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Abstract 

In this paper, a new high precision focused word sense 

disambiguation (WSD) approach is proposed, which not 

only attempts to identify the proper sense for a word but 

also provides the probabilistic evaluation for the 

identification confidence at the same time. A novel 

Instance Knowledge Network (IKN) is built to generate 

and maintain semantic knowledge at the word, type 

synonym set and instance levels. Related algorithms based 

on graph matching are developed to train IKN with 

probabilistic knowledge and to use IKN for probabilistic 

word sense disambiguation. Based on the Senseval-3 

all-words task, we run extensive experiments to show the 

performance enhancements in different precision ranges 

and the rationality of probabilistic based automatic 

confidence evaluation of disambiguation. We combine our 

WSD algorithm with five best WSD algorithms in 

senseval-3 all words tasks. The results show that the 

combined algorithms all outperform the corresponding 

algorithms.
.
 

Keywords: natural language processing, word sense 

disambiguation 

1 Introduction 

Word sense disambiguation (WSD) is to identify the 

proper sense of words in the context. As a typical topic of 

natural language processing, WSD is widely used in 

machine translation, knowledge acquisition, information 

retrieval, etc. (Navigli 2009)  

As a knowledge system in nature, WSD heavily relies 

on knowledge resources. Supervised WSD approaches 
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mostly require manual sense tagged corpus. They provide 

the best performances in public evaluation (Palmer et al. 

2001; Snyder and Palmer 2004). There are some 

knowledge based WSD systems which are built on a 

lexical knowledge base. They exploit the semantic 

relationships between concepts in semantic networks and 

computational lexicons (Yarowsky and Florian 2002; 

Cuadros and Rigau 2006).  

Recently, a few graph based approaches for knowledge 

based WSD were proposed (Navigli and Velardi 2005; 

Sinha and Mihalcea 2007; Navigli and Lapata, 2007; 

Agirre and Soroa 2009). All these approaches are built at 

type level and the semantic relations between types. 

Besides semantic relations, syntactic structures and 

relations are also valuable to WSD. Martinez  et al. 

proposed a syntactic feature based WSD approach 

(Martinez et al. 2002). Fernandez-Amoros also presented a 

syntactic pattern WSD algorithm (Fernandez-Amoros 

2004).  

However there is no knowledge base for WSD systems 

which properly keeps both semantic relations and 

syntactic features in the context. Actually, relationships 

between two synsets may be different within different 

syntactic structures of the contexts. To reflect this 

difference, we consider keeping context related 

relationships between synsets in patterns at instance level. 

Instance based learning (Ng and Lee 1996; Daelemans 

et al. 1999) is a promising approach for WSD. Instance 

based WSD algorithms do not neglect exceptions and 

accumulate further aid for disambiguation through new 

examples. However existing instance based WSD 

approaches do not consider the syntactic features. We 

believe that keeping syntactic structures as instance 

patterns will benefit WSD and it is a key point to combine 

semantic relationships and syntactic features. 

Besides the above considerations about a knowledge 

base, we also concern about the accuracy of WSD results. 

The poor accuracy of WSD results is a bottleneck for the 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33504147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


application of WSD (Navigli 2009). Inspired by the human 

learning process, we reckon that the confidence evaluation 

of WSD is important. Supposing a school girl is reading a 

text, even though she cannot understand the whole text, 

she knows which part she can understand and which part 

she cannot. Therefore, she can learn knowledge from the 

understood part with high confidence. The confidence is 

based on the evaluation on accuracy of understanding. 

Martinez’s approach (Martinez et al. 2002) provides 

high precision WSD results. This work emphasizes the 

importance of high precision WSD. However, it employs 

fixed rule-related thresholds without quantitative 

evaluation of disambiguation results. Preiss (Preiss 2004) 

proposed a probabilistic WSD approach. However, they 

convert the probabilistic results into qualitative ones 

without quantitative analysis and do not show how their 

probabilistic results relate to the accuracy of 

disambiguation.  

In this paper, we propose a novel multilayer instance 

knowledge network (IKN) together with related 

probabilistic training and WSD algorithms. The IKN WSD 

algorithm combines the semantic relations and syntactic 

features together to provide WSD results with quantitative 

confidence evaluation. 

The rest of the paper is structured as follows. In Section 

2, we introduce IKN, its graph matching algorithm and the 

probabilistic training algorithm of IKN based on the graph 

matching algorithm. The IKN WSD algorithm is presented 

in Section 3. Section 4 presents the experiment results of 

the IKN WSD algorithm and its combinations with 

existing WSD algorithms. Related works are discussed in 

Section 5. Concluding remarks are given in Section 6. 

