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Abstract

1. Models of natural processes necessarily sacrifice some realism for the sake of 
tractability. Detailed, parameter-rich models often provide accurate estimates 
of system behaviour but can be data-hungry and difficult to operationalize. 
Moreover, complexity increases the danger of ‘over-fitting’, which leads to poor 
performance when models are applied to novel conditions. This challenge is typi-
cally described in terms of a trade-off between bias and variance (i.e. low accuracy 
vs. low precision).

2. In studies of ecological communities, this trade-off often leads to an argument 
about the level of detail needed to describe interactions among species. Here, 
we used data from a grassland biodiversity experiment containing nine locally 
abundant plant species (the Jena ‘dominance experiment’) to parameterize mod-
els representing six increasingly complex hypotheses about interactions. For each 
model, we calculated goodness-of-fit across different subsets of the data based 
on sown species richness levels, and tested how performance changed depending 
on whether or not the same data were used to parameterize and test the model 
(i.e. within vs. out-of-sample), and whether the range of diversity treatments being 
predicted fell inside or outside of the range used for parameterization.
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1  | INTRODUC TION

“What a useful thing a pocket-map is!" I remarked.

"That's another thing we've learned from your Nation," 

said Mein Herr, "map-making. But we've carried it much 

further than you. What do you consider the largest map 

that would be really useful?"

"About six inches to the mile."

"Only six inches!" exclaimed Mein Herr. "We very soon 

got to six yards to the mile. Then we tried a hundred yards 

to the mile. And then came the grandest idea of all! We 

actually made a map of the country, on the scale of a mile 

to the mile!"

"Have you used it much?" I enquired.

"It has never been spread out, yet," said Mein Herr: "the 

farmers objected: they said it would cover the whole 

country, and shut out the sunlight! So we now use the 

country itself, as its own map, and I assure you it does 

nearly as well."

 -from Lewis Carroll, Sylvie and Bruno Concluded, Chapter XI, 
London, 1895.

Ecological communities are complex systems, often with many 
interacting species and variable environmental conditions. As large 
datasets are increasingly available and computational methods con-
tinue to advance, we can fit more complex and parameter-rich models 
to describe community dynamics (Evans, Merow, Record, McMahon, 
& Enquist, 2016; Kearney & Porter, 2009; Perretti, Sugihara, & 
Munch, 2012). In many cases, these advances represent an exciting 
opportunity to re-examine old questions and gain new insights into 
the detailed workings of ecological communities (Grimm, Ayllón, & 
Railsback, 2016; Grubb, 1992; Judson, 1994). It remains unclear, how-
ever, at which point increased model complexity yields additional in-
sights that are generalizable beyond the data used to parameterize 
them (Allen & Starr, 2017; Coelho, Diniz-Filho, & Rangel, 2018; Evans 
et al., 2013; Lawton, 1999; Levins, 1968; Schaffer, 1981; Wenger & 
Olden, 2012). Understanding potential trade-offs between model 
complexity and generality is therefore increasingly important if we 
are to make accurate predictions across ecological communities.

As an example, consider how we might predict the abundance 
of a species based on community interactions within a trophic level. 
A basic model might only contain a single interaction coefficient: a 
general term to describe the average effect of all other individuals 
in the community, regardless of their identity (Hubbell, 2001; May, 
Huth, & Wiegand, 2015). This model could be made more complex by 
including two coefficients: one to specify the effect of intraspecific 
interactions (i.e. self-limitation or self-enhancement), and a second 
to specify the effect of all interspecific interactions (i.e. competi-
tion or facilitation) (Adler et al., 2018; Tuck, Porter, Rees, & Turnbull, 

3. As expected, goodness-of-fit improved as a function of model complexity for all 
within-sample tests. In contrast, the best out-of-sample performance generally 
resulted from models of intermediate complexity (i.e. with only two interaction 
coefficients per species—an intraspecific effect and a single pooled interspecific 
effect), especially for predictions that fell outside the range of diversity treatments 
used for parameterization. In accordance with other studies, our results also dem-
onstrate that commonly used selection methods based on AIC of models fitted 
to the full dataset correspond more closely to within-sample than out-of-sample 
performance.

4. Synthesis. Our results demonstrate that models which include only general intra 
and interspecific interaction coefficients can be sufficient for estimating species-
level abundances across a wide range of contexts and may provide better out-
of-sample performance than do more complex models. These findings serve as a 
reminder that simpler models may often provide a better trade-off between bias 
and variance in ecological systems, particularly when applying models beyond the 
conditions used to parameterize them.

K E Y W O R D S

bias-variance trade-off, cross-validation, Gompertz population model, grasslands, interspecific 
competition, Jena experiment, over-fitting, plant population and community dynamics
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2018). A more comprehensive model might unpack the generalized 
interspecific term into pairwise interspecific interactions between 
all species (Carrara, Giometto, Seymour, Rinaldo, & Altermatt, 2015; 
Fort, 2018; Halty, Valdés, Tejera, Picasso, & Fort, 2017; Vandermeer, 
1969). Finally, more complex models might assume that species en-
gage in ‘higher-order interactions’, for example, where the strength 
or direction of interactions among a subset of species are modified 
as a function of the abundance of other species in the community 
(Letten & Stouffer, 2019; Mayfield & Stouffer, 2017).

