
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Zhao, Xiaohui, Liu, Chengfei, Yongchareon, Sira, Kowalkiewicz, Marek, &
Sadiq, Wasim
(2015)
Role-based process view derivation and composition.
ACM Transactions on Management Information Systems, 6(2), 7:1-7:24.

This file was downloaded from: http://eprints.qut.edu.au/89737/

c© Copyright 2015 ACM

This is the author’s version of the work. It is posted here by permis-
sion of ACM for your personal use. Not for redistribution. The defini-
tive version was published in PUBLICATION, VOL 6, ISSUE 6, (2015)
http://doi.acm.org/10.1145/2744207

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://doi.org/10.1145/2744207

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33504149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Kowalkiewicz,_Marek.html
http://eprints.qut.edu.au/89737/
http://doi.org/10.1145/2744207

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Role-based Process View Derivation and Composition 

XIAOHUI ZHAO, University of Canberra
CHENGFEI LIU, Swinburne University of Technology
SIRA YONGCHAREON, Unitec Institute of Technology
MAREK KOWALKIEWICZ, SAP
WASIM SADIQ, Infosys

Process view concept deploys a partial and temporal representation to adjust the visible view of a business
process according to various perception constraints of users. Process view technology is of practical use for
privacy protection and authorisation control in process-oriented business management. Owing to complex
organisational structure, it is challenging for large companies to accurately specify the diverse perception
of different users over business processes. Aiming to tackle this issue, this paper presents a role-based
process view model to incorporate role dependencies into process view derivation. Compared to existing
process view approaches, ours particularly supports run-time updates to the process view perceivable to a
user with specific view merging operations, and thereby enables the dynamic tracing of process perception.
A series of rules and theorems are established to guarantee the structural consistency and validity of
process view transformation. A hypothetical case is conducted to illustrate the feasibility of our approach,
and a prototype is developed for the proof-of-concept purpose.

H.4.1 [Office Automation]: Workflow Management

Additional Key Words and Phrases: Business process view, collaborative business process, process
perception

ACM Reference Format:

 INTRODUCTION 1.

Historically, the workflow concept has evolved from the notion of process in
manufacturing and the office (Georgakopoulos, Hornick, & Sheth, 1995). With the
introduction of information technology, processes in the workflow place are largely
automated by workflow/business process management systems. Such systems are
designed to make work more efficient, integrate heterogeneous applications systems,
and support inter-organisational processes in electronic commerce applications
(Stohr & Zhao, 2001). Particularly, to help organisations survive and thrive in a
changing market, the flexibility in process modelling and control has been identified
as a key feature for the further application of business process management systems
(Kumar & Zhao, 1999).

Process views have been proposed recently for fine-granularity control of process
representation (C. Liu, Li, & Zhao, 2008; Weske, van der Aalst, & Verbeek, 2004). A
process view depicts a partial representation of a business process, and thereby
separates process representation from the executable processes. Further, process
views allow one business process to have multiple views for different users, according
to their relationships, observation intentions, etc. Such flexibility finds its
advantages in areas of authority control, process visualisation, collaborative business
process modelling etc. (Choi, Nazareth, & Jain, 2013; Ullah & Lai, 2013)

Typically a user’s perception towards a business process is subject to the user’s
role/position in the company, yet this perception may evolve when the user exchange
or transfer the process perception with others (Caetano, Zacarias, Silva, & Tribolet,
2005). As such, a process view for a user becomes a role-based temporal and partial
representation for a business process, rather than a fixed or static one. Aiming to
characterise the relations and interactions among roles, perceptions and process



xx

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

views, this paper proposes a role-based process view model. This model looks into
process perception evolution, and facilitates process view derivation according to
changing perceptions. To ensure structural consistency and validity during process
view derivations, we present a set of rules and theorems to guarantee the activity
execution order preservation, synchronisation dependency, non-redundancy in
structural elements, etc. Particularly, this work contributes to current process view
research in the following aspects:
 Analyse process perception dependency and inter-relationship according to the

role hierarchy, with an emphasis on perception evolution.
 Support both process view filtering and composition operations, and

combinations of them.
 Maximally preserve process structural information during process view

transformations, and guarantee structural consistency and validity.
 Develop a prototype for the proof-of-concept purpose.

The remainder of this paper is organised as follows: Section 2 discusses the

motivation of role-based process view management with an example. Section 3
introduces a role-based process view model. Section 4 defines a set of rules on
structural consistency, and discusses how these rules regulate the process view
transformation. Section 5 illustrates the feasibility of our approach with a
hypothetical case. Section 6 introduces a developed prototype for the proof-of-concept
purpose. Section 7 reviews the related work, and discusses both the advantages and
limitations of our approach. Finally, the concluding remarks are given in Section 8
with an indication on future work.

 MOTIVATING EXAMPLE 2.

This section illustrates how process views evolve as users’ perceptions change. View
v0 in Figure 1 shows the full picture of an Accounts Receivable (AR) process, where
nodes s and e denote the starting and ending points, respectively, and the other
activities are delegated by t1, t2, etc. Since view v0 shows all details of the process, it
is also called base process.

Suppose there are three users involved in this business process, viz., clerk u1 and
u2, and AR officer u3. Owing to the concern of fraud connection, a duty segregation
policy prohibits the same person to be in charge of validating customers and
calculating invoices. Thus, we assume that u1 is assigned to check customers and
customer credits, and u2 checks customer credits and sends invoices. AR officer u3 is
exclusively authorised to issue sales orders and initiate an AR process instance. As a
management role, u3 has the right to see and handle most activities except validating
customers (because of duty segregation). To adapt to such diverse process perceptions,
flexible process representation is highly sought after. For example, different process
views v1, v2 and v3 are expected to be created for these users, respectively. In addition,
all these process views should keep execution order and process structure consistent
with the base process. Therefore, these process views allow users to take part in this
business process, and also protect confidential information from different users.

The capability of dynamically deriving and tracing the process view perceivable to
a role/individual can also help check and analyse potential breach or violation
against information security/restriction. For example, suppose a new clerk u4 is
recruited to be a backup of u1 and u2, u4 is assigned with the perceptions of u1 and u2,
and u4 sees view v4 obtained by merging v1 and v2. But if clerk u4 and officer u3 have
recently married to be a couple, the management may need to analyse whether their

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

collective perception violates the company’s information segregation policy. A
combined process view v5 can then be derived by merging views v3 and v4 to reflect
their collective knowledge of the process.

The dashed arrow in view v5 denotes a synchronisation dependency between t1
and t3, i.e., t3 must start after t1’s completion. As the result of merging v3 and v4, v5
keeps all the information derivable from them. In v5, tasks t1 and t2 are placed in two
branches in parallel, because the execution order between them is not specified in
either v3 or v4. This phenomenon reflects the process view dynamics during the
perception transitivity.

Fig. 1. Process view examples.

The above scenario illustrates that users have different perceptions over the same

business process, and different perceptions result in different process views. A user’s
process view evolves when perception exchange or escalation occurs. Current works
on process views mainly focus on process filtering and task aggregation, but few
efforts have been put on view merging or the influences from user interactions.

To address these issues, this paper proposes a role-based process view model,
together with a set of rules and theorems to ensure the structural consistency and
validity during process view derivation and composition. The reported work is based
on a preliminary version of our work on process view derivation and composition (X.
Zhao, Liu, Sadiq, Kowalkiewicz, & Yongchareon, 2011; Xiaohui Zhao, Liu, Sadiq, &
Kowalkiewicz, 2008), with significant improvements and extensions on theoretical
analysis and prototype implementation.

 ROLE BASED PROCESS VIEW MODEL 3.

Our role-based process view model consists of elementary process constructs, as well
as concepts of process views, perceptions and the relations between roles.

 Process Constructs

Definition 1. (Gateway) Gateways are used to represent the structure of a
control flow. Here we define four types of gateways, namely Xor-Split, Xor-Join, And-
Split, And-Join. Figure 2 shows the samples of these gateways, where g1 and g2
denote Xor-Split and Xor-Join gateways, respectively, g3 and g4 denote And-Split and
And-Join gateways, respectively.

t3t2s e

t6g1t1s

t3 t4

t5 g2 e

t2

t6

t1

s

t3 t4

t5

g2 eg1

t3t2s et6t6t3s e

v0 , the base process

v1 , the view for AR clerk u1 v4 , the view for AR clerk u4v2 , the view for AR clerk u2

v3 , the view for AR officer u3 v5 , the result view of merging v3 and v4

t6: Send
invoice

g1
t2: Validate
customers

t1: Create
sales order

s

t3: Check
customer

credit

t4: Calculate
invoice

t5: Check
goods dispatch

g2 e

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 2. Gateway examples.