 

Figure 1 Semantic Dependency Graph for the sentence 

“David sold all the stocks in bear market.” 

 

 

Figure 2 Connecting instance graph pattern to WordNet 

2 Instance Knowledge Network (IKN) 

Text understanding often requires contextual knowledge 

beyond the literal information of the text itself. Such 

contextual knowledge can be searched from the previously 

understood contents that are similar to the current text. 

Technically, such knowledge can be maintained in a 

semantic knowledge network which stores instances of 

word senses and relationships between these instances. 

We propose a novel IKN - instance knowledge network 

to keep the contextual knowledge between word senses. 

IKN keeps the relationships between word senses not only 

at the type level (i.e., relations between type synsets) but 

also at the instance level (i.e., through a series of instance 

dependency graphs that are connected to the type synsets). 

It differs from most knowledge networks (Cuadros and 

Rigau 2008; Agirre and Soroa 2009) which keep the 

knowledge in the type synsets and their relations only. 

2.1 Constructing IKN 

We create IKN by extending WordNet (Fellbaum 1998) 

with a sense tagged corpus, such as, SemCor (Miller et al. 

1993). 

Figure 2 shows the simplified structure of IKN. The 

word level and the type synset level are inherited from 

WordNet. The instance level consists of a collection of 

instance graph patterns (IGPs), which are built from the 

texts in an existing corpus. We used SemCor in our 

system. The relationships between the instance level and 

the type synset level also need to be created. The brief 

procedure is as follows:  

First, all the texts in the corpus are parsed into semantic 

dependency graphs using Stanford Dependency Parser 

(Stanford_Parser, Klein et al. 2002). Figure 1 shows a 

dependency graph for the sentence “David sold all the 

stocks in bear market.” We suppose the sentence is sense 

tagged by WordNet3.0 synonym set (synset) , where 

David, sold, all, stocks, bear and market are assigned with 

synsets person#1, sell#1, all#1, stock#1, bear#2 and 

market#4, respectively. Each dependency graph is then 

inserted into IKN as an IGP by setting a unique identifier 

to each word node of the graph and the word node 

becomes an instance node of the IGP. Obviously, an IGP 

inherits the dependency relations between instance nodes 

from the dependency graph. 

Then we connect instance nodes in each IGP at the 

instance level to type synsets at the synset level. Because 

each word in dependency graphs is sense tagged, each 

instance node has a sense tag inherits from the word. We 

connect each instance node to the type synset labeled by 

the sense tag. It is worthwhile noting that the relation 

between type synsets and instance nodes is one-to-many, 

i.e., a type synset may connect to multiple instance nodes.   

In Figure 2, the IGP ({i1, i2, i3, i4, i5, i6}, {(i1, i2), (i2, i3), 

(i2, i5), (i3, i4), (i5, i6)}) at the instance level is obtained 

from the dependency graph in Figure 1. Instance node i1 

coming from word node “David” in Figure 1 is connected 

to its tagged sense synset person#1 at the synset level. To 

simplify the representation, the relations between type 

synsets are not given. IKN will be trained to obtain 

probabilistic knowledge (see Section 2.3). 
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2.2 Graph Matching Algorithm 

Given a candidate sentence represented as a dependency 

graph G shown at the candidate level of Figure 3, we 

propose a graph matching algorithm to find all matching 

sub-graphs of IGPs in IKN for dependency graph G. The 

training algorithm for IKN and WSD algorithm will be 

based on this algorithm.  

The algorithm can be described as 2 main steps.  

(1). For each candidate word of dependency graph G at 

the candidate level, we find all instance nodes at 

the instance level that are semantically related to 

the word through IKN. We call these instance 

nodes as semantic related instance nodes (SRINs) 

of the candidate word.  

(2). Among all SRINs of those candidate words in G, 

we discover all sub-graphs of IGPs that match G 

maximally.  

Figure 3 shows a general picture on how the graph 

matching works. We now describe in detail these two main 

steps in the following two sub sections. 

2.2.1 Finding Semantic Related Instance Nodes 

Given candidate word w of candidate dependency graph G 

at the candidate level, we need to find all SRINs of w at the 

instance level through the word and type synset levels of 

IKN. This can be done in the following three sub steps. 

Firstly, given a candidate word w, we find all sense 

synsets of w. We first find a unique symbol word w’ at the 

word level for w. Then, we find the sense synsets of w’ at 

the type synset level. Note that multiple sense synsets may 

exist for w’. We also consider these synsets as the sense 

synsets of w. For example in Figure 3, candidate word 

market in dependency graph G1 has a symbol word market 

at the word level. Two synsets market#3 and market#4 at 

the type synset level are sense synsets of symbol word 

market as well as the sense synsets of candidate word 

market in G1. Similarly, clear#16 is a sense synset of 

candidate word cleared in G1, and assets#1 is a sense 

synset of candidate word assets in G2.  

