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Abstract

Over the past few decades, frogs have been experiencing dramatical population decline around the world. There are
many reasons for this decline, including habitat loss, invasive species, pollution and climate change. To protect and
increase the frog populations, it is important to study frogs. In this study, acoustic features are investigated for multi-
level classification of Australian frogs: family, genus and species. Three families, ten genera and eighty five species
collected from Queensland, Australia, are analysed in this experiment. For each frog species, six instances are first
selected from which eleven acoustic features are extracted. Then a decision tree (DT) classifier is used to visually and
explicitly determine which acoustic features are relatively high important for classifying family, which for genus and
which for species. Finally, a weighted support vector machines (SVMs) classifier is used for the family, genus and
species classification with three most important acoustic features. Our experimental results indicate that different level
classification needs different acoustic feature sets. With selected acoustic features, average classification accuracy can
be up to 85.68%, 75.58% and 64.07% for family, genus and species respectively.

Keywords: Frog call classification, Acoustic feature, Feature selection, Decision tree, Support vector machines

1. Introduction

In the past decades, frog populations have rapidly de-
clined around the world due to habitat loss, invasive
species, pollution and climate change. Therefore, it it
becoming increasingly important to monitor and assess
the frog [1]. Acoustic survey is often the only possible
method for studying frogs, because it’s often a lot eas-
ier to hear frogs than to see them. With acoustic survey
methods, large volumes of acoustic data are collected.
Subsequently developing semi-automatic or automatic
method for investigating frogs with acoustic data is in
high demand.

With frog calls, several papers have been proposed
for frog species recognition. Lee et al. introduced a
recognition method based on spectrogram analysis to
detect each syllable and calculate the Mel-frequency
cepstrum coefficients (MFCCs). All averaged MFCCs
of each frame were defined as features. The linear dis-
criminant analysis was used for classifying 30 kinds
of frog calls and 19 kinds of cricket calls [2]. Chen
et al. proposed a method based on syllable duration
and multi-stage average spectrum for frog call recogni-
tion. Syllable duration is used for the pre-classification,
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then a multi-stage average spectrum is proposed for the
frog species recognition with the accumulation distance
evaluation [3]. Bedoya et al. used Mel-frequency cep-
stral coeflicients (MFCCs) as the acoustic feature for the
recognition of anuran species with fuzzy clustering [4].

For the frog call classification, Chen et al. combined
spectral centroid, signal bandwidth and threshold cross-
ing rate to do frog classification. The k-NN and sup-
port vector machines classifiers were then introduced
for frog call classification [S]. Han et al. introduced
a k nearest neighbour (k-NN) classifier to classify frog
calls, spectral centroid and two entropy features were
extracted from syllables as the input to the classifier [6].
Xie et al. extracted syllable features (syllable duration,
dominant frequency, oscillation rate, frequency modula-
tion and energy modulation) based on the advertisement
call. Then a k-NN classifier was used for frog call clas-
sification [7].

All the prior work achieves a high accuracy rate in
recognition and classification of frog species. How-
ever, a frog’s classification can be determined to three
levels, including family level, genus level and species
level. Few work have been done to analysis the frogs in
genus level. For the genus level classification, Glaw et
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al. proposed a method for the genus level classification
of family Mantellidae based on published phylogenetic
information and on a new analysis of molecular data [8].
Gingras et al. introduced a three-parameter model for
classifying anurans into four genera based on advertise-
ment calls [9]. To our knowledge, no study has yet been
published that utilize acoustic features for family level
classification of frogs.

Since the vocalizations of frogs are mostly geneti-
cally determined and do not show evidence of vocal
learning as birds [10], it is possible to utilize frog calls
for the classification of frogs in multi-level: family,
genus and species. Furthermore, advertisement calls
of closely related phylogenetic species are more simi-
lar than those of species that are distant. Therefore, ex-
tracting acoustic features from advertisement calls can
be possible for investigating the multi-level classifica-
tion of frogs.

