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METHODOLOGY

DAMEfinder: a method to detect differential 
allele-specific methylation
Stephany Orjuela1,2, Dania Machlab3, Mirco Menigatti2, Giancarlo Marra2 and Mark D. Robinson1* 

Abstract 

Background: DNA methylation is a highly studied epigenetic signature that is associated with regulation of gene 

expression, whereby genes with high levels of promoter methylation are generally repressed. Genomic imprinting 

occurs when one of the parental alleles is methylated, i.e., when there is inherited allele-specific methylation (ASM). 

A special case of imprinting occurs during X chromosome inactivation in females, where one of the two X chromo-

somes is silenced, to achieve dosage compensation between the sexes. Another more widespread form of ASM is 

sequence dependent (SD-ASM), where ASM is linked to a nearby heterozygous single nucleotide polymorphism 

(SNP).

Results: We developed a method to screen for genomic regions that exhibit loss or gain of ASM in samples from two 

conditions (treatments, diseases, etc.). The method relies on the availability of bisulfite sequencing data from multiple 

samples of the two conditions. We leverage other established computational methods to screen for these regions 

within a new R package called DAMEfinder. It calculates an ASM score for all CpG sites or pairs in the genome of each 

sample, and then quantifies the change in ASM between conditions. It then clusters nearby CpG sites with consistent 

change into regions. In the absence of SNP information, our method relies only on reads to quantify ASM. This novel 

ASM score compares favorably to current methods that also screen for ASM. Not only does it easily discern between 

imprinted and non-imprinted regions, but also females from males based on X chromosome inactivation. We also 

applied DAMEfinder to a colorectal cancer dataset and observed that colorectal cancer subtypes are distinguishable 

according to their ASM signature. We also re-discover known cases of loss of imprinting.

Conclusion: We have designed DAMEfinder to detect regions of differential ASM (DAMEs), which is a more refined 

definition of differential methylation, and can therefore help in breaking down the complexity of DNA methylation 

and its influence in development and disease.
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Background
Epigenetic modifications refer to mitotically herit-

able, chemical variations in DNA and chromatin in the 

absence of changes in the DNA nucleotide sequence 

itself [1, 2]. Although there are a large number of such 

documented phenomena, DNA methylation (i.e., methyl 

groups added to cytosines in mammalian DNA, mostly in 

CpG dinucleotides) stands out because the mechanism of 

heritability, via maintenance methyltransferases, is well-

determined [3–5]. In addition, due to well-known effects 

of chemical reactions, such as sodium bisulfite conver-

sion of cytosines to uracils [6], and biochemical reactions 

like TET-pyridine borane conversion of 5-methylcytosine 

to dihydrouracil [7], the interrogation of DNA methyla-

tion level across the genome can be sampled and quanti-

fied at each cytosine.
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DNA methylation plays a role in several biological phe-

nomena. It is believed to be associated with gene expres-

sion, with the canonical relationship suggesting that 

transcriptional units with high levels of promoter meth-

ylation are repressed or silenced, although not all genes 

with unmethylated promoters are switched on, since 

other epigenetic mechanisms of silencing may come into 

play [8].

Genomic imprinting, where genes are expressed in a 

parent-of-origin manner [9], is also regulated by DNA 

methylation. Imprinting occurs via allele-specific meth-

ylation (ASM), in which only the paternal or the mater-

nal allele is methylated in all or most of the tissues of an 

individual [9]. This methylation asymmetry is conferred 

during gametogenesis in the parental germlines, or dur-

ing early embryogenesis after fertilization, and will 

remain during the lifetime of the offspring [10]. A recent 

survey [11] reported 228 genes linked to imprinted con-

trol, and from those, 115 linked to imprinted regulation 

in human placenta. These genes are known for their roles 

in embryonic and fetal development, placental formation, 

cell growth and differentiation, metabolism and circa-

dian clock regulation [11]. In fact, loss of imprinting and 

abnormal expression of imprinted genes are implicated 

in severe congenital diseases, like the neurodevelop-

ment disorders Angelman and Prader–Willi syndromes. 

The first is caused by the lack of maternal UBE3A gene 

expression, and the second by loss of paternal expression 

of several contiguous genes on chromosome 15q11–q13 

[12]. Furthermore, disruption of imprinting in somatic 

cells has been implicated in the pathogenesis of differ-

ent cancers, like loss of imprinting within the H19/IGF2 

imprinting control region in colorectal cancer [13], and 

gain of imprinting at 11p15 in hepatocellular carcinoma 

[14].

A special and well-characterized case of imprinting 

occurs during X chromosome inactivation (XCI), where 

one of the two X chromosomes is randomly silenced via 

DNA methylation and other epigenetic mechanisms, 

early in development in each cell of a female, to achieve 

dosage compensation between the sexes [15].

Beside imprinting and XCI, the rest of the genome is 

thought to be symmetrically methylated across both 

alleles. However, sequence-dependent ASM (SD-ASM) 

has been frequently reported in the last 10 years and 

appears to be widespread in the human genome [16–21]. 

In this case, the DNA methylation asymmetry between 

the parental alleles appears to be causally related to the 

presence of a single nucleotide polymorphism (SNP). As 

for imprinted ASM and XCI, SD-ASM can be associated 

with silencing of one of the two parental gene copies, 

likely mediated by cis-acting, allele-specific changes in 

affinity of DNA-binding proteins [21]. SD-ASM appears 

to be tissue-specific [22, 23], thus it is commonly believed 

that the interaction between genetic variants (i.e., SNPs) 

and epigenetic mechanisms (i.e., effects of DNA meth-

ylation asymmetry on gene expression) modulate the 

susceptibility of the general population to frequent, 

multi-factorial diseases affecting specific organs. An 

example of this is SD-ASM in the PEAR1 intron 1, which 

is linked to platelet reactivity and cardiovascular dis-

ease [24]. Another example is SD-ASM in FKBP5, a gene 

encoding a cochaperone of the glucocorticoid receptor 

with a potential role in the stress hormone-regulating 

hypothalamic–pituitary–adrenal axis [25], which poses 

an increased risk to stress-related psychiatric disorders in 

individuals who suffered an abuse during childhood [26]. 

