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Abstract
This paper proposes solutions to three issues pertaining to the estimation of finite mixture

models with an unknown number of components: the non-identifiability induced by overfit-

ting the number of components, the mixing limitations of standard Markov Chain Monte

Carlo (MCMC) sampling techniques, and the related label switching problem. An overfitting

approach is used to estimate the number of components in a finite mixture model via a Zmix

algorithm. Zmix provides a bridge between multidimensional samplers and test based esti-

mation methods, whereby priors are chosen to encourage extra groups to have weights

approaching zero. MCMC sampling is made possible by the implementation of prior parallel

tempering, an extension of parallel tempering. Zmix can accurately estimate the number of

components, posterior parameter estimates and allocation probabilities given a sufficiently

large sample size. The results will reflect uncertainty in the final model and will report the

range of possible candidate models and their respective estimated probabilities from a sin-

gle run. Label switching is resolved with a computationally light-weight method, Zswitch,

developed for overfitted mixtures by exploiting the intuitiveness of allocation-based relabel-

ling algorithms and the precision of label-invariant loss functions. Four simulation studies

are included to illustrate Zmix and Zswitch, as well as three case studies from the literature.

All methods are available as part of the R package Zmix, which can currently be applied to

univariate Gaussian mixture models.

Introduction
Finite mixture models naturally arise when homogeneous subgroups or clusters are thought to
be present in a population, and can also be used as flexible parametric models for estimating
complex or unknown distributions [1]. Whether latent subgroups are present or not, their flex-
ible framework has the potential to help tackle many research problems. As such they are useful
tools in many fields including but not limited to genetic and medical research [2–4], economet-
rics [5], and image and sound analysis, where mixtures are used to perform complex tasks such
as object tracking and speaker identification [6, 7]. Despite their popularity, model estimation
can be difficult when the number of components is unknown [8].
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The density of a K-component mixture with respect to some measure is given by Eq (1),
where πk and θk denote the weight and associated emission parameters of component k, k = 1,

. . ., K, with 0< πk < 1 satisfying
PK
k¼1

pk ¼ 1. This paper considers the situation where the emis-

sion densities f(yjθk) belong to a parametric family, i.e. θk 2 Θ� Rd. While mixtures are most
often used for clustering and classification, the methods presented here can also be used for
density estimation to obtain a sparse representation of an unknown distribution.

f ðyÞ ¼
XK
k¼1

pkf ðyjykÞ ð1Þ

MCMCmethods are commonly used for Bayesian estimation of complex hierarchical mod-
els such as mixtures, and Gibbs samplers are a special case of these where all parameters are
estimated from their full conditional distributions [9–12]. This would be a tedious endeavour
for finite mixture models if not for the inclusion of a latent allocation variable, a Multinomial Z
= {z1, . . ., zn}, where zi*M(1; π1, . . ., πK), so that yijzi = f(yijθzi) [13]. For each iteration t of a
Gibbs sampler, the allocations Z(t) are estimated first, then the parameters are generated from
their component-wise conditional distributions based on the clustering in Z(t).

This paper addresses three important issues concerning mixture modelling when the num-
ber of components is unknown: (i) theoretical issues in estimating the number of components
due to non-identifiability caused by overfitting, (ii) problems in applying standard Markov
chain Monte Carlo (MCMC) sampling techniques, and (iii) the non-identifiability of the out-
put of MCMC due to label switching. These issues are reviewed and then addressed in a coordi-
nated manner, with the aim to develop a method for intuitive estimation of the number of
components (also known as order estimation), resulting in a sparse yet representative posterior
exhibiting clear separation between the estimated and unnecessary components.

Issue 1: Non-identifiability due to overfitting
Order estimation methods for finite mixtures can be loosely classified into two types of
approaches: those which compare competing models (e.g. Bayes Factors [10, 11]), and those
which employ multidimensional samplers to directly estimate the distribution of K (e.g.
Reversible Jump MCMC [14], the allocation sampler [15]). Overfitting, the act of including
more components in a model than is supported by the data, is an integral part of both strategies
as the former must fit at least one extra group to compare some criterion, whilst the latter
implicitly explores an overfitted space to estimate K. Non-Bayesian methods for mixture esti-
mation are particularly vulnerable to overfitting as it violates the regularity conditions required
for maximum likelihood estimation and likelihood based goodness-of-fit criteria [1].

The difficulty with order estimation stems from the fact that overfitting induces a special
type of non-identifiability in the posterior distribution of mixture models. Theoretically, any
mixture distribution can be represented equally well by one with a larger number of groups,
where some components have either merged together or have weights equal to zero [1, 16–19].
Developments in the Bayesian asymptotic theory of overfitted mixture models by [20] provide
a theoretical basis to use overfitting for order estimation.

[20] proved that quite generally, the posterior behaviour of overfitted mixtures depends on
the chosen prior on the weights, and on the number of free parameters in the emission distri-
butions (here “d”). Consider the prior on the weights Pπ, which we take to follow a Dirichlet
distribution, Pπ =D(α1, . . ., αK). Ifmin(αk, k� K)> d/2, asymptotically two or more compo-
nents in an overfitted mixture model will tend to merge with non-negligible weights. Con-
versely, ifmax(αk, k� K)< d/2, the extra components are emptied at a rate of n−1/2. Choosing
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a prior wheremax(αk, k� K)< d/2 penalises the analysis more subtly than using the dimen-
sions of the model or the number of parameters, placing mass on the sparsest configuration
approximating the density in a uniquely Bayesian manner. In this context an exchangeable
prior corresponds to choosing α1 = α2 = . . . = αK, which is done hereafter in this paper.

Overfitting is an appealing solution for order estimation as it requires little input from the
investigator; it simply involves selecting a large number of components (greater than the antici-
pated number), and choosing a prior which encourages the extra components to have weights
close to zero. This approach was recognised in [21], where Section 22.4 on mixtures with an
unspecified number of components focuses almost entirely on the strategy of deliberately over-
fitting for the purpose of order estimation. They recommend a straightforward approach of
counting the components whose posterior weights are larger than some threshold. In practice,
[21] suggest choosing α = n0/K, where n0 is the prior sample size of the components with a
default “noninformative” value of n0 = 1. However this leads to its own set of difficulties. First,
extra components have a non-zero probability of being allocated observations, allowing
MCMC samplers some freedom to explore the posterior surface. However, if the posterior
weights of the extra, unwanted groups are not close enough to zero they become impossible to
distinguish from the truly supported components. [21] note that components with small
weights were sometimes found to have non-trivial posterior means. Second, some choices of K
caused the posterior to contain several redundant, closely overlapping groups, indicating that
some merging of extra components with the truth is allowed to occur under such a prior.

In this paper, we aim to place stronger bounds on α so that extra components with no sup-
port have posterior weights approaching zero, to the point where they are allocated no observa-
tions. When extra components can be said to have emptied, order estimation should be a
simple case of reporting the number of alive (non-empty) components present in the posterior.

Issue 2: Obtaining a well mixed MCMC sample
MCMC algorithms are prone to becoming trapped in regions of large posterior probability for
high dimensional problems; they have a propensity for lack of mixing when the posterior con-
tains multiple well separated modes [17]. Some argue this hinders MCMC estimation since the
samplers cannot explore all potentially important regions of a target space, clusters may be
missed, and thus the MCMC cannot be assumed to have converged [8].

Parallel tempering is a popular method originating in physics which improves mixing in
multimodal situations. The general idea is to simulate J replicas of the original distribution of
interest, each produced under a different “temperature”, and to sample from each of these
allowing for information to flow between adjacent temperatures. The high temperature posteri-
ors are increasingly flattened, providing less extreme surfaces which allow MCMC samplers to
mix more freely, whereas the low temperature posteriors better reflect the precise distributions
in a local region of the probability space, but have a strong risk of becoming trapped in local
minima during sampling [22–24].

