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Automated Topometric Graph Generation from Floor Plan Analysis

Obadiah Lam, Feras Dayoub, Ruth Schulz, Peter Corke1

ARC Centre of Excellence for Robotic Vision, Queensland University of Technology (QUT) ∗ †

Abstract

The world is rich with information such as sig-
nage and maps to assist humans to navigate.
We present a method to extract topological
spatial information from a generic bitmap floor
plan and build a topometric graph that can be
used by a mobile robot for tasks such as path
planning and guided exploration. The algo-
rithm first detects and extracts text in an image
of the floor plan. Using the locations of the ex-
tracted text, flood fill is used to find the rooms
and hallways. Doors are found by matching
SURF features and these form the connections
between rooms, which are the edges of the topo-
logical graph. Our system is able to automat-
ically detect doors and differentiate between
hallways and rooms, which is important for ef-
fective navigation. We show that our method
can extract a topometric graph from a floor
plan and is robust against ambiguous cases
most commonly seen in floor plans including
elevators and stairwells.

1 Introduction

Our world is rich with information such as signage and
maps that are explicitly created to assist humans in nav-
igation, but much of this is currently inaccessible to
robots. This has led to a significant body of research
in robotic mapping and exploration, yet in many cases
the information obtained already existed, just in a form
that robots could not easily access. For example, mod-
ern buildings are built to an architectural floor plan, typ-
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Figure 1: The proposed system takes as an input a
bitmap image of a floor plan and returns a topomet-
ric map with the rooms as nodes and the doors as edges,
shown here overlaid on an occupancy grid map.

ically using a CAD system. The original CAD files con-
tain a wealth of spatial information but are not generally
available, however PDF versions of floor plans for many
buildings are available online and evacuation plans are
available on the walls of many buildings. This paper
presents an automated technique to extract room labels
and topometric structure from such bitmap image floor
plans.

In a typical floor plan, spaces (such as rooms and hall-
ways) are assigned semantic labels such as room numbers
or names, which are included on the floor plan as text
within the space they refer to. These semantic labels are
generally reflected in the physical world by door labels
and signs. Using a text recognition system, a robot can
localise itself in the map by reading such labels and signs.
Room label and location information from a floor plan
was also used in [Schulz et al., 2015] to perform goal-
directed exploration in unfamiliar environments. While
that information was extracted manually from the floor
plan, the methods in this paper will automate that pro-
cess.



The contributions of this paper include the first appli-
cation of bitmap floor plan analysis to robotics and the
automatic generation of a topological graph. The nodes
in this graph are labelled with human-interpretable se-
mantic labels such as room labels, as shown in Figure 1.
These could be used to match with the results of an in-
ternet search, for example. We also combine both coarse
topological information and metric information from the
floor plan to generate a topometric graph. This graph
is embedded in robot-friendly metric coordinates, not to
scale but in [Schulz et al., 2015] we have shown that scale
can be estimated by observing landmarks.

This paper extends the text spotting work in [Posner
et al., 2010] and [Lam et al., 2014] by adding an addi-
tional source of prior information that can be used for
robot navigation, and continues to investigate the as-
signment of meaningful human semantics to space. The
methods and results from this work have been used in
goal-directed robotic navigation, but can also be used
for applications such as path planning for walking direc-
tions [Whiting et al., 2007].

The rest of the paper is organised as follows. In Sec-
tion 2, we discuss related work in the field. Section 3
gives an overview of our algorithm. We describe an ex-
periment to test the performance of this system in Sec-
tion 4. Finally Section 5 presents the results of applying
our method to floor plans from varying sources and we
draw conclusions and discuss future work in Section 6.

