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A B S T R A C T

Inhibition abilities are often impaired in children born very preterm. In typically-developing individuals, inhibition has been associated with structural brain con-

nectivity (SC). As SC is frequently altered following preterm birth, this study investigated whether aberrant SC underlies inhibition deficits in school-aged children

born very preterm. In a group of 67 very preterm participants aged 8–13 years and 69 term-born peers, inhibition abilities were assessed with two tasks. In a subgroup

of 50 very preterm and 62 term-born participants, diffusion tensor imaging (DTI) data were collected. Using network-based statistics (NBS), mean fractional anisotropy

(FAmean) was compared between groups. Associations of FAmean and inhibition abilities were explored through linear regression. The composite score of inhibition

abilities was lower in the very preterm group (M ¼ �0.4, SD ¼ 0.8) than in the term-born group (M ¼ 0.0, SD ¼ 0.8) but group differences were not significant when

adjusting for age, sex and socio-economic status (β ¼ �0.13, 95%-CI [-0.30, 0.04], p ¼ 0.13). In the very preterm group, FAmean was significantly lower in a network

comprising thalamo-frontal, thalamo-temporal, frontal, cerebellar and intra-hemispheric connections than in the term-born group (t ¼ 5.21, lowest p-value ¼ 0.001).

Irrespective of birth status, a network comprising parietal, cerebellar and subcortical connections was positively associated with inhibition abilities (t ¼ 4.23, lowest p-

value ¼ 0.02). Very preterm birth results in long-term alterations of SC at network-level. As networks underlying inhibition abilities do not overlap with those differing

between the groups, FAmean may not be adequate to explain inhibition problems in very preterm children. Future studies should combine complementary measures of

brain connectivity to address neural correlates of inhibition abilities.

1. Introduction

Adverse effects of very preterm birth (i.e., <32 weeks of gestational

age) have been reported on multiple behavioral, academic and cognitive

domains (Allotey et al., 2018; Twilhaar et al., 2018). Among the abilities

most frequently impaired are executive functions, a set of higher-order

cognitive skills, which facilitate various aspects of goal-directed

behavior (van Houdt et al., 2019; Diamond, 2013). Special research in-

terest lies in inhibition abilities, since they are reported to form an

elemental component of executive functioning and play a crucial part in

the development of other executive functions (Miyake et al., 2000;

Anderson, 2002; Aron et al., 2004; Best and Miller, 2010; Brocki and

Bohlin, 2004). Inhibition abilities have been shown to be strong pre-

dictors of emotional regulation (Jahromi and Stifter, 2008), (social)

behavior (Luna and Sweeney, 2004) and long-term academic success

(Borst et al., 2014; Jaekel et al., 2016). There are ambiguous findings on

inhibition abilities in individuals born very preterm, with evidence for

inhibition deficits (Baron et al., 2012; B€ohm et al., 2002; B€ohm et al.,

2004; Harvey et al., 1999; Loe et al., 2015; Pizzo et al., 2010; Brumbaugh

et al., 2014; Witt et al., 2014; Aarnoudse-Moens et al., 2009a; Marlow

et al., 2007; Orchinik et al., 2011; Cserjesi et al., 2012; Loe et al., 2012;

Aarnoudse-Moens et al., 2012; de Kieviet et al., 2014; Ritter et al., 2013a;
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Bayless and Stevenson, 2007; Mulder et al., 2011a; Ford et al., 2011; Luu

et al., 2011), unimpaired inhibition abilities (Baron et al., 2012; B€ohm

et al., 2004; Brumbaugh et al., 2014; Aarnoudse-Moens et al., 2009a;

Hodel et al., 2016; Potharst et al., 2013; Ni et al., 2011; Wolfe et al., 2015;

de Kieviet et al., 2012), and a potential catch-up to term-born peers’

abilities around middle school-age (Loe et al., 2012; Aarnoudse-Moens

et al., 2012; de Kieviet et al., 2014; Ritter et al., 2013a; Elgen et al., 2004;

Johnson et al., 2015; R�eveillon et al., 2016; Anderson et al., 2011; Ritter

et al., 2014; Shum et al., 2008; Kulseng et al., 2006; Nosarti et al., 2006)

(for a comprehensive review see R�eveillon et al., 2018).

Structural brain connectivity describes the presence, strength and

integrity of white matter tracts connecting different brain regions and

can be quantified in multiple measures of diffusion tensor imaging (DTI),

such as mean fractional anisotropy (FAmean) of water diffusion as a

common measure of connection efficiency (Griffa et al., 2013). In typi-

cally developing children and adolescents, evidence has been reported

that better inhibition abilities are associated with better structural brain

connectivity in frontal, parietal and motor cortex regions as well as

subcortical brain regions (Madsen et al., 2010; Seghete et al., 2013;

Chaddock-Heyman et al., 2013). Further, based on measures of func-

tional brain connectivity, meta-analytic evidence of a large-scale

distributed brain network underlying inhibition abilities has been pre-

sented (Zhang et al., 2017). Together, this suggests that imaging ap-

proaches that regard the whole network topology should be best suited to

determine the neural correlates of inhibition abilities in preterm-born

compared to term-born children. So far, only a limited number of

studies exist investigating the effects of preterm birth on the integrity of

the whole-brain structural topology on network level in infancy (Batalle

et al., 2017; Pandit et al., 2013; Ball et al., 2014; Tymofiyeva et al., 2012),

at early school-age (Kim et al., 2014; Fischi-G�omez et al., 2014) and in

adulthood (Karolis et al., 2016). To our knowledge, no study to date has

investigated whole-brain structural connectivity on network level in

children at middle school age. The current study, thus, aimed to 1)

compare inhibition abilities between children born very preterm and at

term at middle school age, 2) compare whole-brain structural connec-

tivity on network level between groups, and 3) investigate potential as-

sociations between inhibition abilities and whole-brain structural

connectivity on network level.