In essence, the higher temperature posteriors allow those of lower temperature to access a
more complete set of regions in the posterior space. Tempering can be done in many ways, the
most common approach being to raise the target distribution to a power T (where 0� T� 1),
which increasingly flattens the distribution as T! 0. While tempering is usually performed
directly on the likelihood or the posterior distribution, it is also readily adaptable to other situa-
tions as recently demonstrated in an application to Approximate Bayesian Computation [25].

In the Methods section entitled “Prior Parallel Tempering (PPT)”, a parallel tempering algo-
rithm is developed using α to directly control the degree of tempering as well as obtain the
desired target distribution.
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Issue 3: Untangling the label switching
The third challenge is to retrieve the posterior estimates from the target chain of the MCMC.
These are non-identifiable due to label switching, a phenomenon which occurs when
exchangeable priors are placed on mixture parameters. Label switching results in a posterior
which is invariant to permutations of the labelling of components [26]. In essence, the group
names of two components ‘switch’ randomly during MCMC, resulting in the marginal poste-
rior distributions of each parameter to be identical for all groups. Resolving the label switching
can be a difficult task but its presence is proof of adequate mixing and is an important require-
ment to establish that an MCMC sampler has converged [27–29].

Excellent reviews of the label switching issue and a wide range of potential solutions can be
found in [30] and [27]. An increasingly popular approach is to employ a relabelling scheme,
such as that proposed by [26] and [31], where the posterior samples of the parameter of interest
are clustered according to a k-means algorithm [30]. This method converges to local minima,
so the results based on multiple starting points are compared to identify the optimal solution.
This idea was extended by [8] who use themaximum a posteriori (MAP) estimate as the start-
ing point of the clustering.

Another approach is to use label invariant loss functions, the idea being to identify some
loss function based on a label invariant estimate and to select the permutation of the labelling
which minimises this loss. For example if the allocations are computed, [32] propose a loss
function based on the pairwise comparison of the allocations of each data point. To relabel the
samples, the algorithm permutes the labelling to minimise this loss. However this can incur
a high computational cost for mixtures with many components and rapidly become impracti-
cal [30].

Label switching in overfitted mixtures is particularly difficult to resolve as superfluous com-
ponents may merge or overlap with other components, or may be empty, which negatively
impacts on relabelling and clustering. The presence of many empty components is an addi-
tional level of complexity which is not generally accounted for by existing tools.

A new method for resolving the label switching problem is developed in the Methods sec-
tion “Resolving the label switching with Zswitch” which aims to combine the MAP and relabel-
ling approaches of [8] with the rich information available from the joint distribution of the
allocations used by [32].

Motivation
While overfitting is an appealing tool for Bayesian order estimation, the number of non-empty
components in the posterior of overfitted mixtures cannot currently be used to estimate of the
true number of components. Extra components always have a non-zero probability of being
allocated some observations, the number of which is determined by the prior on the weights.
Setting this to be very close to zero is not possible with current estimation methods as such a
prior creates a sparse posterior surface comprised of isolated modes separated by areas of near-
zero probability, inhibiting mixing.

The goal of this paper is to produce a sparse, representative posterior configuration of finite
mixtures with an unknown number of components. We develop an extension to parallel tem-
pering to enable a Gibbs sampler to sample from a well mixed posterior, where the unsup-
ported components contain no observations, to explore if this can be used for simple order
estimation.
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Methods

Models and notation
Given observations Y = {y1, . . ., yn}, component weights p ¼ fp1; . . . ; pKg, and component
parameters y ¼ fy1; . . . ; yKg, the full likelihood of a mixture model can be written as Eq 2.
Here, K is the number of components included in the model, where the true number of compo-
nents in Y is K0 and K0 < K.

pðY jp; yÞ ¼
Yn
i¼1

XK
k¼1

pkf ðyijykÞ ð2Þ

The allocations are modelled with a Multinomial variable Z = {z1, . . ., zn}, where zi *M(1;
π1, . . ., πK), so that yijzi = f(yijθzi) [13].

A Dirichlet prior is placed on the mixture weights {π1, . . ., πK}*D(α1, . . ., αK). As this
prior is always of the exchangeable form where α1 = α2 = . . . = αK, αk will be refered to as α
from this point.

Prior Parallel Tempering (PPT)
We aim to use the prior on the weights to define different degrees of tempering, setting up an
approximation to classical tempering which simultaneously models a wide range of possible
posterior configurations.

J chains are included in the PPT algorithm, each indexed by j. In a Bayesian setting, each
chain can be considered to have a different target posterior pj(zjjY). The zj denote the full set of
unknown parameters, such as zj ¼ fm

j
; s2

j ; p jÞg for univariate Gaussian mixtures, and

pðzjÞ ¼ pðm
j
j s2

j Þpðs2
j Þpðp jÞ. The posterior parameters sampled at each iteration t are denoted

zðtÞj . For iteration t, the posterior of the j’th chain is indexed as pjðzðtÞj j YÞ, and
pjðzðtÞj j YÞ / pjðY j zðtÞj ÞpjðzðtÞj Þ.

When a proposal is made to swap the samples of a pair of adjacent chains at a given itera-
tion, a Metropolis-Hastings update on the joint distribution must be made. Consider the pro-
posal to swap chains j and j0 at iteration t. The joint target of both chains can be written as

f ðzðtÞj ; zðtÞj0 Þ ¼ pjðzðtÞj j YÞpj0 ðzðtÞj0 j YÞ, and the goal of tempering is to preserve this target, only

accepting moves with probabilitymin(1, A). The acceptance ratio is the joint density of the
chains given the move is accepted, divided by the current joint density.

Omitting the iteration indicator (t) as all values are assumed to refer to the same iteration,
the acceptance ratio formulation is as follows:

A ¼ pjðzj0 jYÞpj0 ðzjjYÞ
pjðzjjYÞpj0 ðzj0 jYÞ

ð3Þ

In the case of PPT, the likelihood is the same in all chains, so pj(Yjzj) = pj0(Yjzj) and pj(Yjzj0)
= pj0(Yjzj0). Expanding the ratio of posterior distributions reduces A to the prior densities:

A ¼ pjðY jzj0 Þpjðzj0 Þpj0 ðY jzjÞpj0 ðzjÞ
pjðY jzjÞpjðzjÞpj0 ðY jzj0 Þpj0 ðzj0 Þ

ð4Þ

¼ pjðzj0 Þpj0 ðzjÞ
pjðzjÞpj0 ðzj0 Þ

ð5Þ
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Furthermore, as only the prior on the weights is allowed to change, Amay be further simpli-
fied. Recalling the prior structure p(z) = p(μ)p(σ2)p(π), A can be written as

A ¼
pjðm j0

js2
j0 Þpjðs2

j0 Þpjðp j0 Þpj0 ðm j
js2

j Þpj0 ðs2
j Þpj0 ðp jÞ

pjðm j
js2

j Þpjðs2
j Þpjðp jÞpj0 ðm j0

js2
j0 Þpj0 ðs2

j0 Þpj0 ðp j0 Þ
ð6Þ

Since pjðm j
js2

j Þ ¼ pj0 ðm j
js2

j Þ and pjðs jÞ ¼ pj0 ðs jÞ, the final acceptance ratio is comprised of

four densities defined by the prior on the weights only:

A ¼ pjðp j0 Þpj0 ðp jÞ
pjðp jÞpj0 ðp j0 Þ

ð7Þ

Sampling overfitted mixture models with PPT
We now set up Zmix, an MCMC sampling algorithm for mixture models which incorporates
PPT into a collection of Gibbs samplers. A set of J parallel, independent samplers are set up,
and as mentioned the degree of tempering is determined by the hyperparameter on the mixture
weights, (αj, j� J). The set of αj must be chosen to ensure a wide range of parallel chains and
include values from well above d/2 to close to zero. As the overall goal is to sample from a pos-
terior where extra components’ posterior weights are very close to zero, the chain generated by
the smallest value of αj in the PPT is referred to as the target chain of Zmix.