2 Related Work

Within the robotics community, research has already
been undertaken into robot navigation using abstract
sources of spatial relationships. Luo et al. [Luo et al.,
2010] developed a method of robot navigation and local-
isation using floor plan information by combining Sup-
port Vector Machines to read text labels and detecting
passage corner landmarks using ultrasonic sensors. Floor
plans have also been used to build occupancy grid maps,
where localisation is then performed with a depth sensor
and WiFi [Ito et al., 2014], but this research focuses on
the localisation problem without extracting any useful
semantic information from the floor plan. The inverse
process has also been investigated, where an occupancy
grid map is used to extract spatial information and build
an abstracted floor plan [Liu et al., 2012].

Topological and hierarchical maps built from metric
robot maps can also be combined with semantic informa-
tion about the spatial layout as a robot moves through
the map. This may involve vision approaches [Galindo
et al., 2005] or feature boosting for a classifier of both
vision and laser scan data [Mozos et al., 2007]. These
approaches rely on the existence of a metric occupancy
grid map.

Notably, there has also been work in understanding

trends in spatial layouts from analysing a large cor-
pus of floor plans. Aydemir’s work in [Aydemir et al.,
2012] analysed indoor environments using large floor
plan datasets and found that local structure of an indoor
environment was independent of the global structure and
was therefore predictable. These analyses and results
were then used to predict the topological structure of
yet unexplored areas in the environment to augment a
robot’s understanding of its surroundings. However, the
floor plans are represented in an XML format where
room centroid coordinates, labels and spatial relation-
ships including doorway locations are already explicitly
represented. This is unlike our method, which extracts
this information directly from the graphical representa-
tion (i.e. bitmap) of the floor plan.

Within the document analysis community there has
been some related work in floor plan bitmap image anal-
ysis. This includes [Macé et al., 2010] where text labels
are assumed to be absent and the Hough Transform is
used, coupled with image vectorisation. Doors are de-
tected with arcs and walls are detected from straight
lines. Ahmed et al. have a similar system for automated
floor plan analysis [Ahmed et al., 2011] by performing
wall detection using thick/thin line separation, relying
on the assumption that the rooms and spaces are rect-
angular in shape. Our method does not rely on this
assumption and will work for rooms and spaces of any
shape.

The spatial information from floor plans has been used
in other applications, such as planning walking directions
between two points on a university campus [Whiting et
al., 2007]. Results show that this spatial information
improves route planning by employing nearest building
entrances rather than street-facing entries and could lead
to further work in understanding human behaviour and
navigation in urban environments. Similar techniques
have successfully been applied to navigational aids for
visually impaired persons in [Joseph et al., 2013a], where
an augmented reality system directs the user with a hap-
tic belt and voice guidance [Joseph et al., 2013b].

Our work proposes a method of extracting this valu-
able spatial information from the bitmap image of the
floor plan itself. Both humans and robots can use the
topometric graph built from this spatial information to
understand an indoor space. It differs from existing doc-
ument analysis research as we do not rely on wall de-
tection with line extraction. Our method is thus more
robust against the varying architectural standards and
visual representations (where a wall may be represented
by a single thick line, multiple thin lines, etc.)

3 Approach

In this section the method for generating the topologi-
cal and topometric graphs is outlined. First, the input



file (PDF or image) is converted to a binary bitmap im-
age. Next, the text and room labels are detected and
extracted from the resultant image, as briefly described
in Sec. 3.1.

The topological graph is formed with the rooms and
hallways as nodes and the doorways connecting these
spaces as the edges. The door detection process is out-
lined in Sec. 3.2 and the formation of the spatial regions
that are the room hypotheses is described in Sec. 3.3.

3.1 Text Extraction

A complete solution to the text detection and extraction
problem is not the focus of this paper. Existing methods
of text detection are implemented. Some of the ‘charac-
terness’ cues outlined in [Li et al., 2014] are used to de-
tect and subsequently extract the text from the floor plan
image. Specifically, Minimally Stable Extremal Regions
(MSER) [Matas et al., 2004] is used as a region detector
followed by the Stroke Width Transform [Epshtein et al.,
2010]. We skeletonise the regions to reduce computation
time, using a distance transform to find the stroke width
at those pixels. A region is considered a text character if
the stroke width is consistent across the whole skeleton.
Weak geometric constraints such as aspect ratio are ap-
plied to filter out noisy regions, such as long, thin lines.
The pixels that are detected as text are then removed
from the image.

