
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Goonasekera, Nuwan A., Caelli, William, & Fidge, Colin
(2015)
LibVM: An architecture for shared library sandboxing.
Software: Practice and Experience, 45(12), pp. 1597-1617.

This file was downloaded from: https://eprints.qut.edu.au/90042/

c© Copyright 2015 John Wiley and Sons, Ltd.

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

https://doi.org/10.1002/spe.2294

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33504331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://eprints.qut.edu.au/view/person/Goonasekera,_Nuwan.html
https://eprints.qut.edu.au/view/person/Caelli,_William.html
https://eprints.qut.edu.au/view/person/Fidge,_Colin.html
https://eprints.qut.edu.au/90042/
https://doi.org/10.1002/spe.2294

LibVM: An Architecture For Shared Library Sandboxing

NUWAN GOONASEKERA, WILLIAM CAELLI AND COLIN FIDGE
Queensland University of Technology

Many software applications extend their functionality by dynamically loading libraries into their allocated
address space. However, shared libraries are also often of unknown provenance and quality and may contain
accidental bugs or, in some cases, deliberately malicious code. Most sandboxing techniques which address
these issues require recompilation of the libraries using custom tool chains, require significant modifications
to the libraries, do not retain the benefits of single address-space programming, do not completely isolate
guest code, or incur substantial performance overheads.

In this paper we present LibVM, a sandboxing architecture for isolating libraries within a host application
without requiring any modifications to the shared libraries themselves, while still retaining the benefits of a
single address space and also introducing a system call inter-positioning layer that allows complete
arbitration over a shared library’s functionality. We show how to utilize contemporary hardware
virtualization support towards this end with reasonable performance overheads and, in the absence of such
hardware support, our model can also be implemented using a software-based mechanism.

We ensure that our implementation conforms as closely as possible to existing shared library manipulation
functions, minimizing the amount of effort needed to apply such isolation to existing programs. Our
experimental results show that it is easy to gain immediate benefits in scenarios where the goal is to guard the
host application against unintentional programming errors when using shared libraries, as well as in more
complex scenarios, where a shared library is suspected of being actively hostile. In both cases, no changes are
required to the shared libraries themselves.

Categories and Subject Descriptors: D3.4 [Software]: Programming Languages—Processors; D4.6 [Operating Systems]:
Security and Protection

General Terms: System Call Inter-positioning, Component Isolation, Dependable Systems

Additional Key Words and Phrases: Information Security, Hardware Virtualization, Component Software

1 INTRODUCTION

Most modern application programs consist of multiple shared libraries at an Operating System
level, in the form of Shared Objects (.so) or Dynamic Link Libraries (DLLs). While such libraries
may be statically linked, much more commonly they are also dynamically linked at program
startup. In addition, such libraries may also be loaded on demand, in the case of “plug-ins” and
software extensions for example, to augment application functionality at run time.

However, since these shared libraries reside within the same address space, an illegal memory
access, an invalid instruction, or even penetration by malicious code, can compromise the
containing application as a whole. This is amply demonstrated by the fact that over 50% of CERT-
reported security threats are due to buffer-overflow vulnerabilities [1]. Zeigler reports that over
70% of crashes in the Internet Explorer browser are caused by third-party add-ons [2]. Therefore,
in the case of both a trusted add-on shared library with a buffer overflow vulnerability, as well as a
potentially untrustworthy add-on shared library from a third-party, the dangers are quite similar,
with the distinct possibility of executing arbitrary code which can compromise the entire system.
Even when there is no danger of malicious code, relatively common errors, such as an invalid
memory reference by a shared library, could corrupt critical memory regions in the host
application, since they reside in the same shared address space, leading to unstable applications.
Therefore, there is a critical need to isolate applications from any extensions that they
incorporate [3-6].

While several approaches have been used to address the overall problem of isolation [7], there are
very few robust intra-address space isolation mechanisms which can run third-party shared
libraries unaltered while preserving programming simplicity and maintaining low run-time

overheads. In most previous work some modifications to the shared library, such as recompilation
or linking against a framework, are necessary for the intra-address space protection mechanism to
work [8]. However, when the source code of third-party libraries is unavailable, this may not
always be viable anyway. In other previous work, the mechanisms provided do not guarantee the
same level of safety as having separate address spaces, or impose restrictions on the range of
allowed instructions, such as in the case of Software Fault Isolation [9] and its derivatives [10-12].
We are aware of only one other effort to isolate unmodified shared libraries [13], which we
discuss in greater detail in Section 5.

In this paper, we present an intra-address space protection framework named LibVM, which
usually utilizes Hardware Virtualization instructions to provide such guarantees. However, in the
absence of such instructions, it can fall back on a slower but equally effective ptrace-based [14]
approach to enable the isolation of entirely unmodified third-party shared libraries. The host
application needs to be modified to utilize LibVM, but the changes required are relatively modest.

The basic idea behind LibVM is to isolate a shared library by “fooling” it into thinking that it is
executing as normal, within an operating system process, as part of an application, and with full
access to the usual machine instructions and system calls. The easiest way to achieve this is to
execute the library within a “virtual process”, a process which has all the trappings of a real
process but is in fact a fully virtualized sandbox. By placing the library in a separate sandbox,
which emulates a normal OS process, and by virtualizing all OS calls, we effectively control the
world view available to the library as well as its effects outside of the sandbox. The application
issuing a call to a function within such an isolated shared library must first execute a switch to the
virtualized sandbox, so that the library is safely executed, and upon completion of the library
function, execution must return back to the application. Most techniques for library, component or
application isolation are a variant of this idea – they only differ in the strength of the illusion. The
basic principle is also portable across operating systems. Some techniques (such as Software Fault
Isolation (SFI) [9] or isolation of a library into a separate process via IPCs) are less transparent
than others and have different trade-offs (discussed later). Our LibVM architecture provides a
strong illusion of this virtualization in both our Hardware Virtualization based approach, as well as
our software-based implementation.

The main contributions of this research are that it:

1. Demonstrates an implementation independent API for isolating individual shared
libraries, as opposed to complete processes.

2. Demonstrates how shared libraries can be isolated using a hardware virtualization based
technique. (This is in contrast to our previous work [15], in which we gauged the
effectiveness of implementing System Call Interpositioning [16] on whole executables
using hardware virtualization support.)

3. Demonstrates how shared libraries can additionally be isolated using a ptrace-based
System Call Interpositioning technique, similar to earlier research in the field [13], that
dynamically determines whether or not instructions about to be executed are safe.

4. Demonstrates a technique for isolating shared libraries without requiring any
modifications to the libraries themselves, whereas all previous techniques require some
modification or recompilation of the libraries. This also makes recovery from unmodified
shared library faults possible, since they are isolated and self-contained within separate
domains, in contrast to the address space of the whole process being accessible to a
shared library.

5. Makes address space sharing between the library and application transparent within
predefined bounds. This means that a memory address within the library and a memory

address within a host process refer to the same memory location, with no
“swizzling” [17] or translation required. One caveat is that while the host application can
access all of the shared library’s memory, the shared library can only access memory
allocated to it. (There is a slight but functionally non-impacting exception in our ptrace-
based technique, detailed later)

The rest of this paper is organized as follows; Section 2 contains a high-level, implementation-
independent overview of the LibVM architecture and Section 3 provides an implementation-
independent description of the LibVM API. Sections 4 and 5 discuss two specific implementations
of the API, a hardware virtualization based implementation and a shared memory/ptrace based
system-call interpositioning implementation respectively. Section 6 provides an evaluation of our
implementations, including micro and macro benchmarks of CPU and memory usage in contrast to
a native executable. Section 7 reviews related work in this field and the paper concludes with
Section 8.

