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Abstract
This paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface
flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws
written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore
the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case,
the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely
efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee
stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably
introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the
Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the
non-physical clumpingmechanism is completely removed. To fulfil conservation of the global angularmomentum, a posteriori
(least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly
examined. Through these tests, the SPHmethodology overcomes by construction a number of persistent numerical drawbacks
(e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature,
without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm
yields equal second order of convergence for both velocities and pressure.
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1 Introduction

Modelling interfacial flows characterised by complex free
surface patterns is regarded as one of the most challenging
topics in the field of Computational Fluid Dynamics [1–3].
Efforts in developing a Lagrangianmeshfreemethod to accu-
rately capture the complex evolution of the flow interfaces
still remains a challenging problem [4,5].

The Smoothed Particle Hydrodynamics (SPH) method,
originally developed by Lucy [6] and Gingold and Mon-
aghan [7] for astrophysical and cosmological applications,
has since been explored in a wide range of engineering
applications, namely shock hydrodynamics [8], free surface
flows [9–12], multi-phase flows [13–18], rheology [19–21],
magneto-hydrodynamics [22] and solid mechanics [23–31].
One attractive feature of SPH is its mesh free nature, thus
not requiring the use of an underlying (or background) mesh.
The absence of mesh and the calculation of the interactions
among particles based exclusively on their separation allow
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ease of computation for large deformation problems. For its
low computational cost, reasonable accuracy and stability,
as well as its ability to handle extremely large distortions
[32–37], the SPH methodology has been shown to be very
competitive [4].

However, as it is well established, the traditional SPH
method presents a number of numerical drawbacks, namely:
(1) non-physical clumping of particles due to tensile insta-
bility [38–41] when using a non-Lagrangian description of
the problem, (2) numerical errors near the boundaries due to
reduced compact support [42,43], (3) zero-energymodes due
to rank-deficiency inherent to the use of a nodal integration
approach [44], (4) pressure instabilities when considering
weakly compressible fluids [45,46] and (5) reduced order of
convergence for volumetric strain and pressure [47–50].

In the last two decades, substantial effort has been devoted
to address above deficiencies and thus enhance the robust-
ness of the standard SPH method. Specifically, corrections
have been applied in order to ensure reproducibility of com-
plete polynomials in finite domains, as well as to pass the
patch test. Without being exhaustive, Johnson et al. [25,51]
proposed a normalised smoothing technique; Chen et al.
[52,53] introduced corrected kernel approximations on the
basis of a Taylor series expansion; Bonet et al. [54–56]
introduced corrections in the kernel functions and in their
derivatives; Liu et al. [27] presented an in-depth discussion
about reproducibility properties of the SPH method. Other
notable modifications to the SPHmethod include the moving
least-square particle hydrodynamics [57,58] and reproducing
kernel particle method [59,60]. Problems associated with the
stability and convergence of meshfree methods [24,43,61]
were also reported in [61].

However, above enhanced (also known as modified or
corrected) SPH methodologies still suffer from one or more
of the following spurious mechanisms, namely zero-energy
modes, pressure oscillations and the possible development
of long-term instabilities. These numerical artefacts can be
alleviated through the use of numerical dissipation mech-
anisms as follows. First, for the treatment of zero-energy
modes, one popular option is the incorporation of ad-hoc
artificial viscosity stabilisation, as proposed by Monaghan
[8,9,34], to the linear momentum equation. Even though the
viscosity term requires several user defined (problem depen-
dent) stabilisation parameters, this approach is still being
widely accepted and implemented inmanyopen source codes
[10,62,63]. Morris and Monaghan [64] further improved the
accuracy of the stabilisation by introducing an appropriate
limiter. Second, for the treatment of pressure instabilities,
Monaghan [9,65] introduced a smoothing procedure for the
density update, named “X-SPH”, by penalising the difference
between the particle velocity and the average velocity in its
neighbourhood. Another a posteriori approach [10,14,62,63]
is the re-initialisation of the density field via a corrected

(or re-normalised) kernel function after a certain number of
time steps. Unfortunately, as reported in [11], both of these
techniques may potentially lead to excessive dissipation,
which is clearly undesirable in practice. In parallel, Molteni
and Colagrossi [45] introduced another ad-hoc approach,
named δ-SPH method [66,67], by incorporating a (Lapla-
cian based) diffusive term to the continuity equation. Further
improvement has been made by Sun et al. [68] whereby a
particle shifting procedure is combined. On another front,
several interesting attempts have also been reported at aim-
ing to solve the instability issues via the use of a physically
based Riemann solver [69–74,74–77]. Despite the tremen-
dous development in the field, the ab initio stability of SPH
schemes is still an open problem.

In the current paper, a parameter-free Total Lagrangian
SPH computational framework is presented with particular
attention paid to the analysis of fluid flow problems without
significant topological changes on surface (to be explored in
a subsequent publication). A first-order system of hyperbolic
equations1 is presented in terms of the linear momentum p
and the Jacobian J of the deformation. The mixed { p, J }
system ensures the pressure to converge at the same spatial
rate than the velocities and displacements, advantageous in
those scenarios (especially when considering inviscid fluid
flowproblems)where the pressure plays a dominant role.One
contribution of this paper is the reformulation of the Updated
Lagrangian version of the inviscid fluid equations typically
used in SPH in a Total Lagrangian description. In this case,
the evaluation of spatial integrals is carried outwith respect to
the initial undeformed configuration, yielding an extremely
efficient formulation where the need for continuous particle
neighbouring search is avoided altogether. One of the objec-
tives of this paper is to lay the foundation for seeking a new
SPH approach with the final aim to handle in the near future
violent free surface flows typically accompanied with large
topological changes.

A crucial aspect that requires special attention is that of
the stability of the SPH formulation. Specifically, a Riemann
based (upwinding) approach is pursued where a consistently
derived numerical stabilisation is carefully introduced ensur-
ing global production of numerical entropy. The latter is
demonstrated by themonitoring of the so-calledHamiltonian
of the system [88]. For completeness, a global a posteriori
angular momentum projection procedure is also presented
with the aim to preserve the angular momentum of the
system. On the shown test problems, the proposed SPH algo-
rithm is shown to effectively eliminate the appearance of
spurious hourglass-like modes and pressure instabilities.

The paper is organised as follows. Section 2 summarises
the system of first-order conservation laws { p, J } for inviscid

1 Similar first-order conservation laws have been recently exploited in
the field of solid mechanics [29–31,78–87].
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Fig. 1 Motion of a deformable continuum domain

fluid flow problems used in this paper. Section 3 presents the
weak variational statements of the problem as well the sec-
ond law of thermodynamics written in terms of the so-called
Hamiltonian [86,89,90]. Section 4 presents the Smooth Par-
ticle Hydrodynamics discretisation numerical scheme where
special attention is paid to the Riemann based (upwinding)
numerical dissipation employed. A proof of entropy pro-
duction is included as a necessary condition for stability at
the semi-discrete level. Section 5 describes the explicit Total
Variation Diminishing Runge-Kutta time integrator used for
temporal discretisation. Section 6 summarises the flowchart
of the proposed SPH methodology. In Sect. 7, an extensive
set of challenging numerical examples is examined to assess
the performance of the proposed algorithm. Finally, Sect. 8
presents some concluding remarks and current directions of
research.

2 Total Lagrangian first-order conservation
laws

2.1 Kinematics and conservation of volumemap

Consider the three dimensional deformation of a continuum
moving from its initial (material) configuration occupying a
volume �0, of boundary ∂�0 with outward unit normal N ,
into a current configuration at time t occupying a volume
�(t) of boundary ∂�(t) with outward unit normal n, see
Fig. 1. The standard notation and definitions for the deforma-
tion gradient tensor F (used tomapdifferential fibre elements
dx = FdX) and its determinant J (used to map differential
volume elements d� = Jd�0) are introduced

F = ∂x
∂X

= ∇0x; J = det F, (1)

where x represents the current position of a particle origi-
nally at X and ∇0 denotes the gradient with respect to the
material configuration. Similarly, material differential area

vectors dA (co-linear with N) are mapped to current differ-
ential area vectors da (co-linearwith n) through the co-factor
H of the deformation, which is related to the deformation
gradient tensor F via the Nanson’s rule [86]

H = J F−T . (2)

An alternative way to Eq. (1b) to compute the Jacobian of
the deformation is possible via an integral conservation law
[29–31,80,84–86] as follows,

d

dt

∫
�0

J d�0 =
∫

∂�0

(
HTv

)
· NdA, (3)

where v = dx
dt is the velocity field. The equivalent local

conservation law and associated jump condition across a dis-
continuity surface with normal N , propagating with speedU
in the reference space [78,83,84], are

∂ J

∂t
−DIV

(
HTv

)
= 0; U�J� = −�v� ·

(
HAveN

)
. (4)

In this expression, DIV represents the material divergence
operator, HAve = 1

2

(
H− + H+) represents an average state

of the co-factor of the deformation between the left and right
states across the discontinuity surface and �·� = [·]+ − [·]−
represents the jump operator.