Though a loop structure is functionally similar to a special Xor-Split/Join
structure, it can trigger an already executed task to be started again, and therefore
make trace (behaviour) analysis a lot more complex. The same happens to structural
analysis, as it makes a graph cyclic. For this reason, we are not to explicitly discuss
loop structures in this paper.

Definition 2. (Synchronisation Link) In an And-Split/Join structure,
synchronisation links specify the synchronisation dependency between tasks in
different branches.

The dashed arrow connecting tl to tk In Figure 2 (b) is a synchronisation link,
which indicates that tk can only start after tl completes. The notion of synchronisation
link has been first proposed in ADEPTflex (Reichert & Dadam, 1998), yet here we
mainly follow the definition from Business Process Execution Language (BPEL)
(Andrews et al., 2003), which restricts synchronisation links within And-Split/Join
structures.

 Process View and Perceptions

Definition 3. (Process View) The structure of a process view v can be modelled
as a directed graph formalised as tuple (T, G, L, SL), where the node set comprises T
and G, and the edge set comprises L and SL, respectively:
– T={s, e, t1, t2, …, tn}, tiT (1≤i≤n) represents a task of v. s and e represent the

starting point and the ending point of v, respectively.
– G={g1, g2, …, gm}, giG (1≤i≤m) represents a gateway of v.
– L is a set of links. A link l=(m1, m2)L indicates the execution dependency that

node m2 starts after m1 finishes, where m1, m2N, and N=TG.
– SL is a set of synchronisation links. A link sl=(m1, m2)SL indicates the execution

dependency that node m2 starts after m1 finishes, where m1, m2N.
– For each node mN, ind(m) and outd(m) define the number of links which take m

as the target node and source node, respectively. Note, ind and outd only count the
number of plain links but not synchronisation links.

– nN\{s, e}, ind(n)=outd(n)=1. This property is guaranteed by the usage of
gateways.

In a business process, tasks carry all the business information instead of control
constructs, such as links, synchronisation links and gateways. Therefore, we define
that a user’s process perception is subject to the set of tasks that the user is allowed
to see.

Definition 4. A user u’s perception qv cover process view v contains the tasks that
u is allowed to see, i.e., qv = {t | tv.T and t is visible to u}. Predicate can_see(r, v) is
used to represent the fact that role r (delegating a group of users) can see view v.

The following two functions are defined to represent the process view filtering and
merging operations.
– filter(v, qv) returns the process view generated from view v according to perception

qv.

tj

tk

g1 g2 g3

tj tk

tl

g4

(a) (b)

tm

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

– merge(v1, v2) returns the process view that combines views v1 and v2.
The details on how to handle tasks, gateways, and links of process views during

process view transformations will be discussed in Section 4.
When roles exchange process information, their perception will be transferred and

merged accordingly. To represent such perception changes, the following relations
are defined:

Definition 5. Perception Inheritance (). Let x and y be roles such that xy, i.e.,
x has an inheritance only relation over y. For a process view v, the following
expressions hold:

v, (xy)can_see(y, v) ⇒can_see(x, v) or
v, (xy)can_see(x, v′)can_see(y, v) ⇒can_see(x, merge(v′, v)).

Definition 6. Perception Authorisation (
vq

). Let x and y be roles, and qv be a

perception defined on view v such that x
vq

 y, i.e., x authorises perception qv to y. Then
the following expressions hold:

v, (x
vq

 y)can_see(x, v) ⇒can_see(y, filter(v, qv)) or

v, (x
vq

 y)can_see(x, v)can_see(y, v1) ⇒can_see(y, merge(v1, filter(v, qv))).

Definition 7. Inheritance-authorisation (IA) (
vq

). Let x and y be roles, and qv be a

perception defined on view v such that x
vq

 y, i.e., x
vq

 y and x has an inheritance
relation over y. Then the following expression holds.

(x
vq

 y)⇒(x
vq

 y)(xy)
Based on above definitions and properties, some inference rules can be derived for

relation transitivity. Let x, y and z be roles, v1 and v2 be two process views, qv1 and qv2
be the perceptions defined on v1 and v2, respectively, and qv2qv1. The following rules
can be derived.

(1) (xy)(yz) ⇒xz;

(2) (x
1vq

 y)(y
2vq

 z)⇒ x
2vq

 z;

(3) (x
1vq

 y)(y
2vq

 z) ⇒ x
2vq

 z;

(4) (xy)(z
1vq

 y) ⇒ z
1vq

 x;

(5) (xy)(z
1vq

 y) ⇒ z
1vq

 x;
Rules (1), (2) and (3) represent the basic transitivity in the monolithic relation

context, rules (4) and (5) represent the deduction of hybrid relations.

Figure 3 illustrates relationship among aforementioned concepts with a meta

model, where numerical parameters are used to show corresponding cardinality. A
process is constructed as a combination of links, synchronisation links, gateways and
tasks. A role owns a perception over a process, and perceptions can be inherited and
authorised between roles. A perception is defined as a set of visible tasks to the role,
and according to each perception a process view can be created, which is a partial
view of the base process.

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 3. the meta model of the role-based process view model.

 PROCESS VIEW TRANSFORMATION 4.

During process view transformation, the structural information of the base process
should be kept at the maximal extent. To guarantee the structure preservation,
consistency and validity, we defined a set of rules as follows.

 Consistency and Validity Rules 4.1

 Preliminary
For a process view v, we define the following notions and functions to formally

represent its structural characteristics:
– A dummy branch denotes a branch in a Split/Join structure such that the branch

contains nothing but only one link.
– A common split gateway predecessor (CSP), x, of a set of tasks, T, denotes a split

gateway such that x is the predecessor of each task in T. Function CSP(t1, t2)
returns the set of common split gateway predecessors of t1 and t2, or returns null if
the two tasks have no common split gateway predecessors.

– A path denotes a sequence of nodes such that from each of its nodes there is a link
to the next node in the sequence. Here, the node set for v is N=TG.

– A task t is said to be involved in a Split/Join structure scoped by a pair of gateways
g1 and g2, if path p=(g1, l1, …, t, …, lm, g2).

– before(t1, t2) denotes that task t1 will be executed earlier than task t2. This means
that there exists a path starting from t1 to t2 in the corresponding directed graph.
Apparently, before is a transitive binary relation.

– branch(g, t1, t2) is a boolean function, which returns true if t1 and t2 lie in the same
branch led from split gateway g, and returns false otherwise.

– preN(n) and postN(n) return the immediate preceding and succeeding task (or
gateway) of n, respectively, where n is a task or gateway.

 Structural Consistency Rules
Given two process views v1 and v2 derived from view v, v1 and v2 are required to

comply with the following rules:

Rule 1. (Order preservation) For the tasks belonging to v1 and v2, the execution
sequences of these tasks should be consistent, i.e.,

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

If t1, t2v1.N∩v2.N such that before(t1, t2) exists in v1, then before(t1, t2) also exists
in v2.

Rule 2. (Branch preservation) For the tasks belonging to v1 and v2, the branch
subjection relationship of these tasks should be consistent, i.e.,
t1, t2v1.N∩v2.N (where v1.N = v1.Tv1.G and v2.N = v2.Tv2.G, as defined in
Definition 3, and gCSP(t1, t2) in v1, gCSP(t1, t2) in v2, if branch(g, t1, t2) in v1, then
branch(g, t1, t2) in v2, or if ¬branch(g, t1, t2) in v1, then ¬branch(g, t1, t2) in v2.

Rule 3. (Synchronisation dependency preservation) When task t is deleted
during a filtering operation, and t is involved with a synchronisation link l, e.g.,
synchronisation link (t2, t4) as shown in Figure 4 (a), then l should be
– adjusted to lead from preN(t) if t is the source task, as synchronisation link (t2, t4)

changes to (t1, t4) in Figure 4 (b);
– adjusted to lead to postN(t) if t is the target task of l, as synchronisation link (t2, t4)

changes to (t2, t5) in Figure 4 (c).

Fig. 4. Gateway examples.

 Structural Validity Rules
Given a process view v, the following rules are defined to verify structural

correctness:

Rule 4. (No empty Split/Join structures) If a Split/Join structure contains
only dummy branches, the Split/Join structure should be deleted.

Rule 5. (No dummy or single branch in And-Split/Join structures) If a
dummy branch emerges in an And-Split/Join structure after a filtering operation,
the dummy branch should be deleted. If the And-Split/Join structure contains only
one non-dummy branch, the structure will be downgraded into a sequential structure.

