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REVIEW Open Access

Lessons learned from the mechanisms of
posttraumatic inflammation extrapolated to
the inflammatory response in COVID-19: a
review
Michel P. J. Teuben1,2,3*, Roman Pfeifer1,2, Henrik Teuber1,4, Leonard L. De Boer5,6, Sascha Halvachizadeh1,2,

Alba Shehu7 and Hans-Christoph Pape1,2

Abstract

Up to 20% of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) patients develop severe inflammatory

complications with diffuse pulmonary inflammation, reflecting acute respiratory distress syndrome (ARDS). A similar

clinical profile occurs in severe trauma cases. This review compares pathophysiological and therapeutic principles of

severely injured trauma patients and severe coronavirus disease 2019 (COVID-19).

The development of sequential organ failure in trauma parallels deterioration seen in severe COVID-19. Based on

established pathophysiological models in the field of trauma, two complementary pathways of disease progression

into severe COVID-19 have been identified. Furthermore, the transition from local contained disease into systemic

and remote inflammation has been addressed. More specifically, the traumatology concept of sequential insults

(‘hits’) resulting in immune dysregulation, is applied to COVID-19 disease progression modelling. Finally, similarities

in post-insult humoral and cellular immune responses to severe trauma and severe COVID-19 are described.

To minimize additional ‘hits’ to COVID-19 patients, we suggest postponing all elective surgery in endemic areas.

Based on traumatology experience, we propose that immunoprotective protocols including lung protective

ventilation, optimal thrombosis prophylaxis, secondary infection prevention and calculated antibiotic therapy are

likely also beneficial in the treatment of SARS-CoV-2 infections. Finally, rising SARS-CoV-2 infection and mortality

rates mandate exploration of out-of-the box treatment concepts, including experimental therapies designed for

trauma care.
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Background

Originating from the Wuhan Province in China, the

novel member of the coronoviridae family named Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) has rapidly developed into a global pandemic [1, 2].

Given the rising infection and mortality rates that have

already or may soon overwhelm our critical care infra-

structure, out-of-the-box treatment concepts should im-

mediately be explored [3]. Up to 20% of SARS-CoV-2

infected patients develop severe inflammatory complica-

tions with diffuse pulmonary inflammation, reflecting

acute respiratory distress syndrome (ARDS) [4, 5]. Simi-

larly, a pattern of respiratory failure occurs in a sub-

group of severely injured trauma patients [6]. ARDS is a

frequent contributing factor towards morbidity and mor-

tality after trauma [7]. Indeed, a recent meta-analysis

demonstrates that the incidence of trauma-induced

ARDS has not changed over the last few decades or var-

ied between geographic regions [8].

Given their similar clinical profiles, there may be more

similarities between severe trauma and severe cases of

SARS-CoV-2 than might initially be assumed. In this re-

view, we will consider the notion that severe disease pro-

gression in SARS-CoV-2/Corona Virus Disease 2019

(COVID-19) patients mimics disease mechanisms that

occur in complicated courses of severe trauma.

There is a broad spectrum in clinical courses of both

severe trauma and severe illness caused by SARS-CoV-2

infection [4, 9–12]. Most cases present a mild or moder-

ate clinical course and prompt recovery occurs. How-

ever, in both conditions, a specific subgroup of about

20% of patients develop a complicated course character-

ized by an overwhelming inflammatory response

resulting in a life-threatening condition and high mortal-

ity [4, 10, 13, 14]. In both disease processes, the differ-

ence between a mild and severe clinical course depends

on the development of sequential organ failure. As in

trauma, this cascade typically starts with the develop-

ment of pulmonary failure: ARDS, sequentially leading

to multiple organ dysfunction syndrome (MODS) and

death [6, 14–17]. Documented mortality rates among in-

tensive care unit (ICU)-admitted COVID-19 patients

have to date ranged from 62 to 81% [4, 13, 18].

It is tempting to speculate that proven approaches and

even promising experimental therapies for severely in-

jured trauma patients can also play a role in the manage-

ment of critically ill COVID-19 patients. This review will

compare pathophysiology and treatment strategies be-

tween severe trauma and life-threatening SARS-CoV-2

infections.