Each MSER text region is dilated using a horizontal
bar structuring element to collect characters into words.
Using the bounding box of the word, the text region is
cropped from the original image. Tesseract [Smith, 2007]

is then used to perform text recognition on these cropped
regions.

3.2 Door Detection

In our topological graph the doors form the edges be-
tween nodes. There are common symbols and abbrevi-
ations found on floor plans [Koel, 1999]. We use the
standard symbol for interior doors as a template, seen
in Figure 2. Local feature descriptors are used as an
arc detector in [Ahmed et al., 2011]. We chose Speeded
Up Robust Features (SURF) [Bay et al., 2008] for ro-
bustness and invariance against translation, rotation and
scale changes. Door symbols in the map at any orienta-
tion can be detected with a single template without in-
verting or rotating the template, including double doors.
False positives are also rejected, including curved outer
walls and stairwells.

First, the key points are extracted from both the tem-
plate door image and the floor plan image. The SURF
descriptor is then computed for these key points. All de-
tected SURF features from the floor plan image are com-
pared against the strongest features in the template. A
detected SURF feature is matched if the match distance

Figure 2: Single Door Template

to the closest template feature is less than a threshold λ.
Figure 3a shows all the matching keypoints highlighted
in a small area of a floor plan.

Matching SURF features are then collected using
distance-based geometric clustering with a distance
threshold d. This clearly depends on scale which we
can assume is known a priori or from the scale of the
SURF keypoint descriptors. Each cluster of keypoints
is labelled as an individual door and the midpoint of all
the keypoints within the cluster is taken as the location
of the door. The detected doors in the same small area
of the floor plan are shown in Figure 3b.

3.3 Room Detection

To divide the floor plan into its constituent rooms, a
flood fill algorithm is used. First, the detected text is
removed from the image. Pixels on the detected text are
used as the seed points of the flood fill algorithm. In this
regard the room detection depends on the text extraction
stage and the assumption that the text label lies within
the room on the floor plan. An assumption is also made
that each room space is fully enclosed by black pixels,
which tends to hold except in cases of sliding doors. For
visualisation purposes, the outputs of the flood fill op-
eration for room detection are colourmapped randomly.
Figure 3c shows detected and flood filled rooms from the
same small area of the floor plan.

3.4 Topological/Topometric Graph

A door is considered to be the connection between two
rooms, with spaces connected by sliding partitions and
open plan areas considered to be one room. These stan-
dard doors form the edges between the nodes on our
topological graph. The rooms that are connected by
each door are determined by examining the output from
the flood fill operation in 3.3.

First, from each door location we search for the closest
black pixel. This is taken to be a door pixel. From this
door pixel a search for the nearest white room pixel is
performed. This is taken to be the first room. That room
is then temporarily flood filled to black using the white
pixel that was found as the seed point. Another search
is performed and the new nearest white room pixel is the
connecting room.



(a) Matched SURF features to door template. Note
correctly matched features on double doors.

(b) Detected Doors

(c) Detected Rooms, flood filled and colour mapped for
visualisation

Figure 3: Door and Room Detection

It is semantically useful to distinguish between rooms
and hallways. For planning purposes a robot might need
to use a hallway to move from a room to another. This
also provides context for vision, such as scene classifi-
cation or text recognition; for example, hallway doors
are often labelled. Some basic geometric constraints are
used to distinguish a discrete space as either a room or
a hallway. Hallways tend to be elongated, with a large
perimeter compared to their areas. This is a more effec-
tive cue than merely counting the doors leading into or
out of a space. To measure the perimeter to area ratio,
we use:

Q =
4πA

L2
(1)

where Q is the isoperimetric quotient, A is the area of
the space and L is the perimeter. The aspect ratio is
measured by calculating the fill factor of the space with
respect to the squared bounding box:

F =
A

(max(w, h))2
(2)

where F is the fill factor, A is the area of the space and w
and h are the width and height of the space respectively.

