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Acoustic classification of Australian anurans
using syllable features

Authors

ABSTRACT—Acoustic classification of anurans (frogs) has 
received increasing attention for its promising application in 
biological and environment studies. In this study, a novel
feature extraction method for frog call classification is 
presented based on the analysis of spectrograms. The frog 
calls are first automatically segmented into syllables. Then, 
spectral peak tracks are extracted to separate desired signal
(frog calls) from background noise. The spectral peak tracks
are used to extract various syllable features, including:
syllable duration, dominant frequency, oscillation rate, 
frequency modulation, and energy modulation. Finally, a k-
nearest neighbor classifier is used for classifying frog calls
based on the results of principal component analysis. The 
experiment results show that syllable features can achieve an
average classification accuracy of 90.5% which outperforms
Mel-frequency cepstral coefficients features (79.0%).

Keywords—audio classification; syllable feature; principal
component analysis; k nearest neighbour; spectral peak track

I. INTRODUCTION

Acoustic sensor networks are a well-established and 
widely deployed method of collecting acoustic data for
monitoring animals [1]. The traditional field survey methods
that require ecologists to physically visit sites for collecting 
bio-diversity data are both time-consuming and costly.
Comparatively, sensors can record acoustic data
automatically, objectively, and continuously for long 
durations. However, analyzing the large amount of collected 
data manually is very time-consuming. Developing semi-
automatic or automatic methods for classifying collected 
acoustic data by sensors is thus in high demand and has 
attracted a lot of research [2-7]. 

Prior call classification research typically adopts the 
following structure : (1) pre-processing, (2) segmentation, 
(3) feature extraction, (4) classification [2]. Taylor et al. 
proposed a system for identifying 22 frog species recorded 
in northern Australia based on peak values (intensity of 
spectrogram) [3]. Huang et al. [4] extracted the spectral 
centroid, signal bandwidth and threshold crossing rate and 
used these features with k nearest neighbor (k-NN) and 
support vector machine (SVM) classifiers to classify frog 
calls. Dayou et al. [5] developed a method based on entropy 
to recognize frog calls. Shannon entropy, Renyi entropy and 
Tsallis entropy were trialed as inputs to a k-NN classifier for 
recognition. A multi-stage average spectrum was proposed 
by Chen et al [6]. Syllable length was first used for the pre-
classification. Then the multi-stage average spectrum was 
extracted for the classification. Chen et al. [7] described the 
semi-automatic bird call classification method based on 

spectral peak tracks. A set of spectral features were derived
by time-varying analysis of the recorded bird vocalizations 
for classification. Tyagi et al. [8] proposed the spectral 
ensemble average voice to do bird recognition. Then,
dynamic time warping was combined to improve the 
recognition accuracy. Lee et al. [9] introduced a recognition 
method based on the analysis of spectrogram to detect each 
syllable. Mel-frequency cepstral coefficients features
(MFCCs) of each frame were defined as features, and linear 
discriminant analysis was used for classifying 30 kinds of 
frog calls and 19 kinds of cricket calls. 

Most prior work often reports high accuracy rates for
recognition and classification. However, most features used 
in the prior work are based on only either on only frequency 
domain or time domain information. However, a
combination of the two will be able to discriminate between 
a wider variety of species that may share similar 
characteristics in either time or frequency information but 
not both. This research presents a novel feature extraction 
method for frog call classification which includes both time
and frequency domain information.

After segmenting input frog calls into syllables, the 
spectral peak track (SPT) algorithm is applied for locating 
the frog call frequency boundary. Then, the syllable features 
are extracted from the SPT results. Principal component 
analysis (PCA) is applied to decorrelate the syllable features
and to reduce the dimensionality. Finally, a k-NN classifier
is used to classify the frog calls. The proposed syllable 
features achieve higher classification accuracy (90.5%) than 
MFCCs (79.0%).

The rest of this paper is organized as follows: In section 
II, we describe the method for frog call classification, which 
includes data set acquisition, syllable segmentation, feature 
extraction, PCA and classification. Section III reports
experiment results. Section IV presents conclusion and 
future work.

II. METHOD

Our frog call classification method consists of five steps:
data set acquisition, syllable segmentation, feature 
extraction, PCA and classification (Fig.1). Detailed
information of each step is shown in following sections.

