

than single large flood events. These elements can therefore
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Fig. 5. Mean values of the normalized difference vegetation index (NVDI) and Vegetation Fraction (VF) from 1988 to 2016 along the four investigated reaches
(scale on the left axis) and mask size over which the indices were extracted for each year (right axis). The bands along the curves indicate a 68 percent (±1σ)
confidence interval. The x-axis depicts the year of image acquisition. The flood events happening between two acquisitions are centered between the image
acquisitions along the x-axis. The flood event discs are vertically distributed (close - far) according to the time length preceding the next image acquisition.
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Fig. 6. Linear regression between the year of image acquisition and median of NDVI and VF. The colored areas represent a confidence interval of 68% for
the regression line. An asterisk (*) indicates a p-value smaller than 0.05.

explain the lack of change in vegetation indices after a single

flood event with a very large peak discharge. Instead, some

studies have found a clearer statistical relationship between

the frequency of moderate flooding (Q1 to Q10) and changes

in vegetation in mountainous and sub-mountainous floodplains

[74], [31]. In brief, all this aspects suggest that the lack

of prominent impact by the large flood of 1990, although

counter-intuitive, is in line with a normal common of natural

floodplains found in mountainous environment.

b) Maggia and Brenno Reaches: Along the two hy-

dropower affected reaches of the Maggia and Brenno, although

we observed a decrease in indices for most major floods, the

absence of correlation can be explained by the presence of
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changes in the indices over years without flood events. The

dynamics of the indices along these reaches are presumably

related to the alteration of water flow by upstream hydropower

facilities, in addition to other factors such as land use change or

weather variation. The modification of the natural flow regime

by dams or hydropower plants has a strong impact on erosion,

transport and sediment deposition [75] along with a variable

response of floodplain vegetation [12]. Another study on the

Maggia reach indicated that flow changes resulted in a loss of

natural vegetation dynamics and a decrease in non-vegetated

gravel bars [42]. Since the frequency of large flood events has

not decreased [42], the absence of a statistical link between

floods and the indices can suggest that the alteration of the

sediment regime has a large influence on the development of

the vegetation in the floodplains [76].

The co-occurrence of dry periods with an increase in mask

size observed along the Maggia is probably related to the

canopy leaf angle distribution, which changes the retrieved

vegetation-free fraction per pixel in the spectral mixture anal-

ysis [77]. Consequently, it is expected that dry periods lead to

a higher estimation of the vegetation-free fraction.

Along the Brenno, some years without Q2 events show a

decrease in the indices, leading to an absence of a statistical

relationship. The observed decrease in the indices may result,

in this case, from a limitation of the chosen approach: the

construction of the floodplain mask for each single year may

independently mask the areas of the floodplain in which strong

plant growth occurs, resulting in a shrinking of the area under

consideration and thus an ”artificial” decrease in the indices.

It is not possible to disentangle the effect of the mask size

change from other changes without external data. Changes of

the mask size are smaller along the other reaches, although

present as well.

c) Allenbach Reach: Along the Allenbach, no statistical

relation was found between flow variables and indices. In

contrast to the Sense, Brenno and Maggia reaches, the Allen-

bach floodplain is subject to fast variation in water flow and

recurrent flood events due to storms [78]. Given the smaller

size of the watershed, the Allenbach is subject to reduced

variations in the intensity of flood events compared to the other

reaches. This results in a floodplain with almost no presence

of pioneer species and a well defined floodplain boundary. The

delimitation between the surrounding vegetation areas and the

vegetated zones of the floodplains is clearly defined. Such a

floodplain structure is in line with an absence of statistical link

between flow variables and NDVI and VF, therefore supporting

the method developed in this study, since, as it would be

expected along this reach, the flood events have a limited direct

impact on the floodplain vegetation.