2. Materials and methods

2.1. Participants

The recruitment procedure of the EpoKids study, an ongoing pro-

spective follow-up study investigating the long-term neuroprotective

effect of erythropoetin (Epo) on executive functions in children born very

preterm, has been reported previously (Wehrle et al., 2018). In short,

very preterm infants (gestational age <32 weeks) born between 2005

and 2012 who participated in the randomized control trial “Does

erythropoietin (Epo) improve outcome in preterm infants”

(NCT00413946) and were followed-up at age two years (Natalucci et al.,

2016) are eligible for the EpoKids study. The current analysis reports on

children born between 2005 and 2009. Term-born children were

recruited as friends and siblings of participants born very preterm, or via

flyers, notices, and social media, and included into a control group. In-

clusion criteria were birth at term (i.e., �37 weeks; 0 days of gestation),

no neonatal complications and no neurodevelopmental or neurologic

disease at present or in the past (i.e., ADHD, autism spectrum disorder,

epilepsy, encephalopathy), as reported by the parents.

2.2. Study procedure

Assessments took place at the Child Development Center at the Uni-

versity Children’s Hospital Zurich (exception: seven assessments in

Geneva. For a detailed description, see Results) between July 2017 and

September 2019, either on weekdays or weekends, at the families’

convenience. In the course of one assessment day (approximately 7

hours), participants underwent a comprehensive neuropsychological test

battery in a pseudo-randomized order. At the end of the assessment day,

cerebral MRI took place at the MR center of the University Children’s

Hospital Zurich. The study was approved by the ethical committee of the

Canton of Zurich. Parents of the study participants signed a written

informed consent form. All participating children were asked for their

verbal consent. They were compensated with a gift voucher.

2.3. Instruments and measures

For participants born very preterm, perinatal data were collected

from the original randomized trial, conducted at the Department of

Neonatology at the University Hospital Zurich. Socio-economic status

(SES) was estimated using a six-point scale (1–6) based on maternal and

paternal education (Largo et al., 1989). SES scores of both parents were

summed, resulting in total SES scores ranging from 2 to 12. Higher values

reflect higher SES. IQ was estimated with a 4-subtest combination of the

Wechsler Intelligence Scale for Children (Petermann and Petermann,

2008): block design, similarities, digit span forward/backward, and

coding (Waldmann, 2008).

2.4. Inhibition abilities

Two standardized neuropsychological tasks were administered in

random order to investigate two key functions of inhibition abilities: 1)

The stop signal paradigm is a computerized instrument assessing

response inhibition. The participant is instructed to respond as quickly

and correctly as possible to a go-stimulus (cartoon airplane) and to

inhibit this action if a stop-stimulus (red frame around airplane) appears

after presentation of the go-stimulus (25% of the trials). The delay of the

stop-stimulus depends on the participant’s performance: starting at 250

ms, it is increased by 50 ms if the participant inhibits a response

correctly, and decreased by 50 ms if the child fails to inhibit a response.

The task-related settings were resumed from a previous study with very

preterm born children at school age (Aarnoudse-Moens et al., 2012). The

outcomemeasure was the stop signal reaction time (SSRT), defined as the

mean reaction time of the participant minus the mean delay of the

stop-stimulus (Verbruggen and Logan, 2008). 2) The participants’

interference control was assessed with the D-KEFS0 Color-Word Inter-

ference Test (Delis et al., 2001). In this task, the participant is asked to

name the ink colors of words that are presented in an incongruent ink

color (‘Stroop effect’ (MacLeod, 1991)). As it has been reported previ-

ously that interference control is mediated by processing speed in chil-

dren born very preterm (Mulder et al., 2011a), completion time for this

task was adjusted for individual processing speed as assessed by naming

colored fields as fast as possible. To allow for equally scaled results of

both inhibition tasks, the completion times (in seconds) were z-trans-

formed using the mean and standard deviation of the term-born group.

The z-scores were subsequently averaged and combined into a composite

score serving as an overall estimate of the participants’ inhibition abili-

ties (see Fig. S1 for information on the association between the individual

tasks). Higher z-scores reflect better inhibition abilities.

2.5. Magnetic resonance imaging

Cerebral MRI was performed on a 3T GE MR750 scanner, using an 8-

channel receive-only head coil. Hearing protection was provided to all

participants with earplugs and headsets. The heart and respiratory rate

was monitored continuously.

In the context of a comprehensive MRI study protocol including

volumetric, structural, functional, and spectroscopy sequences, T1-

weighted MR images with a 3D fast spoiled gradient echo sequence

(echo time¼ 5 ms, repetition time¼ 11ms, inversion time¼ 600ms, flip

angle ¼ 8�, field of view (FOV) ¼ 25.6 cm, reconstruction matrix: 256 �

256), and T2-weighted images with a fast recovery fast spin echo
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sequence (echo time¼ 98 ms, repetition time¼ 2800 ms, FOV¼ 256 cm,

matrix: 256 � 256) were acquired. DTI was performed using a pulsed

gradient spin echo echo-planar imaging sequence with echo time ¼ 77

ms, repetition time ¼ 6500 ms, field of view ¼ 27.8 cm, matrix ¼ 96 �

96, slice thickness¼ 3.6 mm. The diffusion encoding scheme included 35

non-collinear gradient encoding directions with b ¼ 1000 and four

interleaved b ¼ 0 images.

2.6. Diffusion tensor image processing

DTI data were visually assessed for artifacts by observing each

diffusion gradient volume and each image slice for signal dephasing or

spin history artifacts caused by movements. If the participant moved

excessively during the DTI scan or the images showed grave artifacts

induced by (partly) metallic dental braces, data were discarded and the

participant was excluded. Participants were also excluded if more than

three diffusion-weighting gradient volumes were corrupted by motion

artifacts. Image frames and the corresponding entries in the b-matrix and

b-value descriptor files were removed from further analysis if head

movement caused extensive signal dropout throughout the brain in the

given frame. The unprocessed DTI images were used to estimate an

outline that separates the brain from non-neuronal tissues (brain mask-

ing) using the BET tool in the FSL software package (Smith, 2002). Each

participant’s brain mask was visually assessed, and upon inconsistency,

manual corrections were performed. A custom script written in bash

programming language for Linux was used to process the DTI images by

wrapping previously published algorithms as described below. Spurious

image shifts originating from eddy currents and real movement were

corrected with the eddy command in the FSL software library (version

6.0). The CUDA 8.0 implementation was used for DTI correction, which

included the slice-to-volume movement correction and outlier replace-

ment. During this step, the following parameters were used: 2 standard

deviations as criterion for classifying a slice as outlier (ol_nstd ¼ 2),

replacement of both positive and negative outliers (ol_pos), 6 slice to

volume iterations (s2v_niter ¼ 6), filter width to use for pre-filtering of

data for the estimation process 10,6,4,2,0,0 mm for each subsequent it-

erations. Next, FA and mean diffusivity (MD) maps were calculated by

running the dtifit command in FSL on the motion corrected DTI dataset.