Pathophysiology of severe trauma

In trauma, tissue damage activates the immune response,

with extensive tissue damage invoking systemic

inflammation [6, 15, 16]. Alterations in local and

systemic immune responses after severe trauma are

recognized as a physiological reaction to restore

homeostasis. The magnitude of these immunological

changes correlates with the degree of local and sys-

temic tissue damage [6, 19].

Necrotic cells rapidly release alarmins (Damage Asso-

ciated Molecular Patterns (DAMPs)), which are en-

dogenous molecules and are equivalent in function to

pathogen associated molecular patterns (PAMPs, e.g.

SARS-CoV-2 proteins). As their name suggests, alarmins

alert the immune system and their ultimate function is

to restore homeostasis by promoting regeneration of

damaged tissue [6, 16, 20, 21].

In trauma, various relevant alarmins have been identi-

fied and characterized. One such alarmin, High Mobility

Group Box 1 (HMGB1), has shown chemotactic effects

on monocytes, macrophages, and neutrophils, and is a

very potent stimulator of immune cell maturation [22].

In addition, Heat Shock Protein (HSP) interacts with

several receptors including toll-like receptors and stimu-

late the secretion of proinflammatory cytokines such as

tumor necrosis factor (TNF)-α and interleukin (IL)-1β

[23]. These cytokines are early regulators of the pro-

inflammatory immune response to trauma, and both of

them induce the release of secondary cytokines, such as

IL-6 and IL-8 [6, 24]. These cytokines, which are pre-

dominantly produced by monocytes and macrophages,

mediate a variety of frequently overlapping effects, and

their actions can be additive [6, 24]. DAMPS and cyto-

kines further activate different immune cells including

neutrophils and monocytes via DAMP-receptors [25].

The balance and interplay of these different endogen-

ous molecules dictates the clinical course in trauma pa-

tients. Overexpression of either pro-inflammatory or

anti-inflammatory mediators may induce organ dysfunc-

tion. Whereas a predominantly pro-inflammatory re-

sponse leads to the systemic inflammatory response

syndrome (SIRS), a predominantly anti-inflammatory

reaction leads to the compensatory anti-inflammatory

response syndrome (CARS). In the absence of inflamma-

tory complications, concurrent SIRS/CARS responses

should be considered a physiological process and bal-

ance each other out. However, excessive SIRS can result

in immune overreaction, while CARS may lead to im-

mune suppression or paralysis, with a subsequent in-

creased risk of infectious complications [6, 16, 20, 21].

Interestingly, in severe blunt trauma, it has been demon-

strated that the early immune response is consistent

with simultaneously increased expression of both pro-

inflammatory genes (SIRS-response) and anti-

inflammatory genes (CARS-response) [26]. Together,

this response induces an increase in circulating cytokines

resulting in a cytokine storm [27]. Moreover, the
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development of systemic inflammatory complications,

such as organ failure, are associated with the magni-

tude and duration of a genomically induced cytokine

storm [20, 21, 24, 26, 27].

Extrapulmonary inflammatory processes affect the pul-

monary compartment via the circulatory uptake of these

cytokines [6, 28]. One crucial step in the pathophysi-

ology of distant organ damage is the adherence of

activated polymorphonuclear leukocytes to capillary

endothelial cells [29]). This is characterized by leukocyte

diapedesis in organ tissue, with subsequent release of

oxygen radicals and proteases [30]. These consequently

damage the endothelial layer, resulting in increased ca-

pillary permeability, interstitial oedema and finally dis-

tant organ damage [6, 9, 16, 30]. Further inflammatory

activation causes local collateral damage to parenchymal

cells and result in subsequent lung dysfunction [6, 15,

16, 31]. The collaboration of humoral immune factors

and immune cells play an essential role in the transition

from an appropriate to an overwhelming, dysregulated

immune response [6, 15, 16, 31, 32].

These pathophysiological inflammatory cascades result

in significant changes in the anatomy, mechanics and

function of the lung [33]. An initial increase in pulmon-

ary capillary permeability stimulates alveolar flooding

and oedema. The consequence is the loss of surfactant

function. This causes atelectasis and subsequent alveolar

instability, resulting in repetitive alveolar collapse and

expansion, and finally impaired gas exchange with local

and systemic hypoxia [32, 33].

Pathophysiology of severe COVID-19

The exact pathophysiology of SARS-CoV-2 infection, and

more specifically its considerable capacity to extensively

disturb physiological homeostasis, is currently unclear.