Each of these increasingly complex models has some empirical 
support. For example, neutral models with a single interaction co-
efficient have adequately explained some patterns in ecological 
communities (Hubbell, 2001). In other cases, observations are better 
matched by models with separate intra- versus interspecific terms, 
reflecting that intraspecific effects often far outweigh interspecific 
effects (Adler et al., 2018; Broekman et al., in press). Alternatively, 
in some microbial and plant systems, models that include pairwise 
interactions among species produce more accurate estimates of 
species abundances (Carrara et al., 2015; Clark, Lehman, & Tilman, 
2018; Vandermeer, 1969), potentially indicating species-specific im-
pacts on resource availability (Tilman, 1982). Lastly, there is evidence 
from several systems that interaction strengths differ depending 
on community composition, suggesting the existence of ‘higher-or-
der’ interactions (Bairey, Kelsic, & Kishony, 2016; Grilli, Barabás, 
Michalska-Smith, & Allesina, 2017; Levine, Bascompte, Adler, & 
Allesina, 2017; Mayfield & Stouffer, 2017; Wilbur, 1972). These dif-
ferences can be mediated either directly, e.g. by changes in species 
densities or foraging strategies (Letten & Stouffer, 2019; Tilman, 
1982; Tuck et al., 2018), or indirectly, e.g. via pathogens or herbivores 
(Kulmatiski, Beard, Grenzer, Forero, & Heavilin, 2016; Michalet et al., 
2015; Weigelt et al., 2007). Nevertheless, the relative predictive abili-
ties of these different models are rarely compared within a single sys-
tem, let alone between systems, and the degree to which results can 
be extrapolated beyond the data used to fit them remains unclear.

The decision about whether to include complex species interac-
tions in an ecological model is a particular example of the ‘bias-vari-
ance trade-off’ (Hastie, Tibshirani, & Friedman, 2017). Any given 
dataset will include both general phenomena that we might expect 
to see elsewhere, and particularities that occur in that dataset alone 
(Levins, 1968). When model performance is tested using the same 
data that were used to parameterize it, increased complexity can 
always reduce uncertainty (i.e., variance) by tuning the model to 
match observations. However, when different subsets of data are 
used to parameterize the model versus to test model performance, 
increased complexity can also lead to poorer performance for the 
testing subset. This phenomenon is known as ‘over-fitting’, and oc-
curs when parameter tuning during the fitting process draws predic-
tions towards these peculiarities (i.e., bias) (Wenger & Olden, 2012).

The degree to which a model is able to capture general versus par-
ticular phenomena can be assessed by dividing data into two or more 
(ideally independent) subsets, and testing whether models parameter-
ized with one subset of data can make good predictions in the others 
(i.e. ‘cross-validation’) (Brewer, Butler, & Cooksley, 2016; Roberts et 

al., 2017; Wenger & Olden, 2012). Due to data scarcity, cross-valida-
tion is typically applied to randomly chosen subsets of data (e.g. ‘k-fold 
cross validation’) (Roberts et al., 2017). Overfitting is indicated when 
predictions for the subset of data that was not used for parameter-
ization are substantially worse than those for the subset that was (i.e. 
when ‘out-of-sample’ goodness-of-fit is much lower than ‘within-sam-
ple’ goodness-of-fit). Given sufficient data availability, cross-validation 
can also be used to test predictive power under specific novel condi-
tions (i.e. ‘model transferability’) (Wenger & Olden, 2012). By carefully 
choosing different subsets of data, it is possible to rigorously assess 
the circumstances under which a particular model is likely to provide 
accurate extrapolations. For example, to test how general a model is 
across space and environmental conditions, we might fit the model 
using data from one site, and test how well it works at another.

A more common approach for deciding whether to accept a more 
complex model is to compare within-sample goodness-of-fit of dif-
ferent models, with a term to penalize increases in model complex-
ity. In ecology, such tests are often applied using AIC, or other similar 
information criteria (Aho, Derryberry, & Peterson, 2014; Brewer et 
al., 2016; Burnham, Anderson, & Huyvaert, 2011; Stone, 1977). Note 
that AIC is conceptually and theoretically related to cross-validation 
at the limit where a single observation is retained for testing, and the 
remainder of the data are used to parameterize a model (‘leave-one-
out cross-validation’) (Stone, 1977). Thus, these methods are very 
efficient from the perspective of data requirements, but are often 
less useful for assessing model transferability (Brewer et al., 2016; 
Wenger & Olden, 2012).

Here, we test relationships between model precision and gener-
ality using a dataset collected as part of the Jena Experiment (‘domi-
nance experiment’; Roscher et al., 2004; Weisser et al., 2017). In this 
experiment, a diversity gradient was established using nine locally 
abundant plant species, including replicates of all monocultures and 
two-species mixtures, and a selection of higher-diversity treatments. 
In the present analysis, our goal is to characterize the trade-off be-
tween good within-sample estimates (low variance) and good out-
of-sample predictions (low bias), and to identify models that provide 
a reasonable compromise between these properties. Because we 
are interested in community dynamics, we focus on predictions of 
species-level above-ground biomass (in oven-dried g/m2, hereafter 
‘abundance’) rather than total biomass summed across species, which 
is the subject of several other studies of species interactions in biodi-
versity experiments (Connolly et al., 2011; Kirwan et al., 2009).

We fitted a series of increasingly complex models, and compared 
their performance using three types of tests. First, to test for general 
effects of over-fitting, we fit models using data from monocultures, 
two-species mixtures, and nine-species mixtures. Thus, all commu-
nities within the dominance experiment fall within the range of the 
observed diversity treatments used to fit these models. Second, 
to identify models that might be suitable for extrapolation to high-
er-diversity communities, we fit the same series of models using only 
data from the minimum number of diversity treatments needed for 
parameterization (i.e. monocultures or two-species mixtures). Thus, 
higher diversity communities fall outside of the range of conditions 
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used for parameterization. Finally, we compare these results with the 
ranking of models that would have been obtained had we followed a 
more typical model selection procedure based on the AIC of models 
fitted to the full dataset (i.e. all diversity levels). In accordance with the 
bias-variance trade-off, we expected that the most complex models 
would yield the best within-sample estimates, especially within the 
range of diversity levels used to parameterize them, whereas models 
of lower complexity would provide more generalisable out-of-sample 
predictions. Furthermore, we expected that AIC would not necessarily 
be an effective indicator of out-of-sample model performance, due to 
its strong correspondence to within-sample estimates.

