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Abstract—Frog protection has become increasingly essential
due to the rapid decline of its biodiversity. Therefore, it is
valuable to develop new methods for studying this biodiversity.
In this paper, a novel feature extraction method is proposed
based on perceptual wavelet packet decomposition for classifying
frog calls in noisy environments. Pre-processing and syllable
segmentation are first applied to the frog call. Then, a spectral
peak track is extracted from each syllable if possible. Syllable
duration, dominant frequency and oscillation rate are directly
extracted from the track. With k-means clustering algorithm,
the dominant frequency of all syllables is clustered into k parts.
Based on the centroids of the clustering result, wavelet packet
decomposition (WPD) is applied to the frog calls for ensuring one
node contains only one centroid. Based on the WPD coefficients, a
new feature set named perceptual wavelet packet decomposition
sub-band cepstral coefficients (PWSCC) is extracted. Finally, a
k-nearest neighbour classifier is used for the classification. The
experiment results show that these proposed features can achieve
an average classification accuracy of 96.40% which outperforms
Mel-frequency cepstral coefficients feature (MFCCs) (92.12%).

Index Terms—frog call classification; wavelet packet decom-
position; spectral peak track; k-means clustering

I. INTRODUCTION

Currently, due to habitat loss, invasive species and climate
change, global biodiversity is rapidly decreasing. Therefore,
it is becoming ever more important to monitor biodiversity.
Frogs have been widely used as an indicator of biodiversity
because of their sensitivity to the environmental change, and
as such monitoring of frog species must increase. [1]. Through
the study of frog species distributions, we can then predict the
state of the environment.

Due to the development of acoustic sensor techniques, lots
of sensors have been widely deployed in nature for monitoring
biodiversity, which produces large volumes of acoustic data.
Compared with the traditional method [2] [3], acoustic sensor
can help collect data across large areas for extended periods
making them attractive in biodiversity monitoring [4]. With
collected acoustic data, data analysis techniques are then
incorporated to assist ecologists to study frogs.

Many studies have investigated the recognition or classifica-
tion of animal calls. Classification systems are most commonly
structured as follows: (1) Pre-processing, (2) Syllable seg-
mentation, (3) Feature extraction, (4) Classification. Following
this general classification workflow, frog call classification
has been addressed in several papers. Huang et al combined
spectral centroid, signal bandwidth, and thresholding crossing

rate for the classification of frog calls with the k-nearest neigh-
bour (k-NN) and support vector machine (SVM) classifier
[5]. Huang’s work studied the machine learning techniques
for frog sound classification and developed online frog sound
identification system. Han et al. introduced a k-NN classifier
to classify frog calls with Fourier spectral centroid, Shannon
entropy, and Rényi entropy [6]. This method introduced the
entropy information as the bioacoustic features for the animal
sound classification. Since the time-varying information of
frog calls has not been addressed for classification in prior
work, a multi-stage average spectrum method was proposed
by Chen et al. for frog classification [7]. Gingras et al. used
a logistic regression model for classifying anurans. Three
parameters, mean value for dominant frequency, coefficient of
variation of root-mean square energy, and spectral flux, were
combined for anuran classification [8]. Bedoya et al. developed
a method for recognition of anuran species based on syllable
identification. A fuzzy classifier and Mel-frequency cepstral
coefficients were combined for the recognition [9], which can
classify the species not presented in the training data. All
those prior work extracted corresponding features from the
short-time Fourier transform (STFT) results. However, there
is a trade-off between time and frequency resolution of STFT,
which restricts the discriminability of the features.

In this paper, we propose a novel frog call classifica-
tion method using perceptual wavelet packet decomposition
(WPD). Rather than applying WPD based on the particular
levels and some auditory scales like equivalent rectangular
bandwidth (ERB) scale [10], Mel-scale [11], Bark-scale [12],
the scale used for the WPD is based on the dataset here. After
pre-processing and segmentation, spectral peak track is first
extracted from each syllable if possible. Then track duration,
dominant frequency and oscillation rate are extracted from
spectral peak track to make syllable features. For extracting
perceptual wavelet packet decomposition sub-band cepstral
coefficients (PWSCC), dominant frequency is first extracted
and clustered into k parts with k-means clustering algorithm.
Then WPD is applied to the frog calls for ensuing that one
node contains only one centroid. Finally, PWSCC is extracted
based on the WPD coefficients. A k-NN classifier is used for
the classification and PWSCC achieves higher classification
accuracy (96.4%) than MFCCs (92.12%) including syllable
duration, dominant frequency and oscillation rate.