The goal of this study is to provide the qualitative and
comparative analysis of acoustic features for the multi-
level classification of frogs. For this, three families,
eleven genera and eighty five species in Queensland,
Australia are studied. For each species, six instances
are selected, from which ten acoustic features are ex-
tracted: spectral centroid, spectral flatness, spectral roll-
off, zero crossing rate, Shannon entropy, spread, skew-
ness, kurtosis, root mean square value and averaged en-
ergy. To investigate the relationship between acoustic
features and the correlation between frog families, gen-
era and species, a DT classifier is used to intelligently
select three most important features for final classifica-
tion. Finally, a weighted SVMs classifier is conducted
for the multi-level classification of frogs with selected
features.

The rest of this paper is organized as follows: Sec-
tion 2 explained the used materials and the related tech-
niques including signal pre-processing, feature extrac-
tion, feature selection and classification. Section 3 re-
ports the experimental results. In Section 4, the discus-
sion of result is given. The conclusion and future work
are offered in Section 5.

2. Materials and methods

In this study, the frog call classification system in-
cluding five sections is shown in Fig.1.

2.1. Materials

In this study, frog calls are obtained from two
sources: David Stewart’s CD (http : //amphibiaweb.o
rg/maps/index.html) and one public website (http :
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Figure 1: Flowchart of frog call classification system

Raven Lite

[ /www.naturesound.com.au/cdgrogsS E.htm). All the
recordings are in stereo, re-sampled at 44.1 KHz and
saved in WAV format.

In total, 503 syllables of good quality frog calls from
3 families, 10 genera and 85 species, are selected for ex-
periment. Each species includes six instance except five
species which are Cophixalus bombiens (5), Cophixalus
concinnus (4), Cophixalus crepitans (4), Cophixalus ex-
iguus (5) and Cophixalus hosmeri (5).

2.2. Pre-processing

In this study, the audio data is segmented with a soft-
ware tool named “Raven Lite”. Before feature extrac-
tion, a first-order high-pass filter with finite impulse re-
sponse (FIR) is applied to the original frog calls for re-
ducing the low-frequency components as follows:

y(m) = s(n) — as(n) (1

where s(n) is the original frog call, y(n) is the output
after pre-emphasis filtering. Here @ means the cutoff
frequency of the high-pass filter and was set at 0.97.

After pre-filtering, a hamming window is used to
minimize the maximum sidelobe in the frequency do-
main which can be defined as

ni

2
=0.54 - 0.46
w(n) cos(L 3

,0<n<L-1 (2)



where L is the length of the frame and is set at 128
in this study. After windowing, the signal can be repre-
sented as

x(n) = w(n)s(n) (3)

2.3. Feature extraction

For the feature extraction, ten features are extracted
from each frog syllable in this work. They are spec-
tral centroid, spectral flatness, spectral roll-off, zero-
crossing rate, Shannon entropy, spread, skewness, kur-
tosis, root mean square value and averaged energy.

2.3.1. Spectral centroid

spectral centroid (S ) is the centre point of spectrum
distribution. In terms of human audio perception, it is
often associated with the brightness of the sound. With
the magnitudes as the weight, it is calculated as the
weighted mean of the frequencies.
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where x; is the DFT of the signal syllable of the k-th
sample, N is the half size of DFT.

2.3.2. Spectral flatness

Spectral flatness (S ) provides a way to quantify the
tonality of a sound. A high spectral flatness indicates
a similar amount of power of the spectrum in all spec-
tral bands. Spectral flatness is measures by the ratio be-
tween the geometric mean and the arithmetic mean of
the power spectrum and defined as:
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2.3.3. Spectral roll-off

Spectral roll-off (S,) is a measure of spectral shape.

It is defined as the frequency H below which 6 of the
magnitude distribution is concentrated.

