
Building Instance Knowledge Network for Word Sense

Disambiguation

Shangfeng Hu, Chengfei Liu

Faculty of Information and Communication Technologies

Swinburne University of Technology

Hawthorn 3122, Victoria, Australia
{shu,cliu}@groupwise.swin.edu.au

Xiaohui Zhao

Information Systems Group

Department of Industrial Engineering & Innovation Sciences

Eindhoven University of Technology

Eindhoven, The Netherlands
x.zhao@tue.nl

Marek Kowalkiewicz

SAP Research

Brisbane, Australia
marek.kowalkiewicz@sap.com

Abstract

In this paper, a new high precision focused word sense

disambiguation (WSD) approach is proposed, which not

only attempts to identify the proper sense for a word but

also provides the probabilistic evaluation for the

identification confidence at the same time. A novel

Instance Knowledge Network (IKN) is built to generate

and maintain semantic knowledge at the word, type

synonym set and instance levels. Related algorithms based

on graph matching are developed to train IKN with

probabilistic knowledge and to use IKN for probabilistic

word sense disambiguation. Based on the Senseval-3

all-words task, we run extensive experiments to show the

performance enhancements in different precision ranges

and the rationality of probabilistic based automatic

confidence evaluation of disambiguation. We combine our

WSD algorithm with five best WSD algorithms in

senseval-3 all words tasks. The results show that the

combined algorithms all outperform the corresponding

algorithms.
.

Keywords: natural language processing, word sense

disambiguation

1 Introduction

Word sense disambiguation (WSD) is to identify the

proper sense of words in the context. As a typical topic of

natural language processing, WSD is widely used in

machine translation, knowledge acquisition, information

retrieval, etc. (Navigli 2009)

As a knowledge system in nature, WSD heavily relies

on knowledge resources. Supervised WSD approaches

Copyright © 2011, Australian Computer Society, Inc. This paper

appeared at the 34th Australasian Computer Science Conference (ACSC

2011), Perth, Australia. Conferences in Research and Practice in

Information Technology (CRPIT), Vol. 113. M. Reynolds, Ed.

Reproduction for academic, not-for profit purposes permitted provided

this text is included.

mostly require manual sense tagged corpus. They provide

the best performances in public evaluation (Palmer et al.

2001; Snyder and Palmer 2004). There are some

knowledge based WSD systems which are built on a

lexical knowledge base. They exploit the semantic

relationships between concepts in semantic networks and

computational lexicons (Yarowsky and Florian 2002;

Cuadros and Rigau 2006).

Recently, a few graph based approaches for knowledge

based WSD were proposed (Navigli and Velardi 2005;

Sinha and Mihalcea 2007; Navigli and Lapata, 2007;

Agirre and Soroa 2009). All these approaches are built at

type level and the semantic relations between types.

Besides semantic relations, syntactic structures and

relations are also valuable to WSD. Martinez et al.

proposed a syntactic feature based WSD approach

(Martinez et al. 2002). Fernandez-Amoros also presented a

syntactic pattern WSD algorithm (Fernandez-Amoros

2004).

However there is no knowledge base for WSD systems

which properly keeps both semantic relations and

syntactic features in the context. Actually, relationships

between two synsets may be different within different

syntactic structures of the contexts. To reflect this

difference, we consider keeping context related

relationships between synsets in patterns at instance level.

Instance based learning (Ng and Lee 1996; Daelemans

et al. 1999) is a promising approach for WSD. Instance

based WSD algorithms do not neglect exceptions and

accumulate further aid for disambiguation through new

examples. However existing instance based WSD

approaches do not consider the syntactic features. We

believe that keeping syntactic structures as instance

patterns will benefit WSD and it is a key point to combine

semantic relationships and syntactic features.

Besides the above considerations about a knowledge

base, we also concern about the accuracy of WSD results.

The poor accuracy of WSD results is a bottleneck for the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33504147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

application of WSD (Navigli 2009). Inspired by the human

learning process, we reckon that the confidence evaluation

of WSD is important. Supposing a school girl is reading a

text, even though she cannot understand the whole text,

she knows which part she can understand and which part

she cannot. Therefore, she can learn knowledge from the

understood part with high confidence. The confidence is

based on the evaluation on accuracy of understanding.

Martinez’s approach (Martinez et al. 2002) provides

high precision WSD results. This work emphasizes the

importance of high precision WSD. However, it employs

fixed rule-related thresholds without quantitative

evaluation of disambiguation results. Preiss (Preiss 2004)

proposed a probabilistic WSD approach. However, they

convert the probabilistic results into qualitative ones

without quantitative analysis and do not show how their

probabilistic results relate to the accuracy of

disambiguation.

In this paper, we propose a novel multilayer instance

knowledge network (IKN) together with related

probabilistic training and WSD algorithms. The IKN WSD

algorithm combines the semantic relations and syntactic

features together to provide WSD results with quantitative

confidence evaluation.