2 LIBVM ARCHITECTURE

In this section we describe the overall principles behind and requirements for our LibVM isolation
architecture in an implementation-independent way.

2.1 Overview

For the purpose of discussing the architecture, we utilize a Linux based process model, as this was
the operating system on which our two implementations were developed. However, the general
idea remains portable by substituting the conceptual equivalents in another operating system.

Figure 1Figure 2 shows a typical layout of a process in Linux memory. As depicted in the figure, a
shared library executing within a process shares several things in common with the hosting
process.

1. The heap.

2. The stack.

3. The C runtime.

4. The Virtual Dynamic Shared Object (used as a gateway when making Operating System
Calls in Linux [18]).

5. The ELF Interpreter/Dynamic Linker (in order to load/resolve additional libraries the
shared library itself may depend on).

Therefore, in order to fully isolate a shared library from its host application, all of the above must
also be conceptually isolated, or virtualized in full. However, in order for the host application to
access the result of a computation or share required data transparently with a shared library, the
memory regions of the shared library must be accessible to the host (but not vice-versa, as this
would violate isolation).

Therefore, an isolated shared library in LibVM can be conceptually depicted as in Figure 2. As
shown, the shared library gets its own heap, stack and C runtime, as well as a dynamic linker (to
enable loading the library’s dependencies in turn), which allows the shared library to execute
within the virtualized sandbox, unaware that it is executing within a virtualized process.

However, the virtualized sandbox is assigned only a subset of memory within the entire
application, so that the address space mappings remain synchronised. LibVM also assumes that a
pointer in the sandbox and a pointer in the application space refer to the same memory address, so
that pointers may be transparently passed between the host and the shared library. The shared
library cannot access any memory locations outside of the sandbox’s bounds.

The user can create multiple sandboxes, each with different security policies, or a single sandbox
with multiple shared libraries. This is depicted in Figure 3.

Figure 2 - LibVM Isolated Shared Library Figure 1 - Process Layout in memory

 VDSO

Host	 Application	 (code,	 data,	 bss)

Stack

	
	

Heap

ELF	 Interpreter

C	 Runtime
Shared	 Library	 1	 (code,	 data,	 bss)
Shared	 Library	 2	 (code,	 data,	 bss)

 VDSO

Host	 Application	 (code,	 data,	 bss)

LibVM	
Sandboxed	
VM1

Stack

LibVM	 bootstrapper	 ELF

Heap

ELF	 Interpreter

LibVM	 Sandbox	 Library

Host	 Application	 Heap

C	 Runtime
Shared	 Library	 1	 (code,	 data,	 bss)
Shared	 Library	 2	 (code,	 data,	 bss)

Stack

This model enables individual sandboxes to have different isolation policies, depending on the
level of trust awarded to the shared library. Sandboxes can also contain multiple shared libraries,
allowing an isolation policy to be shared. (LibVM does not at present support direct
communication between two sandboxes. Such communication would have to be mediated by the
parent or both libraries would have to be loaded into a single sandbox.)

From an application developer’s perspective, LibVM is a sandboxing library that can be used to
define such a sandbox and to load additional shared libraries into it. Since we provide address
space transparency, we require the developer to specify the size of the reserved address space
range in advance. This specified address space is initially only reserved and not actually used yet.
It also has the restriction that it cannot subsequently be relocated, since all pointers within this
address space would need to be adjusted.

Once a shared library is loaded, the methods in the library can be invoked in a manner analogous
to the POSIX-based mechanism used in most UNIX systems. When a method is invoked, we
perform a controlled transition to the sandbox, execute the code within the sandbox, and return to
the host. The shared library is free to make additional system calls, all of which can be intercepted
by the programmer and proxied, thus separating security policy from mechanism.

Figure 3 - Process memory layout in a program which utilizes LibVM

Host	 Application	

LibVM	 sandbox	 library	

Stack

System	 Call	
Interpositioning	

layer	

Isolation	 Domain	 1	 -‐	
Sandboxed	 Shared	
libraries	

Shared	 library	 text/data	

Shared	 library	 text/data	

In order to meet the requirements above, we need a virtual machine/sandbox environment with
specific requirements, which are discussed next.

2.2 Requirements

As mentioned previously, our goal is to provide a fully virtualized “process” in which the shared
library can execute. LibVM therefore relies on the availability of a virtualized sandbox
environment wherein the execution of arbitrary code is possible in a controlled fashion. To
provide such a fully virtualized process for a shared library, the VM environment must match the
architecture and implementation of the hosting application. Strictly speaking, LibVM requires a
process virtualizing library with the following specific features.

1. It must support full virtualization of the CPU and memory.

2. It must be compatible with the host environment’s architecture (e.g., 64-bit x86).

3. Discontinuous memory regions must be supported, with access attempts to unmapped
regions resulting in trappable page faults (so that the memory range allocated to the
sandbox within the host process is identical in the virtual machine, which is required for
maintaining pointer transparency).

4. It must provide full control over its address space layout (i.e., in a 32-bit system, it must
provide access to all 4 GB of available address space). This is for the same reasons as
those outlined above.

5. Privileged instructions (e.g. interrupt invocations, syscall instructions) must be trappable.
This is so that the shared library’s actions can be controlled.

6. The host operating system must have a clearly defined system call interface, so that
system-call interpositioning is possible (currently unavailable on Microsoft Windows).

Based on these requirements, LibVM defines an abstract interface which hides away details of the
specific implementation. In order to test this interface, we have created two separate
implementations, one based on hardware virtualization support and another based on shared
memory and ptrace-based system call interpositioning. As such, the following discussion is
divided into two main parts, a description of the main interface and the two specific
implementations.

3 LIBVM INTERFACE

This section describes how LibVM is used by a host application to execute components in a
constrained environment. Our interfaces are largely implementation independent, but rely on the
requirements outlined in Section 2.2. The basic interface strives to emulate the standard POSIX
interfaces, which we describe below.

3.1 Existing POSIX interface

The POSIX standard defines three basic calls for loading a component into its host address space.
These are as follows.

1. dlopen – Loads the library

2. dlsym – Extracts contents

3. dlclose – Unloads the library

The above three system calls are used in most UNIX-based operating systems. (Microsoft
Windows uses similar system calls – LoadLibrary, GetProcAddress and FreeLibrary.)

The code snippet in Figure 4 highlights the basic process of loading a shared library and invoking
a function call within that library. As line 5 shows, the dlopen function is responsible for opening
the shared library, giving it its location, and returning a handle for future references to the library.
This handle can be subsequently used to obtain a pointer to a symbol within the library as in line 8.
The symbol may be a function or a data pointer. If it is a function pointer, it can then be utilized to
directly invoke the function (line 11).

Several observations can be made at this point.

a. It is trivial to obtain a pointer to a function and invoke it directly, as in line 8, without the
necessity for parameter marshalling, which demonstrates programming simplicity within
a single address space.

b. Preserving this same model is advantageous, as a lot of previously written code can be
transferred to this model with minor changes.

c. The interface is suitably simple and easy to understand for something as important as
dynamic shared libraries.