2  | MATERIAL S AND METHODS

2.1 | Overview

We designed six models which predicted species abundances in each 
year as a function of increasingly complex combinations of intra- and 
interspecific interactions. Details about models and corresponding 
biological hypotheses are discussed in Section 2.2. We then fit these 
models to field data, first using plots sown with one, two or nine spe-
cies and second using plots containing one or two-species. Details 
about the empirical data used to fit and test models are described 
in Section 2.3. Next, we used these models to predict species abun-
dance in all plots, and compared within-sample and out-of-sample 
errors among models. We then tested model performance across 
sown diversity treatments, species, and years. Based on these tests, 
we identified models that provided the best out-of-sample predic-
tions across these subsets of data. Details about model comparison 
methods are described in Section 2.4.

2.2 | Model structure

The six models represent increasingly complex hypotheses about 
intra- and interspecific interactions. All six were adapted from the 
same underlying model in Equations (1a)–(1b), and estimate the abun-
dance of each species, in each year, as a function of its own abun-
dance in the previous year (i.e. an autoregressive model), and the 
abundance of other species in the community in the previous year.

First, the intra-only model, Equation (2a), hypothesises that a spe-
cies is only influenced by its own abundance in the previous year. This 
model largely serves as a ‘baseline’ and characterizes the predictive 
power of intraspecific density dependence and autoregressive pro-
cesses. Second, the intra = inter model, Equation (2b), hypothesises 
that species are equally influenced by their own abundance and by the 
abundance of any other species, such that interspecific and intraspe-
cific interactions are equivalent. Third, the intra + inter model, Equation 
(2c), hypothesizes that species are differentially influenced by interspe-
cific and intraspecific interactions, but assumes that the per-capita in-
terspecific effects are identical. Fourth, the intra*inter model, Equation 
(2d), is identical to the intra + inter model, except that it hypothesizes 

that interspecific effects vary depending on the abundance of the focal 
species (i.e. when a resident species is abundant vs. rare, it experiences 
differential per-capita effects of interspecific interactions). Fifth, the 
pairwise model, Equation (2e), hypothesizes that each species has dis-
tinct interspecific effects on other members of the community. Note 
that this model is similar to the classical form of Lotka–Volterra compe-
tition. Lastly, the intra*pairwise model, Equation (2f), is identical to the 
pairwise model, but hypothesizes that the pairwise interspecific effects 
vary depending on the density of the focal species.

Interspecific and intraspecific interactions can be either nega-
tive (net competition) or positive (net facilitation) in all of our models. 
Interactions between interspecific parameters and the abundance of 
the focal species (as included in the intra*inter and intra*pairwise mod-
els) represent rough approximations of potential higher-order interac-
tions among species (Tuck et al., 2018). We structured the higher-order 
interactions in this way because the models can then be parameter-
ized using only data from communities sown with one and two species, 
making them comparable to the other models in extrapolation tests.

The specific functional forms of these six models are adapted 
from a discrete-time autoregressive Gompertz model. This model is 
commonly used in population ecology to characterize species dy-
namics, and can be fit using time-series data and standard linear 
regression methods (Ives, Dennis, Cottingham, & Carpenter, 2003; 
Tredennick, Hooten, & Adler, 2017). In its basic form, this model ex-
presses Ai,q(t), abundance of species i in plot q at time t as follows:

where β0 is the intrinsic growth rate and β1 is the dependence of this 
year's abundance on last year's abundance (i.e., density dependence). 
Log-transforming Equation (1a) yields a simple linear model:

to which additive effects of additional covariates (in log space), such 
as abundances of other species, can be incorporated and fitted using 
standard regression techniques.

Our six regression models characterize the log abundance of 
species i in plot q at time t, as a function of up to three types of 
covariates:
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intra*inter

pairwise

intra*pairwise

In all of these models, β0 is the intercept, βt is a random (categor-
ical) year effect, and β1 describes intraspecific density dependence. 
The number of fitted fixed effect parameters per species for each 
model is therefore: 2 for intra only and intra = inter; 3 for intra + inter; 
4 for intra*inter; 10 for pairwise; and 18 for intra*pairwise.

Because we considered abundances for every species in every 
plot in which they were sown, even if their abundance was zero, we 
added 1/gm2 to all abundances before log-transforming. We did not 
include spatial random effects (i.e. plot, block, or spatial coordinates) 
for two reasons. First, because treatments were randomly assigned 
to plots, there was no a priori reason to assume spatial autocorrela-
tion that was related to community composition (when included in 
models, nested plot and block random effects explained, on average, 
about 2% of variance). Second, because our subsequent statistical 
tests are based on cross-validation of total model goodness-of-fit, 
rather than on significance tests of individual model parameters, ad-
justments in the degrees of freedom related to the random effects 
structure did not influence our results.

In Equation (2b), β1 describes the generalized effect of all intra-
specific and interspecific interactions, and log (Ai,q(t – 1) + 1) is also in-
cluded as an offset (i.e. without a fitted covariate) so that the function 
can still be interpreted as a growth rate. Consequently, for models fit 
using only data from monocultures, fitted values for β1 are identical to 
those in Equation (2a) (after adjusting for the offset). In Equation (2c) 
(intra + inter) and Equation (2d) (intra*inter), β2 is the generalized ef-
fect of interspecific interactions from all non-focal species combined, 
whereas β3 describes how this effect varies as a function of the abun-
dance of the focal species. In Equation (2e) (pairwise) and Equation (2f) 
(intra*pairwise), β2,k is a vector of species-specific interspecific interac-
tion strengths (e.g. the effect of species k on the focal species i), Ak,q is 
the observed abundance of species k in plot q, and β3,k describes how 
β2,k changes as a function of the focal species’ abundance. Note that 
the fitted β values differ among species and models.