2.7. Structural connectivity network construction

While DTI processing and tractography were performed in the native

space of the DTI data, to obtain regions of interest (ROIs), the FMRIB58

FA template (MNI152 space) was transformed to the participants’ FA

image. A linear affine transformation (FLIRT, FSL) followed by a non-

linear deformation (NIFTIreg software, reg_f3d command, control grid

size: 5 * 5 * 5 mm, weight of the bending energy penalty term: 0.005,

gradient smoothing with a kernel of 4 mm) was performed. This trans-

formation was used to align the ROI system of the AAL atlas to the par-

ticipants’ DTI coordinate system.

Seed points for probabilistic diffusion tractography (probabilistic

index of connectivity method as implemented in the Camino Diffusion

Toolkit (Parker et al., 2003)) were defined as the voxels with FA � 0.1

within a whole-brain mask. Orientation density functions (ODFs) were

estimated using fourth order Spherical Harmonics and amaximum of two

local ODF maxima were set to be detected at each voxel and probability

density function (PDF) profile was produced from the local ODF maxima.

Fiber tracking was carried out on the voxel-wise PDF profile with the

Euler interpolation method using 10 iterations per each seed point.

Tracing stopped at any voxel whose FA was less than 0.2.

Weighted, undirected structural connectivity networks were formed

based on whole-brain probabilistic tractography by means of mean

fractional anisotropy (FAmean). Nodes corresponded to the AAL ROIs in

participant space. In the FAmean structural connectivity network, the

strength of each edge was given by the FAmean value of all tractography

streamlines connecting the regions at the two end-points. To avoid

systematic differences in absolute number of edges, we used a thresh-

olding procedure based on network costs, which ensures similar network

topology across participants by keeping the same number of strongest

connections.

Network cost for each participant without thresholding (actual

network edges/all possible edges) was calculated. We made three con-

siderations when thresholding the connectivity matrices: first, our study

is in part a case-control study where variable thresholding can introduce

systematic differences between the very preterm and control groups.

Secondly, we aim to reveal correlations irrespective of birth status, in

which case between-group differences can be controlled for by including

a grouping variable and the mean connectivity as covariates in the sta-

tistical models. Using an absolute threshold can lead to different numbers

of network edges across datasets, and different levels of network density

between control and patient cases (vanWijk et al., 2010). Third, to tackle

false positive connections in the structural connectivity matrix. In pro-

portional thresholding (van den Heuvel et al., 2017) potential

between-group differences assumed to result from differences in the to-

pological organization of edges and not due to differences in number of

edges. We utilized a dual strategy: first to check whether overall struc-

tural connectivity differences exist between groups, and then carry out

proportional thresholding to select the threshold where very preterm and

control differences are maximised. We selected the lowest number across

the study cohort and used this as an upper value of the proportional

threshold procedure, defined as Tmax. The structural connectivity net-

works were thresholded from a density of 0.5% to Tmax with the

threshold_proportional command in the Brain Connectivity Toolbox

(Rubinov and Sporns, 2010), and the same surviving edges were kept for

the FAmean networks. At each cost-thresholded level, nodal strength for

every brain region was calculated using the Brain Connectivity Toolbox

for Matlab (Rubinov and Sporns, 2010).

2.8. Statistical methods

2.8.1. Demographic, neurodevelopmental, and cognitive data

Descriptive statistics comprised mean and standard deviation for the

continuous variables and numbers and percentages of total for the cat-

egorical variables. The comparison of demographic and neuro-

developmental data between study groups was conducted using

independent samples t-test, Wilcoxon rank-sum test, or Chi-squared test,

as appropriate. Using linear regression, the effect of preterm birth on

inhibition abilities was quantified. The regression analyses were adjusted

for age at assessment, sex, and SES to account for potential confounding

bias. In order to avoid the exclusion of study cases from the model due to

missing information on (one of) the parents’ education (n ¼ 8), single

imputation was applied for missing SES data. As the EpoKids study is

currently ongoing, continued blinding of the study team needs to be

ensured. Thus, the assignment at birth to either the intervention or pla-

cebo arm was encoded as ‘intervention 1’ vs. ‘intervention 2’ by the staff

of the original trial. Potential intervention effects were addressed by

comparing neurodevelopmental outcomes between the treatment

groups. No differences were found for IQ estimate, SSRT, and Color Word

inhibition time. Therefore, the treatment arm was not further taken into

account when performing statistical analysis on the cognitive data, and

data of all very preterm participants were pooled. Statistical analyses

were performed using R statistical software, Version 3.5.3 (R Core Team,

2018; Yoshida et al., 2018; Fletcher, 2012; Lüdecke, 2019; Fox and

Weisberg, 2019). P-Values < 0.05 were considered statistically

significant.

2.8.2. Group differences in FA-weighted global network connectivity and

association of FA-weighted global network connectivity with inhibition

abilities

First, to avoid introducing systematic connectivity differences be-

tween the case and control groups by the proportional cost thresholding,

we tested if overall structural connectivity is different between groups
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(van den Heuvel et al., 2017). This was calculated by averaging the

edge-wise mean FA values in all edges in the unthresholded connectivity

matrices. Next, we chose one cost threshold value for thresholding the

connectivity matrices that was empirically proven to bemost sensitive for

preterm-control differences. This was determined as the cost threshold

value where the number of nodes significantly different between preterm

and control groups was maximal. During this mass-multivariate testing of

nodal values across brain regions, statistical significance was adjusted for

multiple comparisons using the Benjamini-Hochberg procedure, imple-

mented in the FDR toolbox in Matlab R2014 (Mathworks, 2014). Addi-

tionally, we repeated our experiments on unthresholded connectivity

matrices as well as the overall structural connectivity strength included

as a covariate in the models.