d) Periods with Few Disturbances: Flood-free years gen-

erally coincide with an increase in NDVI and VF (Figure 5),

although these links are not statistically significant. Vegetation

growth in size and space has been observed during periods

without flooding [16]. Also, some dynamics in NDVI and

VF can be linked to previous floods, most likely representing

recovery after a disturbance. Vegetation recovery after a major

flood can occur in the short term [79], [80]. However, the

vegetation can still be altered for decades [73]. Periods of

increased vegetation productivity following flooding have been

observed using coarse resolution imagery in semi-arid environ-

ments [81]. Although floods are the main source of erosion

of floodplain vegetation, they also create conditions favorable

to the establishment of seedlings through the deposition of

sediment and nutrients [82], [83]. The increase of NDVI and

VF distributions after major floods may also be influenced by

the deposition of woody debris on sediment bars, islands and

terraces, as it occurs in the Sense River [38], introducing bursts

of nutrients to these areas [84], [85]. Finally, the floodplains

found in mountainous environment have been described as

being very resistant and having a high recolonization capacity

[86]. The dynamics observed over flood-free years show the

importance of disturbance to support floodplain ecosystems by

enabling habitat turn-over [31] and thus supporting establish-

ment of unvegetated gravel bars, as well as pioneer vegetation.

B. Trends in Time Series

The indices retrieved along the Maggia and Brenno reaches

and, to a lesser extent, along the Sense and Allenbach reaches,

show an increase in the averages of the indices over the period

considered. Such an increase in vegetation is in line with

observations made in other studies along the Maggia [42] and

Brenno [44]. The observed trends in vegetation dynamics may

also be related to longer-term climate-related processes [87].

In general, river systems have been described as very sensitive

to climate variation [88], [89].

An overall increase in vegetation cover leading to a shrink-

ing of riparian areas is consistent with the expected response

to climate change [90], [91]. Changes in the flow regime of the

Allenbach and the Sense River can potentially be triggered by

climatic variations, since, to our knowledge, no large changes

in the land cover have occurred in the watershed for the

considered period. For example, from 1950 to 2016, three

of the five largest peak discharges recorded by the Sense -

Thörishaus station occurred in 2011, 2012 and 2015. A stable

increase of the magnitude of Qmax is also visible in the flood

statistics of the Allenbach - Adelboden station from 2011.

Given all these elements, the observed changes in the indices

retrieved over the floodplain vegetation may be due to climate

variations in the Alps, although they could also be triggered

by different causes such as land use changes or a combination

of both.

The detected trends in the NDVI values may be partially

affected by artifacts present in the satellite imagery. It is also

possible, however unlikely given the rigorous calibration of the

Landsat time series [49], that a shift in sensor performance

affects the NDVI. It has previously been reported that the

combination of LC07 acquisitions with TM acquisitions can

lead to an artificial underlying trend in NDVI [92]. In addition,

some differences were reported regarding the data acquisition

by OLI and previous satellites sensors [93]. More specifically,

lower values in the visible range were consistently observed

for OLI, corresponding to a slight increase in the NDVI.

However, the variations of the on-orbit gains (in the order

of 0.5%) are lower than our observed dynamics [94]. It is

also likely that the VF is less affected by a possible shift in
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the Landsat series surface reflectance data. In brief, while the

NDVI shows a trend along all reaches, suggesting a climate-

induced change, the VF index shows a trend only along the

Brenno and Maggia rivers, suggesting a change induced by

hydropower. In conclusion, while the trends may be affected

by sensor performance, they are most likely caused by land

use or climatic variations or a combination of them.

C. Sensibility of Remotely Sensed Indices

Four points are discussed in this section: i) the sensibility of

the indices to a real change, ii) the variations in violin charts,

iii) the variation in mask size and iv) the influence of the day

of year (DOY) of the acquisition.

The VF distribution is known to be sensitive to varia-

tions in the spectral characteristics of the land cover [95].

Therefore, changes in the spectral properties of a pixel can

lead to variations in the estimated fraction of vegetation. The

sensitivity of the VF is visible in the dynamics of the indices:

some periods show variations in the VF, while the NDVI

remains relatively stable between consecutive years. However,

the changes described by spectral mixture analysis (SMA) may

be more accurate than the changes described by NDVI [96],

although NDVI and results from SMA are known for providing

consistent information over a variety of environments [97].