Secondly, given a set of sense synsets of w, we find all 

synsets that are semantically related to these sense synsets 

within the type synset level. For each sense synset s of w, 

there may exist other synsets at the type synset level which 

are semantically related to s. We call these synsets as 

semantically related synsets (SRSs) of s in IKN. An SRS si 

of s is defined as a synset which holds one of the following 

three relationships with s.  

(1). A single semantic relation exists from s to si within 

the type synset level;  

(2). A semantic path exists from s to si within the type 

synset level, each step of the path has the same 

semantic relation and direction, and the semantic 

nn 
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relation is transitive;  

(3). Sense synset s is an SRS of itself, denoted as self.  

An SRS of a candidate word is an SRS of one of the 

sense synsets of the candidate word. For example, in 

Figure 3, the synset sell#1 is an SRS of candidate word 

cleared with the semantic relation hypernym to its sense 

synset clear#16; it is also an SRS of candidate word 

bought with the semantic relation antonym to its sense 

synset buy#1. The synset stock#1 is an SRS of capital with 

the direct hypernym relation to capital#1; it is also an SRS 

of assets to assets#1 with hypernym as an indirect 

transitive relation. We also consider market#3 and 

market#4 as SRSs of candidate word market because both 

market#3 and market#4 are sense synsets of market and 

they are deemed as SRSs with self semantic relation to the 

sense synsets.  

Thirdly, given a set of SRSs of w, we find all SRINs of 

these SRSs. In IKN, a synset can have multiple instance 

nodes, so there can be multiple SRINs which are instances 

of each SRS of w. For example in Figire 3, sell#1 is an SRS 

of cleared, and it has two SRINs i2 and i12.   

So when given a candidate word w, multiple SRINs 

may be returned. For each returned SRIN n, we define 

SRIR(w, n) as the semantically related instance 

relationship (SRIR) between w and n. From the above 

three sub steps, we know that such an SRIR stands for a 

path from w to n, including relations between a candidate 

word at the candidate level and its word symbol at the 

word level, between a word symbol and a sense synset at 

the type synset level, between a sense synset and an SRS 

both at the type synset level, and between an SRS and an 

instance node at the instance level. SRIR(w, n) can be 

denoted as (w, s, t, n) where w is the candidate word; s is 

the sense synset of w on the path; t is the semantic relation 

between s and the SRS s’ on the path which directly 

connects to the instance node n. Given a particular SRIR r, 

we define the function SS(r) to return sense synset s and 

define the function SRC(r) to return the semantic relation 

t.  

For example, in Figure 3, we denote SRIR(cleared, i2) 

between the candidate word cleared and its SRIN i2 as 

(cleared, clear#16, hyponym, i2) and we can get 

SS(SRIR(cleared, i2)) = clear#16 and SRC(SRIR(cleared, 

i2)) = hyponym. Similarly we have SRIR(assets, i3) as 

(assets, assets#1, hypernym, i3), SS(SRIR(assets, i3)) = 

assets#1 and SRC(SRIR(assets, i3)) = hyponym; 

SRIR(capital, i3) as (capital, capital#1, hypernym, i3), 

SS(SRIR (capital, i3)) = capital#1 and SRC(SRIR(capital, 

i3)) = hyponym; SRIR(market, i5) as (market, market#4, 

self, i5),  SS(SRIR(market, i5)) = market#4 and 

SRC(SRIR(market, i5)) = self; SRIR(bear, i6) as (bear, 

bear#2, self, i6), SS(SRIR bear, i6)) = bear#2 and 

SRC(SRIR(bear, i6)) = self.  

It is worth mentioning that an SRS can also correspond 

to multiple sense synsets, and hence multiple candidate 

words. Consequently an instance node or SRIN can 

correspond to multiple sense synsets as well as multiple 

candidate words. For example in Figure 3, i2 is an instance 

of sell#1, sell#1 is an SRS of candidate word cleared with 

the semantic relation hypernym, so we consider i2 as an 

SRIN of candidate word cleared with semantic relation 

hypernym to its sense synset clear#16. Similarly, i2 is also 

an SRIN of bought with semantic relation antonym. 

2.2.2 Discovering Instance Matching 

Sub-graphs 

When all SRINs of words in candidate dependency graph 

G are found, we now discover all sub-graphs of IGPs at the 

instance level that match G maximally. This can be 

achieved by a breadth-first traversal of G. To give a clear 

explanation, we divide it in following two steps. 