Next, the inference of interest was whether the linear relationship

between inhibition abilities and global FAmean differs between partici-

pants born very preterm and participants born at term. Hypothesis tests

on structural connectivity networks were based on the network-based

statistics (NBS) method described by Zalesky et al. (2010), which was

implemented in the NBS Toolbox for Matlab R2014. NBS avoids the

problem of multiple comparisons during mass univariate tests on con-

nectivity networks by estimating statistical significance for subsets of

mutually connected network nodes in topological rather than physical

space (Reess et al., 2016). The NBS method comprises four steps. First,

the t-statistic for each individual edge in the connectivity network is

calculated. Second, a primary component-forming threshold (p < 0.05,

uncorrected) is applied to identify edges displaying differences in

connectivity strength. Third, subthreshold edges are assessed for

mutual connections forming clusters in topological space that may

point toward the existence of non-chance clusters. Fourth, a test with

5000 random permutations is applied to compute statistical signifi-

cance for all previously identified network components. As NBS uses

permutation test to build up the sample distribution, it can be applied to

smaller study groups without assuming normality. The final hypothesis

test is then carried out for the empirically determined components by

comparing their extent with the proportion of permutations yielding a

component with equal or greater size, correcting for the family-wise

error rate at cluster level with p < 0.05. In our tests, a primary

threshold t-score of 2.5 was chosen.

In all statistical evaluations, SES, sex, and age at assessment were

included into the model as parameters that may have an effect on the

structural connectivity values averaged over the networks from the NBS

analysis. The design and contrast matrices used during NBS for group

differences and simple correlations are given in Table S1. We further

tested whether preterm and control grouping variable (“birth status”) has

an effect on the correlation between inhibition abilities and structural

connectivity by performing a statistical test with continuous covariate

interaction (contrast and design matrix: Table S2). As Epo treatment was

previously reported to have an effect on structural brain connectivity in

preterms at term equivalent age (Jakab et al., 2019), all statistical tests

were repeated with both the Epo treatment and preterm status as cova-

riates in the model (contrast and design matrix: Table S3). In case of no

effect was seen for the Epo treatment on the connectivity topology, we

removed this variable in order to avoid overfitting the regression model

by having too many parameters. A similar consideration was made for

including global structural connectivity as covariate in the model

(contrast and design matrix: Table S4).

We presented the results of the NBS as three-dimensional graph

visualizations, which represented below p-threshold connection pairs

surviving multiple comparison correction. The brain networks were

visualized with the BrainNet Viewer for Matlab R2014 (Xia et al.,

2013).

3. Data availability

All raw data and scripts used for the calculations and figure genera-

tion in this manuscript can be obtained by contacting the corresponding

author.

4. Results

4.1. Sample characteristics

Of 180 eligible participants, 100 children and their parents agreed to

take part in the EpoKids study (55.6%). Children who took part in the

EpoKids study did not differ from those who did not with regard to

gestational age, birth weight, neonatal complications (BPD, NEC, ROP,

major brain lesions), and Bayley scores (Bayley, 1993) at 2 years of age

(all p > 0.05). SES of the parents was higher in participants than in

non-participants (p ¼ 0.004). Fourteen families agreed to complete

questionnaires only and seven participants living in Western Switzerland

were assessed by study collaborators in Geneva, Switzerland, who were

trained for this purpose. These participants did not undergo an MRI

assessment. Thus, for these 21 participants, the measures relevant for the

current analyses were not available and they were not further considered.

Of the remaining participants (79 born very preterm, 78 born at term), 12

participants born very preterm and 10 participants born at term were not

administered one or both of the inhibition tasks due to technical issues or

indication of fatigue and were excluded from the current analyses. The

final sample, thus, included 67 very preterm and 69 term-born partici-

pants. To test for a potential selection bias, participants with and without

complete inhibition data were compared with regard to sex, age at

assessment, SES, and estimated IQ. These analyses did not reveal any

differences (all p > 0.05).

Table 1 summarizes demographic, socioeconomic, cognitive, and

perinatal data of all participants. No group differences were found for sex

and age at assessment. SES was higher in families of term-born partici-

pants. The very preterm born group had a lower estimated IQ than the

term-born group.

4.2. Inhibition abilities in the very preterm and the term-born group

Using independent samples t-tests, the overall inhibition composite

score was lower in the very preterm group than in the term-born group.

When regarding the two inhibition measures separately, only the z-score

of the SSRT was lower in the very preterm than in the term-born group.

When adjusting for age at assessment, sex and SES, differences in the

overall inhibition composite score were not significantly explained by

preterm birth (β ¼ �0.13, 95%-CI [-0.30, 0.04], p ¼ 0.13; adjusted R2
¼

0.19, p < 0.001). Differences in the SSRT were significantly explained by

preterm birth when adjusting for age at assessment, sex, and SES (β ¼

�0.25, 95%-CI [-0.43,�0.08], p¼ 0.006; adjusted R2
¼ 0.11, p< 0.001).

Differences in Color Word inhibition time were not explained by preterm

birth when adjusting for age at assessment, sex, and SES (β ¼ 0.07, 95%-

CI [-0.11, 0.24], p ¼ 0.46; adjusted R2
¼ 0.15, p < 0.001).

4.3. Availability and quality of DTI data

Nine children born very preterm and four children born at term

refused (full) MRI assessment, thus, no DTI data were available. Addi-

tionally, the DTI data of eight children born very preterm and four

children born at term had to be excluded from analyses due to poor data

quality (i.e., strong movement artifacts, susceptibility artifacts caused by

orthodontic appliances). This results in a subsample of 50 children born

very preterm and 62 children born at term with DTI data. Participants

with and without DTI data were compared with regard to birth status,

sex, age at assessment, SES, and estimated IQ: this analyses revealed

lower age at assessment for children without DTI data (p ¼ 0.035).

