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Abstract

Adenoviruses (AdVs) are prevalent and give rise to chronic and recurrent disease. The
human AdV (HAdV) species B and C, such as HAdV-C2, C5 and B14, cause respiratory
disease, and constitute a health threat for immuno-compromised individuals. HAdV-Cs
are well known for lysing cells, owing to the E3 CR1-B-encoded adenovirus death protein
(ADP). We previously reported a high-throughput image-based screening framework and
identified an inhibitor of HAdV-C2 multi-round infection, Nelfinavir mesylate. Nelfinavir is
the active ingredient of Viracept, an FDA-approved inhibitor of the human immuno-
deficiency virus (HIV) aspartyl protease, and used to treat acquired immunodeficiency
syndrome (AIDS). It is not effective against single round HAdV infections. Here, we show
that Nelfinavir inhibits the lytic cell-free transmission of HAdV, indicated by the
suppression of comet-shaped infection foci in cell culture. Comet-shaped foci occur
upon convection-based transmission of cell-free viral particles from an infected cell to
neighbouring uninfected cells. HAdV lacking ADP was insensitive to Nelfinavir, but gave
rise to comet-shaped foci indicating that ADP enhances but is not required for cell lysis.
This was supported by the notion that HAdV-B14 and B14p1 lacking ADP were highly
sensitive to Nelfinavir, although HAdV-A31, B3, B7, B11, B16, B21, D8, D30 or D37 were
less sensitive. Conspicuously, Nelfinavir uncovered slow-growing round-shaped HAdV-
C2 foci, independent of neutralizing antibodies in the medium, indicative of non-lytic cell-
to-cell transmission. Our study demonstrates the repurposing potential of Nelfinavir with
post-exposure efficacy against different HAdVs, and describes an alternative non-lytic
cell-to-cell transmission mode of HAdV.
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Introduction

Adenovirus (AdV) was first described in 1953 by Rowe and co-workers as a cytopathologic
agent isolated from human adenoids (1). More than 100 human AdV (HAdV) genotypes have
since been characterized by molecular genetics or serology and grouped into seven species (2,
3). HAdV species A, F and G replicate in the gastrointestinal tract, B, C and E in the respiratory
organs, and B and D in conjunctival cells of the eyes. Species B members have a broad
tropism, including kidney and cells of the hematopoietic lineage (4-6). HAdV-caused illness can
range from asymptomatic to lethal, especially in immunocompromised individuals (7-9). HAdV
outbreaks are frequent in military training camps, but also nursing homes, as recorded in
recurrent outbreaks of HAdV-E4 and HAdV-B7 (5, 10-13). To counter the disease burden, an
oral HAdV-E4/B7 vaccine was reintroduced, leading to a sharp decline in adenoviral disease
among military recruits (5, 14, 15). In addition to recurrent HAdV outbreaks, novel HAdV
variants emerge, some of them causing pneumonia and death of elderly with chronic diseases.
One of these emerging HAdVs is the HAdV-B14 variant 14p1, also known as 14a (16-20).
Furthermore, AdVs have a potential for zoonotic transmission (21). Cross-species infections to
humans from either non-human primates or psittacine birds have been reported from the USA
and China, respectively (22, 23). Despite the high prevalence (5, 24—26) and the broad use of
AdV as gene therapy vectors (27) as well as oncolytic viruses (28, 29) no FDA-approved
specific anti-HAdV treatment is available to date. Clinically, HAdV infections are treated with
Ribavirin, Cidofovir, or more recently, Brincidofovir, which all inhibit viral DNA replication (30,
31).

HAdV particles have been well characterized. They have a double-stranded DNA genome of
~36 kilo base pairs (kbp) packaged into an icosahedral capsid of about 90 nm in diameter (32—
35). HAdV-C2 and C5 replication cycle has been extensively studied including entry, uncoating,
replication, assembly and egress from the infected cell (36—50). HAdV-C infects cells by binding
to the coxsackievirus adenovirus receptor (CAR) and integrin co-receptors, followed by
receptor-mediated endocytosis, endosomal lysis and microtubule-motor driven transport to the
nucleus, where it uncoats DNA and delivers the DNA into the nucleus (38, 51-62). The first viral
protein expressed is E1A, a multifunctional intrinsically disordered protein controlling the
transcriptional activity of all AdVs, as well as many cellular promoters, thereby affecting the cell
cycle, differentiation, transformation and apoptosis (63—68). Viral early proteins besides E1A
mediate immune escape, block activation of pro-apoptotic pathways and form nuclear viral DNA
replication compartments. Late viral proteins give rise to mature progeny virions upon limited
proteolysis of capsid proteins by the viral cysteine protease L3/p23 (69-71). Mature HAdV
progeny is released upon rupture of the nuclear envelope and plasma membrane, which
facilitates rapid viral dissemination and plaque formation in vitro (72—74). The convection forces
in the medium give rise to comet-shaped infection foci in cell cultures (72). Foci of infected cells
are also found in tissue, such as rat liver upon intravenous inoculation of HAdV-C5 (75).
Accordingly, acute HAdV infections trigger an inflammatory response, as shown in airways or
conjunctiva of susceptible animals (2, 76). In contrast to lytic virus transmission, direct cell-to-
cell transmission leads to round plaques, as shown with vaccinia virus (77-80).
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The mechanisms of virus transmission are highly virus-specific. They comprise non-lytic
pathways involving the secretory-endocytic circuits, multi-vesicular or autophagic membrane
processes, cellular protrusions, or transient breaches of membrane integrity (80-84). In
contrast, lytic egress pathways further involve the destabilization of cellular membranes by viral
and host factors, often tuned by the cytoskeleton (37, 85—88). HAdV-C2 controls lytic cell death
by the adenovirus death protein (ADP), also known as 11.6K, as concluded from genetic and
overexpression studies (73, 74). ADP is a type Ill membrane protein transcribed from the CR1-3
region in the immuno-regulatory E3a locus. All HAdV-C members harbour homologous E3a
CR1-B sequences (e.g. 10.5K in HAdV-C5). Other HAdV species differ in their E3 region,
however (89—91). The N-terminus of ADP is lumenal and the C-terminus protrudes into the
cytosol (92). Following post-translational modifications, ADP is transported to the inner nuclear
membrane, where the N-terminus is intruding into the nucleus (93). At late stages, when capsid
assembly in the nucleus has commenced ADP expression is boosted (94, 95). The mechanism
of host cell lysis is still unknown, although necrosis-like, autophagic and caspase activities have
been implicated (96—99).

Here, we report that Nelfinavir mesylate (Nelfinavir in short) is an effective inhibitor of HAdV lytic
egress. The identification process of Nelfinavir is described in an accompanying paper using an
imaging-based, high content screen of the Prestwick Chemical Library (PCL) comprising 1,280
mostly clinical or preclinical compounds (100, 101). Nelfinavir is the off-patent active
pharmaceutical ingredient of Viracept, FDA-approved, which inhibits the human immuno-
deficiency virus (HIV) protease (102). The work here documents the repurposing potential of
Nelfinavir, which is effective against a spectrum of HAdV types in a post exposure manner.
Nelfinavir is partly, but not exclusively, active against ADP-encoding HAdV types, and uncovers
the appearance of round-shaped plaques, which arise upon non-lytic cell-to-cell viral
transmission.
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Materials and Methods

Viruses

HAdV-C2-dE3B-GFP was previously described (72) (GenBank accession number MT277585).
The virus was generated by exchange of the viral E3b genome region with a reporter cassette
harbouring the enhanced green fluorescent protein (GFP) under a constitutively active
cytomegalovirus (CMV) promoter. It was grown in A549 cells and purified by double CsCI
gradient centrifugation (103). Aliquots supplemented with 10% (v / v) glycerol were stored at -
80°C. HAdV-C2-dE3B-GFP was found to be homogeneous by SDS-PAGE and negative-stain
analyses in transmission electron microscopy (EM). Recombinant HAdV-C2-dE3B-GFP-dADP
was generated using homologous recombination according to the Warming recombineering
protocols (104, 105). For a detailed protocol, see Supplementary methods. HAdV-C2-dE3B-
GFP-dADP was plaque-purified and amplified, followed by two rounds of CsCl purification (106).
Aliquots containing 10% (v / v) glycerol were stored at -80°C. HAdV-C2-dE3B-GFP-dADP was
found to be homogeneous in SDS-PAGE and negative-stain analyses by transmission EM. Lack
of ADP expression was confirmed by Western immunostaining using the rabbit a-HAdV-C2-
ADPy7g.93 antibody, obtained from William Wold and Ann Tollefson (Saint-Louis University, Saint-
Louis, USA) (107).