The violin charts (SI Section 4) revealed that flooding

affects the shape of the NDVI and VF distributions by inflating

the lower mode. An overall decrease in the two distribu-

tions indicates that individual flood events erode parts of the

floodplain vegetation. In the representation of the complete

distribution (SI Section 4), large variations in VF cannot be

entirely attributed to shifts in the presence of vegetation, due

to the high temporal resolution of image acquisition relative to

the vegetation growth rate at high VF values. Although some

pioneer species can develop rapidly on unvegetated gravel

bars, some changes in VF associated with high VF values

are typical of forest cover. It is therefore more likely that the

variations observed in the higher mode of VF distribution are

related to the reflective properties of the forests and grasslands

surrounding the floodplain.

The variability in mask size has an influence on the change

of indices. The mask size is expected to be inversely propor-

tional to the average of the indices, since a greening of the

floodplain should result in a smaller number of pixels with

an FV below the 50 percent threshold. As a consequence, the

NDVI and VF distributions can raise over the years either due

to an overall greening or due to a thinning of the floodplain

width.

To verify that the trends (Figure 6) are not due to a shift

of the acquisition time, we calculated the correlation of the

DOY of acquisition along the time series. We did not find any

coherent bias between early acquisitions and the rest of the

time series (only the VF in 2014 along the Allenbach is found

to be particularly low among the three earliest samples). We

then checked the correlation between DOY of an acquisition

and the specific year. The time series along the Maggia reach

consists of decreasing DOY values with increasing years, with

a p-value of 0.016 on the null hypothesis stating that the

regression slope is zero. Since the trend along Maggia reach is

similar to other reaches (Figure 6), it is not expected that the

DOY of the acquisition influences the results. Finally, given

the tree genders found along the reaches composed, among

others, of salix, populus, alnus, the phenology of present plants

should not have a large impact on the retrieved NDVI and VF

distributions. Most of the tree species along all the considered

reaches have a stable phenological state over the period from

June to August, inside which the images have been selected.

D. Limitations of Satellite Imagery

The satellite imagery used in our study captures multiple

types of land cover changes that occur in a floodplain. How-

ever, it is not always possible to clearly separate the various

types of change. For example, floods impact vegetation due

to erosion from water or floating debris, or by prolonging the

saturation of the root zone [98]. Substrate erosion is another

cause of vegetation loss that can lead to changes in the indices,

however on a longer time-scale. The erosion and deposition

of substrate influence vegetation growth on the floodplains

[99]. Change in resources availability can also lead to changes

in the floodplain vegetation. Droughts, for example, have an

important influence on floodplain vegetation [100]. Variations

in water availability or in nitrogen availability are, however,

not easily detectable using satellite imagery. Although water

is frequently available for floodplain vegetation, the lack of

soil or the relatively coarse size of soil gravel do not store

large amounts of water, making floodplain vegetation subject

to significant and rapid changes in water availability [?]. Also,

the response of riparian vegetation to variation in groundwater

can vary [101].

In our observations, the periods of low water discharge are

not well retrieved by the remotely sensed indices, although

drought events have been observed by remote sensing through

the NDVI statistics [102]. The lack of sensitivity can be

explained by the fact that the NDVI and VF values recovered

in the poorly vegetated areas are mainly related to the pro-

portion of vegetation, rather than the vegetation state. Since a

stressful event, such as a drought, primarily affects vegetation

health, it is expected that remotely sensed indices will not

change substantially, as the relative proportion of vegetation

is expected to remain stable. In other words, the variation in

NDVI and FV over the floodplains is mainly driven by the

vegetation fraction. Another limitation of satellite imagery in

our study relates to the description of changes in the sediment

dynamics. Since such changes typically involves variation in

the floodplain topography, generally without a large impact on

the reflectance of the involved land cover, their observations

from medium-resolution imagery are very challenging.

As a complementary approach, SAR imagery could be

used to generate similar time series of vegetation dynamics

along the reaches of interest. Using SAR imagery would

allow to validate the obsevations made with an auxiliary data

source. While SAR has been used to study floodplain forests

[103], [104], it has been less commonly used for observing

mountainous and sub-mountains floodplains. In the setting of

this study, the capabilities of SAR imagery to map fractional
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vegetation cover or proxies such as biomass [105] or other

vegetation properties [106], [107] would be of interest. How-

ever, the use of such an approach in the specific environment

of mountainous floodplains would require a careful validation

supported by ground measurements.