Further, for more children born very preterm (n¼ 17) than children born

at term (n ¼ 7) DTI data were not available (p ¼ 0.035). Sex distribution,

SES, and estimated IQ were comparable between groups (all p > 0.05).
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4.4. Group comparison of FA-weighted whole-brain structural connectivity

on network level

The overall structural connectivity strength of controls was signifi-

cantly higher than of very preterm children (t ¼ 2.634, p ¼ 0.0095). To

evaluate regional differences in network topology between very preterm

children and controls, connectivity networks were analysed after the

proportional thresholding. We evaluated which network sparsity

threshold is most sensitive for the differences between children born very

preterm and at term. The minimum cost of structural connectivity net-

works in the overall study population was 0.28, therefore this was used as

upper threshold for iterative cost thresholding. At each cost threshold,

multivariate analysis of variance was performed for each brain region,

testing the group differences in nodal connectivity strength, using a

model adjusted for the effect of age at assessment, sex and SES. The

maximum number of nodes (8) affected by premature birth (FDR-cor-

rected p < 0.05) was found at cost ¼ 0.21. Intermediate steps of the

iterative cost thresholding procedure are illustrated in Fig. 1A. We tested

network-level differences at various cost thresholds: this analysis showed

a largely similar network. In sparse connectivity matrices, the network

was predominantly limited to bilateral frontal, left parietal, temporal and

subcortical connections, while with increasing density, more inter- and

intra-hemispheric connections were different between the two study

groups. NBS revealed a network comprising thalamo-frontal, thalamo-

temporal, bilateral frontal, cerebellar and various intra-hemispheric

connections that had significantly lower structural connectivity in the

preterm children (t ¼ 5.21, lowest p-value ¼ 0.001) in a model adjusted

for age at assessment, sex and SES (design matrix is shown in Table S5,

resulting network: Fig. 2A). This network consisted of 117 edges (7.8% of

the total network edges at cost¼ 0.21). The average FA value was 4.45%

lower in children born very preterm than in children born at term (FA ¼

0.45 � 0.017 and 0.47 � 0.023, respectively; Fig. 2B). The regions with

the highest number of connections affected by preterm birth were the left

middle temporal gyrus, the left and right thalamus, the left inferior

temporal gyrus, the left cerebellum, the right anterior cingulate gyrus,

the left and right orbital part of inferior frontal gyrus, and the medial part

of the right superior frontal gyrus.

The overall network topology remained similar when testing

unthresholded connectivity networks with considerably more weak

connections being different (Fig. 1). The inclusion of overall structural

connectivity and Epo treatment arm as covariates in the model did not

change the topology considerably (Fig. S2).

4.5. Association of FA-weighted whole-brain structural connectivity and

inhibition abilities

Across both study groups, NBS revealed an extensive network con-

sisting of 54 edges in which overall inhibition abilities were positively

associated with FA-weighted structural connectivity (t ¼ 4.23, lowest p-

value¼ 0.02) in a model adjusted for age at assessment, sex and SES. This

network comprised predominantly parietal, cerebellar and subcortical

connections (design matrix is shown in Table S3, resulting network:

Fig. 3A). The regions with the highest number of connections signifi-

cantly correlated with overall inhibition abilities were the left and right

cerebellum, the left thalamus, the right inferior parietal lobule, the right

superior parietal lobule, and the right Heschl’s gyrus. Whereas the

graphical illustration of the continuous covariate interaction suggests

divergent associations of the significant network relevant for overall in-

hibition in the two study groups (see Fig. 3B), the interaction did not

reach statistical significance (t ¼ 3.75, lowest p-value ¼ 0.09; design

matrix is shown in Table S3). Interestingly, overall FA was moderately

correlated with the overall inhibition abilities (r ¼ .279, p ¼ 0.0028),

even after controlling for the birth status, which rules out the possible

confounding effect of preterm birth on the connectivity network.

Therefore, including the overall FA as a covariate in the model dimin-

ished the regional effects revealed previously and NBS did not find any

network where overall inhibition score and structural connectivity were

correlated. The inclusion of Epo treatment arm as covariates in the model

did not change the topology of edges correlated with overall inhibition

abilities and a largely similar network was revealed when performing the

analysis on unthresholded connectivity networks (Fig. S3).

When looking separately at associations of structural connectivity

with the two distinct components of inhibition abilities, FAmean corre-

lated significantly with the domain interference control, measured by

Color Word inhibition time (t¼ 4.36, lowest p-value¼ 0.002; see Fig. 4A

and B) in a network comprising 58 edges in both study groups. The re-

gions with the highest number of connections significantly correlated

with interference controlwere the left putamen, the left thalamus, the right

superior parietal lobule, the right superior occipital gyrus, the left ante-

rior cingulate gyrus, the right middle cingulate gyrus, the right middle

Table 1

Sample characteristics.

very preterm-born

n ¼ 67

term-born

n ¼ 69

pa

Demographic and socioeconomic data

Female, n (%) 28 (41.8) 32 (46.4) .72

M SD range M SD range

Age at assessment (in years) 10.8 1.2 [8.8–13.4] 11.1 1.3 [8.8–13.5] .18

Socioeconomic statusb 7.9 2.0 [4–12] 9.7 2.1 [6–12] <.001

Perinatal data

Gestational age (in weeks) 29.3 1.7 [26.0–31.7] 39.6 1.1 [37.3–42.0]

Birthweight (in grams) 1210 317 [570–2020] 3470 448 [2370–4410]