2.2 Conservation of linear momentum

The conservation of linear momentum per unit undeformed
volume p = ρ0v (with ρ0 the material density of the
continuum) [29–31,78–87] is established for any arbitrary
Lagrangian material volume �0 by

d

dt

∫
�0

p d�0 =
∫

∂�0

t dA +
∫

�0

f 0 d�0, (5)

where f 0 is a body force per unit of undeformed volume and
t = PN is the traction vector associated with the material
outward unit normal surface vector N with P being the first
Piola-Kirchhoff stress tensor. The equivalent local equilib-
rium equation and the corresponding jump condition across
a discontinuity [78,82–84] can be written as

∂ p
∂t

− DIVP = f 0; Uρ0�v� = −�P�N. (6)

2.3 Combined equations

Combining expressions (3) and (5), above global conserva-
tion laws can now be summarised in a concise manner as

d

dt

∫
�0

U d�0 = −
∫

∂�0

FN dA +
∫

�0

S d�0, (7)
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representing a system of Total Lagrangian conservation laws
where U denotes the set of conservation variables, S the
source term and FN the surface flux vector, described as
follows

U =
[
p
J

]
; FN = −

[
t

1
ρ0

p · (HN)

]
; S =

[
f 0
0

]
,

(8)

whereH is the cofactor of the deformationpreviously defined
in (2). The computation of H is carried out from the use of J
in (4) and the computation of the deformation gradient tensor
(1) obtained from the time integration of the velocity field v
deduced from (6).

For closure, above system (8) requires the introduction of
an appropriate “elastic fluid” type of constitutive law (also
known as polytropic equation of state [34,54]), relating the
stress tensor P with the Jacobian of the deformation J . In this
specific case, a strain energy � per unit undeformed volume
is introduced as

�(J ) =
{

κ
(
J − 1 − J 1−γ −1

1−γ

)
, γ > 1

κ(J − 1 − ln J ), γ = 1
(9)

with {γ, κ} > 0 the positive material constants.2 Thus, the
first Piola-Kirchhoff stress tensor P can be expressed as

P = −pH; p = −d�

dJ
= κ

[(
1

J

)γ

− 1

]
, (10)

where a positive value of the pressure p in above equation
indicates compression. So far only an elastic volumetric con-
tribution (10) is considered. General materials however will
also exhibit additional inelastic effects Pv , where the com-
bined stress becomes

P = −pH + Pv. (11)

In the case of fluids this is due to viscosity whereas for solids
more complex constitutive equations possibly involving plas-
ticity [31] can be required. In the current paper, we consider
the case of perfect fluid, that is Pv = 0. Physically, this
implies that no shear/deviatoric stresses, viscosity or heat
conduction are taken into account.

Importantly, with the aid of (9), hyperbolicity of system
(8) can be demonstrated (see “Appendix”) ensuring the exis-
tence of real wave speeds at any state of deformation. Finally,
for the complete definition of the initial boundary value prob-
lem, initial and boundary (essential and natural) conditions
must also be specified as appropriate.

2 Crucially, differentiating Eq. (9) twice with respect to J implies the

convexity of �(J ), that is d2�(J )

dJ 2
≥ 0 for all γ ≥ 1.

Remark 1 An alternative non-conservative form for J (4a) is
achieved by introducing the Piola identity, namely DIVH =
0, into Eq. (4a) to give

∂ J

∂t
− H : ∇0v = 0. (12)

3 Weak form statements

In general, a standard weak variational statement for the sys-
tem (8) is established by multiplying the local differential
equations U (8) with their appropriate work conjugate vir-
tual fields δV , and integrating over the reference domain �0

of the body, to give

∫
�0

δV • ∂U
∂t

d�0 =
∫

�0

δV • S d�0 +
∫

�0

F I • ∂δV
∂XI

d�0

−
∫

∂�0

δV • FN dA, (13)

where the normal fluxes FN = F I NI with NI being the
material outward normal in I -th material direction and the
symbol • is used to denote the inner (dual) product of work
conjugate pairs.

In order to give a proper physicalmeaning to the conjugate
virtual fields δV and pave the way for the proof of numerical
entropy production presented in a subsequent section, it is
useful to introduce the notion of Hamiltonian H = H(X, t)
[86,88]. This indeed can be understood as a generalised con-
vex entropy function of the system of conservation laws (8).
Specifically, the Hamiltonian H is defined by

H(X, t) = Ĥ(U) = 1

2ρ0
p · p + �(J ), (14)

which represents the summation of the kinetic energy (i.e.
the first term on the right hand side of (14)) and Helmholtz
free energy� per unit of undeformed volume. Note here that
H(X, t) and Ĥ(U) represent alternative functional represen-
tations of the same quantity. With expression (14) at hand,
the work conjugatesV can then be obtained by taking simple
differentiation to give

V = ∂Ĥ
∂U =

[
∂Ĥ
∂ p
∂Ĥ
∂ J

]
=
[

v

−p

]
. (15)

Finally, upon substitutionof (15) into (13), individual vari-
ational statement for the linearmomentum p and the Jacobian
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of the deformation J are

∫
�0

δv · ∂ p
∂t

d�0 = −
∫

�0

P : ∇0δv d�0

+
∫

�0

δv · f 0 d�0 +
∫

∂�0

δv · tB dA;
∫

�0

δ p
∂ J

∂t
d�0 =

∫
�0

δ p (H : ∇0v) d�0.

(16)

Here, both δv and δ p represent the virtual velocity and pres-
sure fields, respectively.

3.1 Second law of thermodynamics

It is instructive to revisit the second law of thermodynamics
when written in terms of the Hamiltonian. The time rate of
the volume integral of the Hamiltonian is obtained as follows

d

dt

∫
�0

H d�0 =
∫

�0

V • ∂U
∂t

d�0

=
∫

�0

(
v · ∂ p

∂t
− p

∂ J

∂t

)
d�0

=
∫

�0

(
v · ∂ p

∂t
− pH : ∇0v

)
d�0

=
∫

�0

(
v · ∂ p

∂t
+ (P − Pv) : ∇0v

)
d�0

(17)

where, in the first line of (17), use has been made of the con-
jugacy of the fields (15). In addition, Eqs. (12) and (11) have
been substituted in the second and third lines of (17), respec-
tively. Subsequently, we can substitute the linear momentum
Eqs. (6) into (17) to give

d

dt

∫
�0

H d�0 =
∫

�0

(
v · f 0 + v · DIVP + P : ∇0v

)
d�0

−
∫

�0

Pv : ∇0v d�0. (18)

Recalling that v · DIVP + P : ∇0v = DIV(PTv), above
equation reduces to

d

dt

∫
�0

H d�0 =
∫

�0

(
v · f 0 + DIV

(
PTv

))
d�0

−
∫

�0

Pv : ∇0v d�0. (19)

By performing integration by parts of the DIV term in
Eq. (19) and after some re-arrangement, it yields

d

dt

∫
�0

H d�0 − 	̇ext = −
∫

�0

Pv : ∇0v d�0, (20)

where 	̇ext denotes the power introduced by external forces,
defined as

	̇ext =
∫

�0

v · f 0 d�0 +
∫

∂�0

v · tB dA. (21)

In expression (20) , the term on the right hand side repre-
sents possible physical dissipation and is always non-positive
(namely, −Pv : ∇0v ≤ 0) and, consequently, Eq. (20) can
be transformed into the following inequality

d

dt

∫
�0

H d�0 − 	̇ext ≤ 0, (22)

which represents a valid expression for the second law of
thermodynamics [91]. Satisfaction of inequality (22) is a
necessary ab initio condition to ensure stability, otherwise
referred to as the Coleman–Noll procedure [91].

In the specific case of an isolated system (i.e. 	̇ext = 0),
inequality (22) reduces to

d

dt

∫
�0

H d�0 ≤ 0. (23)

This implies that for an isolated system, the decrease in the
Hamiltonian is intrinsically related to the dissipation intro-
duced by any inelastic (i.e. viscous) effects. This key concept
will be further exploited in Sect. 4.2 at a semi-discrete level.

4 Spatial discretisation

For the case of corrected SPHmethods [54], both the problem
variablesU and the conjugate pairs δV are in general interpo-
lated at any given position via corrected SPH shape functions
Ñ (or kernel functions W̃ ) with a given compact support of
radius 2h around every particle (see Fig. 2). Specifically, for
a given position Xa , both U and δV can be approximated as

Ua(t) ≈
∑
b∈
b

a

Ñb(Xa)Ub(t); δVa ≈
∑
b∈
b

a

Ñb(Xa)δVb;

Ñb(Xa) = �b
0W̃b(Xa). (24)

Here, 
b
a represents the set of neighbouring particles b that

lie inside a sphere of a given radius around Xa ,�b
0 represents

the volume associated to particle b and Ub(t) and δVb rep-
resent the time varying variables and their virtual conjugate
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Fig. 2 The compact support of kernel approximation

pairs stored at particle b, respectively. In addition, [•]a (t)
represent the problem variables at position Xa and time t ,
that is [•]a (t) = [•] (Xa, t). Additionally, the use of cor-
rected SPH shape functions Ñ ensures that both constant and
linear functions are perfectly interpolated [54].