The rest of this paper is organized as follows. Section II



reviews related work. Section III describes the spectrogram
analysis. Section IV introduces the proposed system. Section
V reports the experiment results. Conclusions are drawn in
Section VI.

II. RELATED WORK

Wavelet analysis has been widely used for the analysis of
audio data due to its better ability in time and frequency reso-
lution. Selin et al. introduced WPD for the recognition of bird
calls. WPD was first used for the signal decomposition and
construction of the time-frequency representation. Then four
features were calculated: maximum energy, position, spread
and width. These were combined with two neural networks
for classification [13]. Based on WPD, Zhang et al. devel-
oped a modified feature set named Mel-scaled wavelet packet
decomposition sub-band cepstral coefficient for bird sound
detection [11]. Sahu et al. proposed the auditory ERB like
admissible wavelet packet features for the TIMIT phoneme
recognition. Based on the wavelet packet tree, energy, delta
and acceleration features per frame were obtained for the final
recognition [14].

Auditory scales used for WPD are all derived for different
reasons. Mel scale is a perceptual scale of pitches judged by
listeners to be equal in distance from one another. Bark scale
is proposed for the analysis of psychoacoustical. ERB scale is
also used in psychoacoustics, which gives an approximation
to the bandwidths of the filters in human hearing. However,
for frog call classification, it is important to find the suitable
scale which is suitable for WPD.

For the frog, the advertisement calls of closely related
species are more similar than those of distant species, hence
the dominant frequency that strongly correlated with the adver-
tisement call can be utilised for analysing frog calls [8]. Using
spectral peak track extraction method, we can achieve the
dominant frequency of all syllables. Then k-means clustering
algorithm is applied to the dominant frequency for getting
prior information, which can be further used for WPD.

III. DATA DESCRIPTION AND SPECTROGRAM ANALYSIS

In this study, 10 frog species which are widely spread in
Queensland, Australia are selected for the experiment (Table
I). All the recordings were made by David Steward, and have
a sample rate of 44.1 kHz. Each recording only includes one
frog species, and the minimal and maximal duration for those
recordings are 21 and 55 seconds.

We first manually inspected spectrograms of three randomly
selected examples of calls for each of the frog species. Three
parameters were measured for each of the three examples and
averaged, as listed in Table II. Those parameters are used as
priori information for further analysis. It is worth to mention
that those selected example calls are excluded from the dataset
for experiment.

IV. SYSTEM FRAMEWORK

In this study, frog call classification system consists of four
subsections: pre-processing, syllable segmentation, feature ex-

TABLE I: Summary of frog scientific name, common name,
and code

Scientific name Total
syllable Common name Code

Crinia parinsignifera 32 Eastern sign-bearing frog CPA
Litoria caerulea 65 Whites tree frog LCA
Litoria chloris 31 Red-eyed tree frog LCS
Litoria latopalmata 171 Broad-palmed frog LLA
Litoria nasuta 73 Striped rocket frog LNA
Mixophyes fasciolatus 32 Great barred frog MFS
Mixophyes fleayi 27 Fleay’s barred Frog MFI
Neobatrachus sudelli 22 Painted burrowing frog NSI
Uperoleia fusca 39 Dusky toadlet UFA
Uperoleia laevigata 24 Smooth toadlet ULA

TABLE II: Averaged frog parameters based on the visual
inspection of the spectrogram, an asterisk denotes that frog
species need spectrogram smoothing

Species
code

Averaged syllable
duration (millisecond)

Averaged peak
frequency (Hz)

Averaged oscillation
rate (cycle/second)

CPA 250 4300 350
LCA 500 500 50
LCS 800 1700 220
LLA 30 1400 2100
LNA 100 2800 160
MFS 200 1200 140
MFI 50 1000 140
NSI 480 1200 20
UFA∗ 550 2300 40
ULA∗ 450 2400 150

traction, classification (Fig.1). Detailed information of each
stage is described in the following sections.

Pre-processingAudio data
Syllable 

segmentation

Feature 
extraction

Frog speciesClassification

Fig. 1: Flowchart of frog call classification system.