A. Data set acquisition
In this study, 16 frog species which are widespread in 
Queensland, Australia are selected for experiments (Table 
I). All the recordings are obtained from David Stewart [10], 
and has a sample rate of 44.1 kHz. All recordings were all
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Fig. 1. Flowchart of frog call classification system

mixed-down to mono. 50% dataset was used as training 
data, and the rest for testing.
B. Syllable segmentation
One syllable is a continuous anuran vocalization emitted 
from an individual, which is one elementary acoustic unit
for classification. In this study, audio data is automatically 
segmented into a set of syllables using the method proposed 
by Harma [11] which is described as follows:

Step 1: Compute the spectrogram (Fig.4) of audio data
using a short-time Fourier transform (STFT) (Hamming 
window, size = 512 samples, overlap =  25% ). We
denote the spectrogram as a matrix  S(f, t) , where 
represents the frequency index and is the time index.

Step 2: Smooth the original spectrogram using Gaussian 
filter (5×5) to remove small gaps within syllables. This step 
is the only deviation from the original technique by Harma.

Step 3: Find f and t that |S(f , t )| |S(f, t)| for every
pair of (f, t), and set the position of the syllable to be t .

Step 4: Compute the amplitude of the first frame A (0) =20 |(f , t )| decibel (dB). If A (0) < A (0) , stop 
the segmentation process, where is the stopping criteria 
and its default value is 18 dB. If stopped, it means that the 
amplitude of the n  syllable is too small and hence no more 
syllables need to be extracted.

Step 5: Start from t , trace the maximal peak of |S(f, t)| for t < t until A ( ) = A (0) , where A ( ) =20log | ( , )|. Next, trace the maximal peak of |S(f, t)|
for t > t until A ( ) = A (0)  , where  A () = 20log | ( , )| . Hence, the starting and stopping 
time of the n  syllable are determined as and + .

Step 6: Save the amplitude trajectories to the n  syllable 
and set  S(f, [ t t , … , t + t ]) = 0 . Repeat steps 3-5.
Fig.2. shows the spectrogram of Mixophyes fasciolatus
(Great Barred Frog) and plots the segmentation result on the 
waveform for better display.

Fig.2. Segmantaion result marked with red line

C. Feature extraction
Five features are extracted from each syllable for frog 

call classification. They are syllable duration, dominant 
frequency, oscillation rate, frequency modulation, and 
energy modulation. MFCCs are used as baseline for 
comparison.

Extraction of syllable features 

Syllable features are extracted from spectral peak tracks 
(SPTs), which in turn, isolate the desired signal within the 
syllable. The SPT method has been used for bird calls in 
previous research [7]. Here, it is adapted for analyzing frog 
calls. The SPT method works by matching peaks in the 
spectrogram from one time frame to the next to produce a

TABLE I. SUMMARY OF THE FROG SCIENTIFC NAME ,COMMON NAME AND 
CORRESPONDING CODE

No. Scientific name Total
syllable

Common name Code

1 Assa darlingtoni 36 Pouched frog ADI

2 Crinia parinsignifera 40 Eastern Sign-bearing 
Frog

CPA

3 Litoria caerulea 72 White’s tree frog LCA

4 Litoria chloris 26 Red-eyed tree frog LCS

5 Litoria latopalmata 169 Broad-palmed frog LLA

6 Litoria nasuta 60 Striped rocket frog LNA

7 Litoria revelata 151 Whirring Tree Frog LEA

8 Litoria rubella 37 Desert tree frog LRA

9 Litoria verreauxii 28 Verreauxii’s tree frog LVV

10 Litoria tyleri 117 Tyler's tree frog LTI

11 Limnodynastes 
tasmaniensis

14 spotted grass frog LTS

12 Limnodynastes 
terraereginae

44 Northern banjo frog LTE

13 Mixophyes 
fasciolatus

28 Great Barred Frog MFS

14 Philoria 
kundagungan

22 Mountain Frog PKN

15 Uperoleia fusca 32 Dusky Toadlet UFA

16 Uperoleia laevigata 24 Smooth Toadlet ULA



Fig. 3. Peaks in the spectrogram. The red ractangle represets extracted 
peaks, the yellow rectangle represets predicted postion. The red rectangles 

with cross do not satify conditions (1) or (2).

connected sequence which shows the amplitude and 
frequency trajectory of the underlying events [12]. The 
major steps for extracting SPTs are described as follows:
Step 1: For input frog calls, the spectrogram is generated 
using a STFT (Hamming window, size = 128 samples,overlap =  85%).