3.2 LibVM Interface

The most important methods provided by our LibVM interface are outlined below.

1. libvm_initialize – Initializes the isolation subsystem

2. libvm_open – Loads a library

3. libvm_sym – Extracts contents

4. libvm_close – Unloads the library

5. libvm_guest_malloc – Allocates memory within the guest component’s address space

6. libvm_guest_free – Frees memory allocated by a guest component

7. libvm_destroy – Frees resources used by the isolation sub-system

 1 void *handle;
 2 typedef void (*hello_func)(int x, int y);
 3
 4 /* open the needed object */
 5 handle = dlopen("/usr/home/me/libfoo.so", RTLD_LOCAL | RTLD_LAZY);
 6
 7 /* find the address of function and data objects */
 8 hello_func fptr = (hello_func)dlsym(handle, "my_function");
 9
10 /* invoke function, passing value of integer as a parameter */
11 (*fptr)(100, 200);

Figure 4 - POSIX example of shared library call

In order to demonstrate the functionality of our approach, we start off with a code snippet, in
Figure 5, which can be contrasted with the POSIX equivalent in Figure 4.

As can be seen in Figure 5, the basic interface to the host is almost identical to the POSIX case.
The main difference is the addition of an extra initialization function in line 5, which must be done
once to initialize the isolation subsystem and the subsequent destruction of it. It should be noted
that no changes are required to the target shared library. LibVM functions are used in place of
their POSIX counterparts on lines 8 and 11, but the calling semantics of the functions remain
identical in lines 8, 11 and 14, meaning that, in simple scenarios, an application can be trivially
ported to execute the library within an isolated environment.

While the methods to open, close and obtain a function pointer from the guest are analogous to
their POSIX counterparts, the libvm_guest_malloc and libvm_guest_free functions exist
specifically so that the host application can negotiate a shared chunk of memory within the guest
sandbox’s allowed memory regions, which can then be addressed by both the untrusted guest code
and by the host application itself. While this memory region can be freely accessed by the guest,
the host must take precautions when utilizing a value obtained from this shared address space and
must treat it as untrusted, since untrusted code executing within the sandbox may asynchronously
manipulate that memory. Therefore, validation must be performed before using such values, and
Time Of Check To Time Of Use (TOCTOU) [16] bugs caused by asynchronous code are a
potential source of danger which must be guarded against.

By using these allocation functions, and thanks to the address space’s transparency, the host
application can construct complex objects graphs within the guest’s address space. However, in
practice, the host may want to pass an object graph from its own address space onto the guest
address space, in which it case it would have to be copied over to the shared space first.
Alternatively, the guest may wish to return a complex object graph with lengthy pointer chains, in
which case the whole graph would have to be validated before use, in order to prevent malicious
or invalid pointer dereferences. This would quickly degenerate into a situation which is not
different from marshalling objects between disparate address spaces, and would appear to limit the
usefulness of transparent address spaces.

However, this problem can be addressed through language level or compiler level support for
LibVM sandboxes. Since LibVM enables address space transparency, the compiler could trivially
use type information to generate additional code to copy object graphs across, and to validate
returned objects and their pointer chains. Any pointers obtained from a call to a sandboxed
component could also be automatically validated by compiler generated code to ensure that they
fall within the sandboxed region. If the validation cannot be automatically done, issuing a

 1 void *handle;
 2 typedef void (*hello_func)(int x, int y);
 3
 4 /* Initialize the isolation sub-system */
 5 struct libvm * libvm_ptr = libvm_initialize(argv);
 6
 7 /* open the needed object */
 8 handle = libvm_load(libvm_ptr, "/usr/home/me/libfoo.so");
 9
10 /* find the address of function and data objects */
11 hello_func fptr = (hello_func)libvm_sym(handle, "my_function");
12
13 /* invoke function, passing value of integer as a parameter */
14 (*fptr)(100, 200);

Figure 5 - LibVM example of shared library call

compilation warning would be sufficient to alert the user to potential security vulnerabilities. This
support could be built on top of the core infrastructure provided by LibVM, and is a subject for
future research. In simpler cases, as in the example shown in Figure 5, it would be possible to
trivially pass in the required values to a function. Therefore, address space transparency support
could both simplify and speed up data sharing with components.

Based on this interface, we have built two implementations. Our primary version of LibVM is
built on KVM [19], which provides an abstraction layer over the hardware virtualization support
built into newer Intel and AMD x86 processors. However, a completely software-based
implementation is possible in principle, even though its performance will be slower (Section 5).
The combination of KVM and hardware virtualization support provides an extremely lightweight
virtual machine which fulfills our basic CPU and memory virtualization requirements well,
without incurring the overhead of a full-blown virtual machine implementation. Our performance
measurements have shown that the overhead is low enough to offer competitive performance in
comparison to other techniques. Sections 4 and 5 describe these two distinct implementations.

4 HARDWARE VIRTUALIZATION BASED IMPLEMENTATION

Hardware Virtualization support in modern hardware can be used to easily create a virtualized
sandbox which meets the requirements outlined in Section 2.2. This section describes both the
background and the details of our implementation.

4.1 Use of Virtualization Hardware

Hardware virtualization is an isolation mechanism which has been used for decades. Although the
popularity of Virtual Machine (VM) technology waned somewhat over the years, mainly in small
systems and client-server environments, there has lately been a resurgence of interest in it with the
development and marketing of software systems such as VMWare [20, 21], which provide a
Virtual Machine Monitor (VMM) for the popular Intel x86 architecture. This has occurred even
though the Intel x86 architecture itself has several non-virtualizable instructions which do not
meet Popek and Goldberg’s virtualization requirements [22]. Many novel techniques have been
used to overcome these limitations, such as binary translation [20, 21] and para-virtualization [23-
25].

In 2005, Intel and AMD introduced additional machine instructions to their respective
architectures to remedy this problem [26, 27]. The machine instructions were similar in nature to
those of the old IBM System/370 mainframe system and enabled the interpretive execution of
code and additional hardware-managed control blocks. The Intel and AMD extensions are
similar [20], which makes it easy to support either instruction set. Uhlig et al. [28] provide an
overview of the architecture, with additional details being available elsewhere [26, 27]. However,
as noted by Adams and Agesen [20], early versions of Intel’s and AMD’s hardware virtualization
did not necessarily result in better performance, due to the lack of support for Memory
Management Unit (MMU) virtualization. To remedy this, AMD introduced Nested Page Tables
(NPT) [29] and Intel followed suit by introducing Extended Page Tables (EPT) in their Nehalem
processor architecture, both of which add support for IO MMU virtualization [30]. These features
enable the creation of lightweight hardware-assisted virtual machines with extremely high
performance.

The KVM kernel module [19], an integral part of newer Linux distributions, builds on this
hardware virtualization support, and provides an abstraction layer over the hardware instructions,
which it exposes as a userspace library via LibKVM. While an operating system process would
normally execute in kernel mode or user mode, KVM provides a third execution mode, “guest
mode”, which allows machine instructions to be executed in an interpreted fashion using hardware
virtualization support. Due to the hardware virtualization support, instructions executing in guest
mode incur no additional overheads, other than when executing privileged instructions, which
could cause a trap into the KVM Virtual Machine Monitor. It is therefore possible to intercept

such traps and respond appropriately, such as in attempts to invoke interrupts, and LibVM does so
via the libKVM library. Therefore, KVM provides the basic support necessary for running a
shared library in a virtualized execution environment. Later sections delve into the mechanics in
detail.