In line with previous work [31], the material gradient
∇0(•) of any arbitrary vector function f can be approxi-
mated through the so-called corrected pseudo area vector
C̃ab (defined on the basis of corrected kernel gradient ∇̃0

[54]), described as

∇0 f (Xa) ≈ 1

�a
0

∑
b∈
b

a

1

2

(
f b − f a

)⊗ C̃ab;

C̃ab := 2�a
0∇0Ñb(Xa);

∇0Ñb(Xa) = �b
0∇̃0Wb(Xa). (25)

Specifically, the correction technique involves modifying
(uncorrected) pseudo area vectorCab (or kernel gradient∇0)
by introducing a particle based correction matrix La [54]

C̃ab = LaCab; Cab := 2�a
0∇0Nb(Xa); ∇0Nb(Xa)

= �b
0∇0Wb(Xa), (26)

from which La is explicitly evaluated as [54,55]

La =
⎛
⎝∑

b∈
b
a

�b
0∇0Wb(Xa) ⊗ (Xb − Xa)

⎞
⎠

−1

. (27)

This type of kernel gradient correction [28,54] ensures the
gradient of any linear field distribution is exactly evaluated.
Moreover, the term− f a is added in (25) in order to ensure the

gradient vanishes for a constant (uniform) field [8]. Noticing
that if no correction is applied (i.e. La = I), the corrected
pseudo area vector C̃ab (26) degenerates to the usual SPH
uncorrected area vector Cab [8].

It is worth pointing out that the correction matrices (27)
applied to a pair of interacting particles a and b are in gen-
eral not the same, that is La �= Lb. This would consequently
destroy the anti-symmetric condition of the gradient evalua-
tions (i.e. C̃ab �= −C̃ba) [92]. One possible option to enforce
such condition consists of skew-symmetrising the area vec-

tor C̃
Skew
ab by taking the difference between the area vectors

of particle pairs to give

C̃
Skew
ab = 1

2

(
C̃ab − C̃ba

)

= LAve
ab Cab; LAve

ab = 1

2
(La + Lb).

(28)

4.1 Total Lagrangian SPH discrete formulation

Typically, in SPH type approaches [8,14,29–31,54], the
above weak statements (16) are under-integrated by using
the cloud of particles as quadrature point [8,28,41,54,55,93].
Doing this may potentially excite the instabilities (e.g.
zero-energy modes and pressure instability) arising from
rank-deficiency inherent to the use of particle (or nodal)
integration approach. For instance, the error accumulation
over time can eventually lead to the breakdown of a scheme.
Additionally, in order to ensure the completeness condi-
tions (low order polynomials are interpolated exactly) of a
SPH algorithm, the type of correction technique described in
expressions (24) and (25) are typically used when evaluat-
ing the integrals of (16). This correction method however is
well known to destroy the desired anti-symmetric property of
the pseudo area vector. In other words, pseudo area vectors
between all pairwise interacting particles are no longer equal
and opposite.

Now the question remains on how to construct a con-
servative SPH method capable of addressing persistent
SPH numerical deficiencies (e.g. hour-glassing and pressure
modes) described above, whilst still minimising the errors
caused by the dissatisfaction of the anti-symmetric prop-
erty as the result of gradient correction. To achieve this, and
taking inspiration from previous work [31], a SPH method
in conjunction with well established stabilisation procedure
is presented. The SPH discretisation for the system { p, J }
described in (7) becomes

�a
0
d pa
dt

=
∑
b∈
b

a

Tab+Aa
0 t

a
B+�a

0 f
a
0+
∑
b∈
b

a

Dab
v +

∑
b∈
b

a

Dab
�C;

(29a)
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�a
0
dJa
dt

= Ha :
⎡
⎣∑
b∈
b

a

1

2
(vb − va) ⊗ C̃ab

⎤
⎦+

∑
b∈
b

a

Dab
p .

(29b)

In above expressions, the pairwise interacting force

Tab = 1

2

[
PaC̃ab − PbC̃ba

]
, (30)

clearly satisfies local conservation by construction, namely
Tab = −Tba .Moreover, the discrete cofactor Ha = JaF−T

a
(2) is evaluated using the discrete deformation gradient Fa

accurately approximated as

Fa = 1

�a
0

∑
b∈
b

a

1

2
(xb − xa) ⊗ C̃ab, (31)

where xa represent the current nodal geometry at particle a
obtained from time integration of the velocity va .

Finally, the remaining terms to be defined in Eq. (29a, b)
are the so-called pairwise stabilisation terms
{Dab

v ,Dab
p ,Dab

�C}. In particular, the term Dv
ab in (29a)

addresses spurious zero-energy (hourglass-like [33]) modes
due to rank-deficiency, whereas the termD p

ab (29b) removes
pressure instabilities in near incompressibility regimes [80].
Another challenging aspect when designing a SPH numer-
ical scheme is the ability to control errors arising from the
violation of the skew-symmetric nature due to the gradient
correction. One viable option is the introduction of an extra
stabilisation termDab

�C into expression (29a), with the objec-
tive to penalise the difference between the usual uncorrected

pseudo area vectorCab and C̃
Skew
ab (28). Mathematically, this

is described as Cab − C̃
Skew
ab .

To ensure the global conservation of the SPH discre-
tised Eq. (29), and following the style of (30), we choose
to strongly enforce local conservation for the stabilisations
involved, in such a way that Dab

v = −Dba
v , Dab

p = −Dba
p

and Dab
�C = −Dba

�C. Definition of these terms follows via
the semi-discrete version of the Colemann-Noll procedure
[94] in order to ensure the production of numerical entropy.
This will be discussed in the following section.

4.2 Numerical entropy production

In this section, we present a procedure to obtain consistent
and locally conservative stabilisation terms by utilising the
concept of the rate of entropy production [95–97], which
can be understood as a semi-discrete version of the classi-
cal Coleman–Noll procedure. Specifically, the semi-discrete

counterpart of (17) is

∑
a

�a
0
dHa

dt
=
∑
a

�a
0Va · dUa

dt

=
∑
a

�a
0

[
va · d pa

dt
− pa

dJa
dt

]
.

(32)

Subsequently, we can substitute the linear momentum equa-
tion (29a) and the Jacobian equation (29b) into (32), and after
some algebra, gives

∑
a

�a
0
dHa

dt
=
∑
a

∑
b∈
b

a

1

2

[(
PaC̃ab

)
· vb

−
(
PbC̃ba

)
· va
]

+ 	̇ext

+
∑
a

∑
b∈
b

a

(
va · Dab

v − paDab
p + va · Dab

�C

)

︸ ︷︷ ︸
−Dtotal

.

(33)

Here, 	̇ext denotes the semi-discrete power introduced by
external forces expressed as

	̇ext =
∑
a

(
�a

0va · f a0 + Aa
0v

a
B · taB

)
. (34)

Additionally, due to the anti-symmetric nature of the first
term in the first line of (33), we can conclude that this term
cancel and thus (33) reduces to

∑
a

�a
0
dHa

dt
− 	̇ext = −Dtotal. (35)

It is now the objective to demonstrate that the term on
the right hand side of (35) is always non-positive, that is
Dtotal ≥ 0 (to be in agreement with (22)). Specifically,

Dtotal = −
∑
a

∑
b∈
b

a

(
va · Dab

v − paDab
p + va · Dab

�C

)

= −
∑
a

∑
b∈
b

a

(
vb · Dba

v − pbDba
p + vb · Dba

�C

)

(36)

Adding the first line and the second line of the equa-
tion above, and again noting the anti-symmetric nature of
the stabilisation terms (e.g. Dab

v = −Dba
v , Dab

p = −Dba
p ,

Dab
�C = −Dba

�C), an alternative expression for Dtotal is

Dtotal = 1

2

∑
a

∑
b∈
b

a

Dab
total (37)
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with

Dab
total = (vb − va) ·Dab

v −(pb− pa)Dab
p +(vb − va) ·Dab

�C.

(38)

Dissipation terms {Dab
v ,Dab

p ,Dab
�C} remain to be defined

in order to ensure non-negative entropy production, namely,
Dtotal > 0. In this work, the termDab

�C is defined as

Dab
�C = 1

2
(Pa + Pb) (Cab − C̃

Skew
ab ), (39)

which is designed in order to penalise the violation of the
skew-symmetric nature of the gradient kernel correction.
Note that the above definition ofDab

�C ensures the skew sym-
metric nature of this term. As for the remaining stabilisation
terms, we propose the following definitions

Dab
v = Svab (vb − va) ;

Dab
p = −S p

ab(pb − pa),
(40)

where Svab = Svba is a positive definite stabilisation matrix
and S p

ab = S p
ba > 0. Notice how the dissipation terms

{Dab
v ,Dab

p } defined in (40) are skew symmetric and pro-
portional to the difference (or jump) in velocity (vb − va)

and pressure (pb − pa) between pairwise particles, typical
of Riemann solver based upwinding terms [78]. Moreover,
with these definitions for {Dab

v ,Dab
p } (40), the first two terms

on the right hand side of (38) are always strictly positive, thus
counterbalancing possible negative values taken by the third
term. In this paper, the dissipation terms used are specifically
chosen as

Svab = 1

2
ρAve
R,ab‖C̃Skew

ab ‖cAvep,ab I; Sp
ab = c̃Skewab · c̃Skewab

2ρAve
R,abc

Ave
p,ab‖C̃

Skew
ab ‖

,

(41)

with

ρAve
R,ab = 1

2

(
ρR,a + ρR,b

) ; cAvep,ab = 1

2

(
cp,a + cp,b

)
,

(42)

respectively. Here, ρR,a denotes the material density evalu-
ated at particle a and cp,a represents the pressure wave speed
(58) computed at particle a and c̃Skewab = 1

2(
HaC̃ab − HbC̃ba

)
.