The rest of the paper is structured as follows. In Section

2, we introduce IKN, its graph matching algorithm and the

probabilistic training algorithm of IKN based on the graph

matching algorithm. The IKN WSD algorithm is presented

in Section 3. Section 4 presents the experiment results of

the IKN WSD algorithm and its combinations with

existing WSD algorithms. Related works are discussed in

Section 5. Concluding remarks are given in Section 6.

Figure 1 Semantic Dependency Graph for the sentence

“David sold all the stocks in bear market.”

Figure 2 Connecting instance graph pattern to WordNet

2 Instance Knowledge Network (IKN)

Text understanding often requires contextual knowledge

beyond the literal information of the text itself. Such

contextual knowledge can be searched from the previously

understood contents that are similar to the current text.

Technically, such knowledge can be maintained in a

semantic knowledge network which stores instances of

word senses and relationships between these instances.

We propose a novel IKN - instance knowledge network

to keep the contextual knowledge between word senses.

IKN keeps the relationships between word senses not only

at the type level (i.e., relations between type synsets) but

also at the instance level (i.e., through a series of instance

dependency graphs that are connected to the type synsets).

It differs from most knowledge networks (Cuadros and

Rigau 2008; Agirre and Soroa 2009) which keep the

knowledge in the type synsets and their relations only.

2.1 Constructing IKN

We create IKN by extending WordNet (Fellbaum 1998)

with a sense tagged corpus, such as, SemCor (Miller et al.

1993).

Figure 2 shows the simplified structure of IKN. The

word level and the type synset level are inherited from

WordNet. The instance level consists of a collection of

instance graph patterns (IGPs), which are built from the

texts in an existing corpus. We used SemCor in our

system. The relationships between the instance level and

the type synset level also need to be created. The brief

procedure is as follows:

First, all the texts in the corpus are parsed into semantic

dependency graphs using Stanford Dependency Parser

(Stanford_Parser, Klein et al. 2002). Figure 1 shows a

dependency graph for the sentence “David sold all the

stocks in bear market.” We suppose the sentence is sense

tagged by WordNet3.0 synonym set (synset) , where

David, sold, all, stocks, bear and market are assigned with

synsets person#1, sell#1, all#1, stock#1, bear#2 and

market#4, respectively. Each dependency graph is then

inserted into IKN as an IGP by setting a unique identifier

to each word node of the graph and the word node

becomes an instance node of the IGP. Obviously, an IGP

inherits the dependency relations between instance nodes

from the dependency graph.

Then we connect instance nodes in each IGP at the

instance level to type synsets at the synset level. Because

each word in dependency graphs is sense tagged, each

instance node has a sense tag inherits from the word. We

connect each instance node to the type synset labeled by

the sense tag. It is worthwhile noting that the relation

between type synsets and instance nodes is one-to-many,

i.e., a type synset may connect to multiple instance nodes.

In Figure 2, the IGP ({i1, i2, i3, i4, i5, i6}, {(i1, i2), (i2, i3),

(i2, i5), (i3, i4), (i5, i6)}) at the instance level is obtained

from the dependency graph in Figure 1. Instance node i1

coming from word node “David” in Figure 1 is connected

to its tagged sense synset person#1 at the synset level. To

simplify the representation, the relations between type

synsets are not given. IKN will be trained to obtain

probabilistic knowledge (see Section 2.3).

sold

stocks

all

market
bear

nsubj

prep_in

dobj

predet

the
det

nn

prep_in

nsubj dobj

nn

predet

David sell stock all market bear

Word level

Type synset level

Instance level

market#4

sell#1

stock#1

all#1

person#1

bear#2

i1

i2

i3
i4

 i5 i6

David

2.2 Graph Matching Algorithm

Given a candidate sentence represented as a dependency

graph G shown at the candidate level of Figure 3, we

propose a graph matching algorithm to find all matching

sub-graphs of IGPs in IKN for dependency graph G. The

training algorithm for IKN and WSD algorithm will be

based on this algorithm.

The algorithm can be described as 2 main steps.

(1). For each candidate word of dependency graph G at

the candidate level, we find all instance nodes at

the instance level that are semantically related to

the word through IKN. We call these instance

nodes as semantic related instance nodes (SRINs)

of the candidate word.

(2). Among all SRINs of those candidate words in G,

we discover all sub-graphs of IGPs that match G

maximally.

Figure 3 shows a general picture on how the graph

matching works. We now describe in detail these two main

steps in the following two sub sections.

2.2.1 Finding Semantic Related Instance Nodes

Given candidate word w of candidate dependency graph G

at the candidate level, we need to find all SRINs of w at the

instance level through the word and type synset levels of

IKN. This can be done in the following three sub steps.

Firstly, given a candidate word w, we find all sense

synsets of w. We first find a unique symbol word w’ at the

word level for w. Then, we find the sense synsets of w’ at

the type synset level. Note that multiple sense synsets may

exist for w’. We also consider these synsets as the sense

synsets of w. For example in Figure 3, candidate word

market in dependency graph G1 has a symbol word market

at the word level. Two synsets market#3 and market#4 at

the type synset level are sense synsets of symbol word

market as well as the sense synsets of candidate word

market in G1. Similarly, clear#16 is a sense synset of

candidate word cleared in G1, and assets#1 is a sense

synset of candidate word assets in G2.