A. Pre-processing

We first re-sampled recordings at 16 kHz per second and
mixed them to mono in order to reduce computational burden.
A spectrogram was then generated by applying short-time
Fourier transform (STFT) to each recording. Specifically, each
recording was divided into frames of 128 samples with 85%
frame overlap. A fast Fourier transform was then preformed on
each frame with a Hamming window, which yielded amplitude
values for 64 frequency bins, each spanning 125 Hz. The final
decibels (dB) were generated using dB = 10 ∗ log10(A),
where A was the amplitude value. Here the spectrogram is
generated for the spectral peak track extraction rather than for
segmentation. Noise reduction here was performed by spectral
subtraction [15], which is an essential step for improving the
classification result.



Algorithm 1: Modified Spectral Subtraction
Data: S = S(T, F ), Original spectrogram.
Result: S

′
= S

′
(T, F ), Noise reduced spectrogram.

begin
for f ∈ F do

1. calculate the histogram of the intensity value
2. smooth the histogram array with a moving
average window of size 7
3. regard the modal noise intensity at the position
of maximal bin in the left-side of the histogram

Construct the array of the modal noise values for all
frequency bins;
Smooth the array with a moving average filter with
window of size 5;
for f ∈ F do

1. subtract the modal noise intensity
2. truncated negative decibel values to zero

B. Syllable segmentation

The elementary unit of frog vocalizations is the syllable,
which can be utilised for species recognition. In this study,
Härmä’s method was used for syllable segmentation [16].
This syllable segmentation method is based on the iterative
amplitude-frequency information. the detailed description of
the algorithm can be found in our previous paper [17] Here
the intensity threshold used is 20 dB here.

Different from the original method , we add an optional pro-
cessing step which is spectrogram smoothing before Härmä’s
method. For those frog species (such as Neobatrachus sudelli)
that contain large gaps within one syllable, it is necessary
to do the smoothing. Here, we use Gaussian filter (7 × 7)
to smooth the spectrogram. The size 7 × 7 is selected based
on the averaged oscillation rate information in Table II. The
segmentation results with and without smoothing are shown
in Fig.2.
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Fig. 2: Syllable segmentation results marked with red line (one
syllable)

C. Spectral peak track extraction

For the frog, the advertisement calls of related frog species
are more similar that those of distant species, therefore, the
dominant frequency that strongly high correlated with the
advertisement call can be utilised for analysing frog calls [8].
In this study, spectral peak track (SPT) is explored to represent

the dominant frequency trace of frog calls. There are two
reasons for using SPT: (1) Isolate the desired signal from
background noise, (2) Extract corresponding features based on
SPT. The method for extracting SPT is a simplified version of
the method by Roch et al [18]. Different from the original
method, we use the linear regression to connect peaks into
the track. Then, corresponding parameters are pre-defined to
decide whether or not keep the track.

The SPT extraction algorithm requires seven parameters,
which are explained in Table III. The process for selecting
these parameters is explained in section V.

TABLE III: Parameters used to spectral peak extraction

Parameter Description

I Minimal intensity value for peak selection (dB)

Tc Maximal time domain interval for peak connection (s)

Ts Minimal time domain interval for stopping growing tracks (s)

fc Maximal frequency domain interval for peak connection (Hz)

dmin Minimal track duration (s)

dmax Maximal track duration (s)

β Minimal density value (0-1)

The SPT algorithm is described as follows.
The SPT results are shown in Fig.3. During the detection of

tracks, gaps in tracks are created where the minimal intensity
value I is not reached. These gaps are filled by predicting the
correct frequency bin using linear regression, as illustrated in
Fig.3 (b).
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Fig. 3: Spectral peak track extraction results

D. Perceptual wavelet packet decomposition

For frogs, dominant frequency has been used as an impor-
tant parameter for frog call classification [8] [17] . Therefore,
the frequency distribution can be a good feature for classifying
frogs. Currently, there are several methods for calculating
frequency distributions based on the scales [11] [14]. However,
those scales are not designed for frogs. Here we design a
method for calculating the frequency distribution based on the
frog information (dominant frequency).