HAdV types A31, B7, B11, B14a, B16, B34, C1, C6, D8, D30 and D37 were kindly provided by
the late Thomas Adrian (Hannover Medical School, Germany) and were verified by DNA
restriction analysis (108, 109). HAdV types B14 (19, 20) and B21a, isolate LRTI-6 (110) were
kindly provided by Albert Heim (Hannover Medical School, Germany). HAdV-B3-pIX-FS2A-GFP
and B35-pIX-FS2A-GFP contain an enhanced GFP open reading frame (ORF) genetically fused
to the downstream end of the HAdV pIX gene using an autocleavage FS2A sequence (111-
113). rec700 (114) and dI712 (115) were obtained from William Wold (Saint-Louis University,
Saint-Louis, USA). rec700 is a recombinant HAdV-C5 containing C2 sequences from nucleotide
-236 to 2437 of the E3 transcription unit, and comprises the C2 E3a ORFs 12.5K, 6.7K, 19K and
ADP, as well as major parts of the E3b ORF RIDa (10.4K protein) (116). Mouse adenovirus
(MAdV)-1-pIX-FS2A-GFP and MAdV-3-pIX-FS2A-GFP were constructed as described (117,
118). HAdV-C2 and C5 were obtained from Maarit Suomalainen (University of Zurich,
Switzerland). HSV-1-CMV-GFP is a recombinant HSV-1 strain SC16 containing a CMV
enhancer/promoter-driven enhanced GFP expression cassette in the US5 (gJ) locus (119) and
was kindly provided by Cornel Fraefel (University of Zurich, Switzerland). HSV-1-CMV-GFP was
propagated in Vero cells and purified by sucrose sedimentation as described in (120, 121). All
viruses were stored in small aliquots containing 10% (v / v) glycerol at -80°C.

Cell lines

A549 (human adenocarcinomic alveolar basal epithelium, CCL-185), HeLa (human epithelial
cervix carcinoma, CCL-2) and HBEC (HBEC3-KT, normal human bronchial epithelium, CRL-
4051) cells were obtained from the American Type Culture Collection (ATCC, Manassas, USA).
HCE (normal human corneal epithelium) cells were obtained from Karl Matter (University
College London, UK). CMT93 (mouse rectum carcinoma) cells were obtained from Susan
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Compton, Yale School of Medicine, USA. A549, HelLa, HCE and CMT-93 cell cultures were
maintained in high glucose DMEM (Thermo Fisher Scientific, Waltham, USA) containing 7.5% (v
/ v) FCS (Invitrogen, Carlsbad, USA), 1% (v / v) L-glutamine (Sigma-Aldrich, St. Louis, USA)
and 1% (v / v) penicillin streptomycin (Sigma-Aldrich, St. Louis, USA) and subcultured following
phosphate-buffered saline (PBS) washing and trypsinisation (Trypsin-EDTA, Sigma-Aldrich, St.
Louis, USA) bi-weekly. HBEC cells were maintained in endothelial-basal medium (ATCC,
Manassas, USA) and passaged 1:1 weekly following PBS washing and trypsinisation. Cell
cultures were grown at standard conditions (37°C, 5% CO,, 95% humidity) and passage number
was limited to 20. Respective supplemented medium is referred to as supplemented medium.

Compounds

Nelfinavir mesylate (CAS number 159989-65-8) powder was obtained from MedChemExpress
LLC (Monmouth Junction, USA and Selleck Chemicals, Houston, USA). Compound was
dissolved in DMSO (Sigma-Aldrich, St. Louis, USA) at 100 mM and kept at -80°C or -20°C for
long-term or working storage, respectively.

Cellular impedance measurement

Impedance-based assays were performed using the xCELLigence system (Roche Applied
Science and ACEA Biosciences) as described previously (122, 123) according to the
manufacturer’s instructions (124) in cell culture environment (37°C, 5% CO,, 95% humidity) in
duplicates. The 16-well E plates have a gold-plated sensor array embedded in their glass
bottom by which the electrical impedance across each well bottom is measured. The impedance
per well, termed cell index (Cl), is recorded as a dimensionless quantity. The background ClI
was assessed following the addition of 50 pl supplemented medium to each well and
equilibration in the incubation environment. After 30 min equilibration, 9,000 A549 ATCC cells in
50 pl supplemented medium were added per well and measurement was started.

For the quantification of Nelfinavir toxicity, 50 pl of supernatant were removed 18 h later and
replaced by 2-fold concentrated Nelfinavir or DMSO solvent as the control dilution in
supplemented medium (final Nelfinavir concentration 0.4-100 pM in 100 pl / well). The control
was supplemented medium. Impedance was recorded every 15 min over 5 days. TCsg indicates
the concentration of Nelfinavir, which caused 50% impedance reduction compared to the
solvent-treated cells. TCs, was calculated by non-linear regression of solvent-normalized CI
over the concentration of Nelfinavir.

For the quantification of Nelfinavir effects on the cytopathogenicity of HAdV-C2-dE3B-GFP
compared to HAdV-C2-dE3B-GFP-dADP infection, 50 pl supernatant were removed 18 h later
and replaced with Nelfinavir- and virus-supplemented medium. 25 pl of a 4-fold concentrated
Nelfinavir (final concentration 0.4-100 uM) or corresponding DMSO solvent control dilution (final
concentration 1%) in supplemented medium or supplemented medium only were added to 50 pl
medium containing cells. Additionally, 25 pl of a 4-fold concentrated virus stock dilution were
added (final inoculum 1.68*10° viral particle(s) (VP) / well HAdV-C2-dE3B-GFP and 2.68*10°
VP/ well HAdV-C2-dE3B-dADP, corresponding to ~30 plaque forming unit(s) (pfu) / well. The
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delay of infection-induced cytotoxicity was calculated as time point at which the CI of the
infected cells had decreased by 50% relative to its maximum. Data analysis was performed
using GraphPad (GraphPad Software, Inc, version 8.1.2), and curve fitting was performed using
three-parameter [inhibitor] vs. response nonlinear regression.

Fluorescence-based plaque forming assay

Per 96-well, 15,000 A549, 10,000 HeLa ATCC, 30,000 HBEC, 30,000 HCE or 30,000 CMT-93
cells were seeded in 100 pl of the respective supplemented medium and allowed to settle for 1
h at room temperature (RT) prior to cell culture incubation at 37°C, 5% CO,, 95% humidity. The
following day, the medium was replaced by 50 pl of the respective virus stock dilution giving rise
to 5 to 50 plaques per 96-well. 50 pl Nelfinavir to obtain 0.1 to 50 pM final concentration or
DMSO solvent control was also added, both in supplemented medium. For each experiment, a
non-infected, treated control was performed. For uphill plaque assays, medium volume was
increased to 150 pl with identical virus and drug concentrations. For wash-in / wash-out
experiments, virus was incubated on the cells in supplemented medium for 1 h at 37°C, cells
were washed with PBS and 100 pl drug dilution in supplemented medium was added. All
experiments were performed in four technical replicates or as indicated. Cells were incubated at
standard cell culture conditions. At the indicated time post infection (pi), the cells were fixed and
the nuclei stained for 1 h at RT by addition of 33 pl 16% (w / v) para-formaldehyde (PFA) and 4
pg / ml Hoechst 33342 (Sigma-Aldrich, St. Louis, USA) in PBS. Cells were washed three times
with PBS and stored in PBS supplemented with 0.02% N3 for infections with viruses harbouring
a GFP transgene. For wild type (wt) viruses, cells were quenched in PBS supplemented with 50
mM NH,CI, permeabilized using 0.2% (v / v) Triton-X100 in PBS and blocked with 0.5% (w / v)
BSA in PBS. Cells were incubated with 381.7 ng / ml mouse a-HAdV hexon protein antibody
(Mab8052, Sigma-Aldrich, St. Louis, USA) and subsequently stained using 2 pg / ml goat a-
mouse-AlexaFluor594 (A21203 or A32742, Thermo Fisher Scientific, Waltham, USA). Plates
were imaged on either an IXM-XL or IXM-C automated high-throughput fluorescence micro-
scope (Molecular Devices, San Jose, USA) using a 4x objective at widefield mode. Hoechst
staining was recorded in DAPI channel, FITC / GFP channel for viral GFP and TRITC / Texas
red channel for immunofluorescence hexon staining.