Secondly, given a set of sense synsets of w, we find all

synsets that are semantically related to these sense synsets

within the type synset level. For each sense synset s of w,

there may exist other synsets at the type synset level which

are semantically related to s. We call these synsets as

semantically related synsets (SRSs) of s in IKN. An SRS si

of s is defined as a synset which holds one of the following

three relationships with s.

(1). A single semantic relation exists from s to si within

the type synset level;

(2). A semantic path exists from s to si within the type

synset level, each step of the path has the same

semantic relation and direction, and the semantic

nn

Word level

Type synset level

Instance level

Dependency Graph G1 Dependency Graph G2 Candidate level

nsubj

prep_in

dobj

nn

det

market#4
sell#1

stock#1
all#1

person#1

bear#2

nsubj

prep_in dobj

nn

He
 cleared securities capital

bear
market

David

sell

stock

all

market bear

clear

 capital
securities

asset

buy

capital#1

assets#1 buy#1

security#4

bear#1

market#3
hypernym

hypernym

hypernym

antonym

i1 i2
i3

i4

i5 i6

nsubj

prep_in

dobj

nn

amod
He

bought assets

bear

many

market

many

many#1

Edges of SRIR paths in dependency graphs Dependency relation Semantic relation between synsets

pet

i7 i8

i9

nn

pet#1

i10

nn
i11

Figure 3 Graph Matching Algorithm on Instance Knowledge Network

clear#16

i12 i13
dobj

relation is transitive;

(3). Sense synset s is an SRS of itself, denoted as self.

An SRS of a candidate word is an SRS of one of the

sense synsets of the candidate word. For example, in

Figure 3, the synset sell#1 is an SRS of candidate word

cleared with the semantic relation hypernym to its sense

synset clear#16; it is also an SRS of candidate word

bought with the semantic relation antonym to its sense

synset buy#1. The synset stock#1 is an SRS of capital with

the direct hypernym relation to capital#1; it is also an SRS

of assets to assets#1 with hypernym as an indirect

transitive relation. We also consider market#3 and

market#4 as SRSs of candidate word market because both

market#3 and market#4 are sense synsets of market and

they are deemed as SRSs with self semantic relation to the

sense synsets.

Thirdly, given a set of SRSs of w, we find all SRINs of

these SRSs. In IKN, a synset can have multiple instance

nodes, so there can be multiple SRINs which are instances

of each SRS of w. For example in Figire 3, sell#1 is an SRS

of cleared, and it has two SRINs i2 and i12.

So when given a candidate word w, multiple SRINs

may be returned. For each returned SRIN n, we define

SRIR(w, n) as the semantically related instance

relationship (SRIR) between w and n. From the above

three sub steps, we know that such an SRIR stands for a

path from w to n, including relations between a candidate

word at the candidate level and its word symbol at the

word level, between a word symbol and a sense synset at

the type synset level, between a sense synset and an SRS

both at the type synset level, and between an SRS and an

instance node at the instance level. SRIR(w, n) can be

denoted as (w, s, t, n) where w is the candidate word; s is

the sense synset of w on the path; t is the semantic relation

between s and the SRS s’ on the path which directly

connects to the instance node n. Given a particular SRIR r,

we define the function SS(r) to return sense synset s and

define the function SRC(r) to return the semantic relation

t.

For example, in Figure 3, we denote SRIR(cleared, i2)

between the candidate word cleared and its SRIN i2 as

(cleared, clear#16, hyponym, i2) and we can get

SS(SRIR(cleared, i2)) = clear#16 and SRC(SRIR(cleared,

i2)) = hyponym. Similarly we have SRIR(assets, i3) as

(assets, assets#1, hypernym, i3), SS(SRIR(assets, i3)) =

assets#1 and SRC(SRIR(assets, i3)) = hyponym;

SRIR(capital, i3) as (capital, capital#1, hypernym, i3),

SS(SRIR (capital, i3)) = capital#1 and SRC(SRIR(capital,

i3)) = hyponym; SRIR(market, i5) as (market, market#4,

self, i5), SS(SRIR(market, i5)) = market#4 and

SRC(SRIR(market, i5)) = self; SRIR(bear, i6) as (bear,

bear#2, self, i6), SS(SRIR bear, i6)) = bear#2 and

SRC(SRIR(bear, i6)) = self.

It is worth mentioning that an SRS can also correspond

to multiple sense synsets, and hence multiple candidate

words. Consequently an instance node or SRIN can

correspond to multiple sense synsets as well as multiple

candidate words. For example in Figure 3, i2 is an instance

of sell#1, sell#1 is an SRS of candidate word cleared with

the semantic relation hypernym, so we consider i2 as an

SRIN of candidate word cleared with semantic relation

hypernym to its sense synset clear#16. Similarly, i2 is also

an SRIN of bought with semantic relation antonym.

