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Proton-sensing ovarian cancer G-protein coupled receptor (OGR1) plays an 50 

important role in pH homeostasis. Acidosis occurs at sites of intestinal inflammation 51 

and can induce endoplasmic reticulum (ER) stress and the unfolded protein 52 

response (UPR), an evolutionary mechanism that enables cells to cope with stressful 53 

conditions. ER stress activates autophagy, and both play important roles in gut 54 

homeostasis and contribute to the pathogenesis of inflammatory bowel disease (IBD). 55 

Using a human intestinal epithelial cell model, we investigated whether our 56 

previously observed protective effects of OGR1 deficiency in experimental colitis are 57 

associated with a differential regulation of ER stress, the UPR and autophagy. Caco-58 

2 cells stably overexpressing OGR1 were subjected to an acidic pH shift. pH-59 

dependent OGR1-mediated signalling led to a significant upregulation in the ER 60 

stress markers, binding immunoglobulin protein (BiP) and phospho-inositol required 61 

1α (IRE1α), which was reversed by a novel OGR1 inhibitor and a c-Jun N-terminal 62 

kinase (JNK) inhibitor. Proton-activated OGR1-mediated signalling failed to induce 63 

apoptosis, but triggered accumulation of total microtubule-associated protein 1A/1B-64 

light chain 3, suggesting blockage of late stage autophagy. Our results show novel 65 

functions for OGR1 in the regulation of ER stress through the IRE1α-JNK signalling 66 

pathway, as well as blockage of autophagosomal degradation. OGR1 inhibition 67 

might represent a novel therapeutic approach in IBD. 68 

69 
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INTRODUCTION  70 

The two major forms of inflammatory bowel disease (IBD), Crohn’s disease and 71 

ulcerative colitis, give rise to inflammation that is linked with extracellular acidification 72 

of the mucosal tissue. In addition to inflammatory conditions, acidosis also exists in 73 

the tissue microenvironment of other pathophysiological conditions such as 74 

ischemia, tumours, metabolic, and respiratory disease1-6. In order to maintain pH 75 

homeostasis, cells are required to sense acidic changes in their microenvironment 76 

and respond accordingly. A family of G protein-coupled receptors (GPCRs): 77 

including ovarian cancer G-protein coupled receptor 1 (OGR1, also known as 78 

GPR68), GPR4 and T-cell death associated gene 8 (TDAG8, also known as 79 

GPR65), are activated by acidic extracellular pH. These receptors, which are almost 80 

silent at pH 7.6–7.8 and maximally active at pH 6.4–6.87-10, are reported to play a 81 

role in pH homeostasis7,11,12, in the regulation of inflammatory and immune 82 

responses13,14 and in tumorigenesis15,16.  83 

In several recent studies, we and others reported a link between IBD and the 84 

family of pH-sensing GPCRs17-24. We recently showed that IBD patients expressed 85 

higher levels of OGR1 mRNA in the mucosa than healthy control subjects18,19 and 86 

moreover, the deletion of OGR1 or GPR4 protects from intestinal inflammation in 87 

experimental colitis18,20,22.  We also found that OGR1 is strongly regulated by tumour 88 

necrosis factor (TNF) via a nuclear factor (NF)-κB dependent pathway and is 89 

essential for intestinal inflammation and fibrosis18,21. Moreover, we previously 90 

observed that OGR1 expression is induced in human myeloid cells by TNF, PMA or 91 

LPS, whereby this effect is reversed by the c-Jun N-terminal kinase (JNK) inhibitor, 92 

SP600125, suggesting that JNK/AP1 pathway is involved in OGR1 regulation18. 93 

Interestingly, TDAG8, the anti-inflammatory counter-player to pro-inflammatory 94 
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OGR1, has been identified as an IBD risk gene by genome wide association studies 95 

(GWAS)25-28. IBD-associated risk variant TDAG8 rs3742704 I231L has been 96 

described to disrupt lysosomal function, autophagy and pathogen clearance in 97 

lymphoblasts29. We observed that the IBD-associated risk variant TDAG8 rs8005161 98 

presents a more severe disease course in IBD patients23. No biochemical changes in 99 

individuals with various genotypes of rs8005161 were observed, but we observed a 100 

lower activation of RhoA upon an acidic pH shift in IBD patients23. These studies 101 

suggest that TDAG8 negatively regulates inflammation in IBD; supporting the notion 102 

of an anti-inflammatory role for TDAG814,30,31. 103 

In addition to the known pro-inflammatory role of OGR1, proton-activation of 104 

OGR1 triggers Ca2+ release from intracellular stores, stimulates protein kinase C 105 