Firstly, for each edge e(w1, w2) being traversed in G, we 

find its matching edges in all IGPs at the instance level. An 

edge e’(iw1, iw2) in an IGP G’ is called a matching edge of 

e(w1, w2) if it satisfies the following conditions: 

(1). iw1 and iw2 are an SRIN of w1 and w2, respectively;  

(2). The dependency relation d between w1 and w2 in G 

is the same as the dependency relation d’ between 

iw1 and iw2 in the IGP.  

For example in Figure 3, dependency relation between 

i2 and i3 is dobj which is the same as the dependency 

relation between the candidate words cleared and capital. 

Furthermore, there is an SRIR between cleared and i2, and 

another SRIR between capital and i3. Thus, we consider 

(i2, i3) as a matching edge of (cleared, capital) of G. 

Similarly, (i2, i5) is a matching edge of (cleared, market) 

with common dependency relation prep_in, and (i5, i6) is a 

matching edge of (market, bear) with common 

dependency relation nn.  

Secondly, we try to connect the found matching edge 

e’(iw1, iw2) to those previously found set of matching 

edges or sub-graphs in the IGP G’. We denote the set of 

previously found set of matching sub-graphs as S and S = 

{ } at the beginning. e’(iw1, iw2) can be connected to one 

sub-graph Gs in S if Gs includes a node iw that matches 

either iw1 or iw2, and corresponds to same candidate word 

w1 or w2. If none of such Gs exists in S, we simply add 

e’(iw1, iw2) as a sub-graph to S.  

When the traversal of G is done, we select the 

maximum sub-graph from S as the matching sub-graph of 

candidate dependency graph G from IGP G’. We call this 

sub-graph as an instance matching sub-graph (IMSG) of 

G. 

For example in Figure 3, we start breadth-first traversal 

of G1 from word cleared and S = { } at the beginning for 

one of the IGPs G’ at the instance level. After (cleared, 

capital) is traversed, S = {{(i2, i3)}} (for simplicity, only 

edges are recorded). After (cleared, market) is traversed, S 

= {{(i2, i3), (i2, i5) }}. After (market, bear) is traversed, S = 

{{(i2, i3), (i2, i5), (i5, i6)}}. After the traversal of G1 is done, 

suppose there is no change to S, then the only sub-graph 

{(i2, i3), (i2, i5), (i5, i6)} of S is the IMSG of G from IGP G’. 

There may be IMSGs from other IGPs for G. 

2.3 Probabilistic Knowledge Training 

Based on the graph matching algorithm, we train IKN by a 

sense tagged corpus. In our work, we use the SemCor to 

train IKN which was initially built from SemCor. From the 

training, probabilistic knowledge are obtained and 

attached to the IGPs.  



In the training process, at first we parse the sense tagged 

corpus into candidate dependency graphs. Then we 

employ the graph matching algorithm to find IMSGs at the 

instance level of IKN. Each candidate dependency graph 

may match with many IMSGs. Each instance node pair in 

an IGP may be matched by many candidate dependency 

graphs in different IMSGs. Finally, we generate the 

conditional probabilities for each instance node pair in the 

IMSGs. Each time a pair of instance nodes is matched in 

an IMSG of a candidate dependency graph, some of the 

conditional probabilities related to them are generated or 

updated. In the following, we focus on the discussion on 

how we generate the conditional probabilities for a pair of 

instance nodes in an IGP of IKN. 

 For a pair of instance nodes i1 and i2 (denoted as <i1, i2>) 

in an IGP of IKN, we define two sets of conditional 

probabilities: PI(i1, i2) from i1 to i2, and PI(i2, i1) from i2 to 

i1. i1 and i2  may be directly or indirectly connected in the 

IGP. Each conditional probability in a set is created for its 

real WSD use and represents the category of sense synset 

pairs based on a particular SRC pair (refer to Section 2.2.1 

for SRC definition) between <i1, i2> and its matching word 

pairs. Through the training process, PI(i1, i2) and PI(i2, i1) 

are obtained and attached to <i1, i2> as part of IKN. Due to 

space limitation, we only explain how we define a set of 

conditional probabilities in PI(i1, i2) as those in PI(i2, i1) 

can be defined similarly. 

At first, for instance node pair <i1, i2>, we define 

condition C1 for that both i1 and i2 are in an IMSG of a 

candidate dependency graph from the training set. We 

count the number of times in the training process that C1 is 

satisfied as Countall(i1, i2).  