However, based on recent clinical and experimental find-

ings and related viral diseases such as Severe Acute

Respiratory Syndrome Coronavirus 1 (SARS-CoV-1), basic

understanding has rapidly increased. The current SARS-

CoV-2 virus, as well as the SARS-CoV-1 and the Middle

East Respiratory Syndrome Coronavirus (MERS-CoV) are

related pathological human coronaviruses (CoVs) [34–36]

Phylogenetic studies show an 80% nucleotide identity of

SARS-CoV-2 with SARS-CoV-1 and the pathophysio-

logical insights made for SARS-CoV-1 can likely be ap-

plied to SARS-CoV-2 [37, 38].

In line with SARS-CoV-1, the angiotensin-converting

enzyme 2 (ACE2), a type I membrane protein, is consid-

ered the host cell surface-receptor for the SARS-Cov-2

spike receptors [39, 40]. Kuba et al. demonstrated the

key role of ACE2-receptors in SARS-CoV-1 pathology

by showing that ACE2-KO mice were unsusceptible to

SARS-CoV exposure [41]. Distribution of the ACE2-

receptor is tissue specific, and varying degrees of

receptor expression are seen in lungs (type I and type II

alveolar epithelial cells as well as bronchiolar epithelial

cells), heart, kidneys and the gastro-intestinal tract [42,

43]. Tissue specific ACE2-receptor distribution patterns

may affect disease progression and make specific organs

more susceptible. This is supported by histopathological

studies of SARS-CoV fatalities showing most prominent

tissue damage in the respiratory system with less exten-

sive damage to liver, kidney, cardiac and digestive tract

tissues [44, 45].

ACE2 plays an important physiological role in regulat-

ing blood pressure via the renin-angiotensin-aldosterone

system (RAAS). It is therefore tempting to hypothesize

that there is an interplay between clinical observations

linking hypertension with impaired outcome in SARS-

Cov-2 infection [46, 47]. Upon viral cell invasion, how-

ever, the process leading to end-organ parenchymal cell

destruction and finally resulting in life threatening com-

plications such as ARDS and MODS remain unclear.

SARS-CoV-1 mice models demonstrated the relevance

of ACE2-expression and suggests that SARS-CoV may

directly derange ACE2-lung protective pathways [48].

In addition to these direct pathophysiological pro-

cesses of SARS, it is likely that other indirect processes

also play a critical role in the rapid progression of severe

COVID-19. The SARS-CoV-1 epidemic emphasized this

with the observation that disease progression into crit-

ical stages was commonly associated with diminishing

viral titers [34, 49]. Studies on the association between

viral load and COVID-19 disease severity, however, are

scarce, and have so far demonstrated conflicting results

[50, 51]. Post-mortem observations in SARS-CoV-1 and

SARS-CoV-2 are characterized by alveolar exudative in-

flammation, interstitial inflammation, alveolar epithelial

proliferation, and hyaline membrane formation, thereby

demonstrating ARDS-like lesions [4, 5, 52–54].

From an immunological perspective, a prominent neu-

trophil and macrophage presence was observed in the pul-

monary interstitium and alveoli in SARS-CoV-1 fatalities

[54]. The aberrant systemic cellular immune response of

fatal SARS-CoV-1-cases was characterized by both an in-

crease in circulating monocytes and neutrophils and a re-

duction in circulating lymphocytes [55, 56].

In SARS-CoV-2, lymphopenia is common [4, 12] and

both circulatory lymphopenia and leukocytosis are asso-

ciated with COVID-19 mortality [10]. In contrast with

mild cases of COVID-19, a reduction of circulatory

CD4+ and CD8+ cells was observed in severe COVID-

19 infection [57, 58].

In addition to an altered cellular immune response in

fatal SARS-CoV-1/2 infections, transient humoral dys-

regulation has also been described. Whereas minimal

cytokine level alterations are seen in mild COVID-19 in-

fection [57], severe infections have shown elevated levels
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of pro-inflammatory cytokines including TNF-alpha, IL-

6, IL-10 [58].

Although experimental clinical data on COVID-19 in-

fection is scarce, the presence of an aberrant humoral

immune response is further suggested by significantly in-

creased serum IL-6 levels found in COVID-19 fatalities

[59, 60]. Moreover, a cytokine storm, indicative of wide-

spread immune activation similar to that found in post-

traumatic ARDS, has also been observed in SARS-CoV-2

infection [26, 59–61].