Choosing the candidate parameters (αj, j� J). The choice of αj is arbitrary at this point;
a wide range allows a broad spectrum of posterior configurations to be generated, but values
too far apart result in undesirably large changes between tempered chains (and the acceptance
ratio of the PPT algorithm is rarely satisfied). The smallest hyperparameter, αJ, is set very close
to zero to encourage unsupported components to have a negligible probability of being
assigned observations. In practice, the success of the tempering is ensured by tracking the
acceptance frequency of swaps between all chains to ensure an adequate acceptance rate. Val-
ues are chosen starting at α1 = 30 to ensure total merging in all simulations and examples
included this paper.

Two sets of (αj, j� J) are explored, a larger range in the early exploratory stage, followed by
a refined set. Initially J = 30 chains are used to explore the posterior behaviour of overfitted
mixtures under increasingly extreme conditions with values according to Eq 8.

fa1; � � � ; aJg ¼ f30; 20; 10; 5; 3; 1; 0:5; 0:52; 0:53; 0:54; 0:55; 0:56; 0:58; 0:59;

0:510; 0:515; 0:520; 0:530; 0:535; 0:540; 0:545; 0:550g
ð8Þ

Subsequently, this is reduced to J = 25 chains (Eq 9).

fa1; � � � ; aJg ¼ f30; 20; 10; 5; 3; 1; 0:5; 0:52; 0:53; 0:54; 0:55; 0:56; 0:58; 0:59;

0:510; 0:515; 0:520; 0:530g
ð9Þ

Zmix Algorithm. Recall that a Gibbs sampler [9] is based on drawing samples from the
full conditional distributions of each unknown variable, and that PPT requires only the prior
on the weights to differ between chains.

Define p j as the set of K weights for chain j where j = 1, . . ., J. The prior on the weights is

denoted pjðp jÞ � Dðaj; . . . ; ajÞ. The density of the distribution of p j given the allocations Zj(t)

at iteration t is written pjðpðtÞ
j j ZðtÞ

j Þ. Similarly, the parameters of the components of chain j are
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indiced as y j. Since the distribution of the parameters given the allocations and the data is the

same across all chains, we write pðyðtÞ
j j ZðtÞ

j ;YÞ for iteration t.

Before Zmix is implemented a choice of umust be made, which determines the probability
a tempering move will be attempted at a given iteration. For clarity, note that each parameter is
first indexed by tempering chain j, for example the weights in a chain are p j and the allocations

Zj. More specificity is added by including another level when required, so that for example the
k’th element of p j is denoted πjk.

MCMC sampling of the unknown parameters then proceeds as follows.

1. Initialise: Choose starting values for parameters pð0Þ
j and yð0Þj in all chains.

2. Step t: For each iteration t = 1, . . .,

a. Gibbs sampling. For each chain j = 1, . . ., J,

i. Generate the allocations ZðtÞ
j , from

p zðtÞji
¼ kjpðt�1Þ

j ; yðt�1Þ
j

� �
/ pðt�1Þ

jk
f yijyðt�1Þ

jk

� �
ð10Þ

for each i = 1, . . .., n and k = 1, . . ., K,

ii. Generate pðtÞ
j from

pj pðtÞ
j jZðtÞ

j

� �
¼ D aj þ nðtÞ

1 ; � � � ; aj þ nðtÞ
K

� �
ð11Þ

with n
ðtÞ
k ¼Pn

i¼1 IzðtÞ
ji
¼k; k � K .

iii. Generate yðtÞj from p yðtÞj j ZðtÞ
j ; Y

� �
b. Exchanging the chains.

With probability u* U(0, 1):

i. Draw j randomly from the set (1:J − 1), selecting chains j and j0 = j + 1 as candidates
for tempering.

ii. Accept the move with probability A, where

A ¼ min 1;
pj ðpðtÞ

j0 Þpj0 ðpðtÞ
j Þ

pj ðpðtÞ
j Þpj0 ðpðtÞ

j0 Þ

 !
ð12Þ

and perform the tempering:

A. Exchange pðtÞ
j and pðtÞ

j0 ,

B. Exchange yðtÞj and yðtÞj0 , and

C. Exchange ZðtÞ
j and ZðtÞ

j0 .

iii. Return to Step 2(a).

Important quantities. The number of non-empty components at each iteration t (after a

burn in period) for chain j is KðtÞ
j0

and we set Kj0
¼ fKð1Þ

j0
; . . . ;K ðtÞ

j0
; . . .g. The distinct values of
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Kj0
are defined asKk0 for k0 2 f1; . . . ; �K j

0g (where �K j0
is the maximum number of alive (non-

empty) groups observed in chain j). The mode of the empirical distribution of Kj0
is K̂ j0

.

Choice of mixture distribution. The asymptotic theory underpinning this paper can be
applied to a wide range of mixture distributions, so a univariate Gaussian mixture model is
adopted with f(.jθk)*N(μk, σk). A hierarchical prior is used on θk where
pðykÞ ¼ pðmk j s2

kÞpðs2
kÞ, in the conjugate form. This involves an Inverse Gamma prior on the

variances s2
k � G�1ða; bÞ, and a Gaussian prior on the means mk j s2

k � Nðl; s2
k=tÞ.

Hyperparameters are set to l ¼ 1
n

Pn
i¼1 yi, a = 2.5, b ¼ 1

n

Pn
i¼1 yi � lð Þ2, and τ = 1. This formu-

lation is chosen to facilitate Gibbs sampling, particularly the choice of l ¼ 1
n

Pn
i¼1 yi which cen-

tres the prior for the means within the range of the observed sample. This speeds up
convergence compared to choosing a value not within the range of the observations.

Resolving label switching with Zswitch
A relabelling algorithm is proposed here inspired by the methods of [8] and [32]. Unless other-
wise indicated, all notation in this section relates to the target chain j = J of the tempering algo-

rithm. For each iteration t, let K ðtÞ
0 denote the number of non-empty groups. Then for k0 = 1,

. . ., K, let Tðk0Þ ¼ ft;K ðtÞ
0 ¼ k0g denote the set of iterations for which KðtÞ

0 ¼ k0.
For each value of k0, choose a reference set of allocations Z

0 and corresponding parameters

y0, permuting the labels so that the first k0 groups are non-empty. Here, the reference is chosen
as the MAP estimator of the target posterior, computed using only non-empty components.

For each iteration t 2 T(k0) let n
ðtÞ
k be the number of observations assigned to component k

(for k = 1, . . ., K), and let the vector lðtÞ ¼ flðtÞ1 ; . . . ; lðtÞk0 g be the labels of the non-empty

components.
The joint distribution of the current and reference allocations is summarised by creating a

k0 × k0 tableM, whereM(r, c) is the cell pertaining to row r and column c, the columns denote

the reference labels, and the rows denote the elements of lðtÞ. The value ofM(r, c) is the number

of observations assigned to the component labelled lðtÞr which are also in the reference group
labelled c.

The tableM is the key of Zswitch and is used to identify the subset of reference components
which have a similar membership to each current component. The tuning parameterm,
defined below, determines the sensitivity of the algorithm by designating the minimum pro-
portion of the observations from each component which must belong to some reference group
before it is considered a candidate for relabelling.

For each row r = 1, . . ., k0, let I
r be the set of labels such that the proportion of observations

shared by the current group and reference group exceeds a thresholdm, that is

Ir ¼ fc;Mr;c=n
ðtÞ
k¼r > mg. Since Ir is a set of labels, jIrj denotes the size of the set, and Ir × Ir� is

the Cartesian product between Ir and Ir�. Let l̂ðtÞ
r denote the updated or resolved label for lðtÞr .

If jIrj = 1, then l̂ðtÞ
r ¼ Ir. In addition, if

Pk0r¼1 j Ir j¼ k0, then lðtÞ ¼ l̂ðtÞ. Updating the values

of lðtÞ relabels all associated allocations (Z(t)) and parameters (θ(t)), resolving the label
switching.