We fitted all models using the LmeR function from the Lme4 pack-
age (Bates, Mächler, Bolker, & Walker, 2015) in R version 3.4.2 (R. 
Development Core Team, 2017). We fitted separate regressions 
for each species and model type. As discussed above, we used two 

subsets of data to parameterize each model. First, all models were 
fit using data from all the one, two, and nine species plots (we chose 
these because they span the full range of diversity treatments, and 
because all possible species combinations of these diversity levels 
were represented in the plots). Second, we fit all models using data 
from communities sown with one and two species, except for the 
intra only and intra = inter models, for which we fit regressions using 
only data from monocultures (i.e. we chose the fewest number of 
diversity levels required to fit the model, based on the types of spe-
cies interactions that they hypothesized). We then used these fitted 
models, following Equations (2a)–(2f), to predict biomass of each 
species in each community and year (i.e. across all sown richness 
levels). The full, annotated code used for our analyses is available in 
the file ‘Clark_etal_JE_Dominance.R’ in the Supporting Information.

2.3 | Study site

The ‘dominance experiment’ is part of the Jena Experiment (Roscher 
et al., 2004; Weisser et al., 2017), which was established on a former 
agricultural field in the floodplain of the river Saale close to the city of 
Jena (Germany, 50°55'N, 11°35'E, 130 m) in spring 2002. The region 
has a mean annual temperature of 9.9°C, and mean annual precipita-
tion is 610 mm (1980–2010; Hoffmann, Bivour, Früh, Koßmann, & Voß, 
2014). The dominance experiment is based on a pool of nine grassland 
species, which often reach high abundances and relative dominance 
in Central European mesophilic grasslands of the Arrhenatherion type 
(Ellenberg, 1988). These include five grass species (Alopecurus pratensis  

L., Arrhenatherum elatius (L.) J. Presl et C. Presl, Dactylis glomerata 

L., Phleum pratense L., Poa trivialis L.), two non-legume forb species 
(Anthriscus sylvestris (L.) Hoffm., Geranium pratense L.) and two leg-
ume species (Trifolium pratense L., T. repens L.). See Table S1 in the 
Supporting Information for more information about species, and Table 
S2 for specific data on treatments. Data are available in Weigelt et al. 
(2016), and in the Jena Experiment Information System (www.the-jena-
exper iment.de/data). In our study, we used data from the full 13-year 
duration of the experiment (i.e. 2002–2015).

Sown species richness levels were 1, 2, 3, 4, 6, or 9 species. 
Each species was equally represented at each richness level, and all 
possible two-species combinations were present with the same fre-
quency at each richness level of the multi-species mixtures (i.e. 2–9 
species). Each combination of species was replicated twice. The de-
sign included 2 × 9 monoculture plots, 2 × 36 two-species mixtures 
(all possible combinations), 2 × 24 three-species mixtures, 2 × 18 
four-species mixtures, 2 × 12 six-species mixtures, and 8 nine-spe-
cies mixtures, resulting in a total of 100 distinct communities (dif-
ferent species compositions) and 206 plots (Roscher et al., 2004). 
The experiment was set up in four blocks perpendicular to the Saale 
River following a gradient in soil texture. Mixtures were randomly 
assigned to the blocks, ensuring that each block contained the same 
number of plots per species-richness level. Plots were established 
by sowing with a constant density of 1,000 germinable seeds per 
m2 (adjusted for germination rates from standard laboratory tests), 

(2d)

log
(

Ai,q (t)+1
)

=�0+�t+�1 log
(

Ai,q

(

t−1
)

+1
)

+
[

�2+�3 log
(

Ai,q

(

t−1
)

+1
)]

log
(

Σk≠i

[

Ak,q

(

t−1
)]

+1
)

(2e)
log

(

Ai,q (t)+1
)

=�0+�t+�1 log
(

Ai,q

(

t−1
)

+1
)

+Σk≠i

[

�2,k log
(

Ak,q

(

t−1
)

+1
)]

(2f)

log
(

Ai,q (t)+1
)

=�0+�t+�1 log
(

Ai,q

(

t−1
)

+1
)

+Σk≠i

[[

�2,k+�3,k log
(

Ak,q

(

t−1
)

+1
)]

log
(

Ak,q

(

t−1
)

+1
)]



     |  779Journal of EcologyCLARK et AL.

which were equally distributed among species in the mixtures. Plots 
were initially sown across 3.5 × 3.5 m areas, but only maintained in 
the central 1 × 1 m portion of the plot from 2010 onwards because 
of the high expense and difficulty of maintaining the larger areas.

The sown species combinations were maintained by weeding 
all other species not sown into a particular plot (i.e. weeds) two to 
three times per year. Plots were mowed two times per year (June, 
September), and mown biomass was removed, as is typical for exten-
sively used meadows in the study region. Plots were not fertilized. 
Annual above-ground plant biomass production was derived from 
the sum of two harvests per year, taken at estimated peak biomass 
(May and August) shortly before mowing. Plant biomass was har-
vested in two randomly allocated 0.5 × 0.2 m quadrats from 2003 
to 2009, and one quadrat (of the same size) in the plot centre after 
the reduction in plot size in 2010. Harvested biomass was sorted to 
species after removal of detached dead plant material. Samples were 
weighed after drying at 70°C for 48 hr. For full species-level dynam-
ics across treatments, see Figure S1 in the Supporting Information.

2.4 | Testing model performance

To quantify the goodness-of-fit of each model, we calculated the 
second-order ‘coefficient of efficiency’ (Legates & McCabe, 1999; 
Li, 2017; Willmott et al., 1985):

where j is the order of the coefficient, Oi is observation i, Pi is predic-
tion i, and mean(O) is the average taken across observations. Note that 
E2 is similar to the classical R2 metric, except that it measures scatter 
around the 1–1 line rather than a fitted regression line. Because E2 can 

overweight outliers in some cases (Legates & McCabe, 1999), we also 
repeated all analyses using E1, which corresponds to absolute error 
rather than squared error. These results are almost identical to those 
for E2, but are presented in Figures S2–S5 for reference.