A space is considered a hallway if the isoperimetric
quotient Q is less than some threshold γ and the fill
factor F is less than some other threshold δ. The fill
factor F is used as an additional measure to further sep-
arate hallways from spaces that have a larger perimeter
from complicated, non-smooth architectural structures
such as windows. Note that merely counting edges into
a node is insufficient to distinguish rooms from hallways
as seen Figure 6c. Room 1115 has four connecting edges
and hallway 1105 has five.

This information is sufficient to create a topological
graph which the robot can navigate over using an algo-
rithm such as A* [Hart et al., 1968]. We visualise the
graph using Graphviz [Gansner and North, 2000], as can
be seen in Figure 1. The location of extracted text is used
to assign labels to each room or hallway. The centroids
of this text are used as metric information to position
the nodes in the topometric graph. Different node sym-
bols are used to differentiate hallways from rooms. Here,
the rectangular nodes are hallways where the elliptical
nodes are rooms. In some floor plans there are multiple
lines of text within a room, either by design or when a
room label runs outside of its room on the floor plan.
We account for this by selecting the line of text closest
to the centroid of the detected room.

4 Experiment

We first investigate the performance of our algorithm
against the quality of the bitmap floor plan, represented
by the resolution of the image in pixels per inch (ppi).



(a) QUT S Block level 11

(b) UQ GP South level 7

(c) UQ Axon Building level 5

Figure 4: Input Floor Plans for Testing

The PDF of the floor plan was converted into bitmaps
at five different resolutions: 72ppi, 96ppi, 150ppi, 300ppi
and 600ppi. These were then resized to the same image
dimensions, which in this case were 4963x3509 pixels.
We use the QUT S Block architectural floor plan (shown
in Figure 4a). Our floor plan analysis algorithm is then
applied to these bitmap images.

The performance measure used is the number of doors
correctly detected out of the ground truth doors, as well
as the number of rooms and hallways correctly detected
and filled out of the ground truth. Detected and recog-
nised room labels are compared to the ground truth,

though these only affect the labelling of the nodes in the
constructed topological graph.

We also compare the robustness of our algorithm
across floor plans in different styles from different ar-
chitects and locations. Our algorithm is tested on the
following three floor plans at 300dpi:

• Queensland University of Technology Gardens Point
S Block Level 11 (Figure 4a)

• University of Queensland General Purpose South
Level 7 (Figure 4b)

• University of Queensland Axon Building Level 5
(Figure 4c)

We use the same performance measures as above.
For both tests above we use the following parameters

outlined in Table 1. We use 25% similarity for both door
detection and room/hallway segmentation.

5 Results and Discussion

The results from the first test is shown in Figure 5. The
reduced information in the lower resolution images af-
fects the door detection accuracy more than the room
detection accuracy. Both the door and the room detec-
tion accuracy stop rising around 300ppi resolution, with
no improvement in performance above this resolution.
At 600ppi, the size of the input image increases to 69.7
megapixels. Computational power is a limiting factor
at such high resolutions. This gives an indication of the
quality of image that will be required if images of campus
maps captured by a robot’s camera are to be processed.
Improvements to the text extraction and door recogni-
tion stages may reduce the required image quality.

The results from the three different floor plans are
shown in Table 2. Figure 6 shows each step of our ap-
proach, applied to the QUT floor plan, and Figure 7

Table 1: Parameters

Parameter Value
λ 0.25
γ, δ 0.25
d 35 pixels (half the width of

a door)

Table 2: Performance across three different floor plans at
300dpi [Correctly Detected and Recognised/Total (Ac-
curacy)]

Floor Plan Doors Rooms Room Labels
QUT S L11 49/54 (0.91) 38/47 (0.81) 32/36 (0.89)
UQ Axon L5 33/41 (0.80) 27/30 (0.90) 13/22 (0.59)
UQ GP S L7 33/55 (0.60) 48/59 (0.81) 19/29 (0.66)



Figure 5: Plot of room and door detection accuracy
against bitmap resolution

shows the final result on the other two floor plans. Across
all three floor plans, the room detection rate is at least
80%. However, the door detection accuracy is low for
the UQ GP South floor plan at only 60%. This is due to
a number of reasons and this is discussed further.