Rule 6. (Dummy branch in Xor-Split/Join structures) For an Xor-Split/Join
structure, if the tasks on a branch are all deleted, the branch (with only one link now,
and is called dummy branch) should remain to indicate the existence of an
alternative execution path than the other branches. If multiple dummy branches
exist in that structure, these dummy branches should be combined into one.

Rule 7. (No redundant links between tasks) When merging multiple views
into one view, the execution orders that are derivable from others should be removed,
i.e.,
If path p=(n1, l1, …, lm-1, nm) in v and lv.L such that l=(n1, nm), and {n1, nm}v.T,
then remove l from v.L.

Rule 8. (Symmetry of gateways) The gateways must be used in pairs
canonically. This means g1v.G, type(g1)=And-Split (Xor-Split), g2v.G,
type(g2)=And-Join (Xor-Join), and g1 and g2 construct a closed Split/Join structure,
i.e., all branches start from g1 and end at g2. This rule indicates that the approach

t1

g1

t2

t3 t5

(a) (b) (c)

t1

g1

t2

t3 t4 t5

t1

g1

t3 t4 t5

g2g2 g2

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

assumes the business processes and process views are all well-formed (block-
structured).

Rule 9. (Validity of synchronisation links) A synchronisation link (n1,
n2)v.SL is invalid if
– n1 and n2 are not involved in a common And-Split/Join structure, or
– n1 is a split gateway or n2 is a join gateway, or
– n1 is a task involved in an Xor-Split/Join structure, yet n2 is not involved in the

same Xor-Split/Join structure.

Invalid synchronisation links should be removed.

 Rule on Information Loss

Rule 10. (Information loss) Suppose base process p contains link l=(t1, t2) or

synchronisation link sl=(t1, t2), process view v is obtained by merging two other views
that are based on perceptions q1 and q2 of roles r1 and r2, respectively. If  t1 and t2
such that t1q1, t2q2, t1q2 and t2q1, then lv.L or slv.SL.

This rule indicates a case of information loss due to the dependency between the
visibility of a process element and the perceptions of involved roles. Because neither
q1 nor q2 contains both of tasks t1 and t2, the execution order between t1 and t2 is not
known by either r1 or r2. Thus, the combined view v cannot derive out this execution
order information, i.e., (t1, t2), since it is already lost in the pre-merging process views.

Most traditional process view approaches solely rely on process view filtering
operations (Eshuis & Grefen, 2008; Issam, Schahram, & Samir, 2006; D.-R. Liu &
Shen, 2003; van der Aalst & Weske, 2001). To handle this case, they often combine q1
and q2 first, and then use the combined perception to filter the base process. Yet, the
result from such filtering will retain link or synchronisation link (t1, t2), as the
combined perception would contain both t1 and t2, and therefore the filtering
operation would not remove link (t1, t2). This actually reveals a limitation of reusing
filtering operations to realise view merging, as filtering operations do not consider
the potential information loss from the pre-merging process views.

 Theorems on Process View Merging 4.2

Compared to And-Split/Join structures, Xor-Split/Join structures have special
characteristics in preserving structural information. This subsection particularly
investigates these characteristics with the following findings, which serve as a
cornerstone for realising the process view merging operation.

Lemma 1. When filtering view v into view v′, if task t is involved in an Xor-
Split/Join structure in v, and t also exists in v′, then the Xor-Split/Join structure
exists in v′, too.

Proof. As stated in Rule 6, an Xor-Split/Join structure will not be deleted unless
it contains no tasks. Therefore, the existence of t denotes the existence of its belonged
Xor-Split/Join structure. �

Lemma 2. Given views v1 and v2 both derived from view v, if task t exists in two
views, and t is involved in an Xor-Split/Join structure of view v1, then t is also
involved in an Xor-Split/Join structure of view v2.

Proof. As indicated by the proof for Lemma 1, the existence of t represents the
existence of an Xor-Split/Join structure in v. As t exists in v1 and v2, the Xor-
Split/Join structure must exist in v1 and v2. Therefore, t should be involved in this
Xor-Split/Join structure contained in v2 at least. �

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Theorem 1. Given views v1 and v2 both derived from view v, if task t exists in v1
and v2, then all the nested XOr-Split/Join structures in which t is involved in v1
correspond to the ones in which t is involved in v2.

Proof. As indicated by the proofs for Lemma 1 and Lemma 2, all the Xor-
Split/Join structures containing t are kept in v1 and v2. Suppose stru1 and stru2 are
two Xor-Split/Join structures containing t in v, and stru1 is nested by stru2. Because
of Lemma 1, stru1 and stru2 also exist in v1 and v2. Due to the branch preservation
rule, stru1 is guaranteed to exist in a branch of stru2 in v1 and v2. Thus, the nested
relation between stru1 and stru2 is preserved in v1 and v2. Similarly, we can prove
that the nested relation of all the other involved Xor-Split/Join structures is
preserved in v1 and v2. Therefore, the Xor-Split/Join structures containing t in views
v1 and v2 correspond to each other. �

Fig. 5. Matching Xor-Split/Join structures

For example, Figure 5 shows two views derived from the same process, and both

views have common task tj. According to Theorem 1, we can consider that the closest
Xor-Split/Join structured, i.e., the structure scoped by g1 and g2 in Figure 5 (a) and
the structure scoped by g5 and g6 in Figure 5 (b), correspond to each other.
Consequently, we can infer that task tk should belong to the dummy branch shown in
Figure 5 (b). Further, for the second closest Xor-Split/Join structures, the structure
scoped by g3 and g4 in Figure 5 (a) corresponds to the structure scoped by g7 and g8 in
Figure 5 (b). This means that tm in Figure 5 (b) belongs to the dummy branch shown
in Figure 5 (a).

When two process views are merged together, different tasks/gateways with the
same preceding/succeeding task/gateway need to be restructured into a new
Split/Join structure with newly added gateways. For example, when combining the
two views in Figure 5, tasks t1 and t2 will be re-arranged into a Split/Join structure
between s and g3 (or g7, since these two gateways correspond to each other) in the
result view whereby a pair of new gateways will be added to represent this new
Split/Join structure. Theorem 2 guarantees that all such new gateways are And-
Split/Join gateways.

Theorem 2. In case of merging two process views v1 and v2, if n1, n2v1.Nv2.N,
n3v1.N\v2.N and n3 is on a path from n1 to n2 in v1, and exist n4v2.N\v1.N and n4 is
on a path from n1 to n2 in v2, then a pair of And-Split and Join gateways, gx and gy,
will be added between n1 and n2 to connect n3 and n4 in a parallel structure in the
result view.

Proof. This Theorem can be proven from the perspective of execution order
preservation. In v1, the path containing n3 from n1 to n2 denotes that n3 will be
executed after (or immediately after) n1 and before (or immediately before) n2. In v2,

tis

tj

tk

e

tis

tj tl

e

g1 g2

g5 g6

g3 g4

g8g7

(a)

(b)

tm

t1

t2

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

the path containing n4 from n1 to n2 denotes that n4 will be executed after (or
immediately after) n1 and before (or immediately before) n2. According to Rule 1, the
merged view should preserve all these execution order information. Thus the result
view should reflect that both n3 and n4 will be executed after (or immediately after)
n1 and before (or immediately before) n2. Therefore, we can conclude that the newly
added gateways, gx and gy, are And-Split/Join gateways. �

 Analysis on View Operations 4.3

As two basic view transformation operations, view filtering and view merging are
discussed in detail in this subsection. The enabling algorithms are presented in
Appendix.

 View Filtering
View filtering denotes the operation of filtering off a set of tasks from a given view.

This operation comprises the following steps:
(1) Remove specified tasks
The tasks excluded in the perception are removed from the source process view.
(2) Adjust links and synchronisation links
The removal of tasks may break the connectivity of the view graph. Therefore,

some links and synchronisation links need to be adjusted to connect the isolated
nodes, while keeping the order preservation according to Rules 1-3.

(3) Check Split/Join structures
The Split/Join structures may also be broken during the task removal, and

therefore they need to be adjusted according to Rules 2, 4, 5, and 6.

 View Merging
A view merging operation combines two process views, and organises the result

view in a correct structure. This operation comprises the following steps:
(1) Match Xor-Split/Join structures
As stated in Rule 6, an Xor-Split/Join structure will not be deleted unless it

contains no tasks. Therefore, if there is a common task in an Xor-Split/Join
structure contained in two different process views, these two Xor-Split/Join
structures should correspond to each other. Thus, the first step of the merging
operation is to match the Xor-Split/Join structures of the input process views.