After fitting models, we tested for differences in goodness-of-
fit by aggregating predictions by three different sets of grouping 
variables—sown richness level, species identity, and year. We chose 
these groupings following preliminary analyses, which showed sig-
nificant between-group variability in model goodness-of-fit (see 
Tables S3a–b for details). These groupings are also consistent with 
well-supported hypotheses that species interactions vary as a func-
tion of species richness (i.e. higher-order interactions), species iden-
tity (i.e. non-neutral interactions), and time (i.e. successional status 
or temporal feedbacks) (Adler et al., 2018; Deyle, May, Munch, & 
Sugihara, 2016; Mayfield & Stouffer, 2017; Tuck et al., 2018).

To quantify variation in goodness-of-fit, we applied a simple boot-
strapping algorithm. For each grouping described above, we resam-
pled from the full pool of observations and model predictions 20,000 
times with replacement, and calculated goodness-of-fit for each itera-
tion. Because of differences in sample size among the grouping levels 
described above, we performed bootstrapping separately for each of 

the groupings (i.e. we conducted separate stratified sampling within 
each level of sown richness, species, or year). We then used the re-
sulting distribution of E2 and E1 values observed across iterations to 
calculate a mean, standard error of the mean, and p-values comparing 
differences in goodness-of-fit among factors.

Finally, to compare our findings to those that would arise from 
more classic methods of model comparison, we also calculated AIC 
for each of the fitted models. For these comparisons, we fitted mod-
els to the full set of data from all plots (i.e. plots sown with 1–9 spe-
cies) and included a random intercept for plot nested within block. 
Following ‘best practices’ for AIC comparison of models that include 
different fixed effects, all models were fitted using maximum likeli-
hood (i.e. rather than REML) (Bates et al., 2015). In cases where the 
random effects structure led to convergence issues, we removed ei-
ther the plot, or the plot and block random effects (11/54 and 24/54 
cases, respectively). Jointly, these approaches were intended to mir-
ror a more typical statistical analysis of ecological data.

3  | RESULTS

Considered across all diversity levels, species identities, and years, all 
six model forms did a similar job of estimating average within-sample 
abundances, albeit with a slightly increased goodness-of-fit for more 
complex models, especially for predictions that fell within the range 
of diversity conditions used for parameterization (Figure 1a). For 
out-of-sample extrapolations outside of the range of diversity con-
ditions used for parameterization (i.e. those parameterized with rich-
ness levels of 1–2 species, hereafter ‘1–2 species models’), models 
of intermediate complexity (intra + inter and intra*inter) performed 
significantly better than the other models (Figure 1b, vertical axis). 
For out-of-sample predictions made within the range of diversity 
conditions used for parameterization (i.e. those parameterized with 
richness levels of 1, 2, and 9 species, hereafter ‘1–9 species mod-
els’), most models performed similarly, except for intra*pairwise and 

intra = inter, which performed significantly worse (Figure 1b, horizon-
tal axis). See Tables S4a–k for all regression coefficients, and Tables 
S5a–h for p-values corresponding to differences in goodness-of-fit 
among models. For plots of observed versus predicted values for 
each model and species, see Figs. S6a–b.

Results were similar within individual diversity levels. For 1–2 
species models, out-of-sample extrapolations for intra + inter and 

intra*inter again had the highest goodness-of-fit, followed closely 
by intra only and pairwise (Figure 2c–f, vertical axis). For all models, 
goodness-of-fit declined somewhat as a function of diversity, but the 
reductions were steeper for intra = inter and pairwise, and were es-
pecially steep for intra*pairwise. Thus, despite the increasing number 
of potential competitors, models of increasing complexity did not 
improve out-of-sample in more diverse communities, even for 1–9 
species models.

When considering each species individually, goodness-of-fit was 
also consistently highest for the intra only, intra + inter, intra*inter, 
and pairwise models, whereas intra = inter and intra*pairwise typically 
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performed poorly, especially for the 1–2 species models (Figure 3). 
There were, however, some exceptions to this pattern. All models 
performed well for A. pratensis, and the 1–9 species models pro-
vided relatively good predictions for A. sylvestris, D. glomerata, and 
G. pratense. For both types of parameterization, intra*pairwise had 
especially high goodness-of-fit for A. elatius, and for 1–9 species 

models it also provided good predictions for P. trivialis, T. repens, and 
T. pratense. Goodness-of-fit for intra = inter was especially high for P. 

pratense, and for 1–2 species models of T. repens.

Across years, there was a strong decline in out-of-sample pre-
dictive ability around 2007 (Figure 4), corresponding to a major 
decline in legume abundance (especially for T. pratense—see Figure 
S1). However, predictive power recovered rapidly, and by 2009 
was roughly equal to that before 2007. All 1–9 species models per-
formed similarly, except intra = inter for which goodness-of-fit was 
slightly lower across all years. For 1–2 species models, all followed 
the same general trend, but intra = inter, pairwise, and intra*pairwise 

had particularly low goodness-of-fit, especially around 2006–2008. 
To account for the potential influence of these outlier years on our 
analyses, we repeated all of our model fitting and comparisons with 
years 2006–2008 omitted from the dataset, but found no major 
changes in our results other than a slight increase in goodness-of-fit 
for models of the two legumes (not shown).

For our more typical analysis based on the AIC of models fit-
ted to the full dataset, we found that the index typically identified 
models of higher complexity as the ‘best fitting’ (Table 1). When 
compared across all species, the intra*pairwise model had the low-
est AIC, which differed from the next best model (pairwise) by more 
than 150 units. Likewise, at the level of individual species, AIC never 
indicated that models of low complexity provided the best fit, and 
selected intra + inter as the best model for one species (T. pratense), 
pairwise for four species (A. pratensis, A. elatius, G. pratense, and P. 

trivialis), and intra*pairwise for four species (A. sylvestris, D. glomerata, 
P. pratense, and T. repens).