Although the modulation of the susceptibility to a com-

plex disease by SD-ASM is generally weak and influenced 

by environmental factors, it is worth noting that 5–10% 

of all SNPs might be associated with SD-ASMs in the 

genome of a given tissue of a given individual [19, 20, 27].

Although there are several technologies to study DNA 

methylation, such as microarrays that genotype bisulfite-

converted DNA, or lower resolution capture technolo-

gies such as methyl-binding domain (MBD) sequencing 

[28], or methylated DNA immunoprecipitation (MeDIP) 

sequencing [29], bisulfite sequencing (BS-seq) remains 

distinct for the ability to read out DNA methylation of a 

single allele at base-resolution. Importantly, BS-seq can 

be conducted both in an unbiased genome-wide fash-

ion, or in combination with technologies that focus the 

sequencing to particular regions, either by making use of 

hybridization or by enzyme digestions [30].

Recent studies have obtained ASM readouts from 

mapped bisulfite reads, by assigning them to the alleles 

of each known heterozygous SNP. Methylation levels 

are then determined for all allele-linked cytosines in the 

reads (see [20, 31, 32] for recent examples). The ASM cal-

culated in this way is interpreted as SD-ASM, and it does 

not include imprinted ASM nor XCI, since they are not 

necessarily sequence dependent. Calculating ASM in this 

fashion is limited by the availability of SNP information 

from either DNA-seq or SNP-array data, or directly from 

the BS-seq reads [33]. However, performing different 

types of high-throughput experiments is economically 

restrictive and time consuming, and deriving SNPs from 

BS-seq reads can be problematic due to bisulfite conver-

sion of DNA (i.e., distinguishing a C/T SNP from a C/T 

conversion of a methylated cytosine) and imbalanced 

strand coverage (i.e., when the Watson and Crick strands 

are not equally or highly covered) [33].

Considering these limitations in ASM detection, a cou-

ple of studies have sought to make sole use of BS-seq 

reads to screen for the full spectrum of ASM. The tools 

allelicmeth and amrfinder (from the same authors) [34] 
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are the only available executable methods that detect 

ASM without SNP information. In brief, the allelicmeth 

method creates a contingency table with the counts of 

methylated and unmethylated reads covering a pair of 

CpG sites. A score is calculated via Fisher’s exact test 

that represents the probability that both CpG sites have 

an equal proportion of methylated–unmethylated reads. 

amrfinder also calculates ASM but at a regional level. It 

fits two statistical models, one assuming that both alleles 

are equally methylated, and the other assuming different 

methylation states for the two alleles. A region is consid-

ered to have ASM by comparing the likelihoods of the 

two models. A more recent algorithm termed Methyl-

Mosaic relies on the principle that bimodal methylation 

patterns, independent from the genotype, are a good 

indicator of ASM [35]; however, to our knowledge there 

is no publicly available implementation.

Based on the current state of ASM detection from BS-

seq reads, we set out to develop a simple yet effective 

method to screen for genomic regions that exhibit loss or 

gain of ASM between samples from distinct conditions. 

The methods mentioned above detect ASM in individual 

samples; however, they do not allow a flexible compari-

son between groups of samples, such as that performed 

in a typical differential methylation analysis [36, 37], 

where the goal is to find the effect of treatments or dis-

eases on methylation, reflected as increase or decrease 

of methylation levels. Here, we are interested in per-

forming such differential analysis but focusing on the 

effect of ASM, reflected as gain or loss of allele specific-

ity. For this task, we introduce DAMEfinder (Differential 

Allele-specific MEthylation finder), an R package [38] 

that consists of (i) a scoring function that reflects ASM 

for several samples; (ii) integration with limma [39] and 

bumphunter [40] to detect differentially allele-specific 

methylated regions (DAMEs); and (iii) accurate estima-

tion of false discovery rates (FDR). We demonstrate the 

ASM score and DAMEfinder on two real datasets, one 

based on targeted enrichment BS-seq, comparing nor-

mal colonic mucosa to cancerous colorectal lesions, and 

another on whole genome BS-seq (WGBS), comparing 

blood monocytes from healthy females and males.

Results
The overall DAMEfinder workflow

Figure 1 gives an overview of the pipeline. We make con-

siderable use of existing tools and keep inputs/outputs in 

standard formats. To make use of the package, the user 

must independently use bismark to map paired-end BS-

seq reads against a reference genome (Fig. 1a). Once this 

is done, the user has the option to detect ASM for each 

sample in two ways: (1) using the output from methtuple 

[41], which computes read counts of pairs of nearby CpG 

sites. From these counts, we compute an ASM score; 

(2) using an additional VCF file containing heterozy-

gous SNPs. For each SNP we call methylation from the 

reads containing that SNP, and calculate an ASM score 

for each CpG site (Fig.  1b and details). From the set of 

scores, we leverage routines from the bumphunter and 

limma packages to calculate a statistic and detect regions 

showing persistent change in ASM. We call these regions 

DAMEs (Fig.  1c). We estimate and control a regional 

FDR through permutations or by implementation of the 

Simes method [42].

The ASM score

SNP‑based ASM

The most straightforward way of detecting SD-ASM 

from mapped reads is by assigning them to either of the 

alleles at each known heterozygous SNP. Methylation 

status is then determined for each allele-linked cytosine 

in the reads. We have used this strategy to calculate 

an SNP-based ASM score ( ASMi
snp ), and considered it 

to be the genuine form of SD-ASM, since it is derived 

from an extra layer of information, i.e., the genotype of 

an individual.

Ideally, the genotype should originate from genome 

sequencing; however, this type of data is scarce in large 

cohorts of samples. Therefore, we have employed Bis-

SNP [33] to call SNPs directly from the BS-seq reads. 

The method uses Bayesian methods to infer strand-

specific base calls, with SNP population frequencies as 

prior probabilities.

We extract the reads overlapping every heterozygous 

SNP in a VCF file with the GenomicAlignments R pack-

age [44], and for each read determine the methylation 

status of the CpG sites. Sites that are not in reads con-

taining an SNP are not considered. We calculate ASMi
snp 

for each CpG site i contained in the reads of an SNP as

where X ir
M

 and X ia
M

 correspond to the number of methyl-

ated reads from the reference r allele, and the alternative 

a allele. In practice, it makes no difference which allele is 

the reference or the alternative. X ir and X ia correspond 

to the total number of reads covering the reference and 

the alternative allele (see schematic diagram in Fig. 1b). 