H
Z X(k) =6 Z X(k) (6)
k=1

Here 6 is 0.85.

2.3.4. Zero-crossing rate

Zero-crossing rate (Z,) means the rate of signal
change along a signal. When adjacent signals have dif-
ferent signs, a zero-crossing occurs. It can be defined
as

N-1

1
Ze=5 Z[Sgn(X(k)) — sgn(X(k +1))] (N
k=0

2.3.5. Shannon entropy

Shannon entropy (F) is the expected information con-
tent of a sequence of signal. It describes the average of
all the information contents C weighted by their proba-
bilities p;.

L
E=-3 pC(p) @®)
i=1
where L is the length of a frog syllable.

2.3.6. Spread, skewness and kurtosis

Spread is used to measure the flatness or the spiki-
ness of a signal. Skewness means the asymmetry of the
probability distribution of a real-valued random variable
about its mean. Kurtosis is defined as the measure of the
“peakedness” of a distribution. Here spread, skewness
and kurtosis is calculated based on the Hilbert envelope
of the signal.

2.3.7. Root mean square value
Root mean square value (RMS) is the square root of

the arithmetic mean of the squares of the values and de-
fined as

RMS = ©)

2.3.8. Averaged energy

Averaged energy (E,,) is defined as the sum of in-
tensity in each frame times weights.

/-1
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where f is the number of frames of a frog syllable.



Table 1: Frog list of family, genus and species

No. | Species Genus Family No. | Species Genus Family

1 Austrochaperina fryi Austrochaperina | Microhylidae 43 | Litoria inermis Litoria Hylidae

2 Austrochaperina robusta Austrochaperina | Microhylidae 44 | Litoria infrafrenata Litoria Hylidae

3 Cophixalus bombiens Cophixalus Microhylidae 45 | Litoria jervisiensis Litoria Hylidae

4 Cophixalus concinnus Cophixalus Microhylidae 46 | Litoria latopalmata Litoria Hylidae

5 Cophixalus crepitans Cophixalus Microhylidae 47 | Litoria lesueuri Litoria Hylidae

6 Cophixalus exiguus Cophixalus Microhylidae 48 | Litoria littlejohni Litoria Hylidae

7 Cophixalus hosmeri Cophixalus Microhylidae 49 | Litoria longirostris Litoria Hylidae

8 Cophixalus infacetus Cophixalus Microhylidae 50 | Litoria microbelos Litoria Hylidae

9 Cophixalus monticola Cophixalus Microhylidae 51 | Litoria nannotis Litoria Hylidae

10 | Cophixalus neglectus Cophixalus Microhylidae 52 | Litoria nasuta Litoria Hylidae

11 | Cophixalus ornatus Cophixalus Microhylidae 53 | Litoria nigrofrenata Litoria Hylidae

12 | Crinia deserticola Crinia Microhylidae 54 | Litoria nyakalensis Litoria Hylidae

13 | Crinia parinsignifera Crinia Microhylidae 55 | Litoria olongburensis Litoria Hylidae

14 | Crinia remota Crinia Microhylidae 56 | Litoria pallida Litoria Hylidae

15 | Crinia signifera Crinia Microhylidae 57 | Litoria pearsoniana Litoria Hylidae

16 | Crinia tinnula Crinia Microhylidae 58 | Litoria peronii Litoria Hylidae

17 | Cyclorana alboguttata Cyclorana Hylidae 59 | Litoria phyllochroa Litoria Hylidae

18 | Cyclorana brevipes Cyclorana Hylidae 60 | Litoria rheocola Litoria Hylidae

19 | Cyclorana cryptotis Cyclorana Hylidae 61 Litoria rothii Litoria Hylidae

20 | Cyclorana manya Cyclorana Hylidae 62 | Litoria rubella Litoria Hylidae

21 Cyclorana novaehollandiae Cyclorana Hylidae 63 | Litoria subglandulosa Litoria Hylidae

22 | Cyclorana verrucosa Cyclorana Hylidae 64 | Litoria tyleri Litoria Hylidae

23 | Limnodynastes convexiusculus Limnodynastes | Myobatrachidae | 65 | Litoria verreauxii Litoria Hylidae