Each time <i1, i2> satisfies C1 in a matching, a 

candidate word pair <w1, w2>  can be found in an candidate 

dependency graph and then the pair of SRIRs SRIR(w1, i1) 

and SRIR(w2, i2) are determined. Then we can define 

condition C2 for satisfying SRC(SRIR(w1, i1)) = t1 and 

SRC(SRIR(w2, i2)) = t2. We count the number of times in 

training process that both conditions C1 and C2 are 

satisfied as Countc(i1, t1, i2, t2). Here, for the instance node 

pair <i1, i2>, we attempt to categorize the matching 

candidate word pairs based on different SRCs of the 

corresponding pairs of SRIRs. For each particular pair of 

SRCs <t1, t2>, we count the number of all matching 

candidate word pairs in the training set which satisfy the 

SRCs of matching. It is easy to see Countall(i1, i2) = 

∑Countc(i1, ti, i2, tj) for all <ti, tj> pairs. 

After that, for each candidate word w, we define the 

proper sense synset as PSS(w) which is the tagged sense 

synset for w. We define condition C3(i1) satisfying 

SS(SRIR(w1, i1)) = PSS(w1), i.e., the sense synset of the 

SRIR between w1 and i1 is the proper tagged sense of w1. 

Similarly we define condition C3(i2) satisfying 

SS(SRIR(w2, i2)) = PSS(w2). We count the number of 

candidate word pairs in the training process that satisfy 

conditions C1, C2 and C3(i1) as Countc(i1, t1, true, i2, t2, 

null). It stands for the size of the set of candidate word 

pairs, each pair <w1, w2> in the set matches <i1, i2>, and the 

pair of SRCs is <t1, t2>, and the sense synset in SRIR(w1, i1) 

is the proper sense of w1. Similarly, we count the number 

of candidate word pairs in the training process that satisfy 

conditions C1, C2 and not C3(i1) as Countc(i1, t1, false, i2, 

t2, null).   We also count the number of candidate word 

pairs in training process that satisfy conditions C1, C2, 

C3(i1) and C3(i2) as Countc(i1, t1, true, i2, t2, true). It stands 

for the size of the set of candidate word pairs, each pair 

<w1, w2> in the set matches <i1, i2>, and the pair of SRCs is 

<t1, t2>, and the sense synsets in SRIR(w1, i1) and SRIR(w2, 

i2) are the proper senses of w1 and w2, respectively. 

Similarly, we count the number of candidate word pairs in 

training process that satisfy conditions C1, C2, C3(i1) and 

not C3(i2) as Countc(i1, t1, true, i2, t2,  false). 

It is not difficult to understand that Countc(i1, t1, true, i2, 

t2,  false) + Countc(i1, t1, true, i2, t2,  true) = Countc(i1, t1, 

true, i2, t2,  null), and Countc(i1, t1, true, i2, t2,  null) + 

Countc(i1, t1, false, i2, t2,  null) = Countc(i1, t1, null, i2, t2, 

null) = Countc(i1, t1, i2, t2).  

Now, for each particular SRC pair <t1, t2>, we can 

define a conditional probability from i1 to i2 as P(i2, t2 | i1, t1) 

= Countc(i1, t1, true, i2, t2, true)/Countc(i1, t1, true, i2, t2, 

null).  We give the formal interpretation of P(i2, t2 | i1, t1) as 

follows.  

For all matched pairs {< w1i, w2j >} of <i1, i2> with 

SRC(SRIR(w1i, i1)) = t1 and SS(SRIR(w2j, i2)) = t2, let s1i = 

SS(SRIR(w1i, i1)) and s2j = SS(SRIR(w2j, i2)), P(i2, t2 | i1, t1) 

is the probability of s2j being the proper sense of w2j when 

s1i is the proper sense of w1i. P(i2, t2 | i1, t1)  is added in set 

PI(i1, i2) to represent the category of those sense synset 

pairs based on <t1, t2>.   

The conditional probabilities obtained will be attached 

to instance node pairs within IGPs. These conditional 

probabilities in different IGPs materialize the relationships 

of synset pairs in different contexts. The syntactic 

structures are also kept in IGPs. So the semantic relations 

and the syntactic structures can work together in our IKN 

WSD. 

3 IKN WSD Algorithm 

Based on IKN and the probabilistic knowledge obtained 

and attached to the instance level of IKN during the above 

training process, we propose a quantitative WSD approach, 

which comprises a word sense based iterative process and 

a probabilistic reasoning algorithm. 