Therapeutic index measurement

The infection phenotype for each well was quantified using Plaque2.0 (101). The number of
plaques was determined based on the infection signal (viral GFP or hexon immunofluorescence
staining). Nuclei stained with Hoechst were segmented by CellProfiler (125). Infected nuclei
were classified based on the median infection signal per nucleus in CellProfiler. Data were
plotted and ECs, (infected and treated cells), TCso (non-infected, treated cells), as well as the
corresponding standard error (SE) determined using curve fitting in GraphPad (GraphPad
Software, Inc, version 8.1.2) using three-parameter [inhibitor] vs. response nonlinear regression.
Mean Tlso was calculated as ECsq/ TCs ratio of the means. The Tlso SE was calculated by error
propagation.

Quantification of viral protein expression
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Infection, HAdV hexon immunofluorescence staining, and imaging were performed in technical
quadruplicates, as described under Microscopic plaque assay. Single nuclei (Hoechst) were
segmented using CellProfiler (125). Median GFP and hexon signals per nucleus were
measured, and infected nuclei classified using the median GFP or hexon signals per nucleus.
Subsequently, mean and standard deviation (SD) over all infected nuclei per well were
calculated in R version 3.3.2 (126). Data were plotted in GraphPad (GraphPad Software, Inc,
version 8.1.2).

Transmission electron microscopy

A549 ATCC cells grown on Alcian Blue-treated cover slips were infected with HAdV-C2-dE3B-
GFP in supplemented medium with 0, 1.25 or 3 pM Nelfinavir and cultured for 40 h at standard
cell culture conditions. The samples were washed with ice-cold 0.1 M cacodylate buffer (pH 7.4)
and fixed at 4°C in 0.1 M ice-cold cacodylate buffer (pH 7.4), supplemented with 2.5% (v / v)
glutaraldehyde and 0.5 mg / ml ruthenium red for 1 h. Cells were washed with 0.1 M cacodylate
buffer (pH 7.4) and post-fixed at RT in 0.05 M cacodylate buffer (pH 7.4) supplemented with
0.5% (v / v) OsO4 and 0.25 mg / ml ruthenium red for 1 h. Following washing with 0.1 M
cacodylate buffer (pH 7.36) and H,O, the samples were incubated in 2% (v / v) uranyl acetate at
4°C over night (ON). The samples were dehydrated in acetone and embedded in Epon as
described in (127). 85 nm slices were obtained (Leica Ultracut UCT, Leica, Wetzlar, Germany)
and stained with uranyl acetate.

HAdV-C5 virus production in presence of Nelfinavir

HAdV-C5 was amplified in the medium containing 0, 1.25 or 3 pM Nelfinavir for 4 days. Cells
were harvested and disrupted by three freeze / thaw cycles. The cell debris was removed by
Freon extraction and mature full HAdV virions were purified by two rounds of CsCl gradient
ultracentrifugation (106). Protein concentration was determined by BCA assay (Pierce BCA
Protein Assay Kit, Thermo Fisher Scientific, Waltham, USA). For long-term storage, virus stocks
were supplemented with 10% (v / v) glycerol and kept at -80°C.

Negative staining electron microscopy

Double CsClI gradient-purified HAdV particles were adhered to Collodion and 2% (v / v) amyl
acetate film-covered grids (300 mesh Formvar/carbon-supported copper support films, Electron
Microscopy Sciences, Hatfield, USA). Viral particles were negatively stained with 2% (v / v)
uranyl acetate and viewed on a transmission electron microscope (Philips CM100, Philips,
Amsterdam, Netherlands) at 100 kV. Images were acquired using a CCD camera (Orius
SC1000 with 4,000 x 2,600 pixels, Gatan, Pleasanton, USA).

Western blot analysis of HAdV protease activity

Double CsCl-purified grown in presence / absence of Nelfinavir (HAdV-C5 ) stocks and
size standard (PageRuler plus, Thermo Fisher Scientific, Waltham, USA) were size-separated
on 12% acrylamide gel under reducing conditions and transferred to a PVDF membrane. HAdV
proteins were detected using the following primary antibodies: 1:10,000 R72 rabbit a-fiber (128),

+Nelfinavir
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1:1,000 rabbit a-pVI/VI (51), 1:1,000 R3 rabbit a-pVII/VIl (Ulf Pettersson of Uppsala University)
and visualized using a goat a-rabbit-HRP (7074, Cell Signaling Technology, Danvers, USA) and
ECL Prime Western Blotting Detection Reagent (GE Health Care, Pittsburgh, USA). The
membranes were luminescence imaged on an Amersham Imager 680 (GE Health Care,
Pittsburgh, USA).

Determination of nuclear size

Infection and Nelfinavir treatment of A549 cells were performed as described under Microscopic
plaque assay with a cell seeding density of 15,000 cells / well. Wells were imaged with IXM-C
automated high-throughput fluorescence microscope (Molecular Devices, San Jose, USA) using
a 40x objective (NA 0.95) at confocal mode (62 pm pinhole). DAPI channel was acquired for
nuclear Hoechst staining, FITC / GFP channel was acquired for viral GFP, TRITC / Texas red
channel was acquired for immunofluorescence ADP staining and Cy5 channel was acquired for
NHS-ester signal. 30 z steps with 0.5 pm step size were acquired for each channel and maximal
projections were calculated. Image analysis was performed using CellProfiler (125). Nuclei
areas were segmented based on thresholded Hoechst signal. Infected cells were classified
based on a fixed threshold for median nuclear GFP intensity. Data processing was performed in
R version 3.3.2 (126). Statistical analysis was performed in GraphPad (GraphPad Software, Inc,
version 8.1.2) using the non-parametric Kolmogorov-Smirnov test.

Cell binding assay of virus

A549 cells were seeded at 7,500 cells per 96-well in full DMEM and allowed to attach over night
at standard cell culture conditions. The next day, the medium was replaced by 3*10° VP/ well of
double CsCl-purified HAdV-C5=N"a" yirys stocks in 100 pl ice-cold supplemented medium and
kept on ice for 30 min. Following a 15 min entry phase under standard cell culture conditions the
cells were fixed and the nuclei stained for 1 h at RT by addition of 33 pl 16% PFA and 4 pg / mi
Hoechst 33342 (Sigma-Aldrich, St. Louis, USA) in PBS. Following the above described immuno-
fluorescence staining procedure, the cell-bound HAdV virions were stained using 9C12 mouse
a-hexon (developed by Laurence Fayadat and Wiebe Olijve, obtained from Developmental
Studies Hybridoma Bank developed under the auspices of the National Institute of Child Health
and Human Development and maintained by the University of lowa, lowa City, USA) (129) and
goat a-mouse AlexaFluor488 (A11029, Thermo Fisher Scientific, Waltham, USA). Total area
was identified by Alexa-Fluor647 NHS ester staining (A20006, Thermo Fisher Scientific,
Waltham, USA). Max projections of confocal z-stacks (25 z steps spaced 1 pm) were acquired
on a SP5 resonant APD (Leica, Wetzlar, Germany) at 1.7x zoom using a 63x glycerol objective
(numerical aperture 1.4).

Assessment of HAdV infectivity of HAdV-C5=Neffinavir

Fifteen thousand A549 cells were seeded per 96-well in full DMEM and allowed to attach over
night at standard cell culture conditions. The next day, the medium was replaced by double
CsCl-purified HAdV-C5*" ™" virys stocks at 50 to 0.001 pg / well of BCA-based viral protein
concentration and incubated at standard cell culture conditions. Cells were fixed at 52 hpi,
stained for HAdV hexon expression and imaged following the procedure described under
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Image-based plaque assay. Images were quantified using Plaque2.0 (101). Nuclei were
segmented based on Hoechst signal. Infected cells were segmented based on hexon
immunofluorescence staining signal.

Egress assay

A549 cells were seeded at 480,000 cells per 6-well in full DMEM and infected at 1,100 pfu
HAdV-C2-dE3B-GFP per well the next day. Following 1 h of warm incubation, the supernatant
was removed, and cells were washed with PBS and detached by trypsin digestion. Infected cells
were centrifuged and resuspended in fresh medium to remove any unbound input virus and
seeded at 180,000 cells / 12-well in medium supplemented with 1.25, 3 or 10 uM Nelfinavir or
equivalent amounts of DMSO solvent control. At the indicated times pi, the supernatant was
harvested and cleared by centrifugation. 200 pl PBS / well was added to the infected
monolayer. Cells were disrupted by three freeze / thaw cycles and freon extraction was
performed. Supernatant and cell lysate were stored at 4°C until titration on naive A549 cells.
PFA-fixed, Hoechst-stained cells were imaged at 44 hpi using a 4x objective (NA 0.20) on an
epifluorescence IXM-XL (Molecular Devices, San Jose, USA). GFP-positive infected cells were
classified based on median nuclear GFP intensity using automated image analysis by CellProfi-
ler (125).