(PKC) signalling and activates the mitogen-activated protein kinase (MAPK), also 106 

called extracellular signal-regulated (ERK) kinase cascade2,7,11,17,32,33. Ca2+ signalling 107 

is known to play a pivotal role in ER stress34. Signalling through PKC is known to 108 

activate ERK35. MAPK/ERK signalling cascades play an important role in regulating 109 

the cellular response to various extracellular stimuli36. Activation occurs by 110 

sequential phosphorylation by JNK, extracellular signal regulated kinase (ERK) 1/2, 111 

p38 MAPK, ERK5, and ERK3/437.  We previously showed that OGR1 signalling also 112 

increased the expression of cell adhesion and extracellular matrix protein-binding 113 

genes, inflammatory response genes plus several genes linked to ER stress, e.g. 114 

activating transcription factor (ATF)3 and serpin H1, and autophagy (ATG16L1)17 . 115 

Importantly, acidosis is known to activate endoplasmic reticulum (ER) stress 116 

and the unfolded protein response (UPR) in numerous cell types38-43. Moreover, ER 117 

stress, the UPR and autophagy are critical factors contributing to IBD 118 

pathogenesis41,44-48. Three molecular sensors are associated with the UPR pathway, 119 
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inositol-requiring enzyme 1α (IRE1α), ATF6 and PKR-like ER kinase (PERK)49. 120 

Under normal conditions, these ER stress sensors remain in an inactive state by 121 

coupling with binding immunoglobulin protein (BiP)49. Acidic activation of GPR4, 122 

another member of the pH-sensing family, which is predominately expressed in 123 

endothelial cells and only weakly expressed in other cell types50, stimulates all three 124 

arms of the ER stress pathways (PERK, ATF6, and IRE1α) in endothelial cells40.  125 

JNK is activated in response to a wide range of stress signals, including UV 126 

irradiation, osmotic stress and hypoxia, and previous studies have linked JNK 127 

activation with tissue acidification17,37. Several reports indicate that ER-dependent 128 

cell death is regulated by the activation of JNK51, and that JNK is linked to ER stress 129 

through IRE1α52. We have previously shown that the human intestinal epithelial cell 130 

(IEC) line, Caco-2 overexpressing OGR1, presented pH-dependent OGR1-mediated 131 

signalling, including inositol phosphate formation, intracellular calcium/PKC, and 132 

extracellular signal-regulated kinases 1 and 2 (ERK1/2) signalling, and enhanced 133 

serum response factor (SRF)-dependent transcription under acidic pH conditions.17 134 

We also confirmed a several hundred-fold increased mRNA expression of OGR1 in 135 

Caco-2 cells stably overexpressing OGR1 relative to Caco-2 parental cells 136 

harbouring the empty vector (vector control (VC))17. 137 

In the present study we used an OGR1-overexpressing Caco-2 cell in vitro 138 

model to investigate if our previously observed protective effects of OGR1 deficiency 139 

in experimental colitis are in part due to differences in UPR regulation, ER stress and 140 

autophagy. 141 

RESULTS 142 

OGR1 induces ER stress under acidic conditions 143 
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In order to investigate the role of the pH-sensing OGR1 receptor in the induction of 144 

ER stress, OGR1-overexpressing Caco-2 and VC Caco-2 cells, were subjected to an 145 

acidic pH shift for 24 h. The stress inducer tunicamycin induced protein expression of 146 

the ER stress marker BiP in a dose dependent manner in VC Caco-2 cells and 147 

Caco-2 cells overexpressing OGR1 (Figure 1A and Supplementary Figure 1). Acidic 148 

pH triggered the protein expression of BiP, as well as the phosphorylation of IRE1α, 149 

in Caco-2 cells overexpressing OGR1 cells (Figure 1B and Supplementary Figure 2). 150 

Densitometry after normalization of BiP to β-actin (Figure 1C) and p-IRE1α to total 151 

IRE1α (Figure 1D) is presented. BiP mRNA expression also significantly increased 152 

under acidic conditions in Caco-2 overexpressing OGR1 compared to VC cells 153 

(Figure 1E). Interestingly, at acidic pH the expression of BiP and phosphorylation of 154 

IRE1α were markedly reduced in OGR1-overexpressing Caco-2 cells in the 155 

presence of the OGR1 inhibitor (Figure 1F and Supplementary Figure 3), suggesting 156 

that ER stress is induced by proton-activated OGR1 signalling. In OGR1 157 

overexpressing Caco-2 cells, pH-dependent OGR1 signalling triggered the splicing 158 

of XBP1, which was prevented in the presence of the OGR1 inhibitor (Figure 1G and 159 