3.1 Word Sense Based Iterative Reasoning 

We believe that the understanding of a word may depend 

on the understanding of other words in the context. As 

such, we propose an iterative reasoning process which is 

described as follows:  

(a) We parse the text to be disambiguated into 

candidate dependency graphs and set an initial 

probability for every sense of the words in text. 

All the probabilities of senses for a particular 

word add up to 1.0. 

(b) Apply our probabilistic reasoning algorithm to 

update the probability of each word sense by the 

related sense probabilities of other words. The 

probabilistic reasoning algorithm will ensure that 

the sense probabilities of each particular word 

add up to 1.0.  

(c) Repeat (b) until the probabilities of word senses 

get stabilized. 



Agirre and Soroa  (Agirre and Soroa, 2009) proposed an 

Personalized PageRank WSD approach which is also an 

iteration algorithm. Their algorithm is based on a ranking 

system between type synsets. Different from their ranking 

apporach, the input and output of (b) in our algorithm are 

probability based, so we consider it as a reasoning 

algorithm.  

In this paper, the initial probabilities are derived from 

WordNet. For each candidate word which has tag of part 

of speech (PoS) by Stanford parser, we find all the senses 

for this word in WordNet with the same PoS. WordNet 

provides tagcount between sense and word which shows 

the frequency of a sense for a word in a large scale corpus. 

The probability of a sense for a word is its tagcount (in 

WordNet) divided by the summation of the tagcounts of 

all senses of the word with the same PoS.  

The probabilistic reasoning algorithm in (b) will be 

described in next 3 sub-sections. For each sense s of 

candidate word w in a candidate dependency graph, we 

find the set of maximum conditional probabilities {P(s | w, 

sij, wi)}, where wi is any surrounding word of w in the 

dependency graph and sij is any sense synset of wi (to be 

discussed in Section 3.2). After that, we calculate the 

un-normalized sense probability Pb
k
(s|w) for the current 

step by combining the set of sense probabilities at the 

previous step {P
k-1

(sij|wi)} and the set of corresponding 

maximum conditional probabilities {P(s | w, sij, wi)} (to be 

discussed in Section 3.3). Finally, we normalize Pb
k
(s|w) to 

P
k
(s|w) to ensure that the sense probabilities of each 

particular word add up to 1.0 and get the WSD results (to 

be discussed in Section 3.4). 

3.2 Finding Maximum Conditional Probability 

To a sense synset s of a candidate word w in a candidate 

dependency graph G and a sense synset s’ of a surrounding 

candidate word w’ of w, We attempt to find the maximum 

conditional probability P(s | w, s’, w’) using a set of 

conditional probability sets. Each probability set PI(i’, i) in 

this set is selected because of a matched SRIN pair <i’, i> 

of the candidate word pair <w’, w>. In the following, we 

explain how we get P(s | w, s’, w’). 

We first find all IMSGs of G in IKN by the graph 

matching algorithm. For each found IMSG G’ which 

contains the matched SRIN pair <i’, i>  of <w’, w>,  if  

SS(SRIR(w’, i’)) = s’ and SS(SRIR(w, i)) = s, then we 

search a conditional probability P(i, t | i’, t’) ∈ PI(i’, i) 

such that t  = SRC(SRIR(w, i)) and t’ = SRC(SRIR(w’, i’)), 

here <t’, t> represents a particular category of sense synset 

pairs to which <s’, s> belongs. If such a probability exists, 

we add it into the probability set PS(w’, s’, w, s) which is a 

set of conditional probabilities from s’ to s.  When we 

process all found IMSGs of G, PS(w’, s’, w, s) records all 

relevant probabilities of matched SRIN pairs {<i’, i>} of 

the candidate word pair <w’, w>. Now we set P(s | w, s’, w’) 

as  the maximum conditional probability among those 

probabilities in PS(w’, s’, w, s) to represent the probability 

of s being the proper sense of w when s’ is the proper sense 

of w’. 

3.3 Combining Probabilities 

To a sense synset sp of candidate word w in a candidate 

dependency graph G, based on the conditional 

probabilities from the sense synsets of different 

surrounding candidate words in the context and the 

probabilities of these sense synsets from the previous step, 

we can calculate the probability of sp for the current step.  

At first, we calculate the weighted average of the 

conditional probabilities of sense sp of w from a 

surrounding word wi in the context as  

∑
=

=
xj

iijijipip |ws, w, s|ws, w|ws
  to1

1-kk )(P )P()(P       

Where P
k-1

(sij | wi) is the probability of sense sij of wi at 

iteration step k-1 and x is the number of senses of wi. P
k
(sp 

| wi, w) is the conditional probability of sense sp of word w 

from word wi in the context at iteration step k.  