Quantification of infectious progeny production

Four hundred and eighty thousand A549 cells were seeded per 6-well dish and inoculated with
1,100 pfu HAdV-C2-dE3B-GFP / well for 1 h at 37°C, washed with PBS and detached by trypsin
digestion. Infected cells were centrifuged and resuspended in fresh medium to remove any
unbound input virus. Cells were seeded at 180,000 cells / 12-well in medium supplemented with
1.25, 3 or 10 uyM Nelfinavir or the respective DMSO solvent control. Viral progeny in the cell
monolayer and supernatant was harvested at the indicated time pi by three freeze / thaw cycles.
The lysates were cleared by centrifugation and stored at 4°C until titration on naive A549 cells.
PFA-fixed, Hoechst-stained cells were imaged at 44 hpi using a 4x objective on an
epifluorescence IXM-XL (Molecular Devices, San Jose, USA). GFP-positive infected cells were
classified based on median nuclear GFP intensity using automated image analysis by
CellProfiler (125). The yield per 12-well was extrapolated by linear regression of the number of
infected cells per pl of harvested whole well lysate using GraphPad (GraphPad Software, Inc,
version 8.1.2).

Quantification of the antiviral potency of Nelfinavir

Infection was performed as described under Microscopic plaque assay. Cells were incubated
with an inoculum ranging between 10 - 2,560 pfu / well HAdV-C2-dE3B-GFP for 1 h at 37°C.
Cells were washed with PBS and 100 yl DMEM phenol-free medium (Thermo Fisher Scientific,
Waltham, USA), supplemented with 1% penicillin streptomycin (Sigma-Aldrich, St. Louis, USA),
1% L-glutamine (Sigma-Aldrich, St. Louis, USA), 7.5% FBS (Invitrogen, Carlsbad USA), 1%
non-essential amino acids (Sigma-Aldrich, St. Louis, USA), 1% 100 mM sodium pyruvate
(Thermo Fisher Scientific, Waltham, USA), 0.25 ng / ml Hoechst 33342 (Sigma-Aldrich, St.
Louis, USA) and 1 pg / ml propidium iodide (PI, Molecular Probes, Eugene, USA). Plates were
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imaged at the indicated times pi on an IXM-C automated high-throughput fluorescence
microscope (Molecular Devices, San Jose, USA) using a 40x objective (NA 0.95) at confocal
mode (62 pm pinhole). DAPI channel was acquired for nuclear Hoechst staining, FITC / GFP
channel was acquired for viral GFP and Cy5 channel was acquired for PI signal. 30 z steps with
0.5 pm step size were acquired for each channel and maximal projections were calculated.

Morphological plaque characterization

Plaques were segmented in Plaque2.0 (101) and plaque region eccentricity was measured as
fraction of the distance between the two focal points of the ellipse divided by the length of the
major axis. Only plaque regions consisting of at least five infected cells (26,000 px?) with a
centroid located 600 px from the well rim were considered to exclude spatial limitations. Plaque
roundness was calculated as 1- eccentricity (Equation 1).

41 * area

roundness =1 — ———— Equation 1
perimeter?

Statistical analysis was performed in GraphPad (GraphPad Software, Inc, version 8.1.2) using
the non-parametric Kolmogorov-Smirnov test.

Confocal microscopy of ADP localization

Infection and immunofluorescence stainings were performed as described under Microscopic
plaque assay with a cell seeding density of 3,000 cells / well. Cells were incubated with 1:1,000
rabbit a-HAdV-C2-ADPg;.191 antibody (107) and subsequently stained using donkey a-rabbit-
AlexaFluor594 (21207, Thermo Fisher Scientific, Waltham, USA) and 0.2 pg/ml NHS ester (Life
Technologies, Carlsbad, USA) for whole cell outline. Plates were imaged on an IXM-C
automated high-throughput fluorescence microscope (Molecular Devices, San Jose, USA) using
a 40x objective (NA 0.95) at confocal mode (62 pm pinhole). DAPI channel was acquired for
nuclear Hoechst staining, FITC / GFP channel was acquired for viral GFP, TRITC / Texas red
channel was acquired for immunofluorescence ADP staining and Cy5 channel was acquired for
NHS ester signal. 30 z steps with 0.5 pm step size were acquired for each channel and maximal
projections were calculated. Image analysis was performed using CellProfiler (125). Nuclei and
whole cell areas were segmented based on thresholded Hoechst and NHS ester signal,
respectively. Nuclear rim was defined as 10 pixel-wide area around the nuclear border. Infected
cells were classified based on the whole cell 5% quantile GFP intensity. Whole cell and nuclear
rim mean TRITC / Texas red (detecting ADP) intensities as well as whole cell 5-pixel granularity
per infected cell were normalized by the according mean over all infected cells of the solvent
control. Data processing was performed in R version 3.3.2 (126). Statistical analysis was
performed in GraphPad (GraphPad Software, Inc, version 8.1.2) using the non-parametric
Kolmogorov-Smirnov test.

Western blot analysis of ADP processing

Four hundred and eighty thousand A549 cells were seeded per 6-well, incubated o/n and
inoculated with HAdV-C2-dE3B-GFP at 22,000 pfu / well in 1.2 ml full DMEM supplemented with
0 to 10 pM Nelfinavir. Following 44 h of incubation in standard cell culture medium, cells were
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placed on ice and the supernatant was removed. The cells were washed twice with ice-cold
PBS. Cells were lysed in 100 pl COS lysis buffer (20 mM Tris-HCI pH 7.4, 100 mM NaCl, 1 mM
EDTA, 1% Triton X-100, 1 mM DTT, 25 mM B-Glycerophosphate disodium, 25 mM NaF, 1 mM
NaszVO,, 1x protease inhibitors (Mini Complete, Roche, Basel, Switzerland) for 5 min on ice.
Supernatant and washing PBS were collected and cells pelleted by centrifugation at 16,000 xg
for 5 min at 4°C. Lysates were scraped off and used to resuspend the pelleted cells. Following
another centrifugation, the supernatant was collected and stored at -20°C. Samples of 15 pl
lysate were supplemented with SDS-containing loading buffer (0.35 M Tris-HCI pH 6.8, 0.28%
SDS, 30 g/ 1 DTT, 0.6 g/ | bromophenol blue). Samples were denatured at 95°C for 5 min and
proteins were separated on a denaturing 15% acrylamide gel. Proteins transferred to a PVDF
membrane were detected with 1:1,000 of a rabbit a-HAdV-C2 ADPzg.93 antibody (107) followed
by goat a-rabbit-HRP (7074, Cell Signaling Technology, Danvers, USA). Protein bands were
visualized using ECL Prime Western Blotting Detection Reagent (GE Health Care, Pittsburgh,
USA) and luminescence imaged on an Amersham Imager 680 (GE Health Care, Pittsburgh,
USA).

Neutralization of HAdV cell-free progeny

A549 cells were seeded at 15,000 cells per well of a 96-well-plate, incubated o/n and inoculated
with HAdV-C2-dE3B-GFP at 34 pfu / well for 1 h at 37°C. Virus was removed and cells were
washed with PBS, before 0.25 ng / ml Hoechst (Sigma-Aldrich, St. Louis, USA)-supplemented
DMEM medium containing 1:12 HAdV-C2/5-neutralizing dog serum, kindly supplied by Anja
Ehrhardt, University Witten/Herdecke, Germany (130), supplemented with 40% v / v glycerol),
control goat serum (Thermo Fisher Scientific, Waltham, USA, supplemented with 40% v / v
glycerol) or the corresponding volume glycerol only. Cells were imaged using a 4x objective (NA
0.20) on an epifluorescence IXM-XL microscope (Molecular Devices, San Jose, USA).

Crystal violet-stained plaques

Plague shapes were also assessed by conventional crystal violet-stained plague assay,
performed in A549 cells in liquid supplemented DMEM medium. All infections were performed at
37°C, 95% humidity and 5% CO, atmosphere. At the indicated time pi, cells were fixed and
stained for 60 min with PBS solution containing 3 mg / ml crystal violet and 4% PFA added
directly to the medium from a 16% stock solution. Plates were de-stained in H,O, dried and
imaged using a standard 20 mega pixel phone camera under white light illumination.