1H, and Supplementary Figure 4), confirming the role of OGR1 in the induction of ER 160 

stress.  161 

OGR1 induces ER stress via IRE1α/JNK signalling 162 

Next, we sought to identify the signalling factors involved in acidic pH-induced 163 

OGR1-mediated ER stress. Acidic pH induced BiP expression and JNK 164 

phosphorylation in OGR1-overexpressing Caco-2 cells compared to VC cells (Figure 165 

2A and Supplementary Figure 5). Importantly, BiP expression and JNK 166 

phosphorylation were prevented in the presence of the OGR1 inhibitor (Figure 2A 167 

and Supplementary Figure 5). Strikingly, in OGR1-overexpressing cells the 168 
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expression of JNK was increased in the presence of the OGR1 inhibitor. This result 169 

suggests a compensatory mechanism that would trigger JNK expression following 170 

blockade of JNK phosphorylation. Of note, acidic pH failed to induce cleavage of 171 

ATF6 (Figure 2A and Supplementary Figure 5) or PERK phosphorylation (Figure 2B 172 

and Supplementary Figure 6) in VC and OGR1-overexpressing Caco-2 cells. 173 

Interestingly, the JNK inhibitor reduced low pH-induced IRE1α phosphorylation 174 

(Figure 2C and Supplementary Figure 7) and BiP mRNA expression (Figure 2D), 175 

confirming the crucial role of JNK in OGR1-mediated induction of ER stress under 176 

acidic conditions. Moreover, Co-IP experiments showed a direct physical interaction 177 

between p-IRE1α and p-JNK in OGR1-overexpressing Caco-2 cells (Figure 2E and 178 

Supplementary Figure 8). Results under normal pH conditions (pH = 7.2-7.4) are 179 

shown throughout the manuscript and showed no significant differences when 180 

compared with high pH (pH = 7.5-7.8) (i.e. in the expression/activation of ER stress 181 

markers or JNK (Figure 1 and Figure 2A)). Taken together, these results point to the 182 

notion that ER stress is induced by proton-activated OGR1-mediated signalling via 183 

the IRE1α/JNK pathway. 184 

Acidosis activated OGR1-mediated signalling does not induce apoptosis 185 

Since IRE1α/JNK signalling has been shown to trigger apoptosis by inhibiting Bcl-2, 186 

we investigated the impact of OGR1 activation on the induction of apoptosis. VC and 187 

OGR1-overexpressing cells where subjected to an acidic pH shift in the presence or 188 

absence of the OGR1 inhibitor for 24 h. Annexin V and PI staining followed by FACS 189 

analysis revealed that the population of apoptotic cells was not affected by the acidic 190 

pH shift in OGR1-overexpressing cells (Figure 3A-C). Furthermore, cleavage of 191 

caspase 3 and poly (ADP-ribose) polymerase (PARP) were investigated by 192 

immunoblotting. Under the condition that BiP was upregulated on activation of OGR1, 193 
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neither cleaved caspase 3 nor cleaved PARP was observed (Figure 3D and 194 

Supplementary Figure 9), confirming that apoptosis was not induced in OGR1-195 

overexpressing cells. 196 

197 

Acidosis activated OGR1-mediated signalling blocks autophagy 198 

ER stress has been linked to the blockage of autophagy. Therefore, we sought to 199 

investigate the role of OGR1 in autophagy. VC and OGR1-overexpressing Caco-2 200 

cells were subjected to an acidic pH shift for 24 h and protein levels of LC3-I and 201 

LC3-II were investigated by immunoblotting. Acidic pH reduced the conversion of 202 

LC3-I into LC3-II, and blocked autophagosome degradation, evidenced by the 203 

accumulation of total LC3 in OGR1-overexpressing Caco-2 cells compared to VC 204 

cells (Figure 4A and Supplementary Figure 10). We confirmed these results using 205 

immunofluorescence microscopy. OGR1-overexpressing cells subjected to an acidic 206 

pH shift showed increased LC3 staining, which was reversed in the presence of the 207 

OGR1 inhibitor. On the other hand, no changes were observed in the VC under 208 

different pH conditions with or without OGR1 inhibitor (Figure 4B, 4C and 4D). These 209 

results suggested that autophagy is blocked by proton-activated OGR1 signalling.  210 

