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Background: Sensorimotor function is degraded in patients after lower limb 1 

arthroplasty. Sensorimotor training is thought to improve sensorimotor skills, 2 

however, the optimal training stimulus with regard to volume, frequency, duration, 3 

and intensity is still unknown. The aim of this study, therefore, was to firstly quantify 4 

the progression of sensorimotor function after total hip (THA) or knee (TKA) 5 

arthroplasty and, as second step, to evaluate effects of different sensorimotor 6 

training volumes.  7 

Methods: 58 in-patients during their rehabilitation after THA or TKA participated in 8 

this prospective cohort study. Sensorimotor function was assessed using a test 9 

battery including measures of stabilization capacity, static balance, proprioception, 10 

and gait, along with a self-reported pain and function. All participants were randomly 11 

assigned to one of three intervention groups performing sensorimotor training two, 12 

four, or six times per week. Outcome measures were taken at three instances, at 13 

baseline (pre), after 1.5 weeks (mid) and at the conclusion of the 3 week program 14 

(post).  15 

Results: All measurements showed significant improvements over time, with the 16 

exception of proprioception and static balance during quiet bipedal stance which 17 

showed no significant main effects for time or intervention. There was no significant 18 

effect of sensorimotor training volume on any of the outcome measures. 19 

Conclusion: We were able to quantify improvements in measures of dynamic, but 20 

not static, sensorimotor function during the initial three weeks of rehabilitation 21 

following TKA/THA. Although sensorimotor improvements were independent of the 22 

training volume applied in the current study, long-term effects of sensorimotor 23 
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training volume need to be investigated to optimize training stimulus 24 

recommendations.  25 

Clinical trial registration number: DRKS00007894 26 

Key Words: balance, total knee replacement, total hip replacement, neuromuscular 27 

training, proprioception, rehabilitation, dose-response  28 
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INTRODUCTION 29 

In the progression of osteoarthritis (OA), sensorimotor skills including proprioception 30 

[1,2], static and dynamic balance [3], and neuromuscular control are known to 31 

degrade in response to pain avoidance and advancing inactivity. These sensorimotor 32 

deficiencies typically manifest as modified movement patterns and muscle weakness 33 

[4,5] and have been shown to persist even after joint replacement. For instance, 34 

Thewlis et al. [6] observed persistent asymmetric load distribution in TKA patients 6 35 

months after surgery and Levinger et al. [2] described proprioceptive deficits that 36 

remained for at least 12 months following TKA surgery. Similarly, Judd et al. [7] 37 

observed sensorimotor deficits following THA, with both strength and functional 38 

performance deficits persisting for at least one year after  joint replacement.  39 

Despite evidence that a full recovery of sensorimotor function is unlikely to occur 40 

within twelve months of THA or TKA [8], there is emerging evidence that 41 

sensorimotor function can be improved through dedicated sensorimotor training. For 42 

instance, Zech et al. [9] found that sensorimotor training improved dynamic balance 43 

in ankle sprain patients and resulted in a faster activation of hamstring muscles after 44 

a sudden perturbation of stance in patients with anterior cruciate ligament rupture. 45 

Similarly, sensorimotor training has been shown to produce positive effects on the 46 

response of hip OA and THA patients to sudden displacements [10], improve walking 47 

time and reduce knee reposition error in knee OA patients compared to strength 48 

training [11].  49 

Along with muscular strengthening, joint flexibility training, and pain management, 50 

sensorimotor training has now become an integral part of rehabilitation guidelines 51 

following THA and TKA. However, evidence-based recommendations for 52 
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sensorimotor training, particularly in post-operative rehabilitation programs, are 53 

currently lacking. Current guidelines are based mainly on anecdotal evidence and 54 

practical experience. Empirical evidence regarding the optimal sensorimotor training 55 

dose and the effects of training volume, frequency, duration, and intensity are still to 56 

be explored [1,12–14]. 57 

The first purpose of the current study, therefore, was to quantify the progression of 58 

sensorimotor function during inpatient rehabilitation after THA and TKA. The second 59 

purpose was to evaluate the effects of sensorimotor training volume on sensorimotor 60 

function. We hypothesized that higher sensorimotor training volumes would improve 61 

sensorimotor function to a larger extent than lower training volumes.  62 

 63 

METHODS 64 

Participants 65 

Sixty-three consecutive patients presenting to an inpatient orthopaedic rehabilitation 66 

clinic (Medical Park St. Hubertus, Bad Wiessee, Germany) following TKA or THA to 67 