11
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Results

Nelfinavir is a non-toxic, potent inhibitor of HAdV-C multicycle infection

An accompanying paper describes a full cycle, image-based screen of 1,278 out of 1,280 PCL
compounds against HAdV-C2-dE3B-GFP, where Clopamide and Amphotericine B were exclu-
ded due to precipitation during acoustic dispension into the screening plates (100). The screen
was conducted in adenocarcinomic human alveolar basal epithelial (A549) cells at 1.25 pM
compound concentration, and identified Nelfinavir, Aminacrine, Dequalinium dichloride and
Thonzonium bromide as hits (Supplementary Table 1). Nelfinavir (CAS number 159989-65-8),
hereafter referred to as Nelfinavir, strongly inhibited plaque numbers at nanomolar concen-
trations, comparable to the known HAdV nucleoside analogue inhibitor 3'-deoxy-3'-fluorothy-
midine (DFT, Figure 1A, 1B). Dequalinium dichloride, Aminacrine and Thonzonium bromide
were excluded from further analyses due to toxicity (100), and potential mutagenic effects (131).
Long-term incubations of uninfected A549 cells with Nelfinavir up to 115 h showed median
toxicity TCso of 25.7 uM, as determined by cell impedance measurements using xCELLigence
(Figure 1C). xCELLigence measures the impedance of electrical currents imposed by cell
adherence to gold-plated microelectrodes implanted in culture wells. Impedance is expressed
as cell index (Cl), a unitless parameter proportional to the cell number, cell size, and cell
adherence. For raw Cl profiles, see Supplementary Figure 1A. Cl measurements were
consistent with presto-blue assays, and cell numbers determined by counting nuclei
(Supplementary Table 1). This was in agreement with previous reports, and acceptable side
effects in clinical use against HIV (102, 132). The therapeutic index 50 (Tlso) of Nelfinavir was
27.1 (Figure 1D), as determined by the ratio between the concentration yielding 50% loss of cell
nuclei (TCsp = 10.01 pM) and the effective concentration yielding 50% inhibition of fluorescent
plaque formation (ECso = 0.37 pM). The data indicates that Nelfinavir is an effective, non-toxic
inhibitor of HAdV-C2 multi-cycle infection.

Nelfinavir does not affect single round infection

We first tested if Nelfinavir affected viral protein production. HAdV-C2-dE3B-GFP-infected A549
cells were analysed for GFP under the immediate early CMV promoter, and the late protein
hexon expressed after viral DNA replication at 46 hours post infection (hpi). Results indicate that
Nelfinavir had no effect on GFP or hexon expression at the tested concentrations, while the
formation of fluorescent plaques was completely inhibited (Figure 2A, and Figure 1D). This
result was in agreement with the notion that Nelfinavir did not affect the replication of the HAdV-
C5 genome, as determined by titration of cell-associated infectious particles (133). We next
examined if Nelfinavir affected the formation of viral particles. Transmission electron microscopy
(TEM) of HAdV-C2-dE3B-GFP-infected cells revealed large numbers of virions in the nuclei of
Nelfinavir-treated and untreated cells (Figure 2B). This result was conforming with the
observation that the nuclei of Nelfinavir-treated cells expanded in area over time,
indistinguishable from control cells (Supplementary Figure 1B).

To test if Nelfinavir affected virion maturation, we analysed purified virions by SDS-PAGE and
Western blotting against proteins pVI/VI and pVII/VII using previously characterized antibodies.
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There was no evidence for increase of precursor VI or VII (pVI or pVIl) in HAdV-C5 from
Nelfinavir-treated cells, in contrast to temperature-sensitive (ts) 1 particles, which lack the
L3/p23 protease due to the point mutation P137L in p23 (134) (Figure 2C). This showed that
Nelfinavir did not affect the proteolytic maturation of the virus by the L3/p23 cysteine protease.
In accordance, purified HAdV-C5 from Nelfinavir-treated cells attached to naive A549 cells and
gave rise to viral gene expression as effectively as control HAdV-C5 patrticles (Figures 2D, 2E).
Together, these results indicate that Nelfinavir does not affect the production of infectious
virions in single round infections.

Nelfinavir inhibits HAdV-C egress

We investigated the kinetics of HAdV-C2-dE3B-GFP production and the release to the
supernatant. Supernatants and whole cell lysates of treated- and non-treated infected cells were
harvested at different time points (Figure 3A). At 44 hpi, cell lysates of Nelfinavir and control
cells contained similar infectivity, but did not yet release virus to the supernatant, as shown by
titration on naive A549 cells. At 72 or 120 hpi, control cells, but not Nelfinavir-treated cells had
released virus to the supernatant. Notably, the viral titer in the supernatant of control cells at 120
hpi was so high, that nearly all the cells in the indicator plates dissociated from the plates. The
difference in infectious load was confirmed by titration of supernatants from separate time
course experiments at three different concentrations of Nelfinavir (Figure 3B). At 7 dpi, a dosage
of 1.25 uM reduced the total yield of infectious particles in the supernatant by three orders of
magnitude, underscoring the potency of Nelfinavir to block the dissemination of HAdV-C-dE3B-
GFP. Moreover, Nelfinavir limited HAdV-C2 transmission when added as late as 40 hpi (Figure
3C). These findings indicate that Nelfinavir impairs the egress of progeny from the host cell.

We next assessed the potency of the Nelfinavir against HAdV-C2 transmission by quantifying
the number of nuclei, which normally decreases due to lytic virus replication. Nelfinavir (3 pM)
robustly reduced the number of dead cells, and strongly reduced the number of infected cells up
to 100 pfu / well (Figure 3D). Remarkably, HAdV-C2-dE3B-GFP formed delayed plaques in
presence of Nelfinavir, starting at 4 dpi (Figures 3E, 3F). These late plaques showed a strikingly
round morphology, which was calculated to be significantly different from the comet-shaped
plaques early in infection of control cells (Figure 3G). The direction of the comet tail of Iytic
plaques can be aligned by tilting of the incubation plate (72). Thereby, the cell monolayer is
positioned non-orthogonally to the vector of thermal convection flux of the liquid cell culture
medium. While the direction of the comet-shaped plaques could be aligned using this method in
the non-treated infections, the late Nelfinavir plaques remained mostly round (Supplementary
Figures 2A-C). Moreover, there was no correlation between the size of the plaques and their
roundness irrespective of Nelfinavir up to 7 dpi, demonstrating that the round plaques did not
change morphology over time (Supplementary Figure 2D). Collectively, the data indicate that
virus transmission in presence of Nelfinavir is not driven by the bulk current of cell free medium.

HAdV inhibition by Nelfinavir depends on ADP

ADP is expressed at high levels late in infection and enhances cell lysis (94, 135). To test if
ADP was required for Nelfinavir inhibition of Iytic spread, we generated an ADP-depleted HAdV-
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C2-dE3B-GFP mutant, HAdV-C2-dE3B-GFP-dADP. The mutant completely lacks ADP
expression, as indicated by immunofluorescence and Western blot experiments (Supplementary
Figure 3A, 3B). HAdV-C2-dE3B-GFP-dADP formed particles indistinguishable from HAdV-C2-
dE3B-GFP, as indicated by negative stain EM (Supplementary Figure 3C). HAdV-C2-dE3B-
GFP-dADP showed a delayed onset of plaque formation by about 1 day, compared to HAdV-
C2-dE3B-GFP (Figure 4A). These data are in agreement with previous kinetic studies with the
ADP deletion mutant HAdV-C dI712 (107) (see also Supplementary Figure 3A). HAdV-C2-
dE3B-GFP-dADP plaques were comet-shaped, albeit their comet-heads appeared bigger and
more dense (Figure 4A). While the parental virus was highly sensitive to Nelfinavir, HAdV-C2-
dE3B-GFP-dADP required much higher concentrations of the compound to show inhibition of
plaque formation (Figure 4B, Supplementary Table 2). In accordance, the ADP-deleted virus
induced cell death independent of Nelfinavir, unlike the ADP-expressing virus, as concluded
from cell impedance measurements with xCELLigence (Figure 4C, Supplementary Figures 3D,
3E). Finally, HAdV-C2-dE3B-GFP-dADP exhibited a strongly diminished separation of anti-viral
efficacy from toxicity, as indicated by reduced Tlso values compared to the parental virus, for
example 2.1 versus 66.8 with A549 cells, 8.9 versus 61.0 with HelLa cells, and 4.6 versus 55.2
with HBEC cells (Figure 4D). These effects were in agreement with similar experiments
performed with the previously described ADP-knock out mutant di712 and the parental rec700,
an HAdV-C5/2 hybrid virus (135, 136). The data are shown in (Supplementary Figures 3F to
3H). Together, the results show that the selective antiviral effects of Nelfinavir are more cell-type
dependent in case of HAdV lacking ADP than in ADP-expressing viruses, and the effects are
comparatively small for viruses lacking ADP.