The score ranges from 0 to 1, where a score of 1 repre-

sents the scenario where one allele is completely methyl-

ated, and the other allele is fully unmethylated; a value of 

0 means an equal proportion of methylated sites in both 

alleles.

(1)ASMi

snp =
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Tuple‑based ASM

Instead of restricting ASM detection to allele-linked 

reads, we can make use of an entire set of CpG sites to 

screen for different types of ASM. For this task, we 

designed a score under the assumption that pairs of CpG 

sites in the same DNA molecule (read) are correlated [45, 

46], and that in a biallelic organism, intermediate levels 

of methylation could represent allele specificity, i.e., the 

proportion of methylated reads in a pair of CpG sites or 

tuple is close to 0.5. We make this assumption knowing 

that other scenarios exist in which intermediate methyla-

tion can occur (e.g., cellular heterogeneity). Therefore, we 

consider this score only as a proxy for ASM.

We calculate the score as a weighted log-odds ratio:

Fig. 1 The DAMEfinder pipeline. a Files necessary to run DAMEfinder are reported in yellow rectangles. White rectangles show the main R outputs 

from DAMEfinder. Steps to be run before DAMEfinder are in the circle, i.e., fastq files undergo quality control and read alignment with bismark 

[43]. The resulting bam file is used to calculate an ASM score, which can be done in two ways: b (i) the tuple-based strategy that takes as input a 

beforehand created methtuple [41] file. The score is calculated based on the read counts of pairs of CpG sites. (ii) the SNP-based strategy, which 

takes as input both the bam file and a VCF file with heterozygous SNPs. Here, the score is calculated for each CpG site in the reads containing a 

SNP. c We determine differential ASM by calculating a statistic based on either the tuple ASM or the SNP-ASM (using limma [39]), which reflects the 

difference between two conditions (Group A vs. Group B) for each genomic position (tuple or site). DAMEs are defined based on this statistic, as 

regions of contiguous positions with a consistent change in ASM
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where X i
·
 corresponds to the number of reads covering 

a unique pair of CpG sites i, generated by running the 

methtuple tool. CpG sites in a pair can be methylated 

MM, unmethylated UU, or mixed (UM or MU). A con-

stant c is added to every X i to avoid dividing by 0. The 

log-odds ratio is multiplied by a weight, wi , which is set 

such that the ratio of MM:UU can depart somewhat from 

a 50:50 relation, while MM or UU tuples, which repre-

sent absence of allele specificity, are attenuated to 0. This 

is calculated as

where ǫ represents the degree of allowed departure from 

a 50:50 ratio (i.e., 0.5), and θ i:

represents the moderated proportion of MM to MM 

+ UU reads. It is based on a beta model, where γ is a 

hyperparameter set to penalize fully methylated or fully 

unmethylated tuples, i.e., when the MM:UU balance goes 

farther from a 50:50 relation. In Fig. 2, we show 4 exam-

ples in which the score is calculated with and without wi . 

According to our assumption, example 1 is the best case 

of ASM (Fig. 2a), yet we see for example, that examples 1 

and 3 have the same absolute log-odds ratio (without wi ), 

but imposing the weight reduces the score in example 3 

below that of example 1 (Fig.  2c). We also demonstrate 

how the ASMtuple score is affected by the tuning of ǫ and γ 

(Additional file 1: Figure S13A, B). ǫ has the most impact 

in the score, i.e., smaller departures from 50:50 result in 

lower values of ASMi

tuple , whereas only very large values 

of γ (e.g. > 5) influence the distribution of ASMi

tuple.

ASM score validation

SD‑ASM

To test the ASMtuple score, we used the ASMsnp score 

as an indicator of true SD-ASM, and calculated the 

ASMtuple score, the allelicmeth and amrfinder scores, 

and a score representing absolute deviation from 50% 

methylation (methdeviation; see “Methods”), in a single 

normal tissue sample from the colorectal cancer (CRC) 

dataset (see “Methods”). We set CpG tuples with ASMsnp 

above specific thresholds (0.5 and 0.8) to be true SD-

ASM. These resulted in 1284 and 69 CpG tuples with SD-

ASM, respectively, which corresponded to 0.069% and 

0.003% of all the tuples scanned in this sample.

Figure 3 shows the true-positive rate (TPR) and false-

positive rate (FPR) achieved by the 4 evaluated scores 

(2)ASMi

tuple =

∣

∣

∣

∣

∣

log10

{ (X i

MM + c)(X i

UU + c)

(X i

MU + c)(X i

UM + c)

}

· wi

∣

∣

∣

∣

∣

(3)wi = P(0.5 − ǫ < θ i < 0.5 + ǫ|X i

MM,X
i

UU, γ )

(4)θ i|X i

MM,X
i

UU, γ ∼ Beta(γ + X
i

MM, γ + X
i

UU),

at different CpG tuples classified in 3 different coverage 

thresholds (left to right). Two ASMsnp cutoffs (top to bot-

tom) were chosen as the truth. ASMtuple was consistently 

more sensitive and specific than the other three scores, 

especially as coverage increased. Intermediate meth-

ylation values yielded comparable results; however, the 

ASMtuple was able to detect more cases of “real” ASM in 

all combinations. allelicmeth increasingly failed as cov-

erage and ASMsnp value increased. amrfinder performed 

better than allelicmeth at higher true values. The dis-

tributions of the scores from each facet in Fig.  3 are in 

Additional file 1: Figures S11A, B and S12A–D.

Chromosome X inactivation

As an additional validation of the ASMtuple score, we 

used the blood dataset (see “Methods”) to compare 

healthy male and female samples. In principle, females 

should exhibit allele specificity in the X chromosome due 

to XCI and thus higher ASMtuple values. Figure 4 shows 

the distribution of ASMtuple values across all samples in 

the dataset, in chromosome 3 and chromosome X. From 

a whole genome perspective (Fig.  4a), there is little dif-

ference between males and females in X chromosome 

(mean of sample-means females: 0.13, males: 0.098), and 

practically no difference in chromosome 3 (0.060, 0.074). 

However, by focusing on CpG tuples located in promoter 

regions (1 kb upstream the transcription start site—TSS), 

we observed ASM values increased only in chromosome 

X of females (Fig. 4b; 0.30, 0.088).