Moderate or severe BPD, n (%) 7 (10.4) –

ROP � grade 3, n (%) 0 (0) –

NEC, n (%) 3 (4.5) –

Major brain lesions, n (%) 2 (3) –

Cognitive data M SD range M SD range

IQ estimate 102 16.5 [67.1–138] 115 13.7 [83.7–152] <.001

Inhibition composite scorec �0.4 0.8 [-2.2-1.7] 0.0 0.8 [-2.3-1.5] .007

Stop signal reaction time (SSRT)c �0.6 1.1 [-3.5-3.1] 0.0 1.0 [-2.9-1.9] .001

Color Word inhibition timec �0.1 0.9 [-2.8-1.5] 0.0 1.0 [-3.1-1.5] 0.5

M: mean; SD: standard deviation; BPD: bronchopulmonary dysplasia; ROP: retinopathy of prematurity; NEC: necrotizing enterocolitis.
a Independent samples t-tests.
b Possible range for total SES scores: 2–12. Missing SES data: n ¼ 8.
c Z-scores calculated with M und SD of term-born group.
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frontal gyrus, the left inferior parietal lobule, the left cerebellum, and the

left Heschl’s gyrus. FAmean did not correlate with response inhibition,

measured by SSRT (t¼ 4.19, lowest p-value¼ 0.91). Overall FA was only

weakly correlated with the domain interference control (r ¼ .212, p ¼

0.0244), and including the overall FA in the statistical model resulted in a

largely similar network as without this variable (comparison: Fig. S4).

5. Discussion

The current study investigated differences in inhibition abilities be-

tween children born very preterm and term-born peers at middle school-

age and compared whole-brain structural connectivity on network level

between these two groups. To the best of our knowledge, this is the first

study to investigate the association between inhibition abilities and

whole-brain structural connectivity on network level in children born

very preterm and children born at term. In our study, overall inhibition

abilities were comparable between middle school-aged children born

very preterm and their term-born peers, although group differences were

observed for the subtest of response inhibition. Global structural brain

connectivity measured as mean fractional anisotropy differed signifi-

cantly between children born very preterm and term-born peers,

particularly in frontal and temporal regions, the cerebellum and the

thalamus. Irrespective of birth status, overall structural connectivity as

well as regional connectivity in parietal and temporal brain regions, the

cerebellum and the thalamus was significantly associated with overall

inhibition abilities and the subtest of interference control.

The term inhibition abilities describes two inter-related but distinct

components of inhibitory control: response inhibition and interference

control. Response inhibition describes the ability to deliberately sup-

press, interrupt or delay an action (Clark, 1996; Friedman and Miyake,

Fig. 1. A. Network-level differences in the structural brain connectivity of preterm and control children. Intermediate steps of the iterative thresholding

procedure based on network density (cost). Right image: results using unthresholded structural connectivity network.

B. Nodal differences in the structural brain connectivity of preterm and control children. The maximum number of nodes (8) affected by very preterm birth

(FDR-corrected p < 0.05) was found at cost ¼ 0.21.
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2004; Nigg, 2000), interference control describes the ability to selec-

tively attend to relevant information while filtering out distracting or

competing information (Friedman and Miyake, 2004; Nigg, 2000). The

stop-signal task (Verbruggen and Logan, 2008) is commonly used to

measure response inhibition, whereas interference control is often

assessed by Stroop tasks, such as the D-KEFS’ Color-Word Interference

Test (Delis et al., 2001) (see R�eveillon et al. (2018) for an overview of

instruments to assess inhibition abilities). In our study, a statistically

relevant effect of very preterm birth on response inhibition but not on

interference control was observed when controlling for sex, SES and age

at assessment. Interestingly, response inhibition has also been shown to

be one of the primarily impaired functions in patients with attention

disorders like ADHD (Wodka et al., 2007), a condition two to four times

more prevalent in the preterm than in the general population (Arpino

et al., 2010; Bhutta et al., 2002; Johnson and Wolke, 2013). The diver-

gent finding of impaired response inhibition and intact interference

control is largely in line with existing literature (Aarnoudse-Moens et al.,

2012; Bayless and Stevenson, 2007; Elgen et al., 2004; Anderson et al.,

2011; Ritter et al., 2014; Shum et al., 2008; Baron et al., 2014). Some

studies have, however, also reported group differences in interference

control (Loe et al., 2012; de Kieviet et al., 2014; Ritter et al., 2013a; Ford

et al., 2011; Elgen et al., 2004; Johnson et al., 2015; Mulder et al.,

2011b). To some extent, these ambiguous findings may be explained by

differences in perinatal characteristics, age at assessment, or assessment

instruments. For example, Ford et al., 2011 and Mulder et al., 2011b

reported group differences on both inhibition domains in a cohort of very

preterm children born at a younger mean gestational age compared to the

preterm cohort assessed in this study. It has been shown that the risk of

executive function deficits increases with decreasing gestational age

(Anderson and Doyle, 2004; Aarnoudse-Moens et al., 2009b), with in-

hibition abilities being particularly affected (Ritter et al., 2013b). This

effect could explain why in our preterm cohort not all aspects of

Fig. 2. A. (Sagittal and axial view of) NBS revealed-network with significantly lower FAmean in the preterm children (t ¼ 5.21, lowest p-value ¼ 0.001) in a model

adjusted for age, sex and SES. The network comprises thalamo-frontal, thalamo-temporal, bilateral frontal, cerebellar, and various intra-hemispheric connections. B.

Average FA value in NBS revealed-network with significantly lower FAmean in preterm children. The average FA value was 4.45% lower in the preterm children than in

children born at term (FA ¼ 0.45 � 0.017 and 0.47 � 0.023, respectively).

Fig. 3. A. (Sagittal and axial view of) NBS revealed-network in which, irrespective of birth status, overall inhibition abilities were positively associated with FAmean (t

¼ 4.23, lowest p-value ¼ 0.02) in a model adjusted for age, sex and SES. The network comprises predominantly parietal, cerebellar, and subcortical connections. B.

Graphical illustration of the association of FA values with inhibition composite score for study groups, separately. The interaction did not reach statistical significance

(t ¼ 3.75, lowest p-value ¼ 0.09).
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inhibitory abilities were impaired. Other studies reported interference

control deficits in younger very preterm children (de Kieviet et al., 2014;

Ritter et al., 2013a; Ford et al., 2011; Mulder et al., 2011b), thereby

potentially addressing a more at-risk-population since inhibition abilities

develop throughout childhood and adolescence (Huizinga et al., 2006).