(2) Combine views and remove redundant links
During the combination, common tasks are merged together first, and all links are

inherited. This action simply preserves all previous execution order information, yet
it may also generate redundant execution order information. Take the merging of
views in Figure 6 (a) into the one in Figure 6 (b) for example, the link from s to tj and
the one from tj to e are redundant, as the order information is already covered by
other links. According to Rule 7, such redundant links should be removed, and
thereby a cleaned view can be obtained as shown in Figure 6 (c).

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 6. Combining views and removing redundant links.

(3) Add And-Split/Join gateways
Common nodes exist in any pair of process views, at least the starting and ending

nodes, i.e., s and e. For example, the views in Figure 7 (a) have tasks s, tm and e in
common. When combining such corresponding tasks, these common nodes make
result in some Split/Join structures, as shown in Figure 7 (b). To comply with the
process view structure definition, And-Split/Join gateways should be added properly
to the result view, as shown in Figure 7 (c).

Fig. 7. Adding And-Split/Join gateways.

(4) Check And-Split/Join structures
In last step And-Split/Join gateways are added wherever a task connects to two

or more nodes, but this cannot guarantee the added gateways are well in pairs. For
example, the result view in Figure 8 (a1) may change to Figure 8 (a2) after adding
gateways g1 and g2. The path from g1 to g2 via tm actually reflects the synchronisation
dependency between tasks ti, tl and tm. Therefore, this path should be reconnected
with two synchronisation links as shown in Figure 8 (a3), meanwhile g1 and g2 are

tjtis e

tjtis e

(a)

(b)

tltjs e

tl

tjtis etl

(c)

tjtis e

tltks e

tjti

tltk

s eg1 g2

(a)

(b)

tm

tm

tm

tjti

tltk

s etm

(c)

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

removed as their structure downgrades to a sequential one according to Rule 5. Task
tm is now left without any incoming or outgoing links but only synchronisation links,
which violates the structural correctness. Thus, extra links are added to make link tm
be in a branch, as shown in Figure 8 (a4). The added links do not change the
execution order, because synchronisation links own a higher priority.

Fig. 8. Check And-Split/Join structures.

To guarantee the gateways are well in pairs, the obtained view may be

complemented with extra And-Split/Join gateways, as mentioned in Rule 8. For
example, the view shown in Figure 8 (b1) will add And-Split gateway g4 to evolve to
the view in Figure 8 (b2).

 HYPOTHETICAL CASE 5.

In this section, we use a hypothetical case to illustrate how our approach applies to a
business scenario. Figure 9 shows a simplified sales process, which starts from
receiving orders, then handles shipping (either outsource it or do it by itself) and
produces in parallel, and finishes by dispatching goods. For representation
simplification, we re-depict this process as v0 in Figure 11, where t1, t2, …, t8 delegate
the concrete tasks.

Five roles are involved in this business process. As shown in Figure 10, initially
CEO, workshop manager (WM) and sales manager (SM) inherit process perceptions
from workshop manager, workshop staff (WS) and sales assistant (SA), respectively.
Later, CEO and workshop staff may authorise perceptions to the workshop manager
and the sales manager, respectively. Symbols “I” and “A” along arrows indicate
perception inheritance and perception authorisation relations, respectively.

g1ti

tl

tk

g2

(a1)

(a2)

tj

ti

tl

tk

tj

ti

tl

tk

tj

(a3)

tm

tm

tm

ga gb

gbga

gbga

ti

tl

tk

tj

tm gbga

(a4)

g1 g2

ti

tj

tk

g3

(b1)

g1 g2

ti

tj

tk

g3g4

(b2)

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 9. The business process in the hypothetic case.

Fig. 10. The role hierarchy in the hypothetic case.

At the initial time, CEO can see the whole sales process, and thus he sees process

view v0 in Figure 11. Workshop staff holds the perception of t2, t7 and t8, and the sales
assistant holds the perception of t1, t3 and t8. Accordingly, these two roles see process
views v1= filter(v0, {t2, t7, t8}) and v2= filter(v0, { t1, t3, t8}), respectively. Similarly,
workshop manager and sales manager see process views v3 and v4 in Figure 11,
respectively.

t1: Receive Orders

t3: Determine
Shipping

t8: Dispatch
Goods

s

e

g1

g2

t7: Production

g3

g4

t4: Book Shipping
t6: Self

Shipping

t2: Planning

t5: Confirm Booking

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 11. Involved process views.

To notify sales manager about the production progress, workshop staff may

authorise the perception of t2 and t7 to sales manager. With such authorisation, sale
manager can perceive view v6=merge(v4, filter(v1, {t2, t7})). Views v5 and v6-1 illustrate
the intermediate results of this transformation. The authorisation of perception t2
and t7 results in view v5=filter(v1, {t2, t7}). View v6-1 shows the intermediate result
after combining v4 and v5, removing redundant links and adding new And-Split/Join
gateways, i.e., g5 and g6. In v6-1, the path from g1 and g6 connects two unpaired
gateways, and therefore the link between g1 and g6 should be converted into a
synchronisation link, as stated in step 3 of view merging in Section 4.3.

To let workshop manager know more about the logistics flow, CEO may authorise
the perception of t1, t4, t5, and t6 to workshop manager. Thus, workshop manager can
now see view v9=merge(v3, filter(v0, {t1, t4, t5, t6})). As involved intermediate views,
v7=filter(v0, {t1, t4, t5, t6}) represents the authorised view to workshop manager, and v8-

1 shows the result after combining v3 and v7, removing redundant links and adding
new And-Split/Join gateways, i.e., g5 and g6. The Xor-Split/Join structures in v3 and
v7 correspond to each other, because they own a common task t4, as stated by
Theorem 1. In v8-1, the path from g1 and g6 connects two unpaired gateways, and
therefore the link between g1 and t3, and the link between t3 and g6 should be
converted into synchronisation links. Consequently, this view changes into v8-2,
where t3 is only connected with two synchronisation links. Further, as stated in step
4 of view merging operation discussed in Section 4.3, t3 will be adjusted into a new
branch between g5 and g2. View v9 shows the final result view of merging v3 and v7.

t1

s

g3 g4

t4

t6

t5

t2

t3

t7

t8 eg2g5

t2 t7 es

t1 t3

t8s eg5 g2

t7t2

t2 t7 t8s e

t1 t3 t8s e

t2

t3 t8
s

e

g1

g2

t7

g3 g4

t4

t1s eg3 g4

t4

t6

t5

t1

t3
t8s eg1 g2

t7

v1 , the view for Workshop Staff (WS)

t1

s

g3 g4

t4

t6

t5

t2

t3

t7

t8 eg2g5

g1

g6

t1

t3 t8
s

e

g1

g2

t7

g3 g4

t4

t6
t2

t5

t2

t3

t8s eg5 g2

t7

t1 g1

g6

t1

s

g3 g4

t4

t6

t5

t2

t3

t7

t8 eg2g5

g1

g6

v2 , the view for Sales Assistant (SA)

v3 , the view for Workshop Manager (WM)

v4 , the view for Sales Manager (SM)

v0 , the view for CEO

v5 , the result view for filter(v1, {t2, t7})

v6-1 , the intermediate result for merge(v4, v5)

v6 , the result view for merge(v4, v5)

v7 , the result view for filter(v0, {t1, t4, t5, t6})

v8-1 , the intermediate result for merge(v3, v7)

v8-2 , the intermediate result for merge(v3, v7)

v9 , the result view for merge(v3, v7)

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

The execution order information between t1 and t3 is not derivable from either v3 or v7,
and therefore the merged view can only place t1 and t3 in parallel branches.

Table 1 lists all the perception relations between the roles involved in this
hypothetical case, where (i-iv) can be directly obtained from the role hierarchy and (v)
can be derived out using the inference rules defined in Section 3.

Table 1. Perception Relations between Roles

(i)
WMCEO

ttttq },,,{ 6541
 ;

(ii) WMWS ;
(iii)

SMWS
ttq },{ 72

 ;
(iv) SMSA ;
(v)

WMCEO
ttttq },,,{ 6541

 .

 PROTOTYPE IMPLEMENTATION 6.