address unilateral joint disease were approached to participate in the study. Three 68 

patients declined to participate and two failed to meet the study inclusion criteria, 69 

which required patients to possess a minimum knee mobility of 85°/30°/0° (neutral 70 

zero method: flexion/extension) [15] and to be able to fully weight-bear without aid 71 

for at least 30 seconds. Consequently, fifty-eight (29 males, 29 females) patients 72 

with unilateral TKA (n=21) or THA (n=37) participated in this study (Table 1). All 73 

patients were otherwise healthy and free of gross orthopaedic conditions of the lower 74 

limbs. Patients were randomly assigned to one of three groups, which differed only in 75 
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the volume of sensorimotor training: two sessions per week (n=20), four sessions per 76 

week (n=15) and six sessions per week (n=23). Base-line (pre-training) 77 

measurements took place 13.5 ± 2.8 days, on average, after surgery. All patients 78 

provided written informed consent, following a verbal and written explanation of the 79 

study procedures which were approved by the local ethics committee. 80 

 81 

Intervention 82 

All patients underwent three weeks of a standard rehabilitation protocol, which 83 

included exercise training, physical therapy, seminars, and educational group 84 

therapy. Within the standard rehabilitation protocol, patients also received a 85 

sensorimotor training program that included supervised exercise sessions involving 86 

three different therapeutic devices: (1) a balance pad (Balance Pad, Airex, 87 

Germany), (2) a ball cushion (Aero-Step® XL, Togu, Germany), and (3) a Proprio-88 

Swing-System (systemreha GmbH & CO. KG, Germany). On each device, all 89 

sensorimotor exercises were conducted during quiet bipedal stance but the level of 90 

difficulty progressed from an ‘eyes open’ condition in the first week, through a 91 

‘forward and backward leaning’ condition (within self-perceived limits of balance) 92 

during the second week and concluded with an ‘eyes closed’ condition in the third 93 

week. Sensorimotor exercises were undertaken for thirty seconds on each device, 94 

and were repeated six times within each training session. A thirty second rest period 95 

was provided between repetitions. Thus, in total, each sensorimotor training session 96 

lasted approximately 18 minutes including rest periods. In the regular rehabilitation 97 

protocol, the sensorimotor training session was scheduled six times per week. For 98 
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this study three groups were established by adjusting the training volume from six, to 99 

four, and two sensorimotor training sessions per week.  100 

Procedure 101 

Self-reported pain and function along with measures of stabilization capacity, 102 

static balance, proprioception and gait analysis were used as primary outcome 103 

measures. Outcome measures were taken at baseline (pre), and repeated after 1.5 104 

weeks (mid) and at the conclusion of the 3 week program (post).  105 

Gait Analysis  106 

Preferred over-ground walking speed was determined over a distance of 13 107 

meters [16] using two double light barriers (TDS lightbarriers, Werthner Sport 108 

Consulting KG, Austria). Step length was measured over the central 5 meters of the 109 

walkway using an OptoGait System (OptoGait, Microgate, Italy) with a spatial 110 

resolution of 1.04 cm and a sampling frequency of 1000 Hz. In the event, that a 111 

patient was unable to walk without walkers, step length was not measured. 112 

Stabilization capacity  113 

Stabilization capacity was measured during bipedal stance on an oscillatory 114 

platform (Posturomed, Haider Bioswing, Germany) [10] that incorporated a 115 

provocation unit and a MicroSwing measuring system (three-dimensional 116 

acceleration sensor, Haider Bioswing, Germany). The provocation unit allowed for 117 

the precise displacement, fixation and the controlled release of the oscillatory 118 

platform. Patients were thereby exposed to a standardized horizontal unidirectional 119 

oscillatory stimulus and instructed to dampen the movement of the platform as 120 

quickly as possible to return to quite standing. Acceleration of the platform was 121 
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measured over ten seconds and the procedure was repeated three times, with 122 

oscillations independently induced in both the medio-lateral and anterior-posterior 123 

directions. Proprietary software was subsequently used to calculate the stability 124 

index for each trial. The dimensionless index, which reflects the patient’s capacity to 125 

stabilize the oscillatory platform, ranged from 0 to 1000 with higher scores 126 

representing higher stabilization capacity. Average stability indices were calculated 127 

from the three trials undertaken in each direction to give rise to each patients’ 128 

anterior-posterior and medio-lateral stabilization capacity.  129 

Static balance  130 

Static balance was assessed using previously published methods[17]. In brief, 131 

displacement of the centre of pressure was recorded while patients stood as still as 132 

possible on a pressure platform (footscan® USB plate, RSscan International, 133 

Belgium) under four sequential experimental conditions; (1) bipedal stance with eyes 134 

open, (2) bipedal stance with eyes closed, (3) semi-tandem stance with the operated 135 

leg positioned anteriorly, and (4) semi-tandem stance with the operated leg 136 

positioned posteriorly. Balance data for each experimental condition were collected 137 

for 20 seconds at a sampling rate of 43.3 Hz [3]. For each trial, the root mean square 138 