Lastly, differences in quantifying inhibition abilities might lead to

incongruent study results: In fact, studies reporting deficits in interfer-

ence control (vs. unimpaired interference abilities in this study) (Loe

et al., 2012; Ford et al., 2011) or unimpaired response inhibition (vs.

deficits in this study) (Loe et al., 2012; Elgen et al., 2004; Johnson et al.,

2015) have used error rate/accuracy as outcome measures of inhibition

tasks while the current study assessed reaction time. Taken together, our

results add to a vivid discourse on inhibition abilities in children born

very preterm: do the reported impairments represent actual deficits or do

inhibition abilities in children born very preterm develop in a delayed

manner (Aarnoudse-Moens et al., 2012; Ritter et al., 2013a; R�eveillon

et al., 2018)? Inhibition abilities are known to develop between the ages

of 4–12 years (Best and Miller, 2010), with some studies suggesting

stabilization between 9 and 12 years (Tillman et al., 2007; Urben et al.,

2011; Williams et al., 1999). Given the age range of our preterm par-

ticipants, it is possible that they have already grown out of a possible risk

to show impaired inhibition abilities. Moreover, age at assessment

proved to be the strongest predictor for all domains of inhibition abilities

in the current study. This highlights the importance to consider age when

investigating inhibition abilities in childhood. Eventually, only longitu-

dinal data can contribute in a meaningful and satisfying manner to this

ongoing discourse (Baron et al., 2014; Everts et al., 2019).

We found significant differences in global structural brain connec-

tivity between children born very preterm and term-born peers, with

predilection in frontal and temporal regions, the cerebellum and the

thalamus. These topological differences remained when performing the

same test on unthresholded network as well as when overall connectivity

was controlled for, therefore, the very preterm-control differences are

likely not caused by the proportional thresholding procedure (van den

Heuvel et al., 2017). The present work confirms the long-term adverse

effects of very preterm birth on white matter microstructure throughout

childhood and adolescence, using a whole-brain approach which allows

for conclusions on network-level. Importantly, during the third trimester

of pregnancy, significant maturational processes such as the differentia-

tion of pre-oligodendrocytes, the emergence of thalamo-cortical

connections, cortical folding, and increase of functional connectivity are

known to take place across various brain structures and regions (Jakab

et al., 2019; Ortinau and Neil, 2015; Young, 2019). Axonal development

generates all major pathways in the preterm period. After birth, through

myelination, the established networks further mature until adolescence

(Dubois et al., 2015). Early injury resulting from hypoxia/ischemia or

infection/inflammation, of which both are common during the preterm

period (Ortinau and Neil, 2015), is likely to cause aberrant microstruc-

tural development of the cortex, thalamus, and connecting white matter

tracts (Ghosh and Shatz, 1993; Pierson et al., 2007; Volpe, 2009a; Dean

et al., 2013) in children born very preterm. Against this background, the

present analysis classifies all cortical and sub-cortical seed points and end

points of relevant connections (Jakab et al., 2019) and thus provides

information exceeding subjective, hypothesis-driven approaches, which

only take into account a limited number of pre-defined white matter

tracts and may thus lead to incomplete results (Hagmann et al., 2007).

Alterations in regional structural connectivity have been reported in in-

dividuals born very preterm at term age (Batalle et al., 2017; Thompson

et al., 2011, 2014; Hüppi et al., 1996; Mewes et al., 2006; Ball et al.,

2013; Anjari et al., 2007), throughout early childhood (Pandit et al.,

2013; Counsell et al., 2008), in adolescence (Mullen et al., 2011; Vang-

berg et al., 2006), and early adulthood (Eikenes et al., 2011; Nosarti

et al., 2014) (for a review on aberrant structural – and functional – brain

connectivity in children born preterm, see Rogers et al. (2018)). How-

ever, only a small number of studies have examined structural connec-

tivity of prematurely born children at network-level (Batalle et al., 2017;

Pandit et al., 2013; Ball et al., 2014; Tymofiyeva et al., 2012; Kim et al.,

2014; Fischi-G�omez et al., 2014). In infancy, reduced connectivity in the

thalamus, the cerebellum, the frontal lobe and the cingulate gyrus have

been described (Batalle et al., 2017; Pandit et al., 2013; Ball et al., 2014;

Tymofiyeva et al., 2012). At early school age (mean ages 6 years and 8

years, respectively), lower gestational age was related to decreased ef-

ficiency in a widespread network comprising the frontal, parietal, tem-

poral, medial, and orbital cortex, the precuneus, cuneus, and subcortical

gray matter (Fischi-G�omez, 2014; Kim, 2014). The present study con-

firms these findings for older preterm born children at middle school-age:

The effect of very preterm birth on the whole-brain topology of structural

brain networks is still apparent in an extended bilateral network

including the frontal, parietal and temporal lobes and several subcortical

structures. Resulting from a non-hypothesis driven analysis of DTI data,

Fig. 4. A. (Sagittal and axial view of) NBS revealed-network in which, irrespective of birth status, Color Word inhibition time (interference control) was positively

associated with FAmean (t ¼ 4.36, lowest p-value ¼ 0.002) in a model adjusted for age, sex and SES. The network comprises predominantly frontal, parietal, occipital,

and subcortical connections. B. Graphical illustration of the association of FA values with Color Word inhibition time (interference control) for study groups, separately.

The interaction did not reach statistical significance.
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the strongest group differences were found for white matter connections

serving the left and right orbital part of the inferior frontal gyrus, the left

middle temporal gyrus, the right middle cingulate gyrus, the right

anterior cingulate gyrus, the medial part of the right superior frontal

gyrus, the left and right thalamus, and the left cerebellum. These results

are in line with previous studies using regional approaches that have

reported reduced FA associated with very preterm birth in the afore-

mentioned connections (Volpe, 2009a, 2009b; Thompson et al., 2014;

Ball et al., 2013; Mullen et al., 2011; Eikenes et al., 2011; Meng et al.,

2016; Hart et al., 2010; Cui et al., 2017). However, none of these studies

have shown such widespread differences.