2.2.2 Discovering Instance Matching

Sub-graphs

When all SRINs of words in candidate dependency graph

G are found, we now discover all sub-graphs of IGPs at the

instance level that match G maximally. This can be

achieved by a breadth-first traversal of G. To give a clear

explanation, we divide it in following two steps.

Firstly, for each edge e(w1, w2) being traversed in G, we

find its matching edges in all IGPs at the instance level. An

edge e’(iw1, iw2) in an IGP G’ is called a matching edge of

e(w1, w2) if it satisfies the following conditions:

(1). iw1 and iw2 are an SRIN of w1 and w2, respectively;

(2). The dependency relation d between w1 and w2 in G

is the same as the dependency relation d’ between

iw1 and iw2 in the IGP.

For example in Figure 3, dependency relation between

i2 and i3 is dobj which is the same as the dependency

relation between the candidate words cleared and capital.

Furthermore, there is an SRIR between cleared and i2, and

another SRIR between capital and i3. Thus, we consider

(i2, i3) as a matching edge of (cleared, capital) of G.

Similarly, (i2, i5) is a matching edge of (cleared, market)

with common dependency relation prep_in, and (i5, i6) is a

matching edge of (market, bear) with common

dependency relation nn.

Secondly, we try to connect the found matching edge

e’(iw1, iw2) to those previously found set of matching

edges or sub-graphs in the IGP G’. We denote the set of

previously found set of matching sub-graphs as S and S =

{ } at the beginning. e’(iw1, iw2) can be connected to one

sub-graph Gs in S if Gs includes a node iw that matches

either iw1 or iw2, and corresponds to same candidate word

w1 or w2. If none of such Gs exists in S, we simply add

e’(iw1, iw2) as a sub-graph to S.

When the traversal of G is done, we select the

maximum sub-graph from S as the matching sub-graph of

candidate dependency graph G from IGP G’. We call this

sub-graph as an instance matching sub-graph (IMSG) of

G.

For example in Figure 3, we start breadth-first traversal

of G1 from word cleared and S = { } at the beginning for

one of the IGPs G’ at the instance level. After (cleared,

capital) is traversed, S = {{(i2, i3)}} (for simplicity, only

edges are recorded). After (cleared, market) is traversed, S

= {{(i2, i3), (i2, i5) }}. After (market, bear) is traversed, S =

{{(i2, i3), (i2, i5), (i5, i6)}}. After the traversal of G1 is done,

suppose there is no change to S, then the only sub-graph

{(i2, i3), (i2, i5), (i5, i6)} of S is the IMSG of G from IGP G’.

There may be IMSGs from other IGPs for G.

2.3 Probabilistic Knowledge Training

Based on the graph matching algorithm, we train IKN by a

sense tagged corpus. In our work, we use the SemCor to

train IKN which was initially built from SemCor. From the

training, probabilistic knowledge are obtained and

attached to the IGPs.

In the training process, at first we parse the sense tagged

corpus into candidate dependency graphs. Then we

employ the graph matching algorithm to find IMSGs at the

instance level of IKN. Each candidate dependency graph

may match with many IMSGs. Each instance node pair in

an IGP may be matched by many candidate dependency

graphs in different IMSGs. Finally, we generate the

conditional probabilities for each instance node pair in the

IMSGs. Each time a pair of instance nodes is matched in

an IMSG of a candidate dependency graph, some of the

conditional probabilities related to them are generated or

updated. In the following, we focus on the discussion on

how we generate the conditional probabilities for a pair of

instance nodes in an IGP of IKN.

 For a pair of instance nodes i1 and i2 (denoted as <i1, i2>)

in an IGP of IKN, we define two sets of conditional

probabilities: PI(i1, i2) from i1 to i2, and PI(i2, i1) from i2 to

i1. i1 and i2 may be directly or indirectly connected in the

IGP. Each conditional probability in a set is created for its

real WSD use and represents the category of sense synset

pairs based on a particular SRC pair (refer to Section 2.2.1

for SRC definition) between <i1, i2> and its matching word

pairs. Through the training process, PI(i1, i2) and PI(i2, i1)

are obtained and attached to <i1, i2> as part of IKN. Due to

space limitation, we only explain how we define a set of

conditional probabilities in PI(i1, i2) as those in PI(i2, i1)

can be defined similarly.

At first, for instance node pair <i1, i2>, we define

condition C1 for that both i1 and i2 are in an IMSG of a

candidate dependency graph from the training set. We

count the number of times in the training process that C1 is

satisfied as Countall(i1, i2).