(RMS) of the displacement of the centre of pressure (COP) was calculated in both 139 

the medio-lateral and anterior-posterior directions and used in subsequent analysis.   140 

Proprioception  141 

Knee joint proprioception was assessed using the passive-active angle-142 

reproduction test [18], conducted at target angles of 40° and 60° of knee flexion. 143 

Patients were seated on a height adjustable therapy chair with the knee of the 144 

operated leg positioned at 90 degrees of flexion. The foot was positioned on a low 145 
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friction linear bearing, so that active and passive movement of the knee could be 146 

accomplished with minimal effort. A digital goniometer (accuracy: 0.1°, digital angle 147 

rule 200mm, Trend, United Kingdom) was attached to the lateral aspect of the knee 148 

using Velcro straps with the angular point device positioned over the estimated joint 149 

centre. Patients were instructed to close their eyes throughout proprioception 150 

measurement. From the initial position of 90 degrees of flexion, the knee was then 151 

passively moved to a target angle of either 40 or 60 degrees. The target angle was 152 

maintained for four seconds before the knee was passively returned to the initial 153 

position. Patients were then requested to actively move their leg to reproduce the 154 

target angle. The absolute difference between the actively reproduced angle and the 155 

target angle was subsequently calculated and used for further analysis.  156 

Functional Assessment  157 

The German adaptation of the Lequesne Algofunctional Questionnaire[19] was used 158 

to assess self-perceived functional impairment, stiffness, and pain during activities of 159 

daily living. The questionnaire consisted of 11 items analysing pain (5 items), 160 

maximum walking distance (2 items) and activities of daily living (4 items). Scores 161 

can range from 0 to 24 and were subclassified according to the criteria of Nilsdoter, 162 

where a score of 0 represents “no handicap”, 1 – 4 reflects “mild handicap”, 5 - 7 163 

represents “moderate handicap”, 8 – 10 reflects “severe handicap”, 11 – 13 164 

represents “very severe handicap”, and a score ≥ 14 indicates an “extremely severe 165 

handicap” [20]. The questionnaire takes approximately two minutes, on average, to 166 

complete and has been shown to have good acceptance among patients [19]. The 167 

use of pain-modifying medication was recorded as a dichotomous variable prior to 168 

each measurement. 169 
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Statistical Analysis  170 

The Statistical Package for the Social Sciences (version 21, IBM, USA) was used for 171 

all statistical procedures. Kolmogorov–Smirnov tests were used to evaluate data for 172 

underlying assumptions of normality. Outcome variables were determined to be 173 

normally distributed, and consequently means and standard deviations have been 174 

used as summary statistics. Between–group differences in age and body 175 

anthropometry were investigated using one-way analysis of variance (ANOVA). The 176 

effect of time (pre, mid, post) and training volume (2, 4 or 6 sessions per week) on 177 

measures of static balance, proprioception and basic gait parameters were 178 

evaluated using two–way repeated measures ANOVA in which time (pre, mid, post) 179 

was treated as a within–subject factor. Significant effects for time were evaluated 180 

using post hoc paired t-tests. Partial effect size (𝜂𝑝2) was calculated as an estimate of 181 

effect size. An alpha level of .05 was used for all univariate tests of significance.  182 

 183 

RESULTS 184 

One-way ANOVA demonstrated no difference between the three groups with respect 185 

to age, height and body weight at baseline (Table 1). 186 

Gait Analysis  187 

Walking velocity significantly increased over time (p < .001; 𝜂𝑝2 = .670), but did not 188 

differ between training volumes (p = .481) (Figure 1). Similarly, step length 189 

increased in the operated (p < .001, 𝜂𝑝2 = 0.549) and non-operated leg (p < .001, 𝜂𝑝2 = 190 

0.630) over time, but was not significantly different between training volumes 191 