4.2 Implementation Description

Figure 2Figure 1 and Figure 3 show the basic address space layout of a LibVM isolated shared
library. LibVM works by partitioning the host address space into several sandboxed regions. Each
sandboxed region is a lightweight virtual machine. The virtual machine and its host container
share their address spaces as shown in Figure 2. Therefore, there is complete parity between a
guest address and a host address, which is the key to enabling simple, transparent sharing of data
between the shared library and its host.

Each virtual machine is a simple execution container, in which arbitrary code can be executed
safely. Code executing within the virtual machine cannot exceed its defined boundaries and it
cannot affect the rest of the system other than through system calls. The LibVM runtime intercepts
all system calls, thus ensuring that code executing within the container cannot bypass security
measures.

In order to load an existing shared object unmodified into this execution container, we must use a
dynamic linker, which loads the shared object and its dependencies, as well as carrying out
relocation of the executable image. To avoid the complexity of writing our own dynamic linker,
we utilize the system’s existing ELF interpreter [31] for the purpose. The basic process we follow
is to emulate the operating system’s process initialization routine, by first loading the system’s
ELF interpreter into the address space, and then executing the interpreter, which in turn is
requested to load a small bootstrap executable which we provide. The interpreter dutifully
performs these tasks, unaware that it is executing within a virtualized container. We intercept all
system calls made by the interpreter, and provide appropriate emulations which confine all
operations to the isolation container’s address space. Once the interpreter executes our bootstrap
code, we have a fully initialized “mini-process”, along with a C runtime and dynamic linker, all of
which reside within the execution container. We then utilize the dynamic linker to load additional
shared libraries in turn, exactly as would occur within a standard process.

4.2.1 Initialization

The virtual machine bootstrap process is triggered when libvm_initialize() is invoked for the first
time as shown in Figure 5. The process is as follows.

1. The LibVM runtime first creates an instance of a light-weight virtual machine.

We utilize the KVM library [19] to create a simple virtual machine. The virtual machine
consists of a single CPU and is set to the same architecture as the hosting process, in this
case, a 32-bit Intel x86 machine. We emulate the CPUID instruction to match the host,
create a flat memory model, enable all instructions including SSE and create a basic
virtual machine which serves as our isolation container. It should be noted that this is not
as expensive a process as it may sound at first, as KVM simply creates the processor data
structures used by Intel VT/AMD SVM as well as page tables used by the virtual
machine, and there is no need for the emulation of complex devices. Furthermore, this
virtual machine/isolation container can be used to load multiple libraries and is therefore
a one-off cost that is amortized over the lifetime of the program.

2. The virtual machine memory layout is then created and a shared memory region between
the host application and the virtual machine is established (as shown in Figure 2Figure 1).

This involves allocating a region of memory which is shared between the guest virtual
machine and its host process. The memory within the guest virtual machine is established
at the exact same addresses as the host, thus achieving parity in the memory layouts,
which serves our goal of transparently passing memory references between guest and
host.

At the very top of the VM’s address space, we map in the Linux VDSO (Virtual Dynamic
Shared Object) [18]. The Linux VDSO is a basic trampoline that is used by the Gnu C
library to make system calls and therefore must be mapped into a fixed location in
memory.

3. LibVM uses a simple ELF loader which loads the Linux ELF interpreter [31] and our
bootstrapper into memory at the top of LibVM’s allocated address space.

Our ELF loader performs a few basic integrity checks, such as ensuring that the ELF
program segments fall into valid memory regions, but extensive security checks are not
necessary as the ELF loader is not a part of the system’s vulnerable attack surface. This is
because the loader is only used to load the system’s ELF interpreter and our own
bootstrapper, both of which are trusted libraries. The ELF loader also maps our
bootstrapper executable into memory, and places it immediately after the ELF interpreter.

4. LibVM sets up the VM’s stack and begin executing the VM.

We create the data structures necessary for the ELF interpreter, such as the AUXV vector
specifying system parameters and copy all system environment variables onto the VM’s
stack. The AUXV vectors instruct the ELF interpreter where in memory our bootstrapper
executable can be found, and the ELF interpreter will then load and execute the
bootstrapper as well as its dependencies, such as the C runtime library.

Our bootstrapper executable is compiled as a position independent executable, with the
GCC’s −PIE flag, so that it can be placed anywhere in memory. This is in contrast to
standard executables which have a fixed load address. This again helps us to ensure that
there are no memory overlaps between the virtual machine and the host machine.

We also copy environment variables and command line arguments onto the stack.
Following this, we set the VM’s program counter to the ELF interpreter’s entry point and
launch the VM.

5. The ELF interpreter initializes our bootstrapper.

The ELF interpreter starts its boot up process, unaware that it is executing within a virtual
machine, and carries out the same sequence of actions which it normally would during
the execution of a process. This includes mapping our executable into memory, loading
its dependencies, such as the C runtime library, and jumping to the entry point of our
bootstrapper executable.

We intercept all system calls made by the ELF interpreter during this process, and proxy
all the operating system functionality, forcing the memory mappings, for example, to fall
within the allocated boundaries of the execution container.

6. Bootstrap completion.

Once the bootstrapper’s main() function executes, we make a standard system call with
an unused system call number, which our interception layer recognizes as special. As
parameters to our custom/special system call, the bootstrapper passes the address of the
dynamic linker’s symbol resolution routine, dlsym. This value is cached by LibVM for all
future symbol resolution within the execution container. This special system call also
heralds the completion of the bootstrap process, and LibVM suspends execution of the
virtual machine and returns from its main initialization routine. Up till this point, all
system calls made by the execution container were trusted. However, from this point
onwards, LibVM must treat all further system calls as potentially untrustworthy.

4.2.2 Library function calling sequence

We now describe the sequence that transpires when a function call is made from the host to a
shared library. Whereas a direct function call can be made in standard POSIX, LibVM must
maintain the illusion that the same thing is occurring, while in reality, ensuring that the library
executes within an isolated environment.

Figure 6 highlights the actual process that takes place when a function call occurs.

Figure 6 - Invocation sequence of shared library call

Since the guest and component address space layouts are identical, a pointer in the host and a
pointer in the VM refer to the same memory location. Therefore, everything is completely
transparent to caller and callee. However, the component can only access the solidly shaded
memory areas in Figure 6, whereas the host can access any area. In this way, passing pointers back
and forth can be done without any pointer swizzling or manipulation.

However, it should be noted that while addresses in the component address space can be freely
accessed by the host, any additional memory areas must be specifically granted to the component.
This means that only memory at page level granularity can be granted, since a page in the host
address space must map into a page in the virtual machine’s address space.

A host utilizes the following steps in executing a function within a loaded component. The process
is largely transparent to the host.

1. Host calls a function within component.

The function should have been obtained via libvm_sym, which returns a proxy function
that shields the host from the details of the emulation layer. The proxy function is
generated on the fly inside a specially allocated memory region, and the default system
calling convention is assumed. This function is binary patched to implicitly pass the
libvm_context as well as the guest function pointer. (If calling conventions are different,
it may be necessary to manually adjust the guest stack or write a wrapper library which
does this, via LibVM provided functions.)

2. Proxy intercepts call and switches to VM.

The LibVM proxy function copies the call parameters from the caller to the private stack
of the VM. It then sets the instruction pointer in the VM to point to the actual function in
the guest, and also sets the return address to our trampoline function. It then activates
virtualized execution.