To prove the concept, we have implemented a prototype called “Artifact-M for BPEL”,
which is available at http://sites.google.com/site/maxsirayongchareon/artifact-m/bpel-
view. Artifact-M for BPEL is an extension of Artifact-M which was originally
developed for artefact-centric process modelling (Yongchareon, Liu, Yu, & Zhao,
2015). The prototype fully supports process view construction operations including
hiding, aggregating, filtering and merging over business processes written in
Business Process Execution Language (BPEL) (Andrews et al., 2003). The software
provides automatic validation of BPEL process structure to ensure the construction
of BPEL views is safe and sound. View consistency checking is also supported based
on the set of consistency rules mentioned in Section 4.1, to guarantee sound view
derivation.

Figure 12 illustrates the architecture and the working process of Artifact-M. First,
view transformation operations are first defined in Process View Definition Language
(PVDL) (Yongchareon, Zhao, Liu, & Kowalkiewicz, 2008) (an XPath-like language
specially designed by us). In PVDL, an XPath-like expression can contain multiple
view operations over the tasks on a path of a business process or a process view. A
PVDL file will be later converted into a Process View Transaction Definition (PVTD)
(Yongchareon et al., 2008) file automatically. PVTD breaks down the XPath-like
expressions in PVDL into primitive view operations, which can be performed by the
Artifact-M Engine. The transformed view is outputted as a BPEL file, and is
graphically viewed using external BPEL viewers, such as SAP Maestro and Flash
BPEL Viewer.

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 12. The architecture of Artifact-M for BPEL.

The user interface of Artifact-M for BPEL is shown in Figure 13.

Fig. 13. The main screen of Artifact-M, the BPEL code of the running example, and the PVDL file for view

definitions.

External
BPEL
Viewer

Artifact-M
Editor

Artifact-M
Engine

Graphically displays
the generated
process views.

Process View
in BPEL

View Operation
in PVTD

View Definition
in PVDL

Original Process
in BPEL

Helps user to edit the
view definition for a given

BPEL process

Creates the process view from the
original BPEL process, according
to the user defined view definition.

Translates a PVDL into a
machine understandable

PVTD file.

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

 RELATED WORK AND DISCUSSION 7.

The “visibility line” of business has been first discussed in 80’s from the pure
business perspective (Shostack, 1984). With the prevalence of process-oriented
management, the incorporation of process views into business process management
becomes an inevitable trend. As the de facto standard process modelling language in
Web service world, BPEL can describe both executable and abstract processes, where
the latter serve similarly as process views. Martens (2005) has discussed the
consistency between BPEL executable processes and abstract ones. For general
processes, Sadiq and Orlowska (2000) have applied graph reduction techniques in
validating the correctness of a business process structure. Some structural validity
rules in this paper are inspired by their work, while our work extended a lot on
structural validation on composite processes.

In the area of inter-organisational collaboration, process views also play an
important role in privacy protection. van der Aalst and Weske (2001) proposed a “top-
down” workflow modelling scheme in their public-to-private approach. In this scheme,
organisations first agreed on a public workflow, and later each organisation refined
the part it was involved in, and thereby generated its private workflow. Schulz and
Orlowska (2004) focused on the cross-organisational interactions, and proposed to
deploy coalition workflows to compose private workflows and workflow views
together to enable interoperability. Chiu et al. (2004) adapted the view concept from
database systems, and employed a virtual workflow view to hide internal information.
The virtual workflow view only presents the information necessary for process
enactment, enforcement and monitoring, instead of all details. In regard to process
interoperability within virtual enterprises, Perrin and Godart (2004) used
synchronisation points between process services to coordinate collaboration, and
thereby allowed partners to personalise their internal processes without affecting the
cooperation. Issam et al. (2006) extracted an abstract workflow view to describe the
choreography of a collaboration scenario and compose individual workflows into a
collaborative business process, and in that way partial visibility of workflows and
resources are enabled. Our previous works (Xiaohui Zhao & Liu, 2010, 2013; Xiaohui
Zhao, Liu, Yang, & Sadiq, 2009, 2011) also established a relative workflow model for
collaborative business process modelling. A relative workflow comprises the local
workflow processes of the host organisation and the filtered workflow process views
from its partner organisations. In this way, it can provide a relative collaboration
context for each participating organisation. Compared with these works, this paper
motivated process views from the perspective of role-based perception control, and
analysed the view derivation and composition according to the role hierarchy and
interactions between roles.

Kopka and Wellen (2002) have touched the topic of role-based process views in the
domain of multimedia system development process. As a preliminary work towards
this topic, their work proposed the idea of creating different logical views of the same
business process for different involved roles, without further exploring the support to
automatic view generation or formal process perception description. Work by Shen
and Liu (2003) further explored the relevance between roles and the influence to
process views. Permission rules were used in their approach to describe the
relationships among roles, tasks and operations (view or execute). Yet, the
interaction among roles and the corresponding evolution of a role’s perception over a
business process is not touched.

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Process structural consistency also attracted some research efforts. D.-R. Liu and
Shen (2003); D. R. Liu and Shen (2004) proposed an order-preserving approach to
derive a structurally consistent process view from a base business process. In their
approach, the generation of “virtual activities” (compound tasks) need to follow their
proposed membership rule, atomicity rule, and order preservation rule. Eshuis and
Grefen (2008) formalised the operations of task aggregation and process
customisation, and also proposed a series of construction rules for validating the
structural consistency. Most of these researches concentrated on process view
filtering only, while our approach covered both process view filtering and composition
operations with a richer set of rules and theorems. Besides, Petri net (van der Aalst,
2003) and process algebra (Busi, 2006) are two popular mathematic tools for
structural and semantic analysis of processes. From our experience with these tools
(X. Zhao et al., 2011; Xiaohui Zhao et al., 2011), Petri net has speciality in rigorously
presenting the concurrent structures of processes, and thereby is suitable for
validating structural soundness. Yet the size of Petri net increases exponentially
when the process tends to be complex. Process algebra is particularly useful in
proving semantic equivalence between processes with different structures. However,
process algebra struggles in intuitively representing the structural transformation of
a process, because it does not have a standard or easy-to-read graphical format. Due
to these reasons, we stick to conventional flow chart (adapted to BPMN format) for
process representation in this paper, plus BPMN is becoming overwhelmingly
popular in process modelling in industry.

Some other work like (Bobrik, Reichert, & Bauer, 2007) adopted process views for
process visualisation, and may relax some structural constraints to adapt to actual
user requirements. Küster, Gerth, Forster, and Engels (2008) have investigated the
techniques for consolidating and merging processes from the perspective of process
change and version management. With this perspective, their work focuses on how to
merge the changes made by different process users to the same business process,
rather than dynamically generating/updating process perceptions according to
interactions among process users. In software engineering domain, semantic view of
program execution holds a similar philosophy with process views, as it was proposed
to reflect the projections of execution traces at different abstraction levels. As the
founders of semantic views, Hoffman, Eugster, and Jagannathan (2009) have
implemented semantics views by selectively aggregating collections of events with
shared semantic traits found in a program execution trace mainly for software
debugging purpose. In regard to information abstraction, this work and our work
share similar philosophy. Yet, semantic views concentrate on the semantic
equivalence between execution descriptions specific to certain programing languages,
instead of business logics in business processes. In comparison, our work focuses
more on process perceptions of different roles, structural consistency between base
process and transformed views, and view transformation according to perception
evolutions.

Our framework systematically analysed the derivation and composition of process
views with a role-based process view model, and provided a set of process view
operations which for the first time supports process view merging. As a pioneer wok
in this area, our framework established the foundation for process view
transformation, including validation rules, consideration on information loss during
view merging, enabling algorithms for automatic view generation.

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

As a typical artefact from the perspective of design science research (Gregor &
Hevner, 2013), our framework can be evaluated in terms of its validity, utility,
quality and efficacy as follows.
1. Validity – The framework has been examined by experienced industry experts to

ensure it meets the goal, i.e., better facilitate process view management with
supports to process view mergers. At conceptual level, a hypothetical case is used
to demonstrate the functionality of the framework. At technical level, a prototype
has been implemented to prove the feasibility of the framework.

2. Utility – The domain experts from our industry partners have identified more
applications of the framework outside the original motivation. A typical example
is in the scenario of business process co-creation, different roles, such as process
architect and business analyst, work together to create a business process yet
they view the same process with different focuses, e.g., data dependency and
value chain embedded in the business process, respectively. This co-creation can
be well supported by our process view framework. This new application strongly
evidences the value of our work. The proposed process view support is to be
integrated into SAP’s next generation ERP system.