Each time <i1, i2> satisfies C1 in a matching, a

candidate word pair <w1, w2> can be found in an candidate

dependency graph and then the pair of SRIRs SRIR(w1, i1)

and SRIR(w2, i2) are determined. Then we can define

condition C2 for satisfying SRC(SRIR(w1, i1)) = t1 and

SRC(SRIR(w2, i2)) = t2. We count the number of times in

training process that both conditions C1 and C2 are

satisfied as Countc(i1, t1, i2, t2). Here, for the instance node

pair <i1, i2>, we attempt to categorize the matching

candidate word pairs based on different SRCs of the

corresponding pairs of SRIRs. For each particular pair of

SRCs <t1, t2>, we count the number of all matching

candidate word pairs in the training set which satisfy the

SRCs of matching. It is easy to see Countall(i1, i2) =

∑Countc(i1, ti, i2, tj) for all <ti, tj> pairs.

After that, for each candidate word w, we define the

proper sense synset as PSS(w) which is the tagged sense

synset for w. We define condition C3(i1) satisfying

SS(SRIR(w1, i1)) = PSS(w1), i.e., the sense synset of the

SRIR between w1 and i1 is the proper tagged sense of w1.

Similarly we define condition C3(i2) satisfying

SS(SRIR(w2, i2)) = PSS(w2). We count the number of

candidate word pairs in the training process that satisfy

conditions C1, C2 and C3(i1) as Countc(i1, t1, true, i2, t2,

null). It stands for the size of the set of candidate word

pairs, each pair <w1, w2> in the set matches <i1, i2>, and the

pair of SRCs is <t1, t2>, and the sense synset in SRIR(w1, i1)

is the proper sense of w1. Similarly, we count the number

of candidate word pairs in the training process that satisfy

conditions C1, C2 and not C3(i1) as Countc(i1, t1, false, i2,

t2, null). We also count the number of candidate word

pairs in training process that satisfy conditions C1, C2,

C3(i1) and C3(i2) as Countc(i1, t1, true, i2, t2, true). It stands

for the size of the set of candidate word pairs, each pair

<w1, w2> in the set matches <i1, i2>, and the pair of SRCs is

<t1, t2>, and the sense synsets in SRIR(w1, i1) and SRIR(w2,

i2) are the proper senses of w1 and w2, respectively.

Similarly, we count the number of candidate word pairs in

training process that satisfy conditions C1, C2, C3(i1) and

not C3(i2) as Countc(i1, t1, true, i2, t2, false).

It is not difficult to understand that Countc(i1, t1, true, i2,

t2, false) + Countc(i1, t1, true, i2, t2, true) = Countc(i1, t1,

true, i2, t2, null), and Countc(i1, t1, true, i2, t2, null) +

Countc(i1, t1, false, i2, t2, null) = Countc(i1, t1, null, i2, t2,

null) = Countc(i1, t1, i2, t2).

Now, for each particular SRC pair <t1, t2>, we can

define a conditional probability from i1 to i2 as P(i2, t2 | i1, t1)

= Countc(i1, t1, true, i2, t2, true)/Countc(i1, t1, true, i2, t2,

null). We give the formal interpretation of P(i2, t2 | i1, t1) as

follows.

For all matched pairs {< w1i, w2j >} of <i1, i2> with

SRC(SRIR(w1i, i1)) = t1 and SS(SRIR(w2j, i2)) = t2, let s1i =

SS(SRIR(w1i, i1)) and s2j = SS(SRIR(w2j, i2)), P(i2, t2 | i1, t1)

is the probability of s2j being the proper sense of w2j when

s1i is the proper sense of w1i. P(i2, t2 | i1, t1) is added in set

PI(i1, i2) to represent the category of those sense synset

pairs based on <t1, t2>.

The conditional probabilities obtained will be attached

to instance node pairs within IGPs. These conditional

probabilities in different IGPs materialize the relationships

of synset pairs in different contexts. The syntactic

structures are also kept in IGPs. So the semantic relations

and the syntactic structures can work together in our IKN

WSD.

3 IKN WSD Algorithm

Based on IKN and the probabilistic knowledge obtained

and attached to the instance level of IKN during the above

training process, we propose a quantitative WSD approach,

which comprises a word sense based iterative process and

a probabilistic reasoning algorithm.

3.1 Word Sense Based Iterative Reasoning

We believe that the understanding of a word may depend

on the understanding of other words in the context. As

such, we propose an iterative reasoning process which is

described as follows:

(a) We parse the text to be disambiguated into

candidate dependency graphs and set an initial

probability for every sense of the words in text.

All the probabilities of senses for a particular

word add up to 1.0.

(b) Apply our probabilistic reasoning algorithm to

update the probability of each word sense by the

related sense probabilities of other words. The

probabilistic reasoning algorithm will ensure that

the sense probabilities of each particular word

add up to 1.0.

(c) Repeat (b) until the probabilities of word senses

get stabilized.

Agirre and Soroa (Agirre and Soroa, 2009) proposed an

Personalized PageRank WSD approach which is also an

iteration algorithm. Their algorithm is based on a ranking

system between type synsets. Different from their ranking

apporach, the input and output of (b) in our algorithm are

probability based, so we consider it as a reasoning

algorithm.

In this paper, the initial probabilities are derived from

WordNet. For each candidate word which has tag of part

of speech (PoS) by Stanford parser, we find all the senses

for this word in WordNet with the same PoS. WordNet

provides tagcount between sense and word which shows

the frequency of a sense for a word in a large scale corpus.