24 | Limnodynastes dumerilii dumerilii | Limnodynastes | Myobatrachidae | 66 | Litoria xanthomera Litoria Hylidae

25 | Limnodynastes dumerilii grayi Limnodynastes | Myobatrachidae | 67 | Mixophyes schevillii Mixohyes Myobatrachidae

26 | Limnodynastes fletcheri Limnodynastes | Myobatrachidae | 68 | Mixophyes fasciolatus Mixohyes Myobatrachidae

27 | Limnodynastes ornatus Limnodynastes | Myobatrachidae | 69 | Mixophyes fleayi Mixohyes Myobatrachidae

28 | Limnodynastes peronii Limnodynastes | Myobatrachidae | 70 | Mixophyes iteratus Mixohyes Myobatrachidae

29 | Limnodynastes tasmaniensis Limnodynastes | Myobatrachidae | 71 | Philoria kundagungan Philoria Myobatrachidae

30 | Limnodynastes terraereginae Limnodynastes | Myobatrachidae | 72 | Philoria loveridgei Philoria Myobatrachidae

31 | Litoria aurea Litoria Hylidae 73 | Philoria sphagnicolus Philoria Myobatrachidae

32 | Litoria bicolor Litoria Hylidae 74 | Pseudophryne australis Pseudophryne | Myobatrachidae

33 | Litoria brevipalmata Litoria Hylidae 75 | Pseudophryne bibronii Pseudophryne | Myobatrachidae

34 | Litoria caerulea Litoria Hylidae 76 | Pseudophryne coriacea Pseudophryne | Myobatrachidae

35 | Litoria chloris Litoria Hylidae 77 | Pseudophryne covacevichae | Pseudophryne | Myobatrachidae

36 | Litoria dentata Litoria Hylidae 78 | Pseudophryne major Pseudophryne | Myobatrachidae

37 | Litoria eucnemis Litoria Hylidae 79 | Pseudophryne raveni Pseudophryne | Myobatrachidae

38 | Litoria ewingii Litoria Hylidae 80 | Taudactylus liemi Taudactylus Myobatrachidae

39 | Litoria fallax Litoria Hylidae 81 Taudactylus rheophilus Taudactylus Myobatrachidae

40 | Litoria freycineti Litoria Hylidae 82 | Uperoleia altissima Uperoleia Myobatrachidae

41 Litoria genimaculata Litoria Hylidae 83 | Uperoleia fusca Uperoleia Myobatrachidae

42 | Litoria gracilenta Litoria Hylidae 84 | Uperoleia lithomoda Uperoleia Myobatrachidae
85 | Uperoleia littlejohni Uperoleia Myobatrachidae

2.4. Feature suggested by Decision Tree

After feature extraction, a decision tree (DT) classi-
fier is used to evaluate the feature important for classi-
fying family, genus and species. The input to the DT
classifier is ten features, The output is the decision tree,
which is shown in Fig.2.

Referring to Fig.2, it is found that the three domi-

nant features and their corresponding significance are
different. For classifying frog families, spread, spec-
tral roll-off and spectral centroid are three dominant fea-
tures. For genus, spectral centroid, kurtosis and spread
are three dominant features. Kurtosis, spectral centroid
and zero-crossing rate are three dominant features.