Step 2: For each frame, the maximum intensity is selected 
with a minimum required value of 3 dB. This can result in 
not all time frames containing peaks. denotes a peak with 

representing the peak index (not the time frame it is 
contained in). The 3 dB threshold is chosen empirically.

Step 3: Next, the SPT algorithm is applied to the extracted 
peaks from step 2. Before describing the algorithm, the 
following parameters need to be defined (these values are 
manually tuned for the classification frog species): (1) 
maximum time domain interval for connecting peaks (1.28 
ms), (2) maximum time domain interval for discarding the 
peaks (4.27 ms), (3) minimum track length (8.54 ms), (4) 
maximum frequency domain interval (516 Hz), (5) density
(the ratio between the number of peaks and the length of 
the SPT) threshold (0.8). The time domain and frequency 
domain intervals between two successive peaks are first 
calculated. If conditions (1) and (4) are satisfied, then a SPT
( ) is generated. For extending , linear regression is 
used to predict next likely continuation of the track. Based
on peaks p (t , f ) and  p (t , f ) , and  in equation (1) 
can be solved.f = t +                                                                              (1)

Then, one by one, the predicted peak of the following
frame can be calculated, shown as the yellow rectangle in 
Fig. 3. If the time interval between and does not 
satisfy condition (1), will not be added to , and we 
move to the next peak . Otherwise, we calculate the 
frequency interval between and  . If condition (4) is 
satisfied, then  will be added to . After each peak is 
added, linear regression is repeated to recalculate the next 
predicted peak using at most the last 10 included peaks. This 
iterative process continues until condition (2) is no longer 
satisfied. Once stops growing, the length and the 
density of SPT are then calculated. If the results satisfy
condition (3) and (5), will be stored. Each is 
stored as: start time t , stop time t and frequency bin index 

Fig.4. SPT (solid horizontal black line) on the spectrogram, the dash 
horizontal black lines represent the frequency boundary of the SPT. 

We calculate 19 variables for each call within the frequecy 
boundary: syllable duration, dominant frequency, oscillation rate, 

frequency modulation and energy modulation

of each of the peaks within the track f ,  . The 
result of the SPT algorithm is shown in Fig.4. 

Each syllable is represented as a single SPT, the syllable 
features are then extracted from the results of the SPT 
algorithm.

a) Syllable duration (seconds): the syllable duration (D) is
directly obtained from the bounds (time domain) of the 
segmentation result.D = (t )                                         (2)

where is the x-axis resolution.

b) Dominant frequency (Hz): the dominant frequency (f)
is calculated by averaging the frequency of all peaks
within one SPT.f = f (t t + 1) r (3)

where r is the y-axis resolution, f is the frequency bin 
index of peak .

c) Oscillation rate (Hz): the oscillation rate ( ) is the 
number of pulses within one second. The algorithm for 
extracting oscillation rate is a modified form of 
Bardeli’s [13], which is described as follows:

1. Calculate dominant frequency bin (f) of the SPT
and define the frequency domain boundary as[l, h] = [max f 5,1 , f + 5]. Here, the value 5 is 
determined empirically. The power within the 
boundary is calculated as P = S(t, f) (S(t, f) S(t + 1, f))    (4)

2. Normalize P to [0,1] and discard the first 20% and 
last 20% part of the signal as the signal towards the 
start and end of the syllables is often less clear.