The probability of a sense for a word is its tagcount (in

WordNet) divided by the summation of the tagcounts of

all senses of the word with the same PoS.

The probabilistic reasoning algorithm in (b) will be

described in next 3 sub-sections. For each sense s of

candidate word w in a candidate dependency graph, we

find the set of maximum conditional probabilities {P(s | w,

sij, wi)}, where wi is any surrounding word of w in the

dependency graph and sij is any sense synset of wi (to be

discussed in Section 3.2). After that, we calculate the

un-normalized sense probability Pb
k
(s|w) for the current

step by combining the set of sense probabilities at the

previous step {P
k-1

(sij|wi)} and the set of corresponding

maximum conditional probabilities {P(s | w, sij, wi)} (to be

discussed in Section 3.3). Finally, we normalize Pb
k
(s|w) to

P
k
(s|w) to ensure that the sense probabilities of each

particular word add up to 1.0 and get the WSD results (to

be discussed in Section 3.4).

3.2 Finding Maximum Conditional Probability

To a sense synset s of a candidate word w in a candidate

dependency graph G and a sense synset s’ of a surrounding

candidate word w’ of w, We attempt to find the maximum

conditional probability P(s | w, s’, w’) using a set of

conditional probability sets. Each probability set PI(i’, i) in

this set is selected because of a matched SRIN pair <i’, i>

of the candidate word pair <w’, w>. In the following, we

explain how we get P(s | w, s’, w’).

We first find all IMSGs of G in IKN by the graph

matching algorithm. For each found IMSG G’ which

contains the matched SRIN pair <i’, i> of <w’, w>, if

SS(SRIR(w’, i’)) = s’ and SS(SRIR(w, i)) = s, then we

search a conditional probability P(i, t | i’, t’) ∈ PI(i’, i)

such that t = SRC(SRIR(w, i)) and t’ = SRC(SRIR(w’, i’)),

here <t’, t> represents a particular category of sense synset

pairs to which <s’, s> belongs. If such a probability exists,

we add it into the probability set PS(w’, s’, w, s) which is a

set of conditional probabilities from s’ to s. When we

process all found IMSGs of G, PS(w’, s’, w, s) records all

relevant probabilities of matched SRIN pairs {<i’, i>} of

the candidate word pair <w’, w>. Now we set P(s | w, s’, w’)

as the maximum conditional probability among those

probabilities in PS(w’, s’, w, s) to represent the probability

of s being the proper sense of w when s’ is the proper sense

of w’.

3.3 Combining Probabilities

To a sense synset sp of candidate word w in a candidate

dependency graph G, based on the conditional

probabilities from the sense synsets of different

surrounding candidate words in the context and the

probabilities of these sense synsets from the previous step,

we can calculate the probability of sp for the current step.

At first, we calculate the weighted average of the

conditional probabilities of sense sp of w from a

surrounding word wi in the context as

∑
=

=
xj

iijijipip |ws, w, s|ws, w|ws
 to1

1-kk)(P)P()(P

Where P
k-1

(sij | wi) is the probability of sense sij of wi at

iteration step k-1 and x is the number of senses of wi. P
k
(sp

| wi, w) is the conditional probability of sense sp of word w

from word wi in the context at iteration step k.

Then, we combine the conditional probabilities of sense

sp of w from multiple surrounding words according to

Naive Bayes Approach. We define the probability of sense

sp of w as

∏
∈

=
G 0

k

0

k

b
)|(P

)(P
)|(P)|(P

iw p

ip

pp
ws

, w | ws
wsws

P0(sp | w) is the start-up probability of the sense sp. It is

also the general probability of sp for word w which is

calculated from the tagcount of the senses of w in

WordNet.

Finally, we normalize the probabilities to ensure that

the probabilities of all senses of a word add up to 1. We

calculate Pw
k
(w) = ∑Pb

k
(sp|w), p = 1, 2, …, y and y is the

number of senses of candidate word w. Then we define the

normalized probability

P
k
(sp|w)=

Pb
k
(sp|w) / Pw

k
(w) if Pw

k
(w) > 0

P0(sp|w) if Pw
k
(w) = 0

3.4 Returning WSD Results with Confidences

At each iteration step, we choose the sense with the

maximum normalized probability of a word as the result

sense for the word and employ the probability of this sense

as the confidence evaluation value for the word

disambiguation. The confidence value is between 0 and 1.

If there are two senses with the same probability, we select

the one with smaller synset rank number of WordNet as

the result sense of disambiguation. When disambiguation

results remain unchanged for all the test words at an

iteration step, we get the WSD result.

4 Experiments and Evaluation

In our experiments, IKN is created and then trained by the

sense tagged corpus SemCor. All the experiment results

are for senseval-3 (Mihalcea et al. 2004) all words task.

The PoS tagging for our IKN WSD algorithm is based on

Stanford dependency parser, so the results inherit its

mistakes.