Then, we combine the conditional probabilities of sense 

sp of w from multiple surrounding words according to 

Naive Bayes Approach. We define the probability of sense 

sp of w as  

∏
∈

=
G 0

k

0

k

b
)|(P

)(P
)|(P  )|(P

iw p
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ws

, w | ws
wsws  

P0(sp | w) is the start-up probability of  the sense sp. It is 

also the general probability of sp for word w   which is 

calculated from the tagcount of the senses of  w  in 

WordNet.  

Finally, we normalize the probabilities to ensure that 

the probabilities of all senses of a word add up to 1. We 

calculate Pw
k
(w) = ∑Pb

k
(sp|w), p = 1, 2, …, y and y is the 

number of senses of candidate word w.  Then we define the 

normalized probability  

 

P
k
(sp|w)= 

 

 

Pb
k
(sp|w) / Pw

k
(w)   if Pw

k
(w) > 0 

 

P0(sp|w)                  if Pw
k
(w) = 0 

3.4 Returning WSD Results with Confidences 

At each iteration step, we choose the sense with the 

maximum normalized probability of a word as the result 

sense for the word and employ the probability of this sense 

as the confidence evaluation value for the word 

disambiguation. The confidence value is between 0 and 1. 

If there are two senses with the same probability, we select 

the one with smaller synset rank number of WordNet as 

the result sense of disambiguation. When disambiguation 

results remain unchanged for all the test words at an 

iteration step, we get the WSD result. 

4 Experiments and Evaluation 

In our experiments, IKN is created and then trained by the 

sense tagged corpus SemCor. All the experiment results 

are for senseval-3 (Mihalcea et al. 2004) all words task. 

The PoS tagging for our IKN WSD algorithm is based on 

Stanford dependency parser, so the results inherit its 

mistakes.  



    To get high precision WSD results, we define a 

threshold θ between 0 and 1 as the confidence value of our 

WSD algorithm. We choose the results with the 

confidence value equal to or higher than θ as the high 

precision WSD results.    

In Section 3.1, for each sense synset, we presented the 

method for getting the start-up probabilities which are 

based on tagcount values in WordNet. To evaluate the 

experiment results, we present the baseline algorithm 

which takes the start-up probabilities for each sense synset 

of words, identifies the sense synset with the maximum 

probability as the result sense, and employs the probability 

of the result sense as the confidence value. If there are two 

sense synsets with the same probability, we also choose 

the one with lower rank number in WordNet. 

Table 1 presents the precision and attempt coverage of 

our IKN WSD algorithm with different confidence 

thresholds θ, and comparable results of the baseline WSD 

algorithm on senseval-3 all words tasks. As our IKN WSD 

algorithm provides the result of those words with the 

confidence equal to or higher than θ, we define the number 

of attempted results as Attempt(θ) and the number of the 

correct results in these attempted results as Correct(θ). So 

the precision can be obtained by Correct(θ)/Attempt(θ). 

We define the total number of test words as n, then the 

attempt coverage is Attempt(θ)/n. In Senseval-3 all word 

tasks, n = 2041. The precision and attempt coverage are a 

pair of contradicting factors.  

Normally, higher precision is associated with lower 

attempt coverage. We sort the WSD results of the baseline 

algorithm by confidence values in descending order. To 

compare fairly the precision of the baseline WSD results 

with our IKN WSD results for each particular θ, we select 

the baseline WSD results with biggest confidences. The 

number of the selected results is equal to Attempt(θ) (this 

implies that the same attempt coverage is selected for 

baseline as that of the IKN WSD). We define the correct 

results in these results as CorrectB(θ) to represent the 

comparable baseline WSD results. Then we can also get 

the precision for baseline results as 

CorrectB(θ)/Attempt(θ). Now we can compare the 

precisions between the IKN and the baseline WSD 

algorithms. As shown in Table 1, the precision of our IKN 

WSD results are higher than baseline WSD results in 

different attempt coverage ranges.  