2.5. Classification

In the next step referring to the Fig.1, a weighted sup-
port vector machines classifier is employed to identify
frog vocalizations. Due to the high accuracy and supe-
rior generalization properties, SVMs have been widely
used for the classification of animal sounds [5] [11]. In
this study, the 50% of data is used as the training data,
the rest for testing. Selected features in Section 2.4 is
used to construct the pairs v}, L), [ =1,...,C;, where
C is the number of frog instance in the training data, v/
is the feature vector obtained from the I-th frog species
in the training data, and L] is the frog label. As for the
classification, the decision function for the classification
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Figure 2: A part of Decision Tree for frog call classification
problem is defined as

FO) = sgn(Y " afLIKw,v}) + b)) (11)

where K(.,.) is the kernel function whose kernel is
Gaussian, @ is the Lagrange multiplier, and b is the
constant value.

3. Experiment results and discussion

In this experiment, the following classification accu-
racy is used to examine the performance:

N,
Classification Acc(%) = N (12)

where N, is the number of correctly classified instances
and N; is the total number of test species, genus or fam-
ily.

For frog family classification, spread, spectral roll-off
and spectral centroid are put into classifier. The confu-
sion matrix of family classification is shown in Table.2.
Frogs used in this experiment are distributed in three
families: Microhylidae, Hylidae and Myobatrachidae.

Table 2: Confusion matrix of frog family classification

Family Hylidae | Microhylidae | Myobatrachidae
Hylidae 109 4 10
Microhylidae 12 25 5
Myobatrachidae 5 0 81

For frog genus classification (seven genera in Family
Myobatrachidae), spectral centroid, kurtosis and spread
are used. The confusion matrix of genus classification
is shown in Table.3.

Table 3: Confusion matrix of frog genus classification

Genus Crinia | Lis i Philoria | P yne | Taud. Uperoleia
Crinia 15 0 0 0 2 0 1
Limnodynastes 0 17 4 2 1 0 1
Mixohyes 0 6 7 1 0 0 0
Philoria 0 1 1 6 0 0 0
Pseudophryne 0 0 0 0 15 1 0
Taudactylus 0 0 0 0 0 4 0
Uperoleia 0 0 0 0 0 1 10

Thirty six frog species of Litoria genus is used for
frog species experiment. Kurtosis, spectral centroid and
zero-crossing rate are used as selected features. The
confusion matrix of species classification is shown in
Fig.3.

In this study, ten acoustic features are evaluated for
multi-classification of Australia frogs: Family, Genus
and Species. For family classification, the classifica-
tion accuracy is 86.5%, 86.2% and 84.35% for fam-
ily Hylidae, Microhylidae and Myobatrachidae respec-
tively. Spread calculates statistics of the signal distri-
bution. Different spread value of the frog call shows
different signal amplitude variation. Since family Hyli-
dae is termed as tree frogs, family Microhylidae is often
known as narrow-mouthed frogs and family Myobatra-
chidae is known as Australian ground frogs, different
habitat area and different physiological structure make a
different for the frog call amplitude. For genus classifi-
cation, the average classification classification accuracy
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Figure 3: Confusion matrix of frog species classification

is 75.58%. Spectral centroid which is highly correlated
to the dominant frequency (used to represent the adver-
tisement call in our previous work [7]) is the most im-
portant feature for genus classification. It is because that
advertisement calls of closely related species in phylo-
genetic are predicted to be more similar than those of
distant species. For species classification, kurtosis is the
most important which shows that different frog species
tend to have different shapes of frog calls (Fig.4). The
average classification accuracy is It is worth to mention
that spectral centroid is in the most three important fea-
tures for all level classification, which shows the impor-
tant of advertisement call in analysing frogs due to the
high correlation between spectral centroid and the ad-
vertisement call.
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Figure 4: Waveform of four frog species in Litoria genus

4. Conclusion

In this study, we evaluate ten acoustic features for
multi-level frog classification:family, genus and species.
For all ten features, spectral centroid is the most three
important features for all level frog classification, which
demonstrates the importance of advertisement call in
classifying frog calls due to their high correlation. The
highest classification accuracy is achieved by the fam-
ily level and the lowest is species level. It shows that
the call difference between frogs in higher phylogenetic
level is larger than lower level.
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