(operated leg, p = .497; not operated leg, p = .559). 192 
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Stabilization Capacity  193 

Although the stability index significantly increased over time in both the anterior-194 

posterior (p < .001, 𝜂𝑝2 = 0.184) and medio-lateral (p < .001, 𝜂𝑝2 = 0.203) directions 195 

(Figure 2), there was no significant difference between training volumes (anterior-196 

posterior p = .942; medio-lateral p = .845). 197 

Static Balance  198 

There were no significant main effects of time or training volume on two of the 199 

four static balance conditions. There was a non-systematic though significant 200 

interaction between time and training volume in the RMS of the anterior-posterior 201 

displacement of the COP during the eyes closed condition (p = .033; 𝜂𝑝2  = 0.093, 202 

Figure 3). In semi-tandem stance conditions, the RMS decreased significantly over 203 

time in both the anterior-posterior and medio-lateral directions when the operated leg 204 

was positioned anteriorly (anterior-posterior: p = .003, 𝜂𝑝2 = 0.119; medio-lateral: p = 205 

.03, 𝜂𝑝2  = 0.074) but decreased only in the anterior-posterior direction when the 206 

operated leg was positioned behind the non-operated leg (p = .009, 𝜂𝑝2  = 0.011, 207 

Figure 4). 208 

Proprioception  209 

There was no significant difference in the angle reproduction test at either 210 

target angle over time or between training volumes (Figure 5).  211 

Functional Assessment  212 

Self-reported function scores improved significantly over time (p < 001, 𝜂𝑝2 = 213 

0.584) but did not differ between training volumes (p = .458) (Figure 6).    214 
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 215 

 216 

DISCUSSION 217 

The first purpose of the study was to quantify the progression of sensorimotor 218 

function during inpatient rehabilitation using a test battery that included static and 219 

dynamic measures of sensorimotor function. We could observe improvements in gait 220 

parameters, postural stability and in self-reported function during the three week 221 

period of early recovery in THA and TKA patients. The improvements in walking 222 

velocity (for all groups ∆T3-T1 > +0.25 m/s) are considered to reflect a clinically 223 

meaningful change [21].  224 

We observed significant improvements in stabilization capacity over the three week 225 

rehabilitation period. As sensorimotor training is known to improve the reaction of 226 

individuals to sudden disturbances of the support surface [10], we attribute a major 227 

contribution to the improved stabilization capacity of our patients to sensorimotor 228 

training but recognise potential time or learning effects may also play a role. While 229 

our results are consistent with those reported by Boeer et al. [22], we evaluated 230 

stabilization capacity during bipedal, rather than unipedal, stance since the majority 231 

of participants in our study were unable to stand on one leg without aid.  232 

In contrast to the improvements in stabilization capacity, static balance improved 233 

only in the more challenging semi-tandem stance conditions (operated leg in front or 234 

behind). While the present experimental setup did not allow for a mechanistic 235 

explanation as to why control of quiet bipedal stance did not improve during 236 

rehabilitation periods, asymmetric load distribution is known to increase COP 237 
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displacement during quiet stance and has been shown persist in TKA patients for at 238 

least six months following surgery [6,23]. In light of the magnitude of load asymmetry 239 

that occurs following THA [24], however, this effect is likely too low to explain the 240 

impairment in postural control observed in the current study [25]. Thus, our findings 241 

suggest that recovery of normal bipedal stance control is not improved with 242 

sensorimotor training and likely needs substantial time for recovery to occur, if at all. 243 

Semi-tandem stance conditions cause between 258% to 319% (anterior-posterior) 244 

and 350% to 355 % (medio-lateral) more postural sway as compared to bipedal 245 

stance with open eyes at baseline. It remains questionable, whether improvements 246 

in these more challenging balance conditions are achieved through improved intra- 247 

and inter-muscular coordination or better sensorimotor control in general.  248 

Proprioception, as defined by the angle reproduction measurement, showed no 249 

significant changes in any group over time. A trend towards an improvement can be 250 

seen at a target angle of 60°, however this was not statistically significant. For most 251 

of the TKA patients, particularly at baseline, replication of the 40° target angle was 252 

close to the upper limit of the available range of motion of the knee and was often 253 

coupled with pain. Thus, pain may have confounded measurements of 254 

proprioception in the current study and may also, in part, account for the inconsistent 255 

findings reported elsewhere in the recovery of joint-position sense in THA and TKA 256 

patients following surgery [26, 28]. While improvements have been reported by some 257 