Imprinted ASM

In the same blood dataset, we also compared the 

ASMtuple scores from the promoters of imprinted genes 

reported in [11] (see “Methods”) to the scores from 

the rest of the genome (Fig. 4c). As expected, ASM scores 

were higher in the tuples located within imprinted pro-

moters, for both males and females.

DAME detection

As depicted in Fig.  1, after calculating ASMtuple or 

ASMsnp in the DAMEfinder pipeline, we continue to 

detect regions of persistent change in ASM between one 

condition to another within a cohort of samples. Change 

can occur as loss of ASM, when a reference group exhib-

its allele specificity across a region (high values of ASM), 

and the group of interest has this same region fully meth-

ylated, unmethylated, or with random methylation (low 

values of ASM). Change can also occur as gain of ASM, 

where the reference group does not have allele specificity 

and the group of interest does. We call regions such as 

this DAMEs (Differentially Allele-specifically MEthylated 

regions).
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Fig. 2 ASMtuple weighting strategy. We show 4 examples of read-patterns in a single tuple. a All cases have 8 reads covering a single tuple. Example 

1 has X i
MM

 and X i
UU

= 4 , and X i
UM

 , X i
MU

= 0 . Example 2 X i
MM

= 8 , the rest of combinations 0. Example 3 X i
UM

 , X i
MU

= 4 , and example 4 X i
UU

 , X i
UM

= 4 . 

b Probability density function (PDF) for each Beta(γ + X
i

MM , γ + X
i

UU) of the 4 examples, when γ = 0.5 . Pink-shaded area corresponds to 0.5 ± ǫ , 

when ǫ = 0.2 . c Based on the PDF, we calculate the log-odds ratio (top), and the log-odds ratio multiplied by wi (bottom)
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To detect DAMEs, we first obtain a regression coef-

ficient βij followed by a t-statistic using the R pack-

age limma [39] (see “Methods”), on the transformed 

ASMi

tuple score, or on the ASMi

snp score, for each CpG 

position i (tuple or site), across j samples (see “Methods” 

for model).

We detect regions of contiguous CpG positions where 

βij persistently deviates in the same direction from zero; 

this is done in two ways:

Permuting bumphunted regions

The regionFinder function from bumphunter is used to 

scan for regions (R) where CpG sites close in proximity 

have βij above a user-defined threshold K, which corre-

sponds to a percentile of βij . For each region detected, the 

function also calculates an area A =
∑

iǫR |βij| . For the 

CRC dataset, we used the default value K = 0.7 , and dis-

tance between CpG positions up to 100 bp.

We assess significance of every region detected by 

assigning an empirical p value. For every non-redundant 

permutation of the coefficient of interest (chosen from a 

column in the design matrix X), regionFinder is applied 

again. All the areas generated by all permutations are 

pooled to generate a null distribution of areas [47]. We 

define the p values for each R as the proportion of null 

areas greater than the observed A; p values are adjusted 

using the Benjamini–Hochberg method [48] from the 

stats R package [38].

Cluster‑wise correction

Optionally, we define regions that exhibit changes in 

ASM by first generating clusters of CpG sites with clus-

terMaker. For each cluster, we aggregate all the CpG 

position p values generated by limma using the Simes 

method [42], which is applicable when test statistics 

exhibit positive dependence [49]. As implemented in 

[50], we calculate

where p(1), . . . , p(n) are the ordered p values of each CpG 

position i in a cluster c, and n is the number of CpG posi-

tions in the cluster. pc summarizes evidence against the 

null hypothesis that all CpG positions are not differential. 

We adjust pc as above.

Evaluation of DAME detection

We compared the different strategies to control FDR 

in the DAME detection pipeline, by applying them to a 

semi-simulated dataset and plotting the TPR and FDR 

(5)pc = min{np(i)/(i)}

Fig. 3 Comparison of the ASMtuple score to allelicmeth, amrfinder and methylation deviation, by considering ASMsnp as true ASM. We calculated 

ASMtuple scores (red), deviations from 50% methylation (blue), allelicmeth scores (green), amrfinder scores (purple) in a sample of normal 

colorectal mucosa included in the CRC dataset. The scores were compared to each other by plotting the FPR against the TPR achieved. The plots are 

drawn for different intervals of read coverage (5–9, 10–49, ≥ 50), and different levels of the ASMsnp score ( ≥ 0.5, ≥ 0.8), which is considered the “true” 

ASM. Overall AUCs (area under the curve) for the top three panels: ASMtuple = 0.83, deviations from 50% = 0.81, allelicmeth = 0.66, amrfinder = 

0.68. Overall AUCs for the lower three panels: ASMtuple = 0.82, deviations from 50% = 0.81, allelicmeth = 0.64, amrfinder = 0.72
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Fig. 4 ASMtuple distribution in the genome. We used XCI as a proof of concept for allele specificity in females. Data from the blood dataset 

comprising 3 females and 3 males were used for this analysis. a When considering all CpG tuples in the genome, the ASMtuple distribution (y-axis) in 

chromosome 3 and chromosome X is similar in both genders. b When considering CpG tuples located in promoter regions (i.e., 1 kb upstream of 

the TSS), the ASMtuple score is higher in chromosome X of females. c Promoter regions of 89 known imprinted regions (see “Methods”) also exhibit 

higher ASMtuple compared to values in the rest of the genome. Y-axis in all plots is square-root transformed
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achieved at different adjusted p value thresholds (0.01, 

0.05, 0.1) (Fig.  5). We designed a small set of simulated 

DAMEs to evaluate the FDR control of the above strate-

gies. We took 6 samples of normal tissue from the CRC 

dataset and calculated ASMsnp scores in each of them. 

We assumed these scores to be the ASMsnp baseline in 

the simulation. Then, we divided the samples into two 

groups of three samples each, and for all the CpG sites 

covered by the 6 samples, we defined clusters of con-

tiguous CpG sites. For each truly differential cluster, we 

added signal to a randomly determined subset of adja-

cent CpG sites (see “Methods” for more details).

Overall, the empirical p value controlled the FDR, 

whereas the Simes method tended to be less conservative 

but more sensitive (Fig. 5 and Additional file 1: Figure S1 

for same plot tested with different parameters).