Based on these findings, it is tempting to hypothesize

that rather than direct cytotoxic effects of virus-infected

cells alone, severe SARS-CoV-2 infection triggers both

the humoral and cellular immune system. Consequent

life-threatening complications therefore primarily relate

to an aberrant immune response. A similar aberrant im-

mune response after severe trauma has been well estab-

lished. The pathophysiological mechanisms observed in

trauma may be universal and are therefore likely also in-

volved in COVID-19 disease progression. Insights in the

pathophysiology of severe trauma may therefore form

the basis for novel therapeutic concepts for SARS-CoV-

2 and we propose the pathophysiological model of

COVID-19 disease progression as being displayed as

Fig. 1.

This figure summarizes the process of ongoing inflam-

mation, starting from insult (viral infection), into the de-

velopment of end-organ inflammation and dysfunction.

The initial insult evokes a local systemic response in-

cluding involvement of natural killer cell/dendritic cells,

lymphocytes, neutrophils and macrophages. Adequate

responses result in viral clearance and in the case of

contained local infection, minimal collateral damage to

parenchymal organ cells and consequent recovery. How-

ever, in case the immune response is unable to stop

ongoing viral replication, disease progression may occur.

Based on the pathophysiological concepts in SARS-CoV-

1, SARS-CoV-2 and trauma summarized above, it is

tempting to hypothesize that COVID-19 disease progres-

sion is based on two primary mechanistic pathways.

These pathways are a direct (PAMP-driven) pathway

and an indirect (DAMP-driven) pathway, either of which

can lead to COVID-19 disease progression:

(i) A direct (‘PAMP’)-driven pathway. This is

characterized by increased local spread of the virus

and eventually dissemination of viral infection

(dependent on tissue-specific ACE2-receptor ex-

pression levels and likely correlating with increased

viral load). Vital organ involvement may occur, even

Fig. 1 Sequential thresholds in virus-evoked inflammation. A hypothetical multifactorial model of disease progression in COVID-19 is presented.

Two specific pathways have been described, and an interplay is likely to occur. At all phases restoration of homeostasis is possible and will lead

to recovery. The development of differentiated treatment concepts may benefit from this model, guide tailored interventions at different stages

of disease progression. Abbreviations: ALI, acute lung injury; ARDS, acute respiratory distress syndrome; PAMPs, pathogen associated molecular

patterns; DAMPs, damage associated molecular patterns
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in the absence of initial systemic inflammation,

leading to (multiple) organ dysfunction.

(ii) An indirect (‘DAMP’)-driven pathway. Upon

contained local inflammation, a secondary massive

immune response may be initiated (including a

cytokine storm, large-scale innate immune cell acti-

vation and SIRS/CARS-responses). These processes

lead to extensive systemic inflammation and subse-

quent altered homeostasis of vital organs. Finally,

organ failure may occur due to inflammation-

induced collateral damage in end-organs. Progres-

sion according to this pathway is independent of

viral load.

These are not mutually exclusive pathways, and inter-

play between these may potentially play a role in the

progression of COVID-19. At all phases of both path-

ways, improvement and restoration of homeostasis is

possible and will lead to recovery.

First and second hit mechanism in severe trauma and

COVID-19

‘First hit’

In traumatology, the term ‘first hit’ is used to describe

the initial insult condition, or trauma, the patient faces.

The intensity of the first hit is based on the trauma load:

the degree of initial tissue damage, including organ in-

jury, fractures, burn injury, soft tissue injury, and hypo-

volemic shock. Consequently, local and systemic release

of both pro-inflammatory and anti-inflammatory media-

tors is dependent on the severity of the first hit of the

trauma itself [62]. These insults determine the initial

trauma load and result in activation of the innate and

adaptive immune system that stimulate the local and

systemic inflammatory reactions. Moreover, genetic pre-

disposition seems to affect the immune response as well

[6]. The subsequent activation of immune cells (poly-

morphonuclear granulocytes, monocytes and lympho-

cytes) trigger multifocal processes leading to tissue

regeneration and repair. Excessive tissue damage,

however, may magnify the extent of local and systemic

activation leading to organ dysfunction. Whereas a

predominantly pro-inflammatory response leads to an

excessive SIRS-response, a predominantly anti-

inflammatory reaction may result in an intensified

CARS-response and with subsequent immunoparalysis

and a consequent increased risk of infectious complica-

tions [6, 15, 16].