3. Original function executes within VM.

As the function call executes within the VM, any system calls it makes are intercepted by
LibVM through detection of privilege level changes, and channeled to the user-defined
interceptor functions.

4. Call returns value to proxy.

Once the function has finished executing, it returns, but to the address of the proxy
trampoline function that was originally passed to it by the LibVM runtime. The
trampoline function triggers an exit from the virtual machine. The stack values are then
copied back to the caller’s stack. Although, strictly speaking, there is information leakage
at this point, this is entirely an optional process, and can be disabled if more secure
semantics are desired. It is provided only to aid passing arguments by reference.

It should be noted that in the process outlined above, there are a total of 2 context switches for a
single function call; a switch from a host application to the OS kernel, in which the KVM driver
executes the guest, and a return context switch back to the host on completion. This compares
favorably with a remote procedure call to another process, which would double the number of
context switches, as well as incurring the overheads of any cache invalidation due to process
switching.

5 PTRACE-BASED SYSTEM CALL INTER-POSITIONING

The approach in Section 4.1 relies on hardware virtualization support. However, in the absence of
such support, we provide an alternative implementation which uses ptrace-based system call
jailing, which can nevertheless be used to create a virtualized sandbox that meets the requirements
detailed in Section 2.2. System call interpositioning is well documented [16, 32, 33] and our
implementation is similar to most mainstream implementations, with the key difference being that
we use it towards the goal of isolating components, not processes. A similar approach has been
adopted in an earlier software-only sandboxing implementation called CodeJail [13], and we
compare and contrast that approach with ours in this section.

The basic steps in the software implementation are almost identical to the steps in the hardware
implementation outlined in Section 4, except that instead of using a virtual machine as the
isolation container, we utilize a standard system process as shown in Figure 7. Therefore, we load
the ELF interpreter and bootstrapper as usual into a reserved memory area, but instead of creating
a virtual machine, we fork off a child process, which serves as the isolation domain. The parent
process also immediately attaches to the child process using the ptrace system call, and intercepts
all the child’s system calls, allowing the parent to completely isolate the child’s actions. A shared
memory region is established to enable communication, with both regions being mapped to
identical virtual addresses, preserving address transparency.

Host	 Application	 Text

Host	 Application	 Heap

Host	 Application	 Data

VDSO

LibVM	 Sandbox	 Library

 VDSO

C	 Runtime	 libraries

Sandboxed	
Component

Stack

libVM	 bootstrapper	 ELF

Component	 Heap

ELF	 intepreter

Tracing	 Process	 (Parent) Traced	 Process	 (Child)

Shared	 Libraries Additional	 shared	 libraries

Shared	
Memory	
Region

Figure 7 - LibVM ptrace based implementation - process layout

The spawned child then proceeds to clean up its address space, thus ensuring that an isolated
library cannot see any of the containing application’s memory, preventing information leakage,
and follows the same bootstrap process outlined in the previous section. Much of the system call
interpositioning layer is also shared between the two implementations, except to account for
differences mainly in memory management. All calls to mmap and any calls to open file
descriptors must be duplicated in both the child process and the parent process, so that the two are
kept in lockstep, which adds to implementation complexity over the virtualization based
mechanism.

Inevitably, this implementation incurs significant overheads due to the number of context switches
required and does not allow for as much control as the hardware virtualization based
implementation, but it has the advantage of being hardware independent (on operating systems
that support a ptrace-like mechanism).

This software-based implementation of the LibVM framework has much in common with
CodeJail [13] which also uses ptrace-based mechanisms to achieve similar goals. The major
difference between CodeJail and LibVM is that the LibVM framework defines an implementation
independent container, with the ptrace-based mechanism being just one particular implementation.
Codejail exclusively performs system call interpositioning through a ptrace-based mechanism
(Codejail relies on the etrace library [14], which in turn relies on ptrace).

There are also slight variations in the two approaches which have interesting ramifications. The
LibVM framework focusses on complete isolation of the untrusted library, with no ability for the
untrusted library to view its parent’s address space, unless specifically granted. This is ensured
even in our ptrace based implementation, since LibVM makes sure all pages belonging to the
parent are no longer mapped before loading the jailed library. By contrast, in Codejail the parent
executable continues to reside in memory as a natural side-effect of a fork, and parent pages
continue to be shared, although only in a copy-on-write format [13]. Codejail requires the parent
and the jailed child to explicitly synchronize memory when needed. Since the child continues to
see its parent’s memory, it results in information leakage from parent to child, allowing the jailed
library to steal information from its parent in a worst case, or glean sufficient clues to target
attacks against it. Therefore, a fully separated model, as in LibVM, provides greater security.

In many other respects, however, the problems Codejail has to solve using ptrace are similar to
those addressed by our LibVM ptrace implementation, such as keeping memory maps consistent,
and duplicating file handles across processes, both of which are simpler and faster in our
virtualization based approach.

6 EVALUATION

We evaluated the functionality and performance of our LibVM system by carrying out several
micro and macro benchmarks. The micro benchmarks were designed to measure several edge
cases which can be used to glean the performance characteristics of LibVM, whereas the macro
benchmarks provide a more holistic gauge. Finally, a memory benchmark was performed to
determine LibVM’s overheads. Both the hardware-based and software-based implementations of
LibVM were evaluated.

6.1 Micro benchmarks

We carried out 4 main benchmarks.

1. Execution of a ‘null’ call which simply measures the overhead for transitioning in and out
of the isolation container.

This gives us a measure of pure isolation overhead, although such rapid switching would
be unnatural in an actual program. Nevertheless, it is a useful measure of the most
pathological case.

2. A highly-inefficient Fibonacci calculation in order to measure a compute-intensive
workload.

This provides a basic validation of our implementation by simulating a compute intensive
process, focusing on making execution within the container trump the number of
transitions outside of the container.

3. A Get-PID system call to measure raw system call performance.

This scenario provides an estimate of the overhead incurred in a plain system call.

4. A file copy routine to measure raw I/O performance.

This scenario provides a measurement of situations where much of the time is spent
waiting for I/O.

Sample Linux
Executable

LibVM –
Hardware

Virtualization

LibVM – ptrace Jail Linux RPC

Time
(secs)

Ratio Time
(secs)

Ratio Time
(secs)

Ratio Time
(secs)

Ratio

Null call 0.03

1 27.41 926 147.68 4989 146.88 4962

Fibonacci 21.11 1 21.9 1.04 22.85 1.08 22 1.04
Get-PID 0.54 1 47.58 88.12 278 516 150 278.2
File copy 66.1 1 66.3 1 66.8 1 66.6 1

Table 1: Micro-benchmark results – Core i5

Sample Linux

Executable
LibVM –
Hardware

Virtualization

LibVM – ptrace
Jail

Linux RPC

Time
(secs)

Ratio Time
(secs)

Ratio Time
(secs)

Ratio Time
(secs)

Ratio

Null call 0.02 1 25.92 1296 110.36 5518 106.08 5304
Fibonacci 22.1 1 23.6 1.07 23.7 1.07 24.25 1.1
Get-PID 0.56 1 51.12 91.28 222.5 397.37 179.3 320.26
File copy 65.1 1 66.4 1.02 67.7 1.04 66.4 1.02

Table 2: Micro-benchmark results – Core i7

Table 1 and Table 2 summarize the execution speeds on two different processors, a Core i5 and
Core i7 respectively, both running identical SUSE Linux 11.3 installations. The figures are
displayed as a proportion of the execution time of a basic Linux executable performing a local
procedure call in a tight loop, and therefore represent the slowdown factor. For example, the null
call is 1296 times slower than a basic Linux executable in LibVM, but far better than the 5304
times slowdown in the RPC case.