3. Calculate the autocorrelation with the length of the 
selected vector and the result is represented 
by .
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4. Subtract the mean from  = ( )             (5)

Then, a discrete cosine transform (DCT) is applied 
to for isolating different frequency 
components. The DCT of the auto-correlated 
power is defined as P (k) = w(k) ( )( ) , k =1, … , N                          (6 )

Here, the DCT length ( ) is 0.2s.

w(k) = , = 1, 2                (7)

5. Set P (k), = 1, … ,5 to zero for removing low 
frequency oscillation from consideration. The 
oscillation rate is then calculated using the 
location of the highest power  := 0.5/                                  (8)

d) Frequency modulation (Hz) 

Frequency modulation (F , = 1 … 8) means the 
difference between the dominant frequency bin (f) and 
averaged frequency bin , = [1,2, … ,8] of eight equal 
segments of the SPT.F = f, … f r                  ( 9 ) 

e) Energy modulation

Energy modulation ( , = 1 … 8) means the 
averaged energy of eight equal parts of the SPT. Let ( ) denote the amplitude value of the SPT, where n
is the frame index. First, a Hilbert transform is applied
to A(n) as follows:( ) = ( ( ))                           (10)

where ( ) is the complex sequence named as the 
analytic signal of ( ).

Then, the absolute part of ( ) is extracted to 
represent the envelope of ( ), and is defined as ( ) = ( ( ))                          (11)

Lastly, the energy modulation is calculated based 
on ( ). Here, ( ) represents one part. The energy 
modulation is then obtained. = [ , … , ]                             (12)

where = ( ) , is the length of one 
syllable.

Extraction  of MFCCs 

Mel-frequency cepstral coefficients (MFCCs) computed 
based on short-time analysis are used as the baseline due to 
the consistency, easy implementation, and reasonable 
performance [9]. This is also the case for much other prior 

research. The steps for MFCCs processing are listed as 
follows:

Step 1: Pre-emphasis.( ) = ( ) ( 1)                                        (13)

where ( ) is input frog call, a typical value for  is 0.95.

Step 2: Framing and windowing.

Each syllable is separated into frames with a length of 512 
samples and an overlap of 256 samples. To reduce the 
discontinuity on both sides of frames, each frame is 
multiplied by a Hamming window.( ) = ( ) ( )                                           (14)

where ( ) is the Hamming window function.( ) = 0.54 0.46 , 0 1      (15)

Step 3: Spectral analysis.

Compute the discrete Fourier transform (DFT) of each
frame of the signal. By considering = , the DFT of 
each frame of the signal is X( ) = ( ) , k = 0,1, … , N 1             (16)

Equation (16) is known as signal spectrum.

Step 4: Band-pass filtering.

The amplitude spectrum is then filtered using a set of 
triangular band-pass filters.= ( ) , 0 1                          (17)

where J is the number of filters,  is the filter, and 
is the amplitude of X( ).= | [ ]| , 0 /2                                     (18)

Step 5:  DCT. MFCCs for the frame are computed by 
performing DCT on the logarithm of .= cos ( + 0.5) , 0 1                      

(19)

where L is the number of MFCCs.

In this study, the filter bank consists of 40 triangular 
filters, that is  J = 40. The length of MFCCs of each frame 
is 16 ( = 16). After calculating MFCCs from each frame, 
the averaged MFCCs of all frames within one syllable are
calculated.= , 0 1                     (20)

where is the MFCCs, is the number of frames
within the syllable. In the training phase, the averaging of 

over all training syllables for the call of the same 
species is regarded as the feature value . A linear 
normalization process is applied to get the final feature.



=                                (21)

D. Principal component analysis
In this study, dimensionalities of the original syllable 
features and MFCCs are 19 and 16, respectively. PCA is 
then applied to decorrelate these feature vectors and reduce 
their respective dimensionalities. By finding the orthogonal 
linear combinations (named PC) of the original variables 
with the largest variance, the dimensionality of the data will 
be reduced by PCA. The result of PCA is a set of linear 
combinations of the original features, ordered by their 
discriminating power. The PCs with the most 
discriminating power can then be used, and the rest 
discarded with minimal impact on the results [14]. In this 
study, the number of PCs for syllable features and MFCCs
are 5 and 7 respectively after dimensionality reduction. The 
distributions of first two PCs for syllable features and 
MFCCs are shown in Fig.5.