V. CONCLUSION

In conclusion, our observations confirm that satellite time

series can support the study of floodplain ecosystems in

mountainous and sub-mountainous river floodplains under

the influence of flood events. The results suggest that it is

important to take into account the sequence of flood events and

their magnitude to contextualize the impact of a single flood on

floodplain vegetation. To observe vegetation dynamics along

rivers, we assessed the state of vegetation using NDVI and

VF distributions of remotely sensed vegetation. Using NDVI

in combination with a fraction of the vegetation estimated

from a spectral mixture analysis has proven to be a robust

approach to cloud disturbance and local reflectance variation.

Therefore, time series of index distributions can be extracted in

a robust way and thus be used to study inter-annual dynamics

of vegetation conditions.

Overall, flood impacts were visible in the time series of

indices averages and in the graphical representation of full

indices distributions. The approach chosen in this study is

particularly suited to mountainous and sub-mountainous flood-

plains, which generally have a relatively large area affected by

the dynamics of water and sediment flows. We found a statis-

tically significant relationship between changes in NDVI and

VF distributions and flooding only along the sub-mountainous

reach with a near-natural flow regime. A weak or non-existent

statistical link was found along the altered reaches, as the

flow alterations due to hydropower facilities modify or even

completely disrupt floodplain dynamics. To perform these

analyses, data on water flow, such as discharge measurements,

are required. The transfer of the method is therefore limited

to reaches with adequate sensors and statistics.

In addition, long-term trends in floodplain vegetation devel-

opment were clearly depicted by the remotely sensed indices.

However, it remains unclear whether the observed trends are

caused by changes in the flow and sediment regime due to hy-

dropower production, watershed land use, climate variations,

partly by sensor performance, or a combination of them. The

long-term trends analyses performed are independent from

ground data (such as discharge measurement) and are therefore

easily transferable to any reach where optical satellite imagery

is sufficient to describe the land cover.

We believe that the remote sensing approach used in this

study can be transferred to other regions of the Earth, as it is

not based on prior information. Satellite imagery can support

river management at the catchment level [108], although

the application of this approach appears to be limited to a

large extent by the availability of accurate discharge data.

Finally, we claim that satellite imagery has great potential,

currently untapped, to better understand moutainous and sub-

mountainous floodplain dynamics and anthropogenic impact

to support the protection of floodplains worldwide.
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APPENDIX A

SATELLITE IMAGES

TABLE III
INFORMATION ON SATELLITE TILES USED FOR THE TIME SERIES SENSE

2003-2010. THE Discharge COLUMN REFERS TO THE AVERAGE DAILY

DISCHARGE AT THE REFERENCE STATION OF SENSE - THÖRISHAUS,
SENSEMATT 2179. BLANK YEARS ARE DUE TO THE ABSENCE OF

APPROPRIATE IMAGES CAUSED BY CLOUDY CONDITIONS. OLI: LANDSAT

8 OPERATIONAL LAND IMAGER, ETM+: LANDSAT 7 ENHANCED

THEMATIC MAPPER PLUS, TM05: LANDSAT 5 THEMATIC MAPPER,
TM04: LANDSAT 4 THEMATIC MAPPER, DOY: DAY OF YEAR

Year Sensor Tile DoY Discharge
2016 OLI 196027 219 6.17
2015 OLI 196027 184 2.73
2014 OLI 196027 197 6.60
2013 OLI 196027 194 2.34
2012 ETM+ 195927 241 2.13
2011 ETM+ 195028 222 3.37
2010 ETM+ 195027 187 3.96
2009 ETM+ 195028 200 8.30
2008 ETM+ 195027 230 5.78
2007 ETM+ 195027 195 6.57
2006 ETM+ 195027 192 4.03
2005 ETM+ 196027 228 4.37
2004 ETM+ 195027 203 4.12
2003 TM05 196027 215 1.54
2002 ETM+ 195028 229 5.50
2001 ETM+ 195028 226 3.19
2000 TM05 195028 232 2.85
1999 TM05 195028 197 6.80
1998 TM05 196027 217 2.34
1997 TM05 196027 230 3.26
1996 TM05 195027 221 6.18
1995 TM05 195027 202 4.13
1994 TM05 195027 215 3.23
1993 TM05 196027 187 10.55
1992
1991 TM05 195028 191 3.77
1990 TM05 195027 220 3.10
1989 TM05 195027 185 6.12
1988 TM04 195028 239 4.73

TABLE IV
INFORMATION ON SATELLITE TILES USED FOR THE MAGGIA REACH.