Finally, we performed immunofluorescence experiments with HAdV-C2-dE3B-GFP-infected
A549 cells at 44 hpi (Figure 4E). Under non-perturbed conditions, ADP accumulated in cytoplas-
mic foci and the nuclear envelope. Nelfinavir treatment did not affect the overall ADP expression
levels nor the amount of ADP in the nuclear periphery, including the nuclear envelope, but
completely abolished the cytoplasmic ADP foci as indicated by granularity quantifications
(Figure 4E, right graph). Intriguingly, Tollefson and co-workers observed earlier that ADP
lacking lumenal O-glycosylation sites did not localize to large cytoplasmic granules and the
corresponding HAdV-C mutant pm734.4 was non-lytic (107). We speculate that the localization
of ADP in cytoplasmic organelles, such as Golgi compartments, where O-glycosylation occurs
(137), could enhance the cell lytic function of ADP. Together, the data show that ADP is a major
susceptibility factor for inhibition of HAdV-C infection spread by Nelfinavir.

A round non-lytic plaque phenotype in HAdV-C infection

Viruses are transmitted between cells by three major mechanisms, cell-free through the extra-
cellular medium, directly from cell-to-cell, or in an organism by means of infected motile cells or
fluid flow in blood or lymphoid vessels. This can result in far-reaching or mostly local virus disse-
mination (for a simplified cartoon, see Figure 5A). In cell culture, HAdV-C transmission from a
lytic infected cell (staining Pl-positive) yields comet-shaped infection foci due to convective
passive mass flow in the cell culture medium (72, 101), consistent with lytic HAdV-C infection
(74, 135). In accordance, neutralizing antibodies against HAdV-C2 added to the cell culture
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medium suppressed the comet-shaped plaques of HAdV-C2-dE3B-GFP, and yielded confined,
predominantly round-shaped infection foci 4 dpi, akin to Nelfinavir-treated infections (Figure 5B).

To test if round-shaped infection foci (plaques) occurred in regular HAdV-C2-dE3B-GFP
infections, we analysed A549 cells infected with less than one plaque forming unit (pfu) per well
in 160 wells up to 8 dpi. Thirty three wells developed a single plaque. Twenty four of them were
fast emerging comet-shaped plaques, of which the donor cell (indicated by the pink arrow),
disappeared between 2 and 3 dpi (Figure 5C, upper panel). In contrast, nine wells developed
delayed round plaques starting 6 dpi (Figure 5D, lower panel). In all these cases, the original
infected cell (orange arrow) remained GFP-positive and apparently viable, and the surrounding
cells gradually became infected. These data suggest that HAdV-C2 utilizes both Iytic and non-
lytic transmission, the former involving cell-free transmission, and the latter cell-associated
transmission.

Nelfinavir has a broad anti-HAdV spectrum

We finally assessed the inhibition breadth of Nelfinavir against various HAdV types from species
A, B, C and D in different human cell lines, as well as mouse adenovirus (MAdV) 1 and 3 in
mouse rectum carcinoma CMT93 cells. To balance statistical significance and automated
plaque segmentation, we first determined the optimal amount of inoculum and duration of
infection for each virus and cell line. The resulting Tlso values of Nelfinavir were heterogeneous
for different HAQV types, as determined in A549 cells (Figure 6A, for details see Supplementary
Table 2). While all the tested HAdV-C types as well as HAdV-B14 showed high Tlsos (>10)
ranging from 12.22 (HAdV-C1) to 71.09 (HAdV-C2). Members of HAdV species A, D and most
of the HAdV-B types showed intermediate (2 - 10) to low Nelfinavir susceptibility (<2), notably
HAdV-B7 and B11 with Tlso<1. MAdV-1 and 3 also showed low susceptibility. Noticeably, a high
susceptibility of HAdV-C was consistently observed in human lung epithelial carcinoma (A549)
cells, human epithelial cervix carcinoma (HelLa) cells, immortalized primary normal human
corneal epithelial (HCE) cells as well as normal human bronchial epithelial (HBEC) cells. The
corresponding Tlso values were in the same range as for herpes simplex virus (HSV) 1, for
which Nelfinavir was reported to be an egress inhibitor (133, 138, 139).

We finally examined the plaque morphologies in non-perturbed infections by immunofluores-
cence staining of the late proteins VI and hexon, as well as macroscopic analyses of crystal
violet stained dishes for classical plaques (Figure 6B). Viruses that were highly susceptible to
Nelfinavir (exhibiting high Tlso values) formed exclusively comet-shaped plaques. Viruses with
low Tlso values, such as A31, B11 or D37 had a high fraction of round plaques, even when
infected with more than 1 pfu / well. This demonstrates that the slowly growing round infection
foci observed in fluorescent microscopy gave similarly shaped lesions due to cytotoxicity, akin to
the lytic comet-shaped foci. We conclude that HAdV types employ lytic cell-free and non-lytic
cell-to-cell transmission modes and give rise to different plaque phenotypes.
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Discussion

A phenotypic screen of the PCL identified Nelfinavir as a potent, post-exposure inhibitor of
HAdV-C2-dE3B-GFP plaque formation in cell culture (100). Nelfinavir is a non-nucleoside class
inhibitor against a range of HAdV types. Surprisingly, we found Nelfinavir to inhibit HAdV
infection, although Nelfinavir was previously classified as inactive against HAdV-C based on
replication assays (133). It is the off-patent FDA-approved active pharmaceutical ingredient of
Viracept. Nelfinavir was originally developed as an inhibitor against the HIV aspartyl protease. It
is orally bioavailable, with an inhibitory concentration in the low nanomolar range (102, 132).
Nelfinavir inhibits the replication of enveloped viruses, including SARS coronavirus (140),
hepatitis C virus (141) as well as a-, - and y-herpes viruses (133). In the case of the a-herpes
virus HSV-1, Nelfinavir inhibits the envelopment of the capsid with cytoplasmic membranes.
This coincided with impaired glycosylation of gB and gC in the TGN (133, 138, 139, 142).
Nelfinavir was reported to inhibit the activity of regulatory proteases in the Golgi, the growth of
cancer cells and to induce a wealth of other effects, including autophagy, ER stress, the
unfolded protein response, and apoptosis (143-149) (150-152, reviewed in 153-155). It
remains unknown if Nelfinavir exerts these pleiotropic effects by interfering with diverse
processes or a particular one.

Here, we demonstrate that Nelfinavir inhibits the egress of HAdV particles without perturbing
other viral replication steps including entry, assembly and maturation. Morphometric analyses of
the fluorescent plaques indicated that HAdV-C propagates by two distinct mechanisms, lytic and
non-lytic. Lytic transmission led to comet-shaped convection driven plaques, whereas non-lytic
transmission gave rise to symmetric round-shaped plaques. Nelfinavir specifically suppressed
the lytic spread of HAdV, most prominently the HAdV-C types and B14, but not other HAdV,
such as A31 or D37. Incidentally, HAdV-C and B14 replicate to considerable levels in Syrian
hamsters, whereas other HAdV types do not (31, 156, 157). We infer that lytic infection could be
a pathogenicity driver, at least in the hamster model.

The molecular mechanisms underlying cell lysis in AdV infection are not well understood, largely
due to the lack of specific assays and inhibitors. Single cell analyses combined with machine
learning start to identify specific features of lytic cells, such as increased intra-nuclear pressure
compared to non-lytic cells (158). The lysis induced by HAdV was suggested to involve
caspase-dependent functions, and necrosis-like features (99, 159, 160). The best characterized
factor in HAdV cell lysis is ADP, a small membrane protein encoded in HAdV-C (90, 91, 161).
ADP-deletion mutants show delayed onset of plaque formation (73, 135). Lysis is enhanced by
increased ADP levels and tuned by post-translational ADP processing (73, 74, 135). ADP has a
single signal/anchor sequence, and its lumenal domain is N- and O-glycosylated. The N-
terminal segment is cleaved off in the Golgi lumen, and the membrane-anchored ADP localizes
to the inner nuclear membrane (92, 107, 135). Interestingly, two cysteine residues in the
cytoplasmic domain adjacent to the transmembrane segment are palmitoylated (107) (162). S-
palmitoylation is known to support anchorage and sorting of host and viral membrane proteins.
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Accordingly, S-palmitoylation in the Golgi facilitates protein oligomerization, virion assembly and
entry, as shown for structural proteins of enveloped viruses, including SARS-CoV-1 S, vesicular
stomatitis virus G, sindbis virus E2, influenza virus HA, respiratory syncytial virus F, or rubella
virus E1 and E2, as well as viroporin-mediated membrane permeabilization, including mouse
hepatitis virus E protein, SARS-CoV-1 E protein and sindbis virus 6K. For reviews, see (163,
164).