Remark 2 Notice that it is always possible to ensure ab initio
non-negative entropy production by selecting an appropriate
numerical value for the wave speed, possibly different to

cAvep,ab in (42). For instance, selecting S p
ab = 0, the pairwise

numerical dissipation becomes

Dab
total = (vb − va) · Dab

v + (vb − va) · Dab
�C

= 1

2
ρAve
R,ab c̃p,ab ‖C̃Skew

ab ‖ ‖vb − va‖2

+ (vb − va) · Dab
�C ≥ 0,

(43)

where c̃p,ab is an appropriate wave speed which can be
selected as

c̃p,ab = max

⎧⎨
⎩cAvep,ab,

−2(vb − va) · Dab
�C

ρAve
R,ab‖C̃

Skew
ab ‖‖vb − va‖2

⎫⎬
⎭ , (44)

thus ensuring positive entropy production.

5 Time integration

With respect to the time integration of the governing equa-
tions, and having in mind a fast and efficient algorithm,
we advocate for an explicit type of time integrator. For
simplicity, an explicit one-step two-stage Total Variation
Diminishing Runge-Kutta (TVD-RK) scheme has been pre-
ferred [29–31,78]. This is described by the following time
update equations from time step tn to tn+1 as

U�
a = Un

a + �t U̇n
a(Un

a, t
n);

U��
a = U�

a + �t U̇�

a(U�
a, t

n+1);
Un+1

a = 1

2
(Un

a + U��
a ).

(45)

In this manuscript, the geometry (spatial locations of
the particles) is also updated through the above TVD-RK
algorithm [29–31,83,84]. This results in a monolithic time
integration procedure where the vector of particle unknowns
{ pa, Ja, xa} (a = 1, . . . , N , where N represents the total
number of particles across the computational domain) are all
updated via (45). The maximum time step �t is governed
by the standard Courant–Friedrichs–Lewy (CFL) condition
given as

�t = αCFL
hmin

cp,max
, (46)

where cp,max is the maximum p-wave speed, hmin is the min-
imum particle spacing within the computational domain and
αCFL is the CFL stability number. For the numerical compu-
tations presented in this paper, a value of αCFL = 0.3, unless
otherwise stated, has been chosen to ensure both accuracy
and stability [29,31] of the algorithm.
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Given the fact that the interacting force Tab (30) is not
co-linear with the position vector (xb − xa) [54], the SPH
algorithmdescribed above (29a,b) does not intrinsically fulfil
conservation of angularmomentum. To address this issue, we
adapt the global projection algorithm introduced by Lee et
al. [31]. Specifically, the internal nodal force

∑
b∈
b

a
Tab and

the particle based stabilisation terms, namely
∑

b∈
b
a
Dab

v

and
∑

b∈
b
a
Dab

�C, described in (29a) are suitably modified
in a least-square sense in order to preserve the total angular
momentum, whilst still ensuring the global conservation of
linear momentum.

6 Algorithmic description

For ease of understanding, Algorithm 1 summarises the
complete algorithmic description of the mixed-based { p, J }
Upwind Smooth Particle Hydrodynamics (Upwind-SPH)
methodology, with all the necessary numerical ingredients.

Algorithm 1: Complete stabilised Upwind-SPH mixed
methodology

Input : Un
a where U = [ p, J ]T

Output: Un+1
a , Pn+1

a , xn+1
a

(1) ASSIGN old primary variables: Uold
a = Un

a and xolda = xna

(2) EVALUATE p-wave speed cp (58)

(3) COMPUTE time increment: �t

for TVD-RK time integrator = 1 to 2 do

(4) COMPUTE right-hand-side of the mixed-based system:
ṗa (29a) (with Tab described in (30)) and J̇a (29b)

(5) APPLY discrete angular momentum preserving algorithm
(6) EVOLVE {Ua, xa} via TVD-RK (45)

(7) COMPUTE first Piola Pa ((10))
end

(8) UPDATE {Un+1
a , xn+1

a } (see 45)
(9) COMPUTE first Piola Pn+1

a (10)

7 Numerical examples

In this section, a series of two dimensional (2D) and three
dimensional (3D) numerical examples are presented in order
to assess the robustness, effectiveness and applicability of
the new SPH computational framework. Notice that as the
numerical examples included in this paper are restricted
to inviscid flow dynamics (and importantly, without severe

changes in topology), strictly speaking, no physical dissipa-
tion, but only numerical, will be present in our simulations.

For post-processing purposes, one popular option is to
plot the solutions directly based on the particle values. This
however may not be viable when a fluid patch experiences
extremely large deformation and the distance between par-
ticles can become excessively large, unless a prohibitively
large number of particles is used in the simulation, which is
not the most preferred option in industry. In order to circum-
vent this shortcoming, we present another simple option to
visualise the results. This is achieved by introducing a sec-
ondary set of particles, with their values approximated using
an appropriate kernel interpolation procedure [54] (ensur-
ing zeroth- and first-order completeness). Advantages of this
alternative visualisation procedure are demonstrated in the
subsequent examples.

7.1 Wave-like cubical fluid patch

As it is well known, one of the persistent drawbacks of the
SPH method is the difficulty to ensure a proper order of
convergence of the overall algorithm. Spatial order of con-
vergence is still regarded as one of the key challenges by SPH
developers [4].

The aim of this example is to examine the spatial conver-
gence of the proposed { p, J }Upwind-SPHmethodology for
the unknown fields velocity and pressure. A three dimen-
sional cube of length L = 2 m, as shown in Fig. 3a, is
analysed with symmetric boundary conditions for all the sur-
faces.When small deformations are considered, this example
has a closed-form solution for the velocity field described as

v(X, t) = ωA0 cos (ωt) V ;

V =
⎡
⎣A sin

(
πX
L

)
cos
(

πY
L

)
cos
(

π Z
L

)
B cos

(
πX
L

)
sin
(

πY
L

)
cos
(

π Z
L

)
C cos

(
πX
L

)
cos
(

πY
L

)
sin
(

π Z
L

)
⎤
⎦ , (47)

where ω = 2π s−1 and A0 = 5 × 10−4 m. The parameters
{A, B,C} are set as A = −2, B = C = 1 to ensure the exis-
tence of an incompressible flow. The problem is initialised
with a zero pressure field (see Fig. 3b) together with an initial
velocity field defined by using t = 0 in (47) (see Fig. 3c). For
the fluid patch to be in equilibrium, a specific representation
of the body force term is required

f (X, t) = −ω2A0 sin (ωt) V . (48)

An elastic fluid type of constitutive law is used with density
ρ0 = 1000 kg/m3, bulk modulus κ = 10 MPa and γ = 1.
As presented in 58, the initial pressure wave speed used in

this case is c0p =
√

κγ
ρ0

= 100 m/s.
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Fig. 3 Wave-like cubical fluid patch: problem setup. (Color figure online)

Convergence analysis is carried out bymeasuring both the
L1 and L2 error norms between the numerical and analytical
solutions. Fig. 4a, b show equal second-order convergence
for both the velocity field and the pressure field, which is one
of themain advantages of the proposed SPHmethodology. In
this case, mesh refinement improves at the same rate results
for both velocity and pressure.

7.2 Stretching of a circular fluid patch

This two dimensional example was first proposed by Mon-
aghan [9], and later explored by several authors inReferences
[54,92,98,99]. The main objective of this example is to ver-
ify the accuracy of the developed SPH algorithm and to show
the preservation of total linear momentum. In this example,
analytical expressions for the velocity (or displacement) and
pressure fields are provided. Their detailed derivations can
be found in [9,54,99].

The circular fluid patch has a radius R of 1 m and is free
from any external forces, as illustrated in Fig. 5a. Both the
initial velocity field v0 and the initial pressure field p0 are,
respectively, described as follows

v0 =
⎡
⎣−A0X

A0Y
0

⎤
⎦ ; p0 = 1

2
ρ0A

2
0

[
R2 −

(
X2 + Y 2

)]
,

(49)

where A0 = 100 s−1. For visualisation purposes, contour
plots of the above initial conditions are also displayed in
Fig. 5b, c. The fluid properties used in this example are den-
sity ρ0 = 1000 kg/m3 and bulk modulus κ = 1.96 GPa.
Utilising the value of γ = 1 in the equation of state, the ini-
tial pressure wave speed of the fluid patch can be computed

as c0p :=
√

κγ
ρ0

= 1400 m/s. The domain is spatially dis-

cretised with a uniformly distributed particle arrangement.
Moreover, the outermost radial particles are set free in order
to allow the boundary surface to deform freely.

We start off by benchmarking the positions of the particles,
situated at the highest and lowest points along the semi-major
axis, against the published results reported in References
[9,54]. Due to the symmetric nature of the problem, the solu-
tions of those two particles are found to be identical, and
hence only the results based on the highest particle are pre-
sented (see Table 1). It can be seen that the results obtained
with the proposed method agree extremely well with those
published. The maximum difference with respect to the ana-
lytical solution is calculated to be 0.75%.