In the null call measurement, which simply measures the overhead of transitioning in and out of
the isolation container, we found that an RPC is 3 orders of magnitude slower than a local
procedure call (no isolation), as is consistent with figures reported in the literature [34]. However,
LibVM is about 5 times faster than an RPC, demonstrating a significant, but expected, boost in
performance. The main reason for the increased performance is the reduction in context switching,
as transitions are made only between the kernel and the process for each call. In the case of an
RPC, a process switch is required, doubling the number of context switches, as well as reducing

cache locality, thus incurring a commensurate performance penalty. The ptrace jail version
predictably has the highest performance penalty in such an extreme scenario, as it must perform an
additional context switch due to the interpositioning layer.

The Get-PID system call test measurements produced similar results. This time however, the
native case also incurs a performance overhead due to a context switch, reducing the dramatic
differences displayed in the null call case, where there were no context switches at all. The relative
performance between LibVM, ptrace and RPC remain proportionate in both cases, as expected.

However, when the benchmark becomes IO or compute bound, the differences immediately
vanish, as demonstrated by the Fibonacci and File copy benchmarks, as context switching
overheads pale into insignificance.

While these extreme kinds of computations are unlikely to be found in real world applications,
they serve to demonstrate that:

1. LibVM can perform, at best, up to 5 times faster than an RPC, when using hardware
virtualization.

2. LibVM’s ptrace based isolation can be, at worst, 2 times slower than an RPC.

Real world performance differences however, are likely to be less dramatic, depending mainly on
context switching and parameter marshalling overheads.

6.2 Macro benchmarks

The macro benchmarks are designed to measure both performance characteristics as well as the
porting effort needed to utilize LibVM. We executed the following benchmarks for this purpose.

1. Using the LibVorbis library to decode a Vorbis encoded audio file.

2. Using the BZip2 library, in order to measure a compression algorithm.

This example measures passing a large buffer to be decompressed in a compute-intensive
run, followed by the return of the decompressed buffer to the caller.

3. Using the LibJPG library, in order to measure image compression/decompression
performance.

The benchmarks are compared against their raw execution times.

Sample Linux
Executable
(seconds)

LibVM – Hardware
Virtualization

LibVM – ptrace Jail

Execution
Time

Overhead Execution
Time

Overhead

LibVorbis 46.8 49.5 5.77% 53.7 14.7%
LibBZ2 38.8 39.1 0.74% 39.2 1.1%
LibZip 70.3 80.2 14% 83.3 18.5%

Table 3: Macro-benchmark results

Figure 8 - Comparison of native, software-based and hardware-based implementations – Core i5

Our results in Table 3 and Figure 8 show that the hardware virtualization based implementation of
LibVM adds modest overheads ranging from 6% to 14%, depending largely on the number of
domain transitions. This is entirely within our expectations, as the VT hardware adds almost no
overheads for normal execution of instructions. However, each domain transition/system call is
intercepted by LibVM, which proxies it on the caller’s behalf, including making additional
security checks. This is the main source of overheads during execution.

Ptrace-based execution predictably suffers even worse overheads, as each system call results in at
least 3 additional system calls, one to retrieve the processes’ registers from the system, one to
make the actual system call, and one to resume execution. In addition, security checks may end up
causing additional system calls, worsening the performance as expected. However, when the total
number of system calls are lower, for example in the BZ2 test, the performance differences
become neglible. However, the LibZip benchmark, which contains a high volume of system calls,
suffers fairly high overheads at around 20%.

Sample Linux
Executable
(seconds)

LibVM – Hardware
Virtualization

LibVM – ptrace Jail

Execution
Time

Overhead Execution
Time

Overhead

LibVorbis 39.6 41.8 5.55% 44.9 13.4%
LibBZ2 36.5 36.8 0.82% 36.9 1.09%
LibZip 64.1 73.2 14% 75.1 17.1%

Table 4: Macro-benchmark results – Core i7

Figure 9 - Comparison of native, software-based and hardware-based implementations – Core i7

The results when executed on a Core i7 machine are largely similar, with differences being
accounted for by processor and disk speed differences.

6.3 Memory Usage

As shown in Figure 2Figure 1, and briefly discussed in Section 2, the potential sources of memory
overheads are as follows.

1. The LibVM library itself

2. The memory area reserved for the LibVM container

3. The LibVM bootstrapper executable

4. The additional heap within the container

5. The extra stack within the container

6. The additional C runtime within the container

7. The Virtual Dynamic Shared Object (VDSO)

8. The ELF Interpreter/Dynamic Linker

Out of these, the reserved memory area does not actually consume any physical memory, although
it does render that address range unusable to the containing application. Similarly, many of the
libraries loaded within the container, such as the C runtime, the VDSO and the dynamic linker,
will share the bulk of their memory requirements with the rest of the system due to the fact that the
Operating System shares library code segments across applications, and therefore, only the data
segment of each library contributes to the actual overheads per LibVM container. The LibVM
library itself exacts a fixed memory cost per LibVM application, while the bootstrapper executable
exacts a fixed cost from each LibVM container. The heap and stack additions also exact a fixed
cost at container initialization, but afterwards cause the same overheads as when used within a
normal application. Therefore, the best way to determine the cost of LibVM is to calculate this
fixed overhead caused by the container, in comparison to a vanilla executable.

We used the linux pmap command to determine these overheads. We created a simple stub
application which initialises an empty LibVM container and compared it with a similarly compiled
application without LibVM.

 Linux Executable LibVM - Hardware
Virtualization

LibVM-ptrace Jail

Writable
Private

Read-
only

Private

Total

(kb)

Writable
Private

Read-
only

Private

Total

(kb)

Writable
Private

Read-only
Private

Total

(kb)

Parent Sandbox Parent Sandbox Parent Sandbox

Empty
Container

172 1584 1756 1904 1628 3532 1920 320 1624 1596 3544 1916

Container +
Library

440 1624 2064 3104 1628 4732 2232 456 1624 1636 3856 2092

Container +
Two

Libraries

572 1664 2236 3276 1628 4904 2540 588 1624 1676 4164 2264

Table 5: Memory usage overheads associated with LibVM in kilobytes

Our experiments produced private memory usage as shown in Table 5. It reveals that an
executable which contains an empty, hardware virtualization based LibVM container, compared
with a plain linux executable which does nothing and simply returns 0, requires 1776 kb of extra
memory. In the LibVM-ptrace implementation, we report two figures – one for the parent
process’s private memory usage, and one for the child/sandboxed process’s memory usage. When
measuring these two separately, we discovered a memory leak in the parent process, while the
sandboxed process’s memory increases were exactly as expected. Due to the presence of two
forked processes, there is a higher overall overhead for the ptrace implementation (although a
more highly calibrated implementation may be able to lower this requirement further).

After loading one library, the required memory increases to 4732 kb in the case of hardware
virtualization. In comparison to a native linux executable which loads the same library, there is an
overhead of 892 kb. This is partly due to the initialization of additional memory for the trampoline
regions, additional heap memory usage by LibVM, and copy-on-write initialization of C runtime
related pages. However, after the first library, it should be noted that the differences for additional
libraries remain the same for the linux executable, the hardware virtualization based
implementation and the ptrace based implementation and in this particular case, it is 172KB.