3. Quality – As the first attempt to analysing and supporting process view merging,
our work explicitly discusses the information loss phenomenon for the first time,
and distinguishes the difference between process view filtering and merging
operations in terms of their expressiveness of information dependency resulting
in information loss. Further, the framework can trace process perception
evolution with the help of perception authorisation and inheritance operations.
The proposed rules and view operations fully guarantee the structural
correctness of transformed views and the proper information reservation and loss
during the transformation. The framework is rigorously formalised and grounded
on a theoretical foundation to ensure the accuracy and soundness of the process
view and perception model.

4. Efficacy – Our process view transforming mechanism natively supports
information loss occurred in process mergers without re-extracting another view
from the base business process. In comparison, view filtering based approaches
awkwardly need to analyse the dependences between the visibility of a process
element and the process perceptions of involved roles, and then regenerate the
view from the base process to correctly discard certain process information, in
order to comply with the information loss rule.

The proposed framework was established on the basis of a series of restrictions,

which resulted in some inherent limitations. Here, we discussed about these
limitations as follows.
A. The view merging operation may need fine tuning to better its efficiency. A

potential improvement could be done by lowering the process perception
definition from task level (please refer to Definition 4 in Section 3) down to the
level of any visible process elements (including tasks, links, gateways, etc.), to
enable process view filtering techniques for process view merger. Yet, this will
considerably increase the complexity of defining a view perception.

B. The process view model only works with well-formed (i.e., block-structured)
processes or views. Yet, the block structure is already a restriction in BPEL, and
therefore all BPEL processes comply with this restriction. In addition, the
restriction on well-formedness is likely to be sidestepped by converting free style
modelled (non-well-formed) business processes into well-formed business

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

processes, and then using the latter for process view manipulation. In this area,
some work has already been done in attempt to convert Business Process
Modelling Notations (BPMN) diagrams into block-structured BPEL processes
(Doux, Jouault, & Bézivin, 2009; Ouyang, Dumas, Aalst, Hofstede, & Mendling,
2009), which seems to be a good solution to this issue.

 CONCLUSIONS 8.

This paper proposed a role-based process view model and analysed the process view
derivation and composition. This work emphasised the process perception
dependency and evolution of different roles, and the influence to process views. A set
of rules and theorems were defined to regulate the process view transformations to
guarantee the structural validity and consistency. As a bridge, this work bridged
conceptual perception relations and technical process view transformations, and
thereby furthers the application of business process management.

Our future work includes applying the process view model in supporting the
cooperation between different process users, such as business analysts and process
architects, who have different interests with the process presentation.

 APPENDIX 9.

In this appendix, the enabling algorithms for process view generation are presented.

 Introduction to involved functions
preN(n) and postN(n) return the set of immediate preceding and succeeding tasks

and gateways of node n, respectively, where n is a task or gateway;
type(n) returns the type of n, where n is a task or gateway, the possible values for

type include Normal, Start, End, And-Split, And-Join, Or-Split, and Or-Join;
pair(g) returns the corresponding gateway in pair with gateway g, i.e., the

corresponding split gateway if g is a join gateway, or the corresponding join gateway
if g is a split gateway;

Tasks(v, g1, g2) returns all the tasks contained in the Split/Join structure specified
by gateways g1 and g2 in view v;

COSP(v, t) returns the closest preceding Or-Split gateway of task t in view v;
CASP(v, t) returns the closest preceding And-Split gateway of task t in view v;
CAJS(v, t) returns the closest succeeding And-Join gateway of task t in view v.

 Algorithms
Algorithm 1. filter(v, T) filters off tasks in set T from view v and adjusts the

remaining links and gateways according to the view filtering operation discussed in
Section 4.3.

Input v
T
 the input process view;
 the set of tasks for filtering;

Output v  the result process view.
1 v.T=v.T\T;
2 while (l=(t1, t2)v.L, t1T or t2T)
3 v.L=v.L\{l};
4 if t1T then
5 v.L=v.L{(na , t2)| napreN(t1)};
6 if (sync link sl=(x, t1)v.SL then v.SL=v.SL{(x, t2)}\ ሼ݈ݏሽ;
7 else

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

8 v.L=v.L{(t1, nb) | nbpostN(t2)};
9 if (sync link sl=(t2, x)v.SL then v.SL=v.SL{(t1, x)}\ ሼ݈ݏሽ;

10 end if
11 end while
12 for each gv.G, type(g)=And-Split
13 if l=(g, pair(g))v.L then v.L=v.L\{l};
14 for each gv.G, type(g)){And-Split, Or-Split} AND outd(g)1
15 if (outd(g)=0) OR (outd(g)=1 AND l=(g, pair(g))v.L) then
16 v.L=v.L{(na, nb) | napreN(g), nbpostN(pair(g)};
17 while(sync link sl=(x, g)v.SL)
18 v.SL=v.SL{(x, postN(pair(g)))}\ ሼ݈ݏሽ;
19 end while
20 while (sync link sl=(pair(g), x)v.SL)
21 v.SL=v.SL{(na, x)| napreN(g)}\ ሼ݈ݏሽ;
22 end while
23 else
24 v.L=v.L({(na, nb)|napreN(g), nbpostN(g)}{(na, nb)|na(preN(pair(g)),

nbpostN(pair(g)});
25 while(sync link sl=(x, g)v.SL)
26 v.SL=v.SL{(x, nb) |nbpostN(g)}\ ሼ݈ݏሽ;
27 end while
28 while (sync link sl=(pair(g), x)v.SL)
29 v.SL=v.SL{(na, x)| napreN(pair(g))}\ ሼ݈ݏሽ;
30 end while
31 end if
32
33

v.L=v.L\({(na, g)| napreN(g)}{(pair(g), nb)| nbpostN(pair(g)});
v.G=v.G\{g, pair(g)};

34 end for
35 v.SL=v.SL\v.L;
36 return v;

Lines 2-11 reconnect the links involved with the removed tasks, according to Rules

1 and 2, while Lines 6 and 9 adjust the synchronisation links according to Rule 3.
Lines 12-13 delete the single dummy branches from And-Split/Join structures,
according to Rule 5. Here, the dummy branches in an Or-Split/Join structure are
already combined into one dummy branch, due to the definition of set operation.
Lines 14-33 check if any Split/Join structures degrade into sequential structures
after the removal of dummy branches, according to Rules 4 and 5, while Lines 17-22
and Lines 25-30 adjust synchronisation links according to Rule 3.

Algorithm 2. matchOr-Split/Join(v1, v2) matches the Or-Split/Join structures of
views v1 and v2, and returns the combined view. This algorithm corresponds to the
first step for the view merging operation discussed in Section 4.3.

Input v1
v2
 an input process view;
 another input process view;

Output v  the result process view.
1 T=v1.Tv2.T; G=;
2 for each tT
3 if t is involved in an Or-Split/Join structure then
4 g1=COSP(v1, t); g2=COSP(v2, t);

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

5 while (g1G AND g1≠null)
6 G= G{g1}; g1′=pair(g1) in v1; g2′=pair(g2) in v2;
7 v2.G=v2.G{g1}\{g2}; v2.G=v2.G{g1′}\{g2′};
8 P=Tasks(v1, g1, g1′); Q=Tasks(v2, g2, g2′);
9 T= T\(PQ);

10 for each txpostT(g2) in v2
11 v2.L=v2.L{(g1, tx)}\{(g2, tx)};
12 for each txpreT(g2′) in v2
13 v2.L=v2.L{(tx, g1′)}\{(tx, g2′)};
14 let l=(tx, g2)v2.L; v2.L=v2.L{(tx, g1)}\{l};
15 let l=(g2′, ty)v2.L; v2.L=v2.L{(g1′, ty)}\{l};
16 let sl=(tx, g2)v2.SL; v2.SL=v2.SL{(tx, g1)}\ሼ݈ݏሽ;
17 let sl=(g2′, ty)v2.SL; v2.SL=v2.SL{(g1′, ty)}\ሼ݈ݏሽ;
18 if (l1=(g1, g1′)v1.L) AND ¬(l2=(g2, g2′)v2.L) then v1.L=v1.L\{l1};
19 if ¬ (l1=(g1, g1′)v1.L) AND (l2=(g2, g2′)v2.L) then v2.L=v2.L\{l2};
20 g1=COSP(v1, g1); g2=COSP(v2, g2);
21 end while
22 end if
23 end for
24 v.L=v1.Lv2.L; v.T=v1.Tv2.T; v.SL=v1.SLv2.SL; v.G=v1.Gv2.G;
25 return v;

This algorithm iteratively checks the common tasks belonging to v1 and v2, and

matches the involved Or-Split/Join structures with Lines 3-23. Lines 7-17 replace
the involved Or-Split/Join gateways in v2 with the corresponding ones in v1. Lines
18-19 handle the dummy branches of Or-Split/Join structures according to Rules 4
and 6. Line 24 combines the constitute sets of views v1 and v2 into the ones of result
view v. The returned view is the result after matching Or-Split/Join structures.