1) wavelet packet decomposition: Wavelet packet decom-
position (WPD) is a wavelet transform where the discrete-
time (sampled) signal is passed through more filters than
the discrete wavelet transform. It can be used to decompose



Algorithm 2: Spectral Peak Track Extraction

Data: S
′

= S
′
(T, F ), I , Tc, Ts, fc, dmin, dmax, β.

Result: Track(N) = {ts, te, ft(ts ≤ t ≤ te)}, Spectral
peak track.

begin
Step 1: find maximum intensity value of each frame
and produce the peak matrix M(T, F )
for t ∈ T do

select the maximum intensity value v
if v ≤ I then

M(t, f) = 0
else

M(t, f) = I

Step 2: produce initial spectral peak track
while ti ≤ T do

while tj ≤ T do
if ti − tj ≤ I then

Track(1) = {ti, tj , ft(ti ≤ t ≤ tj)}
break

Step 3: spectral peak track extraction
for t ∈ T do

1. repeat linear regression algorithm to
recalculate the next predicted peak using at most
the last 10 included peaks
2. stop the iterative process until t− te ≥ Ts
3. calculate the duration d and density y
4. if d ≥ dmin, d ≤ dmax and y ≥ β then

save current track to the track list Track(N)
else

discard the track

a signal into sub-bands with low frequency (approximation
parts) and high frequency (detail parts) simultaneously [19].
Both the detail and approximation coefficients are decomposed
to create the full binary tree. Therefore, the WPD has the same
frequency bandwidth for each resolution.

Dominant frequency is an important parameter for recog-
nising frog species, along with frequency distributions. For
better capturing the frequency information, we decompose the
frog call using the derived dominant frequency information in
section E. According to the number of frog species we try to
classify, we repeat K-mean clustering algorithm 10 times to
generate the information for WPD. Here K is 10, the distance
function is city block function. 10 centroids (Ci(i = 1 : 10))
of the clustering result are saved for generating the scale for
WPD.

2) Perceptual model: Based on the clustering result, we
proposed an automated wavelet packet decomposition method
(Algorithm 3). Different from the fixed frequency band scale,
the frequency band scale of our WPD is motivated by the
dataset, which means better discriminative ability and more
robust in the complex environment. The wavelet packet de-
composition result is show in Fig.4.

Fig. 4: Tree of perceptual WPD.

Algorithm 3: Perceptual WPD method
Data: Ci(i = 1 : 10), Fs.
Result: Perceptual wavelet packet decomposition process
begin

Step 1: sort the centroid C and calculate the
difference between the consecutive vectors of C, the
result is saved in Dj(j = 1 : 9)
Step 2: calculate the initial decomposition level L.
Fs/min(D) ≥ 2L+1

Here, L is the minimum integer.
Step 3: do the wavelet packet decomposition
for l = 1 : L do

1. calculate the frequency resolution of level l
for i = 1 : 10 do

1: put the Ci into the right frequency band
2: count the number of Ci in each band (n)

if n ≥ 2 then
do decomposition to that particular node

else
stop decomposition;

E. Feature extraction

1. Syllable duration

SD = (te − ts)/rx (1)

where rx is the x-axis resolution, and it is 845.68 frame per
second.
2. Dominant frequency

DF =

te∑
t=ts

ft
N

(2)

where N is the number of frames.
3. Oscillation rate
First, we calculate the power in the frequency domain bound-
ary [l, h], here [l, h] = [max(f − 5, 1), f + 5], where f is the
dominant frequency bin. Then we do the autocorrelation of
the power and apply a discrete cosine transform to the mean



subtraction of correlation result. Finally, the oscillation rate is
calculated as

OR =
pmax

SD
∗ γ/rx (3)

Where γ is set as 0.5, pmax is the location information of the
the higher power.
4. Perceptual wavelet packet decomposition sub-band cepstral
coefficients (PWSCC)

Based on the perceptual wavelet packet decomposition,
we extract perceptual wavelet packet decomposition sub-band
cepstral coefficients for frog call classification, which is similar
with the procedure of MFCC. Here MFCC is used as the
baseline for comparison.

The steps for calculating the PWSCC are as follows:
Step 1. Add hamming window to each frog syllable.
Step 2. Perform the perceptual WPD as described in subsec-
tion D and the wavelet base function used here is ’db4’.
Step 3. Calculate the total energy of each sub-band.
Step 4. Normalise the energy for each sub-band.
Step 5. Apply DCT on the logarithm sub-band energy and
select 12 coefficients as the final feature PWSCC.