Conspicuously, the cell lysis defective HAdV mutant pm734.4 encodes a C2 mutant ADP with
two point mutations in the transmembrane domain, Cs3R and MssL (107). The mutant ADP
localizes to the ER and the nuclear envelope, but not the Golgi, unlike the parental wild type
virus rec700. The localization of the pm734.4 ADP is akin to the localization of HAdV-C2 ADP in
Nelfinavir-treated cells, which resist lysis and lack ADP localization in the Golgi. We speculate
that the palmitoylation of ADP in the Golgi is crucial for ADP to enhance the rupture of the
nuclear membrane in lytic HAdV-C egress. Nelfinavir may interfere with ADP palmitoylation
either by inhibiting a palmitoyl-acyltransferase or by dispersing the donor substrate for protein
palmitoylation, palmitoyl-coenzyme A (164). Remarkably, Nelfinavir has a high logP value, 4.1
to 4.68 (165, 166), and partitions into lipophilic domains of the cell, including membranes. This
is akin to another lipophilic drug with pleiotropic effects, the anti-viral and anti-helminthic
compound Niclosamide, which is a weak acid and acts as a protonophore extracting protons
from acidic organelles, and thereby inhibits virus entry and uncouples mitochondrial proton
gradients (167, 168).

We noticed that ADP is not the sole lysis factor of HAdV. HAdV types lacking ADP, such as B
types, also release their progeny by lysis, albeit with efficacies that vary depending on the cell
type (169-171). This is in agreement with the observation that HAdV types of the A, B and D
species form comet-shaped plaques, and that ADP-deleted HAdV-C2 lyse the host cell, and
form comet-shaped plaques, albeit delayed and with lower efficacy than ADP-containing rec700
or HAdV-C2-dE3B-GFP. Conspicuously, other AdV proteins besides ADP were reported to
interfere with cell lysis, such as the early region 4 ORF4 protein, which induces nuclear
envelope blebbing and promotes the loss of nuclear integrity (172, 173). This, together with
diverse cellular mechanisms underlying force generation and membrane rupture, could
compensate for the lack of ADP in some forms of Iytic virus egress (51, 55, 173). We consider it
unlikely that genetic variability of the inoculum accounts for the presence of lytic and non-lytic
pathways, since the inoculum was derived from an infectious DNA clone of HAdV-C2-dE3B-
GFP, and lacked any mutations affecting amino acid coding across many passages (72).

In addition to providing a new inhibitor of lytic HAdV propagation, Nelfinavir revealed an alterna-
tive non-lytic HAdV transmission pathway, which gives rise to slow-growing symmetrical
plaques. This non-lytic pathway exists in unperturbed cells, but is camouflaged by the rapid and
far-reaching lytic infection. The non-lytic egress pathway is likely a deterministic process. It is
stable for at least eight days (see Fig. 5C). It remains to be explored if cells can switch between
the lytic and the non-lytic pathway. Regardless, non-lytic egress from the nucleus bypasses the
nuclear envelope and the plasma membrane. We speculate that the non-lytic pathway involves
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sorting of HAdV particles to membrane sites where outward budding and scission occur. HAdV
budding through the nuclear envelope could involve the WASH complex, akin to nuclear release
of large RNPs in Drosophila, and perhaps similar to HSV budding (174, 175). Cytoplasmic
membrane budding could be enhanced by the ESCRT complex, which is known to release
enveloped viruses, such as HIV, and also facultative-enveloped viruses, such as hepatitis A
virus (176-178). Alternatively, autophagy could sequester virions from the nucleus and upon
fusion with the plasma membrane release virions from infected cell.

In conclusion, our work opens new therapeutic options for treating adenovirus disease, including
acute and persistent infections. For example, HAdV-C persists in lymphocytes, which resist lytic
infection, but also in epithelial cell lines under the repression of interferon and activation of the
unfolded protein response sensor IRE-1a (122, 123, 179-182). Nelfinavir might be considered
for anti-HAdV therapy, for example prophylactically in hematopoietic stem cell recipients, whose
life is threatened by reactivation of HAdV-C (5, 6, 183).
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ADP, adenovirus death protein;
AdV, adenovirus;

CAR, coxsackievirus adenovirus receptor;
CMV, cytomegalovirus;

DFT, 3'-Deoxy-3'-fluorothymidine;
DMEM, Dulbecco’s Modified Eagle medium;
dpi, day(s) post infection;

ECso, 50% effective concentration;
GFP, green fluorescent protein;
HAdV, human adenovirus;

HIV, human immunodeficiency virus;
hpi, hour(s) post infection;

HSV, herpes simplex virus;

kbp, kilo base pairs,

MAdV, mouse adenovirus;

o/n, over night;

ORF, open reading frame;

Nelfinavir Mesylate, Nelfinavir;

pBI, pBluescript;

PCL, Prestwick Chemical Library;
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PFA, para-formaldehyde;
pfu, plaque forming unit(s);
pi, post infection;

P1, propidium iodide;

RT, room temperature;
SE, standard error;

SD, standard deviation;

TCso, 50% toxic concentration;
Tl, therapeutic index;

ts, temperature-sensitive;
VP, viral particles;
wt, wild type
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Figures

Figure 1: The small molecule Nelfinavir is a potent inhibitor of HAdV-C infection.

A Representative 384-well epifluorescence microscopy images of cells treated with DMSO (left),
Nelfinavir (centre) and DFT (right), infected with HAdV-C2-dE3B-GFP for 72 h. Hoechst-stained nuclei are
shown in blue, viral GFP in green. Dotted lines indicate well outline. Scale bar is 5 mm.

B Structural formula of Nelfinavir mesylate.

C The half-maximal toxicity (TCs) in uninfected A549 cells was determined by Nelfinavir dose-response
impedance measurements at different times of drug treatment. The x-axis indicates the time post cell
seeding, as well as drug addition. Impedance was recorded at intervals of 15 min using xCELLigence
reporting on the cell number and cell adhesion to the electrode-coated wells. The raw CI data are
available in Supplementary Figure 1.

D Separation of effect (ECs, plaque numbers) and toxicity (TCsp, nuclei numbers) of Nelfinavir in A549
cells at 82 hpi based on four technical replicates. Plaque numbers per well are depicted as red circles,
and numbers of infected nuclei as green circles. Numbers of nuclei in Nelfinavir-treated, uninfected wells

are shown in blue; treated, infected wells shown in orange.
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Figure 2. Nelfinavir does not affect early or late steps of HAdV-C infection.

A No effect of Nelfinavir on the expression of CMV-GFP (green) or the late viral protein hexon (red) in
HAdV-C2-dE3B-GFP-infected A549 cells. Data points represent for each of the four biological replicates:
mean median, nuclear intensities per well normalized to the mean median nuclear intensities of the
DMSO-treated wells. Epifluorescence microscopy images were segmented and analysed using
CellProfiler.

B Representative TEM images of late stage HAdV-C2-dE3B-GFP-infected A549 cells at 41 hpi reveal
viral particles inside the nucleus in both DMSO-treated and Nelfinavir-treated cells (white arrow head).
Black arrow heads indicate the nuclear envelope, arrow head with * points to rupture. Scale bar
equivalent to 2 uym.

C Nelfinavir does not affect the maturation of HAdV-C5, as indicated by fully processed VI and VII
proteins in purified particles grown in presence of Nelfinavir. Note that HAdV-C2-ts1 lacking the L3/p23
protease contains the precursor capsid proteins of VI and VII (pVI and pVII).

D HAdV-C5 grown in presence of Nelfinavir (HAdV-C5™™@") hinds to naive A549 cells similar as HAdV-
C5 from control cells. Cells were incubated with virus at 4°C for 1 h and fixed with PFA. Staining of viral
capsids with an a-hexon antibody (green puncta). Nuclei shown with Hoechst staining (blue). Cells were
visualized by NHS-ester staining (red). Images are max projections of confocal z stacks, and also show
zoomed in views (grey squares). Scale bars =20 ym.

E Particles produced in presence of Nelfinavir are fully infectious. A549 cells were inoculated with purified
HAdV-C5 and incubated in absence (grey) or presence of Nelfinavir (orange colors) for 44 hpi. Infection
analyses by a-hexon immunofluorescence staining, and cell numbers derived from Hoechst staining

(blue). Bars represent means of four technical replicates. Error bars indicate standard deviation.
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Figure 3. Nelfinavir is a post-exposure inhibitor of HAdV-C egress.