4  | DISCUSSION

Our primary result indicates that models of intermediate complex-
ity—which only separate the effects of intra- and interspecific 
competition—can provide the best extrapolative predictions of spe-
cies-level abundances in both simple and higher-diversity communi-
ties. In particular, our findings support the hypothesis that models 
of intermediate complexity should usually produce the best out-
of-sample predictions, especially for extrapolations (Allen & Starr, 
2017; Evans et al., 2013; Wenger & Olden, 2012). In accordance with 
other studies, we also find that classical methods of AIC compari-
son, based on the full dataset, selected more complex models than 
those selected using out-of-sample extrapolations from the models 
that were fitted using only data from plots sown with 1–2 species. 
Taken together, these results demonstrate that simple models can 
yield broadly generalizable predictions in complex systems, but also 
that commonly used methods of model selection may not always be 
effective at identifying these models.

In general, we can divide our models into three groups. First, 
those treating intraspecific and interspecific interactions as equiv-
alent (intra = inter) almost always yielded poor out-of-sample pre-
dictions. In accordance with theory and a recent meta-analysis, 
this result suggests that differences between intraspecific and 

F I G U R E  1   Goodness-of-fit for regression models, showing 
predictive ability when considered across all years, species, and sown 
richness levels. E2 describes squared error between observations and 
predictions, relative to the total sum of squares — see Equation (3) in 
the main text for details. Models correspond to Equations (2a–2f) in 
the main text. Panel (a) shows results for data that were used to fit 
the regression (i.e. ‘within-sample’), whereas (b) shows results for data 
that were not used to fit the regression (i.e. ‘out-of-sample’). Vertical 
axes show results for models that were parameterized with data that 
spanned the full range of sown diversity levels (i.e. plots sown with 
1, 2, and 9 species), whereas horizontal axes show results for models 
that were parameterized using only data from low-diversity plots  
(i.e. 1 or 2 species). Dotted line shows 1-1 relationship. Intervals show 
mean ± one standard error of the mean, based on the bootstrapping 
routine described in the main text. As a rough rule of thumb, cases 
where standard errors overlap imply that the two means do not differ 
significantly at p = .05. See Table S5a in the Supporting Information 
for p-values summarising differences among model fits [Colour figure 
can be viewed at wileyonlinelibrary.com]
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interspecific interactions are important for explaining species-level 
abundances (Adler et al., 2018; Broekman et al., in press). Second, 
models that allowed for differential effects of interspecific and intra-
specific interactions (intra + inter and intra*inter) provided accurate 
predictions across most combinations of richness treatments, spe-
cies, and years. Their strong out-of-sample goodness-of-fit suggests 
that these models contain sufficient complexity to explain broad 
trends, but not enough to cause over-fitting (Wenger & Olden, 2012). 
Finally, models with pairwise interactions among species (pairwise 

and intra*pairwise) appear, at least in some cases, to be over-fit. In 
particular, when considered across out-of-sample extrapolations 
from the 1–2 species models, pairwise and intra*pairwise performed 
significantly worse than all other tested models except intra = inter, 
and performance was especially poor for extrapolations early in the 
experiment, and in diverse mixtures. Jointly, these results suggest 
that the added complexity in the pairwise models may be more re-
flective of peculiarities in the training dataset than of general phe-
nomena (Hastie et al., 2017).

Critically, our findings should not be taken to suggest that some 
models are more correct than others, but rather that they are more 
practical from the perspective of prediction given our system and avail-
able data. An important caveat for all of our models is that they do not 

consider any specific mechanisms of competition (e.g. allelopathy, 
shared resources). Thus, the poorer out-of-sample and extrapolative 
performance that we find for complex models may be indicative of 
important omitted mechanisms, rather than of the unimportance of 
species-specific interactions. For example, in mechanistic resource 
competition models, pairwise interaction strengths can change dra-
matically as a result of small shifts in community composition (Letten 
& Stouffer, 2019; Tilman, 1982). These changes would not be cap-
tured by any of the models that we test here, and it may be that 
simple phenomenological models are better able to average across 
these different conditions than are more parameter-rich phenome-
nological models.

4.1 | Biological interpretation of models

The baseline model, which included only intraspecific interactions 
(intra only), often performed similarly to the models with both in-
traspecific and interspecific interactions (intra + inter and intra*inter), 
however, predictions were usually significantly worse for intra only, 
especially for extrapolations from the 1 to 2 species models. The 
strong performance of the intra-only model indicates that species 

F I G U R E  2   Goodness-of-fit for regression models at each sown richness level, calculated across all species and years. Dashed intervals 
show estimates for data that were used to fit the regression (i.e. ‘within-sample’), whereas solid lines show fits for data that were not used 
to fit the regression (i.e. ‘out-of-sample’). Intervals, axis labels, and indices are as described in the legend to Figure 1. See Table S5b in 
the Supporting Information for p-values summarizing differences among model fits. Note that the axes are expanded for 6 and 9 species 
mixtures [Colour figure can be viewed at wileyonlinelibrary.com]
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abundances were strongly regulated by density dependence and 
temporal autocorrelation, such that observed species abundances 
were largely explained by their abundance in the previous time step 
(Petchey et al., 2015). Note, however, that intraspecific density de-
pendence and autocorrelation alone were not sufficient to guaran-
tee accurate out-of-sample predictions. For example, the intra = inter 

also included these components, but performed poorly, indicating 
that differences between intraspecific and interspecific interactions 
play an important role in determining abundance in our system.

For the two intermediately complex models (intra + inter and 

intra*inter), interspecific interaction coefficients were typically neg-
ative, which accords with expectations of strong net competition 
among communities of locally dominant species in mesic grasslands 
(see Tables S4a–k) (Weigelt et al., 2007). Similarly, the effects of 
intraspecific interactions were predicted to be about 5–10 times 
stronger than interspecific effects, which is consistent with theoret-
ical and empirical results from many ecological systems (Adler et al., 

2018; Barabás, Michalska-Smith, & Allesina, 2017; Tuck et al., 2018). 
The more complex model (intra*inter) generally indicated significant 
reductions in the strength of interspecific competition with increas-
ing focal species abundance, which suggests that competition is 
asymmetric and size-mediated, as might be expected, for example, 
light competition (Schwinning & Weiner, 1998). However, given that 
intra*inter rarely performed significantly better than intra + inter, it 
appears that any effects of these size-mediated biological mecha-
nisms were either not very influential, or could be abstracted into 
the generic interspecific terms in the simpler model.