To verify the convergence of the problem, a particle refine-
ment study is examined (see Fig. 6). Particles are sequentially
refined in order to compare the resolution of the deformed
fluid patch at t A0 = 1.294. Notice that the particles remain
stable (without any oscillations) whilst being stretched. The
free surface is accurately captured and no particle clumping is
observed. The clumping of SPH particles has been reported
in Reference [99] when the particles are distributed along
the axes of a Cartesian coordinate system. This shortcoming
can also be circumvented by introducing either a boundary
conforming particle distribution [54] or a priori particle redis-
tribution algorithm [99].

It can be seen that the pressure plot based onparticle values
is no longer visible (refer to the top row of Fig. 6) when the
fluid patch experiences a very large stretch. For this reason,
the visualisation is carried outwith the help of a secondary set
of particles with values interpolated via SPH shape functions
(24c). As shown in the bottom row of Fig. 6, the deformed
shapes of the fluid patch are practically identical. Pressure
resolution is further enhanced when using a larger number
of particles. For qualitative comparison purposes, Table 2
shows the positions of the semi-minor (X = [1, 0, 0]T m)
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Fig. 4 Wave-like cubical fluid patch: a L1 and (2) L2 norm convergence
of components of pressure, X -velocity, Y -velocity and Z -velocity using
the proposed { p, J} Upwind-SPH scheme. Results are obtained with
A = −2, B = C = 1, ω = 2π s−1 and A0 = 5 × 10−4 m at time

t = 0.9375ms. An elastic fluid is used with density ρ0 = 1000kg/m3,
bulk modulus κ = 10MPa, material coefficient γ = 1 and �t =
9.375 × 10−5 s

Fig. 5 Stretching of a circular fluid patch: problem setup

Table 1 Stretching of a circular
fluid patch: comparison of
position for the highest particle
along the semi-major axis from
analytical, standard SPH,
corrected SPH (CSPH) and
{ p, J } Upwind-SPH

Time (s) Analytical Standard SPH1 CSPH2 { p, J } Upwind-SPH
0.0008 1.081 1.086 − 1.086 (0.46%)

0.0020 1.219 1.220 1.220 1.222 (0.25%)

0.0038 1.438 1.440 − 1.440 (0.14%)

0.0050 1.595 1.610 1.600 1.604 (0.56%)

0.0076 1.943 1.910 − 1.957 (0.72%)

0.0080 2.000 2.020 2.000 2.015 (0.75%)

Percentage differences with respect to the analytical solution are stated within the brackets
1 Refer to Ref. [9]
2 Refer to Ref. [54] (only three sets of results were reported)
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317 1257 5025 20,081

Fig. 6 Stretching of a circular fluid patch: Particle refinement of
deformed fluid patch alongside with pressure distribution plotted as
particles (top) and contour (bottom) at t A0 = 1.294 using of a 317, b
1257, c 5025, and d 20,081 particles. Red dashed lines represent the ana-

lytical deformation. Results obtained using { p, J } Upwind-SPH with
an initial velocity and pressure (refer to Eq. 49). An elastic fluid of den-
sity ρ0 = 1000kg/m3, bulkmodulus κ = 1.96GPa,material coefficient
γ = 1 and αCFL = 0.3.
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Table 2 Stretching of a circular fluid patch: comparison of position for farthest particle along the (X = [1, 0, 0]T m) and semi-major (X = [0, 1, 0]T

m) axes between sequential particle density using { p, J } Upwind-SPH against analytical solution at t A0 = 1.294

Particle refinement P1 P2 P3 P4 Analytical
No. of particles 317 1257 5025 20,081

Semi-minor axis (m) 0.3806 (2.04%) 0.378 (1.34%) 0.377 (1.07%) 0.376 (0.80%) 0.373

Semi-major axis (m) 2.723 (1.38%) 2.713 (1.01%) 2.709 (0.86%) 2.698 (0.45%) 2.686

The percentage difference against analytical solution for each particle density is stated in bracket

Fig. 7 Time evolution of a numerical dissipation using a discretisa-
tion of 317, 709, 1257 and 2821 particles; and b components of linear
momentum using a discretisation of 20,081 particles. Results obtained

using { p, J } Upwind-SPH with an initial velocity and pressure (refer
to Eq. 49). An elastic fluid of density ρ0 = 1000kg/m3, bulk modulus
κ = 1.96GPa, material coefficient γ = 1 and αCFL = 0.3

and semi-major (X = [0, 1, 0]T m) axes at various time
instants. As expected, the obtained results converge to the
available analytical solution.

Figure 7a shows the time evolution of the accumulated
numerical entropy (dissipation) present in the algorithm.This
is achieved by integrating the Hamiltonian energy of the
system described in (35) over time. The total numerical dis-
sipation is reduced when successively increasing the particle
density. Furthermore, Fig. 7b depicts the time history of the
components of global linear momentum of the system. As
expected, the global linear momentum fluctuates around zero
machine accuracy in the absence of external forces.

The predicted solution is expected to oscillate around and
then gradually converge towards the incompressible flow
solution. The incompressibility limit is governed by the bulk
modulus of the fluid, which in turn affects the correspond-
ing pressure wave speed. Notice here that an increase in the
bulk modulus of the fluid patch would lead to a smaller time
increment used in the simulation. To assess the effectiveness
of the algorithm in the near incompressibility regime, the
pressure evolution is monitored at position X = [0, 0, 0]T
using three different values of the bulk modulus, namely κ ,
4κ and 16κ . As shown in Fig. 8, all the results converge

towards the incompressible solution without the appearance
of non-physical pressure instabilities.

For completeness, Fig. 9 shows a sequence of snap-
shots and their pressure contours. Majority of the authors
[9,54,92,98,99] presented the deformation up to t A0 = 2.
To demonstrate the stability of the algorithm in a long-term
response, we continue running the simulation up to t A0 = 4.
Two particles, one located at the semi-major axis and the
other one located at the semi-minor axis, are monitored and
compared against the analytical solutions (see Table 3). The
particles at both axes are stretched to approximately 6.5 times
and 2.9 times of their original positions.

7.3 Rotation of a square fluid patch

Similar to the example presented in Sect. 7.2, a square patch
of inviscid fluid without the imposition of any external forces
is considered. This problemwas first proposed by Colagrossi
[14], and this has since been used as an interesting benchmark
validation example in the SPH community [68,100,101].
This problem is particularly challenging as spurious zero
energy modes[8,92] would accumulate and, eventually, lead
to the breakdown of the scheme. One viable option to remove
this instability is the use of kernel derivatives that is fixed in
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Fig. 8 Stretching of a circular fluid patch: time evolution of non-
dimensional pressure at X = [0, 0, 0]T m with varying bulk modulus
κ . Results obtained using 1257 particles with an initial velocity and

pressure (refer to Eq. 49). An elastic fluid of density ρ0 = 1000kg/m3,
material coefficient γ = 1 and αCFL = 0.3

Fig. 9 Stretching of a circular fluid patch: Evolution of the deformation
alongside with pressure distribution using { p, J } Upwind-SPH at (left
to right) t A0 = {0.0, 0.228, 0.421, 0.592, 0.747, 1.019, 1.141, 1.367,
1.472, 1.759, 2.015, 2.467, 3.042, 3.536, 4.0}. Results obtained using

1257 particles with an initial velocity and pressure (refer to Eq. 49). An
elastic fluid of density ρ0 = 1000kg/m3, bulk modulus κ = 1.96GPa,
material coefficient γ = 1 and αCFL = 0.3.

Table 3 Stretching of a circular fluid patch: Time evolution of farthest particle along the semi-major and semi-minor axes using { p, J }Upwind-SPH
t A0 (-) 0.0 0.228 0.421 0.592 0.747 1.019 1.141 1.367 1.472 1.759 2.015 2.467 3.042 3.536 4.0

A-Mjr. (m) 1.0 1.251 1.492 1.717 1.927 2.302 2.472 2.787 2.935 3.339 3.699 4.338 5.150 5.848 6.489

Mjr. (m) 1.0 1.253 1.497 1.725 1.940 2.322 2.495 2.816 2.966 3.376 3.742 4.390 5.212 5.917 6.563

Diff. (%) 0.0 0.16 0.34 0.47 0.67 0.87 0.93 1.04 1.06 1.11 1.16 1.20 1.20 1.18 1.14

A-Mnr. (m) 1.0 0.799 0.670 0.583 0.519 0.434 0.405 0.359 0.341 0.300 0.270 0.231 0.194 0.171 0.154

Mnr. (m) 1.0 0.800 0.673 0.587 0.524 0.440 0.410 0.364 0.346 0.305 0.275 0.235 0.198 0.174 0.157

Diff. (%) 0.0 0.15 0.43 0.72 0.94 1.24 1.33 1.51 1.58 1.70 1.78 1.87 1.91 1.87 2.01

A—represents the analytical solution. Mjr. and Mnr. refer to semi-major and semi-minor axes respectively
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Fig. 10 Rotation of a square fluid patch: problem setup

Fig. 11 Rotation of a square
fluid patch: Particle refinement
of deformed fluid patch
alongside with pressure
distribution plotted at particles
(top) and as a contour plot
(bottom) at t A0 = 1.1 using a
441, b 1681, c 6561 and d
25,921 particles. Grey dashed
line represents the initial
position, black dashed lines are
the trajectories and red dashed
line represents the free surface
deformation from ANSYS
Fluent using an ultrafine
reference mesh. Results
obtained using { p, J }
Upwind-SPH with an initial
velocity and pressure
distributions (Refer to Eq. 50).
An elastic fluid of density
ρ0 = 1000kg/m3, bulk modulus
κ = 1.96GPa, material
coefficient γ = 1 and
αCFL = 0.3
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Fig. 12 Rotation of a square fluid patch: time evolution of a trajectory
of the corner particle at the material point X = [−0.5, 0.5, 0]T m; and
b numerical dissipation using 441, 1681, 6561 and 25,921 particles.