211 

DISCUSSION 212 

Our results show that proton-activated OGR1-mediated signalling triggers the 213 

expression of the ER stress marker BiP together with the phosphorylation of IRE1α 214 

and splicing of XBP1 in a human intestinal epithelial cell line stably overexpressing 215 

OGR1. Furthermore, we found that activation of OGR1 triggers the IRE1α-JNK 216 

signalling pathway, but not the other branches involved in the UPR, namely PERK or 217 

ATF6. Acidosis and activation of the UPR in intestinal epithelial cells are closely 218 
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linked to the development of intestinal inflammation (Figure 5). Our results provide 219 

confirmatory evidence of a crucial role for OGR1-mediated IRE1α/JNK activation in 220 

the induction of ER stress under low pH conditions, which might underlie the 221 

reported impact of OGR1 in the development of IBD18,19. In our previous studies, we 222 

observed significant and pH-dependent OGR1-mediated signalling, including 223 

IP3/Ca2+/ERK signalling and enhanced SRF transcription under acidic pH conditions 224 

(pH = 6.8)17.  225 

The link between acidic activation of GPCRs and MAPKs has been long 226 

established. Several reports have demonstrated that GPCRs can induce intracellular 227 

signal transduction through ERK1/2 and MAPK pathways53,54. Acidic OGR1 228 

stimulation has been shown to trigger IL-6 expression through ERK1/2 and p38 229 

activation in human airway smooth muscle cells30. Proton-dependent 230 

Ca2+ release from intracellular stores has been shown to trigger the MEK/ERK1/2 231 

pathway, thereby linking acidification with cell proliferation2. Recent reports have 232 

shown that ER stress triggers apoptosis via the activation of the IRE1α-JNK 233 

signalling pathway55,56. Surprisingly, we did not detect apoptotic processes following 234 

acidic activation of the IRE1α-JNK pathway, suggesting that OGR1-mediated IRE1α-235 

JNK signalling may therefore promote cell survival together with OGR1 inflammatory 236 

signalling in intestinal epithelial cells. Interestingly, the pro-apoptotic role of JNK has 237 

been suggested to be strongly influenced by the parallel activation of cell survival 238 

pathways and the strength of the apoptotic response. Several reports indicate that 239 

while the sustained activation of JNK is associated with apoptosis, the acute and 240 

transient activation of JNK is crucial for cell proliferation and survival57-59. In this 241 

regard, several studies have also suggested that two functionally distinct phases of 242 

JNK signalling are involved in the ER stress response, an early phase that promotes 243 
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survival and a late phase associated with cell death. Brown et al. showed that early 244 

JNK activation in ER-stressed cells triggers the expression of several apoptosis 245 

inhibitors early in the ER stress response. Using MEFs from IREα- and TRAF2-246 

deficient mice, these authors showed that the early JNK activation requires both 247 

IRE1α and TRAF260.  248 

Additionally, acidic activation of OGR1 has been suggested to enhance survival in 249 

osteoclasts through the induction of PKC activation, which may affect the 250 

phosphorylation of pro- or anti-apoptotic proteins, or stimulate ERK1/2 signalling61,62. 251 

Although the role of PKC in autophagy regulation is still controversial, several studies 252 

have suggested that PKC is involved in the suppression of autophagy63. In HEK293 253 

cells stably expressing LC3, activation of PKC significantly attenuated autophagy 254 

induced by starvation or rapamycin through the phosphorylation of LC3, while 255 

inhibition of PKC with pharmacological inhibitors increased autophagy64. PKC has 256 

also been shown to mediate cisplatin nephrotoxicity in vivo by suppressing 257 

autophagy49. Moreover, PKC has also been suggested to block autophagy in 258 

pancreatic ductal carcinoma cells through the activation of tissue transglutaminase 2 259 

65,66. 260 

The expression of OGR1 is strongly upregulated in ischemic myocardium and 261 

has been associated with survival in cardiomyocytes67, as well as the induction of 262 

neurogenesis in mice68. Studies in primary prostate tumours derived from OGR1-263 

expressing cells showed that OGR1-mediated signalling pathways did not affect 264 

growth or apoptosis in primary tumors69. However, in endplate chondrocytes proton 265 

activated OGR1-mediated Ca2+ flux from intracellular stores led to apoptosis70.  266 

Acidic activation of OGR1 triggers the activation of JNK-mediated ER stress, 267 

which suggests a role of IRE1-JNK signalling in controlling autophagy71. Strikingly, 268 
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our results show an increase in total LC3 accumulation, but not in LC3-I to LC3-II 269 

conversion in OGR1 overexpressing cells following acidic pH shift, indicating an 270 