7 RELATED WORK

In a previous publication we reviewed a wide range of isolation techniques [7]. Here we focus on
technical approaches close to our own.

As we have already seen, a basic facility provided by many UNIX based operating systems is
ptrace based system call jailing [16]. This mechanism allows one process to monitor the system
calls made by another process, and optionally, control the execution of that process. The
mechanism is typically used by debuggers and has also been used to provide system call inter-
positioning layers for whole processes. However, to our knowledge, this mechanism has not
previously been used to provide isolation for individual shared libraries, which is an avenue we
have explored in this paper, in the form of an alternative software-based isolation container that
can be used when hardware virtualization support is absent.

Another key technique in binary code level isolation is Software Fault Isolation (SFI). This
method was first described by Wahbe et al. [9] and has been applied in many forms. It allows
untrusted code to be placed in the same operating system (OS) process as trusted code and avoids
the overhead of Inter-process Communication (IPC) between processes. It uses software based
static analysis of the untrusted component’s object code to verify that no illegal memory accesses
will be made and to inject code for double checking any potentially harmful instructions,
effectively sandboxing the original component. The sandboxed code is generated in a way that
ensures that the high bits of a memory address always fall within the sandboxed region, thus
preventing components from accessing memory outside of their bounds [9]. Wahbe et al.’s [9]
original idea has been improved and implemented in many forms. SFI, originally demonstrated by
Wahbe et al. [9] on a Reduced Instruction Set Computer (RISC) architecture, has also been
demonstrated on Complex Instruction Set Computer (CISC) architectures [12]. Techniques such as
binary translation [20] are offshoots of the SFI concept.

However, a significant weakness of the SFI approach is that ensuring the correctness of the
implementation is a difficult process. As Wahbe et al. [9] point out, modification of the executable
binary is complicated and adds significant overhead to the code injection process because, for
example, the difference between code and data can be difficult to identify. Therefore, safe
execution of arbitrary binary components is difficult using SFI if the program was not compiled
using an approved compiler.

The ideas in SFI are directly utilized in Google’s Native Client (NaCl) system, which provides a
software framework for safe execution of untrusted binary components [10]. NaCl aims to provide
browser-based applications increased computational performance through native binary
components which have access to performance-oriented features such as SSE instructions,
compiler intrinsics, hand-coded assembler, etc., without compromising on safety [10]. In a
previous paper [15], we compared Google’s Native Client, as well as Vx32 [11], a similar SFI
based system, with a hardware virtualization based jailing system. We concluded that both Native
Client and Vx32 imposed restrictions in terms of what instructions could be safely executed, as
well as required custom tool-chains and increased complexity due to their software based
instruction verifiers.

Another component isolation technique is a multi-process application architecture. This model is
becoming increasingly popular in web browsers [35, 36]. The basic idea is to isolate individual
components in disparate OS processes and use the operating system’s IPC mechanisms to
communicate between them. In Google’s Chrome browser, a single browser coordinating process
spawns additional processes to perform sub tasks [37]. These additional processes run at a lower
privilege level and access is tightly arbitrated by the coordinating browser process. In effect,
different components are loaded into different processes and communication takes place using OS-
supplied IPC mechanisms. This isolation into separate processes allows the browser to survive
component crashes. Microsoft’s Internet Explorer 8 follows a similar model [2]. There is however,
an increase in complexity as coordination between several processes is required. Also, Wahbe et
al. [9] make a strong case against placing software modules in their own address space, as this
requires IPC between them for communication, resulting in unacceptable context-switching
overheads [9], so a trade off is made between performance and reliability [37].

Chiueh et al. [38] introduce an intra-address space component isolation scheme by using the
paging and segmentation support in the Intel x86 hardware architecture, the most prevalent
architecture for desktop machines. This support is used to isolate kernel extensions from the kernel
itself, by placing all extensions in a separate segment of lower privilege than the kernel. They
demonstrate that hardware solutions can provide high efficiency, although their technique is
limited to isolating the application from all components; components themselves are not isolated
from each other. Furthermore, this technique is designed for isolating trusted components from
accidental attempts to violate their memory boundaries, and is not intended to isolate deliberately
malicious components.

A somewhat similar approach is an application level library for isolating components using x86
segmentation hardware [11]. This approach is unique in that the entire library is implemented in
user-mode, requiring no changes to the OS kernel. Google’s Native Client also utilizes the above
hardware segmentation technique for isolating components.

However, all of the above solutions offer only a partial remedy, as they require that applications be
linked against custom C language runtimes and do not offer the benefits of a single address space,
or offer reduced isolation guarantees.

Codejail [13] is the solution which is closest to our own, in that its defined goals and aims are
similar, and its implementation has much in common with our ptrace based implementation.
However, Codejail does not introduce an implementation independent API and container for the
purpose, as LibVM does, and it is affected by the same performance issues and implementation
complexities as our ptrace-based implementation, which are not present in our virtualization based
implementation. On the other hand, Codejail’s designers have emphasized hooking library loading
as early as possible during program initialization, allowing more transparent library wrapping for
complex implementations; while this is also possible in LibVM, we have not focussed on this
issue. We provide a more in-depth technical comparison between our approach and Codejail in
Section 5 when discussing our ptrace-based implementation.

8 CONCLUSION

This paper has described LibVM, a system for isolating shared libraries in separate isolation
domains and interpositioning all system calls, while requiring no modifications to the shared
libraries themselves, and retaining the ability to share pointers between address spaces, with
acceptable performance overheads. We introduced an abstract API that defines the broad
semantics of such isolation containers and described a hardware virtualization based
implementation for speed, and a less efficient software implementation for use in the absence of
suitable hardware support.

Our solution retains the advantage of not requiring custom tool chains, and operates against
standard Linux binaries, providing an advantage over previous efforts in this area. The shared
libraries themselves require no modifications before use. We found that the porting effort itself is
proportional to the complexity of the host. While our hardware virtualization based
implementation provides simpler mechanisms for data sharing, the software based mechanism
offers more limited options. However, such limitations could be remedied with kernel
modifications.

This system provides an attractive alternative to existing solutions because it requires less porting
effort due to its similarity to existing POSIX interfaces, and it enables the possibility of a more
natural programming metaphor due to pointer transparency (an avenue for further research) while
maintaining comparable performance when hardware virtualization support is available, and good
isolation guarantees even in its absence.

9 REFERENCES

[1] L. Lam and T. Chiueh, "Checking array bound violation using

segmentation hardware," in The International Conference on
Dependable Systems and Networks, 2005, pp. 388-397.

[2] A. Zeigler. (2008, Accessed: 2009, Jan 30). IE8 and Loosely-
Coupled IE (LCIE) [Online]. Available:
http://blogs.msdn.com/ie/archive/2008/03/11/ie8-and-loosely-
coupled-ie-lcie.aspx

[3] M. M. Swift, B. N. Bershad, and H. M. Levy, "Improving the
reliability of commodity operating systems," in The Nineteenth

ACM Symposium on Operating Systems Principles, Bolton
Landing, NY, USA, 2003, pp. 207-222.

[4] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray, L.
Macpherson, D. Potts, Y.-T. Shen, K. Elphinstone, and G.
Heiser, "User-Level Device Drivers: Achieved Performance "
Journal of Computer Science and Technology, vol. 20, pp. 654-
664, 2005.