(a) PC1and PC2 of syllable features

                         (b)    PC1 and PC2 of MFCCs feature

Fig.5. Distribution of first two components for (a) syllable features
and (b)  MFCCs feature

E. Classification
The k-NN classifier is a non-parametric classifier that is 

appropriate for use because of PCA results [15].
Meanwhile, it has also been widely used for classifying 
animal calls [4, 5]. Given a set of parameters, a k-NN 
classifier will find the nearest neighbor among training data 
by determining the minimum distance between the 
instances of the testing and training sets. Here, the input 
parameters for the k-NN classifier are the PCA result of the 

syllable features and MFCCs features, whose 
dimensionalities are 5 and 7 respectively. The distance 
function for the k-NN classifier is Euclidean function and 
the number of neighbor, , is 5 which are both selected 
based on the training data.

III.EXPERIMENT

In this experiment, the k-NN classifier is used to learn a
model on the training examples with 10-fold cross-
validation. Since the k-NN classifier is sensitive to the local 
structure of the data as well as the initial cluster centroids,
we run the k-NN classifier for 10 times based on different 
initial points. The classification accuracy is defined as 
follows:Accuracy(%) =                                       (22)

where N is the number of syllables which are correctly 
classified, and N is the total number of syllables. The k-
NN classifier was used with two feature sets: the syllable 
features and MFCCs. A Gaussian white noise signal, with 
signal to noise ratio (SNR) of 40 dB, 30 dB, 20 dB, and 10
dB was added to the original audio data for testing the 
robustness of the syllable features, the results are shown in 
Fig.7. Table II lists the averaged classification accuracy of 
syllable features and MFCCs which are 90.5% and 79.0%, 
respectively. For syllable features, the classification 
accuracy of Crinia parinsignifera, Limnodynastes 
tasmaniensis and Litoria chloris is 100%, because the
syllable duration, dominant frequency, and oscillation rate 
of those frog species are stationary and different from 

TABLE II. COMPARISON OF THE ACCURACY OF THE CLASSIFIER

Scientific name
Total 

syllable

Classification accuracy

syllable 
features 

MFCCs

Assa darlingtoni 36 94.1% 73.6%

Crinia parinsignifera 40 100% 42.6%

Litoria caerulea 72 89.7% 95.5%

Litoria chloris 26 100% 100%

Litoria latopalmata 169 94.8% 91.2%

Litoria nasuta 60 89.5% 56.6%

Litoria revelata 151 94.7% 80.8%

Litoria rubella 37 79.1% 68.4%

Litoria verreauxii verreauxii 28 94.5% 69.4%

Litoria tyleri 117 91.8% 78.4%

Limnodynastes tasmaniensis 14 100% 100%

Limnodynastes terraereginae 44 94.9% 93.3%

Mixophyes fasciolatus 28 82.9% 100%

Philoria kundagungan 22 94.4% 94.4%

Uperoleia fusca 32 69.8% 53.3%

Uperoleia laevigata 24 77.0% 65.5%

Averaged classification accuracy 90.5% 79.0%



Fig.7. Sensitivity of syllable fatures (SFs) and MFCCs feature for different 
levels of noise contamination

others. Since the dominant frequency and syllable duration 
between Uperoleia fusca and Uperoleia laevigata are 
similar, the oscillation rate and syllable duration between 
Uperoleia fusca and Litoria rubella are similar, the 
classification accuracy of Uperoleia fusca, Litoria rubella,
and Uperoleia laevigata is relatively low. For MFCCs, the
classification accuracy of Limnodynastes tasmaniensis,
Litoria chloris, and Mixophyes fasciolatus is 100%,
because the spectrum distributions of those frog species are
different from others. Compared with the MFCCs features, 
the performance of Crinia parinsignifera and Litoria 
nasuta is greatly improved. The results from running the 
classifier on audio data with artificially added background 
noise show the ability of our feature extraction method for 
dealing with background noise. 

IV.CONCLUSION

This study presents a novel feature extraction method
for classifying frog calls. The audio data is first segmented 
into syllables. Then, the SPT algorithm is used to isolate 
frog calls. Syllable features that include syllable duration, 
dominant frequency, oscillation rate, frequency modulation, 
and energy modulation are extracted from the boundary of 
the SPT results for classifying frog calls using a k-NN 
classifier. The results are promising with an average 
classification accuracy of 90.5% for syllable features.
Future work will include additional experiments that test a
wider variety of audio data from different geographical and 
environment conditions. 
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