Similarly, with COVID-19, the first hit is the initial

viral infection itself, centred primarily on respiratory tis-

sue. The magnitude of the first hit is associated with

predisposing factors (e.g. sex, expression of ACE2 recep-

tors) and viral load. Existing comorbidities may also

affect the severity of the initial insult and determine the

overall impact of the first hit on homeostasis. Patients

with diabetes, cardiovascular disease, hypertension and

lung disease are especially prone to decompensation in

SARS-CoV-2 infection [4, 12].

‘Second hit’

In trauma cases, the secondary activation of various mo-

lecular cascades due to an additional insult are known as

second hit- phenomena. This secondary immune cell ac-

tivation, or priming, is stimulated by a variety of triggers

[6, 15, 16, 31]. These triggers may be iatrogenic (e.g.

mechanical ventilation [63], surgical intervention [20,

21], transfusions) or non-iatrogenic (e.g. secondary in-

fection [64], thromboembolic complications [65], ische-

mia/reperfusion injury [66]. Each insult further catalyses

the immune response, and depending on severity may

cause an excessive inflammatory response. This process

initiates a vicious cycle of local tissue damage, addition-

ally aggravated by systemic hyperactivation ultimately

leading to a life-threatening, overwhelming immune

response.

Similarly, in severe COVID-19 infection, secondary in-

sults or complications may stimulate an exaggerated im-

mune response, amplify systemic inflammation, or at a

later stage induce immune paralysis. Respiratory distress

and systemic hypoxemia may stimulate further tissue in-

jury and abruptly require intensive care and monitoring.

In addition, metabolic decompensation and systemic hy-

poperfusion are further risk factors associated with re-

mote tissue damage. Secondary pulmonary bacterial

infections or catheter-associated infections are further

potential second hit events, all of which are capable of

aggravating the clinical course of the disease. Figure 2

displays our proposed model of consecutive insults and

systemic inflammatory disease progression in COVID-

19, based on established trauma models. Like trauma,

viral infection causes rapid activation of the immune sys-

tem. In case the first hit insult is potent enough, sys-

temic inflammation occurs. Upon initiation of systemic

inflammation, both a systemic inflammatory response

syndrome (SIRS) and a compensatory anti-inflammatory

response syndrome (CARS) are evoked. The green

curves in Fig. 2 represent uncomplicated courses and

lead to recovery. In these courses, the inflammatory re-

sponse is considered a physiological process.

In some patients, however, immune dysregulation oc-

curs. Excessive immune activation (hyperactivation, red

curves in Fig. 2) may occur, and collateral damage to

parenchymal cells of vital organs may lead to organ fail-

ure or multiple organ dysfunction syndrome (MODS).

Alternatively, patients may develop inflammatory com-

plications due to immune paralysis as a result of CARS.

A refractory state of the immune system is incapable of

resolving the SARS-CoV-2 infection and are more
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susceptible to novel pathogens. Complications develop

when either the primary viral or secondary microbial in-

fection cannot be resolved. Eventually, infection-related

MODS may occur (blue curves in Fig. 2). In both cases,

additional hits may push a patient from a physiological

immune response to either a pathological hyperinflam-

matory immune response or a pathological hypo-

inflammatory immune response.

Potential treatment strategies for severe COVID-19

disease

Numerous fast-tracked clinical trials to treat COVID-19

infections have recently been initiated. Many therapeutic

strategies focus primarily on inhibiting the virus, or bol-

stering the immune system. These strategies are aimed

at treating the direct PAMP-driven pathophysiological

pathway, thereby supporting the immune response.

Based on experience treating ARDS in trauma, trying

to do more may in fact be less. The majority of these ex-

perimental treatments may be focusing on the wrong

enemy: the virus, instead of the hosts’ uncontrolled im-

mune response. Alternatively, as in trauma, anti-

inflammatory interventions to modulate the hyperactive

immune response in COVID-19 may be promising. Most

modern treatment modalities for trauma are aimed at

the indirect DAMP-driven pathway, and to dampen sec-

ond hit events. Applying these concepts to COVID-19

treatment, the following measures complementary to

current treatment guidelines for COVID-19 disease

should be considered:

1. postponing all elective, non-essential surgical inter-

ventions in endemic areas. This has already been

adopted by many clinicians treating COVID-19 and

should be universally adopted. Furthermore, execu-

tion of invasive diagnostic procedures and interven-

tions should be limited to live-saving interventions

only.