Table 1 High precision result comparison of IKN WSD 

algorithm and baseline WSD algorithm 

Threshold 

θ 

Precision Attempt 

Coverage IKN  Baseline Improvement 

0.9 89.6% 86.3% 3.3% 31.06% 

0.8 86.9% 84.1% 2.8% 38.22% 

0.7 84.1% 79.2% 4.9% 46.35% 

0.6 75.9% 73.7% 2.2% 60.46% 

0.5 71.2% 69.2% 2.0% 73.05% 

The IKN high-precision WSD results can be combined 

with any existing WSD algorithm through the following 

method. For each test word wi, we define sIKN(wi) as the 

result sense by IKN, cIKN(wi) as the confidence of 

disambiguation by IKN, sE(wi) as the result sense by the 

existing WSD algorithm, and θ as the confidence threshold 

for IKN WSD. Then we can get the result sense sC(wi) of wi 

by the combined algorithm as     

 

sC(wi)   = 

 

 

sIKN(wi)   if cIKN(wi) ≥ θ 

 

sE(wi)      if cIKN(wi)＜θ 

 

Table 2 Recall of combined algorithms of IKN and 

existing algorithms in Senseval-3 all words tasks   Single Combine with IKN 

IKN Threshold θ N/A 0.7 0.8 0.9 

GAMBL 65.2% 65.2% 65.4% 65.4% 

SenseLearner 64.6% 65.2% 65.1% 65.0% 

Koc 64.1% 64.7% 64.7% 64.5% 

R2D2 62.6% 63.8% 63.4% 63.2% 

Meaning-allwords 62.4% 63.6% 63.6% 63.5% 

Because the confidence value cIKN(wi) of each word wi is 

generated in our IKN WSD algorithm, the decision of 

result selection based on cIKN(wi) is also made by the 

algorithm. So it is reasonable to consider the combined 

results as the results of the new combined algorithm. If our 

IKN WSD algorithm selects the results based on the 

imprecise confidence values, there is no guarantee that the 

combined result is always better than that generated by the 

existing algorithm.  

Table 2 shows the performance of combined algorithms 

of IKN and the top five algorithms (Snyder and Palmer, 

2004) in Senseval-3 all words tasks. Since the combined 

algorithms work for the full attempt coverage, we compare 

them with the existing algorithms by recall. When the 

confidence threshold reaches 0.8, each of the combined 

results is better than that of the corresponding single 

algorithm. This shows that IKN has better performance 

than existing algorithms in the set of test words with high 

disambiguation confidence. These results also show that 

high precision WSD methods could be used to improve the 

performance of existing algorithms. 

5 Related Work and Discussion 

Personalizing PageRank algorithm (Agirre and Soroa, 

2009) is an iterative ranking process between word senses 

in the context. The basic principle is similar to IKN. This 

ranking algorithm is based on the semantic distance 

between concepts in a lexical knowledge base (LKB). 

However, their LKB is a type level network. The shortest 

semantic distance between two concepts has been fixed 

when the LKB was built. Although they extract sub-graphs 

for given input context, the shortest semantic distance 

between concepts is not changed. In other words, the 

shortest semantic distance is context free. The algorithms 

proposed by Mihalcea and Sinha (Mihalcea 2005; Sinha 

and Mihalcea 2007) are built on similarities between 

senses, which are also context free. SSI WSD algorithm 

(Navigli and Velardi 2005) is proposed on the basis of 

graph pattern matching. However, their graph patterns do 



not contain the context sensitive syntactic feature either. 

Essentially, the graph matching between structural 

specifications of concepts is a measure of similarity 

between concepts too. Because the structural 

specifications are fixed for the concepts, the best matching 

structural specification is context free as well.  

In IKN, we employ the maximum conditional 

probability of a sense synset from other sense synsets. Its 

effect is similar to the shortest semantic distance and the 

similarity in the above works. Different from LKB based 

algorithms and SSI, the conditional probabilities of IKN 

are kept at instance level. The maximum probability is 

determined by the graph matching between candidate 

graph and IGPs. Even containing the same two words, 

candidate graphs of different contexts may match different 

IGPs due to different syntactic structures. So the 

maximum conditional probability between sense synsets 

in IKN is syntactic context sensitive. This additional 

context relevance provides higher accuracy for WSD.  

6 Conclusion and Future Works  

In this paper, we have proposed a new instance knowledge 

network – IKN, and its graph matching algorithm. We 

have also developed the training algorithm for IKN and the 

probabilistic WSD algorithm using IKN. Our 

experimental study reveals reasonable performance of the 

IKN WSD algorithm. The high performance of combined 

algorithms of IKN with existing WSD algorithms shows 

that IKN based WSD can provide better results than the 

existing algorithms for the test words with high 

disambiguation confidence. 

So far, we have conducted preliminary work on IKN 

based probabilistic WSD and there is plenty of room for 

improvement in the future. The dependency graphs we 

used at current stage are only for individual sentences due 

to the direct use of the output of the dependency parser. 

The IKN WSD algorithm will be beneficial from joining 

the sentence dependency graphs together by a high 

precision co-reference resolution algorithm. In addition, 

fuzzy graph matching may improve the attempt coverage. 

We will also study the semi-supervised learning 

algorithms on IKN. 
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