 To get high precision WSD results, we define a

threshold θ between 0 and 1 as the confidence value of our

WSD algorithm. We choose the results with the

confidence value equal to or higher than θ as the high

precision WSD results.

In Section 3.1, for each sense synset, we presented the

method for getting the start-up probabilities which are

based on tagcount values in WordNet. To evaluate the

experiment results, we present the baseline algorithm

which takes the start-up probabilities for each sense synset

of words, identifies the sense synset with the maximum

probability as the result sense, and employs the probability

of the result sense as the confidence value. If there are two

sense synsets with the same probability, we also choose

the one with lower rank number in WordNet.

Table 1 presents the precision and attempt coverage of

our IKN WSD algorithm with different confidence

thresholds θ, and comparable results of the baseline WSD

algorithm on senseval-3 all words tasks. As our IKN WSD

algorithm provides the result of those words with the

confidence equal to or higher than θ, we define the number

of attempted results as Attempt(θ) and the number of the

correct results in these attempted results as Correct(θ). So

the precision can be obtained by Correct(θ)/Attempt(θ).

We define the total number of test words as n, then the

attempt coverage is Attempt(θ)/n. In Senseval-3 all word

tasks, n = 2041. The precision and attempt coverage are a

pair of contradicting factors.

Normally, higher precision is associated with lower

attempt coverage. We sort the WSD results of the baseline

algorithm by confidence values in descending order. To

compare fairly the precision of the baseline WSD results

with our IKN WSD results for each particular θ, we select

the baseline WSD results with biggest confidences. The

number of the selected results is equal to Attempt(θ) (this

implies that the same attempt coverage is selected for

baseline as that of the IKN WSD). We define the correct

results in these results as CorrectB(θ) to represent the

comparable baseline WSD results. Then we can also get

the precision for baseline results as

CorrectB(θ)/Attempt(θ). Now we can compare the

precisions between the IKN and the baseline WSD

algorithms. As shown in Table 1, the precision of our IKN

WSD results are higher than baseline WSD results in

different attempt coverage ranges.

Table 1 High precision result comparison of IKN WSD

algorithm and baseline WSD algorithm

Threshold

θ

Precision Attempt

Coverage IKN Baseline Improvement

0.9 89.6% 86.3% 3.3% 31.06%

0.8 86.9% 84.1% 2.8% 38.22%

0.7 84.1% 79.2% 4.9% 46.35%

0.6 75.9% 73.7% 2.2% 60.46%

0.5 71.2% 69.2% 2.0% 73.05%

The IKN high-precision WSD results can be combined

with any existing WSD algorithm through the following

method. For each test word wi, we define sIKN(wi) as the

result sense by IKN, cIKN(wi) as the confidence of

disambiguation by IKN, sE(wi) as the result sense by the

existing WSD algorithm, and θ as the confidence threshold

for IKN WSD. Then we can get the result sense sC(wi) of wi

by the combined algorithm as

sC(wi) =

sIKN(wi) if cIKN(wi) ≥ θ

sE(wi) if cIKN(wi)＜θ

Table 2 Recall of combined algorithms of IKN and

existing algorithms in Senseval-3 all words tasks Single Combine with IKN

IKN Threshold θ N/A 0.7 0.8 0.9

GAMBL 65.2% 65.2% 65.4% 65.4%

SenseLearner 64.6% 65.2% 65.1% 65.0%

Koc 64.1% 64.7% 64.7% 64.5%

R2D2 62.6% 63.8% 63.4% 63.2%

Meaning-allwords 62.4% 63.6% 63.6% 63.5%

Because the confidence value cIKN(wi) of each word wi is

generated in our IKN WSD algorithm, the decision of

result selection based on cIKN(wi) is also made by the

algorithm. So it is reasonable to consider the combined

results as the results of the new combined algorithm. If our

IKN WSD algorithm selects the results based on the

imprecise confidence values, there is no guarantee that the

combined result is always better than that generated by the

existing algorithm.

Table 2 shows the performance of combined algorithms

of IKN and the top five algorithms (Snyder and Palmer,

2004) in Senseval-3 all words tasks. Since the combined

algorithms work for the full attempt coverage, we compare

them with the existing algorithms by recall. When the

confidence threshold reaches 0.8, each of the combined

results is better than that of the corresponding single

algorithm. This shows that IKN has better performance

than existing algorithms in the set of test words with high

disambiguation confidence. These results also show that

high precision WSD methods could be used to improve the

performance of existing algorithms.

5 Related Work and Discussion

Personalizing PageRank algorithm (Agirre and Soroa,

2009) is an iterative ranking process between word senses

in the context. The basic principle is similar to IKN. This

ranking algorithm is based on the semantic distance

between concepts in a lexical knowledge base (LKB).