If
Pk0

r¼1 j Ir j > k0, there are multiple candidate labels for at least one component. The final
choice is the permutation of the candidate labels which minimises the distance between the
current and reference parameters under each possible relabelling scheme, as follows. Let SI be
the set of permutations from Ir to Ir, the Cartesian product of the k0 sets I

1, . . ., Ik0 ,
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SI ¼ I1 � . . .� Ik0 . The final relabelling scheme v� is then identified as

v� ¼ arg min
v2SI

X
j2Ir

p0
j � pðtÞ

vðjÞ
p0
j

�����
�����þ m0

j � mðtÞ
vðjÞ

m0
j

�����
�����þ s0

j � sðtÞ
vðjÞ

s0
j

�����
�����

All parameters and allocations are then relabelled according to lðtÞIr ¼ l̂v�ðIrÞ.

Zswitch algorithm. Define the number of observations assigned to each group k = 1, . . .,

K at each iteration as nðtÞ
k .

For k0 = 1, . . ., K, Tðk0Þ ¼ ft;K ðtÞ
0 ¼ k0g:

1. Select reference Z0 and y0. Permute the labels of ðZ0; y0Þ so that the first k0 groups are non-
empty.

2. Step t: For each iteration t 2 T(k0),

a. Phase one: Allocation-based relabelling.

i. For k = 1, . . ., K, compute nðtÞk .

ii. Create lðtÞ ¼ flt1; . . . ; ltk0g, the vector of component labels for which nðtÞk 	 1 for k =

{1, . . ., K}.

iii. ConstructM, a k0 × k0 table and set

Mðr;cÞ ¼
XN
i¼1

1
z
ðtÞ
i ¼r

� 1
z
ð0Þ
i ¼c

r; c � k0 ð13Þ

iv. For r = 1, . . ., k0, start with an empty set Ir = ϕ, and let

Ir ¼ c;
Mðr;cÞ

nðtÞ
r

> m

� �
ð14Þ

If jIrj = 1, let l̂ðtÞr ¼ I r.

v. If
Pk0

r¼1 j I r j¼ k0, relabel Z
(t) and yðtÞ by setting lðtÞ ¼ l̂ ðtÞ and exit loop.

vi. If
Pk0

r¼1 j I r j> k0, proceed with Phase two.

b. Phase two: Parameter-based relabelling

i. Let SI be the set of permutations from Ir to Ir, found by computing the k0-fold Carte-

sian product SI ¼ I1 � . . .� I k0 .

ii. Find the permutation v� for which:

v� ¼ argmin
v2SIr

X
j2Ir

p0
j � pðtÞ

vðjÞ
p0
j

�����
�����þ m0

j � mðtÞ
vðjÞ

m0
j

�����
�����þ s0

j � sðtÞ
vðjÞ

s0
j

�����
����� ð15Þ

iii. Relabel Z(t) and yðtÞ by setting lðtÞIr ¼ l̂ v�ðI rÞ.

To ensure the success of Zswitch, density plots are created for each set of relabelled posterior
parameter estimates, and we deem the Zswitch successful when these are all clearly unimodal.
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Simulations and case studies
The results are presented according to the following evaluation strategy, which is designed to
explore the impact of αj, and particularly the behaviour of the target posterior. Replicate simu-
lation studies are included to explore the consistency of the observed behaviour, and case stud-
ies are also included for comparison with existing literature.

Simulations. A set of simulations representing a range of univariate Gaussian mixtures is
used to test and illustrate Zmix and Zswitch. Gaussian mixture models are considered, with
unknown means and variances for all components. Four simulations illustrate the methods in
this paper, denoted Sim 1- 4. Fig 1 includes histograms of samples where n = 200 from each
simulation as well as the density of the true underlying distribution. Sim 1 defines a well sepa-
rated mixture of K0 = 3 components. Sim 2 has the same number of groups but they are closer
together, with two high peaks whose tails overlap with a central component with a larger vari-
ance. Sim 3 represents a scenario where the K0 = 2 components are difficult distinguish; all
parameters except the variances are equal, producing a unimodal density. Sim 4 contains K0 =
3 components, where 99% of the observations are expected to represent only two components
with close means, while a third, better separated component is only allocated 1% of the weight.

Fig 1. Description of the four simulations considered in this paper.Density plots of the mixture distributions are indicated by a dashed line, and
histograms of a single realisation of each simulation (with n = 200) are included.

doi:10.1371/journal.pone.0131739.g001
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Sim 4 describes a situation where true groups with small weights exist, to better understand
how these can best be identified.

The parameters of the simulations are as follows:

Sim 1 K0 = 3 with p ¼ f0:5; 0:3; 0:2g , μ = {15, 7, 1} and σ2 = {1, 1, 1}

Sim 2 K0 = 3 with p ¼ f0:5; 0:3; 0:2g , μ = {−1, 10, 4} and σ2 = {0.5, 0.5, 3}.

Sim 3 K0 = 2 with p ¼ f0:5; 0:5g , μ = {1, 1} and σ2 = {10, 1}.

Sim 4 K0 = 3 with p ¼ f0:6; 0:39; 0:01g , μ = {6, 10, 20} and σ2 = {1, 1, 0.5}.

Evaluation strategy.

1. Exploratory simulations
For each of the four simulations, generate samples of size n = 100 and n = 200. Fit Zmix
with K = 10 to each simulation, for 50,000 iterations and 30 chains. Store the last 20,000 iter-
ations for all chains (j = 1, . . ., J).

a. Number of non-empty components:

Compute KðtÞ
0 , the number of alive (non-empty) components at each iteration, for each

chain (j = 1, . . ., J).

b. Model fit and parameter estimates:
Resolve the label switching for the target chain (where j = J) using Zswitch and proceed
with post-processing (described in detail further on). Compute posterior estimates of all
estimated parameters, including 95% credible intervals. Compute the posterior allocation
probabilities of each observation and each alive component.

2. Replicate simulations

a. Number of non-empty components
For n = 100 and n = 200, produce 20 replicates of each simulation.
Run Zmix for 20,000 iterations with K = 10 and 25 chains, saving the target chain (j = J)
for each run after 5000 iterations.

b. Compute KðtÞ
0 for each iteration, storing the vector K0. Compute the proportion of each

configuration represented, and the mode of the empirical distribution of KJ0 .

Case Studies. Three case studies are described to illustrate the results of Zmix and Zswitch
in practice. The first case study is the Acidity dataset, which consists of the log acidity index for
155 lakes in the North-Eastern United States [18]. These have been previously analysed as a
mixture of Gaussian distributions on the log scale by [18] who found evidence for two or three
groups. [14] found evidence for three to five components with the same model with a Revers-
ible Jump MCMC algorithm, while [21] overfit this dataset resulting in a posterior with two
true components.

The second case study involves the Enzyme dataset found in [33], which consists of mea-
surements of enzymatic activity in blood for an enzyme involved in the metabolism of carcino-
genic substances (velocity and substrate concentration), for a group of 245 unrelated
individuals. [33] first analysed this data and found a mixture of 2 skewed components using
MLE. [14] found evidence for 3 to 5 components using RJMCMC. [34] also modelled this data
with 2 skewed Gaussian components.

Overfitted Mixture Models
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Finally, Galaxy data [35] is considered since it has been investigated by many researchers
with a wide range of results [36–38]. It is a small dataset of 82 measurements of galaxy speeds
from 6 segments of the sky. It is of particular interest as different order estimation methods
have suggested that the data contains anywhere from 3 to 9 components [11, 19, 21, 37, 39–
41]. [40] observed that extra components appears to be modelling underlying skewness present
in the sample.

Evaluation strategy for Case Studies. For each case study, run Zmix for 50,000 iterations.

Extract the last 20,000 iterations of the target posterior. Subset by value of K ðtÞ
0 , and apply

Zswitch and post-processing to each subset. Compute and save posterior mean of all estimated
parameters, including 95% credible intervals, and posterior allocation probabilities for each
configuration considered.