Results obtained using { p, J } Upwind-SPH with an initial velocity and
pressure (refer to Eq. 50). An elastic fluid of density ρ0 = 1000kg/m3,
bulkmodulus κ = 1.96GPa,material coefficient γ = 1 andαCFL = 0.3

Fig. 13 Rotation of a square fluid patch: time evolution of components
a global linear momentum; and b global angular momentum using a
discretisation of 6561 particles. Results obtained using { p, J }Upwind-

SPH with an initial velocity and pressure (refer to Eq. 50). An elastic
fluid of densityρ0 = 1000kg/m3, bulkmodulus κ = 1.96GPa,material
coefficient γ = 1 and αCFL = 0.3

the reference configuration (inherent to the use of Lagrangian
SPH formalism [41]), which is exactly one of the key moti-
vations of this work.

The fluid patch, of length L = 1 m, is subject to an initial
velocity and pressure distribution described as

v0 =
⎡
⎣ A0Y

−A0X
0

⎤
⎦ ;

p0 = ρ0

∞∑
m

∞∑
n

− 32ω2[
mnπ2

(mπ
L

)2 + ( nπ
L

)2]

sin

(
mπX∗

L

)
sin

(
nπY ∗

L

)
, (50)

where A0 = 200 s−1, X∗ = X + L
2 and Y ∗ = Y + L

2 .
The parameters m and n are odd numbers and the pressure
field (50b) converges rapidly when {m, n} ≥ 3. The centre of
mass of this fluid patch is located at X = [0, 0, 0]T m and the
initial density is taken as ρ0 = 1000 kg/m3. Using both the
bulk modulus of κ = 1.96 GPa and the coefficient of γ = 1,
the pressure wave speed at time t = 0 becomes c0p = 1400
m/s.

By imposing zero pressure gradient at the four corners
of the fluid patch, the particles initially located at these cor-
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Fig. 14 Rotation of a square
fluid patch: deformed fluid patch
at t A0 = 1.1 using a { p, J }
Upwind-SPH with F ensures
zero-th order completeness and
b { p, J } Upwind-SPH with F
ensures zero-th and first-order
completeness. Results obtained
using 6561 particles with an
initial velocity and pressure
(refer to Eq. 50). An elastic fluid
of density ρ0 = 1000kg/m3,
bulk modulus κ = 1.96GPa,
material coefficient γ = 1 and
αCFL = 0.3.

Fig. 15 Rotation of a square
fluid patch: Deformed fluid
patch using a { p, J }
Upwind-SPH without
dissipation terms (e.g.
Dab

v = Dab
�C = 0 and Dab

p = 0)
and b { p, J } Upwind-SPH at
t A0 = 0.324. Results obtained
using 6561 particles with an
initial velocity and pressure
(refer to Eq. 50). An elastic fluid
of density ρ0 = 1000kg/m3,
bulk modulus κ = 1.96GPa,
material coefficient γ = 1 and
αCFL = 0.3

Fig. 16 Rotation of a square fluid patch: evolution of the deforma-
tion alongside with pressure distribution using { p, J } Upwind-SPH at
(left to right) t A0 = {0.085, 0.268, 0.594, 0.903, 1.466, 2.416, 3.570}.

Results obtained using 6561 particles with an initial velocity and pres-
sure (refer to Eq. 50). An elastic fluid of density ρ0 = 1000kg/m3, bulk
modulus κ = 1.96GPa, material coefficient γ = 1 and αCFL = 0.3
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Fig. 17 Swirling of a square fluid patch: geometry configuration and initial conditions

ners would evolve in time in the direction of the velocity
field [102]. To examine this, a particle refinement analysis
at time t A0 = 1.1 is presented in Fig. 11. Both the free sur-
face deformation and the pressure representation for every
level of particle refinement are displayed. For benchmark-
ing purposes, we simulate the exact same problem using the
commercial software package ANSYS Fluent via an ultra-
fine discretisation of 2 million elements, which can then be
treated as a reference solution. The proposed method accu-
rately captures the location of the corners, as well as the
bending of four arms, even with the utilisation of very few
particles. No spurious mechanism is observed, which typi-
cally appears between t A0 = 0.6 and t A0 = 1.2 as reported
in [68,102].

Figure 12a monitors the trajectory path of the particle
at X = [−0.5, 0.5, 0]T m. After a relatively long time,
the position of the particle becomes inaccurate due to the
accumulation of the numerical dissipation. This is com-
monly found in the work of the other authors [14,103] who
attempted to simulate this example via a stabilisation proce-
dure. However, dramatic improvement is seen with increased
particle density. For completeness, the total numerical dissi-
pation of the algorithm ismeasured. Figure12b shows a clear
reduction in the numerical dissipation by increasing the level
of refinement.

Figure 13a, b show the time history of the components
of the global linear and angular momenta of the system. As
expected, the angular momentum components are perfectly
conserved and the linear momentum components fluctuate
around zero machine accuracy. Crucially, Fig. 14 shows the
necessity for accurate evaluation of the deformation gradi-
ent F. Wrong deformation path is observed when employing
the standard kernel gradient approximationCab [8] that only
ensures zeroth-order consistency. Such inaccurate deforma-
tion can be rectified by utilising the correction technique to
evaluate the deformation F (31) (refer to Fig. 14b). More-

over, Fig. 15 highlights the importance of adding sufficient
amount of numerical dissipation to the algorithm. As dis-
played in Fig. 15a, four corners of the fluid patch exhibit
spurious mechanisms when using the { p, J } SPH algorithm
without introducing any sort of stabilisation terms (i.e. set
Dab

v = Dab
�C = 0 and Dab

p = 0). This shortcoming can
be alleviated using suitable dissipation terms (see Fig. 15b),
consistently derived from the satisfaction of global Hamilto-
nian energy.

For visualisation purposes, Fig. 16 shows a sequence of
deformed states for the rotating fluid patch. Given the initial
conditions described in (50), the fluid patch initially is dom-
inated by a centrifugal force [99]. This would allow the fluid
patch first to rotate and then to start developing the fluid arms
at those four corners. The arms would continue to elongate
and deform, and eventually creating four extremely thin bent
arms at a later time. Very smooth pressure field is observed.

7.4 Swirling of a square fluid patch

Using exactly the same geometry as shown in Fig. 10a,
another type of square fluid patch is assessed [98,102,104]. In
this case, the fluid patch is subject to a specific representation
for the velocity field described as follows

v0 = −A0L

⎡
⎢⎣
e−4 − e−16(Y/L)2

e−4 + e−16(X/L)2

0

⎤
⎥⎦ , (51)

where A0 = 100 s−1. This particular type of velocity distri-
bution enables the fluid patch to undergo extremely massive
distortion. The adopted fluid properties are material density
ρ0 = 1000 kg/m3, bulk modulus κ = 1.96 GPa and the fluid
coefficient of γ = 1.

At time t = 0, the fluid domain is subjected to a pair
of rotating vorticity fields pushing the fluid patch to deform
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Fig. 18 Swirling of a square fluid patch: particle refinement of
deformed fluid patch alongside with pressure distribution plotted as
particles (top) and contour (bottom) at t A0 = 0.2 using a 441, b 1681,
c 6561 and d 25,921 particles. Grey dashed line represents the initial
position and red dashed line refers to the free surface deformation from

ANSYS Fluent. Results obtained using { p, J } Upwind-SPH with an
initial velocity and pressure distributions (refer to Eq. 51). An elastic
fluid of densityρ0 = 1000kg/m3, bulkmodulus κ = 1.96GPa,material
coefficient γ = 1 and αCFL = 0.3. (Color figure online)
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Fig. 19 Time evolution of a relative deformation of the non-
dimensional corner particle at the material point X = [0.5, 0.5, 0]T m
with its position shown in ‘�’ up until t A0 = 0.5; and b numeri-
cal dissipation 441, 1681, 6561 and 25,921 particles. Results obtained

using { p, J } Upwind-SPH with an initial velocity and pressure (refer
to Eq. 51). An elastic fluid of density ρ0 = 1000kg/m3, bulk modulus
κ = 1.96GPa, material coefficient γ = 1 and αCFL = 0.3

Fig. 20 Swirling of a square
fluid patch: Deformed fluid
patch at t A0 = 0.5 using a
{ p, J } Upwind-SPH with F
ensures only zeroth order
completeness and b { p, J }
Upwind-SPH with F ensures
both zeroth- and first-order
completeness (31)
Upwind-SPH. Results obtained
using 6561 particles with an
initial velocity and pressure
distributions (refer to Eq. 51).
An elastic fluid of density
ρ0 = 1000kg/m3, bulk modulus
κ = 1.96GPa, material
coefficient γ = 1 and
αCFL = 0.3

along the flow direction. The two corner particles located at
the centre of the vortices remain always at rest. The remain-
ing corners of the domain are located at the flow symmetry
direction, and hence known as free boundary particles. In
order to show the convergence of the overall algorithm, a
particle refinement study is carried out at time t A0 = 0.2
and is shown in Fig. 18. Both the top and left surfaces of the
fluid patch are being pushed towards the domain, whereas all
the corner particles remain at rest. As time evolves, the free
boundary particle located at position X = [−0.5,−0.5, 0]T
m (i.e. the right bottom corner of the domain) gradually
moves away from its original location. Insofar as the sym-
metric vorticity field is considered, the boundary particle

propagates in a linear fashion. The movement evolution
relative to its original position is depicted in Fig. 19a. Inter-
estingly, the particle travels linearly with respect to its initial
position for all particle refinements. The position of the par-
ticle converges with increasing particle density, which can
be observed through the location of markers. Moreover, sig-
nificant reduction in the amount of numerical dissipation is
observed in Fig. 19b. This indeed shows that the numerical
dissipation term is consistent and would vanish by increasing
the number of particles.