2. lung-protective ventilation protocols to prevent a

barotrauma second hit [67]. Mechanical ventilation

when improperly used can exacerbate lung damage

by causing secondary ventilatory induced lung

injury (VILI). VILI can be significantly reduced with

proper positive end-expiratory pressure (PEEP)

levels to minimize atelectasis [67]. Moreover, lower-

ing tidal volume (Vt) and plateau pressure (Pplat)

may prevent lung over-distension. Alveolar strain

can be decreased by reducing the transpulmonary

pressure (Ptp) gradient [68].

3. sufficient thrombosis prophylaxis to prevent

thromboembolic second hits. In cases where

medicinal prophylaxis is contraindicated,

mechanical measures including compression

stockings or intermittent pneumatic compression

should be considered. Further, several studies have

described a close link between thrombogenesis and

Fig. 2 Proposed model of consecutive insult conditions and systemic inflammatory disease progression in COVID-19, based on established

trauma modelling. Established concepts in the field of severe trauma and related inflammatory complications have been applied to COVID-19

disease progression. Systemic inflammation may contribute to the restoration of homeostasis and should be considered a physiological process.

However, altered inflammatory response may lead to hyperinflammation or a pathological hypo-inflammatory immune response. See text for

details and explanations. Abbreviations: SIRS, systemic inflammatory response syndrome; CARS, compensatory anti-inflammatory

response syndrome
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inflammation. Proinflammatory cytokines (e.g. IL-6)

stimulate the expression of prothrombotic mediators.

Dampening the proinflammatory immune response

may further minimize the risk of thromboembolic

complications [69]. Increased serum D-dimer levels

in severe cases of COVID-19 and the frequent occur-

rence of embolic complications underline the rele-

vance of impaired thromboembolic homeostasis in

the specific case of COVID-19 [70].

4. transfusion of blood products should be minimized

to avoid transfusion induced immune activation and

more specifically transfusion-related acute injury

(TRALI)-like conditions [71].

5. prevent and treat secondary infections adequately to

prevent additional infectious insults and

inflammatory exaggeration. We suggest actively

searching for secondary infections by serial clinical

examination and routine laboratory analysis of

infection parameters. Additionally, catheter

associated infections can be minimized with regular

renewal schedules of catheters [72].

Table 1 provides an overview of standard measures

used to optimize care of critically ill trauma patients that

can be applied to severe SARS-CoV-2 infections. As a

next step, experimental immunomodulatory therapies

aimed to optimize outcomes of trauma induced inflam-

matory complications may be considered for the treat-

ment of SARS-CoV-2. Potential therapies include tissue

plasminogen activator (tPA) [73], the anti-inflammatory

effects of tranexamic acid [74], and extracorporeal cyto-

kine adsorption therapy [75].

Conclusion

This review attempts to draw analogies to pathophysio-

logical and therapeutic principles between severely in-

jured trauma patients and COVID-19. Many similarities

between both conditions have been identified, support-

ing the hypothesis that treatment concepts for ARDS in

trauma may potentially be of use in the management of

COVID-19. Two complementary pathways of disease

progression into severe COVID-19 have been identified

and described. Based on established pathophysiological

concepts in the field of trauma, we strongly suggest

postponing all elective surgery in endemic areas. Immu-

noprotective protocols such as lung protective ventila-

tion, adequate thrombosis prophylaxis, prevention of

secondary infection, and calculated antibiotic therapies

used to minimize inflammatory complications in trauma

patients are likely beneficial in the management of

SARS-CoV-2 infections, and should be universally ap-

plied whenever possible. Finally, experimental immuno-

modulatory interventions currently being investigated in

the setting of severe trauma may play a role in the man-

agement of COVID-19 patients and should be

investigated.

Abbreviations

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; ARDS: Acute

respiratory distress syndrome; COVID-19: Corona virus disease 2019;

MODS: Multiple organ dysfunction syndrome; ICU: Intensive care unit;
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