Interestingly, in the present study, structural networks correlating

with inhibition abilities do not overlap with the networks that differ

between children born very preterm and term-born peers. Thus, it seems

that altered structural connectivity may not directly underlie group dif-

ferences in inhibition abilities. Still, this study presents evidence that,

regardless of birth status (i.e., born very preterm vs. born at term), overall

inhibition abilities in a cohort of middle school-aged children are asso-

ciated with measures of structural connectivity at network-level. Brain

networks that we found to be associated with inhibition performance of

participants across both groups involved the left and right cerebellum,

the left thalamus, the right inferior parietal lobule, the right superior

parietal lobule, the right superior occipital lobule, and the right Heschl’s

gyrus. Previous studies investigating the association between regional

white matter structure and inhibition have almost exclusively focused on

typically-developing children and adults. These studies found that better

inhibition performance was associated with higher FA in the corpus

callosum, the anterior corona radiata, and in connections serving the

inferior frontal gyrus, the pre-supplementary motor area and the sub-

thalamic nucleus (Madsen et al., 2010; Seghete et al., 2013; Chad-

dock-Heyman et al., 2013; Forstmann et al., 2008, 2012; King et al.,

2012; Treit et al., 2014). Surprisingly, in the present analyses, associa-

tions of FAmean in tracts serving the aforementioned brain areas and in-

hibition performance were not found. This might be due to differences in

age at assessment, measurements of inhibition abilities, or approaches to

DTI analysis. To date, only one other study has examined the association

between inhibition abilities, namely interference control, and structural

connectivity in children born very preterm and at term: de Kieviet et al.

(2014) found decreased FA in children born very preterm compared to

term-born peers in tracts connecting the thalamus with the dorsal ante-

rior cingulate cortex, and the left and right parietal cortex was found to

be associated with differences in inhibition abilities (de Kieviet et al.,

2014). This is partly in line with findings of the current study. However,

de Kieviet et al. (2014) used a hypothesis-driven approach by looking at

FA only in tracts that beforehand had shown aberrant functional con-

nectivity during an inhibition task for children born very preterm, which

is why the comparability of findings is limited.

In contrast to the very limited understanding of the association be-

tween inhibition abilities and structural connectivity, considerably more

studies report on associations with functional connectivity in individuals

born preterm (Nosarti et al., 2006; Griffiths et al., 2013; Lawrence et al.,

2009; Daamen et al., 2015). These studies mostly report an involvement

of the parietal and occipital cortex, the cerebellum and the thalamus in

inhibition tasks. Interestingly, these are regions which were identified in

the current study of structural connectivity. Additionally, these studies

report (altered) activation patterns in the preterm group during inhibi-

tion tasks, in the anterior cingulate and prefrontal cortex, and the tem-

poral gyrus (Nosarti et al., 2006; Griffiths et al., 2013; Lawrence et al.,

2009; Daamen et al., 2015). To our knowledge, evidence for associations

between inhibition performance and the auditory cortex, namely

Heschl’s gyrus, has only been reported once in a functional neuroimaging

study on intentional inhibition (Kühn et al., 2009). While this association

was attributed to the auditory stimuli of the inhibition task, additional

studies are needed to further examine and verify our result that Heschl’s

gyrus plays a role in a non-auditory inhibition task.

Previous meta-analytic evidence of functional neuroimaging studies

in typically-developing individuals has shown that neural correlates be-

tween the distinct components of inhibition can diverge (Zhang et al.,

2017). Still, it is rather surprising that the present analyses revealed

significant associations between the structural connectivity andmeasures

of interference control (Color Word inhibition time), but not response

inhibition (SSRT). This finding is in contrast to results from one previous

study of white matter microstructure and very similar measures of

response inhibition in a cohort of typically-developing children of com-

parable age (Madsen et al., 2010). More studies are needed to further

comprehend this inconsistency.

5.1. Limitations

The sample of children born very preterm in our study shows a high

estimated IQ, comes from a high socioeconomic background, and has had

few neonatal complications. This is not fully representative of the general

population of children born very preterm (Anderson, 2014). It might also

explain why group differences in inhibition performance, while partly

statistically significant, are rather small between children born very

preterm and at term. Further, excluding several participants due to mo-

tion or dental braces artifacts resulted in a less well-balanced cohort

eligible for the DTI analysis with regard to birth status and age at

assessment. This may have impacted the representativeness of imaging

results. A further limitation is the use of adult neuroimaging templates

(FMRIB58 FA template in the MNI152 space). This choice was based on

the availability of AAL ROIs in this particular template space and also the

fact that in our study population, the brain has almost reached its adult

size, therefore as far as the overall geometric bias and volumes are con-

cerned, adult templates would be closer to our subject age (8-13 years of

age) than the younger imaging templates, such as newborn or 2-year old

templates. Structural connectomic analysis is limited by the inaccurate

estimation of FA values in regions with complex fiber anatomy, such as in

crossing-fiber regions. A simulation study calls for careful attention when

interpreting the results of connectomic analysis in case-control studies

(van den Heuvel et al., 2017), as systematic differences can emerge

simply because of the thresholding procedure used. To overcome this

problem, we repeated all our experiments on unthresholded networks as

well as using models where overall connectivity is controlled for.

Overall, the comprehensive study protocol of the EpoKids study led to

a reduced study cohort when compared to the number of children that

were eligible for the present analyses. However, the sample size is still

comparable to other studies in this research field (de Kieviet et al., 2014;

Madsen et al., 2010; Seghete et al., 2013; King et al., 2012).

6. Conclusion

The present analyses show long-term effects of preterm birth on white

matter development at network-level alongside comparable overall in-

hibition abilities in very preterm children at middle school-age compared

to term-born peers. As the structural networks underlying inhibition

abilities are the same in both study groups, the investigation of network-

level structural connectivity in terms of FAmean does not appear adequate

to explain differences in inhibition abilities between children born very

preterm and at term. Likely, considering and combining complementary

parameters of structural connectivity, such as properties investigated

with a graph theoretic approach (e.g., local and global efficiency, clus-

tering coefficient, betweenness centrality), and functional brain activa-

tion patterns will shed light on these issues in the future.
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