For the two pairwise models (pairwise and intra*pairwise), the 
decline in out-of-sample extrapolative performance early in the ex-
periment and at higher diversity levels could indicate that species 
interactions vary in ways that we do not account for in Equation 
(2e–2f)—for example, changes in pairwise competitive interactions 
over the course of community assembly, or as a function of diversity 
(Mayfield & Stouffer, 2017; Tilman, 1982). If complex higher-order 

F I G U R E  3   Goodness-of-fit for fitted regression models of each species, calculated across all years and sown richness levels. Results are shown 
only for out-of-sample goodness-of-fit. Intervals, axis labels, and indices are as described in the legend to Figure 1. See methods, or Table S1 in the 
appendix, for further details about species. See Table S5c in the Supporting Information for p-values summarizing differences among model fits. 
Because values vary greatly among species, note that axes are on different scales in each panel [Colour figure can be viewed at wileyonlinelibrary.com]
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processes are an important determinant of community dynamics 
in our system, then accurate extrapolations from complex models 
may require that we consider a more diverse—and potentially more 
mechanistic—set of models (Letten & Stouffer, 2019). However, such 
a result may make generalizing findings to other systems difficult, 
especially if they differ in the kinds of higher-order processes that 
are locally important. Alternatively, the relatively good performance 
of the 1–2 species pairwise models could suggest that the extrapola-
tive models were simply not fitted to enough data, in which case any 
apparent ‘over-fitting’ might be alleviated by increasing the number 
of experimental replicates. It would be interesting to test this possi-
bility with larger datasets.

Although many models performed well under some circum-
stances, none provided significantly better out-of-sample predic-
tions than intra + inter and intra*inter, neither for 1–2 nor for 1–9 

species models (with one exception—see Figure 3c). This result ac-
cords with a recent meta-analysis of competition experiments, which 
found that average intraspecific interaction strengths observed 
across species can be a good proxy for unknown interactions (Fort, 
2018). These findings imply that, at least on average, the relative 
strength of intraspecific versus interspecific interactions is a stron-
ger determinant of species abundances than are individual pairwise 
effects. Mechanisms that act directly on density dependence, such 
as species-specific pathogens, may therefore be more important for 
maintaining diversity in our system than are mechanisms related 
to pairwise competitive abilities, such as competition for a small 
number of limiting resources (Hubbell, 2001, 2006), which accords 
with existing hypotheses about coexistence in the Jena experiment 
(Curtois et al. 2016; Weisser et al., 2017).

F I G U R E  4   Goodness-of-fit of 
fitted regression models for each year, 
calculated across all species and sown 
richness levels. Results are shown only for 
out-of-sample goodness-of-fit. Intervals 
show mean ± one standard error of 
the mean. Axis labels and indices are 
as described in the legend to Figure 1. 
Note that the intra + inter and intra*inter 

trajectories are overlapping. See Table 
S5d in the Supporting Information for 
p-values summarising differences among 
model fits [Colour figure can be viewed at 
wileyonlinelibrary.com]
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TA B L E  1   ΔAIC values for the six models presented in the main text. Columns show different, models, and rows show whether AIC 
was calculated across all species, sown diversity treatments, and years (‘Total’), or separated by species. Recall that lower AIC values 
indicate better performance. Bold numbers mark cases where ΔAIC < 2, which is commonly used as a rule of thumb to identify meaningful 
differences in model performance. Regressions are fit to all observations across all diversity treatments (i.e. 1–9 sown species richness 
treatments). See main text for details about model fitting and random effects structure

 intra only intra = inter intra + inter intra*inter pairwise intra*pairwise

Total 748.46 2,354.15 484.01 406.83 154.9 0

Alopecurus pratensis 58.58 96.22 13.15 3.01 0 7.75

Anthriscus sylvestris 66.13 204.25 52.18 34.75 2.81 0

Arrhenatheum elatius 47.49 344.6 23.34 25.09 0 1.5

Dactylis glomerata 102.65 153.5 63.55 48.13 1.01 0

Geranium pratense 63.12 209.77 50.56 39.93 0 7.39

Phleum pratense 175 367.42 143.05 120.95 107.22 0

Poa trivialis 102.77 351.98 66.27 75.66 0 5.97

Trifolium pratense 11.27 270.47 0 1.89 12.76 17.4

T. repens 161.46 395.96 111.93 97.45 71.12 0
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4.2 | Species-level results

Although average predictive accuracy varied greatly across species, 
the relative performance of the six models usually matched the gen-
eral order observed for the total dataset. One exception to this pat-
tern was Arrhenatherum elatius, for which goodness-of-fit was low 
for all models, but with significantly higher goodness-of-fit for the 
pairwise models. Because its abundance was consistently high, and 
varied little across plots, treatments, or years, the ‘null expectation’ 
that we used to predict goodness-of-fit in Equation (3)—that is, mean 
observed biomass—performed particularly well, which left relatively 
little room for improvement. A potential explanation for the consist-
ently high abundance of A. elatius is that it is an especially effective 
competitor for light and nitrogen: it is the tallest species in the domi-
nance experiment, invests a larger fraction of biomass in supporting 
tissues (Lorentzen, Roscher, Schumacher, Schulze, & Schmid, 2008; 
Roscher, Schumacher, Weisser, Schmid, & Schulze, 2007), and pro-
duces the most biomass per unit nitrogen (Roscher, Thein, Schmid, 
& Scherer-Lorenzen, 2008). Thus, A. elatius may be buffered from 
the effects of interspecific competition, making models of generic 
interspecific interactions less effective.

Three other species also have tall stature and produce high 
biomass per unit nitrogen—Alopecurus pratensis, Dactylis glomerata, 
and Phleum pratense (Lorentzen et al., 2008; Roscher et al., 2008). 
Goodness-of-fit for these species was high for all models, except for 
some poor extrapolations from the 1–2 species intra*pairwise model. 