Algorithm 3. cleanRedundantLinks(v) removes redundant links in view v,
according to Rule 7. This algorithm corresponds to the procedure of removing
redundant links of the second step for the view merging operation discussed in
Section 4.3.

Input v  the input process view;
Output v  the result process view.

1 N={s}; L′=v.L;
2 for each nN
3 N= N\{n};
4 for each l=(n1, n2)  L′
5 if n=n1 then
6 L′= L′\{l};
7 if n2N then N= N{n2} else v.L= v.L\{l};
8 end if
9 end for

10 return v;

Algorithm 4. addAnd-Split/JoinGateways(v) adds And-Split/Join gateways to

view v to connect the tasks or gateways which have excessive links, due to the view
combination. Proper synchronisation links may be generated to sort the execution
order of tasks between unpaired And-Split/Join gateways. This algorithm
corresponds to the third step for the view merging operation discussed in Section 4.3.

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Input v  the input process view;
Output v  the result process view.

1 while ((nv.Tv.G such that (ind(n)>1 OR outd(n)>1) AND type(n){start,
normal, end}) OR (ind(n)>1 AND type(n){And-Split, OR-Split}) OR
(outd(n)>1 AND type(n){And-Join, OR-Join})

2 if ind(n)>1 then
3 create And-Join gateway g; v.G=v.G{g};
4 for each nxpreN(n) in v
5 v.L=v.L{(nx, g)}\{(nx, n)};
6 v.L=v.L{(g, n)};
7 end if
8 if outd(n)>1 then
9 create And-Split gateway g; v.G=v.G{g};

10 for each nxpostN(n) in v
11 v.L=v.L{(g, nx)}\{(n, nx)};
12 v.L=v.L{(n, g)};
13 end if
14 end while
15 while (g1, g2v.G such that type(g1)=And-Split, type(g2)=And-Join AND g1,

g2 do not construct a closed Split/Join structure AND path p=(g1, l1, …, ln,
g2))

16 let l1=(g1, nx)v.L; let ln=(ny, g2)v.L; v.L=v.L\{l1, ln};
17 if type(pre(g1)){And-Split, Or-Split} then v.SL=v.SL{(na , nx)|

napreN(g1)};
18 if type(post(g2)){And-Join, Or-Join} then v.SL=v.SL{(ny, nb)|

nbpostN(g2)};
19 end while
20 return v;

Lines 1-14 check each illegal Split/Join structure, and insert proper And-

Split/Join gateways. Lines 15-19 check for the paths exist between two unpaired
And-Split/Join gateways, and break the paths by converting proper links into
synchronisation links. Lines 17-18 check the type the adjacent node before converting
a link into a synchronisation link, according to Rule 9.

Algorithm 5. checkAndSplit/JoinStruc(v) examines the tasks and gateways inside
And-Split/Join structures in view v in terms of incoming/outgoing degrees. preT(n)
and postT(n) will return the sets of immediate preceding and succeeding tasks of
node n, respectively, where can be a task or a gateway. This algorithm corresponds to
the fifth step for the view merging operation discussed in Section 4.3.

Input v  the input process view;
Output v  the result process view.

1 while ((gv.G such that type(g)=And-Split AND outd(g)=1) OR (gv.G,
type(g)=And-Join AND ind(g)=1))

2 v.G=v.G\{g};
3 v.L=v.L{(na, nb)|napreN(g), nbpostN(g)}\{(na, g), (g, nb)|napreN(g),

nbpostN(g)};
4 if sl=(g, nx)v.SL then v.SL=v.SL{(na nx) | napreN(g) }\ሼ݈ݏሽ;
5 if sl=(ny, g)v.SL then v.SL=v.SL{(ny, nb) | nbpostN(g)}\ሼ݈ݏሽ;

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

6 end while
7 while (gv.G such that type(g)=And-Split AND tasks tx, typostT(g) such

that CAJS(tx)≠CAJS(ty))
8 let TX={t | tpostT(g), such that CAJS(t)=g1 AND (txpostT(g),

CAJS(tx)=g1 OR before(g1, CAJS(tx)))};
9 create And-Split gateway ga;

10 v.G=v.Gሼ݃௔ሽ; v.L=v.L{(g, ga)};
11 for each tTX
12 v.L=v.L{(ga, t)}\{(g, t)};
13 end while
14 while (gv.G such that type(g)=And-Join AND tasks tx, typreT(g) such that

CASP(tx)≠CASP(ty))
15 let TY={t | tpreT(g) such that CASP(t)=g1 AND (txpreT(g),

CASP(tx)=g1 OR before(CASP(tx), g1))};
16 create And-Join gateway gb;
17 v.G=v.G{gb}; v.L=v.L{(gb, g)};
18 for each tTY
19 v.L=v.L{(t, gb)}\{(t, g)};
20 end while
21 while (tv.T\{s, e} such that ind(t)=0 OR outd(t)=0)
22 if ind(t)=0 then let sl=(tx, t)v.SL; v.L=v.L{(CASP(tx), t)};
23 else let sl=(t, tx)v.SL; v.L=v.L{(t, CAJS(tx))};
24 end if
25 end while
26 return v;

Lines 1-6 check the And-Split/Join gateways with only one incoming or outgoing

link, and adjust related links and synchronisation links according to Rules 1 and 3.
Lines 7-13 and lines 14-20 complement And-Split gateways and And-Join gateways,
respectively, according to Rule 8. Lines 21-25 check the tasks without outgoing or
incoming links.

With the aforementioned algorithms, operation merge(v1, v2) can be easily realised
by invoking matchOr-Split/Join(v1, v2), cleanRedundantLinks(v), addAnd-
Split/JoinGateways(v) and checkAndSplit/JoinStruc(v) in order.

REFERENCES

Andrews, Tony, Curbera, Francisco, Dholakia, Hitesh, Goland, Yaron, Klein, Johannes, Leymann,
Frank, . . . Weerawarana, Sanjiva. (2003). Business Process Execution Language for Web Services
(BPEL4WS) 1.1.

Bobrik, Ralph, Reichert, Manfred, & Bauer, Thomas. (2007). View-Based Process Visualization. Paper
presented at the 5th International Conference on Business Process Management, Brisbane, Australia.

Busi, Nadia (Producer). (2006). Process Algebras, Bisimulation (and Logics). Retrieved from
http://www.cs.purdue.edu/homes/jv/events/TiC06/B-SLIDES/nb.pdf

Caetano, Artur, Zacarias, Marielba, Silva, António Rito, & Tribolet, José M. (2005). A Role-Based
Framework for Business Process Modeling. Paper presented at the 38th Hawaii International
Conference on System Sciences, Big Island, HI, USA.

Chiu, Dickson K.W., Cheung, S.C., Till, Sven, Karlapalem, Kamalakar, Li, Qing, & Kafeza, Eleanna.
(2004). Workflow View Driven Cross-Organizational Interoperability in a Web Service Environment.
Information Technology and Management, 5(3-4), 221-250.

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Choi, Jae, Nazareth, Derek, & Jain, Hemant. (2013). The Impact of SOA Implementation on IT-Business
Alignment: A System Dynamics Approach. ACM Transactions on Management Information Systems,
4(1).

Doux, Guillaume, Jouault, Frédéric, & Bézivin, Jean. (2009). Transforming BPMN process models to BPEL
process definitions with ATL. Paper presented at the 5th International Workshop on Graph-Based
Tools, Zurich, Switzerland.

Eshuis, Rik, & Grefen, Paul. (2008). Constructing Customized Process Views. Data & Knowledge
Engineering, 64, 419-438.

Georgakopoulos, Diimitrios, Hornick, Mark, & Sheth, Amit. (1995). An overview of workflow management:
From process modeling to workflow automation infrastructure. Distributed and parallel Databases,
3(2), 119-153.

Gregor, Shirley, & Hevner, Alan R. (2013). Positioning and Presenting Design Science Research for
Maximum Impact. MIS Quarterly, 37(2), 337-355.

Hoffman, Kevin J., Eugster, Patrick, & Jagannathan, Suresh. (2009). Semantics-aware Trace Analysis.
Paper presented at the ACM SIGPLAN conference on Programming Language Design and
Implementation, Dublin, Ireland.