Discovery of DAMEs in colorectal cancer dataset

We used a previously published dataset comprising 6 

patients with diagnosed colorectal cancer, three with 

CIMP (CpG-Island Methylator Phenotype), and three 

without CIMP (see “Methods”); DNA from normal 

mucosa and cancer lesions was bisulfite-sequenced. We 

ran DAMEfinder on this dataset in both modes, there-

fore obtaining the ASMsnp and ASMtuple scores. After fil-

tering for coverage (more than 5 reads) and for sites with 

more than 80% of samples covered, we obtained infor-

mation for 43,420 CpG sites using the ASMsnp . Using 

the tuple score, we obtained summaries for 1,849,831 

CpG pairs. Within the DAMEfinder pipeline, we gener-

ated multi-dimensional scaling (MDS) plots using each 

score (Fig. 6a, b), and observed that both scores are able 

to recover distinct CRC phenotypes. However using the 

ASMtuple score, samples cluster according to tissue type 

(normals, CIMP cancer and non-CIMP cancer) (Fig. 6a), 

whereas using the ASMsnp score, only the two cancer 

Fig. 5 FDR control of p value assignment strategies. We plot the FDR against the TPR achieved by the two alternatives for assigning p values to 

a DAME: the first by generating permutations and setting a threshold K (see text) on the t-statistic (here 0.2, 0.5, 0.8), the second using the Simes 

method. Lines are colored by strategy. Each strategy was run 50 times with the same simulation parameters. Colored circles indicate that the FDR 

achieved is smaller than the specified threshold (dashed lines at 0.01, 0.05 and 0.1), and white circles indicate the opposite. x-axis is square-root 

transformed
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Fig. 6 ASM scores on the CRC dataset. a MDS plot of all the samples in the CRC dataset, based on all the the ASMtuple scores. Scores were 

square-root transformed before plotting. b MDS plot based on the ASMsnp scores. Scores were arcsine transformed. MDS plots were generated with 

the plotMDS function from limma and the top 1000 most variable positions. N: normal mucosa; C: CRC. Each pair of samples from the 6 patients 

with CRC is numbered from 1 to 6. c A DAME detected in CIMP CRCs using the ASMtuple score shows a higher signal than using the ASMsnp score. 

Region shown is located on chr9:99,983,697–99,984,022, shaded region in the center corresponds to the DAME. Tracks for methylation levels (meth) 

and methylation levels in reference and alternative alleles (based on SNP in chr9:99,983,812) are also shown. Points in ASMtuple and meth tracks 

correspond to intermediate positions between a pair of CpG sites. Points in the rest of tracks correspond to CpG sites. d − log10(p values) at each 

CpG position, calculated with ASMtuple and ASMsnp . Black line is drawn at − log 10(0.05) . Sample 4 (C4 and N4) does not appear in the last two 

tracks because it is not heterozygous at the evaluated SNP
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types are distinguishable, while the normal tissues cluster 

with their matched cancers (Fig. 6b).

We screened for DAMEs comparing cancer to nor-

mal tissue, in CIMP and non-CIMP independently. 

Both SNP and tuple-based scores were calculated, and 

for each separately, DAMEs were detected using the 

Cluster-wise correction (Additional file  1: Figure S2 

for p values of both Cluster-wise correction and Per-

mutations). When using the ASMsnp score, we could 

not detect DAMEs with an adjusted p value below 

0.05. Using the ASMtuple score, we were able to detect 

4051 DAMEs in the CIMP samples (versus matched 

normal samples), and 258 in the non-CIMP samples. 

We noticed that regions detected using ASMtuple were 

also detected using ASMsnp , but with lower strength 

of signal and with p values above a cutoff of 0.05 (one 

example in Fig. 6c), and other regions showing contra-

dicting changes in ASM (one example in Additional 

file  1: Figures  S3, S4). Although the latter was rare 

(from all the 2219 DAMES detected in CIMP using 

ASMsnp , without a p value cutoff, only 0.36% disagreed 

on the ASM change), the cases we did find, overlapped 

tuple-DAMEs with the highest p values, e.g., regions 

at the bottom of the DAME list. In addition, we found 

DAMEs corresponding to known regions exhibit-

ing loss of imprinting in cancer, including those in the 

genes MEG3, H19, and GNAS [13, 51] (Fig. 7).

Considering the high number of DAMEs detected in 

the CIMP contrast compared to the non-CIMP contrast, 

we thought this could be a consequence of hypermeth-

ylation in CIMP [52], and so a typical DMR (differentially 

methylated region) analysis would be able to detect these 

same regions. To corroborate this, we performed a DMR 

analysis on the CIMP and non-CIMP contrasts using 

the dmrseq R package [47] (Additional file 1: Figure S5 

for top DAMEs and DMRs per comparison). We found 

that from the 6753 DMRs (5,040 hypermethylated, 1713 

hypomethylated) detected in the CIMP comparison, 

2285 overlap with DAMEs (hypermethylated DMRs = 

32%, hypomethylated DMRs = 1.7% from total DMRs), 

and from 13,220 DMRs in the non-CIMP comparison, 

only 164 overlap (hypermethylated DMRs = 0.57%, 

hypomethylated DMRs = 0.66%) (Table 1).

Because of this overlap, we conclude that a proportion 

(1146 [28%] in CIMP, 93 [36%] in non-CIMP) of DAMEs 

would not be detected via a typical DMR analysis. Fig-

ure 8 shows 4 examples of DAMEs missed by the DMR 

detection. In principle, these regions exhibit differential 

methylation according to the global methylation levels 

(bottom panels of each region); however, the hypermeth-

ylation reaches intermediate values, which might not 

represent a sufficiently high effect size to be detected. In 

the context of differential ASM, these intermediate values 

are highly scored, based also on the allele specificity of 

the change. Therefore, even though these are not highly 

ranked DAMEs, they were still detected as such.

Discussion
We have developed a scoring method that provides a 

measure of allele-specific methylation, and developed a 

method (DAMEfinder) that detects regions that display 

loss or gain of allele-specific methylation, by leveraging 

existing methods into a single framework. We offer the 

possibility to detect regions exhibiting ASM based on 

genotype information ( ASMsnp ), or independent from it 

( ASMtuple ). The latter offers a novel approach for iden-

tifying different types of ASM, such as imprinted, non-

imprinted, XCI, and new types yet to be described.