A A549 cells were imaged at 3 days post inoculation with 1:10 diluted cell lysates (left) or supernatants
(right) from Nelfinavir or control A549 cells, which had been infected with HAdV-C2-dE3B-GFP for the
indicated times (harvested hpi). Results show delayed viral progeny release to the supernatant of
Nelfinair-treated cells. Nuclei are shown in blue, infection marker in green (GFP).

B Released and cell-associated progeny from HAdV-C2-dE3B-GFP-infected A549 cells treated with
Nelfinavir (orange) or DMSO (green), as determined by titration on A549 cells in a 12-well assay format.
Lines indicate mean slopes, dotted lines standard error. Linear regression of three biological triplicates.

C Time-resolved emergence of plaques in HAdV-C2-dE3B-GFP-infected A549 cells treated with 1.25 yM
Nelfinavir. Plaques in infected, non-treated wells are shown in green, Nelfinavir-treated wells in orange
and nuclei in blue. Data points represent one of eight technical replicates. Coloured vertical lines indicate
means and error bars the standard deviations.

D The inhibitory effect of Nelfinavir on HAdV-C2-dE3B-GFP spread is dependent on the amount input
virus during initial infection. Number of infected, GFP-positive cells shown in green at 3 uM Nelfinavir
relative to the mean infection of solvent-treated cells infected with the corresponding dosage. Total
number of nuclei shown in blue, number of Pl-positive dead cells in red. Note that the number of infected
cells at 43 hpi is not affected by the Nelfinavir treatment. Data points represent means of four technical
replicates. Dotted lines indicate standard deviation.

E Treatment of HAdV-C2-dE3B-GFP-infected A549 cells with 1.25 yM Nelfinavir suppresses comet-
shaped plaques and reveals slow growing quasi-round plaques. Viral GFP expression levels are shown
as 16-color LUT. Scale bar is 1 mm.

F Treatment with 1.25 yM Nelfinavir inhibits HAdV-C2-dE3B-GFP infection of A549 cells by slowing
plaque formation. The numbers of infected cells and plaques per well of DMSO-treated wells are shown
in green, those of Nelfinavir-treated wells in orange. Data points represent means of 24 technical
replicates, including the well shown in the micrographs of panel D. Error bars indicate standard deviation.
Statistical significance of drug versus non-treated cells was derived by the Kolmogorov-Smirnov test, p
value < 0.0001 (****).

G The delayed HAdV-C2-dE3B-GFP plaques in presence of 1.25 uM Nelfinavir are significantly rounder
than control plaques, as indicated by Kolmogorov-Smirnov test. Data points indicate plaque regions in the
well centre harbouring a single peak region. Summary of 24 technical replicates including the well shown
in the micrographs of panel D. Regions consisting of at least 5 infected cells (21,500 pm?) were
considered as a plaque. Plaque morphologies in control wells could not be quantified later than 3 dpi due
to rapid virus dissemination. Plaques from DMSO-treated cells 3 dpi compared to Nelfinavir-treated ones
5 dpi: approximate p value < 0.0001 (****). DMSO-treated plaques 3 dpi vs. Nelfinavir-treated plaques 6

dpi: approximate p value < 0.0001 (****). Statistical significance by Kolmogorov-Smirnov test.
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Figure 4. ADP contributes to the inhibitory effect of Nelfinavir against HAdV-C.

A The deletion of ADP from HAdV-C2-dE3B-GFP delays plaque formation in A549 cells by one day, but
does not change plaque shape. Cells were infected with 1.1*10° VP / well. GFP is in green, hexon
staining red, Hoechst signal of nuclei blue. Scale bar is 1 mm.

B The deletion of ADP from HAdV-C2-dE3B-GFP reduces the antiviral effects of Nelfinavir in A549, with
ECso = 5.82 compared to 0.22 uM for the parental virus. HAdV-C2-dE3B-GFP infection was quantified at
72 hpi, and 96 hpi for the ADP deletion mutant. Plaque numbers per well were normalized to the mean
DMSO control and depicted as full green triangles for HAdV-C2-dE3B-GFP and empty red triangles for
the ADP deletion mutant. Nuclei numbers of non-infected, treated wells were normalized to the mean
DMSO control and depicted as full blue circles (72 h incubation), and empty blue circles (96 h). Data
points represent means of four technical replicates. Error bars indicate standard deviation. ECs, values
were derived from non-linear curve fitting. For detailed information and statistics, see Supplementary
Table 2.

C The delay of dell death was calculated from the highest mean cell index (Cl) and its half maximum for
each treatment (mean of two technical replicates). HAdV-C2-dE3B-GFP data in green and dADP in red.
For HAdV-C2-dE3B-GFP-infected A549 treated with 25 uM Nelfinavir, the measurement was aborted due
to overgrowth causing cytotoxicity before the maximal cell index was reached. Treatment with 100 uM
Nelfinavir was toxic.

D Therapeutic index (Tlsg) derived from the ratio of Nelfinavir concentration causing 50% toxicity (TCsg)
and the concentration leading to 50% reduction in plaque numbers per well (ECsy). Results from different
cancer and primary cells are shown for HAdV-C2-dE3B-GFP and HAdV-C2-dE3B-dADP lacking ADP. For
detailed information and statistics, see Supplementary Table 2.

E Representative high-magnification confocal images of HAdV-C2-dE3B-GFP-infected A549 cells 44 hpi
showing the effect of Nelfinavir on ADP localization (left panel). ADP was stained by immunofluorescence
with a rabbit a-HAdV-C2-ADPg;.4¢1 antibody (red). Cells were stained using NHS-ester (grey scale). White
arrow heads highlight infected cells. Nuclei (blue), viral GFP (green). Images are max projections of 30 z
planes with 0.5 ym z steps. Scale bar 10 ym. Relative units (RU) of total ADP expression (grey),
localization to the nuclear rim (blue) and granularity (red) normalized to the mean values from DMSO
control cells (right panel). The data set is comprised of 20 Nelfinavir-treated infected cells, and 23 control
cells. Solid lines indicate median, dotted lines the 5-95% quantile. Kolmogorov-Smirnov indicated an ADP

granularity p value of 0.0019 (**).
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Figure 5: Round plaque phenotypes in presence of neutralising anti-HAdV-C2 antibodies and in
unperturbed HAdV-C2 infections.

A Schematic overview of pathogen transmission routes in cell cultures. Cell lysis kills the donor cell and
releases progeny, while non-lytic egress preserves the infected donor cell. Convection in the media leads
to long-distance, comet-shaped plaques, and cell-free virus transmission is susceptible to neutralizing
antibodies. In contrast, direct cell-to-cell spread of virus gives rise to symmetric slow growing plaques,
resistant to neutralizing antibodies. Non-infected cells are shown in grey and nuclei in blue. First round
infected cells are shown in dark green, nuclei with a ruptured envelope in red. Second round infected
cells are shown in light green. Grey arrow represents direction of convective flow. Axes indicate side or
top-down views.

B Inhibition of cell-free HAdV-C2-dE3B-GFP transmission by an anti-HAdV-C2/5-neutralizing serum.
Nuclei are shown in blue, viral GFP in green.

C Infection of A549 cells with limiting amounts of HAdV-C2-dE3B-GFP (<1 pfu/ well, 9-75 VP/ well) in 160
wells gives rise to 33 single plaques / well. Twenty-four wells contained GFP-positive comet-shaped
plaques (upper panel), and nine developed delayed round plaques (lower panel). Dashed coloured
squares indicate magnified regions of first-round infected cell below. Infected cell leading to comet-
shaped plaque (upper panel, pink arrow) lyses at 3 dpi as indicated by loss of GFP signal. Infected cell

giving rise to round plaque (lower panel, orange arrow) remains GFP-positive. Scale bar is 1 mm.
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Figure 6: Susceptibility of HAdV to Nelfinavir correlates with plaque shape.

A Therapeutic index (Tlsp) calculated from the ratio of Nelfinavir concentration causing 50% toxicity (TCso)
and the concentration leading to 50% plaque reduction (ECs). Different HAdVs, mouse adenoviruses
(MAdV) and herpes simplex virus 1 (HSV-1) were tested in different cancer and primary cell lines. For
detailed information and statistics, see Supplementary Table 2.

B Representative microscopic and macroscopic plaque morphologies of Nelfinavir-sensitive and
insensitive HAdV types. Grey scale images show plaques based on epifluorescence microscopy of hexon
immunostaining or GFP expression in A549 cells (96 well format). Scale bar is 1 mm. Coloured images

show plaques visualized by crystal violet staining in A549 cells (12 well format). Scale bar is 5 mm.
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