Post-processing
For all but the replicate simulation studies, the same post-processing is performed on the target
posterior of the results of Zmix.

The iterations of the target chain are split into subsets by the number of non-empty compo-

nents present at each iteration, K ðtÞ
0 , and the label switching is resolved for each of these accord-

ing to Zswitch. Model quality statistics are particularly useful when multiple configurations are
present as they allow further comparison of the candidate models, and the following statistics
are computed for each subset processed by Zswitch.

For each considered configuration, identified byKK0
, the proportion of iterations repre-

sented is first computed to estimate the probability that the observations originate from a mix-
ture withKk0 components, p(Kk0). WhenKk0 = K0, the proportion of the observations whose
predicted allocations corresponds to their true groupings is computed. The mean absolute
error (MAE) and mean squared error (MSE) are calculated using the unswitched parameter
estimates.

The remaining statistics are based on posterior predictive testing, which are found by
resampling the posterior samples of the parameters in the target chain in order to predict
10,000 datasets of the same size as the original data. Mean absolute errors (MAPE) and mean
squared prediction errors (MSPE) are reported as an average over the replicates. Bayesian P-
values estimating p(min(Yrep)<min(Y)) and p(max(Yrep)<max(Y)) are included, which we
call Pmin and Pmax. Both are included as they can be useful in identifying a skewed fit. Predictive
concordance is then computed, which can be interpreted as the average proportion of yi’s that
are not outliers given the model (based on the suggestion that any yi that is in either 2.5% tail
area of yrepi should be considered an outlier) [42]. An ideal fit should have a predictive concor-
dance of around 95%[42].

A small set of plots is also created for each candidate configuration. Density plots of the pos-
terior paramaters illustrate their distribution and the success of Zswitch at relabelling the out-
put of Zmix. Also included is a plot of estimated allocation probabilities, and a plot of the
density of 10,000 predicted datasets overlaid by a that of Y to allow for the overall fit to be
explored and identification of areas of bad fit.

R Code. Please refer to S1 File to obtain the R code to perform all analyses described in the
methods.

Results
The following results show that the number of alive components, the set of which is denoted
KJ

0 for the target of an overfitted mixture modelled with Zmix, provides a sparse estimate of the
true number of components, K0. Given a large enough sample size and a well mixed MCMC
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sampler, there is little or no variation in KJ
0 and the mode of this distribution is equal to K0.

When the sample size is small relative to the complexity of the underlying mixture, K0 encom-
passes a small range of likely configurations, which tend to include the true value as well as one
or two more conservative estimates of the number of components. The estimated parameters
and allocation probabilities corresponding to each model (or configuration) considered can be
extracted directly from the target chain, and interpreted once label switching is resolved.

1. Exploratory simulations

1.(a) Exploring the distribution of Kj
0. Boxplots illustrating the distribution of Kj

0 are
presented in Fig 2 for each chain of Zmix j = {1, . . ., J}, where j = J corresponds to the target
posterior. Fig 2 contains these results for Sim 2, while the plots pertaining to the other simula-
tions can be found in the supplementary material (S1, S2, and S3 Figs).

For the simulations in this paper, when αj > 5 all components merge so that none are

empty. As αj approaches d/2 = 1, a slight decrease in K̂
j

0 can be observed. As the threshold of d/
2 is passed (at αj = 1), and αj decreases further, a steady drop in the number of non-empty
groups is evident, which continues as αj approaches zero.

Once αj is close to zero (approximately 3 × 10−8 here), the posterior distribution of Kj
0

appears to reach an equilibrium, and remain constant for all subsequent chains up to and
including the target. The posterior behaviour of the target KJ

0 is well exemplified by Fig 2,

where the following can be observed. When the sample size is large enough (n = 200 here), KJ
0

Fig 2. Number of alive (non-empty) groups Kj
0 for each chain j for Sim 2. Results are shown for Sim 2, n = 100 (left) and n = 200 (right). Boxplots of the

number of non-empty groups Kj
0 for each chain j are included; each chain represents posterior samples from the Zmix sampler with the hyperparameter αj on

the mixture weights, the value of which is included in red for each j.

doi:10.1371/journal.pone.0131739.g002
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represents a single configuration in all t iterations, so that Kjð1Þ
0 ¼ � � � ¼ KjðtÞ

0 . This is inferred to

be equal to the true number of components, and K̂ J
0 ¼ K0. In the case where n = 100, the range

of KJ
0 includes a small subset of likely configurations, in this case one with the true number of

components, and an alternate posterior configuration with one fewer group.
This behaviour is observed consistently across the four simulations except for Sim 4 with

n = 100, where the range of Kj
0 does not include the true value K0; all iterations represent a pos-

terior with only 2 groups. Since the true allocations are known here, it is noted that the compo-
nent with πk = 0.01 is not represented in this realisation Sim 4, and thus could not be
estimated.

1.(b) Model fit and parameter estimates. The candidate models found by Zmix defined
by the values ofKK0

for k0 ¼ ð1; . . . ;KJ
0Þ are compared using the posterior parameter estimates

obtained from the target posterior. A set of summary and model quality statistics computed for
each configuration (or number of components) is included in Table 1.

For all simulations when n = 100, Zmix tends to place a higher probability on the configura-
tion with fewer components, and when n = 200 a single configuration (or model) is represented
in the posterior. The replicate study in the following section provides a comprehensive explora-
tion of the distribution of KJ

0 for each sample size and simulation. When n = 100, there is some
ambiguity in the true number of components and a small subset of models is present in the
results. For Sim 1, the model quality statistics in Table 1 exhibit a marked preference for the
configuration withKk0 = 3. The statistics show a much smaller difference between competing
configurations for the other, more complex simulations, particularly Sim 3.

These statistics do not provide a complete view of the fit of each configuration. For example,
errors based on the estimated means invariably shrink slightly as more components are
included. While large changes may be useful and appear to point towards the right number of
components, we find visual evaluation tools to be quite illustrative and useful for decision mak-
ing. We focus on the results of Sim 2 in the following paragraphs; all corresponding figures for
the other simulations are available as supplementary material. Diagnostic plots can be found
for Sim 1 n = 100 and n = 200 in S4 and S5 Figs, and the same for for Sim 3 can be found in S6

Table 1. Goodness-of-fit statistics for each simulation estimated by Zmix.

Sim n Kk0
p(Kk0

) % {Pmin, Pmax} Con. MAPE MSPE

1 100 2 0.87 - 0.85, 0.22 0.93 228.66 964.68

1 100 3 0.13 99 0.88, 0.25 0.92 135.68 335.44

1 200 3 1.00 100 0.99, 0.74 0.90 225.48 424.33

2 100 2 0.67 - 0.99, 0.99 0.83 149.78 358.28

2 100 3 0.33 97 0.91, 0.97 0.85 111.24 207.58

2 200 3 1.00 97 1.00, 0.54 0.89 204.59 353.47

3 100 1 0.78 - 0.48, 0.03 0.98 191.52 576.03

3 100 2 0.22 70 0.46, 0.09 0.98 155.01 443.28

3 200 2 1.00 77 0.26, 0.01 0.96 327.23 1059.17

4 100 2 1.00 - 0.17, 0.34 0.93 92.24 141.79

4 200 3 1.00 99 0.78, 0.24 0.93 203.61 539.50

Kk0 is the number of non-empty groups in the configuration considered in that row. p(Kk0) is the estimated probability of this configuration. % refers to the

percentage of observations correctly reclassified when the correct number of components has been estimated. Conc. is the concordance, {Pmin, Pmax}

refer to the Bayesian P-values described in the methods. Finally the average Mean Absolute Prediction Errors (MAPE) and average Mean Squared

Prediction Errors (MSPE) are included.

doi:10.1371/journal.pone.0131739.t001
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and S7, and S8 and S9 Figs for Sim 4. Parameter summaries of all candidate configurations can
be found in S1 Table.