We have considered the ASMsnp score as genuine SD-

ASM, and calculated it using heterozygous SNPs. We 

employed Bis-SNP to extract the SNPs from the BS-seq 

reads. The methods’ accuracy (as occurs with normal 

SNP callers) requires a high read depth, because infor-

mation from both strands of DNA is necessary to infer 

if a cytosine has been bisulfite-converted or not. The 

authors of the tool found that heterozygous SNPs require 

a minimum of 10X coverage to be accurately called (80% 

sensitivity), and as depth is gradually increased to 30X, 

sensitivity reaches 100%. For our colorectal cancer analy-

sis we only used coverages above 10X, and observed that 

increasing coverages did not affect our ASMsnp score 

(Additional file 1: Figure S7D). We also observed that the 

ROC curves from Fig.  3 did not change in the last two 

coverage groups (10–49 and ≥ 50).

Regarding the performance of the SNP-independent 

scores (allelicmeth, deviations from 50% methyla-

tion and ASMtuple ), we observed that ASMtuple showed 

favorable performance at identifying individual cases 

of SD-ASM at sites with  different coverage levels. The 

scaled methylation also demonstrated high sensitivity 

and specificity, and as the true SD-ASM score ( ASMsnp ) 

and coverage increased, results were close to those of the 

ASMtuple score. Nonetheless, the advantage of using the 

ASMtuple score is the flexibility in its implementation; in 

specific, the weight that is added to the log-odd ratio can 

be easily adapted as described in “Methods”.

In contrast, the allelicmeth score reduced its perfor-

mance when the true ASM value was increased. As for 

amrfinder, we believe defining ASM as regional is a nice 

implementation in this method, and can make ASM 

interpretation and visualization easier. However, the defi-

nition of regions is done for each sample independently, 

and this does not allow for a direct comparison between 

samples. This is the main reason why our ASM scores are 

not regional. Our method focuses on obtaining regions of 

consistent change in ASM between conditions relative to 
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Fig. 7 DAMEs overlapping known loci exhibiting loss of imprinting in colorectal cancer. a DAME located in chr14:101,291,540–101,293,480, 

upstream the imprinted MEG3 gene. The loss of imprinting was significant in both types of CRCs. b DAME located in chr11:2,021,017–2,021,260, 

upstream the imprinted H19 gene. Loss of imprinting only occurred in CIMP CRCs. c DAME in the GNAS gene located in chr20:57,425,758–

57,428,036. Loss of imprinting was detected in both types of CRCs. Y-axis in all panels corresponds to ASMtuple means. Lines connect means at 

intermediate positions between a pair of CpG sites. Shared areas correspond to confidence intervals at each position (standard errors of the mean)
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the variability, which in turn implies consistent ASM in 

the majority of samples from an experimental condition.

Our ASMtuple score was able to distinguish female from 

male samples based on XCI, which we have considered 

as another case of true ASM. When analyzing the entire 

genome, we did not find differences between males and 

females. The fact that the entire female chromosome X 

does not contain high ASM, or that the global distribu-

tion of methylation is not skewed toward intermediate 

values has been shown before [53]. In addition, the pres-

ence of genes escaping XCI may also affect global ASM. It 

is known that 15% of genes escape XCI, and an additional 

10% varies in the inactivation state among the female 

population [54]. Therefore, a mixture of ASM scores in 

females is an accurate reflection of the complex dynamics 

of XCI.

We were also able to validate the score by compar-

ing the promoters of 89 known imprinted genes with 

the rest of the genome. We observed an increase in the 

ASM of imprinted genes, with a bimodal distribution of 

ASM scores. This can be a reflection of tissue or cell type 

specificity in imprinted genes, meaning not all known 

imprinted genes show ASM throughout the somatic cell 

lineage, as is traditionally assumed [55]. Studies have 

reported tissue and cell type-specific allelic expression 

[56, 57] and tissue-specific ASM [23] in known imprinted 

genes, supporting our finding that imprinting is not 

equally maintained in all genes in every tissue and/or cell 

type.

Although the ASMtuple score is able to recover differ-

ent cases of ASM, we acknowledge that there are other 

cases not linked to ASM, such as cellular heterogeneity, 

in which a proportion of reads are fully methylated, and 

the rest are fully unmethylated. With the technology we 

have used (BS-seq), it is very difficult to discern hetero-

geneity from real ASM in some locations, and we believe 

that to identify ASM, single-cell BS-seq (scBS-seq) data 

may become the most suitable high-throughput technol-

ogy. Previous studies have shown the use of scBS-seq to 

detect heterogeneity within a single cell type [58] and cell 

states [59]. However, the accurate detection of methyla-

tion from scBS-seq is still a difficult task, mainly due to 

the extensive DNA damage from the bisulfite treatment. 

There are currently around 21 different protocols to pro-

file single-cell DNA methylation, mostly bisulfite-based, 

each one aiming at improving recovery of CpGs and 

mapping efficiency [60]. However, it has not been estab-

lished how these methods compare to each other, and a 

consistent framework for their data analysis does not 

exist, as is the case for bulk BS-seq protocols. Therefore, 

there is still work ahead to precisely quantify ASM using 

scBS-seq.

Another limitation arises when considering cancerous 

tissue samples, because of high intra-tumor heterogene-

ity of several biological features, including cellular mor-

phology and gene expression [61]. Our method does not 

account for this additional variability, and we recognize 

this as a limitation. However, we believe the ASM scores 

are still robust enough to detect allelic patterns as shown 

by the recovery of the colorectal cancer subtypes in Fig. 6 

and that even changes in cell composition, which would 

also affect DMR detection, can be interesting events to 

understand.

Regarding DAME detection, we offer two strategies 

that differ in the statistical stringency. In our experi-

ence, fewer regions are obtained by permuting the group 

labels, since the FDR control is more conservative. How-

ever, more regions can always be detected by setting the 

K threshold lower, while still controlling the FDR. The 

Cluster-wise correction, or Simes method, is less con-

servative, and therefore can be used as an alternative to 

extract more detection power. This is likely because of 

the global hypothesis tested at each DAME, where at 

least one CpG site in a region is changed.