Figure 20 demonstrates the importance of the proper eval-
uation of the deformation F. Clearly, the deformation path is
wrongly captured without imposing any kernel gradient cor-
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Fig. 21 Swirling of a square fluid patch: Deformed fluid patch using
a { p, J } Upwind-SPH by setting Dab

v = Dab
�C = 0 and Dab

p = 0, b
{ p, J } Upwind-SPH by setting Dab

p = 0 and c { p, J } Upwind-SPH

at t A0 = 0.256. Results obtained using 6561 particles with an initial
velocity and pressure distributions (refer to Eq. 51). An elastic fluid
of density ρ0 = 1000kg/m3, bulk modulus κ = 1.96GPa, material
coefficient γ = 1 and αCFL = 0.3

Fig. 22 Swirling of a square
fluid patch: Deformed fluid
patch using a { p, J }
Upwind-SPH with Dab

p = 0 and
b { p, J } Upwind-SPH at
t A0 = 1.1. Results obtained
using 6561 particles with an
initial velocity and pressure
distributions (refer to Eq. 51).
An elastic fluid of density
ρ0 = 1000kg/m3, bulk modulus
κ = 1.96GPa, material
coefficient γ = 1 and
αCFL = 0.3

rection (refer to Fig. 20a) unless excessively fine meshes are
used. As shown in Fig. 20b, this inaccurate deformed shape
is corrected by using the enhanced kernel gradient approxi-
mation. It is well known that, sufficient amount of numerical
stabilisation that needs to be added to the algorithm remains
a persistent numerical issue in the SPH community. The SPH
algorithm clearly exhibits pressure fluctuations without the
introduction of any sort of stabilisation by setting the val-
ues ofDab

v = Dab
�C = 0 andDab

p = 0. Addition ofDab
v and

Dab
�C to the linearmomentumevolution alonewould partially

alleviate the mechansims at the beginning of the simulation

Fig. 21b, c. The mechanism however would accumulate and
re-emerge at a later time. As displayed in Fig. 22, this mode
can be entirely removed by using the proposed SPH algo-
rithm where {Dab

v ,Dab
p ,Dab

�C} are appropriately introduced
without the need to tune any user defined stabilisation param-
eters.

Finally, Fig. 23 shows a series of snapshots for the fluid
patch, displaying the deformation patterns and the pressure
field. A very smooth and stable pressure pattern is observed.
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Fig. 23 Swirling of a square fluid patch: evolution of the deformation
alongside with pressure distribution using { p, J } Upwind-SPH at (left
to right) t A0 = {0.0, 0.20, 0.51, 0.80, 1.01, 1.30}. Results obtained

using 25,921 particles with an initial velocity and pressure (refer to
Eq. 51). An elastic fluid of density ρ0 = 1000kg/m3, bulk modulus
κ = 1.96GPa, material coefficient γ = 1 and αCFL = 0.3
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(0, L, 0)

(a) Geometry configuration

0 0.2 0.4 0.6 0.8 1
p0/ (ρ0gL)
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‖v0‖/

√
gL

)

(c) Initial velocity magnitude

Fig. 24 Collapsing water column: problem setup

Fig. 25 Collapsing water column: particle refinement of deformed
fluid patch alongside with pressure distribution plotted as contour at
t
√
g/L0 = 0.9 using a 1331, b 9261 and c 68,921 particles. Red dashed

line represents the free surface deformation from ANSYS Fluent and
the square markers represent the free surface solutions fromKelecy and

Pletcher [105]. Results obtained using { p, J }Upwind-SPH with an ini-
tial hydrostatic pressure. An elastic fluid of density ρ0 = 1000 kg/m3,
bulk modulus κ = 16MPa, material coefficient γ = 7 and αCFL = 0.3.
(Color figure online)
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7.5 Collapsing water column

In this section, a classical three dimensional benchmark
example is presented (see Fig. 24). A cubic water column, of
length L = 0.05715 m, in hydrostatic equilibrium is confined
between a wall and a gate. The oscillating water column
is subject to a gravitational acceleration of g = 9.81 m/s2

acting vertically downwards. The material properties under
consideration are density ρ0 = 1000 kg/m3, bulk modulus
κ = 16 kPa and fluid coefficient γ = 7. Symmetric boundary
conditions are imposed on the solid walls.

In this example, the gate is removed instantaneously and
the fluid column collapses under the gravitational force.
Specifically, a number of experimental and numerical results
are available in the literature for benchmarking purposes.
Figure25 shows a refinement analysis at a particular time
t
√
g/L0 = 0.9, with special emphasis on the deformation

patterns of the free surface alongside pressure distribution.
With respect to the free surface deformation, the proposed
upwind SPH algorithm agrees well with other published
results (e.g. Kelecy and Pletcher [105] and ANSYS Fluent).
Furthermore, the time varying positions at both the surge
front and the column height of the wall are monitored and
compared [2,54,105–110] in Fig. 26a, b. Again, very good
agreement is observed even with very few particles.

Essentially, an appropriate evaluation for the deformation
map F prevents an unrealistic collapsing trend of the water
column (refer to Fig. 27). Most of the particles belonging to
the surge regions are seen to be clumped together and some
are seen to be protruding across the bottom wall. In addition,
a dip is observed at column height.

Figure 28 illustrates the deformation history of the water
column, displaying pressure contour. As already reported
in [47,54,80], pressure instabilities would be excited with-
out incorporating any numerical damping to the Jacobian
evolution (see Fig. 28a,b). This indeed can be eliminated
by introducing a consistent Riemann-based dissipation term
Dab

p (refer to Fig. 28c), without affecting the order of conver-
gence of the algorithm. Another popular option to address
this drawback is to employ the δ-SPH method [46,67], and
which requires a user defined stabilisation parameter for the
evaluation of the Laplacian operator.

7.6 Impact of a fluid patch on a wall

The final example of this work is the numerical analysis of
an inviscid fluid patch impacting on a wall. The setup of this
problem is very similar to the work reported in References
[67,68,77] when considering impact of two identical fluid
patches. A cuboid, with a height of H = 1.5 m (or L = 1 m
in Fig. 29a) and a unit cross section, is subject to an initial

Fig. 26 Collapsing water column: time evolution of a surge front and b
columnheight using 1331, 9261 and 68,921 particles.Markers represent
experimental results and dashed lines represent numerical solutions.
Results obtained using { p, J } Upwind-SPH with an initial hydrostatic
pressure. An elastic fluid of density ρ0 = 1000kg/m3, bulk modulus
κ = 16MPa, material coefficient γ = 7 and αCFL = 0.3

dropping velocity field

v0 = A0L

⎡
⎣ 0

−1
0

⎤
⎦ , (52)

where A0 = 1 s−1. The fluid properties used in this example
are density ρ0 = 1000 kg/m3, bulk modulus κ = 10 MPa
and the fluid coefficient γ = 1, which in turn yields the
correspondingpressurewave speed c0p = 100m/s.Moreover,
symmetric boundary conditions are enforced at the bottom
surface, whereas the remaining boundary surfaces are set
free.

Webegin this example by performing a particle refinement
analysis at time t A0 = 0.098 (see Fig. 30). The deformed
shape of the free surface predicted by the proposed SPH
method agrees extremely well with the ANSYS Fluent solu-
tions via an ultrafine discretisation of 1.6 million elements.
Pressure resolution is improved by increasing the number
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Fig. 27 Collapsing water column: deformed fluid patch at t
√
g/L0 =

1.965 using a { p, J } Upwind-SPH with F only ensure zeroth-order
completeness and b { p, J } Upwind-SPH with F ensures both zeroth-
and first-order completeness (31). Results obtained using 9261 parti-

cles with an initial hydrostatic pressure field. An elastic fluid of density
ρ0 = 1000kg/m3, bulk modulus κ = 16MPa, material coefficient
γ = 7 and αCFL = 0.3

of particles. The results are further analysed by monitoring
the displacement at two different positions, one at a surge
front X = [0.5, 0, 0]T m (see Fig. 31a) and the other one at
a column height X = [0, 1.5, 0]T m (see Fig. 31b). It is seen
that the time history of the horizontal displacement at the
surge front location converges to the reference solution (i.e.
ANSYS Fluent) when increasing the number of particles.
More interestingly, the vertical displacement at the column
height is converged even with the use of a small number
of particles, showing optimal convergence of the algorithm.
Very small oscillations in column height being observed due
to the nature of the compressible algorithm.