Exploring the results of Sim 2, from Table 1 it is known that when n = 200 p(Kk0 = 3) = 1,
and the resulting clustering is found to be very accurate with 97% of observations correctly
reclassified. Diagnostic plots for Sim 2 with n = 200 can be found in Fig 3. The predictive den-
sity plots show the three component model fits the data very well, and there is almost no uncer-
tainty in the clustering of each observation. It is observed that the label switching has been
resolved successfully, with all posterior densities exhibiting a single mode. Posterior parameter
estimates and 95% credible intervals are given in Table 2. Parameters for n = 200 are tightly
estimated with only the variances slightly inflated, attributable to the modest sample size.

Two sets of plots describe the results of Zmix for Sim 2 with n = 100, as two possible config-
urations were reported. Fig 4 illustrates these for both candidates, given p(Kk0 = 2) = 0.67, and
p(Kk0 = 3) = 0.33 from Table 1. For this simulation and sample size there is little difference evi-
dent in the overall fit of the model, and the predictive density plots are very close to Y forKk0 =
2 except for some skewness in the right tail. The same plots forKk0 = 3 show that this area of
bad fit is resolved by adding an extra component. The allocation probabilities highlight the dif-
ference between the two configurations. When only 2 groups are included, there is some uncer-
tainty in the posterior allocations of observations which fall in a small region between the
estimated components. This region forms the extra component included in the alternate con-
figuration, and here the allocations probabilities are very high for all observations: 97% of the
allocation are correctly predicted under this model.

Looking at the posterior parameter estimates of all the simulations considered, which can be
found in supplementary material S1 Table, parameter estimates when n = 200 are very close to
the true underlying values with some variances slightly inflated. As can be expected, estimated
variances are generally larger for the results where n = 100. Overall we find the clustering is
very successful for these simulations when the correct number of components is estimated,
ranging from 97% to 100% accuracy for all but Sim 3 (Table 1). Sim 3 contains two compo-
nents which overlap almost entirely, and here while the parameters are close to the truth, the
posterior allocations are only correctly estimated for 70% to 77% of the observations.

2. Replicate simulation study
Recall that for the replicate simulation study, 20 realisations of each simulation were created

and overfitted with K = 10 using Zmix and 25 chains. For each replicate, K̂ J
0 is estimated as the

most likely (most frequently observed) value of KJ
0. Table 3 shows the proportion of times each

K̂
J

0 is estimated for each simulation.

For all simulations across most replicates, when n = 100 the KJ
0 include a small range of val-

ues ofKk0, as in the exploratory simulations. For Sim 1 and 2, when n = 200 every replicate esti-
mates three components consistently. Sim 3 and 4 are more complex mixtures, and the target
of Zmix often encompasses a small range of one to three configurations.

For small sample sizes K̂
J

0 tends to underestimate the number of components. With a small

increase in sample size, the probability of K̂
J

0 providing a correct estimate of K0 increases
sharply. This is most evident for the simpler simulations included, but also by a clear trend for
Sim 3 and Sim 4.

0.1 Case Studies
In the analysis of the three case studies, Zmix results in posterior configurations with the same
number of components as the smallest number found by previous literature.
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Fig 3. Sim 2, n = 200,Kk0
= 3.Results of Zmix and Zswitch including, from top left to right: the posterior parameter densities of all parameters from estimated

groups, the posterior probability of allocations for each observation for each component, and a density plot of the data over the densities of 10,000 predicted
datasets of the same size from the posterior.

doi:10.1371/journal.pone.0131739.g003
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Acidity. Zmix finds that 2 components are best suited to model the Acidity data, with p
(Kk0 = 2) = 1. The target posterior does not contain any estimates from another configuration,
indicating there is no ambiguity in this decision. Referring to Fig 5, the two components are
well separated and there is little uncertainty in the posterior allocations, which are slightly less
sharply defined in a small region of overlap between the two groups. Posterior predictive plots
indicate the model represents the data well, with no need for any more components.

The resulting mixture has tightly estimated posterior parameter estimates, included here
with 95% credible intervals in brackets. One component is estimated with p̂1 ¼
0:60ð0:50; 0:68Þ and m̂1 ¼ 4:34ð4:25; 4:44Þ, ŝ2

1 ¼ 0:16ð0:11; 0:22Þ, while the other has an
estimated posterior weight of p̂2 ¼ 0:4ð0:32; 0:50Þ and is described by m̂2 ¼ 6:23ð6:03; 6:39Þ
and ŝ2

1 ¼ 0:31ð0:19; 0:50Þ.

Table 2. Estimated parameters of Sim 2 and 95% credible intervals for n = 100 and n = 200.

n Kk0
k0 p̂k0

(95% CI) m̂k0
(95% CI) ŝ2

k0
(95% CI)

n = 100 2 1 0.55 (0.44, 0.67) -0.68 (-1.14, 0.05) 2.29 (1.20, 4.89)

2 2 0.45 (0.33, 0.56) 9.03 (8.13, 9.99) 5.48 (1.90, 9.28)

3* 1 0.51 (0.39, 0.62)* -0.81 (-1.23, -0.42)* 1.69 (1.09, 2.69)

3* 2 0.38 (0.29, 0.48)* 9.79 (9.26, 10.30)* 2.31 (1.43, 3.82)

3* 3 0.11 (0.04, 0.21)* 3.85 (1.76, 5.48)* 3.95 (1.42, 10.54)*

n = 200 3* 1 0.53 (0.46, 0.60)* -0.93 (-1.13, -0.73)* 0.98 (0.73, 1.32)

3* 2 0.35 (0.28, 0.42)* 9.88 (9.54, 10.23)* 1.80 (1.23, 2.65)

3* 3 0.12 (0.07, 0.18)* 4.25 (3.14, 5.32)* 3.77 (1.67, 8.39)*

Kk0 defines the number of non-empty groups in the configuration considered in that row, and is annotated

by an asterisk when this is equal to the truth. The credible intervals which contain the true value of the

parameter are identified with an asterisk.

doi:10.1371/journal.pone.0131739.t002

Fig 4. Summary of the results for Sim 2 and n = 100. The first two rows of plots refer toKk0 = 2, and the
lower set refers toKk0 = 3. Results of Zmix and Zswitch are presented including, from upper left to lower right
of each set: the posterior parameter densities of all parameters from estimated groups, the posterior
probability of allocations for each observation for each component, and a density plot of the data over the
densities of 10,000 predicted datasets of the same size from the posterior. A panel of plots is included for
each candidate model found by Zmix.

doi:10.1371/journal.pone.0131739.g004
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Enzyme. Overfitting the Enzyme dataset with Zmix produces two possible alternate con-
figurations with two or three components, in a similar manner to the simulation results
observed where the sample size was too small. From Table 4 we obtain the probability that this
data can be modelled by 2 components is p(Kk0 = 3) = 0.90, and find that three components are
less likely, with p(Kk0 = 3) = 0.10.

The posterior parameters describing each possible configuration are

Table 3. Summary of the results for 20 replicate simulation study.

Sim 1 Sim 2 Sim 3 Sim 4

pðK̂ J

0 ¼ 1Þ n = 100 0.00 0.00 0.55 0.10

n = 200 0.00 0.00 0.05 0.00

pðK̂ J

0 ¼ 2Þ n = 100 0.75 0.85 *0.45 0.55

n = 200 0.00 0.00 *0.95 0.30

pðK̂ J

0 ¼ 3Þ n = 100 *0.25 *0.15 0.00 *0.35

n = 200 *1.00 *1.00 0.00 *0.70

Each cell represents the proportion of replicates whose most commonly reported model corresponds to

each value of K̂
J

0 . These are computed over 20 replicates using the target chain of Zmix. A * indicates

values corresponding to the true number of components for that simulation.

doi:10.1371/journal.pone.0131739.t003

Fig 5. Overfitting the Acidity dataset. Results of Zmix and Zswitch including from upper left to lower right: the posterior parameter densities of all
parameters from estimated groups, the posterior probability of allocations for each observation for each component, and a density plot of the data over the
densities of 10,000 predicted datasets of the same size from the posterior.

doi:10.1371/journal.pone.0131739.g005
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• ForKk0 = 2:

p̂1 ¼ 0:60ð0:54; 0:67Þ, m̂1 ¼ 0:19ð0:18; 0:21Þ, ŝ21 ¼ 0:01ð0:01; 0:01Þ.
p̂2 ¼ 0:40ð0:33; 0:46Þ, m̂2 ¼ 1:27ð1:16; 1:38Þ, ŝ22 ¼ 0:25ð0:18; 0:33Þ.