We applied DAMEfinder to a real dataset to detect 

DAMEs in CIMP and non-CIMP cancers (versus paired 

normal samples). We found that the ASMtuple and 

ASMsnp scores are consistent in describing the CIMP 

status of samples, but as expected, the ASMsnp score was 

dominated by SD-ASM, because its calculation relies on 

the heterozygous SNPs of each sample; paired samples 

thus clustered with each other not by tissue, as observed 

with the ASMtuple score. In addition, ASMtuple typically 

detected more DAMEs, which we attribute to two rea-

sons. First, there are ∼40× more places in the genome 

where ASMtuple can be calculated. Second, because the 

Table 1 DMRs overlapping DAMEs

Hyper- or hypo-methylated DMR refers to the increase or decrease of methylation in cancers in comparison with paired normal samples, while gain or loss of ASM 

refers to whether cancers have more or less allele specificity than paired normal samples

DMR state Total DMRs DMRs with DAMEs DAMEs with DMRs Gain/loss ASM

CIMP Hyper 5040 2171 2789 2694/95

Hypo 1713 114 116 88/28

Non-CIMP Hyper 3187 76 77 61/16

Hypo 10,033 88 88 64/24
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Fig. 8 DAMEs not detected as DMRs. a Two different DAMEs in non-CIMP, the first located in chr9:136,658,255–136,658,387, and the second 

located in chr4:30,723,185-30,724,099. b Two different DAMEs in CIMP, the first in chr14:105,554,096–105,554,445; the second in chr16:21,295,180–

21,295,412. Y-axis corresponds to ASMtuple or methylation. Points correspond to intermediate positions between a pair of CpG sites
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tuple score is a more general calculation, i.e., it quanti-

fies the mixing of methylated and unmethylated reads, 

instead of relying on allele information.

We also compared the DAME detection to a typical 

DMR analysis of the same samples, and found that DMRs 

detected may or may not include DAMEs. Most DMRs 

overlapping DAMEs were hypermethylated in CIMP 

cancers, which led us to conclude that most DAMEs 

reflected gain of ASM from a low methylation baseline. 

This result shows how differential ASM is a more refined 

definition of differential methylation, and can therefore 

provide additional information regarding methylation 

disruptions in disease (or different conditions).

Conclusion
Cytosine methylation restricted to only one allele, i.e., 

ASM, is a particular pattern of methylation that should 

be approached differently than the rest of the human 

methylome. We have designed DAMEfinder to screen for 

ASM and identify regions of differential ASM. The lat-

ter can be viewed as a special case of differential meth-

ylation. Previous studies have quantified ASM within one 

sample; however, to our knowledge, there is no method 

that identifies loss or gain of ASM between conditions. 

DAMEfinder fills this gap. Studying changes in ASM can 

help us understand epigenetic processes in development 

and diseases. To this aim, further studies are necessary 

to associate ASM to allele-specific gene expression and 

to verify whether gain or loss of ASM would affect gene 

dosage and eventually phenotypes.

Methods
The code used to generate the article figures and data 

processing is available from https ://githu b.com/markr 

obins onuzh /allel e_speci ficit y_paper . The R package is 

available from https ://githu b.com/markr obins onuzh /

DAMEfi nder .

Datasets

Colorectal cancer (CRC) dataset

The CRC dataset came from our published study [52] 

describing the progression of a methylation signature 

from pre-cancerous lesions to colorectal cancer tissue in 

two types of CRC. We used 12 samples from 6 patients 

with sporadic cancer (arrayexpress accession number: 

E-MTAB-6949, Table  2). For each sample, DNA from 

both CRC lesion and normal mucosa was bisulfite-

treated and sequenced according the Roche SeqCapEpi 

CpGiant protocol, where only DNA captured by probes 

was sequenced. We analyzed 12 files in total. For details 

on data generation refer to [52].

Blood dataset

We used data generated by the Blueprint Consortium. 

We downloaded raw paired-end fastq files from venous 

blood of 3 healthy females and 3 healthy males (CD14-

positive, CD16-negative classical monocyte, EGA data-

set: EGAD00001002523) (Table 3).

Quality control and mapping

Quality control was done using fastQC (version 0.11.4) 

[62]. The reads were subsequently trimmed using Trim-

Galore! (version 0.4.5) [63]. Reads were mapped to the 

reference genome using bismark (version 0.18.0). Bow-

tie2 (version 2.2.9) was used to map to genome hg19 in 

the CRC dataset, and hg38 in the Blood dataset. Dupli-

cate reads were removed with the deduplicate command 

from bismark. Deduplicated bam files corresponding to 

technical replicates in the Blood dataset were merged 

with samtools merge [64] for each sample.

Table 2 Colorectal cancer sample characteristics

C CRC,  N paired sample of normal mucosa, non-CIMP the mismatch repair gene 

MLH1 normally expressed, CIMP MLH1 silenced by promoter hypermethylation

a Sample ID changed from arrayexpress

Sample  IDa CIMP 
status

Sex Number 
of mapped 
reads

Average 
coverage

Average 
coverage 
in probes

N1 76,801,310 3.025 78.06

C1 Non-CIMP F 68,010,696 2.47 61.62

N2 74,815,980 2.97 69.96

C2 CIMP M 62,122,636 2.47 63.16

N3 66,608,688 2.64 63.88

C3 Non-CIMP M 57,828,284 2.28 57.52

N4 66,108,442 2.62 58.61

C4 CIMP M 59,390,888 2.35 61.25

N5 70,070,214 2.56 59.0032

C5 Non-CIMP M 68,575,884 2.50 49.98

N6 59,056,548 2.15 49.52

C6 CIMP F 79,669,532 2.92 71.39

Table 3 Blood data sample characteristics

a Sample ID changed from source

Sample  IDa Sex Number of mapped 
reads

Average 
coverage

1 M 390,837,942 12.73

2 M 420,368,438 13.70

3 M 305,490,164 9.95

4 F 383,782,378 12.50

5 F 581,667,082 18.86

6 F 572,224,352 18.55

https://github.com/markrobinsonuzh/allele_specificity_paper
https://github.com/markrobinsonuzh/allele_specificity_paper
https://github.com/markrobinsonuzh/DAMEfinder
https://github.com/markrobinsonuzh/DAMEfinder
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SNP calling

We extracted heterozygous SNPs from the CRC dataset 

bam files with Bis-SNP (version 1.0.0) [33] by running 

the BisulfiteGenotyper mode with default parameters, 

using the dbSNP (Build150) [65] generated VCF file 

from the NCBI Human Variation Sets (GRCh37p13, last 

modified:07-10-2017).

methtuple

methtuple (version 1.5.3) [41] was used to produce a list 

of unique tuples of size two and the corresponding MM, 

MU, UM, and UU counts where M stands for “methyl-

ated” and U for “unmethylated”. The bam files of each 

sample are those of PE reads and so they were sorted by 

queryname before using methtuple, as the tool demands 

it.