[5] G. Hunt, M. Aiken, M. Fahndrich, C. Hawblitzel, O. Hodson, J.
Larus, S. Levi, B. Steensgaard, D. Tarditi, and T. Wobber,
"Sealing OS processes to improve dependability and safety,"
ACM SIGOPS Operating Systems Review, vol. 41, pp. 341-354,
2007.

[6] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum, "Fault isolation for device drivers," in IEEE/IFIP
International Conference on Dependable Systems & Networks,
2009, pp. 33-42.

[7] N. A. Goonasekera, W. J. Caelli, and T. Sahama, "50 Years of
Isolation," in Proceedings of the 2009 Symposia and Workshops
on Ubiquitous, Autonomic and Trusted Computing, Brisbane,
Australia, 2009, pp. 54-60.

[8] T. Chiueh, G. Venkitachalam, and P. Pradhan, "Integrating
segmentation and paging protection for safe, efficient and
transparent software extensions," presented at the Proceedings
of the Seventeenth ACM Symposium on Operating Systems
Principles, Charleston, South Carolina, United States, 1999.

[9] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
"Efficient software-based fault isolation," SIGOPS Operating
Systems Review, vol. 27, pp. 203-216, 1993.

[10] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S.
Okasaka, N. Narula, and N. Fullagar, "Native Client: A Sandbox
for Portable, Untrusted x86 Native Code," Communications of
the ACM, vol. 53, pp. 91-99, 2010.

[11] B. Ford and R. Cox, "Vx32: Lightweight User-level Sandboxing
on the x86," in USENIX Annual Technical Conference, Boston,
MA, 2008, pp. 293–306.

[12] S. McCamant and G. Morrisett, "Evaluating SFI for a CISC
architecture," presented at the Proceedings of the 15th
conference on USENIX Security Symposium, Vancouver, B.C.,
Canada, 2006.

[13] Y. Wu, S. Sathyanarayan, R. C. Yap, and Z. Liang, "Codejail:
Application-Transparent Isolation of Libraries with Tight Program
Interactions," Computer Security – ESORICS 2012, vol. 7459,
pp. 859-876, 2012.

[14] K. Jain and R. Sekar, "User-Level Infrastructure for System Call
Interposition: A Platform for Intrusion Detection and
Confinement," in Proceedings of the ISOC Symposium on
Network and Distributed System Security, 1999, pp. 19-34.

[15] N. A. Goonasekera, W. J. Caelli, and C. J. Fidge, "A Hardware
Virtualization Based Component Sandboxing Architecture,"
Journal of Software, vol. 7, pp. 2107-2118, 2012.

[16] T. Garfinkel, "Traps and pitfalls: Practical problems in system call
interposition based security tools," in In Proceedings of Network

and Distributed Systems Security Symposium (NDSS), ed, 2003,
pp. 163--176.

[17] P. R. Wilson, "Pointer swizzling at page fault time: efficiently
supporting huge address spaces on standard hardware,"
SIGARCH Computer Architecture News, vol. 19, pp. 6-13, 1991.

[18] J. Petersson. (2005, Accessed: 2011, Jun. 18). What is linux-
gate.so.1? [Online]. Available:
http://www.trilithium.com/johan/2005/08/linux-gate/

[19] Redhat. (2010, Accessed: 2010, Jul. 20). Kernel Based Virtual
Machine [Online]. Available: http://www.linux-
kvm.org/page/Main_Page

[20] K. Adams and O. Agesen, "A comparison of software and
hardware techniques for x86 virtualization," ACM SIGARCH
Computer Architecture News, vol. 34, pp. 2-13, 2006.

[21] J. Sugerman, G. Venkitachalam, and B. Lim, "Virtualizing I/O
Devices on VMware Workstation's Hosted Virtual Machine
Monitor," presented at the Proceedings of the General Track:
2002 USENIX Annual Technical Conference, 2001.

[22] J. S. Robin and C. E. Irvine, "Analysis of the Intel Pentium's
ability to support a secure virtual machine monitor," in
Proceedings of the 9th USENIX Security Symposium, Denver,
Colorado, 2000, p. 10.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, "Xen and the art of
virtualization," ACM SIGOPS Operating Systems Review, vol.
37, pp. 164-177, 2003.

[24] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.
Williamson, "Safe hardware access with the Xen virtual machine
monitor," presented at the 1st Workshop on Operating System
and Architectural Support for the On-Demand IT Infrastructure,
Boston, MA, 2004.

[25] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, "Disco:
running commodity operating systems on scalable
multiprocessors," ACM Transactions on Computer Systems
(TOCS), vol. 15, pp. 412-447, 1997.

[26] Intel, Intel 64 and IA-32 Architectures Software Developer's
Manual vol. 1: Basic Architecture: Intel Corporation, 2007.

[27] Intel, Intel 64 and IA-32 Architectures Software Developer's
Manual Volume 3B vol. 3B: System Programming Guide: Intel
Corporation, 2007.

[28] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins,
A. V. Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L.
Smith, "Intel virtualization technology," Computer, vol. 38, pp. 48-
56, 2005.

[29] AMD. (2008, Accessed: 2009 Jan. 30). AMD-V™ Nested Paging
[Online]. Available: http://developer.amd.com/assets/NPT-WP-
1%201-final-TM.pdf

[30] Intel. (2008, Accessed: 25th May, 2011). Intel® Virtualization
Technology [Online]. Available:
http://www.intel.com/technology/virtualization/index.htm

[31] J. R. Levine, Linkers and Loaders: Morgan Kaufmann Publishers
Inc., 1999.

[32] G. V. t. Noordende, B. Ádám, H. Rutger, M. T. B. Frances, and
S. T. Andrew, "A secure jailing system for confining untrusted
applications," in In proceedings of the second International
Conference on Security and Cryptography (SECRYPT), 2008,
pp. 414--423.

[33] T. Garfinkel, P. Ben, and R. Mendel, "Ostia: A Delegating
Architecture for Secure System Call Interposition," in
Proceedings of the Network and Distributed Systems Security
Symposium, 2004.

[34] J. Liedtke, K. Elphinstone, S. Schonberg, H. Hartig, G. Heiser, N.
Islam, and T. Jaeger, "Achieved IPC performance (still the
foundation for extensibility)," in The Sixth Workshop on Hot
Topics in Operating Systems, 1997, pp. 28-31.

[35] A. Barth, C. Jackson, C. Reis, and The Google Chrome Team.
(2008, Accessed: 2009 Jan. 30). The Security Architecture of the
Chromium Browser. Available:
http://crypto.stanford.edu/websec/chromium/

[36] C. Reis, B. Bershad, S. D. Gribble, and H. M. Levy, "Using
Processes to Improve the Reliability of Browser-based
Applications," Department of Computer Science and
Engineering, University of Washington, Technical Report UW-
CSE-2007-12-01, 2007.

[37] The Google Chrome Team. (2008, Accessed: 2009, Jan 30).
Chromium Developer Documentation: Multi-process Architecture
[Online]. Available: http://dev.chromium.org/developers/design-
documents/multi-process-architecture

[38] T. Chiueh, G. Venkitachalam, and P. Pradhan, "Intra-address
space protection using segmentation hardware," in Proceedings
of the Seventh Workshop on Hot Topics in Operating Systems,
1999, pp. 110-115.