The text labels were extracted from the images with
Tesseract, which did not correctly read 100% of the text
(refer to Table 2). This is often due to occlusions of the
text in the floor plan, or when two room labels actually
overlap each other, as seen in Figure 8a. The quality and
font of the text also affects Tesseract’s ability to correctly
read the text labels. Figure 8b shows an example where
the room was not correctly labelled because the room
label was not physically within the room. Conversely,
there are multiple pieces of text in most of the rooms in
the UQ floor plans.

Due to these imperfections in the text extraction,
there are spaces that are not correctly flood filled. This
includes elevators and stairwells, as well as some smaller
rooms such as service closets. This could be overcome
by improvements in the text detection and extraction,
as well as the implementation of thin line removal as
in [Dosch et al., 2000], and will be the focus of future
work. However, those failures do not significantly affect
the overall topological graph nor its utility for visiting
non-utility rooms. Only the spaces that are not correctly
labelled are affected. These are simply not included in
the graph. A robot using this graph would require ad-
ditional information if the goal node was not included
in the graph, or if it needed to plan a path through an
incorrectly labelled node.

Enclosed spaces with no doors are not included in the
graph. This removes structures such as numbered desks.
Our door detection fails when the door in the image looks
markedly different from the template. This is seen in
Figure 8c, which shows a sliding door. The door detec-

Figure 6: Results of our algorithm, applied to QUT S
Block Level 11 floor plan (a). First, rooms are detected
in (b), which form the nodes in the topological graph
in (c). We embed this in metric space using the loca-
tions of detected room label text and overlay it on the
colourmapped rooms in (d).

tion rate is also lower in the GP South floor plan due to
the curvature of the walls, which skews the door sym-
bols. Figure 8d is an example of a tight physical space
where the door arcs overlap. The difficulty of this area is
compounded by the room labels, which overlap both the
doors themselves as well as the walls. Without proper
context, it is difficult even for humans to correctly read
and identify these room labels.



(a) UQ Axon Building Level 5

(b) UQ GP South Level 7

Figure 7: Topometric Map overlaid onto colourmapped
floor plans

(a) Occlusions of Room
Label

(b) Room Label not
physically within
room

(c) Sliding Doors
(d) Overlap of Door
Arcs

Figure 8: Room and Door Detection Failure Cases

6 Conclusion

We have presented a method for floor plan analysis with
the goal of automatically extracting topological spatial
information. The algorithm focuses on extracting text
before flood filling to find the rooms and hallways. By
using SURF features to match to a door symbol tem-
plate, the connections between rooms were found. This
is enough information to construct a topological and
topometric graph from the floor plan. The topological
graph is useful where the metric relationships are unnec-
essary, such as for human-robot interaction and receiving
feedback from the robot on what path options are avail-
able. It may also be used in high level path planning in
scenarios involving previously unexplored areas. The ex-
tracted graph is dependent on successful text detection
and extraction but is robust enough to function with
some failures, such as elevators or stairwells.

Future work will focus on increasing the robustness
of this method, including testing on architectural floor
plans with different styles, such as those from interna-
tional sources. We aim to improve the door detection for
edge cases such as sliding doors and overlapped doors.
Other methods for room fill may also be investigated,
which may handle the semantics of multiple intercon-
nected hallways as multiple spatial regions.

Given sufficiently high quality images, our algorithm
could also be applied to images captured by the robot
of floor plans, signs or maps posted on walls and doors.
This will allow a robot to navigate and reason about its
environment without prior information.
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