However, their LKB is a type level network. The shortest

semantic distance between two concepts has been fixed

when the LKB was built. Although they extract sub-graphs

for given input context, the shortest semantic distance

between concepts is not changed. In other words, the

shortest semantic distance is context free. The algorithms

proposed by Mihalcea and Sinha (Mihalcea 2005; Sinha

and Mihalcea 2007) are built on similarities between

senses, which are also context free. SSI WSD algorithm

(Navigli and Velardi 2005) is proposed on the basis of

graph pattern matching. However, their graph patterns do

not contain the context sensitive syntactic feature either.

Essentially, the graph matching between structural

specifications of concepts is a measure of similarity

between concepts too. Because the structural

specifications are fixed for the concepts, the best matching

structural specification is context free as well.

In IKN, we employ the maximum conditional

probability of a sense synset from other sense synsets. Its

effect is similar to the shortest semantic distance and the

similarity in the above works. Different from LKB based

algorithms and SSI, the conditional probabilities of IKN

are kept at instance level. The maximum probability is

determined by the graph matching between candidate

graph and IGPs. Even containing the same two words,

candidate graphs of different contexts may match different

IGPs due to different syntactic structures. So the

maximum conditional probability between sense synsets

in IKN is syntactic context sensitive. This additional

context relevance provides higher accuracy for WSD.

6 Conclusion and Future Works

In this paper, we have proposed a new instance knowledge

network – IKN, and its graph matching algorithm. We

have also developed the training algorithm for IKN and the

probabilistic WSD algorithm using IKN. Our

experimental study reveals reasonable performance of the

IKN WSD algorithm. The high performance of combined

algorithms of IKN with existing WSD algorithms shows

that IKN based WSD can provide better results than the

existing algorithms for the test words with high

disambiguation confidence.

So far, we have conducted preliminary work on IKN

based probabilistic WSD and there is plenty of room for

improvement in the future. The dependency graphs we

used at current stage are only for individual sentences due

to the direct use of the output of the dependency parser.

The IKN WSD algorithm will be beneficial from joining

the sentence dependency graphs together by a high

precision co-reference resolution algorithm. In addition,

fuzzy graph matching may improve the attempt coverage.

We will also study the semi-supervised learning

algorithms on IKN.

7 References

E. Agirre and A. Soroa. 2009 Personalizing PageRank for

Word Sense Disambiguation. In EACL 2009

M. Cuadros and G. Rigau. 2006. Quality assessment of

large scale knowledge resources. In EMNLP 2006.

M. Cuadros and G. Rigau. 2008. KnowNet: Building a

Large Net of Knowledge from the Web. In COLING

2008.

W. Daelemans, A. Van Den Bosch and J. Zavrel. 1999.

Forgetting exceptions is harmful in language learning.

Mach. Learn. 34(1) 1999.

C. Fellbaum. 1998. WordNet – an electronic lexical

database. MIT Press, 1998.

D. Fernandez-Amoros. 2004. WSD Based on Mutual

Information and Syntactic Patterns In ACL Senseval-3

Workshop 2004.

D. Klein and C. Manning. 2002. Fast Exact Inference with

a Factored Model for Natural Language Parsing. In

NIPS 2002.

D. Martinez, E. Agirre and L. Marquez. 2002. Syntactic

features for high precision word sense disambiguation.

In COLING 2002,.

R. Mihalcea. 2005. Unsupervised large-vocabulary word

sense disambiguation with graph-based algorithms for

sequence data labeling. In HLT2005

R. Mihalcea and P. Edmonds, Eds. 2004. In ACL

Senseval-3 Workshop 2004.

H. Miller, C. Leacock, R. Tengi and R. Bunker. 1993. A

semantic concordance. In ARPA Workshop on HLT,

1993.

R. Navigli. 2009 Word sense disambiguation: A survey.

ACM Computing Surveys, 41(2), 2009.

R. Navigli and M. Lapata. 2007. Graph connectivity

measures for unsupervised word sense disambiguation.

In IJCAI 2007.

R. Navigli and P. Velardi. 2005. Structural Semantic

Interconnections: A Knowledge-Based Approach to

Word Sense Disambiguation. IEEE Trans. Pattern Anal.

Mach. Intell, 27(7) 2005.

H. Ng and H. Lee, 1996. Integrating multiple knowledge

sources to disambiguate word senses: An

examplar-based approach. In ACL 1996.

M. Palmer, C. Fellbaum, S. Cotton, L. Delfs, and H.T.

Dang. 2001. English tasks: All-words and verb lexical

sample. In SENSEVAL-2 Workshop 2001.

J. Preiss. 2004. Probabilistic word sense disambiguation.

Journal of Computer Speech and Language, 18(3) 2004.

R. Sinha and R. Mihalcea. 2007. Unsupervised

graphbased word sense disambiguation using measures

of word semantic similarity. In ICSC 2007.

B. Snyder and M. Palmer. 2004. The English all-words

task. In ACL Senseval-3 Workshop 2004.

Stanford_Parser.

http://nlp.stanford.edu/software/lex-parser.shtml

D. Yarowsky and R. Florian, 2002. Evaluating sense

disambiguation across diverse parameter spaces. J. Nat.

Lang. Eng. 9(4), 2002.