studies following TKA [26], others have observed persistent deficits for up to twelve 258 

months following TKA [8].  259 

The second purpose of the study was to evaluate the effects of sensorimotor training 260 

volume on sensorimotor function. In contrast to our hypothesis, we found that 261 

decreasing the training volume of sensorimotor training to fewer than six sessions 262 
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per week had no significant effect on sensorimotor function in our cohort. There are 263 

several possible explanations for this observation.  264 

First, it is possible that the sensorimotor training program may not affect the recovery 265 

of sensorimotor function during in-patient rehabilitation. However, other studies have 266 

shown that sensorimotor function improves with sensorimotor training during 267 

recovery from ankle sprain [9], following anterior cruciate ligament rupture [9], with 268 

knee osteoarthritis [27], TKA [13], and following THA [10].  269 

Second, the training volume employed in the current study may not have been 270 

sufficient to induce neuromuscular adaptation. In the absence of recommendations 271 

on the intensity of sensorimotor training, however, the duration of the training 272 

program employed in the current study was designed to fall within the range that has 273 

been previously shown to have beneficial effects [28,29]. 274 

Finally, while there is some evidence that increasing training to more than one 275 

session per week invokes additional sensorimotor benefit [29], it is possible that 276 

there is a ceiling effect, in which there is no additional benefit beyond two 277 

sensorimotor training sessions per week. It remains to be shown whether, in the 278 

course of further rehabilitation of THA or TKA, a higher training frequency leads to 279 

greater improvement in sensorimotor function.    280 

This study has several limitations which should be considered when interpreting the 281 

results. First, pain sensation is known to influence proprioception [30], and by the 282 

patients’ general pain sensitivity, surgical outcome, and level of pain medication. 283 

During the course of our study, pain medication was reduced progressively on an 284 

individual basis, and hence might have influenced the sensorimotor function at 285 

different time points. Evidence of an effect of pain on sensorimotor function, 286 
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however, is contradictory [30] and we observed no differences in the use of pain 287 

medication between groups. Moreover, despite a reduction in self-reported pain in 288 

our cohort over time, we observed no significant change in proprioception 289 

performance. Second, repeated measurements carry the risk of potential learning 290 

effects. To keep potential learning effects to a minimum, patients were exposed to 291 

the measurement devices for as short as possible and were not permitted to use the 292 

devices between measurements. Finally, there may be a temporal delay in the 293 

effects of training on sensorimotor performance. Previous research, however, has 294 

shown improvements in dynamic balance tasks and structural reorganization of grey 295 

and white matter after as little as two 45-minute training session within two weeks 296 

[31]. Despite these limitations, we believe this study provides clinically relevant 297 

insights into the progress of sensorimotor function and the effects of sensorimotor 298 

training volume during the early recovery following total hip or knee arthroplasty. 299 

Further research investigating potential differential effects of sensorimotor training on 300 

TKA and THA patients over a longer duration of recovery is warranted. 301 

 302 

Conclusion 303 

We were able to quantify improvements in measures of dynamic, but not static, 304 

sensorimotor function during the initial three weeks of recovery from TKA or THA. 305 

Sensorimotor improvements were independent of sensorimotor training volume, as 306 

sensorimotor performance did not differ with weekly training volumes of two, four or 307 

six sessions. Thus, in contrast to common clinical practise, greater volume of 308 

sensorimotor training during rehabilitation does not necessarily lead to better 309 

sensorimotor function. Further research investigating the effect of training volume 310 
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and its long-term effects are needed, however, before definitive recommendations 311 

regarding optimal training stimulus (magnitude, frequency, duration) can be 312 

formulated. 313 
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TABLES: 
 
Table 1. Demographic data of the treatment groups 

Training volume two sessions four sessions six sessions 

n 20 15 23 

Age (years) 63.3 ± 10.3 61.1 ± 9.7 57.5 ± 15.2 

Height (cm) 171.6 ± 10.7 174.5 ± 10.3 172.5 ± 7.5 

Weight (kg) 79.2 ± 16.2 82.5 ± 18.8 86.4 ± 16.8 

Days post op (days) 14.0 ± 2.4 13.3 ± 2.1 13.2 ± 3.5 

Male/Female (%) 50 / 50 60 / 40 44 / 56 

TKA/THA (%) 40 / 60 27 / 73 39 / 61 

Between-group analysis (ANOVA) showed no significant differences (p >.05). TKA = total knee arthroplasty, THA = 
total hip arthroplasty 
  