PLEASE REFER TO CAPTION OF TABLE III. THE REFERENCE STATION IS

MAGGIA - BIGNASCO, PONTE NUOVO 2475.

Year Sensor Tile DoY Discharge
2016 ETM+ 195028 188 1.83
2015 OLI 194028 218 1.80
2014 OLI 194028 183 1.87
2013 OLI 195028 203 1.82
2012 ETM+ 194028 202 1.85
2011 ETM+ 194028 183 1.83
2010 ETM+ 194028 212 1.84
2009 ETM+ 194028 225 2.00
2008 TM05 195028 206 1.84
2007 TM05 194028 196 1.89
2006 ETM+ 194028 201 1.94
2005 TM05 194028 174 1.90
2004 ETM+ 194028 180 1.93
2003 TM05 195028 224 1.88
2002
2001 ETM+ 195028 210 2.40
2000 TM05 195028 200 1.96
1999 TM05 194028 206 1.84
1998 TM05 194028 219 1.91
1997 TM05 195028 223 1.95
1996 TM05 194028 214 1.88
1995 TM05 194028 179 2.58
1994 TM05 195028 215 1.92
1993 TM05 195028 228 1.77
1992 TM05 194028 219 1.82
1991 TM05 194028 216 1.84
1990 TM05 194028 229 1.75
1989 TM05 194028 242 1.75
1988 TM05 195028 199 1.76

TABLE V
INFORMATION ON SATELLITE TILES USED FOR THE ALLENBACH REACH.
PLEASE REFER TO CAPTION OF TABLE III. THE REFERENCE STATION IS

ALLENBACH - ADELBODEN 2232.

Year Sensor Tile DoY Discharge
2016 ETM+ 195028 220 1.10
2015 OLI 195028 241 0.65
2014 OLI 195028 158 1.42
2013 ETM+ 195028 211 1.30
2012 ETM+ 195028 193 0.70
2011 ETM+ 195028 222 1.10
2010 ETM+ 195028 187 1.38
2009 ETM+ 195028 200 1.45
2008 ETM+ 195028 230 1.29
2007 ETM+ 195028 195 2.33
2006 TM05 195028 200 1.21
2005
2004 TM05 195028 195 0.78
2003 ETM+ 195028 216 0.47
2002 ETM+ 195028 229 0.92
2001 TM05 195028 202 2.39
2000 ETM+ 195028 224 0.91
1999 ETM+ 195028 205 0.98
1998 TM05 195028 242 0.39
1997 TM05 195028 207 2.07
1996 TM05 195028 221 0.84
1995 TM05 195028 202 1.21
1994 TM05 195028 215 0.65
1993 TM05 195028 196 1.19
1992 TM05 195028 242 0.59
1991 TM05 195028 175 3.45
1990 TM05 195028 220 0.44
1989 TM05 195028 201 0.78
1988 TM05 195028 231 0.42

TABLE VI
INFORMATION ON SATELLITE TILES USED FOR THE BRENNO REACH.

PLEASE REFER TO CAPTION OF TABLE III. THE REFERENCE STATION IS

BRENNO - LODERIO 2086.

Year Sensor Tile DoY Discharge
2016 ETM+ 194028 197 3.71
2015 OLI 194028 218 1.86
2014 OLI 194028 215 5.43
2013 OLI 194028 212 2.37
2012
2011 ETM+ 194028 183 2.12
2010 ETM+ 194028 196 3.05
2009 ETM+ 194028 225 3.97
2008 ETM+ 194028 239 2.38
2007 TM05 194028 196 3.58
2006 TM05 194028 193 1.43
2005 TM05 194028 174 2.04
2004 ETM+ 194028 180 2.46
2003 TM05 194028 217 1.41
2002
2001 ETM+ 194028 203 7.22
2000 ETM+ 194028 169 3.24
1999 TM05 194028 206 3.18
1998 TM05 194028 219 2.81
1997 TM05 194028 232 2.91
1996 TM05 194028 230 2.57
1995 TM05 194028 179 3.30
1994 TM05 194028 208 2.77
1993 TM05 194028 157 4.18
1992 TM05 194028 219 2.42
1991 TM05 194028 216 1.72
1990 TM04 194028 189 3.91
1989 TM05 194028 242 2.12
1988 TM05 194028 192 7.76
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APPENDIX B