OGR1/IRE1/JNK-mediated blockage of the final stages of autophagy. The role of 271 

IRE1α-JNK in regulating autophagy remains a matter of controversy. Notably, JNK 272 

has been shown to play a role in autophagy suppression in neurons72. Conversely, 273 

the activation of ER stress triggered both apoptosis and autophagy through the 274 

IRE1/JNK/beclin-1 axis in breast cancer cells73. Another study showed that IRE1α 275 

upregulated autophagy under ER stress independently of XBP1 signalling71. 276 

Recently, phosphorylation of the anti-apoptotic protein BCL-2 by IRE1α was linked to 277 

the initiation of autophagy through the modulation of the activity of Beclin-174, an 278 

essential component of the autophagy machinery72,75,76. JNK has been shown to 279 

participate in the expression of MAP1LC3 following TNF stimulation in vascular 280 

smooth muscle cells77. Inhibition of the JNK pathway blocked ceramide-induced 281 

autophagy and up-regulation of LC3 expression78. Xie et al. reported that JNK plays 282 

a crucial role in bufalin-induced autophagy in HT-29 and Caco-2 cells79. 283 

 In our hands, acidic activation of OGR1 in an OGR1-overexpressing cell 284 

model increased accumulation of LC3, but not the conversion of LC3-I into LC3-II, 285 

pointing to a blockage of late stage autophagy. Of note, our results suggest that 286 

partial activation of OGR1 under normal pH conditions is able to block late-stage 287 

autophagy in OGR1 overexpressing cells, and this effect is enhanced when OGR1 is 288 

fully activated at low pH. Interestingly, ROS-induced JNK activation induces both 289 

autophagy and apoptosis in cancer cells80. Taken together, our results suggest that 290 

acidic activation of OGR1 triggers opposite pathways leading to cell survival as well 291 

as the blockage of the late stages of autophagy. It is plausible that acidic activation 292 

of OGR1 initiates autophagy through IRE1α-JNK signalling together with parallel 293 
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signals that block autophagosomal degradation, thereby contributing to the pro-294 

survival and pro-inflammatory effects of OGR1.  295 

Further investigations are required to elucidate the exact mechanisms of 296 

OGR1/IRE1/JNK-mediated blockage of the late stages of autophagy. Taken together, 297 

our results indicate that OGR1 may have novel functions in the regulation of ER 298 

stress and autophagy and could represent a novel therapeutic target of IBD. 299 

300 

Data availability. The datasets generated during and/or analysed during the current 301 

study are available from the corresponding author on reasonable request. 302 
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METHODS 309 

Reagents 310 

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA), including 311 

Tunicamycin (T7765) and Staurosporine (S6942), unless otherwise stated. A specific 312 

c-Jun N-terminal kinase (JNK) inhibitor (SP600125) was purchased from Calbiochem313 

(La Jolla, CA). The OGR1 inhibitor was kindly provided by Takeda Pharmaceuticals 314 

San Diego, USA. All cell culture reagents were obtained from Thermo Fisher 315 

(Allschwil, Switzerland), unless otherwise specified. 316 

Cell culture and pH shift 317 

Caco-2 cells (LGC Promochem, Molsheim, Switzerland) and derived clones stably 318 

overexpressing OGR1 were cultured in a humidified atmosphere with 5% CO2 at 319 

37°C in Dulbecco’s Modified Eagle’s Medium (DMEM) with GlutaMAX (Invitrogen,320 

Carlsbad, CA USA) supplemented with 400 µg/ml geneticin (G418)-selective 321 

antibiotic (Invitrogen) and 10% fetal bovine serum (Invitrogen). Construction of the 322 

hu-OGR1-pcDNA3.1+ plasmid, clone generation, selection and characterization has 323 

been previously described.17  324 

pH treatment 325 

pH shift experiments were carried out in serum-free RPMI-1640 medium 326 

supplemented with 2 mM GlutaMAX and 20 mM HEPES (all from Invitrogen). For pH 327 

adjustment of the RPMI medium, the appropriate quantities of NaOH or HCl were 328 

added, and the medium was allowed to equilibrate in the 5% CO2 incubator at 37°C 329 

for at least 36 h before it was used. Caco-2 cells were seeded and cultured for 24-48 330 
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hours before the pH shift was performed. Cells were starved for 4-6 h in serum free 331 