Issam, Chebbi, Schahram, Dustdar, & Samir, Tata. (2006). The View-Based Approach to Dynamic Inter-
Organizational Workflow Cooperation. Data & Knowledge Engineering, 56(2), 139-173.

Kopka, Corina, & Wellen, Ursula. (2002). Role-Based Views to Approach Suitable Software Process Models
for the Development of Multimedia Systems. Paper presented at the 4th International Symposium on
Multimedia Software Engineering, Newport Beach, CA, USA.

Kumar, Akhil, & Zhao, J. Leon. (1999). Dynamic Routing and Operational Controls in Workflow
Management Systems. Management Science, 45(2), 253-272.

Küster, Jochen M., Gerth, Christian, Forster, Alexander, & Engels, Gregor. (2008). A Tool for Process
Merging in Business-Driven Development Paper presented at the 20th International Conference on
Advanced Information Systems Engineering Forum, Montpellier, France.

Liu, Chengfei, Li, Qing, & Zhao, Xiaohui. (2008). Challenges and Opportunities in Collaborative Business
Process Management. Information System Frontiers, 11(3), 201-209.

Liu, Duen-Ren, & Shen, Minxin. (2003). Workflow Modeling for Virtual Processes: an Order-Preserving
Process-View Approach. Information Systems, 28(6), 505-532.

Liu, Duen Ren, & Shen, Minxin. (2004). Business-to-Business Workflow Interoperation based on Process-
Views. Decision Support Systems, 38(3), 399-419.

Martens, Axel. (2005). Consistency between Executable and Abstract Processes. Paper presented at the 7th
IEEE International Conference on e-Technology, e-Commerce, and e-Services, Hong Kong, China.

Ouyang, Chun, Dumas, Marlon, Aalst, Wil M. P. van der, Hofstede, Arthur H. M. ter, & Mendling, Han.
(2009). From Business Process Models to Process-oriented Software Systems: The BPMN to BPEL
Way. ACM Transactions on Software Engineering and Methodology, 19(1).

Perrin, O., & Godart, C. (2004). A Model to Support Collaborative Work in Virtual Enterprises. Data &
Knowledge Engineering, 50, 63-86.

Reichert, Manfred, & Dadam, Peter. (1998). ADEPTflex: Supporting Dynamic Changes of Workflow
without Loosing Control. Journal of Intelligent Information Systems, 10, 93-129.

Sadiq, Wasim, & Orlowska, Maria E. (2000). Analyzing Process Models Using Graph Reduction
Techniques. Information Systems, 25(2), 117-134.

Schulz, K.A., & Orlowska, M.E. . (2004). Facilitating Cross-organisational Workflows with a Workflow
View Approach. Data & Knowledge Engineering, 51(1), 109-147.

Shen, Minxin, & Liu, Duen-Ren. (2003). Discovering Role-Relevant Process-Views for Recommending
Workflow Information. Paper presented at the 14th International Conference on Database and
Expert Systems Applications, Prague, Czech Republic.

Shostack, Lynn. (1984). Designing Services that Deliver Harvard Business Review, 62(1), 133-139.
Stohr, Edwards, & Zhao, J. Leon. (2001). Workflow Automation: Overview and Research Issues.

Information Systems Frontiers, 3(3), 281-296.
Ullah, Azmat, & Lai, Richard. (2013). A Systematic Review of Business and Information Technology

Alignment. ACM Transactions on Management Information Systems, 4(1).
van der Aalst, W.M.P. (2003). Challenges in Business Process Management: Verification of business

processes using Petri nets. The Bulletin of the European Association for Theoretical Computer Science,
80, 174-198.

van der Aalst, W.M.P., & Weske, Mathies. (2001). The P2P Approach to Interorganizational Workflows.
Paper presented at the 13th International Conference on Advanced Information Systems Engineering.

Weske, M., van der Aalst, W. M. P., & Verbeek, H. M. W. (2004). Advances in Business Process
Management. Data & Knowledge Engineering, 50(1), 1-8.

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Yongchareon, Sira, Liu, Chengfei, Yu, Jian, & Zhao, Xiaohui. (2015). A View Framework for Modeling and
Change Validation of Artifact-Centric Inter-Organizational Business Processes. Information Systems,
47(1), 51-81.

Yongchareon, Sira, Zhao, Xiaohui, Liu, Chengfei, & Kowalkiewicz, Marek. (2008). FlexView Manual -
Supports for Process View Operations (Technical Report).

Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M., & Yongchareon, S. (2011). Implementing Process Views in
the Web Service Environment. World Wide Web, 14(1), 27-52.

Zhao, Xiaohui, & Liu, Chengfei. (2010). Steering Dynamic Collaborations between Business Processes.
IEEE Transactions on Systems, Man and Cybernetics, 40(4), 743-757.

Zhao, Xiaohui, & Liu, Chengfei. (2013). Version Management for Business Process Schema Evolution.
Information Systems, 38(8), 1046-1069.

Zhao, Xiaohui, Liu, Chengfei, Sadiq, Wasim, & Kowalkiewicz, Marek. (2008). Process View Derivation and
Composition in a Dynamic Collaboration Environment. Paper presented at the 16th International
Conference on Cooperative Information Systems, Monterrey, Mexico.

Zhao, Xiaohui, Liu, Chengfei, Yang, Yun, & Sadiq, Wasim. (2009). Aligning Collaborative Business
Processes: An Organisation-oriented Perspective. IEEE Transactions on Systems, Man and
Cybernetics, 39(6), 1152-1164.

Zhao, Xiaohui, Liu, Chengfei, Yang, Yun, & Sadiq, Wasim. (2011). CorPN: Managing Instance
Correspondence in Collaborative Business Processes. Distributed and Parallel Database, 29(4), 309-
332.

Received June 2013; revised November 2014; accepted March 2015

Role-based Process View Derivation and Composition
xx:yy

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

 BIOGRAPHIES 10.

Xiaohui Zhao is an assistant professor in Information Systems at University of
Canberra, Australia, since 2012. He received his Ph.D. in 2007 from Swinburne
University of Technology, Australia. Since then till 2011, he has been working as a
postdoctoral research fellow in Swinburne University of Technology and Eindhoven
University of Technology, the Netherlands. He held a lecturer position in the
department of Computing at Unitec Institute of Technology, New Zealand from 2011
to 2012, and received a TechNZ grant from the Ministry of Science and Innovation,
New Zealand. His research interests include business process modelling and analysis,
service composition and outsourcing, etc. He has published over 50 papers in
prestigious journals and conferences so far.

Chengfei Liu received the BS, MS and PhD degrees in Computer Science from

Nanjing University, China in 1983, 1985 and 1988, respectively. Currently he is a
Professor in the Faculty of Science, Engineering and Technology, Swinburne
University of Technology, Australia. His current research interests include keywords
search on structured data, query processing and refinement for advanced database
applications, query processing on uncertain data and big data, and data-centric
workflows. He is a member of IEEE, and a member of ACM.

Sira Yongchareon is a Lecture at Department of Computing, Unitec Institute of

Technology, New Zealand. He has received his PhD and M.IT from Swinburne
University, Melbourne, Australia in 2012 and 2008 respectively. Prior to that, he has
worked in software industry for more than seven years. His research specialization is
in the area of business process management and information systems with a
particular focus on developing an artifact-centric approach to modeling business
processes. He has published several ERA-A/A*-ranked conference papers and
journals in the field of Information Systems and Business Process Management. He
has served as a program committee of several international conferences and as an
invited journal reviewer, such as WWW, IEEE TSMC, IEEE CEC, IJCIS, BPM,
WISE, DASFAA.

Marek Kowalkiewicz received his PhD from Poznan University of Economics,

Poland. He is the senior director of products and innovation, SAP, Palo Alto,
California, establishing and driving the conditions for developers at SAP to be happy,
creative and pround. Before this, he has been working for SAP in different branches
over the world, and has solid experience in the areas of enterprise applications,
business process management, service-oriented architecture, etc. He has published a
series of papers in reputed international journals and conferences.

Wasim Sadiq received the Ph.D. degree in computer science from the University of

Queensland, Brisbane, Australia, in the area of conceptual modeling and verification
of workflows. He is with the Infosys as the general manager in research. He was the
vice president of SAP Research Centre, Brisbane, Australia. He has over 22 years of
research and development experience in the areas of enterprise applications,
business process management, workflow technology, service-oriented architectures,
database management systems, distributed systems, and e-learning. He has
published and presented several research papers in leading international conferences
and journals and has filed more than 20 patent applications. He has led several

xx:yy X. Zhao et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

research projects collaborating with academic and industry partners in Australia,
Europe, and the U.S.