As with A. elatius, these species generally had high abundance, and 
dynamics were consistent across plots and diversity treatments 
(Figure S1) potentially because their traits shielded them from com-
petitive interactions with most other species. However, unlike A. 

elatius, their abundances varied over time, such that mean observed 
biomass alone was not a good predictor. Thus, high goodness-of-fit 
may indicate that their dynamics were sufficiently complex to differ 
from the null expectation, but not so complex as to confound our 
models. That said, high abundance might actually contribute to the 
strong predictive power of these models by reducing the impact of 
observation error on predictive outcomes, or increasing temporal 
autocorrelation (Hastie et al., 2017).

Goodness-of-fit was also relatively high across models for two 
species that did not have traits associated with strong light or nitro-
gen competitive ability—Anthriscus sylvestris and Geranium pratense 

(Lorentzen et al., 2008; Roscher et al., 2008). Potentially because of 
poorer competitive abilities, both species were slow to establish, and 
abundances varied greatly among plots and treatments (Figure S1) 
(Lorentzen et al., 2008). Although strong effects of interspecific com-
petition may explain the relatively poor performance of intra = inter, 
the high goodness-of-fit for intra only suggests that within-plot auto-
correlation alone was sufficient for predicting species dynamics.

Lastly, for three species—Poa trivialis, Trifolium pratense, and T. re-

pens—goodness-of-fit was relatively low for all models. A partial ex-
planation is that over a short period of about 2006–2008 there were 
especially large declines in abundance for T. pratense and T. repens, 
and increases in abundance for P. trivialis (see Figure S1). When these 

years were removed from the dataset, goodness-of-fit increased for 
the two legumes, but not for P. trivialis. Curiously, this time period 
did not correspond to any major weather events or changes in exper-
iment management. Instead, it is possible that the initially sown co-
hort of shorter-lived perennial species (e.g. T. pratense and T. repens) 
began to die back around this time and failed to establish successful 
reproductive populations, leading to rapid changes in species rela-
tive abundance (Roeder, Schweingruber, Fischer, & Roscher, 2017; 
Roscher et al., 2011).

4.3 | Methodological implications of results

There have been many rallying calls for better, and more general, 
predictive models in ecology (Coelho et al., 2018; Dietze et al., 2018; 
Evans et al., 2013; Houlahan, McKinney, Anderson, & McGill, 2017; 
Lawton, 1999; Wenger & Olden, 2012). Not all of these favour re-
ductions in model complexity. In particular, the advent of individual-
based models, which can be formulated around rules and behaviours, 
has been suggested as a potential way to simultaneously satisfy the 
needs for nuance and generality (Allen & Starr, 2017; Evans et al., 
2013; Grimm et al., 2016; Judson, 1994). Nevertheless, to our knowl-
edge, the majority of studies that have empirically tested model 
performance across a gradient of complexity accord with our find-
ings—that is, that intermediately complex models provide the best 
extrapolations—including models of bacterial growth (Buchanan, 
Whiting, & Damert, 1997), fish populations (Wenger & Olden, 2012), 
and plant communities (Petitpierre, Broennimann, Kueffer, Daehler, 
& Guisan, 2017; Rüger, Wirth, Wright, & Condit, 2012).

Despite the relatively broad support for using extrapolative 
ability as an indicator of model generality, most ecologists still 
conduct model selection, often by fitting models to their full data-
set and applying various information criteria (e.g. AIC, AICc, WAIC, 
BIC, etc.; Burnham et al., 2011; Aho et al., 2014; Brewer et al., 
2016; Houlahan et al., 2017; Coelho et al., 2018). While there is 
nothing inherently wrong with this approach, it is important to re-
member that these tests are primarily designed to identify models 
that perform well within the general range of conditions used for 
parameterization, rather than to estimate how models are likely 
to perform under novel conditions (Brewer et al., 2016; Stone, 
1977). Nevertheless, assuming that such models will also yield 
good extrapolations can be problematic. Because most ecological 
systems are inherently complex and interconnected, it is likely that 
given enough data, significant interactions can be detected among 
any ecological variables, at least via indirect routes (Levin, 1998; 
Sugihara et al., 2012). But, much of this complexity is likely to be 
non-transferable across systems (Lawton, 1999). Hence, if our 
goal is to obtain generality, we should not necessarily emphasize 
the particular, but rather should focus on identifying models that 
perform well across a wide range of contexts (Wenger & Olden, 
2012). For example, simpler models associated with AIC values 
that are > 2 units higher than the best models are unlikely to be 
explored or considered further, yet they may well provide similar 
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within-sample goodness of fit, and better out-of-sample predic-
tions and extrapolations.

Similarly, it is rare to see a thorough analyses of the real im-
pact of higher-order parameters. Figure 1a illustrates this point: 
including additional terms does indeed improve the within-sample 
estimates from the 1–9 species models, but not by much. A more 
detailed analysis of how well simpler models perform—and where, 
and by how much, they actually get things wrong—is therefore 
probably more informative than simply accepting some subset of 
models based on their goodness-of-fit within a single set of con-
ditions (Brewer et al., 2016; Mayfield & Stouffer, 2017; Wenger & 
Olden, 2012). We do not mean to imply that complexity will never 

be needed to understand particular aspects of ecological systems. 
Rather, it may be wise to address complexity judiciously, only after 
we have convinced ourselves that simpler models fail to provide 
sufficient precision or generality.

5  | CONCLUSIONS

Because of their complexity, ecological systems will always pose a 
particular challenge for modellers. Though complexity and nuance 
may well be important for explaining the abundance and distribution 
of species in many sites and systems, our results demonstrate that 
in some cases, simpler models can provide more general predictions. 
More broadly, our analysis serves as a reminder that the best way 
to test the generalizability of a fitted model is to use it to make pre-
dictions in a new context—and that commonly used model selection 
tools are not designed to test this property.
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