RPMI medium, pH 7.6, and then subjected to an acidic pH shift for 24 h. 332 

Western blotting and Co-immunoprecipitation 333 

Following treatment, the cells were lysed with ice-cold Mammalian protein extraction 334 

reagent (M-PER, Thermo Fisher Scientific, Reinach, Switzerland). The following 335 

antibodies were used: BiP (Cat. No. 3177; Cell Signalling Technology, Danvers, MA, 336 

USA), phospho-IRE1α (Cat. No. NB100-2323, Novus Biologicals, Littleton, CO, 337 

USA), IRE1α (Cat. No. 3294, Cell Signalling Technology), phospho-PERK (Cat. No. 338 

3179S, Cell Signalling Technology), PERK (Cat. No. 3192S, Cell Signalling 339 

Technology), phospho-JNK (Cat. No. 9251, Cell Signalling Technology), JNK (Cat. 340 

No. 9252, Cell Signalling Technology), ATF6α (Cat. No. sc-166659, Santa Cruz, CA, 341 

USA), LC3 (Cat. No. L7543; Sigma-Aldrich), Caspase 3 (Cat. No. 9662, Cell 342 

Signalling Technology), PARP (Cat. No. 9542; Cell Signalling Technology) and 343 

GAPDH (Cat. No. MCA4740, BIO RAD Hercules, CA, USA). Primary antibodies 344 

were used at 1:1000 dilution for Western blotting. 345 

Co-immunoprecipitation (Co-IP) was performed overnight at 4°C using the IRE1α 346 

antibody (Cat. No. 3294, Cell Signalling Technology) and JNK antibody (Cat. No. 347 

9251, Cell Signalling Technology) at 1:200 dilution. Immunocomplexes were 348 

collected with protein G sepharose beads (17-0618-01, GE Healthcare, Glattbrugg, 349 

Switzerland) for 30 min at 4 °C prior to Western blotting. Densitometry of bands was 350 

measured using ImageJ software. 351 

Immunocytochemistry  352 

Cells were washed with PBS and fixed in 4% paraformaldehyde for 15 min at 4°C 353 
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and then permeabilized in 100% methanol (Sigma-Aldrich) for 10 min. After blocking 354 

with 3% bovine serum albumin (BSA), cells were incubated with LC3 antibody (Cat 355 

No. 2992, Cell Signalling Technology) at 1:200 dilution overnight at 4°C. Cells were 356 

then incubated with an Alexa Fluor 488-conjugated anti-rabbit antibody (Cat. No. 357 

A11032, Invitrogen) for 1h and DAPI (Sigma-Aldrich) for 5 min before mounting with 358 

anti-fade medium (Dako, Glostrup, Denmark). Cells were analysed by a Leica SP5 359 

laser scanning confocal microscope (Leica Microsystems, Wetzlar, Germany). 360 

Fluorescence images were processed using Leica confocal software (LAS-AF Lite, 361 

Leica Microsystems). Quantification of LC3/DAPI was performed using ImageJ 362 

software [National Institutes of Health]81 using the software’s colour threshold tool, 363 

which calculates the area of positive staining. The resulting value was normalised to 364 

quantification of nucleus staining and represents the positively stained area 365 

normalised to cell numbers present in the given area. 366 

Annexin V staining 367 

Externalization of phosphatidylserine in apoptotic cells was detected with Annexin V 368 

and dead cells were stained with propidium iodide (PI), using the Dead Cell 369 

Apoptosis Kit (Annexin V FITC and PI, Cat. No. V13242, Thermo Fischer Scientific), 370 

according to the manufacturer’s instructions. After 10 min incubation at room 371 

temperature in the dark, cells were washed in PBS and resuspended in the binding 372 

buffer. Single-cell suspensions were analysed by FACS-Canto II flow cytometry (BD 373 

Biosciences, Allschwil, Switzerland) using FlowJo software. 374 

RNA extraction and real-time quantitative PCR (qPCR) 375 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Hombrechtikon, 376 

Switzerland) according to the manufacturers’ instructions. For removal of residual 377 
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DNA, a DNase treatment was performed, according to the manufacturer's 378 

instructions, for 15 min at room temperature. For reverse transcription, the High-379 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, 380 

USA) was used following the manufacturer’s instructions. Determination of mRNA 381 

expression was performed by qPCR on a 7900HT real-time PCR system (Applied 382 

Biosystems) under the following cycling conditions: 20 s at 95 °C, then 45 cycles of 383 