Tuple‑based ASM score

We used γ = 0.5 and ǫ = 0.2 for all analyses, and allowed 

for a maximum distance of 150 base pairs between 

two CpGs in a tuple. Additional file  1: Figure S6 shows 

ASMtuple diagnostic plots for the CRC dataset (and Addi-

tional file 1: Figure S7 with ASMsnp).

ASMtuple score transformation

We apply a square root transformation to the ASMtuple 

score before running limma, to get a more stable mean–

variance relationship.

allelicmeth

allelicmeth (MethPipe version 3.4.3) [34] is a tool that 

also detects ASM for a given sample directly from BS-

seq reads. The tool is part of the MethPipe pipeline 

[66], which does not use standard bam files. We used 

commands from the pipeline to transform our bismark 

bam files from the CRC dataset into mr files, the input 

to allelicmeth. The output is a bed file with p values 

for each pair of CpG sites, reflecting the degree of allele 

specificity.

amrfinder

amrfinder (MethPipe version 3.4.3) [34] also detects 

ASM from the BS-seq reads, however it generates 

regional scores. As with allelicmeth, we transformed 

bismark bam files from the CRC dataset into mr files, 

then ran methstates to generate epiread files, and used 

these to run amrfinder with default parameters. The 

output is a bed file with p values for each genomic region 

with consistent ASM.

(6)L(ASMtuple) =

√

∣

∣ASMtuple

∣

∣

Score evaluation

We converted the ASMsnp into a tuple-ASMsnp as 
∣

∣

∣
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+X
i2r
M

X i1r+X i2r
−

X
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∣

∣

 , where 1 and 2 are the the first and 

second CpG site in a tuple i. We treated this converted 

score as true allele-specific methylation to test our scores 

at two thresholds: ≥ 0.5 and ≥ 0.8.

We transformed the p values generated by allelicmeth 

and amrfinder with a negative log base 10. We assigned 

the same transformed p values to all CpG tuples included 

in a single amrfinder region.

We also compared to a score based on whether the 

proportion of methylated reads to total number of reads 

deviates from 0.5, but transformed so a value of 0.5 is 

indicative of high ASM, and 1 or 0 is the lowest ASM. 

The score is 1 − 2(
∣

∣methylation − 0.5
∣

∣).

We used these four metrics to build ROC curves at dif-

ferent read coverages (5–9, 10–49 and ≥ 50) and at dif-

ferent thresholds of ASMsnp , for a single normal mucosa 

sample in the CRC dataset.

As an additional validation, we used the Blood data-

set to obtain the ASMtuple scores from the promoters 

of known imprinted genes reported in [11]. Only gene 

symbols that were traceable with biomaRt [67, 68] were 

included, and genes labelled to be imprinted in placenta 

were removed, as indicated in [69, 70].

t‑statistic calculation

From the limma R package [39], we use lmFit to fit a lin-

ear model for each CpG position, and eBayes to calcu-

late a moderated t-statistic on the transformed ASMtuple 

score, or on the ASMsnp score. For the former, we set the 

median of two CpGs in a tuple as the CpG position of 

that tuple. Transformed ASM scores across samples are 

given as input to lmFit, as well as a design matrix that 

specifies the conditions of the samples of interest. As 

specified in [39, 71], a CpG site-wise or tuple-wise linear 

model is defined as

where for each CpG site or tuple i, we have a vector of 

ASM scores yi and a design matrix X that relates these 

values to some coefficients of interest βi.

In the end, we test for a specific contrast that 

Ho : Cβij = 0.

Smoothing

We group the positions into genomic clusters using the 

clusterMaker function from the bumphunter R pack-

age [40]. Then, we use the loessByCluster function to 

perform loess within each cluster, and obtain β̃ij , our 

smoothed estimate.

(7)E(yi) = Xβi
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FDR control evaluation

We selected 6 samples of normal tissue from the CRC 

dataset and calculated their ASMsnp scores as a baseline 

in the simulation. We divided the samples in 2 groups 

of 3. We generated 1038 clusters of CpGs with the clus-

terMaker function from the bumphunter package, and 

set a maximum distance between CpGs of 100 bp (Addi-

tional file  1: Figure S8). We chose 20% of all clusters to 

be truly differential, and to each of them added effect to 

a number of randomly selected consecutive CpGs. The 

effect size is the same for every chosen CpG per clus-

ter, and is obtained by inverse transform sampling of 

the form F−1

X
(u) = x , where u ∼ Unif(0.35, 0.75) , and 

FX (x) the CDF of Beta(1, 2.5) [47] (Additional file 1: Fig-

ure S9). In addition, for each truly differential cluster, we 

randomly selected the sign of the effect size (positive or 

negative), as well as the group of samples that contains 

the effect size.

We generated 50 of these simulations, and for each 

of them, ran DAMEfinder with the cluster-wise correc-

tion, and the permutation correction (Additional file  1: 

Figure S10 for distributions of null and observed areas) 

with three different K thresholds: 0.2, 0.5, 0.8. We used 

the iCOBRA R package (version 1.12.1) [72] to calculate 

TPR and FDR at different adjusted p value thresholds: 

0.01, 0.05, 0.1.

DMR detection

We identified DMRs with the dmrseq R package (version 

1.5.11) [47] for each cancer subtype. We specified the tis-

sue via the testCovariate parameter (CIMP, non-CIMP 

or normal), and the patient with the adjustCovariate 

parameter. The cutoff parameter (cutoff of the single CpG 

coefficient that is used to discover candidate regions) was 

set as 0.05 and the rest of parameters were set as default.

Supplementary information
Supplementary information accompanies this paper at https ://doi.

org/10.1186/s1307 2-020-00346 -8.

Additional file 1. Additional figures.
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