• ForKk0 = 3:

p̂1 ¼ 0:62ð0:55; 0:68Þ, m̂1 ¼ 0:2ð0:18; 0:21Þ, ŝ21 ¼ 0:2ð0:18; 0:21Þ.
p̂2 ¼ 0:18ð0:05; 0:33Þ, m̂2 ¼ 1:55ð1:05; 1:95Þ, ŝ22 ¼ 0:27ð0:05; 0:49Þ.
p̂3 ¼ 0:21ð0:07; 0:34Þ, m̂3 ¼ 1:11ð0:94; 1:61Þ, ŝ23 ¼ 0:09ð0:03; 0:30Þ.
Comparing the two candidate models with the model fit quantities in Table 4, the inclusion

of three components decrease the MAPE and MSPE slightly, but have little impact on the
remaining statistics. Concordance is observed to decrease with the addition of a third compo-
nent. The posterior predictive density plots in Fig 6 reveals little difference between the fit of
the two models, but the plot of the allocation probabilities reveals the difference in the candi-
date configurations. It is clear that the 2 component posterior provides a much more certain fit
with no uncertainty in the clustering of the data, whereas the 3 component model exhibits
much less clarity in the posterior allocation probabilities.

This case study illustrates the importance of making a final choice based on the original goal
of the analysis. Recall that the Enzyme dataset comprises measurements of enzymatic activity
in blood for an enzyme involved in the metabolism of a carcinogenic substance. While the pos-
terior may strongly favour 2 components, the fact that multiple configurations are included in
KJ

0 indicates there is some non-negligible probability that this is the true number of compo-
nents. The added cluster describes a smaller component with a larger mean, suggesting that a
small group of patients with a different distribution of enzymatic activity characterised by a
larger mean may be present. If a higher level of activity is believed to relate to a higher risk of
cancer, for example, then further analyses on a subset of individuals with potentially higher
risk may be of interest and the less likely model may be reported.

Galaxy. Surprisingly given the small sample size, analysis of this dataset results in a stable
target consistently representing only 2 components with similar means, m̂1 ¼
21:33ð20:76; 21:9Þ and m̂2 ¼ 19:47ð15:8; 22:69Þ (see Fig 7). One has a large weight of p̂1 ¼
0:72ð0:54; 0:86Þ and small variance ŝ2

1 ¼ 3:69ð2:31; 5:66Þ, modelling the peak at the center
of the range of Y, and the other is described by a smaller weight p̂2 ¼ 0:28ð0:14; 0:46Þ, but a
very large variance of ŝ2

2 ¼ 57:23ð30:41; 106:97Þ. This second group models the outlying

Table 4. Goodness-of-fit statistics for each case study.

Case Study Kk0
p(Kk0

) (Pmin, Pmax) Conc. MAPE MSPE

Acidity 2 1.00 (0.01, 0.99) 0.91 66.00 48.61

Enzyme 2 0.90 (1.00, 0.13) 0.91 54.63 30.26

Enzyme 3 0.10 (1.00, 0.58) 0.88 48.88 23.98

Galaxy 2 1.00 (0.81, 0.42) 0.96 229.52 1,480.50

Goodness-of-fit statistics for each case study. Kk0 is the number of non-empty groups in the configuration

considered in that row. p(Kk0) is the probability of this configuration estimated by Zmix. {Pmin, Pmax} refer to

the Bayesian P- values described in the methods, Conc. is the concordance, followed by the average

Mean Absolute Prediction Errors (MAPE) and average Mean Squared Prediction Errors (MSPE).

doi:10.1371/journal.pone.0131739.t004
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Fig 6. Overfitting the Enzyme dataset.Results of Zmix and Zswitch including, from upper left to lower right: the posterior parameter densities of all
parameters from estimated groups, the posterior probability of allocations for each observation for each component, and a posterior predictive density plot of
10,000 replicates with the density of the data represented as a dashed line.

doi:10.1371/journal.pone.0131739.g006
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values of the dataset at both tails. The posterior predictive density plot reveals that this is a rea-
sonable model for these data, resulting in similar predicted replicates.

Since the fitted mixture model places no restrictions on the variance of the underlying mix-
ture, this configuration is possible, and it appears reasonable to conclude that these data could
have originated from such a model. Given the physical origins of the data however, it may be
warranted to impose some restrictions on other priors or on the variances. [43] use astronomi-
cally motivated priors to model this dataset, and find evidence for 7 components. In the sensi-
tivity study conducted in [19], it is shown that while there appears to be evidence for anywhere
from two to eight components, there is a very large probability assigned to two components
when the variances is allowed to be large. In terms of Zmix, recall that in the simulation studies,
the algorithm was able to identify a component with a very small weight of πk = 0.01 in 35% of
replicates when n = 100, and 70% of replicates when n = 200; it is frequently able to identify
well separated univariate Gaussian components when these are represented by as few as two or
three observations in a sample. From these observations, there appears to be some evidence
that the Galaxy dataset may not originate from a Gaussian mixture. If this distribution is
Gaussian, a larger number of observations is required for Zmix to estimate a more complex
configuration, or some restrictions must be placed.

Discussion
The success of Zmix for order estimation is indicated by a close relationship between sample
size and the underlying complexity of a mixture distribution to be overfitted. However, this is
also true for all order estimation methods; a component must be adequately represented in the

Fig 7. Overfitting theGalaxy dataset. Results of Zmix and Zswitch including, from top left to right: the posterior parameter densities of all parameters from
estimated groups, the posterior probability of allocations for each observation for each component, and a density plot of the data overlaid over the densities of
10,000 predicted datasets of the same size from the posterior.

doi:10.1371/journal.pone.0131739.g007
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given sample before it can be estimated [1]. The algorithm is easy to implement and interpret,
and requires only that a maximum number of components is specified and that this is larger
than the expected upper bound of K0. It is based on the same basic format and conditional dis-
tributions as a standard Gibbs sampler on a single parametric model, with the addition of a
range of prior hyperparameter values implemented in the PPT algorithm.

Obtaining a well-mixed MCMC sample for mixtures can be a difficult task in mixture
modelling even when K0 is known, and Zmix can also be used in such cases to ensure plentiful
mixing. To ensure all groups merge in at least some tempered chains, the largest α used would
need to be large compared to the sample size. When the number of groups is overfitted this is
less important as the extra groups act as bridges between the supported modes, facilitating
mixing.

Given a large enough sample size relative to the underlying complexity of a mixture, Zmix
can provide an accurate estimate of the minimum number of components required to model
the given data. When there is some uncertainty in the best configuration which fits the sample,
Zmix produces a small range of candidate models. This commonly occurs when the sample
size is small relative to the complexity of the mixture. Using the distribution of the number of
non-empty components results in a strict subset of likely configurations smaller than that typi-
cally obtained by multidimensional samplers, as the chosen prior forbids components to be
identical in the target posterior and prevents unnecessary groups from being allocated
observations.

The method can underestimate the number of components present when there is a small
sample size, or the observations represent many heavily overlapping groups. This is partially
due to a hyperparameter on the mean and variance of the Gaussian distributions of each com-
ponent; the τ hyperparameter. When τ = 1, the prior for the mean is strongly linked to the esti-
mated variance of that component; such a prior assumes that the variance of the mean μk of
each component is the same as the variance of that component, s2

k . This choice may be too
restrictive for certain applications, and lowering this value will prevent groups with small sam-
ple sizes from being assimilated into the tail of other groups. Overfitting with τ = 1 will cause
the posterior to have a stronger preference for a model with fewer components and large vari-
ances over one with more groups characterised by large means and small variances. The value
of τ can be adjusted easily in the R implementation of Zmix.