95 °C for 1 s, and 60 °C for 20 s with the TaqMan Fast Universal Master Mix. 384 

Samples were analysed as triplicates. Relative mRNA expression was determined 385 

the by the ∆∆Ct method, which calculates the quantity of the target sequences 386 

relative to the endogenous control β-actin and a reference sample. TaqMan Gene 387 

Expression Assays (all from Applied Biosystems), used in this study were human BiP 388 

(Hs 00268858-S1) and human β-actin Vic TAMRA (4310881E).  389 

XBP1 splicing assay 390 

XBP1 splicing was measured by specific primers flanking the splicing site yielding 391 

PCR product sizes of 152 and 126 bp for unspliced XBP1 and spliced XBP1 mRNA, 392 

respectively. Primers (forward 5’-CCTGGTTGCTGAAGAGGAGG-3’, reverse 5’-393 

CCATGGGGAGATGTTCTGGAG-3’) were used. PCR was carried out at 95 °C for 394 

15 min, then 40 cycles at 94 °C for 30 sec, 56.5 °C for 30 sec, and 72 °C for 1 min. 395 

The size difference between the spliced and the unspliced XBP1 is 26 nucleotides. 396 

These products were resolved on 3.5% agarose gels. Band intensity of XBP1s and 397 

XBP1u was determined using ImageJ and the ratio of XBP1s/XBP1u was quantified. 398 

Statistical analysis 399 
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Statistical analyses were performed using GraphPad Prism 8 (GraphPad Software, 400 

San Diego, CA). Data are presented as means ± SE and statistical significance was 401 

determined using the Kruskal-Wallis test. p<0.05 was considered significant. Where 402 

indicated, one-way ANOVA was performed, followed by Tukey’s post hoc test. 403 

404 

405 

Figure Legends  406 

Figure 1. ER stress is induced by acidosis activated OGR1-mediated signalling. 407 

Caco-2 cells were subjected to different pH medium, following 4-6 h incubation in pH 408 

7.6 serum free medium. (A) Vector control Caco-2 (VC) and OGR1 overexpressing 409 

Caco-2 cells where treated with tunicamycin at the indicated concentrations for 24 h. 410 

Total protein was isolated and Western blotting was performed. The results are 411 

representative of two independent experiments. (B) After 24 h pH shift, total protein 412 

was isolated and Western blotting was performed. The results are representative of 413 

three independent experiments. (C) Densitometry after normalization of BiP to β-414 

actin and (D) p-IRE1α to total IRE1α. Statistical analysis was performed using one-415 

way ANOVA followed by Tukey’s post-test. Data are presented as means ± SE of 416 

three independent experiments (*, p <0.05; **, p <0.01; ***, p <0.001; ****, p 417 

<0.0001). (E) After 24 h pH shift, total RNA was isolated and mRNA expression was 418 

investigated by qPCR. Statistical analysis was performed using one-way ANOVA 419 

followed by Tukey’s post-test. Data are presented as means ± SE of three 420 

independent experiments (*, p <0.05; **, p <0.01). (F) A specific small molecule 421 

OGR1 inhibitor (10 µM) was tested and the cells were subjected to low pH for 24 h, 422 
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following 4-6 h incubation in pH 7.6 serum free medium.  After 24 h pH shift, total 423 

protein was isolated and Western blot performed. Results are representative of two 424 

independent experiments. (G) Cells were treated as described in (F), then total RNA 425 

was extracted and analysed for expression of XBP1 (XBP1u) and spliced XBP1 426 

(XBP1s) by conventional PCR. Results are representative of three independent 427 

experiments. (H) Quantification of the ratio of XBP1s/XBP1u was performed using 428 

ImageJ. Results are representative of two independent experiments. Statistical 429 

analysis was performed using one-way ANOVA followed by Tukey’s post-test. Data 430 

are presented as means ± SE of three independent experiments (*, p <0.05; **, p 431 

<0.01; ***, p <0.001; ****, p <0.0001). For all the panels, the experiments were 432 

repeated two to three times. pH conditions: High pH 7.5-7.8; Normal pH 7.2-7.4; Low 433 

pH 6.6-6.8. 434 

Figure 2. ER stress is induced by OGR1 via IRE1α/JNK signalling. 435 

(A) Caco-2 cells were subjected to different pH medium, with or without an OGR1436 

inhibitor (10 µM), following 4-6 h in pH 7.6 serum free medium. After 24 h pH shift, 437 

total protein was isolated and Western blot performed. Results are representative of 438 

two independent experiments. (B) Caco-2 cells were subjected to different pH 439 

medium After 24 h pH shift, total protein was isolated and Western blot performed. 440 