Figure 32 depicts a series of snapshots of the pres-
sure evolution simulated using the proposed Upwind-SPH
method. These snapshots are captured at every time interval
of�t A0 = 0.001 up until t A0 = 0.03.After the fluid patch is
in contact with the wall, a compressive shock wave is instan-

taneously generated and then followed by a tensile wave.
These waves would then propagate towards the top free sur-
face and reflect back to the fluid domain. A smooth pressure
distribution is observed throughout the evolution without the
need to introduce extra artificial (or non-consistent) viscos-
ity into the algorithm. To check if the method suffers from
long-term instability, we continue running the simulation for
a longer time. As shown in Fig. 33, extremely good results
are obtained via a Riemann based SPH algorithm.

To further examine the robustness of the algorithm, we
simulate the exact same problem but this time applied on a
hemisphere. Figure 34 shows the importance of adding suf-
ficient amount of numerical dissipation to the volume map
conservation law. The proposed upwind SPH algorithm per-
forms extremely well in this case without any numerical
difficulties.

123



Computational Particle Mechanics

Fig. 28 Collapsing water column: evolution of the deformation (top
to bottom) alongside pressure distribution using a { p, J } Upwind-SPH
by setting Dab

v = Dab
�C = 0 and Dab

p = 0, b { p, J } Upwind-SPH

with Dab
p = 0 and c { p, J } Upwind-SPH at t

√
g/L0 = {0.39, 0.59,

0.98, 1.46, 1.96, 2.49}. Results obtained using 9261 particles with an
hydrostatic pressure. An elastic fluid of density ρ0 = 1000kg/m3, bulk
modulus κ = 16MPa, material coefficient γ = 7 and αCFL = 0.3

8 Conclusions

In this paper, a newTotal Lagrangian Smooth ParticleHydro-
dynamics computational framework has been introduced for
the numerical analysis of inviscid fluid flows. The methodol-
ogy is established starting from a mixed-based system of
first-order hyperbolic conservation laws, where the linear
momentum p conservation law is solved along with the con-

servation equation for the Jacobian of the deformation J .
For problems without experiencing severe changes in topo-
logical surface, the use of a Total Lagrangian description
removes the need for continuous (updated) particle neigh-
bouring search (either removing it altogether or delaying it
until an extremely large number of computational time steps
has taken place), yielding an extremely efficient scheme still
capable of handling massive deformations.
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Fig. 29 Impact of a cuboid fluid patch on a wall: problem setup

Fig. 30 Impact of a cuboid fluid
patch on a wall: particle
refinement of deformed fluid
patch alongside with pressure
distribution plotted as contour at
t A0 = 0.098 using a 2501, b
9801, c 38,801 and d 154,401
particles. Red dashed line
represents the free surface
deformation from ANSYS
Fluent. Results obtained using
{ p, J } Upwind-SPH with an
initial velocity
v0 = A0[0,−1, 0]T m/s using
A0 = 1 s−1 and pressure
p0 = 0 Pa. An elastic fluid of
density ρ0 = 1000 kg/m3, bulk
modulus κ = 10 MPa, material
coefficient γ = 1 and
αCFL = 0.3. (Color figure
online)
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Fig. 31 Impact of a cuboid fluid patch on a wall: time evolution of a
surge front and b column height using 2501, 9801, 38,801 and 154,401
particles. Black dashed line represents the numerical solutions for val-
idation purposes. Results obtained using { p, J } Upwind-SPH with an

initial velocity v0 = A0[0,−1, 0]T m/s using A0 = 1 s−1 and pressure
p0 = 0Pa. An elastic fluid of density ρ0 = 1000kg/m3, bulk modulus
κ = 10MPa, material coefficient γ = 1 and αCFL = 0.3

From the spatial discretisation point of view, an entropy-
stable Smooth Particle Hydrodynamics is presented where
consistent Riemann-based (upwinding) numerical dissipa-
tion is suitably introduced guaranteeing global numerical
entropy production, the latter demonstrated by monitoring
the so-called Hamiltonian energy of the system. Such numer-
ical dissipation is very well designed from a mathematical
standpoint (taking into consideration of the characteristic
structure of the hyperbolic system) and, crucially, does not
rely on the use of any user defined artificial stabilisation
parameters. From the temporal discretisation point of view,
an explicit one-step two-stage Total Variation Diminish-
ing Runge Kutta time integrator combined with an angular
momentum preserving algorithm is presented.

Finally, a comprehensive list of challenging prototype
problems has been presented in order to benchmark the
results obtained against alternative numerical strategies avail-
able in the literature, including the standard SPH [8,32,40],
the Corrected SPH [54,55] and ANSYS Fluent [110]. It has
been shown that the resulting SPH algorithm overcomes
a number of numerical difficulties posed by SPH meth-
ods when simulating slightly compressible fluids, namely
non-physical hydrostatic pressure fluctuations, hour-glassing
and numerical errors associated with global conservation,
completeness, long-term instability and convergence. Very
importantly, both velocities and pressure (or the volumet-
ric strain) display equal second order of convergence. As
a result, the new SPH algorithm provides a good balance
between accuracy and speed of computation.

The next step of our work is the adaptation of the current
Total Lagrangian SPH algorithm to handle violent free-
surface flows typically accompanied with large topological

changes, by incorporating alternative Updated Lagrangian
formalism in the style of [28].
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Appendix A Hyperbolicity

This Appendix is included to demonstrate the hyperbolicity
[85,86] of system (8). In addition, the computation of the
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Fig. 32 Impact of a cuboid fluid patch on a wall: time evolution of
pressure monitored at material point X = [0, 0, 0]T m. The blue dots
represent the time instant (every 0.001s) of the deformation alongside
with pressure distribution (left to right; top to bottom) using 102,541
particles. Results obtained using { p, J } Upwind-SPH with an initial

velocity v0 = A0[0,−1, 0]T m/s using A0 = 1 s−1 and pressure
p0 = 0Pa. An elastic fluid of density ρ0 = 1000kg/m3, bulk mod-
ulus κ = 10MPa, material coefficient γ = 1 and αCFL = 0.3. (Color
figure online)
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Fig. 33 Impact of a cuboid fluid patch on a wall: evolution of the
deformation (top to bottom) alongside with pressure distribution using
a { p, J } Upwind-SPH with Dab

v = Dab
�C = 0 and Dab

p = 0, b
{ p, J } Upwind-SPH with Dab

p = 0 and c { p, J } Upwind-SPH at

t A0 = {0.00487, 0.0355, 0.1355, 0.255, 0.3672, 0.549, 0.7935}.
Results obtained using 102,541 particles with an initial velocity v0 =
A0[0,−1, 0]T m/s using A0 = 1 s−1 and pressure p0 = 0Pa. An elastic
fluid of density ρ0 = 1000kg/m3, bulk modulus κ = 10MPa, material
coefficient γ = 1 and αCFL = 0.3
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Fig. 34 Impact of a hemisphere fluid patch on a wall: evolution of
the deformation (top to bottom) alongside with pressure distribution
using a { p, J } Upwind-SPH with Dab

v = Dab
�C = 0 and Dab

p = 0, b
{ p, J }Upwind-SPHwithDab

p = 0 and c { p, J }Upwind-SPH at t A0 =

{0.003, 0.0607, 0.1310, 0.22, 0.303, 0.395, 0.48}. Results obtained
using 136,393 particles with an initial velocity v0 = A0[0,−1, 0]T m/s
using A0 = 1 s−1 and pressure p0 = 0Pa. An elastic fluid of den-
sity ρ0 = 1000kg/m3, bulk modulus κ = 10MPa, material coefficient
γ = 1 and αCFL = 0.3

maximum (pressure) wave speed is necessary for the evalua-
tion of the maximum time step of the explicit time integrator.
This can be achieved by, first recalling that P = −pH (10)
and, combining Eq. (6) multiplied by HAveN with Eq. (4) to
give

U 2 = −
2
A

ρ0

�p�

�J�
; 
2

A =
(
HAveN

)
·
(
HAveN

)
. (53)

In this paper, we consider the simple case of an “elastic fluid”
type of model described in (10), that is p = κ(J−γ − 1). In
this case

�p� = κ�J−γ �. (54)

In the case of slightly compressible fluid, it is instructive
to consider small jumps in �J−γ � by approximating it using
a Taylor series expansion as

�J−γ � ≈ − γ �J�

(JAve)γ+1 ; JAve = 1

2
(J+ + J−). (55)

Combining (55) with the second line of (54) would give an
alternative expression for the jump in pressure described as

�p� = − κγ

(JAve)γ+1 �J�. (56)
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Finally, the determination of pressure wave speed can now
follow by substituting Eqs. (56) into (53), which results in

U = ±cp; cp = 
A

√
γ κ

ρ0(JAve)γ+1 . (57)

It is worth noticing that expression above (57) degenerates
to the so-called linear acoustic pressure wave speed cLinp by
evaluating the nonlinear pressure wave speed cp (57) at the
initial undeformed configuration (that is, H = I and J = 1)

cLinp =
√

γ κ

ρ0
. (58)
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