COMPLEMENTARY INFORMATION ON THE FLOW

VARIABLES

TABLE VII
EXTENDED DEFINITION OF THE FLOW VARIABLES. THE THRESHOLDS

DEFINED FOR THE FLOW VARIABLES (Q2, Q10, Q30 AND NM7Q) WERE

EXTRACTED FROM REPORTS MADE AVAILABLE BY THE HYDROLOGY

DIVISION OF THE FEDERAL OFFICE FOR THE ENVIRONMENT (FOEN).

Q2 Number of days since the last image acquisition with a peak discharge equaling or

exceeding the Q2 threshold, being the discharge with a return period of 2 years

Q10 Number of days since the last image acquisition with a peak discharge equaling or

exceeding the Q10 threshold, being the discharge with a return period of 10 years

Q30 Number of days since the last image acquisition with a peak discharge equaling or

exceeding the Q30 threshold, being the discharge with a return period of 30 years

Qmax Maximum peak discharge observed since the last image acquisition

NM7Q2 Number of days since the last image acquisition with a peak discharge equaling or

below a threshold defined as being the NM7Q with a return period of 2 years (The

NM7Q extracted from FOEN report (see manuscript), is defined as ”The annual

minimum discharge levels recorded during 7 consecutive days”).

Q2 spring Similar to Q2, with flow data restricted from April 1st to the date of image acquisition

Qmax spring Similar to Qmax with flow data restricted from April 1st to the date of image

acquisition

NM7Q2 spring Similar to NM7Q2 with flow data restricted from April 1st to the date of image

acquisition
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APPENDIX C

COMPLEMENTARY FIGURES ON LINKS BETWEEN FLOOD

EVENTS AND INDICES

Reach (R2 / p-value)
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h
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n

g
e

 in
 V

F
 [

-]

Sense (0.4/0.02)

Allenbach (0.2/0.1)

Maggia (0.06/0.4)

Brenno (0.1/0.3)

Maximum Peak Discharge [m3/s] 

Fig. 7. Linear regression between the maximum peak discharge and the
change in the vegetation fraction (VF) along the four reaches for the years
2003 to 2016. A p-value under 0.05 is found for the slope coefficient along
the Sense reach.
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Sense (0.3/0.05)

Allenbach (0.04/0.5)

Maggia (0.00/0.8)

Brenno (0.06/0.4)

Fig. 8. Linear regression between the maximum peak discharge and the
change in the normalized difference vegetation index (NDVI) along the four
reaches for the years 2003 to 2016. A p-value if 0.05 is found for the slope
coefficient along the Sense reach.
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APPENDIX D

COMPLEMENTARY FIGURES OF TIME SERIES

For each time series, we present the distribution of NDVI

and VF by violin graphs [109]. The violin graph displays

a smoothed kernel density estimation of the underlying his-

togram. Violin graphs ease the comparison of multiple distri-

butions next to each other by smoothing extreme peaks and

reducing the data noise.
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APPENDIX E

COMPLEMENTARY INFORMATION ON THE LINK BETWEEN

VF AND OCCURRENCE OF Q2 EVENTS

Percentile 25 of VF change

R2: 0.20

p-value: 0.02

O
cc

u
re

n
ce

 o
f 

Q
2

Percentile 75 of VF change

p-value: > 0.05

Fig. 9. Logistic regression between the vegetation fraction (VF) and the
occurrence of preceding Q2 events. Absence of preceding events leads to a
value of 0 and presence of at least one Q2 event leads to a value of 1 for the
samples.
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crues extrêmes dans les bassins versants alpin,” Ph.D. dissertation,
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