Results are representative of two independent experiments. (C) Caco-2 cells were 441 

subjected to different pH medium with or without a JNK inhibitor (10 µM) following 4-442 

6 h in pH 7.6 serum free medium.  After 24 h pH shift, total protein was isolated and 443 

Western blot performed. Results are representative of two independent experiments. 444 

(D) Caco-2 cells were starved and subjected to an acidic pH with or without a JNK445 

inhibitor as described in (C). After 24 h pH shift, total RNA was isolated and mRNA 446 

expression was investigated by qPCR. Statistical analysis was performed using one-447 
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way ANOVA followed by Tukey’s post-test. Data are presented as means ± SE of 448 

three independent experiments (***, p <0.001). (E) Caco-2 cells were starved and 449 

subjected to different pH medium following 4-6 h in pH 7.6 serum free medium. After 450 

24 h pH shift, total protein was isolated and co-IP using IRE1α antibody and JNK 451 

antibody was performed, followed by immunoblotting. Results are representative of 452 

two independent experiments. pH conditions: High pH 7.5-7.8; Normal pH 7.2-7.4; 453 

Low pH 6.6-6.8. 454 

Figure 3. Apoptosis is not induced by acidosis activated OGR1-mediated 455 

signalling. 456 

(A-B) Caco-2 cells were subjected to different pH medium for 24 h, with or without 457 

an OGR1 inhibitor (10 µM), following 4-6 h in pH 7.6 serum free medium. Flow 458 

cytometric analysis of the percentage of annexin V-FITC and propidium iodide 459 

positive cells was performed. pH conditions: High pH 7.6-7.7; Normal pH 7.2-7.3; 460 

Low pH 6.6-6.7. Annexin V+ PI- are early apoptotic cells and annexin V+ PI+ are late 461 

apoptotic cells. (C) Caco-2 cells were subjected to normal pH medium for 24 h, 462 

following 4-6 h in pH 7.6 serum free medium, with negative control (DMSO) or 463 

positive control staurosporine (1 µM) and flow cytometric analysis was performed. 464 

Staining controls; unstained or stained with either annexin V-FITC or propidium 465 

iodide. After 10 min incubation, flow cytometric analysis. Quantification was 466 

performed using FlowJo software. For all the panels, the experiments were repeated 467 

two to three times. (D) Caco-2 cells were treated as described for (A). After 24 h pH 468 

shift, total protein was isolated and Western blotting was performed. pH conditions: 469 

High pH 7.5-7.8; Normal pH 7.2-7.4; Low pH 6.6-6.8. 470 

471 

Figure 4. Autophagy is blocked by acidosis activated OGR1. 472 
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(A) Caco-2 cells were subjected to different pH medium, following 4-6 h incubation in 473 

pH 7.6 serum free medium. After 24 h pH shift, total protein was isolated and 474 

Western blotting was performed. Autophagy was measured by variations in the ratio 475 

of LC3-II/LC3-I and the total amount of LC3 (LC3-I plus LC3-II) relative to GAPDH. 476 

Results are representative of two independent experiments. (B-C) Caco-2 cells were 477 

subjected to different pH medium, with or without OGR1 inhibitor (10 µM, following 4-478 

6 h incubation in pH 7.6 serum free medium.) After 24 h pH shift, cells were fixed in 479 

4% paraformaldehyde and stained with an anti-LC3 antibody. Cells were analysed 480 

by immunofluorescence microscopy and images were acquired under a confocal 481 

laser microscope. Results are representative of three independent experiments. 482 

Scale bars indicate 50 µm. (D) Quantification of the ratio of LC3/DAPI is presented. 483 

Changes in LC3 accumulation were calculated relative to DAPI staining from at least 484 

4 areas. Statistical analysis was performed using one-way ANOVA followed by 485 

Tukey’s post-test. Data are presented as means ± SE of three independent 486 

experiments (*, p <0.05; **, p <0.01). pH conditions: High pH 7.5-7.8; Normal pH 7.2-487 

7.4; Low pH 6.6-6.8. 488 

Figure 5. OGR1 activation triggers the expression of the ER stress marker BiP 489 

through the JNK/IRE1α signalling pathway. 490 

Following acidic activation of OGR1, JNK and the UPR molecule IRE1α are 491 

phosphorylated and induce downstream XBP1 splicing, which in turn leads to the 492 

expression of the ER stress marker BiP in IECs. Acidic activation of OGR1 leads to 493 

the blockage of late stage autophagy. 494 

495 
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