The comparison of PWSCC and MFCC is shown in Fig.5 .

(a) MFCC (b) PWSCC

Fig. 5: Feature comparison of MFCC and PWSCC.

V. EXPERIMENTS AND RESULTS

In this part, several experiments are made for evaluating
our proposed approach. First, the validation set is used for
parameter tuning. Then, we compare the frog call classification
accuracy between syllable features (SF) including syllable
duration, dominant frequency and oscillation rate, MFCC and
PWSCC. We also study the classification accuracy under
different signal to noise ratio (SNR).

A. Parameter tuning

There are three modules including syllable segmentation,
spectral peak track extraction, and feature extraction, whose
parameters need to be discussed.

For syllable segmentation, the window size and overlap
are 512 samples and 0.25, The window function is Kaiser
window. The intensity threshold for stopping criteria used is
20 dB, the segmentation result is sensitive with this value,
which needs to be tuned.

Spectral peak track extraction algorithm has seven param-
eters, and all those parameters are pre-defined based on the
manually inspection result of Table II. Here minimal duration
and maximal duration are 40 ms and 1000 ms. The density

value is 0.8, which describes the integrity of one frog call
syllable. The minimal intensity value is 3 dB. The maximal
time interval for connecting peaks is 1.5 ms, the minimal time
interval for stopping growing tracks is 4 ms. The maximal
frequency interval is 520 Hz. Here seven parameters need to
be pre-defined, then the algorithm can work well.

For MFCC and PWSCC, window size and overlap are the
same, which are 128 samples and 0.85, the window function
used is Hamming window.

B. Classification

In this study, the k-NN classifier is used to learn a model
on the training examples with 10-fold cross-validation. For
evaluating the robustness of our proposed feature, the k-NN
classifier is run 10 times for each classification task. The
classification performance is defined as follows:

Classification(%) =
Nc

Nt
(4)

where Nc is the number of correctly classified instance, Nt is
the total number of instance.

Following prior work [6] [5], the distance function of the k-
NN classifier is Euclidean function, the number of neighbour,
K is 5. The classification results using SF, MFCC, and
PWSCC are displayed in Fig.6. Overall classifier accuracy
for k-NN is 89.68%, 93.51% and 96.71% . With SF, the
classification accuracy of MFCC and PWSCC is shown in
Table.IV.

Fig. 6: Classification accuracy of 10 frog species.

TABLE IV: Overall classification accuracy.

Feature SF MFCC PWSCC
Without SF 86.87% 90.80% 97.45%
With SF NA 96.15% 97.95%

For further testing the robustness of PWSCC, a Gaussian
white noise signal, with signal to noise ratio (SNR) of 40 dB,
30 dB, 20 dB, 10 dB , was added to the audio data. The
results are shown in Fig.7. It is worth to mention that the
noise was added to the signal after syllable segmentation. The
classification accuracy of different SNRs shows the robust of
our proposed feature PWSCC.
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Fig. 7: Sensitivity of MFCC and PWSCC feature for different
levels of noise contamination.

Here the classification accuracy of MFS is relatively lower
than other frog species, because the dominant frequency of
MFS is similar with LLA and MFI and NSI. For CPA, the
classification accuracy is high due to the dominant frequency
difference with others. For further improving classification
accuracy, we add three syllable features. The averaged clas-
sification accuracy of MFCC and PWSCC are improved by
2.00% and 1.60% respectively. However, the classification
accuracy of some particular frog species is descended due to
the similarity of syllable features with other frog species, such
as CPA and LNA. The results from running the classifier on
audio data with added artificial noise show the ability of our
proposed feature for addressing the background noise.

VI. CONCLUSION

We propose a novel frog call classification method based
on perceptual wavelet packet decomposition. The audio data is
first pre-processed and segmented into syllables. Then spectral
peak track is extracted for getting the priori information, which
can be used for wavelet packet decomposition. Finally, a new
acoustic feature set named PWSCC is calculated for frog call
classification with a k-NN classifier. Experiment results are
promising with an average classification of 96.71% including
syllable features. Future work will focus on a wider frog call
database, including a larger number of frog species, and frog
calls from different geographical and environment conditions.
We will also extend this work for classifying other animal
species such as birds, whales.
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