This behaviour is observed in the results of the Galaxy case study, where only two compo-
nents are found by Zmix. It may be more reasonable to weaken the bounds on the variance of
the means for this dataset to reflect our existing knowledge that the observations do come from
many small, separate sections of space. Repeating the analysis with τ = 0.01 results in a poste-
rior with a 100% probability of three non-empty components, placing the two small clusters in
each tail in separate groups (results not shown).

The tempering algorithm (PPT) which is incorporated in Zmix allows for an exchange of
information between the many potential overfitted posteriors, from fully merged configura-
tions with many identical components to the sparsest configuration, where components either
differ by at least one parameter or are empty. If an overfitted model with a value of the com-
mon hyperparameter α very close to zero is fit directly with no tempering, the extreme poste-
rior surface prevents the sampler from exploring this space, no mixing is present, and the
results often lead to a single group. PPT allows a better exploration of the posterior distribu-
tion, even for small values of α. The number of alive components hovers within a small range,
providing a small set of candidate models for further comparison. Model averaging has not
been considered in this paper but could also be a useful way to interpret the target posterior
when multiple configurations are present.
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In considering the number and range of αj values which should be included in Zmix for
each chain j = (1, . . ., J), the minimum αJ should theoretically define a space where all extra
groups are expected to have weights approaching zero. Since the goal of Zmix is to overfit K
intentionally in order to create empty components, it makes sense to set the smallest value of α
in relation to n as well as d, selecting αmuch smaller than 1/n. Indeed by doing so, one expects
the posterior distribution of the number of non empty components to converge to a point mass
on the true number of components.

Aside from modelling and order estimation, the Zswitch algorithm proposed is able to rap-
idly undo the label switching in the target posterior of Zmix. It is at this stage designed specifi-
cally for dealing with the output of overfitted mixture models with empty components, but the
method is available to be implemented in other applications as needed. It can be applied with
little modification to any mixture modelling situation where a latent allocation parameter is
included; the set of parameters utilised in the second phase of Zswitch simply needs to be
updated to match the desired distribution. Please note that a rigorous comparison of the per-
formance of Zswitch versus other relabelling methods has not been performed, and this is
planned for future work.

It is theoretically possible for Zswitch to result in a computational overload in practice, if it
attempts to compute large permutations of labels (for example, if 6 or more labels were to be
permuted in the second step, Zswitch would need to compute 6! label permutations). This was
however not observed in any of our experiments, and is unlikely to occur in practice; for 6! to
need to be computed, a mixture posterior would have to contain 6 components all of which
overlap heavily with each other. In the unlikely event this does occur, simply reducing the sen-
sitivity of Zswitch slightly (by choosing a larger value ofm) will prevent such an overload. One
must also ensure that Zswitch is only applied to a posterior containing no identical (merged)
components.

We present Zmix and Zswitch as part of an R package called Zmix, which is available on
Github at github.com/zoevanhavre/Zmix. Zmix includes all methods and functions described
in this paper for overfitting univariate Gaussian mixtures, with the intention of providing a
straightforward Bayesian tool for modelling and order estimation of the most common type of
mixtures.

This paper presents a comprehensive solution to estimating Gaussian mixtures with an
unknown number of components, dealing with three general problems which inhibit accurate
estimation. The issue of non-identifiability induced by overfitting is cast as an order estimation
tool using recent theory on the effect of the prior on the weights of an overfitted Bayesian mix-
ture model. MCMCmixing difficulties common to mixtures are greatly amplified by this prior,
and this is resolved by Prior Parallel Tempering which ensures full posterior exploration by
travelling through all possible configurations of the posterior. This is analogous to parallel tem-
pering but uses a much simpler acceptance ratio formulation. Finally, Zswitch provides a
straightforward and complete relabelling algorithm which is adaptable to a wide range of mod-
els, allowing the results of an MCMC sampler on mixture data to be interpreted with no extra
modelling effort on the part of the analyst.

Supporting Information
S1 Fig. Sim 1, Boxplot of the number of non-empty groups for each chain. For n = 100 and
n = 200, the distribution of the number of alive (non-empty) groups in each chain of the tem-
pering is plotted across all 50,000 iterations minus a burn in of 5,000. The value of the hyper-
parameter of the weights α of each chain is included in red.
(EPS)
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S2 Fig. Sim 3, Boxplot of the number of non-empty groups for each chain. For n = 100 and
n = 200, the distribution of the number of alive (non-empty) groups in each chain of the tem-
pering is plotted across all 50,000 iterations minus a burn in of 5,000. The value of the hyper-
parameter of the weights α of each chain is included in red.
(EPS)

S3 Fig. Sim 4, Boxplot of the number of non-empty groups for each chain. For n = 100 and
n = 200, the distribution of the number of alive (non-empty) groups in each chain of the tem-
pering is plotted across all 50,000 iterations minus a burn in of 5,000. The value of the hyper-
parameter of the weights α of each chain is included in red.’
(EPS)

S4 Fig. Sim 1 (n = 100): Results of Zmix and Zswitch. From upper left to lower right: the pos-
terior parameter densities of all parameters from estimated groups, the posterior probability of
allocations for each observation for each component, and a density plot of the data over the
densities of 10,000 predicted datasets of the same size from the posterior. A panel of plots is
included for each candidate model found by Zmix.
(EPS)

S5 Fig. Sim 1 (n = 200): Results of Zmix and Zswitch. From upper left to lower right: the pos-
terior parameter densities of all parameters from estimated groups, the posterior probability of
allocations for each observation for each component, and a density plot of the data over the
densities of 10,000 predicted datasets of the same size from the posterior.
(EPS)

S6 Fig. Sim 3 (n = 100): Results of Zmix and Zswitch. From upper left to lower right: the pos-
terior parameter densities of all parameters from estimated groups, the posterior probability of
allocations for each observation for each component, and a density plot of the data over the
densities of 10,000 predicted datasets of the same size from the posterior. A panel of plots is
included for each candidate model found by Zmix.
(EPS)

S7 Fig. Sim 3 (n = 200): Results of Zmix and Zswitch. From upper left to lower right: the pos-
terior parameter densities of all parameters from estimated groups, the posterior probability of
allocations for each observation for each component, and a density plot of the data over the
densities of 10,000 predicted datasets of the same size from the posterior.
(EPS)

S8 Fig. Sim 4 (n = 100): Results of Zmix and Zswitch. From upper left to lower right: the pos-
terior parameter densities of all parameters from estimated groups, the posterior probability of
allocations for each observation for each component, and a density plot of the data over the
densities of 10,000 predicted datasets of the same size from the posterior. A panel of plots is
included for each candidate model found by Zmix.
(EPS)

S9 Fig. Sim 4 (n = 200): Results of Zmix and Zswitch. From upper left to lower right: the pos-
terior parameter densities of all parameters from estimated groups, the posterior probability of
allocations for each observation for each component, and a density plot of the data over the
densities of 10,000 predicted datasets of the same size from the posterior.
(EPS)

S1 Table. Parameter summaries for each model estimated by Zmix, for each simulation.
Parameter summaries are included for n = 100 and n = 200 for all non-empty components for
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Sim 1 to 4. 95% Bayesian credible intervals are included for all estimates. K̂ 0 defines the num-
ber of non-empty groups in the configuration considered in that row, and is annotated by an
asterisk when this is correct. The parameter estimates corresponding to this configuration
which contain the true value are similarly identified with an asterisk.
(PDF)

S1 File. R Code. Script file (format .r) containing instructions for downloading and installing
the Zmix package, obtaining the simulations and case studies, and repeating the analysis per-
formed in the paper.
(R)
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